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Abstract

We correct four places in Table I of the paper “Eraker B, Johannes M, Polson N (2003).
The impact of jumps in volatility and returns. Journal of Finance, 58, 1269-1300.” by
two methods. The first method is based on the derivatives of the moment generating
functions. The second method is by elementary and straightforward calculations of the
variance and the covariance.
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1. Model Assumptions

We assume that the logarithm of asset’s price, Y; = log (S;), solves

dYy '\ _ w 1 0 EYANY
( vy ) B ( k(0 —Vie) ) &+ <P0v 1 —,0201,) Wit < §”dNZ” > R

Write (1.1) to two equations, we obtain

dY; = pdt + /ViedW} + €YdNY,
AV = (0 — Vi) dt + oy /Vie <dety +/1- p2dW;’> + EVdNY,

where V;_ = li%ﬂfs, W = ( W ) € R? is a standard Brownian motion,
s t

AW} = Wty-&-dt — W} ~ N (0,dt),
AW = W g — W ~ N (0,dt),
E(@dWY) = E (dW}) = 0,

Var (dW}) = Var (dWp) = dt,
Cov (dWY,dW}) = 0,

n r isson pr wi nstant intensiti n
N} and N} are Poisson processes with constant intensities A, and Ay,

N{ ~ P (\yjt), NP ~ P (At),
ANy = Nty+dt — N{ ~ P (\ydt),

AN} = Niigr — N} ~ P (Aydt),

(1.2)
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and &Y and &Y are the jump sizes in returns and volatility, respectively. We assume that the
parameters and initial conditions have sufficient regularity for the solution of (1.1) to be well
defined.

This specification nests many of the popular models used for option pricing and portfolio
allocation applications. Without jumps, Ay, = A, = 0, (1.1) reduces to the square-root
stochastic volatility model, the SV model (Heston (1993)). The SVJ model (Bates (1996))
has normally distributed jumps in returns, &Y ~ N (My, 05), but no jumps in volatility, A, = 0.
Duffie et al. (2000) introduced the models with jumps in volatility.

The SVIJ model has independently arriving jumps in volatility, £&” ~ exp (4,), and jumps in
returns, &Y ~ N (,uy, 05). Moreover, dW/, €Y, AN}, dW}, £, dN} are mutually independent.

The SVCJ model has contemporaneous arrivals, N/ = N/ = Ny,

dN{ = dN{ = dNy = N}, 4, — N{ ~ P (\ydt) = P (A\dt),

and correlated jump sizes, £V ~ exp (), and €YY ~ N (uy + ps&’, 05). The five quantities
AWy, &Y, dWY, £, dNy are mutually independent except that £¥ and £¥ have some relationship,
as depicted below.

awy ¢
| dNy
thv 51}
Therefore,

BE = o, Var (€) = i, B |(€)°] = (B€") + Var (€) = i + 2 = 242,

B (€116%) = py+ps€°, Var (€1€") = 02, B |(€0) €] = [B (£1€") +Var (€21€") = (ny + ps€°) +02,
E (ANY) = A\,dt, Var (dNY) = \,dt, E [(ng/)Q] = [E (dNY)]? + Var (ANY) = (Aydt)? + A\ydt = \ydt,

E(AN?) = M\odt, Var (AN?) = Apdt, E [(dNtv)ﬂ — [E(ANP)] + Var (AN?) = (Aodt)? + Aydt = Aodt,

E(dN,) = E (dNY) = M\ydt, Var (dN;) = Var (dNY) = \ydt, E [(dNt)ﬂ —E [(dNty)Q] = \ydt.
(1.3)

2. Conditional Moments

Table 1 provides the instantaneous variance and covariance of Y; and V; for each of the models.
In the table, there are four places which are different from those in Eraker et al. (2003).

Now we calculate the conditional moments of the four models in Table 1. We provide two
alternative methods to calculate the conditional moments. The first method is based on
the derivatives of the moment generating functions. See Casella and Berger (2002) for more
about univariate moment generating functions. See also Sato (1999) for properties of the
multivariate characteristic functions. When the moment generating function exists, it can be
used to generate moments, just as the characteristic function can. The second method is by
elementary and straightforward calculations of the variance and the covariance.
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Table 1: Conditional Moments. This table summarizes the instananeous conditional mo-
ments for the four models under consideration. In the case of the SVCJ model, the second

moment of the jump sizes is E [({y)z} = /1,12, + 2y popg + 2pA 02 + 05 (a).

SV SVJ SVCJ SVILJ
LVar (dYy) Vi Vit (2402) Vit AE (€] Vit Ay (12 + 02)
FiVar (dvi) oV, oV 02V, + 262\ (b) o2V, + 262\ (d)
aCov (dYy,dVy)  pouVe  pouVy pouVe+ Ny (gt +20513) (€)  pouVi

2.1. Derivatives of the moment generating functions

Since the SV model and the SVJ model are special cases of the SVCJ model or the SVIJ
model, we only derive the moment generating functions of the SVCJ model and the SVIJ
model.

e The SVCJ model

The moment generating function of ( Z‘i > for the SVCJ model is given by
t

exXp

Yoyl
av;

[( ) ()]
xp (c1dY; + odVy)

& (udt A/ VedW + gdet) te [K 0 — Vi) dt + ou/ Vi (dety +/1- p2th“) + g“dNt} }

{ cip+ ok (0 — V)] dt + (e1v/ Vi + cooupy/ Vi) AW }
205\ 1 = PPV VEdWY + (c18Y 4 ¢26¥) AN '

[
Djtij tij

Let A =exp {[cipp + c2k (0 — V;)] dt}, then
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() ')
avi
—A-E {exp [(cl\/Vt n czavpﬁ) thy} exp [cQav\/f JVidWy ] exp [(c16Y + a6”) dNt]}
= A-E{exp | (aV/Vi + caoupy/ Vi) aw? ] }

B {exp (2001 = 2 VVidW? ) |- E{expl(e1€” + e26") AN}

=A. Mthy <c1\/7t + CQva\/Vt> dev (CQJU\/ 1-— \/Vt> E {exp ley + Cgf )dNt]}

=A- M- M- Ms,

the second equality above holds by independence, where

My = Mgyyv (01\/‘7t+ CzavP\/Vt) )
My = Mawy (02%\/ 1- PQ\/Vt> ;
Ms = E {exp[(c1&Y + c2£") dNy] } .

We only need to compute A, My, Ms, and Ms. In the following, we will frequently use the

3 x
Taylor expansion of e,
22

e.o]
Z£—1+x+—+
k! 2!
k=0
First,

A =exp{leip + o (0 — V)] dt}

{lerp + cak (6 — V)] dt}
91

=14 [c1p+ ok (0 — V)] dt. ((dt)* =0,k > 2)

=14 [cip+ cor (0 — V)] dt +

For a normal random variable X ~ N (u, 02), its moment generating function is (Casella and
Berger (2002))

1
My (t) = Ee™™ = exp <ut + 202752) .

By (1.2), we have dW} ~ N (0,dt), thus
My = Mgy (Q\/Vt + CQUUP\/Vt>
1 2
= exp {O : [(Cl + CQUUP) \/Vt] + §dt |:(Cl + CQUUP) \/Vt} }

1

o

> (c1 4 ca0up)? tht]

1
=1+ B (c1 + czavp)2 Vdt.
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By (1.2), we have dW} ~ N (0,dt), thus
My = Maw; (e2007/1= 2/ Vi)
1 2
= exp {O- (czav\/ 1-— p2\/V}> + idt (czav\/ 1-— p2\/Vt> }
1
= exp {20303 (1 - p2) V}dt}

=1+ %cgag (1= p?) Vidt.

Now turns to the hard part, the calculation of Ms.

My = E{exp [(c18” + c2€") dN]}
= F exp (c1dN&Y + cadN&£Y))]
= FE{FE [exp (c1dN&Y + codNi£Y) |[dNy) }
= E{E[E (exp (c1dN&Y + codNi£”) €7) |dINy) }

We first compute the innerest expectation. Given dNy, then

E (exp (c1dNEY + cadNi£EY) [€Y) = exp (cadNi&EY) - E {exp [e1d Ny (§Y[€°)]}
= exp (CQdNté-v) . ng‘gv (CldNt) .
Since &Y[€Y ~ N (uy + pJé-U,O'Z), then

E (exp (c1dN£Y + cadN¢£?) |€7)

1
= exp (c2dN£") - exp [(Ny + ps€’) c1dNy + 5050% (dNt)Q]

1
= exp [(CQ + c1pg) ANiEY + ¢y d Ny + 505(:% (dNt)z] .

Note the exponent in the last equality of the above expression is a function of £Y. Substitute
this expectation into M3, we obtain

1
Ms;=F {E [exp [(cz + c1py) ANE” + c1p1ydNy + 5056% (dNt)Q] |dNt] }

1
-F {exp [cl,u,det + sooct (dNt)z] - E{exp [(c2 + c1py) AN:£Y) \dNt}}

N = N

=F {exp [cl,uyd]\ft + U;C% (dNt)2] - Mgo ((c2+c1py) dNt)} .

For an exponential random variable X ~ exp (/3), its moment generating function is (Casella

and Berger (2002))
1

T

MX (t) = EetX

Since &Y ~ exp (), then

1
1 — piy (c2 + c1py) ANy

Mgv ((CQ + ClpJ) dNt) =
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Thus,
exp [clpdet + %020% (dNt)ﬂ

Ms;=F
’ 1 — py (ca + c1pg) dNg

We know that dN; ~ P (\,dt). When dt is small, we will show that dN; ~ Bernoulli (A,dt).
Remember that when dt is small, (dt)]C =0, k > 2. Thus,

My dt)*
P (N, = ky = 2 o L VS
()\ydt)o —Aydt
P(dNt = 0) = Te v
=1-(1— \ydt)
=1 \dt,

Aydt)!
P(dNt — 1) — ( Y ) e—Aydt

1!
= A\ydt (1 — \dt)
= \dt,
when k > 2,
(Aydt)® _
P (AN, = k) = =4 e™ M = 0.

Consequently, dN; ~ Bernoulli (A,dt). Now let us compute M3. Let

exp [cl,udet + 502¢3 (dNt)z]
1 — py (c2 + c1pg) AN

g (dNy) =

Then,

M;z = E[g (d]N)]
=g(1)- P(dNt =1) 4+ g(0) - P (dNy = 0)
_exp (crpy + 502c3) exp (0)
1= py(c2+cipy) 1-0

exp (cl,uy + %O‘SC%)
=1+ — 1| Aydt.
1 — iy (c2 4+ c1py)

Aydt + (1= Aydt)
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Therefore,

vy
—A-M; - My Ms

M(d}@)(iﬁ)

1 1
={1+4[cip+ cor (0 —V;)]dt} - [1 + 3 (c1 + caoyp)? V}dt} . [1 + ~cio? (1- p2) Vidt

2
exp (c1py + to2c?
1+( p(ly 2y1)—>)\ydt]

1 — py (c2 4+ c1pg)

le1p + cak (0 — Vo)) + 3 (1 + c200p)* Vi + Lcd02 (1 - ) V4

=1+ eXp(C1My+%UQC%) dt.
+ ( 1_Hv(02+cng) —1)

Our goal is to calculate

v ay; \ Var (dY;)  Cov(dY,dVy)
T\ av; ) T\ cov (@Y, V) Var(dVy)

E[(@v)’] ~ [E(@V)P B (dY;-avi) - [E(dY)] - [E (V)
Cov (dYy, dVy) E (@] - [B (@)

Thus it suffices to calculate the moments E (dY;), F [(dYt)Q], E(dW), E [(dV})Q}, and the

cross moment E (dY; - dV;). The moments and the cross moment can be calculated by using
the following property of the moment generating function (see Sato (1999) for properties of
the multivariate characteristic functions):

ki+k €1
- M<dy><>

dVi

k1 7, k2
Ocy' Oc,,

B [(avi)™ (av3)*] =

c1=co=0

k1=0,1,2, ko =0,1,2, 1 < k1 + ko < 2.

Thus,
M
E (dy;e) = 87
acl c1=c2=0
’
ou exp (c1py + 50,5¢1)
B 1 (Cl Co0 p) t Y ( 1 — iy (CQ + CIPJ)
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1 — iy (2 +c1pg)

!
<exp (e + ;azc@)
exp (crpty + 50ye1) - (my +oger) - [L— po (c2 + c1pg)] — exp (crpy + 3o5¢t) - (—pwpy)
[1— gy (c2 + c1pg))?
exp (cipty + 502¢3) { (py + 02c1) - [1 = po (c2 + c1ps)] + pops }
[1— gy (c2 +c1pg))? 7

(exp (c1py + $02c3) )/

_ 1Ay 1+ peps}

= _|._ J-
1 — po (c2 +c1py) o —ea 12 Hu T fol
Therefore,
oM
E(dY;) = —
( t) 861 c1=co=0

= [+ Ay (py + pops)] dt.

The other moments and the cross moment can be similarly calculated. But the calculations
will be more involved.

We exploit the Mathematica software to calculate the moments and the cross moment. The
Mathematica codes can be found in the supplemental file “SVCJ.nb”. Since the calculations
only involve differentiations and evaluations, the computing is very fast. We summarize the
results calculated by the Mathematica software as follows.

oM
E(dYy) = Do = [u+ Ay (y + pop)] dt,
1 c1=co=0
82 M
Bl@ny] = 5| = Vi ) 2 + 205 + o)t
cl1=co=
oM
B (Vi) = 5 = [k (0 = V}) + Aypso] dt,
€2 c1=co=0
0?M
E[(av)?] = Bl - (2212 + Vio?] dt,
c1=co=
0?M
BldYi-dV) = 5 5 = [Ny (ttotty + 2412ps) + pVicr] dt.
c1=c2=0

Var (dY;) = E [(dv)?] - [ (av;))

= Vi + Ay (1 + 20y pops + 20508 + 07)] dt,

Var (dVi) = B [(dVi)?] - [E (@)
= [012)1/; + 2#3/\11] dt, (here A\, = \y)

Cov (dY;,dV;) = E (dY; - dV;) — [E (dYy)] - [E (dV4)]
= [pouVi + Ay (pypo +205107) ] dt.



Ying-Ying Zhang 9

e The SVIJ model

To lighten notations, we use the same notations here as in those of the SVCJ model.

Y;
The moment generating function of ( d

avy
dYy
avy
dYy

- pex K ) ()]
= Fex (CldY; + CQd‘/t)
= Fex {q (udt +/VdW? + gdety) te [;@ 0 —V;)dt +ou/Vs (dety /1o deWt”> + 5“de] }
_ Hex [c1pe + cak (0 — Vi)] dt + (clm + CQUUp\/Vt) awy
TEOPU o /1 — VAW + c1€9ANY + o VAN

=exp {[c1p + ok (0 — V;)] dt} - {Eexp Kcl\/ﬁ + CQUUp\/Vt> thy] } . {E exp [CQJv\/ 1-— pQ\/thth] }
[Erexp (c16”dNY)] - [E exp (c2€"dNY)]
= exp {[c1p + 2k (0 — V)| dt} - Mgy (cl\/vt + CQO’UP\/Vt) - Mgy (CQO’U\/ 1— p2\/Vt)

- [Eexp (c1€YdNY)] - [E exp (c2€"dN}))
=AMy - M- Ms- My,

> for the SVIJ model is given by

’U

where
A=exp{leip+cor (0 — Vy)]dt},
My = Mgyy (Cl\/vt‘i‘ C2UUP\/Vt) ;
My = Mawy (@%M\/‘Z) ;

Ms = Eexp (c1€YdNY),
My = Eexp (c2£"dNY) .

We only need to compute A, My, My, M3, and My. First,

A= exp{[c1p + cor (0 — V3)] dt}
=1+ [cip+ cak (0 — V3)] dt.

By (1.2), we have dW} ~ N (0,dt) and dW} ~ N (0, dt), thus
My = Mgyy (Cl\/‘z + c20upV/ Vt)
1 2
= exp {0 (c1 4 caoup) Vi + idt [(cl + caoyp) \/‘7,5} }
1 2
=expq g (c1 + cooyp)” Vidt

1
=1+3 (c1 + c200p)” Vidt,
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My = Mawy <CQUUV 1- ﬂz\/vt)
= exp {0 ccoouV/ 1 — p2\/vt+ %dt |:CQO'U\/]. - pz\/ﬁr}

1
= exp {20303 (1 - p2) tht}
1
—1+2c202( p*) Vidt.
Since &Y ~ N (py,07) and dN{ ~ P (A\,dt) = Bernoulli (A,dt), then

M; = E [exp (c1€¥dNY)
— B{E [exp (c1€7dN}) [NV}
= B [M (dNY)]

—F {exp [ yC1dNY + ;oz (cldNty)ﬂ }
= exp <,uycl + ;a cl) Aydt + exp (0) - (1 — Aydt)
=1+ {exp <uycl + ;U;C%) — 1] Aydt.

Since €Y ~ exp (uy) and dN{ ~ P (A,dt) = Bernoulli (A\,dt), then

My = E [exp (c2§"dNY)]
= E{E [exp (c26"dNY) |dNy']}
= E [Mgv (CQdNtU)]

1
-F|—
|:1—IUUCQdNtU:|
=t (1= Mdt)
_1—/,LUC2 v 1 v

1
=1+ ( — 1> Aydt.
1 — pyeo

Therefore,

C1
M gy, <c2>
av;
—A-M- My M- M,

1
={1+4 [c1p+ cor (0 — V)] dt} - [1 + 5 (c1 + caoup)? tht} . [1 + 2020 2(1-p% tht]
1 55 1
. 1 -+ exp /J;yCl —+ io'ycl —1 Aydt -1 —+ m —1 Aydt

[c1p+ ok (0 — V3)] + (61 + c200p)? Vi + 020' 2(1-p)V,
=1+ dt.
Ay fexp (yer + 30263) = 1] 4+ A (g — 1

1—pyc2
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We exploit the Mathematica software to calculate the moments and the cross moment. The
Mathematica codes can be found in the supplemental file “SVIJ.nb”. We summarize the results
calculated by the Mathematica software as follows.

oM

E(dY;) = = [+ Aypyl dt,
861 c1=c2=0
0*M
E [(dYt)Q] = 57 = [Vi+ My (g + 07)] dt,
1 lep=c2=0
oM
EdV,) = — = [k (0 = Vi) + Ay o] dt,
862 c1=co=0
9?M
2 ley=co=0
0*M
E(dY;-dVy) = Dei0cs = pVio,dt
c1=co=0

= Vit 2y (uy + o)) dt,

Var (avi) = B [(@Vi)*] - [E (V)]
= [o3Vi + 23 0] dt,

Cov (dYy,dVy) = E (dY; - dV;) — [E (dY;)] - [E (dV4)]
= po, Vidt.

2.2. Elementary and straightforward calculations

In this section, we provide the elementary and straightforward calculations of the variance
and the covariance for the four models. To save space, the calculations of the latter models
may rely on the results of the former models.

e The SV model

Var (dYy) = Var <udt + \/thWty)

= Var (\/thWty)

=V, Var (dWY) = Vdt.

Thus,
Var (dYy)

=V,
dt t
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Var (dV;) = Var (K (0= Vi) dt + 0o /T, <dety N ﬂde))
— Var (avﬁ (dety + ﬂdW;’))
= o.Vi- Var (dety + Mth”)

= o2V - [Var (pdWY) + Var (\/ 1- p2th”)} (by (1.2))
= o Vi [pPdt + (1 — p°) dt]
= o2Vdt.

Cov (dY;,dV;) = Cov (udt F ViAWY K (0 — Vi) dt + oo/ Vs (dey + /1= p2dWy ))
— Cov (\/thwty,av\/ﬁ (dety + detv))
= Cov (\/thwty, av\/ﬁdety) (by (1.2))
= po,Vidt. (by (1.2))

e The SVJ model
First, notice that dW}/, ¥, dN/ are mutually independent, we have

Var (dYy) = Var (udt VAW + §de;!>
=Var (\/thWty + fdety>

— Var (\/thwty) + Var (€YdNY)
= Vidt + Var (YdNY) .

Since &Y ~ N (,uy, y) dN} = N}, — N} ~ P()\,dt), and they are independent, we

t+dt
have
BEY = py, Var (&) = o2, B (€] = (B¢ + Var (&) = i3 + 2,

E(dN}Y) = Adt, Var (dNY) = \dt, E [(ngJ)ﬂ = [E (ANY)]? + Var (ANY) = (Aydt)? + Aydt = Aydt.

Since dt is very small, (alt)2 is negligibly small, which can be treated as 0. Thus,

Var (/dNY) = B [(€%dN!)?] - [E (6"dN))
— B[(¢") (dNP)?] - [B (&any))”
- B [(gy)Q] - B {(dNy)Q} —[E(¢Y)- E(athy)]2 (by independence)
= (1 + ) Agdlt — (pyAydt)?
= (y +0y) Ayt
Thus,

Var (dY;) = [Vi+ Ay (1) + 0,)] dt.
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Var (dV;) = o2Vidt,
which is the same as that of the SV model.
Cov (dYy, dVy)
= Cou (pdt + \/VidW} + €N, k(0 = Vi) dt + 0,/ Vi (pd W + /1= p2dWy) )
— Cov (\/thWty + EYANY, o)\ Vi (dety n ﬂdwtv))
= 0, ViCov (AW}, pdW + /1= AW ) + 3,/ViCou (€N}, pd W + /T = p2aWy' ) .
Since AW}/, dWp, €Y, dN} are mutually independent, we obtain

Cov (dYy, dV;) = o,VipCouv (AW, dW!) + 0
= po, Vidt.
The SVCJ model
Similar to the derivations for the SVJ model, we have
Var (dY;) = Vidt + Var (€YdNY)
Var (&/ANY) = B (€"] - B [(dN})°] - [E (&) E (NP

First,
E¢Y = EE (£Y[€")]
= E(py +ps€") (by (1.3))
= py + ppro- (by (1.3))
Thus,
[ (§%) - E (AN = [(1y + i) Aydt]* = 0.
Consequently,

Var (dY;) = Vidt + \ydt - E [(5@/)2} (by (1.3))
= [Vi+ 2 [(e1)?]] at

It suffices to compute F [({y)Q].

7] = B{E | ]]}
= B |1y + ps€")* + 02| (by (13))
=E [MZ + 2,0 s€" + p5 (€9) + 05]
= po + 2pyps EE” + p3E [(g”)ﬂ +o,
= pig + 2y pytie + p5 200 + oy (by (1.3))
= 12+ 2y opg + 20512 + o
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Alternatively, we can compute E [(fy)Z] by the conditional variance formula. First,

Var () = Var (E(Y|€")) + E (Var (§7[€"))
= Var (uy + ps€°) + E (0;) (by (1.3))
= phus + oy (by (1.3))
Thus,
E[(€?] = [B&? + Var (&)
= (py + psp)? + pJpis + oy
= [+ 2y ops + 20515 + 0.

Var (dVy) = Var (HJ (0 — Vi) dt + 0/ Vi (dety ++v1- deWt”) + f”de)
— Var (UU\/XZ (dety /11— p2th”) + §”dNt”)

=Var (UU\/V} (dety +v1-— deW;’)) + Var (§'dN{) (by independence)
= o2Vidt + Var (€YdNY) ,

Var (€dNY) = B [(€°dN7)’] = [B (€"dN7)?
=F [(5”)2] -FE [(dNt”)Q} —[E () - E(dN))* (by independence)

=202 - Ayt — (pyhodt)” (by (1.3))
= 22\ dt.

Consequently,

Var (dVi) = o2Vidt + 2uidpdt = (02Vi + 2p20,) dt.

Cov (dYy, dVy)
— Cov (udt ViAWY + EYANY ks (0 — V3) dt + o0/ Vi (dety + \/ﬁde) + 5”de)
= Cov (\/VidW{ + €N}, 0/ Vi (pdW} + /1= p2dW) + €7dNy )
= Cov (VVidW?, 0V (pdW{ + /1= 02} ) ) + Cov (\/VidW}, " dNy)
+ Cov (gdeg/, oo /Vs (;;thy + ﬂdwg’)) + Cov (EYANY, P dNY) .
Similar to the calculations in the SV model, we have
Cov (ﬁthy,av\/ﬁ (dety n ﬂdwg))) — po,Vidt.

By the dependence structure of the five quantities dW}, £, dWp, €Y, dNy, we have

Cow (dety,gdegJ) — Cov (gdeg/, oo /Vi (mwg} V1o p2thU>> —0.
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Thus,
Cov (dYy,dV;) = po,Vidt + Cov (§YdNY, €Y dNY) .

Cov (§YdN{, £"AN;) = E (VAN AN, — E (§YdNY) - E (£"dNy)

= E(¢%¢") - E [(dNt)ﬂ _E(¢Y) - E(dNy) - E(€°) - E(dNy), (by independence)

E(£9¢") = E[E(£¥€"[€")]

[€7E (§[€Y)]
[€" (1y + ps€")] (by (1.3))
= B [u&" + ps (€]
= mEE" + psB (€]
= piytio + 24y, (by (1.3))

E
E
E

B [(dNy)?] = Aydt. (by (1.3))
In the SVCJ model, we have previously computed
E&Y = iy + prpo.
Thus, by (1.3),
E(&Y)- E(dNy) - E(£") - E (dNy) = (py + pypio) - Aydt - pry - Aydt = 0.

Consequently,
Cov (VANY, E°AN?) = (gt + 2p12) Ayt

Finally,
Cov (dYy, dVy) = po,Vidt + (pypie + 2p512) Aydt
= [pouVi + Ay (gt + 20517) ] dt.
e The SVIJ model

Similar to the calculations in the SVCJ model, we have

Var (dY;) = [Vt + A\ E [(gy)QH dt.

é-y ~ N (/Jyagz) s
BEY =y, Var (€)= o2, B [(¢")] = (B + Var (¢%) = i + o2,
Thus,
Var (dY;) = [Vi+ Ay (15 + 05)] dt.

Similar to the calculations in the SVCJ model, we have

Var (dV;) = (02Vi + 2u2),) dt.
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Couv (dYs, dV;)
= Cov (udt + ViAWY + E9ANY k(0 — Vi) dt + 00/ Vi (dety + Mde) + gdef)
— Cov (\/thwty 4 EYANY, o0\/Vs (dety n deg’) + gdet“)
= Cov (VVidW?, 0V (pdWY + /1= 02} ) ) + Cov (\/VidW},€"dNy)
+ Cov (gdety, ooV <dety + ﬂdwg’)) + Cov (EYANY, P dNY) .

Similar to the calculations in the SV model, we have

Cov (ﬁthy,av\/Vt (dety +v1-— p2th”)> = po,Vydt.

Since AW/, &Y, AN}, dWY, £, dN} are mutually independent, we have

Cov (\/thwty, gdegJ)

— Cov (gdeg/, oo/ Vi <dety V1o deth>>
— Cov (¢dNY, €"dN})
—0.

Finally,
Cov (dY:, dVy) = po, Vidt.
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