
ONLINE APPENDIX – All Proofs

A. Proofs of Propositions 1-4

Proof of Proposition 1: At time t, an agent with valuation xt chooses an asset i and a position

q in the asset to solve

max
i∈{1,2}

max
q∈{0,1}

[q(δ + xt) − |q| y − qrpi] , (A1)

i.e., maximize the flow utility minus the time value of the position’s cost. In equilibrium, assets

trade at the same price because otherwise no agent would demand a long position in the more

expensive asset. Denoting by p the common price, no agent would demand a long position in any

asset if rp > (δ + x− y). Conversely, if rp < (δ + x− y), then high-valuation agents would demand

long positions, which generates excess demand from Assumption 2. Therefore, rp = (δ + x − y).

Under this price, high-valuation agents are indifferent between a long and no position, and all other

agents hold no position.

Proof of Proposition 2: In equilibrium, either high-valuation agents accept to buy asset i, or

they refuse to do so and the asset is owned only by average-valuation agents. To nest the two

cases, we define the variable λi by λi ≡ λ if high-valuation agents accept to buy asset i and λi ≡ 0

otherwise. The utilities Vb, Vni, and Vsi of being type b, ni, and si, respectively, are determined by

the flow-value equations

rVb = −κVb +
2∑

i=1

λiμsi

(
Vni − pi − Vb

)
, (A2)

rVni = δ + x − y + κ (Vsi − Vni) , (A3)

rVsi = δ − y + λiμb (pi − Vsi) . (A4)

For example, (A2) equates the flow value rVb of being type b to the flow benefits accruing to b and

the utility derived from the possibility of b transiting to other types. The flow benefits are zero

because b does not own an asset. The transitions are (i) revert to average valuation at rate κ and

exit the market (utility zero and net utility −Vb), and (ii) meet a seller of asset i ∈ {1, 2} at rate

λiμsi, buy at price pi, and become a non-searcher ni (utility Vni and net utility Vni − pi − Vb).

The price of asset i is such that the buyer receives a fraction φ of the surplus Σ̂i. The buyer’s

net utility from the transaction is Vni − pi − Vb and the seller’s is pi − Vsi. Therefore, the price
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satisfies

Vni − pi − Vb = φΣ̂i = φ(Vni − Vb − Vsi) ⇒ pi = φVsi + (1 − φ)
(
Vni − Vb

)
. (A5)

Equilibrium imposes that

λi = λ ⇔ Σ̂i ≥ 0, (A6)

i.e., high-valuation agents accept to buy asset i if this transaction generates a positive surplus Σ̂i.

Subtracting (A2) and (A4) from (A3), and replacing pi by (A5), we find

(r + κ)Σ̂i = x − φ
2∑

j=1

λjμsjΣ̂j − (1 − φ)λiμbΣ̂i. (A7)

If λ1 = λ2 = 0, (A7) implies that Σ̂i = x/(r + κ) > 0, a contradiction. If λ1 = λ and λ2 = 0,

(A7) implies that Σ̂2 > Σ̂1 > 0, again a contradiction. Therefore, the only possibility is that

λ1 = λ2 = λ, i.e., high-valuation agents accept to buy both assets. For λ1 = λ2 = λ, the variables

(Vni, Vni, pi, Σ̂i) are independent of i, and thus the Law of One Price holds.

Proof of Proposition 3: The lending fee is zero by the argument preceding the proposition’s

statement. Agents’ optimization problem is (A1) with the only difference that q ∈ {−1, 0, 1}. Same

arguments as in Proposition 1 imply that assets trade at the same price p, such that rp ≤ (δ+x−y).

If rp < (δ +x−y), then high-valuation agents would demand long positions, and average-valuation

agents would not demand short positions from Assumption 1. This implies excess demand from

Assumption 2, and thus rp = (δ + x − y). Under this price, high-valuation agents are indifferent

between a long and no position. Moreover, Assumption 1 implies that low-valuation agents hold

short positions and average-valuation agents hold no position.

Proof of Proposition 4: If in equilibrium low-valuation agents refuse to borrow asset i, the

asset carries no lending fee, and its owners are high-valuation agents who sell when they switch

to average valuation. If instead low-valuation agents accept to borrow asset i, some owners can

be average-valuation. Indeed, because the asset carries a positive lending fee, its owners might

prefer not to terminate a repo contract when they switch to average valuation, but wait until the

borrower wishes to terminate. To nest the two cases, we define the variable νi by νi ≡ ν if low-

valuation agents accept to borrow asset i and νi ≡ 0 otherwise. We denote by V�i the utility of a

high-valuation agent seeking to lend asset i, Vni the utility of a high-valuation agent who is in a

repo contract lending asset i, Vni the utility of an average-valuation agent who is in the same repo
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contract and waits for the borrower to terminate, Vbo the utility of a low-valuation agent seeking to

borrow an asset, and Vni the utility of a low-valuation agent who is in a repo contract borrowing

asset i. These utilities satisfy the flow-value equations

rV�i = δ + x − y + κ
(
pi − V�i

)
+ νiμbo

(
Vni − V�i

)
, (A8)

rVni = δ − y + wi + κ (pi − Vni) , (A9)

rVbo = −κVbo +
2∑

i=1

νiμ�i

(
Vni + pi − Vbo

)
. (A10)

The remaining two equations depend on whether an owner terminates a repo contract immediately

upon switching to average valuation, or whether he waits for the borrower to terminate.

We first treat the case of immediate termination, which is characterized by the condition

pi ≥ Vni. The two remaining flow-value equations are

rVni = δ + x − y + wi + κ (pi − Vni) + κ
(
V�i − Vni

)
, (A11)

rVni = −δ + x − y − wi + κ
(
Vbo − pi − Vni

)
+ κ

(−pi − Vni

)
. (A12)

To determine the price pi, note that if pi > V�i, then high-valuation agents would not demand

long positions, and neither would other agents with lower valuations. Conversely, if pi < V�i, then

high-valuation agents would demand long positions. Since the measure of short-sellers does not

exceed that of low-valuation agents (and is, in fact, strictly smaller because of the search friction),

Assumption 2 implies excess demand for asset i. Therefore, pi = V�i. The lending fee wi is such

that the lender receives a fraction θ ∈ [0, 1] of the surplus Σi in a repo transaction. Since a repo

transaction turns the lender �i into type ni, the lender’s surplus is Vni−V�i. The borrower’s surplus

is pi +Vni−Vbo because the borrower bo sells the asset and becomes type ni. Therefore, the lending

fee is implicitly defined by

Vni − V�i = θΣi = θ(Vni − V�i + pi + Vni − Vbo). (A13)

Finally, equilibrium imposes (3), i.e., low-valuation agents accept to borrow asset i if this transaction

generates a positive surplus Σi.

Since pi = V�i, the surplus is Σi = Vni + Vni − Vbo. Subtracting (A10) from the sum of (A11)

and (A12), and noting that (A13) implies pi + Vni − Vbo = (1 − θ)Σi, we find:

(r + κ + κ)Σi = x + x − 2y − (1 − θ)
2∑

j=1

νjμ�jΣj . (A14)
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Eq. (A14) implies Σ1 = Σ2 ≡ Σ and thus ν1 = ν2. If ν1 = ν2 = 0, then Σ = (x+x−2y)/(r+κ+κ),

which is positive by Assumption 1, a contradiction. Therefore, ν1 = ν2 = ν, i.e., low-valuation

agents accept to borrow both assets. For ν1 = ν2 = ν, the variables (V�i, Vni, Vni, pi, wi) are

independent of i, and thus the Law of One Price holds.

We next treat the case pi < Vni. Then, (A11) and (A12) are replaced by

rVni = δ + x − y + wi + κ (Vni − Vni) + κ
(
V�i − Vni

)
, (A15)

rVni = −δ + x − y − wi + κ
(−pi − Vni

)
. (A16)

The counterpart of (A14) is

(r + κ)Σi = x + x − 2y − (1 − θ)
2∑

j=1

νjμ�jΣj + κ(Vni − Vni). (A17)

Subtracting (A9) from (A15), we find

Vni − Vni =
x

r + κ + κ
, (A18)

and can rewrite (A17) as

(r + κ)Σi = x + x − 2y − (1 − θ)
2∑

j=1

νjμ�jΣj − κx

r + κ + κ
. (A19)

Suppose that Σ1, Σ2 ≤ 0. Then, a borrower and a lender of asset i are better off agreeing on a

repo contract with a fee wi ≈ 0. Indeed, since rpi = δ +x−y from (A8), we have δ−y +wi − rpi ≈
−x < 0 and thus Vni < pi. Therefore, the surplus Σi under this contract is given by (A14) and is

positive. The lender is better off because of the fee, and if the fee is small the borrower is better

off because Σi > 0. Therefore, Σ1, Σ2 ≤ 0 cannot be part of an equilibrium.

Suppose that Σ1 > 0 and Σ2 ≤ 0. Then, a borrower and a lender of asset 2 are better off

agreeing on a repo contract with a fee w2 ≈ 0. Indeed, the surplus Σ2 under this contract is

given by (A14). If Σ1 is given by (A14), then Σ2 = Σ1 > 0. If Σ1 is given by (A17), then

Σ2 = x/(r + κ + κ) > 0. Therefore, Σ1 > 0 and Σ2 ≤ 0 cannot be part of an equilibrium, and the

only possible outcome is Σ1, Σ2 > 0 and ν1 = ν2 = ν.
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Since ν1 = ν2 = ν, the Law of One Price holds if pi ≥ Vni for both assets or pi < Vni for both

assets. Consider an equilibrium in which p1 ≥ Vn1 and p2 < Vn2. Then (A8) and (A13) imply that

rpi = δ + x − y + νμboθΣi, (A20)

(A8), (A11) and (A13) imply that

w1 = (r + κ + κ + νμbo)θΣ1, (A21)

(A8), (A13), (A15) and (A18) imply that

w2 = (r + κ + νμbo)θΣ2 +
κx

r + κ + κ
, (A22)

(A20), (A21) and δ − y + w1 − rp1 ≤ 0 imply that

(r + κ + κ)θΣ1 − x ≤ 0, (A23)

and (A20), (A22) and δ − y + w2 − rp2 > 0 imply that

(r + κ + κ)θΣ2 − x > 0. (A24)

Eqs. (A23) and (A24) imply that Σ2 > Σ1. But then, a borrower and a lender of asset 1 can be made

better off agreeing to a contract with a fee w̃1 > w1 such that δ − y + w̃1 − rp1 is slightly positive.

Using (A9), this implies that Ṽn1 > p1, so that the lender finds it optimal not to terminate when he

reverts to an average valuation. Hence, this contract generates surplus Σ2. Because δ−y+ w̃1−rp1

is slightly positive, we also have that Ṽn1 ≈ p1, meaning that a lender is nearly indifferent between

terminating or not. This means that the change in the lender’s utility is

ΔVni ≈ w̃1 − w1

r + κ + κ
> 0,

the PV of the lending fee difference assuming that the lender follows the same termination strategy

than with w1. The change in the borrower’s utility is Σ2 −Σ1 −ΔVni. Factoring out 1/(r + κ + κ),

we can write this as

(r + κ + κ)(Σ2 − Σ1) − (w̃1 − w1)

≈ (r + κ + κ)(Σ2 − Σ1) −
[
rp1 − δ + y − (r + κ + κ + νμbo)θΣ1

]
= (r + κ + κ)(Σ2 − Σ1) −

[
δ + x − y + νμboθΣ1 − δ + y − (r + κ + κ + νμbo)θΣ1

]
= (r + κ + κ)(Σ2 − Σ1) − [x − (r + κ + κ)θΣ1]

= (1 − θ)(r + κ + κ)(Σ2 − Σ1) + [(r + κ + κ)θΣ2 − x] > 0.

Therefore, the conjectured equilibrium is not possible.
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B. Population Measures

The measures μbi and μsi of buyers and sellers of asset i are

μbi = μb + μbi (B1)

μsi = μsi + μsi. (B2)

Since assets are held by either lenders or sellers, market clearing implies that

μ�i + μsi = S. (B3)

Moreover, since there is equal measure of high- and low-valuation agents involved in repo contracts,

μni ≡ μnsi + μnni + μnbi = μsi + μni + μbi (B4)

To write the inflow-outflow equations, we condense types (nsi, nni, nbi) into a type ni, and denote

that type’s measure by μni as in (B4) above. We also denote by fi the inflow from type ni to type

�i. The inflow-outflow equations are

Buyers b F = κμb +
2∑

i=1

λμsiμb (B5)

Lenders �i λμbμsi + fi = κμ�i + νiμboμ�i (B6)

Non-searchers ni νiμboμ�i = fi + κμni (B7)

Sellers si κμ�i + κμsi = λμbiμsi (B8)

Borrowers bo F +
2∑

i=1

κ(μsi + μni) = κμbo +
2∑

i=1

νiμboμ�i (B9)

Sellers si νiμboμ�i = κμsi + κμsi + λμbiμsi (B10)

Non-searchers ni λμbiμsi = κμni + κμni (B11)

Buyers bi κμni = κμbi + λμbiμsi, (B12)

For example, (B5) equates the inflow into type b, which is F because of the new entrants, to the

outflow, which is the sum of (i) κμb because some buyers revert to average valuation and exit the

market, and (ii)
∑2

i=1 λμsiμb because some buyers meet with sellers.

We determine population measures by the system of (B1)-(B5) and (B8)-(B12). The total

number of equations is 18 (because some are for each asset), and the 18 unknowns are the measures
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of the 14 types b, bo, {�i, ni, si, si, ni, bi}i∈{1,2} and {μbi, μsi}i∈{1,2}. A solution to the system

satisfies (B6) and (B7), which is why we do not include them into the system. Indeed, adding

(B10)-(B12), and using (B4), we find

νiμboμ�i = κμsi + κμni + λμbiμsi.

Therefore, (B7) holds with fi = κμsi +λμbiμsi. For this value of fi, (B6) becomes λμbiμsi +κμsi =

κμ�i + νiμboμ�i, and is redundant because it can be derived by adding (B8) and (B10).

To solve the system, we reduce it to a simpler one in the six unknowns μbo, μb, and {μbi, μsi}i∈{1,2}.

Adding (B10) and (B11), we find

μsi + μni =
νiμboμ�i

κ + κ
. (B13)

Plugging into (B9), and using (B3), we find

F = κμbo +
κ

κ + κ

2∑
i=1

νiμbo(S − μsi). (B14)

Eqs. (B10) and (B3) imply that

μsi =
νiμbo(S − μsi)
κ + κ + λμbi

. (B15)

Eq. (B11) implies that

μni =
λμsiμbi

κ + κ
(B16)

and (B12) implies that

μbi =
κμni

κ + λμsi
. (B17)

Combining these equations to compute μbi, and using (B1), we find

μbi = μb +
κλμbiνiμbo(S − μsi)

(κ + κ)(κ + κ + λμbi)(κ + λμsi)
. (B18)

Noting that μ�i + μsi = S − μsi, we can use (B8) to compute μsi:

μsi =
κS

κ + λμbi
. (B19)
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Adding (B15) and (B19), and using (B2), we find

μsi =
κS

κ + λμbi
+

νiμbo(S − μsi)
κ + κ + λμbi

. (B20)

The new system consists of (B5), (B14), (B18), and (B20). These are six equations (because

some are for each asset), and the six unknowns are μbo, μb, and {μbi, μsi}i∈{1,2}. Once this system

is solved, the other measures can be computed as follows: μsi from (B15), μni from (B16), μbi from

(B17), μsi from (B19), μ�i from (B3), and μni from (B4).

To cover the case where search frictions are small, we make the change of variables ε ≡ 1/λ,

n ≡ ν/λ, αi ≡ νi/ν, γsi ≡ λμsi, and γbo ≡ νμbo. Under the new variables, (B5), (B14), (B18), and

(B20) become

F = κμb +
2∑

i=1

μbγsi, (B21)

F =
εκγbo

n
+

κ

κ + κ

2∑
i=1

αiγbo(S − εγsi), (B22)

μbi = μb +
κμbiαiγbo(S − εγsi)

(κ + κ) [ε(κ + κ) + μbi] (κ + γsi)
, (B23)

γsi =
κS

εκ + μbi
+

αiγbo(S − εγsi)
ε(κ + κ) + μbi

, (B24)

respectively.

B.1. Existence and Uniqueness

We next show that the system of (B21)-(B24) has a unique symmetric solution when α1 = α2 = 1

(the “symmetric” case), and a unique solution when α1 = 1 and α2 = 0 (the “asymmetric” case).

Using (B23) to eliminate γbo in (B24), we find

γsi =
κS

εκ + μbi
+ (μbi − μb)

(κ + κ)(κ + γsi)
κμbi

.

Multiplying by μbi, and setting i = 1, we find

γs1μb =
κSμb1

εκ + μb1
+ (μb1 − μb)

κ

κ
(κ + κ + γs1). (B25)
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In the rest of the proof, we use (B21), (B22), (B23) for i ∈ {1, 2}, and (B24) for i = 2, to determine

μb and μb1 as functions of γs1 ∈ (0, S/ε). We then plug these functions into (B25), and show that

the resulting equation in the single unknown γs1 has a unique solution.

We first solve for μb. In the asymmetric case, (B23) implies that μb2 = μb, (B24) implies that

γs2 = κS/(εκ + μb), and (B21) implies that

F = κμb + μb

(
γs1 +

κS

εκ + μb

)
. (B26)

The RHS of (B26) is (strictly) increasing in μb ∈ (0,∞), is equal to zero for μb = 0, and goes to ∞
for μb → ∞. Therefore, (B26) has a unique solution μb ∈ (0,∞). This solution is decreasing in γs1

because the RHS is increasing in γs1. In the symmetric case, (B21) implies that μb = F/(κ+2γs1).

This solution is again decreasing in γs1.

We next solve for μb1. Eq. (B22) implies that

γbo =
F

εκ
n + κ

κ+κ

∑2
i=1 αi(S − εγsi)

=
F

εκ
n + κ

κ+κ(1 + α2)(S − εγs1)
,

where the second step follows because in the symmetric case γs2 = γs1 and in the asymmetric case

α2 = 0. Plugging into (B23), setting i = 1, and dividing by μb1, we find

1 =
μb

μb1
+

(S − εγs1)nF

[ε(κ + κ) + μb1] (κ + γs1) [ε(κ + κ) + n(1 + α2)(S − εγs1)]
. (B27)

The RHS of (B27) is decreasing in μb1 ∈ (0,∞), goes to ∞ for μb1 → 0, and goes to zero for

μb1 → ∞. Therefore, (B26) has a unique solution μb1 ∈ (0,∞). This solution is decreasing in γs1

because the RHS is decreasing in γs1 and increasing in μb (which is decreasing in γs1).

We next substitute μb and μb1 into (B25), and treat it as an equation in the single unknown

γs1. To show uniqueness, we will show that the LHS is increasing in γs1 and the RHS is decreasing.

In the symmetric case, the LHS is equal to

γs1μb =
γs1F

κ + 2γs1
,

and is increasing. In the asymmetric case, (B26) implies that the LHS is equal to

γs1μb = F − κμb −
κSμb

εκ + μb

,
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and is increasing because μb is decreasing in γs1. The first term in the RHS is increasing in μb1,

and thus decreasing in γs1. To show that the second term is also decreasing, we multiply (B27) by

μb1(κ + κ + γs1):

(μb1 − μb)(κ + κ + γs1) =
μb1(κ + κ + γs1)(S − εγs1)nF

[ε(κ + κ) + μb1] (κ + γs1) [ε(κ + κ) + n(1 + α2)(S − εγs1)]
.

The RHS of this equation is decreasing in γs1 because it is decreasing in γs1 and increasing in μb1

(which is decreasing in γs1). Therefore, the second term in the RHS of (B25) is decreasing in γs1.

To show existence, we note that for γs1 = 0, the LHS of (B25) is equal to zero, while the RHS

is positive. Moreover, for γs1 = S/ε, the LHS is equal to Sμb/ε, while the RHS is equal to

κSμb

εκ + μb

<
Sμb

ε

because μb1 = μb. Therefore, there exists a solution γs1 ∈ (0, S/ε).

B.2. Small Search Frictions

The case of small search frictions corresponds to small ε. Thus, the solution in this case is close

to that for ε = 0 provided that continuity holds. Our proof so far covers the case ε = 0, except

for existence. We next show that Assumption 2 ensures existence for ε = 0. We also compute the

solution in closed form and show continuity.

To emphasize that ε = 0 is a limit case, we use m and g instead of μ and γ. Eqs. (B21)-(B24)

become

F = κmb +
2∑

i=1

mbgsi, (B28)

F =
κ

κ + κ

2∑
i=1

αigboS, (B29)

mbi = mb +
καigboS

(κ + κ)(κ + gsi)
, (B30)

gsi =
κS

mbi
+

αigboS

mbi
. (B31)
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We first solve the system of (B28)-(B31) in the symmetric case (α1 = α2 = 1), suppressing the

asset subscript because of symmetry. Eq. (B29) implies that

gbo =
(κ + κ)F

2κS
, (B32)

(B31) implies that

gs =
κS + κ+κ

2κ F

mb
, (B33)

and (B28) implies that

mb =
F

κ + 2gs
. (B34)

Substituting gbo, gs, and mb from (B32)-(B34) into (B30), we find that mb solves the equation

1 =
F

κmb + 2κS + κ+κ
κ F

+
F

2κmb + 2κS + κ+κ
κ F

. (B35)

This equation has a positive solution because of Assumption 2.

We next consider the asymmetric case (α1 = 1, α2 = 0), and use m̂ and ĝ instead of m and g.

Eq. (B30) implies that m̂b2 = m̂b, (B31) implies that

ĝs2 =
κS

m̂b

, (B36)

(B29) implies that

ĝbo =
(κ + κ)F

κS
, (B37)

(B31) implies that

ĝs1 =
κS + κ+κ

κ F

m̂b1
, (B38)

and (B28) implies that

m̂b =
F − κS

κ + ĝs1
. (B39)

Substituting ĝbo, ĝs1, and m̂b from (B37)-(B39) into (B30), we find

m̂b1 =
F

κ
− 2S − F

κ
, (B40)
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which is positive because of Assumption 2.

To show continuity at ε = 0, we write (B25) as

γs1μb −
κSμb1

εκ + μb1
− (μb1 − μb)

κ

κ
(κ + κ + γs1) = 0,

and denote by R(γs1, ε) the RHS (treating μb and μb1 as functions of (γs1, ε)). Because μb, μb1 > 0

for (γs1, ε) = (gs1, 0) (symmetric case) and (γs1, ε) = (ĝs1, 0) (asymmetric case), the functions μb

and μb1 are continuously differentiable around that point, and so is the function R(γs1, ε). Moreover,

our uniqueness proof shows that the derivative of R(γs1, ε) w.r.t. γs1 is positive. Therefore, the

Implicit Function Theorem ensures that for small ε, (B25) has a continuous solution γs1(ε). Because

of uniqueness, this solution coincides with the one that we have identified.

C. Utilities and Prices

The flow-value equations are

rVb = −κVb +
2∑

i=1

λμsi(V�i − pi − Vb) (C1)

rV�i = δ + x − y + κ(Vsi − V�i) + νiμbo(Vnsi − V�i) (C2)

rVnsi = δ + x − y + wi + κ(Vsi − Vnsi) + κ(V�i − Vnsi) + λμbi(Vnni − Vnsi) (C3)

rVnni = δ + x − y + wi + κ(Ci − Vnni) + κ(Vnbi − Vnni) (C4)

rVnbi = δ + x − y + wi + κ(Ci − Vnbi) + λμsi(V�i − Vnbi) (C5)

rVsi = δ − y + λμbi(pi − Vsi) (C6)

rVbo = −κVbo +
2∑

i=1

νiμ�i(Vsi − Vbo) (C7)

rVsi = −wi + κ(Vbo − Vsi) − κVsi + λμbi(Vni + pi − Vsi) (C8)

rVni = −δ + x − y − wi + κ(Vbo − Ci − Vni) + κ(Vbi − Vni) (C9)

rVbi = −δ − y − wi + κ(−Ci − Vbi) + λμsi(−pi − Vbi), (C10)

where Ci denotes the cash collateral seized by the lender when the borrower cannot deliver instantly.

The lending fee wi is such that the lender receives a fraction θ ∈ [0, 1] of the surplus Σi in a

repo transaction. Since a repo transaction turns the lender �i into type nsi, the lender’s surplus
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is Vnsi − V�i. The borrower’s surplus is Vsi − Vbo because the borrower bo becomes a seller si.

Therefore, the lending fee is implicitly defined by

Vnsi − V�i = θΣi = θ(Vnsi − V�i + Vsi − Vbo). (C11)

The price is determined by (2). The reservation value of type b is Δb = V�i − Vb because after

buying the asset, b becomes a lender �i. The reservation value of type si is Δsi = Vsi because after

selling the asset, si exits the market with utility zero. Substituting in (2), we find

pi = φVsi + (1 − φ)
(
V�i − Vb

)
. (C12)

Using (C1)-(C12), we compute below the lending fee wi and the price pi as a function of the

short-selling surplus Σi. We then derive a linear system for Σ1 and Σ2.

C.1. Lending Fee

Subtracting (C2) from (C3), we find

(r + κ + κ + νiμbo)(Vnsi − V�i) = wi + λμbi(Vnni − Vnsi), (C13)

subtracting (C3) from (C4), we find

(r + κ + κ + λμbi)(Vnni − Vnsi) = κ(Ci − Vsi) + κ(Vnbi − V�i), (C14)

and subtracting (C4) from (C5), we find

(r + κ + κ)(Vnbi − Vnni) = λμsi(V�i − Vnbi). (C15)

Eqs. (C14) and (C15) imply that

Vnbi − Vnsi =
κ

r + κ + κ + λμbi
(Ci − Vsi) +

κ(r + κ + κ) − λμsi(r + κ + κ + λμbi)
(r + κ + κ)(r + κ + κ + λμbi)

(Vnbi − V�i).

Adding Vnsi − V�i on both sides and solving for Vnbi − V�i, we find

Vnbi − V�i =
(r + κ + κ)(r + κ + κ + λμbi)

(r + κ + κ)(r + κ + λμbi) + λμsi(r + κ + κ + λμbi)

[
κ(Ci − Vsi)

r + κ + κ + λμbi
+ Vnsi − V�i

]
.

Substituting Vnbi − V�i from this equation into (C14), we find

Vnni − Vnsi =
κ(r + κ + κ + λμsi)(Ci − Vsi) + κ(r + κ + κ)(Vnsi − V�i)

(r + κ + κ)(r + κ + λμbi) + λμsi(r + κ + κ + λμbi)
.
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Substituting Vnni − Vnsi from this equation into (C13), and using (C11), we can determine the

lending fee as a function of the short-selling surplus:

[
r + κ + κ

(r + κ)(r + κ + κ + λμsi) + λμsi(κ + λμbi)
(r + κ + λμbi)(r + κ + κ) + λμsi(r + κ + κ + λμbi)

+ νiμbo

]
θΣi

= wi +
κλμbi(r + κ + κ + λμsi)

(r + κ + κ)(r + κ + λμbi) + λμsi(r + κ + κ + λμbi)
(Ci − Vsi). (C16)

C.2. Price

Eq. (C6) implies that

Vsi − pi =
δ − y − rpi

r + λμbi
. (C17)

Subtracting rpi from both sides of (C2), and using (C11) and (C17), we find

V�i − pi =
1

r + κ

[
δ + x − y − rpi + νiμboθΣi + κ

δ − y − rpi

r + λμbi

]
. (C18)

Substituting (C17) and (C18) into (C12), we find

δ − y − rpi +
(1 − φ)(r + λμbi)

r + κ + (1 − φ)λμbi

[
x + νiμboθΣi − (r + κ)Vb

]
= 0. (C19)

Substituting d − y − rpi from (C19) into (C18), we find

V�i − pi =
φ(x + νiμboθΣi) + (1 − φ)(r + κ + λμbi)Vb

r + κ + (1 − φ)λμbi
.

Substituting V�i − pi from this equation into (C1) and solving for Vb, we find

Vb =
φ
∑2

j=1
λμsj

r+κ+(1−φ)λμbj
(x + νjμboθΣj)

(r + κ)
[
1 + φ

∑2
j=1

λμsj

r+κ+(1−φ)λμbj

] .

Substituting Vb from this equation into (C19), we can determine the price as a function of the

short-selling surplus:

pi =
δ − y

r
+

(1 − φ)(r + λμbi)
r [r + κ + (1 − φ)λμbi]

⎡
⎣x + νiμboθΣi −

φ
∑2

j=1
λμsj

r+κ+(1−φ)λμbj
(x + νjμboθΣj)

1 + φ
∑2

j=1
λμsj

r+κ+(1−φ)λμbj

⎤
⎦ .

(C20)
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C.3. Short-Selling Surplus

Adding (C3) and (C8), and subtracting (C7) and (C2), we find

(r + κ + κ + νiμboθ)Σi +
2∑

j=1

νjμ�j(1 − θ)Σj = λμbi(Vnni + Vni + pi − Vnsi − Vsi). (C21)

Adding (C4), (C9), and rpi = rpi, and subtracting (C3) and (C8), we find

(r+κ+κ+λμbi)(Vnni+Vni+pi−Vnsi−Vsi) = rpi−δ+x−y+κ(pi−Vsi)+κ(Vnbi+Vbi+pi−V�i). (C22)

Adding (C5), (C10), and rpi = rpi, and subtracting (C2), we find

(r + κ + λμsi)(Vnbi + Vbi + pi − V�i) = rpi − δ − y + κ(pi − Vsi) − νiμboθΣi. (C23)

Substituting Vnbi+Vbi+pi−V�i from (C23) into (C22), and then substituting Vnni+Vni+pi−Vnsi−Vsi

from (C22) into (C21), we find

[
r + κ + κ + νiμboθ

[
1 +

λμbiκ

(r + κ + κ + λμbi)(r + κ + λμsi)

]]
Σi +

2∑
j=1

νjμ�j(1 − θ)Σj

=
λμbi

r + κ + κ + λμbi

[
x +

r + κ + κ + λμsi

r + κ + λμsi
[rpi − δ − y + κ(pi − Vsi)]

]
. (C24)

To derive an equation involving only Σ1 and Σ2, we need to eliminate the price pi. We have

rpi − δ − y + κ(pi − Vsi)

= −2y + rpi − δ + y + κ
rpi − δ + y

r + λμbi

= −2y +
(1 − φ)(r + κ + λμbi)
r + κ + (1 − φ)λμbi

⎡
⎣x + νiμboθΣi −

φ
∑2

j=1
λμsj

r+κ+(1−φ)λμbj
(x + νjμboθΣj)

1 + φ
∑2

j=1
λμsj

r+κ+(1−φ)λμbj

⎤
⎦ ,

where the first step follows from (C17) and the second from (C20). Plugging back into (C24), we

can write it as

aiΣi +
2∑

j=1

fjΣj + bi

2∑
j=1

gjΣj = ci, (C25)

where

ai = r+κ+κ+νiμboθ

[
r + κ + κ

r + κ + κ + λμbi
+

φ(r + κ)λμbi(r + κ + κ + λμsi)
(r + κ + κ + λμbi)(r + κ + λμsi)[r + κ + (1 − φ)λμbi]

]
,
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fi = νiμ�i(1 − θ),

bi =
(1 − φ)λμbi(r + κ + κ + λμsi)(r + κ + λμbi)

(r + κ + κ + λμbi)(r + κ + λμsi) [r + κ + λ(1 − φ)λμbi]
,

gi = φνiμboθ

λμsi

r+κ+(1−φ)λμbi

1 + φ
∑2

j=1
λμsj

r+κ+(1−φ)λμbj

,

ci =
λμbi

r + κ + κ + λμbi

⎡
⎣x − r + κ + κ + λμsi

r + κ + λμsi

⎡
⎣2y − (1 − φ)(r + κ + λμbi)

r + κ + (1 − φ)λμbi

x

1 + φ
∑2

j=1
λμsj

r+κ+(1−φ)λμsj

⎤
⎦
⎤
⎦ .

The short-selling surpluses Σ1 and Σ2 are the solution to the linear system consisting of (C25) for

i ∈ {1, 2}.

Note that the collateral Ci does not enter in (C25), and thus does not affect the short-selling

surplus. It neither affects the price, from (C20). It affects only the lending fee because when lenders

can seize more collateral they accept a lower fee. From now on (and as stated in Footnote 14), we

set the collateral equal to the utility of a seller si, i.e.,

Ci = Vsi. (C26)

D. Proofs of Propositions 5-11

Proof of Proposition 5: From Appendix B we know that given the short-selling decisions ν1 =

ν2 = ν, the population measures are uniquely determined. From Appendix C we know that

given any short-selling decisions and population measures, the utilities, prices, and lending fees are

uniquely determined. Therefore, what is left to show is (i) the short-selling surplus Σ is positive,

(ii) buyers’ and sellers’ reservation values are ordered as in (1), and (iii) agents’ trading strategies

are optimal. To show these results, we recall from Appendix B that when search frictions become

small, i.e., λ goes to ∞ holding n ≡ ν/λ constant, μb converges to mb, μ� converges to S, λμs

converges to gs, and νμbo converges to gbo.

We start by computing Σ, w, and p, thus proving Proposition 6. Eq. (C25) implies that when

Σ1 = Σ2 ≡ Σ,

Σ =
c

a + 2(f + bg)
,
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where we suppress the asset subscripts from a, b, c, f, g because of symmetry. When search frictions

become small, a and b converge to positive limits, c converges to

x − r + κ + κ + gs

r + κ + gs
(2y − x), (D1)

g converges to zero, and f converges to ∞, being asymptotically equal to νS(1− θ). Therefore, the

surplus converges to zero, and its asymptotic behavior is as in Proposition 6.

Eqs. (C16) and (C26) imply that the lending fee is

w =
[
r + κ + κ

(r + κ)(r + κ + κ + λμs) + λμs(κ + λμb)
(r + κ + λμb)(r + κ + κ) + λμs(r + κ + κ + λμb)

+ νμbo

]
θΣ.

Because the term in brackets converges to

r + κ + κ
gs

r + κ + κ + gs
+ gbo,

the lending fee converges to zero, and its asymptotic behavior is as in Proposition 6.

Eq. (C20) implies that the price is equal to

p =
δ − y

r
+

1
r

[
1 − φr + κ

(1 − φ)λmb
+ o(1/λ)

] [
x + gboθΣ − 2φgsx

(1 − φ)λmb
+ o(1/λ)

]
.

Using this equation and the fact that Σ is in order 1/λ, it is easy to check that the asymptotic

behavior (i.e., order 1/λ) of the price is as in Proposition 6.

To show that Σ is positive, we need to show that (D1) is positive. This follows because (4)

implies that

x > 2y +
κ

r + κ + gs
(2y − x) > 2y − x +

κ

r + κ + gs
(2y − x) =

r + κ + κ + gs

r + κ + gs
(2y − x). (D2)

We next show that reservation values are ordered as in (1), i.e., Δb > Δb and Δs > Δs. For

this, we need to compute Vb and Vn − Vs. Adding (C10) and rp = rp, and using (C26), we find

Vb + p =
rp − δ − y − w + κ(p − Vs)

r + κ + λμs
. (D3)
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Adding (C9) and rp = rp, and subtracting (C8), we similarly find

Vn + p − Vs =
rp − δ + x − y + κ(Vb + p) + κ(p − Vs)

r + κ + κ + λμb
. (D4)

Inequality Δb > Δb is equivalent to

−Vb − p > V� − p − Vb

⇔ δ + y − rp + w − κ(p − Vs)
r + κ + λμs

>
φ

1 − φ
(p − Vs)

⇔
δ + y − rp + w − κ rp−δ+y

r+λμb

r + κ + λμs
>

φ

1 − φ

rp − δ + y

r + λμb
(D5)

where the second step follows from (C12) and (D3), and the third from (C17). Because rp converges

to δ + x− y, and w converges to zero, the LHS of (D5) converges to (2y − x)/(r + κ + gs), which is

positive from Assumption 1, while the RHS converges to zero. Inequality Δs > Δs is equivalent to

Vn + p − Vs > p − Vs

⇔
x + r+κ+κ+λμs

r+κ+λμs
[rp − δ − y + κ(p − Vs)] − κ

r+κ+λμs
w

r + κ + κ + λμb
>

rp − δ + y

r + λμb
,

where the second step follows from (C17), (D3), and (D4). When search frictions become small,

this inequality holds if the limit of the numerator in the LHS exceeds that for the RHS, i.e.,

x − r + κ + κ + gs

r + κ + gs
(2y − x) > x.

This holds because of the first inequality in (D2).

We finally show that trading strategies are optimal. The flow benefit that an average-valuation

agent can derive from a long position in asset i is bounded above by δ−y+w, and the flow benefit for

a short position is bounded above by −δ−y. Therefore, an average-valuation agent finds it optimal

to establish no position, or to unwind a previously established one, if (δ−y+w)/r < min{p, C} and

(δ+y)/r > p. These conditions are satisfied for small frictions because p converges to (δ+x−y)/r,

w converges to zero, C − p converges to zero, and 2y > x.

A high-valuation agent finds it optimal to buy asset i if V� − p − Vb ≥ 0. This condition is

satisfied because

V� − p − Vb =
φ

1 − φ
(p − Vs) =

φ

1 − φ

rp − δ + y

r + λμb
∼ φ

1 − φ

x

λμb
≥ 0.
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The agent finds it optimal to lend the asset because Vns − V� = θΣ > 0. Likewise, a low-valuation

agent finds it optimal to borrow asset i because Vs − Vbo = (1 − θ)Σ > 0, and to sell it because

Vn + p − Vs = p − Δs > p − Δs = p − Vs > 0.

Proof of Proposition 6: See the proof of Proposition 5.

Proof of Proposition 7: We need to show that (i) the short-selling surplus Σ1 is positive and Σ2

is negative, (ii) buyers’ and sellers’ reservation values are ordered as in (1), and (iii) agents’ trading

strategies are optimal. We recall from Appendix B that for small search frictions and given the

short-selling decisions ν1 = ν and ν2 = 0, μbi converges to m̂bi, μ�i converges to S, λμsi converges

to ĝsi, and νμbo converges to ĝbo.

We start by computing Σ1, w1, p1, and p2, thus proving Proposition 8. Eq. (C25) implies that

when ν2 = 0,

Σ1 =
c1

a1 + f1 + b1g1
.

When search frictions become small, c1 converges to

x − r + κ + κ + ĝs1

r + κ + ĝs1
(2y − x), (D6)

and the dominant term in the denominator is f1 ∼ νS(1 − θ). Therefore, the surplus converges to

zero, and its asymptotic behavior is as in Proposition 8. To determine the asymptotic behavior of

the lending fee and the price, we proceed as in the proof of Proposition 5.

To show that Σ1 is positive, we need to show that (D6) is positive. This follows from (D2) and

the fact that ĝs1 > gs, established in the proof of Proposition 9. To show that Σ2 is negative, we

note that from (C25),

Σ2 =
c2 − (f1 + b2g1)Σ1

a2
=

c2 − f1+b2g1

a1+f1+b1g1
c1

a2
.

When search frictions become small, the numerator converges to the same limit as c2 − c1. This

limit is equal to [
r + κ + κ + ĝs1

r + κ + ĝs1
− r + κ + κ + ĝs2

r + κ + ĝs2

]
(2y − x),
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and is negative if ĝs1 > ĝs2. Using (B36) and (B38), we can write this inequality as

κS + κ+κ
κ F

m̂b1
>

κS

m̂b

. (D7)

Eqs. (B38)-(B40) imply that

m̂b =
F − κS

F − κS + F
m̂b1. (D8)

Using this equation, we can write (D7) as

κS + κ+κ
κ F

κS
>

F − κS + F

F − κS
.

It is easy to check that this inequality holds because of Assumption 2.

To show that Δbi > Δb and Δsi > Δsi, we proceed as in the proof of Proposition 5. The only

change is that the condition for Δsi > Δsi now is

x − r + κ + κ + ĝs

r + κ + ĝs
(2y − x) > x.

This inequality is implied by the first inequality in (D2) and the fact that ĝs1 > gs. Finally, the

arguments in the proof of Proposition 5 establish that trading strategies are optimal.

Proof of Proposition 8: See the proof of Proposition 7.

Proof of Proposition 9: We start with a lemma.

Lemma 1. For χ < 1, inequality (1 − χ)m̂b1 > mb is equivalent to

(1 − 2χ)(F − χκm̂b1) > χF. (D9)

Proof: Since mb is the unique positive solution of (B35), whose RHS is decreasing in mb, inequality

(1 − χ)m̂b1 > mb is equivalent to

1 >
F

κ(1 − χ)m̂b1 + 2κS + κ+κ
κ F

+
F

2κ(1 − χ)m̂b1 + 2κS + κ+κ
κ F

⇔ 1 >
F

F + F − χκm̂b1

+
F

F + F + (1 − 2χ)κm̂b1

⇔ F − χκm̂b1

F + F − χκm̂b1

>
F

F + F + (1 − 2χ)κm̂b1

,
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where the second step follows from (B40). The last inequality implies (D9).

Result (i): We need to show that m̂b1 > mb and ĝs1 > gs. Since (D9) holds for χ = 0, Lemma 1

implies that m̂b1 > mb. Using (B33) and (B38), we can write inequality ĝs1 > gs as

κS + κ+κ
2κ F

κS + κ+κ
κ F

m̂b1 < mb.

Using Lemma 1, we then need to show that

(1 − 2χ)(F − χκm̂b1) < χF, (D10)

for

χ =
κ+κ
2κ F

κS + κ+κ
κ F

.

Plugging for χ, we can write (D10) as

κS(F − χκm̂b1) <
κ + κ

2κ
FF ,

which holds because of Assumption 2 and m̂b1 > 0.

Result (ii): We need to show that m̂b2 < mb and ĝs2 < gs. Using (D8) and m̂b2 = m̂b, we can write

inequality m̂b2 < mb as

F − κS

F − κS + F
m̂b1 < mb.

Using Lemma 1, we then need to show (D10) for

χ =
F

F − κS + F
.

Plugging for χ, we can write (D10) as

F − κS − F

F − κS + F

(
F − κS + F − κm̂b1

)
< F,

which holds because m̂b1 > 0. Using (B33), (B36), and (D8), we can write inequality ĝs2 < gs as

F − κS

F − κS + F

κS + κ+κ
2κ F

κS
m̂b1 > mb.
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Using Lemma 1, we then need to show (D9) for

χ =
F

F − κS + F

(
1 − κ + κ

2κ

F − κS

κS

)
.

Assumption 2 implies that

χ <
F

F − κS + F

(
1 − κ + κ

2κ

)
<

F

2(F − κS + F )
≡ χ̂.

Because χ̂, m̂b1 > 0, (D9) holds for χ if it holds for χ̂. The latter is easy to check using Assumption

2.

Result (iii): Eqs. (7), (11), and ĝs1 > gs, imply that Σi in the symmetric equilibrium is smaller

than Σ1 in the asymmetric equilibrium. Since, in addition, ĝbo > gbo (from (B32) and (B37)),

(6) and (10) imply that the lending fee wi in the symmetric equilibrium is smaller than w1 in the

asymmetric equilibrium.

Result (iv): For φ = 0, the result follows from (5), (8), m̂b1 > mb > m̂b2, ĝbo > gbo, and the fact that

Σi in the symmetric equilibrium is smaller than Σ1 in the asymmetric equilibrium. An example

where the prices of both assets are higher in the asymmetric equilibrium is S = 0.5, F = 3, F = 5.7,

κ = 1, κ = 3, φ = θ = 0.5, r = 4%, δ = 1, x = 0.4, x = 1.6, y = 0.5, and any ν/λ.

Proof of Proposition 10: We show that buying asset 2 and shorting asset 1 is unprofitable under

p1 − p2 <
w1

r
+

x

λm̂b1
+

κx

r(νS + λm̂b2)
. (D11)

(which is implied by (12)), while buying asset 1 and shorting asset 2 is unprofitable under (13).

We then show that (12) and (13) are satisfied if ν/λ is in an interval (n1, n2).

Buy asset 2, short asset 1

Because trading opportunities arrive one at a time, an arbitrageur cannot set up the two legs of

the position simultaneously. The arbitrageur can, for example, buy asset 2 first, then borrow asset

1, and then sell asset 1. Alternatively, he can borrow asset 1 first, then buy asset 2, and then sell

asset 1. The final possibility, which is to sell asset 1 before buying asset 2 is suboptimal. Indeed,

for small search frictions the time to meet a buyer converges to zero while the time to meet a seller

does not. Therefore, the cost of being unhedged converges to zero only when asset 2 is bought

before asset 1 is sold.
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Suppose now that the arbitrage strategy is profitable. Because the payoff of the strategy is

decreasing in asset 1’s lending fee, there exists a fee w1 > w1 for which the arbitrageur is indifferent

between following the strategy and holding no position. If for this fee it is optimal to initiate the

strategy by buying asset 2, the arbitrageur can be in three possible states:

• Long position in asset 2. State n2 with utility Vn2.

• Long position in asset 2 and borrowed asset 1. State s1n2 with utility Vs1n2.

• Long position in asset 2 and short in asset 1. State n1n2 with utility Vn1n2.

The utilities are characterized by the following flow-value equations:

rVn2 = δ − y + νμ�1(Vs1n2 − Vn2) (D12)

rVs1n2 = δ − y − w1 + λμb1(Vn1n2 + p1 − Vs1n2) + κ(Vn2 − Vs1n2) (D13)

rVn1n2 = −w1 + κ(Vn2 − C1 − Vn1n2). (D14)

Solving (D12)-(D14), we find

rVn2 = δ − y +
νμ�1

r + κ + νμ�1

[
−w1 +

λμb1

r + κ + λμb1
[rp1 − δ + y + κ(p1 − C1)]

]
.

The arbitrageur is indifferent between initiating the strategy and holding no position if Vn2 is equal

to p2. Using this condition, and substituting C1 from (C17) and (C26), we find

w1 =
λμb2

r + λμb2
(rp1 − δ + y) − r + κ + νμ�2

νμ�2

(rp2 − δ − y).

For small search frictions, this equation becomes

w1 = r(p1 − p2) − rx

λm̂b1
− (r + κ)x

νS
,

and is inconsistent with (D11) since w1 < w1.

Suppose instead that it is optimal to initiate the strategy by borrowing asset 1. The arbitrageur

then starts from a state s1, in which he has borrowed asset 1 but holds no position in asset 2. The

utility Vs1 in this state is characterized by

rVs1 = −w1 + λμs2(Vs1n2 − p2 − Vs1). (D15)
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The utility in states s1n2 and n1n2 is given by (D13) and (D14), respectively. The utility in state

n2, however, is given by

rVn2 = δ − y + νμ�1(Vs1n2 − Vn2) + λμb2(p2 − Vn2) (D16)

instead of (D12). Indeed, since it suboptimal to initiate the strategy by buying asset 2, buying that

asset is dominated by holding no position. Therefore, if the arbitrageur finds himself with a long

position in asset 2, he prefers to unwind it upon meeting a seller. Eqs. (D13), (D14), and (D16)

imply that

Vs1n2 =

r+κ+νμ�1+λμb2

r+νμ�1+λμb2
(δ − y) + κλμb2

r+νμ�1+λμb2
p2 − w1 + λμb1

r+κ+λμb1
[rp1 − δ + y + κ(p1 − C1)]

r(r+κ+νμ�1+λμb2)+κλμb2

r+νμ�1+λμb2

.

Plugging into (D15), and using (C17), (C26), and the indifference condition which now is Vs1 = 0,

we find

w1 =
λμb1

r+λμb1
(rp1 − δ + y) − r+κ+νμ�1+λμb2

r+νμ�1+λμb2
(rp2 − δ + y)

1 + r(r+κ+νμ�1+λμb2)+κλμb2

λμs2(r+νμ�1+λμb2)

.

For small search frictions, this equation becomes

w1 =
r(p1 − p2) − rx

λm̂b1
− κx

νS+λm̂b2

1 + r(nS+m̂b2)+κm̂b2

ĝs2(nS+m̂b2)

,

and is inconsistent with (D11) since w1 < w1.

Buy asset 1, short asset 2

We consider a “relaxed” problem where asset 1 can be bought instantly and asset 2 can be

borrowed instantly at a lending fee of zero. Clearly, if the arbitrage strategy is unprofitable in the

relaxed problem, it is also unprofitable when more frictions are present.

Suppose that the arbitrage strategy is profitable. Because the payoff of the strategy is increasing

in asset 1’s lending fee, there exists a fee w1 < w1 for which the arbitrageur is indifferent between

following the strategy and holding no position. When following the strategy, the arbitrageur is

always in a state where he holds asset 1 and has borrowed asset 2, because these can be done

instantly. If the arbitrageur has not sold asset 2, he can be in four possible states:

• Seeking to lend asset 1. State �1s2 with utility V�1s2.

24



• Lent asset 1 to an agent s1. State ns1s2 with utility Vns1s2.

• Lent asset 1 to an agent n1. State nn1s2 with utility Vnn1s2.

• Lent asset 1 to an agent b1. State nb1s2 with utility Vnb1s2.

If the arbitrageur has sold asset 2, he can be in the four corresponding states that we denote with

n2 instead of s2.

For brevity, we skip the eight flow-value equations, but note that they have a simple solution.

To each outcome concerning asset 1 (�1, ns1, nn1, nb1) and to each outcome concerning asset 2

(s2, n2), we can associate a separate utility that we denote by V̂ . We can then write the utility

of a state (which is a “joint” outcome) as the sum of the two separate utilities. For example, the

utility V�1s2 is equal to V̂�1 + V̂s2. This decomposition is possible because the outcomes concerning

each asset evolve independently.

The utilities V̂�1, V̂ns1, V̂nn1, and V̂nb1 are characterized by the flow-value equations

rV̂�1 = νμbo(V̂ns1 − V̂�1)

rV̂ns1 = w1 + λμb1(V̂nn1 − V̂ns1)

rV̂nn1 = w1 + κ(V̂nb1 − V̂nn1)

rV̂nb1 = w1 + λμs1(V̂�1 − V̂nb1).

and the utilities V̂s2, V̂n2 are characterized by

rV̂s2 = δ − y + λμb2(V̂n2 + p2 − V̂s2)

rV̂n2 = κ(V̂s2 − C2 − V̂n2).

Solving these equations, we find

rV�1s2 = rV̂�1 + rV̂s2

=

νμbo

r+νμbo

(
1 − λμb1

r+λμb1

κ
r+κ

λμs1

r+λμs1

)
1 − νμbo

r+νμbo

λμb1
r+λμb1

κ
r+κ

λμs1

r+λμs1

w1 +
[
δ − y +

λμb2

r + κ + λμb2
[rp2 − δ + y + κ(p2 − C2)]

]
.

The arbitrageur is indifferent between initiating the strategy and holding no position if V�1s2 is
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equal to p1. Using this condition, and substituting C1 from (C17) and (C26)

νμbo

r+νμbo

(
1 − λμb1

r+λμb1

κ
r+κ

λμs1

r+λμs1

)
1 − νμbo

r+νμbo

λμb1
r+λμb1

κ
r+κ

λμs1

r+λμs1

w1 = rp1 − δ + y − λμb2

r + λμb2
(rp2 − δ + y).

For small search frictions, this equation becomes

ĝbo

r + κ ĝs1

r+κ+ĝs1
+ ĝbo

w1 = r(p1 − p2) +
rx

λm̂b2
,

and is inconsistent with (13) since w1 > w1.

Eqs. (12) and (13) are jointly satisfied

The two equations are jointly satisfied if

ĝbo

r + κ ĝs1

r+κ+ĝs1
+ ĝbo

w1

r
< p1 − p2 <

w1

r
.

Substituting p1 and p2 from (8) and (9), we can write this equation as

A1
w1

r
<

B

λ
+ A2

w1

r
<

w1

r
, (D17)

where

A2 ≡ ĝbo

r + κ + κ ĝs1

r+κ+κ+ĝs1
+ ĝbo

< A1 ≡ ĝbo

r + κ ĝs1

r+κ+ĝs1
+ ĝbo

< 1

and

B ≡ (φr + κ)
(1 − φ)

[
1

m̂b2
− 1

m̂b1

]
x

r
> 0.

Eq. (D17) is satisfied if

B

A1 − A2
>

λw1

r
>

B

1 − A2
.

In this inequality, n enters only through the product λw1. Therefore, the inequality is satisfied for

n in some interval (n1, n2).

Proof of Proposition 11: Generalizing the analysis of Section B.2, we can show that a solution

for ε = 0 exists, and is close to that for small ε. The limiting equations are (B28)-(B31), but with
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the asset supplies depending on i. For the asymmetric equilibrium, (B36)-(B40) generalize to

ĝbo =
(κ + κ)F

κS1
(D18)

ĝs1 =
κS1 + κ+κ

κ F

m̂b1
(D19)

ĝs2 =
κS2

m̂b

, (D20)

m̂b1 =
F

κ
−

2∑
i=1

Si − F

κ
(D21)

m̂b =
F − κS2

F − κS2 + F
m̂b1 (D22)

Result (i): An equilibrium where ν1 = ν and ν2 = 0 can exist if Σ1 > 0 and Σ2 < 0. Condition

Σ1 > 0 can be ensured by (4). For small search frictions, condition Σ2 < 0 is equivalent to ĝs1 > ĝs2,

as shown in the proof of Proposition 7. Using (D19), (D20) and (D22), we can write condition

ĝs1 > ĝs2 as [
κ(S1 − S2) +

κ + κ

κ
F

]
(F − κS2) > κS2F . (D23)

This equation holds for all values of S1 ≥ S2 because Assumption 2 implies that F − κS2 > κS1 ≥
κS2.

Result (ii): The existence condition is now (D23), but with S1 and S2 reversed. It does not hold,

for example, when S1 is large enough to make the term in square brackets negative.

Result (iii): We proceed by contradiction, assuming that for a given S1 − S2 > 0 there exists an

equilibrium where ν1 = ν2 = ν, even when search frictions converge to zero. Since the parameters

ai, bi, ci, and gi in (C25) converge to finite limits, while fi converges to ∞, Σi must converge to

zero, and fiΣi to a finite limit. But then (C25) implies that the limits of c1 and c2 must be the

same. This, in turn, implies that gs1 = gs2 ≡ gs, which from (B30) and (B31) means that

κSi + gboSi

mb + κgboSi

(κ+κ)(κ+gs)

is independent of i, a contradiction when asset supplies differ.
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Proof of Proposition 12: The expected search time for buying asset i is 1/(λμsi) and for selling

asset i is 1/(λμbi). Thus, our liquidity measure is λ2μbiμsi = λ(μbiγsi). Dropping the multiplicative

constant λ and assuming small search frictions, this is equal to Λi ≡ m̂biĝsi. Eqs. (D19) and (D20)

imply that

Λ1 = κS1 +
κ + κ

κ
F (D24)

Λ2 = κS2. (D25)

Eqs. (8)-(11), generalized to the case where asset supplies depend on i, imply that the lending fee

is

w1 = θ

(
r + κ + κ

ĝs1

r + κ + κ + ĝs1
+ ĝbo

)
x − r+κ+κ+ĝs1

r+κ+ĝs1
(2y − x)

ν(1 − θ)S1
(D26)

and the price premium is

p1 − p2 =
(φr + κ)
λ(1 − φ)

[
1

m̂b2
− 1

m̂b1

]
x

r
+ θĝbo

x − r+κ+κ+ĝs1

r+κ+ĝs1
(2y − x)

ν(1 − θ)S1r
. (D27)

Result (i): An increase in F increases Λ1 by (D24) and leaves Λ2 constant by (D25). It increases

ĝbo by (D18), decreases m̂b1 by (D21), increases m̂b1/m̂b2(= m̂b1/m̂b) by (D22), and increases ĝs1

by (D19). Eq. (D26) then implies that w1 increases, and (D27) implies that p1 − p2 increases.

For small search frictions w1/p1 varies in the same direction as w1 since p1 is close to the limit

(δ + x − y)/r while w1 is close to zero.

Result (ii): A decrease in S1 decreases Λ1 by (D24) and leaves Λ2 constant by (D25). Numerical

calculations indicate that w1 and p1 − p2 increase if S1 = S2 = 0.5, F = 3, F = 5.7, κ = 1, κ = 3,

φ = θ = 0.5, r = 4%, δ = 1, x = 0.4, x = 1.6, y = 0.5, ν/λ = 0.25. If, however, S1 and S2 are

changed to 1.3, and F to 1, while other parameters stay the same, then w1 and p1 − p2 decrease.

E. The CARA Setting

Agents can invest in a riskless asset with return r and in two risky assets paying the same cash

flow. Cash flow is described by the cumulative dividend process

dDt = δdt + σdBt,
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where δ and σ are positive constants, and Bt is a standard Brownian motion. Agents derive utility

from the consumption of a numéraire good, and have a CARA utility function

−E

[∫ ∞

0
exp (−αct − βt) dt

]
. (E1)

Each agent receives a cumulative endowment process

det = σe

[
ρtdBt +

√
1 − ρ2

t dZt

]
,

where σe is a positive constant, Zt a standard Brownian motion independent of Bt, and ρt the

instantaneous correlation between the dividend process and the endowment process. The process

ρt can take three values: ρt = −ρ < 0 for high-valuation agents, ρt = ρ > 0 for low-valuation

agents, and ρt = 0 for average-valuation agents. The processes (ρt, Zt) are pairwise independent

across agents. We set A ≡ rα, y ≡ Aσ2/2, x ≡ Aρσσe, and x ≡ Aρσσe.

E.1. Walrasian Equilibrium

Under Assumptions 1 and 2, the Walrasian equilibrium is identical to that in Proposition 3. This

is true even when agents are allowed to invest in integer multiples of one share and in both assets

simultaneously, provided that we make the additional assumption

Assumption 3. 4y > x + x.

Proposition 13. Suppose that agents have CARA preferences and can hold any position (q1, q2) ∈
Z

2 in the two assets. In a Walrasian equilibrium both assets trade at the same price

p =
δ + x − y

r

and the lending fee w is zero. Moreover, high-valuation agents buy one share or stay out of the

market, low-valuation agents short one share, and average-valuation agents stay out of the market.

Proof: The lending fee is zero by the same argument as in Proposition 3. An agent maximizes

(E1) subject to the budget constraint

dWt =

[
rWt − ct +

2∑
i=1

(δ − rpi)qit

]
dt +

[
σ

2∑
i=1

qit + ρtσe

]
dBt + σe

√
1 − ρ2

t dZt
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and the transversality condition

lim
T→∞

E [exp(−AWT − βT )] = 0, (E2)

where Wt is the wealth and qit is the number of shares invested in asset i ∈ {1, 2}. The agent’s

controls are the consumption c ∈ R and the investments (q1, q2) ∈ Z
2. Obviously, if p1 �= p2

the agent can achieve infinite utility by demanding an infinite amount of assets, contradicting

equilibrium. Thus, in equilibrium p1 and p2 must be equal. Denoting their common value by p and

the aggregate investment in the risky assets by q ≡ q1 + q2, we can write the budget constraint as

dWt = [rWt − ct + (δ − rp)qt] dt + [σqt + ρtσe] dBt + σe

√
1 − ρ2

t dZt.

The agent’s value function J(Wt, ρt) satisfies the Hamilton-Jacobi-Bellman (HJB) equation

0 = sup
(c,q)∈R×Z

{
− exp(−αc) + D(c,q)J(W, ρ) − βJ(W, ρ)

}
, (E3)

where

D(c,q)J(W, ρ) ≡ JW (W, ρ) [rW − c + (δ − rp)q] +
1
2
JWW (W, ρ)

[
σ2q2 + 2ρσσeq + σ2

e

]
+κ(ρ) [J(W, 0) − J(W, ρ)] ,

and where the transition intensity κ(ρ) is zero for ρ = 0, κ for ρ = ρ, and κ for ρ = ρ. We guess

that J(W, ρ) takes the form

J(W, ρ) = −1
r

exp

[
−A[W + V (ρ)] +

r − β + A2σ2
e

2

r

]
,

for some function V (ρ). Replacing into (E3), we find that the optimal consumption is

c(ρ) = r[W + V (ρ)] − r − β + A2σ2
e

2

A

and the optimal investment satisfies

q(ρ) ∈ argmaxq∈Z{C(ρ, q) − rpq} ≡ Q(ρ),

where C(ρ, q) is the incremental certainty equivalent of holding q shares relative to holding none.

Using the definitions of y, x, x, we can write the certainty equivalent as C(ρ, z) = (δ + x)q − yq2
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for high-valuation agents, C(ρ, z) = (δ − x)q − yq2 for low-valuation agents, and C(0, z) ≡ δq − yq2

for average-valuation agents.

Plugging c(ρ) back into (E3), we find that (E3) is satisfied iff

0 = −rV (ρ) + max
q∈Z

{C(ρ, q) − rpq} + κ(ρ)
1 − e−A(V (0)−V (ρ))

A
. (E4)

Eq. (E4) implies that V (0) = maxq{C(0, q)−rpq}/r. Moreover, given V (0), the equations for V (ρ)

and V (ρ) are in only one unknown, and it is easy to check that they have a unique solution.

We next determine the equilibrium value of p. Because each type-ρ agent holds a position

q(ρ) ∈ Q(ρ), the average position qm(ρ) of these agents is in the convex hull of Q(ρ). Market

clearing requires that qm(0) = 0 because average-valuation agents are in infinite measure. It also

requires that

F

κ
qm(ρ) +

F

κ
qm(ρ) = 2S. (E5)

Because the function q → C(ρ, q) − rpq is strictly concave, the set Q(ρ) consists of either one or

two elements. If there exists a q such that

C(ρ, q) − rpq > max {C(ρ, q + 1) − rp(q + 1), C(ρ, q − 1) − rp(q − 1)} , (E6)

then this q is unique and Q(ρ) = {q}. Otherwise, there exists a unique q such that

C(ρ, q) − rpq = C(ρ, q + 1) − rp(q + 1), (E7)

and Q(ρ) = {q, q + 1}. Using Assumptions 1 and 3 and the first-order conditions (E6) and (E7), it

is easy to check that for p = (δ + x − y)/r, we have Q(ρ) = {0, 1}, Q(ρ) = {−1}, and Q(0) = {0}.
Eq. (E5) then follows from Assumption 2, implying that p = (δ + x − y)/r is an equilibrium price.

It is the unique equilibrium price because if p > (δ + x − y)/r, then no agent would choose q > 0,

and if p < (δ + x − y)/r then high-valuation agents would choose q ≥ 1, while other agents would

choose at least as much as for p = (δ + x − y)/r.
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E.2. Search Equilibrium

Proposition 14 studies agents’ optimization problem in a general Poisson setting, and shows that

the value function is of the form

J(W, τ) = −1
r

exp

[
−A[W + V (τ)] +

r − β + A2σ2
e

2

r

]
, (E8)

where V (τ) is a function characterized by (E9). Using (E9), it is easy to check that when α converges

to zero, holding (y, x, x) constant, V (τ) satisfies the flow-value equations derived under the utility

specification of Section I. Therefore, if the trading strategies in the equilibria of Propositions 5

and 7 involve strict preferences (which is the case generically), they are also optimal under CARA

preferences for small α. This means that the equilibria of Propositions 5 and 7 are also equilibria

under CARA preferences.

Proposition 14. Suppose that

(i) An agent can be of finitely many types τ ∈ T.

(ii) While being of type τ , the agent receives a payoff described by the cumulative process

dX(τ, t) = m(τ)dt +
√

σ(τt)2 + σ2
edB̃t,

where B̃t is a standard Brownian motion.

(iii) Transitions across types occur at the arrival times of a K-dimensional counting process Nt,

with intensity associated to dimension k equal to a constant γ(k). At the arrival times asso-

ciated to dimension k, the agent can choose between types τ ′ ∈ T′(τ, k) ⊆ T.

(iv) Transition to type τ ′ brings an instant payoff P (τ, τ ′).

Then, the value function is given by (E8) with

rV (τ) = m(τ) − A

2
σ(τ)2 +

K∑
k=1

γ(k) max
τ ′∈T′(τ,k)

1 − e−A
[
V (τ ′)−V (τ)+P (τ,τ ′)

]
A

. (E9)

Proof: The agent’s wealth evolves according to the SDE

dWt = [rWt + m(τt) − ct]dt +
√

σ(τt)2 + σ2
edB̃t +

K∑
k=1

P (τt−, τt) dNt(k).
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The agent chooses a transition and consumption policy to maximize (E1) subject to the transver-

sality condition (E2). We also impose the boundedness condition

E

[∫ T

0
exp(−zWt) dt

]
< ∞

for all T ≥ 0 and z ∈ {rα, 2rα}, because it is needed for the verification argument. The HJB

equation is

0 = sup
c∈R,τ ′∈T′(τ,k)

{
− exp

[−α c(τ)
]
+ D(c,τ ′)J(W, τ) − βJ(W, τ)

}
, (E10)

where

D(c,τ ′)J(W, τ) ≡ JW (W, τ)
[
rW − c(τ) + m(τ)

]
+

1
2
[
σ(τ)2 + σ2

e

]
JWW (W, τ)

+
K∑

k=1

γ(k)
[
J
[
W + P (τ, τ ′), τ ′]− J(W, τ)

]
.

Substituting (E8) in (E10) and maximizing with respect to consumption, we find that (E8) is a

solution iff V (τ) solves (E9).
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