ONLINE APPENDIX — All Proofs

A. Proofs of Propositions 1-4

Proof of Proposition 1: At time ¢, an agent with valuation x; chooses an asset ¢ and a position
q in the asset to solve
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i.e., maximize the flow utility minus the time value of the position’s cost. In equilibrium, assets
trade at the same price because otherwise no agent would demand a long position in the more
expensive asset. Denoting by p the common price, no agent would demand a long position in any
asset if rp > (0 +T — y). Conversely, if rp < (0 +T — y), then high-valuation agents would demand
long positions, which generates excess demand from Assumption 2. Therefore, rp = (6 + T — y).
Under this price, high-valuation agents are indifferent between a long and no position, and all other

agents hold no position. [

Proof of Proposition 2: In equilibrium, either high-valuation agents accept to buy asset ¢, or
they refuse to do so and the asset is owned only by average-valuation agents. To nest the two
cases, we define the variable \; by A\; = A if high-valuation agents accept to buy asset ¢ and \; =0
otherwise. The utilities Vz, Vi, and Vg; of being type b, mi, and i, respectively, are determined by

the flow-value equations

2

rVy = —REV;+ Z Aitsi (Vi —pi — V) (A2)
i=1

Vi = 0+T—y+E Ve — Vi), (A3)

Vi = 6—y+ Nipy (pi — Vai) - (Ad)

For example, (A2) equates the flow value rV; of being type b to the flow benefits accruing to b and
the utility derived from the possibility of b transiting to other types. The flow benefits are zero
because b does not own an asset. The transitions are (i) revert to average valuation at rate & and
exit the market (utility zero and net utility —V4), and (ii) meet a seller of asset i € {1,2} at rate

Aiftsi, buy at price p;, and become a non-searcher ni (utility Vz; and net utility Va; — p; — V5).

The price of asset i is such that the buyer receives a fraction ¢ of the surplus 3. The buyer’s

net utility from the transaction is Vi — p; — V5 and the seller’s is p; — V5. Therefore, the price



satisfies
Vii — pi — Vi = 65 = ¢(Vei — Vs — Vai) = p; = ¢V + (1 — ¢) (Ve — V5) . (A5)

Equilibrium imposes that

~

)\1-:)\@2120, (AG)
i.e., high-valuation agents accept to buy asset ¢ if this transaction generates a positive surplus 3.
Subtracting (A2) and (A4) from (A3), and replacing p; by (A5), we find

2
(r+RZi =T =Y Nps% — (1 — ) hipSs. (A7)
j=1

If \j = Ay = 0, (A7) implies that ; = Z/(r + %) > 0, a contradiction. If \; = X and Ay = 0,
(A7) implies that Sy > 8 > 0, again a contradiction. Therefore, the only possibility is that
A1 = A2 = A, i.e., high-valuation agents accept to buy both assets. For A\ = Ay = A, the variables

(Vais Vi 04, i,) are independent of 4, and thus the Law of One Price holds. |

Proof of Proposition 3: The lending fee is zero by the argument preceding the proposition’s
statement. Agents’ optimization problem is (A1) with the only difference that ¢ € {—1,0,1}. Same
arguments as in Proposition 1 imply that assets trade at the same price p, such that rp < (§+T—y).
If rp < (§+T —y), then high-valuation agents would demand long positions, and average-valuation
agents would not demand short positions from Assumption 1. This implies excess demand from
Assumption 2, and thus rp = (6 + T — y). Under this price, high-valuation agents are indifferent
between a long and no position. Moreover, Assumption 1 implies that low-valuation agents hold

short positions and average-valuation agents hold no position. |

Proof of Proposition 4: If in equilibrium low-valuation agents refuse to borrow asset ¢, the
asset carries no lending fee, and its owners are high-valuation agents who sell when they switch
to average valuation. If instead low-valuation agents accept to borrow asset i, some owners can
be average-valuation. Indeed, because the asset carries a positive lending fee, its owners might
prefer not to terminate a repo contract when they switch to average valuation, but wait until the
borrower wishes to terminate. To nest the two cases, we define the variable v; by v; = v if low-
valuation agents accept to borrow asset i and v; = 0 otherwise. We denote by V%, the utility of a
high-valuation agent seeking to lend asset i, Vi; the utility of a high-valuation agent who is in a

repo contract lending asset 7, Vi,; the utility of an average-valuation agent who is in the same repo



contract and waits for the borrower to terminate, Vj, the utility of a low-valuation agent seeking to
borrow an asset, and V},; the utility of a low-valuation agent who is in a repo contract borrowing

asset 7. These utilities satisfy the flow-value equations

rVy = 64+T—y+E(pi— V) + vitwe (Vi — V5,) (A8)

Vi = d—y+wi+kp— V), (A9)
2

Voo = —Voo+ Y vittg; (Vi +1i = Vho) - (A10)
=1

The remaining two equations depend on whether an owner terminates a repo contract immediately

upon switching to average valuation, or whether he waits for the borrower to terminate.

We first treat the case of immediate termination, which is characterized by the condition

i > Vypi. The two remaining flow-value equations are
rVai = 0+Z—y+wi+E(@pi— Vi) + (Vg — Vi), (A11)

Vi = —0+z—y—wi+& (Voo —pi— Vi) +6(—pi — Vi) - (A12)

To determine the price p;, note that if p; > V4, then high-valuation agents would not demand
long positions, and neither would other agents with lower valuations. Conversely, if p; < V7, then
high-valuation agents would demand long positions. Since the measure of short-sellers does not
exceed that of low-valuation agents (and is, in fact, strictly smaller because of the search friction),
Assumption 2 implies excess demand for asset i. Therefore, p; = V3. The lending fee w; is such
that the lender receives a fraction 6 € [0, 1] of the surplus ¥; in a repo transaction. Since a repo
transaction turns the lender /i into type 74, the lender’s surplus is Vi; — V3. The borrower’s surplus
is p; 4+ Vi — Vio because the borrower bo sells the asset and becomes type ni. Therefore, the lending

fee is implicitly defined by
Vi — Vi = 05 = (Vi — Vi + i + Vai — Vio)- (A13)

Finally, equilibrium imposes (3), i.e., low-valuation agents accept to borrow asset ¢ if this transaction

generates a positive surplus ;.

Since p; = V4, the surplus is ¥; = Vg; + Vi — Vio. Subtracting (A10) from the sum of (Al1l)
and (A12), and noting that (A13) implies p; + Vi — Vio = (1 — 0)%;, we find:

(r+F+E)Si=T+z—2y—(1-0)> vjuy%;. (A14)



Eq. (A14) implies ¥ = 39 = ¥ and thus v1 = vo. If vy =15 =0, then ¥ = (T+z—2y)/(r+%+k),
which is positive by Assumption 1, a contradiction. Therefore, 11 = vy = v, i.e., low-valuation
agents accept to borrow both assets. For vy = vy = v, the variables (V4;, Vi, Vi, pi, w;) are

independent of ¢, and thus the Law of One Price holds.

We next treat the case p; < Vp;. Then, (All) and (A12) are replaced by

Vi = 5+f—y+wi+ﬁ(vm—Vm)+@(VE—Vm), (A15)

Vi = —0+z—y—wi+k(—pi— Vai)- (A16)

The counterpart of (Al4) is

(r+8)Si=F+z—2y—(1-0) > ving, %, + (Vi — Vi) (A17)

; (A18)

(A19)

Suppose that 31,3 < 0. Then, a borrower and a lender of asset i are better off agreeing on a
repo contract with a fee w; ~ 0. Indeed, since rp; = § +T — y from (A8), we have § —y+w; — rp; =
—Z < 0 and thus V,,; < p;. Therefore, the surplus ¥; under this contract is given by (A14) and is
positive. The lender is better off because of the fee, and if the fee is small the borrower is better

off because ¥; > 0. Therefore, 31,9 < 0 cannot be part of an equilibrium.

Suppose that 37 > 0 and Xy < 0. Then, a borrower and a lender of asset 2 are better off
agreeing on a repo contract with a fee wo ~ 0. Indeed, the surplus ¥y under this contract is
given by (A14). If ¥ is given by (Al4), then X9 = ¥; > 0. If ¥; is given by (Al7), then
Yo =7/(r +%+ k) > 0. Therefore, ¥; > 0 and ¥ < 0 cannot be part of an equilibrium, and the

only possible outcome is ¥1,¥o > 0 and 11 = 19 = v.



Since 1 = vo = v, the Law of One Price holds if p; > V,,; for both assets or p; < V,; for both
assets. Consider an equilibrium in which p; > V;,; and p2 < V2. Then (A8) and (A13) imply that

D =0+ T — Y+ V0%, (A20)
(A8), (A11) and (A13) imply that
wy = (r+Rr+E+ V)i, (A21)

(A8), (A13), (A15) and (A18) imply that

wy = (r + K + vjipo)0%s + ﬁ (A22)
(A20), (A21) and 6 — y + wy — rp1 < 0 imply that
(r+r+kK)03 —7 <0, (A23)
and (A20), (A22) and § — y + wg — rp2 > 0 imply that
(r+r+K)0X: —T > 0. (A24)

Egs. (A23) and (A24) imply that ¥9 > ¥;. But then, a borrower and a lender of asset 1 can be made

better off agreeing to a contract with a fee w; > wy such that § —y 4 w1 — rp; is slightly positive.

Using (A9), this implies that V;,; > p1, so that the lender finds it optimal not to terminate when he
reverts to an average valuation. Hence, this contract generates surplus 9. Because d —y+w, —rp1
is slightly positive, we also have that Vj,; & p;, meaning that a lender is nearly indifferent between

terminating or not. This means that the change in the lender’s utility is

AV e LWL
r+R+kK

the PV of the lending fee difference assuming that the lender follows the same termination strategy
than with w;. The change in the borrower’s utility is 3o — ¥1 — AVf;. Factoring out 1/(r + %+ k),

we can write this as
(r+&+£)(E2—¥1) — (071 —w)
~ (r+R+E) (S =)= [rp1 =04y — (r+ R+ E+ vip) 0%
= (r+E+E)(S—%1) - [0+T—y+ S —6+y— (r +E+ £+ Vi) 03]
= (r4+FR+8) (S -%)-[F— (+&E+K)0S]
= 1-0)(r+Fr+r)(S—31) +[(r+&+ k)X — 7] > 0.

Therefore, the conjectured equilibrium is not possible. |



B. Population Measures

The measures pp; and pg; of buyers and sellers of asset 7 are
Hbi = ppt K (B1)
Hsi = WPsi + Hsi- (B2)
Since assets are held by either lenders or sellers, market clearing implies that
g + tsi = S. (B3)
Moreover, since there is equal measure of high- and low-valuation agents involved in repo contracts,
Wi = Wmsi + Wani + Umbi = Usi + i + Lo (B4)

To write the inflow-outflow equations, we condense types (Tsi, mni, mbi) into a type mi, and denote
that type’s measure by ug; as in (B4) above. We also denote by f; the inflow from type 7i to type

0i. The inflow-outflow equations are

2
Buyers b F = Fug + Z Albsi i (B5)
i=1
Lenders i AMightsi + fi = By, + Viltpolly; (B6)
Non-searchers Wi Vippotly; = fi + Kiimi (B7)
Sellers si Rty + Kitsi = Alpifizi (B8)
2 2
Borrowers bo F+ ZE(;@‘ + fini) = Eftpo + Z Vi hbo Mg; (B9)
i=1 =1
Sellers si Vitpopty; = Flbsi + Efbsi + Mlpiflsi (B10)
Non-searchers ni  Aupifbsi = Fpini + Efini (B11)
Buyers bi Kpini = iy + Mifhsis (B12)

For example, (B5) equates the inflow into type b, which is F because of the new entrants, to the

outflow, which is the sum of (i) Fu; because some buyers revert to average valuation and exit the

market, and (ii) Z?Zl Asipiy because some buyers meet with sellers.

We determine population measures by the system of (B1)-(B5) and (B8)-(B12). The total

number of equations is 18 (because some are for each asset), and the 18 unknowns are the measures



of the 14 types b, bo, {Zi,ﬁi,?i,gi,m’,bz’}ie{m} and { i, fsi fief1,2y- A solution to the system
satisfies (B6) and (B7), which is why we do not include them into the system. Indeed, adding
(B10)-(B12), and using (B4), we find

Vilbboltg; = Fltsi + Kitmi + Mipifbsi-

Therefore, (B7) holds with f; = kpsi + Mpiftsi- For this value of f;, (B6) becomes Aupipisi + Kftsi =
Rg; + Viltoltg;, and is redundant because it can be derived by adding (B8) and (B10).

To solve the system, we reduce it to a simpler one in the six unknowns juy,, fiz, and { fp;, fisi }ie (1.2}-

Adding (B10) and (B11), we find

Vilibolig;
fisi + pini = 7% f}f’. (B13)
Plugging into (B9), and using (B3), we find
o 2
E = ity + ; Vittho (S — fsi)- (B14)
Egs. (B10) and (B3) imply that
o Vitpo(S — fhsi) (B15)
R+ R M
Eq. (B11) implies that
Nisi fipi
fini = EM ji“ H’ (B16)
and (B12) implies that
Klin;i
_ m B17
Hbi R+ )\,usi ( )
Combining these equations to compute ju;, and using (B1), we find
R Viftbo (S — Hsi)
i, = Mg+ — . B18
0 = 5 G B) -+ 5+ M)+ i) 1)
Noting that pz, + psi = S — psi, we can use (B8) to compute pig;:
RS
5= ———. B19
i "+ Mii ( )



Adding (B15) and (B19), and using (B2), we find

RS Vilbpo (S — psi)
R+ M E+FE+ Ay

Hsi = (B20)

The new system consists of (B5), (B14), (B18), and (B20). These are six equations (because

some are for each asset), and the six unknowns are pupo, i, and {ju;, fisi }ie {1,2}- Once this system

is solved, the other measures can be computed as follows: pg; from (B15), py; from (B16), up, from

(B17), ps; from (B19), pz; from (B3), and pz; from (B4).

To cover the case where search frictions are small, we make the change of variables ¢ = 1/,
n=v/\ a =V, Vs = Misi, and Yo = Vipo. Under the new variables, (B5), (B14), (B18), and
(B20) become

2

F o= Fup+ Y 157 (B21)
=1
ERY P
Ko K
E = ==+ ; QiYpo(S — 7si), (B22)

ﬁubiaiVQ(S - 5751‘)
(K + k) [e(F + K) + poi) (F+ vsi)

i = Mg+ (B23)

7S v (S — eryes
- 7/€ n Yol > 8782)’ (B24)
ER + i e(E+ER) + ppi

respectively.

B.1. Existence and Uniqueness

We next show that the system of (B21)-(B24) has a unique symmetric solution when a; = ag =1
(the “symmetric” case), and a unique solution when «; = 1 and ag = 0 (the “asymmetric” case).
Using (B23) to eliminate 73, in (B24), we find

S (F + £)(F + 7si)

= — 4+ i — Uy .
=S (1wi — 15) i,

Vsi

Multiplying by up;, and setting ¢ = 1, we find

= | =

o + (o1 — pg)—(F + £+ 7s1)- (B25)



In the rest of the proof, we use (B21), (B22), (B23) for i € {1, 2}, and (B24) for i = 2, to determine
py and ppy as functions of vs1 € (0,.5/¢). We then plug these functions into (B25), and show that

the resulting equation in the single unknown v, has a unique solution.

We first solve for p7. In the asymmetric case, (B23) implies that ppo = p7, (B24) implies that
Vs2 = RS/(eR + ), and (B21) implies that

— rS
F =F%kuz - . B26
Ky + iy (')’sl + P Nb> ( )

The RHS of (B26) is (strictly) increasing in y; € (0, 00), is equal to zero for y; = 0, and goes to oo
for p1; — oo. Therefore, (B26) has a unique solution p; € (0,00). This solution is decreasing in 7

because the RHS is increasing in 1. In the symmetric case, (B21) implies that p; = F /(K +27,1).

This solution is again decreasing in ;.

We next solve for pp1. Eq. (B22) implies that

F F

Yoo = = — ,
T E L EN? (S —eve) ot (Lt az)(S - )

|

where the second step follows because in the symmetric case v55 = 751 and in the asymmetric case

ag = 0. Plugging into (B23), setting i = 1, and dividing by pp1, we find

— ﬁ + (S - 6’781)77‘E

L= T EE e o] (5 ) R+ 5) + (T a2)(5 — evan)]

(B27)

The RHS of (B27) is decreasing in u € (0,00), goes to oo for pp; — 0, and goes to zero for
tp1 — o00. Therefore, (B26) has a unique solution py € (0,00). This solution is decreasing in 71

because the RHS is decreasing in 751 and increasing in p (which is decreasing in vs1).

We next substitute p; and pp; into (B25), and treat it as an equation in the single unknown

~s1. To show uniqueness, we will show that the LHS is increasing in v, and the RHS is decreasing.

In the symmetric case, the LHS is equal to

Vs1h = aF
s1HMp 7+ 2’731’
and is increasing. In the asymmetric case, (B26) implies that the LHS is equal to

ES,LLE
€K + ,ug’

vastg = F = Ry ~



and is increasing because uj is decreasing in 5. The first term in the RHS is increasing in pp1,
and thus decreasing in 74;. To show that the second term is also decreasing, we multiply (B27) by

o (R + £+ ve1):

o1 (R + £+ 751) (S — evs1)nF
R+ &) + pip1] (R4 ys1) [6(F + &) +n(1 4+ a2)(S — evs1)]

(1 — 1) (R + £+ Y1) = B

The RHS of this equation is decreasing in 751 because it is decreasing in 751 and increasing in iy

(which is decreasing in 7,1). Therefore, the second term in the RHS of (B25) is decreasing in 7.

To show existence, we note that for v5; = 0, the LHS of (B25) is equal to zero, while the RHS
is positive. Moreover, for 75 = S/¢, the LHS is equal to Sp;/e, while the RHS is equal to

RSwp Sk
ER + Uy €

because 1 = . Therefore, there exists a solution 51 € (0,5/¢).

B.2. Small Search Frictions

The case of small search frictions corresponds to small €. Thus, the solution in this case is close
to that for € = 0 provided that continuity holds. Our proof so far covers the case ¢ = 0, except
for existence. We next show that Assumption 2 ensures existence for € = 0. We also compute the

solution in closed form and show continuity.

To emphasize that € = 0 is a limit case, we use m and g instead of p and . Eqgs. (B21)-(B24)

become

2

F = FEmy+ Z Mygsi, (B28)
i=1

. 2
E = — Z; Qi GhoS; (B29)

1=

i GboS

mp = my + EiGbo (BBO)

(F+ 5) (R + gsi)

RS igpoS
gsi = + Hidbe? (B31)
Mp; M

10



We first solve the system of (B28)-(B31) in the symmetric case (a1 = a2
asset subscript because of symmetry. Eq. (B29) implies that

_ (F+R)F
(B31) implies that
RS+ SEF
9s = ————
my
and (B28) implies that
F
mg = — .
R+ 2gs

= 1), suppressing the

(B32)

(B33)

(B34)

Substituting gye, gs, and m; from (B32)-(B34) into (B30), we find that my, solves the equation

F F

1= ——— + e
Rmy + 28S + TEF  2Fmy, + 28RS + TER

This equation has a positive solution because of Assumption 2.

(B35)

We next consider the asymmetric case (a1 = 1, ag = 0), and use m and § instead of m and g.

Eq. (B30) implies that 7, = 1y, (B31) implies that

R RS
gs2 = = >
my

(B29) implies that
. (F+R)F
g@ - ES 9
(B31) implies that
RS+ EER
951 = ———
Mp1
and (B28) implies that
_F—E&S
R+ st

Substituting gy, gs1, and 7 from (B37)-(B39) into (B30), we find

(B36)

(B37)

(B38)

(B39)

(B40)



which is positive because of Assumption 2.

To show continuity at € = 0, we write (B25) as

RS pip1

— E+K+71) =0,
ER + Up1 ( - %1)

Vs1Hp — - (,ubl - ,ug)

1= | =l

and denote by R(vs1,¢) the RHS (treating p; and pp as functions of (vys1,¢€)). Because pg, pp1 > 0

for (vs1,€) = (gs1,0) (symmetric case) and (7vs1,€) = (gs1,0) (asymmetric case), the functions ju

and pp; are continuously differentiable around that point, and so is the function R(7s1,€). Moreover,

our uniqueness proof shows that the derivative of R(7s1,€) w.r.t. 751 is positive. Therefore, the

Implicit Function Theorem ensures that for small £, (B25) has a continuous solution v, (¢). Because

of uniqueness, this solution coincides with the one that we have identified.

C. Utilities and Prices

The flow-value equations are

Vo

Vi
Vi

7"/@@'

2
—FVs+ D Masi(Vgy = pi = V5)
=1

0+7 —y+FE(Vs — V5) + viptwo(Vaisi — V5;)
04+7 —y+w; +E(Vsi — Vag) + 5V — Vasi) + Mivi(Vimi — Vasi)
d+7—y+w +R(Ci — Vi) + (Vi — Vami)
0 +7 —y+wi +E(Ci — Vi) + AMasi(Vy; — Vi)
6 —y + Aawi(pi — Vai)
2

—6Vho + Y _ vittg;(Vai — Vio)

i=1
—wi + R(Vho — Vi) — 6Vsi + M (Vi + pi — Vi)
—04+z—y—wi+R(Vh — Ci — Vi) + (Vi — Vi)

-0 —y —w; +R(—=C; — Vi) + Mesi(—pi — Vi),

~~ o~ o~
=~
—_  — ~— ~— ~—

(C7)

(C8)
(C9)
(C10)

where C; denotes the cash collateral seized by the lender when the borrower cannot deliver instantly.

The lending fee w; is such that the lender receives a fraction 6 € [0, 1] of the surplus ¥; in a

repo transaction. Since a repo transaction turns the lender ¢4 into type 7si, the lender’s surplus

12



is Visi — V4. The borrower’s surplus is Vs — Vp, because the borrower bo becomes a seller si.

Therefore, the lending fee is implicitly defined by
Vﬁ§i — ‘/Z’L = 921 = Q(Vﬁ&' — ‘/ZZ + Vvﬂ — V@) (Cll)

The price is determined by (2). The reservation value of type b is Ay = V5, — V5 because after

buying the asset, b becomes a lender fi. The reservation value of type 3i is Ag; = Vs because after

selling the asset, si exits the market with utility zero. Substituting in (2), we find
pi = ¢Vsi+(1—9) (Vg = V5) - (C12)

Using (C1)-(C12), we compute below the lending fee w; and the price p; as a function of the

short-selling surplus ¥;. We then derive a linear system for X1 and Xs.

C.1. Lending Fee

Subtracting (C2) from (C3), we find
(r+ %+ &+ vito) Vasi — Vg;) = wi + i (Vaini — Vasi), (C13)
subtracting (C3) from (C4), we find
(r+ R+ £+ Mipi) Vi — Vasi) = B(Ci — Vai) + 6(Vap — V5,), (C14)
and subtracting (C4) from (C5), we find
(r+ &+ £)(Vab — Vani) = Mesi(Vg; — Vawi)- (C15)
Eqs. (C14) and (C15) imply that

R E(r+ R+ K) = Misi(r +F + £+ AMiy)
— (Ci — V) + — —
TR A R M (r+ %+ E)(r+F+ 5+ M)

Vavi — Vasi = (Vawi — Vi)

Adding Vs — V5, on both sides and solving for Vi, — V5, we find

(r+R"+56)(r+F+E+ M) R(Ci — V)

Vawi — Vi, =
T (r R+ 8)(r R i) + Misi (T R K i) |7+ R B Ao

+ Vﬁéi - VZ

i -
Substituting Vi — V4, from this equation into (C14), we find

F(r+ %+ K&+ Misi) (Ci — Vi) + 6(r + B+ £)(Vag — V)
(r+&+£)(r+F+ Mipi) + Misi (1 +F + £+ Aays)

Vﬁﬂi - Vﬁ§i =

13



Substituting Vap, — Vasi from this equation into (C13), and using (C11), we can determine the

lending fee as a function of the short-selling surplus:

(r+R)(r + &+ K+ Misi) + Misi(E + Mipi)
(r+F 4 Migg)(r + 5+ £) + Misi(r +F 4 £ 4 Mgy

r+r+k + Viltpo | 0%

R\upi(r + K+ £+ Asi)
(r+F + &) (r +F + Mipi) + Misi (7 + F + £ + M)

C.2. Price

Eq. (C6) implies that
o—y—rpi

Vsi —pi = o (C17)
Subtracting rp; from both sides of (C2), and using (C11) and (C17), we find
‘/Z‘_pi:% 5+f—y—rpi+uiu@92i+ﬁw ) (C18)
¢ r+K T+ Al
Substituting (C17) and (C18) into (C12), we find
0—y—1pi+ (1= 9)(r + Ausi) [T + vipoSi — (r + R)V;] = 0. (C19)

R+ (L= o)y

Substituting d — y — rp; from (C19) into (C18), we find

A(T + vipol%i) + (1 — @) (r + K + M) V5

&P r+ 7+ (1 — 6) M

Substituting V3, — p; from this equation into (C1) and solving for V4, we find

2 s _
P i=1 T (& + Vitbof¥)

J— 2 A s7 '
(r +%) [1 +¢2 5 m}

Vi =

Substituting V; from this equation into (C19), we can determine the price as a function of the

short-selling surplus:

2 )‘Ms' -
oy (1= &)(r+ Auws) _ ¢Zj=1 T+E+(17Zi>))\ubj (T + vjpptE;)
pi = + T+ Vifipo0X; — 5 s
L4+ 62 o1 rrmr -

r rir+ &+ (1 — )M

(C20)
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C.3. Short-Selling Surplus

Adding (C3) and (C8), and subtracting (C7) and (C2), we find
2
(r+ 7 + &+ vitno®) i + Y vz (1= )55 = Mo (Viimi + Vi + pi — Viasi — V). (C21)
j=1
Adding (C4), (C9), and rp; = rp;, and subtracting (C3) and (C8), we find
(r+R+E+Mi) Vani+Vai+0i—Vasi— Vi) = rpi—0+z—y+R(pi— Vsi) +E(Vap+ Vi +pi —V5,). (C22)
Adding (C5), (C10), and rp; = rp;, and subtracting (C2), we find
(r+7 + Musi) Vi + Vo +0i — V) = 1pi — 6 — y + R(pi — Vai) — Vitio0 2. (C23)
Substituting Vip+Vii+pi—V5; from (C23) into (C22), and then substituting Vi + Vi +pi — Vasi — Vsi

from (C22) into (C21), we find

2
- Altpi ke ”

R B+ Vil |1+ S S g (1—0)%;

T K K ZN@ |: (T+E+ﬁ+)\ubz)(r+ﬁ+AlL&sz) 1 ]; ]N’Z]( ) J

B /\,ubi |: T+E+ﬁ+)\ﬂsi

i — 0 — ®(p; — Vs . C24
r+E+ K+ My T+ R+ Mg rp yHRp )]] (G24)

To derive an equation involving only ¥; and 3, we need to eliminate the price p;. We have

rp; — 60—y +E(pi — Vai)

_rpi—0+y
= 2y+rpi—0+y+r—mmmm—
) Di Yy 7“+)\,Ubi
2 Alls; —
(1—¢)(r +F+ Aupi) 0 2j=1 (= © F Viteo0%5)

= —2y+ T+ Vifpo02; —

— . )\ sq )
r+F+ (1= )M 1+¢Z?:1W_J¢)W

where the first step follows from (C17) and the second from (C20). Plugging back into (C24), we

can write it as

9 2
a%i+ > i +bi > g% = ci, (C25)
= =
where
r+RE+E O(r + B)Mupi (r + F + £+ M)

)

= PR+ K Vil
i =TT RTET Ville [T+/{+H+>\Nbi (r+ %+ £+ My ) (1 +F + AMpsi) [ +F 4 (1 — @) Mg
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fi = vipg; (1 = 0),

(1 — P)Mupi(r + & + K+ Musi) (7 + F + Mgy
(1 + &+ &+ Mipi) (1 +F 4+ M) [r +F + A1 — @) A

P =

Aﬂsi
T+E+(1—¢) Apipi

2 )\/”’é b
I+¢ Zj:l 7~+E+(1f¢),\ubj

9i = PVifipol

Abbi AR R M |y (L= @)+ R A M) T

¢ = — z = vy I :
(S Y PR M PR =M 1+ 60
_ = b

The short-selling surpluses 3; and ¥ are the solution to the linear system consisting of (C25) for

ie{1,2}.

Note that the collateral C; does not enter in (C25), and thus does not affect the short-selling
surplus. It neither affects the price, from (C20). It affects only the lending fee because when lenders
can seize more collateral they accept a lower fee. From now on (and as stated in Footnote 14), we

set the collateral equal to the utility of a seller i, i.e.,

C; = Vi (C26)

D. Proofs of Propositions 5-11

Proof of Proposition 5: From Appendix B we know that given the short-selling decisions vy =
9 = v, the population measures are uniquely determined. From Appendix C we know that
given any short-selling decisions and population measures, the utilities, prices, and lending fees are
uniquely determined. Therefore, what is left to show is (i) the short-selling surplus X is positive,
(ii) buyers’ and sellers’ reservation values are ordered as in (1), and (iii) agents’ trading strategies
are optimal. To show these results, we recall from Appendix B that when search frictions become
small, i.e., A goes to co holding n = v/X constant, 1 converges to my, p; converges to S, Au

converges to gs, and vup, converges to gpo.

We start by computing X, w, and p, thus proving Proposition 6. Eq. (C25) implies that when
S =Yy =X,
B c
~a+2(f +bg)’
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where we suppress the asset subscripts from a, b, ¢, f, g because of symmetry. When search frictions

become small, a and b converge to positive limits, ¢ converges to

r+K+KE+Ys -
r— ———F——(2y —7T), D1
N v C /L) (D1)

g converges to zero, and f converges to 0o, being asymptotically equal to vS(1 —6). Therefore, the

surplus converges to zero, and its asymptotic behavior is as in Proposition 6.
Egs. (C16) and (C26) imply that the lending fee is

(r+FR)(r+F+ £+ Mus) + s (5 + Ay
(r+F+ M) (r +F+E) + Aps(r +F + £+ Ap)

w=|r+r+k + vy | 03,

Because the term in brackets converges to

Ys

r+K+KE—————
T+RK+K+Gs

=+ Gbos

the lending fee converges to zero, and its asymptotic behavior is as in Proposition 6.

Eq. (C20) implies that the price is equal to

2¢gsT
(1 —p)Amy,

—l-} 1 or+ &

r r (1 _ ¢))\mb +0<1//\) .

+o(1 //\)] [m + g% —

Using this equation and the fact that 3 is in order 1/, it is easy to check that the asymptotic

behavior (i.e., order 1/)) of the price is as in Proposition 6.

To show that ¥ is positive, we need to show that (D1) is positive. This follows because (4)
implies that

(2y-7) =" ETE S0 5 (D)

> 2 - =
=2yt rHR+ g r+ 7+ g

K
L (-F)>2-T+
T+E+gs(y ) > 2y

We next show that reservation values are ordered as in (1), i.e., Ay > A; and Az > A,. For

this, we need to compute V; and V;, — V,. Adding (C10) and rp = rp, and using (C26), we find

p—90—y—w+rkp-—Vs)

D
T+ K+ AMis (D3)

Vg—i-p:
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Adding (C9) and rp = rp, and subtracting (C8), we similarly find

rp—0+z—y+s(Vp+p) +REp—Vs)

Vi -V = D4
ntpP=Vs r+E+ K+ A\ (D4)
Inequality A, > Az is equivalent to
Ve p>Vi—p-V
d+y—rp+w—rp-Vs
y—rpt =Vs) ¢ (p— Va)
r+ R+ s 1—¢
§+y—rp+w—rELY _
Y P T+ p ¢ rp 5+y
& — (D5)
T+ R+ s 1L—¢ r+ M

where the second step follows from (C12) and (D3), and the third from (C17). Because rp converges
to 0 + T — y, and w converges to zero, the LHS of (D5) converges to (2y — Z)/(r + % + gs), which is

positive from Assumption 1, while the RHS converges to zero. Inequality Ag > A, is equivalent to

V@+p—V§>p_V§
R R+ A = A
2t = S~y TR — Vo)l — e =ity

= )
r+K+ K+ A 4 Ay

where the second step follows from (C17), (D3), and (D4). When search frictions become small,
this inequality holds if the limit of the numerator in the LHS exceeds that for the RHS; i.e.,

This holds because of the first inequality in (D2).

We finally show that trading strategies are optimal. The flow benefit that an average-valuation
agent can derive from a long position in asset i is bounded above by d —y+w, and the flow benefit for
a short position is bounded above by —d —y. Therefore, an average-valuation agent finds it optimal
to establish no position, or to unwind a previously established one, if (6 —y+w)/r < min{p, C'} and
(64+y)/r > p. These conditions are satisfied for small frictions because p converges to (§+z —y)/r,

w converges to zero, C' — p converges to zero, and 2y > .

A high-valuation agent finds it optimal to buy asset i if V; — p — V5 > 0. This condition is
satisfied because

(Vg =L =0ty ¢ T

Voop— V= -
P 1—¢ r+ A 1 — ¢ Ay

¢
1-¢
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The agent finds it optimal to lend the asset because Vs — V5 = 0% > 0. Likewise, a low-valuation
agent finds it optimal to borrow asset i because Vs — Vo = (1 — 0)X > 0, and to sell it because

Vit+p—Vs=p—As>p—As=p—-V5>0. [ |
Proof of Proposition 6: See the proof of Proposition 5. 1

Proof of Proposition 7: We need to show that (i) the short-selling surplus ¥ is positive and Yo
is negative, (ii) buyers’ and sellers’ reservation values are ordered as in (1), and (iii) agents’ trading
strategies are optimal. We recall from Appendix B that for small search frictions and given the
short-selling decisions v1 = v and v2 = 0, up; converges to My, iz converges to S, A converges

to gsi, and vy, converges to gpo-

We start by computing 31, w1, p1, and pg, thus proving Proposition 8. Eq. (C25) implies that

when vy = 0,
C1

Sy =
T+ A+

When search frictions become small, ¢; converges to

_T+E+ﬁ+§51

2 — ), D6
) (D)

and the dominant term in the denominator is f; ~ vS(1 — ). Therefore, the surplus converges to
zero, and its asymptotic behavior is as in Proposition 8. To determine the asymptotic behavior of

the lending fee and the price, we proceed as in the proof of Proposition 5.

To show that ¥; is positive, we need to show that (D6) is positive. This follows from (D2) and
the fact that gs1 > gs, established in the proof of Proposition 9. To show that Yo is negative, we
note that from (C25),

f1+b
o= (i +b290)%1 @2~ @it iihg

22 = =
as az

When search frictions become small, the numerator converges to the same limit as c¢o — ¢;. This
limit is equal to

r+R+E+da T+E+E+ s
r+E+ g1 T+ E+ G2

(2y —7),
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and is negative if gs1 > gso. Using (B36) and (B38), we can write this inequality as

ES+SEF g8

> — (D7)
mp1 my
Egs. (B38)-(B40) imply that
F—&S
Ny = =—————mMyp1. D8
= g g (D8)

Using this equation, we can write (D7) as

ES+%E>F—ES+E
7S F—-rS

It is easy to check that this inequality holds because of Assumption 2.

To show that Ay; > Aj and Ag; > Ay, we proceed as in the proof of Proposition 5. The only

change is that the condition for Ag; > Ay now is

r+RE+E+Gs

x — 20—T) > T.
- r+ K+ gs (y )

This inequality is implied by the first inequality in (D2) and the fact that gs; > gs. Finally, the

arguments in the proof of Proposition 5 establish that trading strategies are optimal. |
Proof of Proposition 8: See the proof of Proposition 7. ]

Proof of Proposition 9: We start with a lemma.

Lemma 1. For x < 1, inequality (1 — x)mp > my is equivalent to

(1= 2x)(E — xFrip1) > xF. (D9)

Proof: Since my is the unique positive solution of (B35), whose RHS is decreasing in my, inequality
(1 — x)mp1 > my, is equivalent to

F F

1>*1 i 2RS E+5F+2*1 i 72*5 Ets p
R(1 = x)mp1 + 2R + = L R(1—x)mp1 + 2R +— £

F F
& 1>— = =
F+ F —xriy  F+F+ (1 —2x)Riy
F — yrkn F
- = Xﬂﬂzb} > L S—
F+F —xrimp  F+F+ (1—2x)kmm
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where the second step follows from (B40). The last inequality implies (D9). [

Result (i): We need to show that mp; > myp and gs1 > gs. Since (D9) holds for y = 0, Lemma 1

implies that myp; > my. Using (B33) and (B38), we can write inequality gs; > gs as

=g Ftk
kS + NT;E
RS + LR

Kk

My < Mp.

Using Lemma 1, we then need to show that

(1 —2x)(F — xFrp1) < xF, (D10)
for
i
= —E—
RS+ EHEF

Plugging for y, we can write (D10) as

RS(E — i) < * 2T,
R

which holds because of Assumption 2 and My > 0.

Result (ii): We need to show that 1y < my and gso < gs. Using (D8) and 7y, = 1y, we can write

inequality My < my as

F-&S
mmbl < myp.
Using Lemma 1, we then need to show (D10) for
YTF RS+ E
Plugging for yx, we can write (D10) as
F—-RS—-F — —

which holds because 71 > 0. Using (B33), (B36), and (D8), we can write inequality gs2 < gs as

F-&S FS+5F
F-rS+F &S

Mp1 > My
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Using Lemma 1, we then need to show (D9) for

F (1_/<;+/<;F—/<;S>

F—-RS+F 2k RS
Assumption 2 implies that
< F <1 ﬁ+l-€> - F .
XS F RS+ F 2% oF S+ E) ¢

Because x, mp1 > 0, (D9) holds for y if it holds for x. The latter is easy to check using Assumption
2.

Result (i1i): Egs. (7), (11), and gs1 > gs, imply that 3; in the symmetric equilibrium is smaller
than 3; in the asymmetric equilibrium. Since, in addition, gp, > g (from (B32) and (B37)),

(6) and (10) imply that the lending fee w; in the symmetric equilibrium is smaller than w; in the

asymmetric equilibrium.

Result (iv): For ¢ = 0, the result follows from (5), (8), 71 > my > M2, Gho > gbo, and the fact that
Y; in the symmetric equilibrium is smaller than ¥; in the asymmetric equilibrium. An example

where the prices of both assets are higher in the asymmetric equilibrium is S = 0.5, F = 3, F = 5.7,
E=1,k=3,06=0=051r=4%,6=1,2=04, 2z = 1.6, y = 0.5, and any v/\. [

Proof of Proposition 10: We show that buying asset 2 and shorting asset 1 is unprofitable under

x " KT
)\mbl T(VS + )\me) ’

PL—p2< =+ (D11)
(which is implied by (12)), while buying asset 1 and shorting asset 2 is unprofitable under (13).
We then show that (12) and (13) are satisfied if v/ is in an interval (ny,ng).

Buy asset 2, short asset 1

Because trading opportunities arrive one at a time, an arbitrageur cannot set up the two legs of
the position simultaneously. The arbitrageur can, for example, buy asset 2 first, then borrow asset
1, and then sell asset 1. Alternatively, he can borrow asset 1 first, then buy asset 2, and then sell
asset 1. The final possibility, which is to sell asset 1 before buying asset 2 is suboptimal. Indeed,
for small search frictions the time to meet a buyer converges to zero while the time to meet a seller
does not. Therefore, the cost of being unhedged converges to zero only when asset 2 is bought

before asset 1 is sold.
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Suppose now that the arbitrage strategy is profitable. Because the payoff of the strategy is
decreasing in asset 1’s lending fee, there exists a fee w; > w; for which the arbitrageur is indifferent
between following the strategy and holding no position. If for this fee it is optimal to initiate the
strategy by buying asset 2, the arbitrageur can be in three possible states:

e Long position in asset 2. State n2 with utility Vjs.

e Long position in asset 2 and borrowed asset 1. State s1n2 with utility Vgipe.

e Long position in asset 2 and short in asset 1. State nln2 with utility V,i,2.

The utilities are characterized by the following flow-value equations:

Ve = 6 —y+ vy (Viinz — Vaz) (D12)
™Vsing = 0 —y— w1+ Mt (Vainz +p1 — Vsing) + E(Vaz — Viin2) (D13)
TVaine = —w1 +E(Va2 — C1 — Vaina)- (D14)

Solving (D12)-(D14), we find

Vigy _T Abip1

Py = 6 —y+ — 0| g gAML
"2 Y Y Rty | TR+ A

[rp1 — 6 +y +R(pr — C1)]| .

The arbitrageur is indifferent between initiating the strategy and holding no position if V;,2 is equal

to p2. Using this condition, and substituting C; from (C17) and (C26), we find

_ A2

T+ K+ Vg,
W= P2 (5 y) - R Gy 5y,
R )= )
For small search frictions, this equation becomes
_ rT (r+Rr)x
w1 = r(p1 — p2) Y vS

and is inconsistent with (D11) since wy < wj.

Suppose instead that it is optimal to initiate the strategy by borrowing asset 1. The arbitrageur
then starts from a state s1, in which he has borrowed asset 1 but holds no position in asset 2. The

utility Vi1 in this state is characterized by
TVs1 = —w1 + Ms2(Vsinz — p2 — Vs1)- (D15)
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The utility in states s1n2 and nln2 is given by (D13) and (D14), respectively. The utility in state

n2, however, is given by
Ve =6 —y + vug (Vsine — Vi) + Mz (p2 — Vi2) (D16)

instead of (D12). Indeed, since it suboptimal to initiate the strategy by buying asset 2, buying that
asset is dominated by holding no position. Therefore, if the arbitrageur finds himself with a long

position in asset 2, he prefers to unwind it upon meeting a seller. Egs. (D13), (D14), and (D16)

imply that
TR Vg A _ RMug o ap M I
V. _ rHvpg A e (5 o y) + r+l/H21+>\,LLb2p2 —wit r+E+Ap1 [Tpl —o+yt H(pl B Cl)]
sln2 — r(r+R+vig A p2) TR b2 ’
Vg HA b2

Plugging into (D15), and using (C17), (C26), and the indifference condition which now is Vi = 0,

we find

)\Mbl _ _ T‘+E+Vﬂ21+>\ub2 _
o r-}-)\ubl (rpl 5 + y) T+VM21+A/'Lb2 (Tp2 6 + y)

w1 = r(r+R4vug A e2) FR b2
Aps2 (r+vpg, +Ape2)

1+

For small search frictions, this equation becomes

rT RT
r(p1—p2) = 5T~ vErm
1 + T(ns+mbz)+ﬁmb2 ’
Js2(nS+my2)

wy =

and is inconsistent with (D11) since wy < wy.
Buy asset 1, short asset 2

We consider a “relaxed” problem where asset 1 can be bought instantly and asset 2 can be
borrowed instantly at a lending fee of zero. Clearly, if the arbitrage strategy is unprofitable in the

relaxed problem, it is also unprofitable when more frictions are present.

Suppose that the arbitrage strategy is profitable. Because the payoff of the strategy is increasing
in asset 1’s lending fee, there exists a fee w1 < w; for which the arbitrageur is indifferent between
following the strategy and holding no position. When following the strategy, the arbitrageur is
always in a state where he holds asset 1 and has borrowed asset 2, because these can be done

instantly. If the arbitrageur has not sold asset 2, he can be in four possible states:

e Seeking to lend asset 1. State £1s2 with utility Vji9.
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e Lent asset 1 to an agent sl. State nsls2 with utility Vj,s142.
e Lent asset 1 to an agent nl. State nnls2 with utility Vi,,1s2.

e Lent asset 1 to an agent bl. State nbls2 with utility Vypi1s2.

If the arbitrageur has sold asset 2, he can be in the four corresponding states that we denote with

n2 instead of s2.
For brevity, we skip the eight flow-value equations, but note that they have a simple solution.
To each outcome concerning asset 1 (¢1, nsl, nnl, nbl) and to each outcome concerning asset 2

(s2, n2), we can associate a separate utility that we denote by V. We can then write the utility

of a state (which is a “joint” outcome) as the sum of the two separate utilities. For example, the

utility V149 is equal to Vgl + Vsz. This decomposition is possible because the outcomes concerning

each asset evolve independently.

The utilities f/gl, Vn§1, Vnnl, and anl are characterized by the flow-value equations

Vo = Vipe(Vost — Vi)
rf/ngl = wp+ )\Mbl(f/nﬁl - Vn§1)
Vot = W1+ E(Vipt — Vint)
7"17@1 = Wy + M (Vo — Vngl)-

and the utilities ‘7827 Vng are characterized by

~

Vi = 0 —y+ Mua(Vna + pa — Via)

A

Ve = R(Vig —Co — Vo).

Solving these equations, we find

Visa = 1V + Vi
Vitbo ( _ KB Aua ) \
_ rvbpe r+Aupy THE T+ ) B M2 _ _ _
- 1 _ _Uhbo Mool K st wi + |:5 Y+ F+ R+ )\MbQ [TPQ 0+ Y+ K(pQ CQ)]

r+Vppe THA B THE THALs1

The arbitrageur is indifferent between initiating the strategy and holding no position if Vpy4 is
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equal to pj. Using this condition, and substituting C; from (C17) and (C26)

Vitbo ( M B A ) \
T+Vbo Ay THE T+ Aps1 ) b2
1_ Vitho )\Nfbl _k )\//fsl wl_rp1_5+y_r+AMb2(Tp2_6+y)
r+vppe THAULL THE THALs1
For small search frictions, this equation becomes
b _ rT
gf N w1:7"(p1—p2)+)\A )
T+ L + Gbo M2
and is inconsistent with (13) since wy > wj.
Egs. (12) and (13) are jointly satisfied
The two equations are jointly satisfied if
QILO w1 w1

P L
r +ﬁ7‘+ﬁ+gsl +gb£

Substituting p; and ps from (8) and (9), we can write this equation as

w B w w
Al B m (017)
r A r r
where
M=M= <
"+ E S t ke " g ke
and

=01 113

Bz(gbr_'—’{){A — = ]$>0.
(L—=¢) [ 1w T

Eq. (D17) is satisfied if

B >)\w1> B
Al—AQ r 1—A2'

In this inequality, n enters only through the product Aw;. Therefore, the inequality is satisfied for

n in some interval (nq,ng). ]

Proof of Proposition 11: Generalizing the analysis of Section B.2, we can show that a solution

for e = 0 exists, and is close to that for small . The limiting equations are (B28)-(B31), but with
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the asset supplies depending on 4. For the asymmetric equilibrium, (B36)-(B40) generalize to

(FR+r)F

G = /= D18
Jbo 5 (D18)
 msesmp
gs1 = P (Dlg)
mp1
~ RS
g = —2, (D20)
my
F & F
= — =3 8 — = D21
mp1 = Zz; 7 & ( )
F — RS
my; = =—5 = et M1 (D22)
F—-%8S,+ F

Result (i): An equilibrium where v; = v and v9 = 0 can exist if ¥; > 0 and Y9 < 0. Condition
Y1 > 0 can be ensured by (4). For small search frictions, condition ¥y < 0 is equivalent to gs1 > Js2,
as shown in the proof of Proposition 7. Using (D19), (D20) and (D22), we can write condition

Js1 > s2 as

E(Sl — 52) + i}fﬂ (F — ESQ) > RSy F. (D23)

This equation holds for all values of S; > Sy because Assumption 2 implies that F — &Sy > ®S; >
®Ss.

Result (ii): The existence condition is now (D23), but with S; and Sp reversed. It does not hold,

for example, when S is large enough to make the term in square brackets negative.

Result (iii): We proceed by contradiction, assuming that for a given S; — So > 0 there exists an
equilibrium where v; = 15 = v, even when search frictions converge to zero. Since the parameters
a;, b, ¢;, and g; in (C25) converge to finite limits, while f; converges to oo, ¥; must converge to
zero, and f;3; to a finite limit. But then (C25) implies that the limits of ¢; and ¢z must be the

same. This, in turn, implies that gs; = gs2 = g5, which from (B30) and (B31) means that

RS; + g@Si
KGboSi
M Gitw) (it gs)

is independent of i, a contradiction when asset supplies differ. |
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Proof of Proposition 12: The expected search time for buying asset i is 1/(Aus;) and for selling
asset i is 1/(Api). Thus, our liquidity measure is A2 pupijts; = A(piYsi)- Dropping the multiplicative
constant A and assuming small search frictions, this is equal to A; = 1hp;gs;. Egs. (D19) and (D20)

imply that

A = RS+ TER (D24)
K

Ay = RS, (D25)

Egs. (8)-(11), generalized to the case where asset supplies depend on ¢, imply that the lending fee

is

. T+R+E+ds1 =
— gs1 LT T Rtga (2y — =)
=0 D26
o <T+“+”r+m+n+§/sl+gb°> v(1—6)8 (D26)
and the price premium is
_ _ +R+rE+s -
oL —p _(r+®m) [ 11 T Lo ¢ - g 2y —7) (D27)
FRTANA-9) Liwe v 7 bo v(1—0)S1r

Result (1): An increase in F increases A by (D24) and leaves Ay constant by (D25). It increases
Gbo by (D18), decreases 1y by (D21), increases 7y /e (= mp1 /1) by (D22), and increases §s1
by (D19). Eq. (D26) then implies that w; increases, and (D27) implies that p; — p2 increases.
For small search frictions wj/p; varies in the same direction as w; since p; is close to the limit

(6 +Z — y)/r while w; is close to zero.

Result (i1): A decrease in S; decreases A1 by (D24) and leaves Ay constant by (D25). Numerical
calculations indicate that wy and p; — ps increase if S} = So =05, F =3, F=57,8=1, k=3,
p=60=05r=4%,0=1,7 =04, 2 = 1.6, y = 0.5, v/XA = 0.25. If, however, S; and Sy are

changed to 1.3, and F' to 1, while other parameters stay the same, then w; and p; — ps decrease. |

E. The CARA Setting

Agents can invest in a riskless asset with return r and in two risky assets paying the same cash

flow. Cash flow is described by the cumulative dividend process
dDy = édt + odBy,
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where § and o are positive constants, and B; is a standard Brownian motion. Agents derive utility

from the consumption of a numéraire good, and have a CARA utility function

B [ /O ~ exp (—acs — Bb) dt] | (B1)

Each agent receives a cumulative endowment process

det = O¢ |:ptdBt + \/ 1-— p%dZt:| N

where o, is a positive constant, Z; a standard Brownian motion independent of B;, and p; the
instantaneous correlation between the dividend process and the endowment process. The process

pt can take three values: p; = —p < 0 for high-valuation agents, p; = p > 0 for low-valuation
agents, and p; = 0 for average-valuation agents. The processes (p;, Z;) are pairwise independent

across agents. We set A =ra, y = Ac?/2, T = Apoo,, and z = Apooe.

E.1. Walrasian Equilibrium

Under Assumptions 1 and 2, the Walrasian equilibrium is identical to that in Proposition 3. This
is true even when agents are allowed to invest in integer multiples of one share and in both assets

simultaneously, provided that we make the additional assumption
Assumption 3. 4y > T + z.

Proposition 13. Suppose that agents have CARA preferences and can hold any position (q1,q2) €
72 in the two assets. In a Walrasian equilibrium both assets trade at the same price
_0tT—y

p_
r

and the lending fee w is zero. Moreover, high-valuation agents buy one share or stay out of the

market, low-valuation agents short one share, and average-valuation agents stay out of the market.

Proof: The lending fee is zero by the same argument as in Proposition 3. An agent maximizes

(E1) subject to the budget constraint

2
dt+ |0 Y it + pioe

=1

dBt -f-O'e\/ 1-— thdZt

2
AWy = |[rWy — ¢ + 2(5 — ;) it
i=1
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and the transversality condition

lim E [exp(—AWr — (T)] =0, (E2)

T—o0

where W, is the wealth and ¢;; is the number of shares invested in asset i € {1,2}. The agent’s
controls are the consumption ¢ € R and the investments (q1,q2) € Z2?. Obviously, if p; # p2
the agent can achieve infinite utility by demanding an infinite amount of assets, contradicting
equilibrium. Thus, in equilibrium p; and p, must be equal. Denoting their common value by p and

the aggregate investment in the risky assets by ¢ = g1 + ¢2, we can write the budget constraint as

dW; = [’I“Wt —Ct + (5 — Tp)qt] dt + [O'C]t + ptO'e] dB; +0e4/1 — p%dZt
The agent’s value function J(Wy, p;) satisfies the Hamilton-Jacobi-Bellman (HJB) equation

0= sup {=exp(—ac) + DEDVI(W,p) = BI(W,p)} (E3)
(¢,q) ERXZ

where

DEVTW,p) = Jw(Wop) W = e (5= rp)a] + 3 Jww (W, p) [o%6 +2p00cq + 7]
() LI, 0) — T, )]

and where the transition intensity (p) is zero for p = 0, ® for p = p, and & for p = p. We guess

that J(W, p) takes the form

2.2
1 r— B+ 42

r

for some function V'(p). Replacing into (E3), we find that the optimal consumption is

A22
r—0+ 206

A

c(p) =r[W+Vi(p)] -
and the optimal investment satisfies

q(p) € argmax,cz{C(p,q) — rpq} = Q(p),

where C(p, q) is the incremental certainty equivalent of holding ¢ shares relative to holding none.

Using the definitions of y, #, x, we can write the certainty equivalent as C(p,2) = (0 + Z)q — yq°
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for high-valuation agents, C'(p, z) = (6§ —x)q — yq? for low-valuation agents, and C(0, z) = §q — yq?

for average-valuation agents.

Plugging ¢(p) back into (E3), we find that (E3) is satisfied iff

1—e

—AV(0)=V(p))

) (F4)

0=—rV(p) + max{C(p.q) = rpa} + r(p)
Eq. (E4) implies that V(0) = max,{C(0, ¢) —rpq}/r. Moreover, given V' (0), the equations for V'(p)

and V(p) are in only one unknown, and it is easy to check that they have a unique solution.

We next determine the equilibrium value of p. Because each type-p agent holds a position
q(p) € Q(p), the average position g, (p) of these agents is in the convex hull of Q(p). Market
clearing requires that ¢,,(0) = 0 because average-valuation agents are in infinite measure. It also
requires that

L @)+ Lanp) = 25 (55)

Because the function ¢ — C(p,q) — rpq is strictly concave, the set QQ(p) consists of either one or

two elements. If there exists a g such that

C(p,q) —rpg > max{C(p,q+1) —rp(qg+1),C(p,q — 1) —rp(g — 1)}, (E6)

then this ¢ is unique and Q(p) = {q}. Otherwise, there exists a unique ¢ such that

C(p,q) —rpg = C(p,q+1) —rp(q+1), (E7)

and Q(p) = {q,q¢+ 1}. Using Assumptions 1 and 3 and the first-order conditions (E6) and (E7), it
is easy to check that for p = (0 +Z — y)/r, we have Q(p) = {0,1}, Q(p) = {—1}, and Q(0) = {0}.
Eq. (E5) then follows from Assumption 2, implying that p = (6 +Z — y)/r is an equilibrium price.
It is the unique equilibrium price because if p > (6 + T — y)/r, then no agent would choose ¢ > 0,
and if p < (0 + T — y)/r then high-valuation agents would choose ¢ > 1, while other agents would
choose at least as much as for p= (6 + T — y)/r. ]
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E.2. Search Equilibrium

Proposition 14 studies agents’ optimization problem in a general Poisson setting, and shows that
the value function is of the form

A202

JW,T) = —%exp —AW + V(1) + 76_5:—2

, (E8)

where V(1) is a function characterized by (E9). Using (E9), it is easy to check that when « converges
to zero, holding (y, @, z) constant, V(1) satisfies the flow-value equations derived under the utility
specification of Section I. Therefore, if the trading strategies in the equilibria of Propositions 5
and 7 involve strict preferences (which is the case generically), they are also optimal under CARA
preferences for small «. This means that the equilibria of Propositions 5 and 7 are also equilibria

under CARA preferences.

Proposition 14. Suppose that

(i) An agent can be of finitely many types T € T.
(ii) While being of type T, the agent receives a payoff described by the cumulative process
dX (7,t) = m(r)dt + /o ()2 + 02dB,
where Bt is a standard Brownian motion.

(iii) Transitions across types occur at the arrival times of a K-dimensional counting process Ny,
with intensity associated to dimension k equal to a constant (k). At the arrival times asso-

ciated to dimension k, the agent can choose between types 7' € T'(1,k) C 7.

(iv) Transition to type 7' brings an instant payoff P(r,7’).

Then, the value function is given by (E8) with

K —A[V )V () +P(r)]
A 1
rV(7) =m(r) = So(r)? + Y A(k)_ max ¢ . (E9)
k=1

T'eT (1,k) A
Proof: The agent’s wealth evolves according to the SDE
) K
AWy = [rWi + m(n) — cildt + /o ()2 + 02dBy + Y _ P(ry—,7) dNy(k).
k=1
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The agent chooses a transition and consumption policy to maximize (E1) subject to the transver-

sality condition (E2). We also impose the boundedness condition

E UOT eXp(—th)dt] <o

for all T > 0 and 2z € {ra,2ra}, because it is needed for the verification argument. The HJB

equation is

0 = sup {— exp[—ac(r)] + DET) J (W, 7) — BJ(W, 7')}, (E10)
ceR, 7 €T (1,k)

where

DO J(W,r) = Jw(W,r)[rW — c(r) + m(7)] + é [o(7)?* + o¢] Tww (W, 7)

K
+> (k) [J (W + P(r,7'),7'] — J(W,7)|.
k=1

Substituting (E8) in (E10) and maximizing with respect to consumption, we find that (E8) is a
solution iff V(1) solves (E9). ]
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