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Appendix

A.  The efficiency gain associated with intraday volatility measures

To illustrate the potential efficiency gains associated with the intraday return

variability measure in equation (2) relative to the standard measure in equation

(1), consider the extreme case where volatility remains constant within each day;

i.e., #F  / F  for J $ 0, and [·] denotes the integer value operator.  Given theJ  [J]

distributional assumptions regarding P , it follows thatJ 

and

which suggest the following two ex-post measures of the daily volatility

and

While both estimators are unbiased, the latter is vastly superior.  Specifically,

Thus, with N = 288 five-minute intraday returns, the standard deviation is   

reduced by a factor of almost seventeen.  While the intraday volatility dynamics

are much more complex than assumed above, the calculation is suggestive of the
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greatly improved ex-post measurement of the latent volatility process afforded

by the cumulative absolute returns.  For a theoretical exposition on related

issues, see Nelson (1992), and Nelson and Foster (1995, 1996).

B.  Consistency and robustness of the flexible Fourier form regression

The statistical properties of the FFF-regression is determined by the properties

of the error process, $u , in equation (6).  It takes the following formt,n 

This error term consists of three component processes.  The last is simple, as

it constitutes an i.i.d. process.  The first captures the discrepancy of calendar

and announcement components from their expected values.  Such divergences arise

from stochastic components in the intraday "seasonal" or "news" innovations that

differ from their expected values.  As such, errors from this source are the rule

rather than the exception.  Nonetheless, if the mean effects are correctly

specified and the errors are stationary, this does not affect the consistency of

the OLS estimator.  The second term reflects potential misspecification of the

estimated volatility component, $F .  Given the complexity of this process, itt,n

is inevitable that any preliminary estimator is misspecified, so this error term

is likely heteroskedastic, serially correlated and perhaps even biased.  However,

any bias is absorbed in the constant, c, and will not further affect inference.

Moreover, as long as the regressand and the volatility process itself are

stationary, this entire error component is stationary.  We conclude that the OLS

estimator is consistent, while the associated error process will display

dependencies of unknown form.  Consequently, formal inference requires the use

of robust standard errors that are consistent under general heteroskedasticity

and autocorrelation.

Another important issue is the robustness of the FFF-regression to

outliers.  Simple diagnostics point to a potentially serious problem, as the



kurtosis of the five-minute return series is 21.5 compared to 4.5 for the 12-hour

returns.  However, the problem is effectively eliminated by the log transform.

In fact, inspection of the (transformed) regressor series, $x , now suggests at,n 

possible "inlier" problem, arising from the low values obtained when taking logs

of small positive squared returns.  The problem is similar to that encountered

when applying the Kalman filter to log-squared returns in order to estimate

stochastic volatility models, see, e.g., Harvey, Ruiz and Shephard (1994).

However, we explicitly analyze the data for the presence of unduly influential

observations, following the procedure in Davidson and MacKinnon (1993), section

1.6.  We also truncate the observations for $x  from below by letting all returnt,n 

observations in the interval ( 0% , 0.00036% ) equal 0 percent (minus the sample    

mean) before transforming to $x .  It was confirmed in both cases that thet,n

presence of inliers did not exert an appreciable impact on the estimated

volatility pattern.

C.1  Regional trading segments, holidays, and data gaps

We begin by formally defining the regional trading segments.  This classification

is used to assign dummy variables to the intervals affected by regional holidays.

The observance of Daylight Savings Time in Europe and North America, at periods

that do not fully coincide, induce us to operate with four separate categories.

Furthermore, the classification is not exhaustive, in the sense that there are

periods which do not belong to any specific regional segment.  This is immaterial

since it is only used to specify periods that are affected significantly by

regional holidays in one of the market centers.  The following daily Greenwich

Mean Time (GMT) trading zone definitions are used:

Year Round

Wellington (New Zealand): 20:55-22:00 
Sydney (Australia): 20:55-00:00 
Tokyo (Japan): 00:00-06:00

09/27-10/23 10/26-03/26 03/26-04/02 04/05-09/24

London (Europe): 07:00-15:00 07:00-16:00 06:00-15:00 06:00-15:00
Europe-N.America Overlap: 11:30-15:00 12:30-16:00 12:30-15:00 11:30-15:00



New York (N.America): 11:30-20:30 12:30-20:30 12:30-20:30 11:30-20:30

Regional holidays affect the entire trading segment, except for certain minor

U.S. holidays, where an appreciable drop in quoting and trading activity only

takes place after the London market closes.  The following holiday periods were

identified from the quote intensity as well as the Reuter's news tape.

Dates Time Period Occasion

United States   10/12 11:30-20:30 Columbus Day
   11/11 16:00-20:30 Veterans Day
  11/26 12:30-20:30 Thanksgiving
   12/21-01/01    All Day Christmas/New Year
   01/18 16:00-20:30 King's Birthday
   02/15 12:30-20:30 President's Day
   04/08 15:00-20:55 Easter Begins
   04/09   All Day Easter
   04/12 20:55-20:30 Easter Ends
   05/30 11:30-20:30 Memorial Day
   07/05 11:30-20:30 July 4
   09/06 11:30-20:30 Labor Day

Tokyo - Dates:   11/03,  11/23,  01/15,  02/11,  04/29,  05/03,  09/15,  09/23

Wellington - Dates:   10/26,  01/25,  06/07

Sydney - Dates: 10/05,  01/26,  04/26,  06/14

London - Dates: 05/03,  05/30,  08/30

We also checked for slowdowns associated with regional holidays in a number of

additional countries, including Hong Kong, Taiwan, Singapore, Germany, and

Switzerland, but no clear signs of an effect could be detected, so these holidays

were not included in the analysis.

All five-minute intervals, covered by the holiday periods listed above,

were assigned one of two different dummies.  The "Holiday"-dummy refers to

periods of reduced activity, where reliable returns may nonetheless be obtained.

An interpretation is that this corresponds to lower levels of general economic

activity, where less relevant economic news are generated.  The "Market Closure"-

dummy refers to periods where the quoting intensity is so low as to render return

calculations unreliable.  Among the above holidays, the following are allocated

to the latter "Market Closure" category:



    Dates Time Period Occasion

Market Closures:       10/12 15:00-20:30 Columbus Day
      11/26 16:00-20:30 Thanksgiving
      12/22 20:30-20:55 Christmas
      12/23-12/25    All Day Christmas

   12/28 21:00-23:00 Christmas
   12/31 17:00-20:55 New Year
   01/01   All Day New Year
   02/15 16:00-20:30 President's Day
   04/08 20:30-20:55 Easter
   04/09   All Day Easter
   04/12 20:55-20:30 Easter
   05/30 06:00-20:30 Memorial Day
   07/05 11:30-20:30 July 4
   09/06 11:30-20:30 Labor Day

The trading restrictions in Japan over the sample period precludes reliable

assessment of the properties of the return series over the local lunch period.

It effectively corresponds to a "weekend" in the midst of the trading day.

Formally, we define a market closure each day during

Tokyo Lunch-Time: 03:00-04:45

Finally, we identified some apparent failures in the data transmission which

result in lengthy gaps in the quote series.  All of the affected intervals were

treated as market closures.  The specific periods are:

   Dates Time Period

Data Gaps:    10/21 01:18-05:37
  10/28-29 22:16-01:15
   11/17 01:30-05:39
   12/16 01:15-05:12
   01/08 00:33-06:20
   02/10 01:35-06:27
   02/22 04:52-06:40
   05/21 16:41-21:00
  09/26-27 21:57-06:07

The market closures present a modeling dilemma, since we want to eliminate these

observations, but also want to retain the strict periodicity associated with the

intradaily and weekly features of the high frequency return series.  We solve

this by artificially assigning a very low, positive return (standardized by an

overall daily volatility factor) to all these intervals, and then removing



(zeroing out) all regressors except the market closure-dummy from these

intervals.  This implies that the dummy "explains" the low returns (near)

perfectly, while the inference regarding all other features of the return series

is unaffected.

C.2  Constrained calendar and announcement volatility response patterns

In order to accommodate the overall impact through a parsimonious representation

that also allows for efficient inference, the reported estimates for the

announcement and calendar effects are based on the imposition of an a priori

structure on the volatility response pattern.  In particular, assuming that the

feature in question affects volatility from interval n  to n  + n , the impact0  0  1 

over the event window, J = 0, 1, ... , n , may then be represented by a1 

polynomial specification,

p(JJ) = c  + c · JJ + ... + c · JJ . (A7)0  1      P  
 P

Of course, for P = n  this would effectively imply the estimation of a dummy1

variable for each of the N̄ / n  + 1 event intervals.  However, the use of a lower1

order polynomial affords a great degree of flexibility along with a significant

reduction in the dimensionality of the parameter space.  Furthermore, sensible

constraints on the response pattern, including smoothness, are readily imposed

in terms of the polynomial representation.  For example, the requirement that the

impact reflects a gradual movement away from the standard pattern is imposed by

enforcing p(0) = 0.  This simply annihilates the constant, i.e., c  = 0.  Another0

desired property may be that the effect slowly fades, which is obtained by

imposing p(N̄) = 0.  Substituting J = N̄ into p(J), solving for c , and insertingP

the resulting expression for c  back into p(J), leads to a restricted polynomialP

with one less parameter,

  p(JJ) = c · [ 1 - (JJ / N̄) ] + c · [ 1 - (JJ / N̄) ] · JJ + ... + c · [ 1 - (JJ / N̄) ] · JJ .  0          1              P-1          
P P-1 P-1

(A8)

We can now classify a number of our calendar and all of our announcement



regressors through the choice of polynomial order, P, the response horizon, or

N̄, and the endpoint constraints imposed on p(J).  The following specifications

underlie the results reported in the paper:

Tokyo Market Opening: N̄ = 6, P = 1, p(N̄+ 1) = 0, 

Late Summer Day Slowdown: N̄ = 60, P = 2, p(0) = p(N̄+ 1) = 0, 

Early Monday Effect: N̄ = 17, P = 2, p(N̄+ 1) = 0, 

Late Friday Effect: N̄ = 46 (58), P = 2, p(0) = 0,   

EMS-Band Widening: N̄ = 30, P = 3, p(N̄+ 1) = 0, 

Employment Report: N̄ = 24, P = 3, p(N̄+ 1) = 0, 

All Other Announcements: N̄ = 12, P = 3, p(N̄+ 1) = 0. 

The above representations leave one free parameter for the Tokyo market opening

and the Summer slowdown, and two free parameters for the weekend effects denoted

"Monday early" and "Friday late".  The "Friday late" coefficients are identical

in Summer and Winter, but the effects lasts an additional hour during Summer due

to Daylight Savings Time.  Finally, there are three announcement effect

parameters, but as explained in Section IV.A, we further restrict this pattern

by imposing the common structure,

p (JJ) = 88 · p (JJ) , (A9)k   k  0  

where p (J) refers to the polynomial for event type k, and p (J) denotes a fixedk           0

response pattern.  Specifically, we calibrate the pattern by fitting all three

parameters for a set of announcements of about equal significance, resulting in

a benchmark pattern that resembles the one associated with Category I releases.

Concretely, ( c , c , c ) = (2.18868, -0.64101, 0.07663).  This uniquely 0  1  2 

identifies p (J), and p (J) thus has only one free "loading" parameter, 8 .  Of0   k         k 

course, this procedure only strictly applies for response horizons corresponding

to N̄ = 12.  In order to retain the benchmark pattern for larger N̄, we let the J-

variable progress only by a (12/N̄)-fraction of a unit per five-minute interval,

rather than a full interval.  This "stretches" the event time scale so that it

conforms to the desired horizon.

Finally, we apply the corresponding "time-deformation" procedure to the



sinusoids in the U.S. Summer Time intraday pattern in order to compensate for the

one hour leftward shift from 7:00 to 6:00 GMT.  This elongation of the intraday

pattern is implemented over 19:55 to 00:00 GMT.


