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This document derives versions of UPPS, EU and their derivatives that
can be directly transformed into computer programs. This is done for several
different minimization problems. For the problem with taxes there exists a

separate document.

1 Base Case: The original problem

1.1 Expected Utility EU

From our basic assumptions (equations (2) and (3) in the paper) we obtain:

1
EU(¢,ns,n0) = E - [TW + ngexp{dT} Pr + no max{Pr — K,0}]'"
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where TW = (¢ + Wy) exp{r;T'}
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Pr = Pyexp { (rf —d— %) T+ uﬁa} with u”N(0,1)

2
= PCexp{CV -u} with PC' = Byexp { (rf —d— %) T}

where OV = oV/T

This implies
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Note that (??) holds only for v # 1. For v = 1, we obtain:
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1.2 UPPS
UPPS is defined as:

UPPS(¢,ns,no) = % exp(—rfT)E[U(Wr,e")] = diPo exp(—rfT)E[V (Wr)]

where Wy = TW + ngexp{dT'} Pr + no max{Pr — K,0}

As Wr(Fy) cannot be differentiated at Pr = K, we must split the integral
before differentiation at v = M D2.
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Note that the two derivatives of the integral boundaries cancel each other

as Pr(MD2) = K:
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Using the above defined symbols and f(u) = \/% exp{—“;} we obtain:
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2 Gamma distributed stock prices

where LD =

2.1 Incorporating different stock price dynamics

In order to generate a program that is flexible enough to switch to differ-
ent stock price dynamics than the log-normal distribution, we rewrite the

conditions EU and UPPS in the following way:




2

Pr(u) = Pyexp { <rf —d— %) T+ uﬁa}

APru) _ { (m e 0_2) Ty uﬁa}

dFP, 2
1 MD2
EU(¢,ng,n0) = : [TW + ng exp{dT}PT(u)]1_7 f(u)du
+ /%0 [TW + (ng exp{dT} + no) Pr(u) — noK]l_7 f(u)du
MD2

UPPS(¢,ns,no) = exp{—r;T}

( / (TW + ng exp{dT} Pr(u)) ns exp{dT}% F(u)du

—00

" /MO; (TW + (nsexp{dT} + no) Pr(u) —noK)™"
(ngexp{dT'} + no) d];;(;) f(“)d“)

2.2 Mean, variance and skewness of the log-normally
distributed stock price

The stock price dynamic is given by

Pr(u) = Pyexp { <rf —d— %2) T} U

where In(u) + N(0,02T).Using the formulae for the mean, the variance
and the coefficient of skewness for lognormally distributed random variates

(p.102 in Eavans, Hastings & Peacock, 1993), we obtain:



E(Pr(u)) = Pyexp { <rf —d- ";) T} exp {%UQT}
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Var (Pr(u) = P exp {2 (rf _d- f’;) T} exp { T} (exp {o°T} — 1)
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2.3 (Gamma distributed stock prices

According to Hemmer, Kim and Verrecchia (2000), the stock price is given

by Pr(v) = P,v, where v is Gamma distributed with density function

x\c 1 exp{—x/b
el = (5) SR

Note that Hemmer et al. (2000) use a = b and k& = ¢ and assume that
k is integer, so that I'(k) = (k — 1)!. The notation used is the notation in
Eavans, Hastings & Peacock (1993).

This distribution has three parameters (P,,b,c¢). We determine these
parameters by equating the first three moments of the distribution with the
corresponding moments of the exponential distribution.

The three moments of Pr(v) are:



E(Pr(v)) = P,bc

Var(Pr(v)) = P?b*c
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As P, and b only occur in the expectation and the variance and both

times as product P,b only, these two parameters cannot be separated and
the system of equations cannot be solved. The reason is that the Gamma
distribution only has two parameters and multiplying it by a constant P,
not only changes the mean but also the variance. We therefore set P, =
Py exp{(ry — d) T}and only use the first two equations, the mean and the

variance in order to identify the parameters b and c:

P,bc = Pyexp {(ry —d) T}
PXv’c = Pjexp{2(ry —d) T} (exp {o°T} — 1)

The solution is:

b= (eXp {O‘QT} — 1)
¢ = (exp {o*T} — 1)_1

Hence, the necessary changes to the program are:

_(uy\ctexp{—u/b} 1 exp{—uc}c
fw =) o - T
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Pr(u) = Pyexp{(ry —d) T} u
qu;D(Ou) =exp{(ry—d)T}u

In addition, the threshold M D2 must be adjusted. Recall that M D2 is
defined by Pr(M D2) = K. Hence:

B K
P exp{(ry —d)T}

Also, the integration starts at 0 (not at —oo) and the value of the options

MD?2

to the firm must be calculated numerically as the Black-Scholes formula is

not valid.

3 Problem with two types of options

In this section, we derive the expected utility and UPPS with stock and two
types of options A and B. The two types of options differ in their strike price
Kqand Kg, Kg > K4, but have the same maturity 7. Hence, the principal
chooses four parameters (¢, ng, na,n5) in order to minimize the total costs
T =¢+nsPy+niBSa+n8BSs.

By setting n5 = 0 it is easy to derive the corresponding formula for a

quadratic bonus scheme.



3.1 Expected Utility EU

Analogous to the derivation for the case with only one type of options, we

get:

EU(¢, ns,né,ng) =

2
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3.2 UPPS

Analogous to the derivation for the case with only one type of options, we

get:
UPPS(¢,ns,n5,ng) =
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4 Estimation of the theoretical solution

where LD =

This section considers the estimation of the parameters ag and «; of the
theoretical solution (19) in the paper. The theoretical solution is (where

d > 0 is a small number):

S (ao 4+ on In Pp)" — Wyexp (rT) if Pp>P
g —Woexp (r¢T) + if Pr<P '’

where P = exp ((67 — ap) /o).
Hence we obtain for Wy = Wyexp(rT) + 7r :

Wi — (Oé()‘i‘OZlh'lPT)l/’y if PTZ?
T J if Pr<P
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4.1 Expected Utility EU

For the expected utility, we get:

_ L (CVO + aq In PT)(l_’Y)/W 1f PT Z ?
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where the threshold M is given by

Pr(M) = exp ((6" — ao) /o)
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For v =1, we get:
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4.2 Expected costs for the firm

For the costs of the contract, we get:

. (Oéo—FOélhlPT)l/,y if PT 2?
BEWr) =B H 5 if Pr<P

_ 1 > 1/ _u_2
_m[/ (g + o (In PC + CVu)) eXp( 5 du

M
M 2
+ / 0 exp (—%) du}

12



4.3 UPPS

upps = L exp(—r;T)E(U(Wr))
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Note that the threshold M depends on the variable F, with respect to
which we differentiate the integral. The two additional terms cancel each
other (just like in the base case further above), because the integrand is

continuous at the boundary.

4.4 Numerical problems and reformulation of EU and

UPPS

The above derived formulae for expected utility and UPPS are numerically
unstable, because the threshold M cannot be computed accurately. The
reason is that §7 is small, because § is measured in percent of the firm value
Fy. §7 is especially small if v becomes large. From this very small quantity
(like 0.0016 = 107'®) large numbers like oy and especially PC' (which is of
the order of the firm value) are deducted, so that §7 is effectively set to
zero. Rescaling does not help, because both § and PC would be rescaled.
Therefore, we reformulate the integrals using a substitution that leaves only

07 as the lower boundary of the integral. We define:
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(x — ap) Jag — In(PC)

u=g(zr) =

g cv
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Using the substitution rule for integrals, we obtain:
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For expected utility, we get:
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E(Wr) =




4.5 Further numerical details

Depending on «p, a1, and PC' the peak in the integrands can be very ”sharp”,
so that they might not be found by the integration routines. This can be
prevented by providing the approximate point where the integrand reaches
its maximum. For our integrands, this is the point, where g(z) = 0, i.e. for
x &~ a; In(PC) + «ap.

If the variable as varies slightly, the other two variables g and «; vary
markedly while the objective function does not change much. As this causes
numerical instability, we use a nested algorithm. The inner algorithm finds
those ap and aq which satisfy the two constraints for a given as, while the
outer algorithm optimizes the objective function over as only.

For the inner optimization, the starting value turned out to be important.

(-10,10) turned out to be very successful.
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