INTERNET APPENDIX for "Individual Investors and Volatility"*

*Citation format: Thierry Foucault, David Sraer, and David Thesmar, 2011, Internet Appendix for "Individual Investors and Volatility," *Journal of Finance* 66, 1369-1406, http://www.afajof.org/supplements.asp. Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the authors of the article.

In this Internet Appendix, we provide supplementary tables for the results reported in our published paper but untabulated there for brevity. Below, we provide an index of the tables in this internet appendix and we briefly describe the purpose of each table.

- 1. Table IA.I. Excluding Stocks that Drop from the Control Group before the Reform. In the published version of the paper, Table VI provides estimates of the impact of the reform of the French stock market considered in our paper on our proxies for the volatility of stock returns, the autocovariance of stock returns and the price impact of trades. Our sample contains stocks that switch from the treated group to the control group and vice versa before the reform. In Table IA, we show that the conclusions from Table VI in the published version are unaltered when we exclude these stocks from the sample.
- 2. Table IA.II. Excluding Underlyings for Futures and Options. In the published version of the paper, Table VI provides estimates of the impact of the reform of the French stock market considered in our paper on our proxies for the volatility of stock returns, the autocovariance of stock returns and the price impact of trades. Our sample contains stocks that serve as underlying securities for single futures or options. In Table IIA, we show that the conclusions from Table VI in the published version are unaltered when we exclude these stocks from the sample.
- 3. Table IA.III. Test of Implication 1 with Various Measures of Volatility. In Panel A of Table VI in the published version of the paper, we estimate the impact of the reform of the French stock market considered in our paper on the idosyncratic volatility of the stocks affected by this reform. We use the monthly standard deviation of the daily difference between the raw return and the market return (*Volatility2*) as a proxy for the idiosyncartic of stock returns. In Table IA.III, we show that the our results regarding the effect on volatility are robust when we use other measures of idiosyncratic volatility, namely (i) the monthly standard deviation of daily raw returns (*Volatility1*) or (ii) the monthly standard deviation of the residual of the time-series regression of the daily excess return for a stock on the daily excess market return (*Volatility3*).
- 4. Table IA.IV. Controlling for Contemporaneous Returns. In the published version of the paper, Table VI provides estimates of the impact of the reform of the French stock market considered in our paper on our proxies for the volatility of stock returns, the autocovariance of stock returns and the price impact of trades. In the regressions used to estimate this impact, we do not control for the effect of contemporaneous stock returns on our dependent variables (in particular volatility).

In Table IA.IV, we rerun these regressions adding contemporaneous stock returns as a control variable. The conclusions from Table VI are unaltered.

- 5. Table IA.V. Varying the Time Window. In the published version of the paper, Table VI provides estimates of the impact of the reform of the French stock market considered in our paper on our proxies for the volatility of stock returns, the autocovariance of stock returns and the price impact of trades. In the regressions used to estimate this impact, we use a 48 months time windows centered around the event date (the date of the reform). In Table IA.V, we show the results of the same regressions with, respectively, a thirty-six months and twenty-four months time windows centered around the event.
- 6. Table IA.VI. Impact of the Reform on the Relative Bid-Ask Spread. In this table, we estimate the impact of the reform on the relative bid-ask spread of the stocks in our sample. This purpose of this estimation and the results are discussed in Section G in the published version of our paper.
- 7. Table IA.VII. Robustness of the Findings to Attrition. In this table, we show that the findings of Table VI in the published version of the paper are unchanged when we exclude stocks with missing observations from our sample.
- 8. Table IA.VIII. Retail Trading and Volatility: IV Estimate. In this table, we estimate the impact of retail trading activity on volatility using an instrumental variable regression (IV) using the reform of the French stock market described in the published version of our paper as an intervent. The results from the table confirms that retail trading activity has a positive impact on volatility.
- 9. Table IA.IX. Contrarian Retail Trading Activity and Volatility. In this table, we report the estimates of a simple OLS regression of the monthly standard deviation of the daily difference between the raw return and the market return (*Volatility2*) on the measures of retail trading activity used in Section H of the published version of the paper (namely, $|NIT_{it}|$, CON_{it} and MOM_{it}). For all specifications, we find a strong positive association between volatility and these measures of retail trading activity.

Table IA.I

Excluding Stocks that Drop from the Control Group before the Reform

In this table, we estimate the impact of the reform on our three main dependent variables, Volatility2 (Panel A), Autocov (Panel B), and Pimpact (Panel C) using the same methodology as in Table VI in the paper, but we restrict our sample to stocks that do not switch from the RM to the spot market or vice versa between September 1998 and August 2000 (we lose 19 stocks). $Volatility2_{it}$ is the standard deviation of the daily difference between the return of stock *i* and the market return in month *t*. $Autocov_{it}$ is the autocovariance of daily returns for stock *i* in month *t*. $Pimpact_{it}$ is the average of the ratio of stock *i*'s absolute return divided by the trading volume in euros on each day in month *t*. In Column 1, we estimate the following regression:

$$Y_{it} = \alpha + \beta_0 Treated_i + \beta_1 Post_t + \beta_2 Treated_i \times Post_t + \varepsilon_{it},$$

where $Post_t$ is a dummy variable equal to one after September 2000 and $Treated_i$ is equal to one if stock *i* is listed on the RM. The differences-in-differences estimate of the effect of the reform on the dependent variable is β_2 . In Columns 2, 3, and 4, we estimate the following regression:

$$Y_{it} - Y_{it}^{match} = \alpha_i + \delta_1 Post_t + \varepsilon_{it}$$

where Y_{it} is the dependent variable of interest for stock *i* in month *t* and Y_{it}^{match} is the value of this variable for the match of stock *i* in month *t* in the group of control stocks. We use three different procedures to choose a match for stock *i* in month *t*: quartile matching, percentage difference matching, and propensity score matching (See Section IV.B). Estimates of the effect of the reform (δ_1) with each matching procedure are reported in Columns 2, 3, and 4, respectively. The sample period starts in September 1998 and ends up in September 2002. In brackets we report *t*-statistics based on doubled-clustered errors allowing for correlation in residuals over time and across firms. Superscripts *, **, and *** indicate that estimates are significantly different from zero at, respectively, the 10%, 5%, and 1% levels of significance.

	DD	Quartile	Percentage difference	Propensity score			
		matching	matching	matching			
	(1)	(2)	(3)	(4)			
Panel A. Dependent Variable: Volatility2 (Implication 1)							
Treated × Post (β_2)	-0.303***						
	[-5.41]						
Treated	-0.506***						
	[-8.85]						
Post (δ_1)	0.195	-0.202***	-0.200***	-0.271***			
	[1.56]	[-3.04]	[-3.04]	[-3.11]			
Constant	2.887***	-0.253***	-0.222***	-0.278***			
	[30.91]	[-4.85]	[-3.70]	[-4.00]			
Observations	29,498	6,990	4,257	5,341			
R^2	0.061	0.015	0.008	0.013			
Panel	B. Depende	nt Variable:	Autocov (Implication 2))			
Treated×Post (β_2)	0.309***						
	[3.43]						
Treated	0.067						
	[1.02]						
Post (δ_1)	-0.489***	0.620***	0.335**	0.445**			
(1)	[-5.18]	[4.20]	[2.19]	[2.31]			
Constant	-0.222***	-0.172	-0.226**	-0.173			
	[-2.68]	[-1.56]	[-2.30]	[-1.48]			
Observations	28,654	6,972	4,226	5,275			
R^2	0.008	0.024	0.003	0.006			
Panel	C. Depende	nt Variable:	Pimpact (Implication 3))			
$\text{Treatment} \times \text{Post} \ (\beta_2)$	-3.941***						
	[-4.24]						
Treated	-8.264***						
	[-11.76]						
Post (δ_1)	4.043***	-1.479***	-2.233***	-0.816			
· · /	[4.36]	[-4.67]	[-3.05]	[-1.61]			
Constant	8.310***	-0.650***	-0.783***	-0.313***			
	[11.81]	[-4.74]	[-3.85]	[-3.67]			
Observations	31,018	7,074	4,378	5,483			
R^2	0.038	0.037	0.015	0.004			

Table IA.I-continued

Table IA.II

Excluding Underlyings for Futures and Options

In this table, we estimate the impact of the reform on our three main dependent variables, namely, Volatility2 (Panel A), Autocov (Panel B), and Pimpact (Panel C), using the same methodology as in Table VI in the paper but we exclude from our sample stocks that serve as the underlying for single futures or options. $Volatility2_{it}$ is the standard deviation of the daily difference between the return of stock i and the market return in month t. $Autocov_{it}$ is the autocovariance of daily returns for stock i in month t. $Pimpact_{it}$ is the average of the ratio of stock i's absolute return divided by the trading volume in euros on each day in month t. In Column 1, we estimate the following regression:

$$Y_{it} = \alpha + \beta_0 Treated_i + \beta_1 Post_t + \beta_2 Treated_i \times Post_t + \varepsilon_{it},$$

where $Post_t$ is a dummy variable equal to one after September 2000 and $Treated_i$ is equal to one if stock *i* is listed on the RM. The differences-in-differences estimate of the effect of the reform on the dependent variable is β_2 . In Columns 2, 3, and 4, we estimate the following regression:

$$Y_{it} - Y_{it}^{match} = \alpha_i + \delta_1 Post_t + \varepsilon_{it}$$

where Y_{it} is the dependent variable of interest for stock *i* in month *t* and Y_{it}^{match} is the value of this variable for the match of stock *i* in month *t* in the group of control stocks. We use three different procedures to choose a match for stock *i* in month *t*: quartile matching, percentage difference matching, and propensity score matching (see Section IV.B). Estimates of the effect of the reform (δ_1) with each matching procedure are reported in Columns 2, 3, and 4, respectively. The sample period starts in September 1998 and ends up in September 2002. In brackets we report *t*-statistics based on doubled-clustered errors allowing for correlation in residuals over time and across firms. Superscripts *, **, and *** indicate that estimates are significantly different from zero at, respectively, the 10%, 5%, and 1% levels of significance.

	DD	Quartile	Percentage difference	Propensity score		
		matching	matching	matching		
	(1)	(2)	(3)	(4)		
Panel A. Dependent Variable: Volatility2 (Implication 1)						
Treated× Post (β_2)	-0.255***					
	[-4.43]					
Treated	-0.430***					
	[-7.25]					
Post (δ_1)	0.200	-0.207***	-0.196***	-0.308***		
	[1.60]	[-3.40]	[-2.95]	[-3.05]		
Constant	2.877***	-0.199***	-0.233***	-0.282***		
	[30.80]	[-3.89]	[-3.56]	[-3.42]		
Observations	27,880	5,105	3,743	3,830		
R^2	0.038	0.015	0.007	0.014		
Panel	B. Depende	nt Variable:	Autocov (Implication 2))		
Treated×Post (β_2)	0.302***					
	[3.31]					
Treated	0.071					
	[1.08]					
Post (δ_1)	-0.485***	0.592***	0.300*	0.397^{*}		
(-)	[-5.19]	[4.33]	[1.91]	[1.66]		
Constant	-0.231***	-0.186**	-0.210*	-0.153		
	[-2.81]	[-1.99]	[-1.94]	[-1.13]		
Observations	27,024	5,085	3,707	3,775		
R^2	0.008	0.021	0.003	0.004		
Panel	C. Depende	nt Variable:	Pimpact (Implication 3))		
$\text{Treatment} \times \text{Post} \ (\beta_2)$	-3.980***					
	[-4.30]					
Treated	-8.101***					
	[-11.70]					
Post (δ_1)	4.127***	-1.826***	-2.231***	-1.279*		
	[4.47]	[-4.56]	[-2.91]	[-1.68]		
Constant	8.173***	-0.822***	-0.899***	-0.429***		
	[11.81]	[-4.69]	[-3.90]	[-3.65]		
Observations	29,415	$5,\!191$	3,862	$3,\!976$		
R^2	0.031	0.048	0.014	0.007		

TableIA.II-continued

Table IA.III

Test of Implication 1 with Various Measures of Volatility

In this table, we estimate the impact of the reform on volatility using three different proxies for volatility, *Volatility1* (Panel A), *Volatility2* (Panel B), and *Volatility3* (Panel C). *Volatility1* is the monthly standard deviation of daily raw returns. *Volatility2* is the monthly standard deviation of the daily difference between the raw return and the market return. *Volatility3* is the monthly standard deviation of the residual of the time-series regression of the daily excess return for a stock on the daily excess market return. In Column 1, we estimate the differences-in-differences (DD) regression:

$$Y_{it} = \alpha + \beta_0 Treated_i + \beta_1 Post_t + \beta_2 Treated_i \times Post_t + \varepsilon_{it},$$

where Y_{it} is one of the three measures of volatility, $Post_t$ is a dummy variable equal to one after September 2000, and $Treated_i$ is equal to one if stock *i* is listed on the RM. The differences-indifferences estimate of the effect of the reform on the dependent variable is β_2 . In Columns 2, 3, and 4, we estimate the following regression:

$$Y_{it} - Y_{it}^{match} = \alpha_i + \delta_1 Post_t + \varepsilon_{it}$$

where Y_{it} is one of the measures of volatility for stock *i* in month *t* and Y_{it}^{match} is the value of this measure of volatility for the match of stock *i* in month *t* in the group of control stocks. We use three different procedures to choose a match for stock *i* in month *t*: quartile matching, percentage difference matching, and propensity score matching (see Section IV.B). Estimates of the effect of the reform (δ_1) with each matching procedure are reported in Columns 2, 3, and 4, respectively. The sample period starts in September 1998 and ends up in September 2002. In brackets we report *t*-statistics based on doubled-clustered errors allowing for correlation in residuals over time and across firms. Superscripts *, **, and *** indicate that estimates are significantly different from zero at, respectively, the 10%, 5%, and 1% levels of significance.

	DD	Quartile	Percentage difference	Propensity score
		matching	matching	matching
	(1)	(2)	(3)	(4)
	Panel A. D	ependent Va	riable: Volatility2	
Treated× Post (β_2)	-0.297***			
	[-5.47]			
Treated	-0.472***			
	[-8.52]			
Post (δ_1)	0.200	-0.274***	-0.194***	-0.172***
	[1.60]	[-3.25]	[-2.97]	[-2.71]
Constant	2.877***	-0.238***	-0.227***	-0.192***
	[30.80]	[-3.52]	[-4.41]	[-3.31]
Observations	30,181	$5,\!652$	7,398	4,552
R^2	0.056	0.013	0.014	0.006
	Panel B. D	ependent Va	riable: Volatility1	
Treated×Post (β_2)	-0.240***			
	[-2.60]			
Treated	-0.266***			
	[-3.25]			
Post (δ_1)	0 141	-0 220**	-0 115	-0 130
1 000 (01)	[1.24]	[-2.16]	[-1.54]	[-1.60]
Constant	2 608***	0.964***	0.919***	0.115*
Constant	2.096	[2 34]	-0.213	-0.115
Observations	[20.00]	[-3.54] 5.652	[-5.02] 7 398	[-1.08] 4 552
B^2	0.018	0.006	0.003	9,002
	Panel C. D	ependent Va	riable: Volatility3	0.002
Treatment \times Post (β_2)	-0.314***	- <u>r</u>		
(2)	[-4 70]			
Treated	-0.372***			
ITCalled	[-5 54]			
$\mathbf{D}_{\text{out}}(\mathbf{\delta})$	0.116	0.249***	0.947***	0.915***
Post (o_1)	[1, 16]	-0.342	-0.247	-0.213
	[1.10]	[-3.65]	[- 3 .70]	[-3.09]
Constant	2.581***	-0.240***	-0.200***	-0.162***
	[30.91]	[-3.27]	[-3.71]	[-2.58]
Observations D^2	30,181	5,652	7,398	4,552
R^2	0.036	0.017	0.020	0.008

Table IA.III-continued

Table IA.IV

Controlling for Contemporaneous Returns

In this table, we estimate the impact of the reform on our three main dependent variables, *Volatility2* (Panel A), *Autocov* (Panel B), and *Pimpact* (Panel C), using the same methodology as in Table VI in the paper but we control for contemporaneous returns. In Column 1, we estimate the following regression:

 $Y_{it} = \alpha + \beta_0 Treated_i + \beta_1 Post_t + \beta_2 Treated_i \times Post_t + \beta_3 Return_{it} + \varepsilon_{it},$

where Y_{it} is the dependent variable of interest for stock *i* in month *t*, $Post_t$ is a dummy variable equal to one after September 2000, $Treated_i$ is equal to one if stock *i* is listed on the RM, and Return_{it} is the return of stock *i* in month *t*. The differences-in-differences estimate of the effect of the reform on the dependent variable is β_2 . In Columns 2, 3, and 4, we estimate the following regression:

$$Y_{it} - Y_{it}^{match} = \alpha_i + \delta_1 Post_t + \beta_3 \text{Return}_{it} + \varepsilon_{it},$$

where Y_{it} is the dependent variable of interest for stock *i* in month *t* and Y_{it}^{match} is the value of this variable for the match of stock *i* in month *t* in the group of control stocks. We use three different procedures to choose a match for stock *i* in month *t*: quartile matching, percentage difference matching, and propensity score matching (see Section IV.B). Estimates of the effect of the reform (δ_1) with each matching procedure are reported in Columns 2, 3, and 4, respectively. Constant terms are included in the regressions, but not reported in the table to preserve space. The sample period starts in 1998 and ends in 2002. In brackets, we report *t*-statistics based on doubledclustered errors allowing for correlation in residuals over time and across firms. Superscripts *, **, and *** indicate that estimates are significantly different from zero at, respectively, the 10%, 5%, and 1% levels of significance.

	DD	Quartile	Percentage difference	Propensity score
		matching	matching	matching
	(1)	(2)	(3)	(4)
Panel	A. Dependen	t Variable:	Volatility2 (Implication 1	1)
Treated× Post (β_2)	-0.295***			
	[-5.45]			
Treated	-0.473***			
	[-8.54]			
Post (δ_1)	0.202*	-0.177***	-0.147**	-0.255***
	[1.65]	[-2.73]	[-2.34]	[-3.10]
Return	0.006	0.474	0.748**	0.620*
	[0.01]	[1.35]	[2.13]	[1.70]
Observations	$30,\!110$	$7,\!392$	$4,\!552$	$5,\!652$
R^2	0.057	0.018	0.012	0.016
Panel B. D	ependent Va	riable: Auto	cov of Returns (Implicat	(ion $2)$
Treated×Post (β_2)	0.277^{***}			
	[2.98]			
Treated	0.110*			
	[1.84]			
Post (δ_1)	-0.396***	0.630***	0.362**	0.492**
	[-4.70]	[4.13]	[2.38]	[2.53]
Return	2.121***	0.593	0.991	1.799***
	[4.97]	[1.01]	[1.25]	[2.64]
Observations	29,268	$7,\!372$	4,512	5,578
R^2	0.023	0.023	0.005	0.011
Panel	l C. Depende	nt Variable:	Pimpact (Implication 3))
$\texttt{Treatment} \times \texttt{Post} \ (\beta_2)$	-3.993***			
	[-4.28]			
Treated	-8.110***			
	[-11.83]			
Post (δ_1)	3.926***	-1.382***	-1.701***	-0.353*
	[4.30]	[-4.67]	[-3.00]	[-1.92]
Return	-4.770***	1.260	1.145	-0.521
	[-3.32]	[1.37]	[1.03]	[-1.50]
Observations	$31,\!576$	$7,\!439$	$4,\!643$	5,781
R^2	0.040	0.041	0.013	0.005

Table IA.IV continued

Table IA.V

Varying the Time Window

In this table, we estimate the impact of the reform on our three main dependent variables, Volatility2 (Panel A), Autocov (Panel B), and Pimpact (Panel C), using the same methodology as in Table VI in the paper but we use different estimation windows centered around the reform: a 36 month window (Panels A, B, and C) and a 24 month window (Panels D, E, and F). In each case, we estimate the impact of the reform on our three main dependent variables: Volatility2 (Panels A and D), Autocov (Panels B and E), and Pimpact (Panels C and F). $Volatility2_{it}$ is the standard deviation of the daily difference between the return of stock i and the market return in month t. $Autocov_{it}$ is the autocovariance of daily returns for stock i in month t. $Pimpact_{it}$ is the average of the ratio of stock i's absolute return divided by the trading volume in euros on each day in month t. In Column 1, we estimate the following regression:

 $Y_{it} = \alpha + \beta_0 Treated_i + \beta_1 Post_t + \beta_2 Treated_i \times Post_t + \beta_3 Return_{it} + \varepsilon_{it},$

where Y_{it} is the dependent variable of interest for stock *i* in month *t*, $Post_t$ is a dummy variable equal to one after September 2000, $Treated_i$ is equal to one if stock *i* is listed on the RM, and Return_{it} is the return of stock *i* in month *t*. The differences-in-differences estimate of the effect of the reform on the dependent variable is β_2 . In Columns 2, 3, and 4, we estimate the following regression:

$$Y_{it} - Y_{it}^{match} = \alpha_i + \delta_1 Post_t + \beta_3 \text{Return}_{it} + \varepsilon_{it},$$

where Y_{it} is the dependent variable of interest for stock *i* in month *t* and Y_{it}^{match} is the value of this variable for the match of stock *i* in month *t* in the group of control stocks. We use three different procedures to choose a match for stock *i* in month *t*: quartile matching, percentage difference matching, and propensity score matching (see Section IV.B). Estimates of the effect of the reform (δ_1) with each matching procedure are reported in Columns 2, 3, and 4, respectively. Constant terms are included in the regressions, but not reported in the table to preserve space. The sample period starts in 1998 and ends in 2002. In brackets we report *t*-statistics based on doubledclustered errors allowing for correlation in residuals over time and across firms. Superscripts *, **, and *** indicate that estimates are significantly different from zero at, respectively, the 10%, 5%, and 1% levels of significance.

	DD	Quartile	e Percentage difference Propensity s		
		matching	matching	matching	
	(1)	(2)	(3)	(4)	
Panel A. Dependent V	ariable: Vola	tility2 (Imp	lication 1). Estimation \mathbf{v}	window: 36 months	
Treated× Post (β_2)	-0.244***				
	[-4.74]				
Treated	-0.534^{***}				
	[-9.82]				
Post (δ_1)	0.225	-0.203***	-0.191***	-0.263***	
	[1.55]	[-2.96]	[-3.21]	[-3.41]	
Return	2.851***	-0.268***	-0.206***	-0.299***	
	[24.46]	[-4.65]	[-3.17]	[-4.03]	
Observations	22,317	5,352	$3,\!277$	4,077	
R^2	0.060	0.015	0.007	0.011	
Panel B. Dependent	Variable: Au	tocov (Impli	cation 2). Estimation w	indow: 36 months	
Treated×Post (β_2)	0.273***				
	[3.05]				
Treated	0.046				
	[0.76]				
Post (δ_1)	-0.389***	0.584***	0.127	0.442^{*}	
	[-4.20]	[3.32]	[0.80]	[1.94]	
Return	-0 251***	-0 177	-0.093	-0.167	
	[-2.94]	[-1.37]	[-1.12]	[-1.49]	
Observations	21,680	5.335	3,246	4,024	
R^2	0.005	0.021	0.001	0.006	
Panel C. Dependent	Variable: Pin	npact (Impli	cation 3). Estimation w	indow: 36 months	
$Treatment \times Post \ (\beta_2)$	-3.076***		,		
	[-3.78]				
Treated	-7.962***				
	[-10.95]				
Post (δ_1)	3.167***	-1.113***	-2.000**	-0.881	
(-1)	[3.94]	[-4.25]	[-2.56]	[-1.41]	
Return	8.014***	-0.726***	-0.897***	-0.364***	
	[11.03]	[-4.68]	[-3.94]	[-3.39]	
Observations	23,441	5,425	3,379	4,202	
R^2	0.035	0.025	0.011	0.004	

Table IA.V-continued

Panel D. Dependent V	ariable: Vola	atility2 (Imp	lication 1).	Estimation window: 24 months
Treated× Post (β_2)	-0.147***			
	[-2.90]			
Treated	-0.593***			
	[-10.32]			
Post (δ_1)	-0.096	-0.197^{**}	-0.164***	-0.230***
	[-0.75]	[-2.43]	[-2.77]	[-3.10]
Return	3.074***	-0.302***	-0.206**	-0.358***
	[25.73]	[-4.14]	[-2.58]	[-4.08]
Observations	$15,\!083$	3,569	2,141	2,675
R^2	0.058	0.013	0.004	0.008
Panel E. Dependent V	Variable: Au	tocov (Impli	cation 2). I	Estimation window: 24 months
Treated×Post (β_2)	0.176^{**}			
	[1.98]			
Treated	0.028			
	[0.36]			
Post (δ_1)	-0.383***	0.582**	-0.028	0.417^{*}
	[-3.06]	[2.36]	[-0.16]	[1.66]
Return	-0.216*	-0.217	-0.072	-0.169
	[-1.80]	[-1.25]	[-0.57]	[-1.03]
Observations	$14,\!619$	$3,\!556$	2,117	2,627
R^2	0.004	0.019	0.000	0.005
Panel F. Dependent V	Variable: Pin	npact (Impli	cation 3). I	Estimation window: 24 months
Treatment×Post (β_2)	-2.535***			
	[-3.20]			
Treated	-7.775***			
	[-9.90]			
Post (δ_1)	2.624***	-0.812***	-1.450**	-0.650
	[3.41]	[-3.38]	[-2.08]	[-1.17]
Return	7.836***	-0.848***	-1.037***	-0.438***
	[10.00]	[-4.57]	[-3.77]	[-3.05]
Observations	$15,\!873$	$3,\!617$	2,215	2,774
R^2	0.033	0.013	0.006	0.003

Table IA.V-continued

Table IA.VI

Impact of the Reform on the Relative Bid-Ask Spread

In this table, we estimate the impact of the reform on the relative bid-ask spread. In Column 1, we estimate the differences-in-differences (DD) regression:

 $Spread_{it} = \alpha + \beta_0 Treated_i + \beta_1 Post_t + \beta_2 Treated_i \times Post_t + \varepsilon_{it},$

where $Spread_{it}$ is the average relative spread of stock *i* in month *t*, $Post_t$ is a dummy variable equal to one after September 2000, and $Treated_i$ is equal to one if stock *i* is listed on the RM. The differences-in-differences estimate of the effect of the reform on the relative bid-ask spread is β_2 . In Columns 2 to 4, we estimate the following regression:

$$Spread_{it} - Spread_{it}^{match} = \alpha_i + \delta_1 Post_t + \varepsilon_{it},$$

where $Spread_{it}^{match}$ is the relative bid-ask spread for the match of stock i in month t in the group of control stocks. We use three different procedures to choose a match for stock i in month t: quartile matching, percentage difference matching, and propensity score matching (see Section IV.B). Estimates of the effect of the reform (δ_1) with each matching procedure are reported in Columns 1, 2, and 3, respectively. The sample period starts in September 1998 and ends in September 2002. In brackets we report t-statistics based on doubled-clustered errors allowing for correlation in residuals over time and across firms. Superscripts *, **, and *** indicate that estimates are significantly different from zero at, respectively, the 10%, 5%, and 1% levels of significance.

Dependent Variable: Spread					
Estimation	DD	Quartile	Percentage difference	Propensity score	
Method		matching	matching	matching	
	(1)	(2)	(3)	(4)	
Treated × Post (β_2)	-0.510				
	[-1.53]				
Treated	-4.946***				
	[-13.37]				
Post (δ_1)	0.687**	-0.397***	-0.112	-0.009	
	[2.02]	[-2.59]	[-0.58]	[-0.06]	
Constant	6.692***	-1.781***	-1.598***	-2.069***	
	[18.71]	[-16.64]	[-11.28]	[-8.81]	
Observation	10524	2731	1503	1849	
R^2	0.10	0.03	0.00	0.00	

Table IA.VI-continued

Table IA.VII

Robustness of the Findings to Attrition

In this table, we show that our findings are unchanged when we exclude stocks with missing observations from our sample. We called the resulting sample the balanced sample as it contains the same stocks throughout the sample period. Specifically, we estimate the impact of the reform on the variables of interest (*Volatility2*, *Autocov*, and *Pimpact*) by running the following regression:

 $Y_{it} = \alpha + \beta_0 Treated_i + \beta_1 Post_t + \beta_2 Treated_i \times Post_t + \varepsilon_{it},$

where Y_{it} is the dependent variable of interest for stock *i* in month *t*, $Post_t$ is a dummy variable equal to one after September 2000, and $Treated_i$ is equal to one if stock *i* is listed on the RM. In Panel A, $Y_{it} = Volatility2_{it}$, the standard deviation of the daily difference between the return of stock *i* and the market return in month *t*. In Panel B, $Y_{it} = Autocov_{it}$, the autocovariance of daily returns for stock *i* in month *t*. In Panel C, $Y_{it} = Pimpact_{it}$, the average of the ratio of stock *i*'s absolute return divided by the trading volume in euros on each day in month *t*. In Columns 1 and 2 we report estimates of the regression for the sample used in our study with and without fixed effects. In Columns 3 and 4, we report estimates of the regression for the balanced sample with and without fixed effects. The sample period starts in 1998 and ends in 2002. In brackets we report *t*-statistics based on doubled-clustered errors allowing for correlation in residuals over time and across firms. Superscripts *, **, and *** indicate that estimates are significantly different from zero at, respectively, the 10%, 5%, and 1% levels of significance.

Sample	Baseline	e Sample	Balanced Sample		
Stock FE	No	Yes	No	Yes	
	(1)	(2)	(3)	(4)	
Par	nel A. Volat	ility2 (Impl	lication 1)		
$\mathrm{Treated}\!\times\!\mathrm{Post}$	-0.297***	-0.215***	-0.142***	-0.142^{***}	
	[-5.47]	[-4.06]	[-2.78]	[-2.61]	
Treated	-0.472***		-0.264***		
	[-8.52]		[-4.18]		
Post	0.200	0.091	0.027	0.027	
	[1.60]	[0.72]	[0.20]	[0.20]	
Constant	2.877***	2.805***	2.649***	2.537***	
	[30.80]	[32.05]	[26.47]	[28.81]	
Observations	30181	30181	13965	13965	
Pa	nel B. Auto	ocov (Implie	cation 2)		
Treated×Post	0.293***	0.324^{***}	0.228**	0.228**	
	[3.24]	[3.30]	[2.25]	[2.20]	
Treated	0.109^{*}		-0.017		
	[1.74]		[-0.21]		
Post	-0.484***	-0.563***	-0.413***	-0.413***	
	[-5.19]	[-5.53]	[-3.52]	[-3.46]	
Constant	-0.231***	-0.168**	-0.068	-0.076	
	[-2.81]	[-2.18]	[-0.65]	[-0.92]	
Observations	29325	29325	12838	12838	
Pa	nel C. PIm	pact (Impli	cation 3)		
Treated×Post	-4.029***	- 4.753***	-1.862***	-1.862***	
	[-4.36]	[-5.00]	[-3.17]	[-3.00]	
Treated	-8.120***		-3.757***		
	[-11.73]		[-6.86]		
Post	4.119***	4.873***	1.894***	1.894***	
	[4.47]	[5.18]	[3.20]	[3.03]	
Constant	8.173***	5.967***	3.797***	2.384^{***}	
	[11.81]	[19.45]	[6.92]	[13.59]	
Observations	31716	31716	16023	16023	

Table IA.VII-continued

Table IA.VIII

Retail Trading and Volatility: IV Estimate

In this table, we estimate the impact of retail trading on *Volatility2* (the standard deviation of daily market adjusted returns) using the reform as an instrument. Column 1 reports the first stage of the IV procedure:

 $\#Trades_{it} = \alpha + \beta_0 Treated_i + \beta_1 Post_t + \beta_2 Treated_i \times Post_t + \varepsilon_{it},$

where $\#Trades_{it}$ is the number of shares of stock *i* purchased and sold in month *t* by retail investors in our sample (our proxy for retail trading activity here), $Post_t$ is a dummy variable equal to one after September 2000, and $Treated_i$ is a dummy variable equal to one if stock *i* is listed on the RM. The difference in the effect of the reform on treated and control firms is measured by $Treated \times Post$. The coefficient on this variable is statistically significant (*t*statistic of 5) which suggests the IV is not weak. The estimates from Column 1 are consistent with, and very similar in nature to, those of Table V, Column 1, Panels A and B, where the same equation is estimated for buys and sells separately. In Column 2, we report the result of a "naive" OLS estimate of the regression of *Volatility2* on #Trades, controlling for Post and Treated. Finally, Column 3 reports the two-stage least square estimate. In all regressions, the sample period starts in September 1998 and ends in September 2002. In brackets we report *t*-statistics based on doubled-clustered errors allowing for correlation in residuals over time and across firms. Superscripts *, **, and *** indicate that estimates are significantly di§erent from zero at, respectively, the 10%, 5%, and 1% levels of significance.

	(1)	(2)	(3)
	First Stage	OLS	IV
Dep. Variable	#Trades	Volatility2	Volatility2
$\mathrm{Treated} \times \mathrm{Post}$	-0.041***	-	-
	[-5.02]		
Post	-0.015***	0.220***	0.305***
	[-3.76]	[9.39]	[5.93]
Treated	0.010	-0.686***	-0.633***
	[0.98]	[-17.41]	[-10.71]
#Trades	-	2.966***	6.315***
		[23.59]	[3.76]
Constant	0.084***	2.701^{***}	2.385^{***}
	[19.96]	[88.83]	[14.96]
Observations	29214	24625	24625
R^2	0.01	0.20	0.04

Table IA.VIII-continued

Table IA.IX

Contrarian Retail Trading Activity and Volatility

In Columns 1 to 3, we report estimates of the following regression:

$$Volatility2_{it} = \alpha_i + \lambda_t + \beta_1 |NIT_{it}| + \varepsilon_{it},$$

where $Volatility \mathcal{Z}_{it}$ is the standard deviation of the daily difference between the raw return of stock i and the market return in month t, $|NIT_{it}|$ is the mean monthly absolute daily difference between buys and sales by retail investors in our sample for stock i in month t, and α_i and λ_t are stocks and time fixed effects. In Columns 4 to 6, we report estimates of the following regression:

Volatility2_{*it*} =
$$\alpha_i + \lambda_t + \theta_1 MOM_{it} + \theta_2 CON_{it} + \varepsilon_{it}$$
,

where MOM_{it} is a measure of momentum retail trading activity and CON_{it} is a measure of contrarian retail trading activity (see main text for a formal definition of these variables). The sample period for this test starts in January 1999 and ends in September 2002. In brackets we report *t*-statistics based on doubled-clustered errors allowing for correlation in residuals over time and across firms. Superscripts *, **, and *** indicate that estimates are significantly different from zero at, respectively, the 10%, 5%, and 1% levels of significance.

	Dependent Variable: Volatility2					
	(1)	(2)	(3)	(4)	(5)	(6)
$ NIT_{it} (\times 100)$	1.8^{***}	1.1***	1.1***	-	-	-
	(15.5)	(7.2)	(15.8)			
$MOM (\times 100)$	-	-	-	2.2^{***}	1.3^{***}	1.0^{***}
				(14.6)	(6.7)	(10.1)
$CON \ (\times 100)$	-	-	-	1.7^{***}	1.2^{***}	1.2^{***}
				(10.7)	(7.8)	(12.0)
~						
Stock FE	No	Yes	Yes	No	Yes	Yes
Time FE	No	No	Yes	No	No	Yes
Observations	$27,\!909$	$27,\!909$	$27,\!909$	$19,\!959$	$19,\!959$	$19,\!959$