
Section A of this appendix contains a derivation of the Taylor approximations needed
for the proofs of Theorems I to III. Section B describes how we calculate standard
errors for the GMM estimates of the model parameters. In Section C we briefly discuss
how we use the repeat sales method to construct returns on CDS portfolios. Section
D describes the risk-free data used in our analysis and how we construct risk-neutral
default probabilities, needed to form CDS returns. Finally, the appendix contains four
additional figures.

A. Taylor Approximations

This appendix provides a Taylor approximation to the matrix V (I)V (δi)
−1 around

ĉh = 0. Empirically, transaction costs are small, in the sense that the standard deviation
of c is smaller than the standard deviation of r. Write ĉh = ξc̃ so that

V (δi) = Vr − ξ(δiC̃ + δiC̃
′) + ξ2Vc̃, (IA.1)

where Vc̃ = V ar(c̃) and C̃ = Cov(c̃, r̂h) and use a Taylor approximation around ξ = 0:

V (I)V (δi)
−1 ≈ V (I)V (δi)

−1
|ξ=0 + ξ

∂(V (I)V (δi)
−1)

∂ξ
. (IA.2)

We have

∂V (δi)
−1

∂ξ
= −V (δi)

−1∂V (δi)

∂ξ
V (δi)

−1 = V (δi)
−1(δiC̃ + δiC̃

′ − 2ξVc̃)V (δi)
−1. (IA.3)

Evaluating this in ξ = 0 we obtain

V (I)V (δi)
−1 ≈ I + ξ(VrV

−1
r (δiC̃ + δiC̃

′)V −1
r ) + ξ(−(C̃ + C̃ ′)V −1

r ) (IA.4)

= I + (δiC + δiC
′)V −1

r − (C + C ′)V −1
r .

If δi = −I this simplifies to I − 2H1, and if δi = D this equals I + H2 − H1. Finally,
using a similar derivation we obtain that V (I)V −1

r ≈ I −H1.

B. GMM Standard Errors
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In this appendix we outline the calculation of standard errors along the lines of
Shanken (1992) for the GMM estimation of (16). To avoid complicated notation, we
discuss a simplified example; the full derivation is available on request. The simplified
example is given by

E(r) = Xα + E(c)ζ + βθ, (IA.5)

with β = (βrh,rb βr̂h,rn βĉh,rn) and θ = (ψ, λ, κ)′. In practice, the regressors are replaced
by estimates and the second-step regression is

er = Xα + cζ + β̂θ + η, (IA.6)

with
η = (er − E(r))− (c− E(c))ζ − (β̂ − β)θ (IA.7)

and er = T−1
∑T

t=1 ert, where ert is our weekly estimate for the expected CDS returns
in (22), and likewise for c.

The second-step estimates for (α, ζ, θ) are given by (Z ′Σ−1Z)−1Z ′Σ−1er, with Z =

(X c β̂) and Σ−1 the weighting matrix. The standard errors of these estimates are given
by (Z ′Σ−1Z)−1Z ′Σ−1V ar(η)Σ−1Z(Z ′Σ−1Z)−1, with

V ar(η) = V ar(er) + ζ2V ar(c) + V ar(β̂θ). (IA.8)

The elements V ar(er) and V ar(c) can be estimated using a Newey-West procedure,

V ar(er) =̂ T−2
∑
t

∑
k

wk(ert − er)(ert−k − er), (IA.9)

and likewise for c, and

V ar(β̂θ) =̂ T−2

T∑
t=1

(utθ)(utθ)
′, (IA.10)

where ut = (Y ′Y )−1Y ′νt, with νt the regression errors of the first-step estimation of β̂
and Y the regressor variable (either rb or rn).

C. Repeat Sales Method

This appendix contains details on the repeat sales method used to form returns on
CDS portfolios. Let k(i) be the portfolio that contains constituent i and let T be the
number of periods in our sample. For constituent i, we assume that the spread quote of
a CDS contract pi,t is given by

pi,t = CDSk(i),t + ui,t, (IA.11)

where CDSk(i),t is the portfolio spread level (which is to be estimated) and ui,t is a quote-
specific error term, which has mean zero and constant variance σu and is uncorrelated
with the other variables and its own lags. To illustrate the approach, suppose we have
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three transactions in constituent i, say at times s, s′, and s′′ with s < s′ < s′′. We can
then specify spread innovations

∆pi,ss′ = pi,s′ − pi,s =
T∑

j=2

xi,j,ss′∆CDSk(i),j + (ui,s′ − ui,s) (IA.12)

∆pi,s′s′′ = pi,s′′ − pi,s′ =
T∑

j=2

xi,j,s′s′′∆CDSk(i),j + (ui,s′′ − ui,s′),

where xi,j,ss′ is a dummy that defines whether j ∈ [s, s′]. The error covariance matrix is
given by

Var(∆pi,ss′) = 2σ2
u, Var(∆pi,s′s′′) = 2σ2

u, Cov(∆pi,ss′ ,∆pi,s′s′′) = −σ2
u. (IA.13)

We can write our spread innovations for all constituents of k(i) up to time T in matrix
form as

∆p = x∆CDSk(i) + v, (IA.14)

where v = ∆u. The best linear unbiased estimator of ∆CDSk(i) is given by

∆̂CDSk(i) = (x′M−1x)−1x′M−1∆p, (IA.15)

where M is the (sparse, block diagonal) covariance matrix of v. Empirically, σu is
unknown. However, becauseM is known up to a scalar, which drops out, it turns out to
be possible to consistently estimate ∆CDSk(i) without knowledge of σu using regression.

D. Risk-free Rates and Default Probabilities

To construct excess returns from CDS spread changes, we need risk-free discount
rates. Lando and Feldhütter (2008) argue that despite the AA default risk premium
present in LIBOR rates, the best estimates of risk-free rates are obtained from swap
rates. Therefore, we use daily data on the three-month LIBOR-based swap curve with
a maturity of one up to six years. Swap rates are obtained from Datastream. To con-
struct zero-coupon rates, we assume that these are piece-wise constant and subsequently
bootstrap these rates from the observed term structure of swap rates.

To obtain the risk-neutral default probabilities, which are also needed to construct
excess returns, we assume for simplicity that CDS spreads only reflect default risk, that
the risk-neutral default intensity is constant over the maturity period, and that there is
a deterministic loss rate L = 60%. We then solve the CDS pricing equation under these
assumptions to obtain the default intensity and compute the risk-neutral probabilities
(Duffie and Singleton (2003)):

CDSk,t = 4
L
∑(T−t)

j=1 QSV
k,t (t+ j − 1)Qdef |SV

k,t (t+ j)Bt(t+ j)∑(T−t)
j=1 QSV

k,t (t+ j)B(t, t+ j)
, (IA.16)

QSV
k,t (t+ j) = exp(−λk,tj), Qdef |SV

k,t = 1− exp(−λk,t),
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where Qdef |SV
k,t (t+j) is the risk-neutral probability of a default in period t+j conditional

on survival up to time t+ j− 1. We calculate these probabilities for each CDS portfolio
and for each week in the empirical analysis.

Naturally, there is an inconsistency in assuming that CDS prices are only driven
by default risk when the goal is to identify a nondefault component. However, if we
iterate our estimation procedure, by correcting the CDS spread and λ for the estimated
liquidity effect and reestimating the model, we find results that are extremely close to
the results reported here. Note that we only need QSV to calculate excess returns.
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Figure IA.1
Asset pricing equilibrium with transaction costs: Example with negative
effect of transaction costs on expected returns.
The figure illustrates the asset pricing equilibrium with constant liquidity costs, as in the

example of Section I.D, for the case where the investor long in the asset (agent 2) is less

aggressive than the investor who is short (agent 1). The figure graphs (minus) the asset demand

of an investor with hedging needs (−w1y1) who is short in the asset and an investor with no

hedging demand (w2y2) who is long. The solid lines reflect the situation without transaction

costs; the dashed lines reflect the situation with transaction costs c. ρ is the equilibrium

expected return without transaction costs; ρ+ζ0c is the equilibrium expected return with

transaction costs.
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Figure IA.2
Time series of CDS spreads and bid-ask spreads.

The graph presents the time-series of weekly CDS spreads (geometric average across all CDS

portfolios) from April 2004 to December 2008 on a log scale in annual basis points. Also in-

cluded are time series of bid-ask spreads for four bid-ask spread quartiles. These are calculated

from the sequential sort on credit rating and bid-ask spread, with bid-ask spreads averaged

across portfolios with different credit ratings.

6



Figure IA.3
Two-factor pricing errors versus expected liquidity.

On the y-axis, the graph has pricing errors from a two-factor asset pricing model with equity

market risk and systematic credit risk (PCA factor) as factors (specification (3) in Table IV),

for 100 CDS portfolios (sorted first on credit rating, and then on leverage, total debt, total

syndicated loan amount, bid-ask spread, or quote frequency). The x-axis has the expected

liquidity of each portfolio (in percentage), calculated as the average of the weekly transaction

costs of each portfolio. All returns are in percentages for a quarterly period.

7



Figure IA.4
Decomposition of expected CDS returns: Model without intercept.
Using the GMM estimates of a model without intercept in Table V, specification (9) and

the model for expected CDS returns in (16), the graph decomposes expected portfolio CDS

returns into market risk premia (sum of equity risk premium and credit risk premium), expected

liquidity, liquidity risk, and a pricing error. Results are presented for the sequential sort on

credit rating (five categories) and bid-ask spread (four quartiles). All returns are in percentages

for a quarterly period.
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