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• IA.A demonstrates the ability of the Constantinides and Perrakis (2007) lower bounds to 
identify good buys for calls and puts.  The results in Section III of the published paper 
were derived for the upper bounds since violations of the lower bounds were too 
infrequent for statistical inference.   

• IA.B provides details on the construction and calibration of the index return tree 
described in Section II.B of the published paper. 

• IA.C validates the applicability of the Davidson and Duclos (2000) and Davidson and 
Duclos (2006) tests to portfolios containing options by verifying the tests’ performance 
with simulated data of known characteristics. These tests were applied to derive the 
results in Section III of the published paper and are described in Appendix C of that 
paper. 

• IA.D extends the results in Section III of the published paper to selling put options via 
straddles positions triggered by violations of the call upper bound. 

• IA.E to IA.H provide robustness checks in addition to the results in Section IV of the 
published paper with respect to the following characteristics of the tests: initial portfolio 
composition; risk aversion coefficient; futures basis risk; assumed equity risk premium.  

• IA.I verifies the performance of the Davidson and Duclos (2006) tests for a restricted 
moneyness range of the call options included in the sample for reasons described in 
Appendix C of the published paper. 
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Appendix A: Demonstration of the Ability of the Constantinides and Perrakis (2007) 

Lower Bounds to Identify Good Buy Options 

We construct portfolios with long positions in calls and puts bought at artificial prices equal 

to their lower bound, as determined in Constantinides and Perrakis (2007), and test the hypotheses 

0 2:H IT OTf  and 0 2:H OT IT/f .  The results are reported in Table IA.I.  Both hypotheses are 

rejected.  One exception is the case in which the volatility input is the unconditional volatility, 

which, as Table IA.I shows, has large prediction errors of future volatility.  The results demonstrate 

the ability of the lower bounds to identify good buy call and put options. 

 
Table IA.I 

Demonstration of the Ability of the Lower Bounds to Identify Good Buy Options 
 

The equally weighted average of all artificial options equal to their corresponding put lower bound given by equations 
(14) and (15) of Constantinides and Perrakis (2007) and the corresponding call lower bound given by equation (31) of 
the same paper, and equivalent to one option per share, was traded at each date.  The symbols *.and ** denote a difference 
in sample means of the OT and IT traders significant at the 5% and 1% levels in a one-sided bootstrap test with 9,999 
trials.  Maximal t-statistics for the Davidson and Duclos (2000) test are compared to critical values of the Studentized 
Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for nominal levels of 1%, 5%, and 10% with k = 20 
and ν = ∞ .  The p-values for 0 2:H OT ITf  , which are greater than 10%, the highest nominal level available in the 
Stoline and Ury (1979) tables, are not reported here.  The p-values for the Davidson and Duclos (2006) test are based on 
999 bootstrap trials.  The p-values for 0 2:H IT OT/f  are equal to one and are not reported here. 
 

Volatility 
prediction 
mode 

#months 
with viol. 

(# months) 

ˆ ˆOT ITµ µ−  
(annualized) 

DD (2000) 
p-value 

0 2:H IT OTf  

DD (2006) p-value 0 2:H OT IT/f  
10% trimming in left tail, trimming in right tail 

as below: 

0% 5% 10% 
 

Panel A: Options Purchased at the Call Lower Bound 
Unconditional 247 (247) 0.0063 <0.05 0.271 0.199 0.083 
90-day 247 (247) 0.0160* <0.01 0.050 0.022 0.005 
Adjusted IV 226 (226) 0.0134* <0.01 0.095 0.042 0.009 
EGARCH 247 (227) 0.0151* <0.01 0.064 0.025 0.012 

 
Panel B: Options Purchased at the Put Lower Bound 

Unconditional 247 (247) 0.0014 >0.1 0.462 0.427 0.315 
90-day 247 (247) 0.0093* <0.01 0.083 0.028 0.007 
Adjusted IV 226 (226) 0.0125** <0.01 0.026 0.007 0.000 
EGARCH 247 (227) 0.0062 <0.05 0.173 0.067 0.015 
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Appendix B: Calibration of the Index Return Tree 

For every month, we model the path of the daily index return until the option expiration on a 

T- step recombining tree, where T is the number of trading days in that particular month.  For 

example, if the third Friday of July is on July 27, we record the price of the July option on June 27, 

which is 30 calendar days earlier.  (If June 27 is a holiday, we record the price on June 26.)  If there 

are 21 trading days between June 27 and July 27, we model the path of the daily index return until 

the option expiration on a 21-step tree. 

The paths of the daily index return emanate with m branches from each node.  The objective 

is to match as closely as possible the first four moments of the daily return distribution.  As 

explained in Section II.A of the published text, we fix the mean and use the estimated volatility 

from one of our four methods.  We use as the third and fourth moments the observed sample 

moments over the 90 preceding calendar days. 

In the first step of our algorithm, we pick an odd value for the number of branches m and 

group the sample of daily returns in a histogram with m bins of equal length (on the log scale) such 

that the extreme bins are centered on the extreme observed returns.  The center of each bin then 

becomes a state in the lattice, with the ordered states and the corresponding probabilities denoted 

respectively as ix  and ip , 1...i m= .  Note that this equidistant log scale and an odd value for the 

number of branches m are necessary for the lattice to recombine. 

We do not build our lattice by discretizing a kernel-smoothed distribution because this 

method requires a substantially larger lattice.  We do not adopt the Edgeworth/Gram-Charlier 

binomial lattice methodology, as in Rubinstein (1998), because it sometimes results in negative 

probabilities. 
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In a second step, we match our moments by fixing the number of branches m and matching 

the first three moments by changing the spacing (via parameters a and b) and the probabilities (via 

parameter c).  The fourth moment is then matched by changing the number of branches, m. 

We derive the required parameters a, b, and c by solving the following set of nonlinear 

equations, which are simply three moment conditions for the constants a, b, and c: 
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, where (.)1  is the indicator function and n∗  is the index 

to ix , which brackets from above the target expected log return µ) .  The first indicator function 

ensures that the constant c is added only to the probabilities in the right tail of the distribution; the 

second one ensures that the constant c is added only to the positive probabilities.  Note that the 

affine transformation of the log states ix  preserves the equal distance between the adjacent states.  

The constant a ensures the desired scale of the log states ix , the constant b ensures the desired 

location of these states, while the constant c increases or decreases the probabilities in the right tail 

relative to the left one to match the desired skewness.  Note that the presented adjustment of the 

probabilities in the right tail may not yield an admissible solution, that is, we may end up with some 

negative probabilities.  If this is the case, we introduce an analogous adjustment in the left tail of the 

distribution. 
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To match the fourth sample moment 4µ̂ , we search over m, the number of nodes in the 

lattice.  With each new m the initial distribution derived from a histogram changes, providing some 

variability in the fourth moment after the adjustments resulting from solving (IA.1).  After a search 

over a range of m’s, we pick the distribution that has the lowest absolute difference between its 

kurtosis and the sample kurtosis 4µ̂ .  This search procedure results in very small errors in matching 

4µ̂  for the data that we use while we obtain the exact match in the first three moments.  For the four 

volatility prediction modes that we apply in our work, the relative error on the fourth moment has 

the following characteristics:  median 0.003%, 99th percentile 0.105%, maximum 1.659% across 

973 observations while we constrain the lattice size m to be no larger than 201.  This lattice size 

appears unattractive to derive recursive conditional expectations.  However, the use of fast Fourier 

transforms results in a fairly short processing time.  See Cerny (2004). 
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Appendix C: The Performance of the Tests in Simulated Data 

We investigate via simulation the Type I and II errors of the DD (2000) and DD (2006) 

tests.  We find that the latter test has rejection probabilities much lower than one when the null of 

nondominance is false.  Therefore, our results are conservative. 

We independently draw monthly index log returns from a normal distribution with mean 

such that the arithmetic annual return has mean 0.0870 and standard deviation 0.1522.  These 

moments are the same as the mean capital gain and standard deviation in our sample.  We set the 

dividend yield of the index equal to zero.  We generate 1,000 histories of length 250 months each, 

roughly equal to the length of our sample; we also generate 1,000 histories of length 1,000 months 

each.  We set the annualized, continuously compounded interest rate to 0.0470.  When we 

investigate Type I errors, we generate prices of one-month calls with a range of moneyness by the 

Black-Scholes-Merton formula (BSM prices).  By construction, BSM prices are within the bounds 

and do not present an opportunity to build an OT portfolio that stochastically dominates the IT 

portfolio.  When we investigate Type II errors, we generate prices (violating prices) of one-month 

calls with a range of moneyness by the Black-Scholes formula but setting the interest rate equal to 

the arithmetic return on the index.  By construction, violating prices do present an opportunity to 

build an OT portfolio that stochastically dominates the IT portfolio. 

In Table IA.II, we present simulated rejection probabilities of 0 2:H IT OTf  by the DD 

(2000) test for moneyness K/S = 0.96-1.08 and level of significance 0.01, 0.05, 0.10α = .  The null 

is false both for BSM and violating call prices and the test does a good job in rejecting the null.  In 

Table IA.III, we present simulated rejection probabilities of 0 : f dH OT IT  by the DD (2000) test.  

The null is false for BSM call prices but the test only rarely rejects the null.  The null is true for 

violating call prices and the test only rarely rejects the null.  We conclude that Type I errors are 
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infrequent but Type II errors are frequent.  Increasing the sample size from 250 to 1,000 does not 

help.  Therefore, we rely more heavily on the DD (2006) test, described next. 

The DD (2006) test requires that one specify the range of the outcomes.  DD (2006) and 

Davidson (2007) demonstrate that rejecting the null of nondominance is not feasible for the entire 

support of the joint distribution since the leftmost t-statistic is approximately equal to one by 

construction and the rightmost t-statistic corresponds to the difference between sample means, 

whose significance is a stronger condition than necessary for second-order stochastic dominance.  In 

the case in which the tested samples are uncorrelated, the trimming in the tails simply discards 

extreme observations until the desired degree of trimming is reached.  In our case of correlated 

(coupled) samples, the trimming is symmetrical with respect to either distribution.  To trim in the 

left tail, we first discard a couple characterized by the lowest value for the first sample, and then a 

couple characterized by the lowest value for the second sample until the desired proportion of all 

couples is discarded.  We proceed analogously in the right tail with the couples characterized by the 

highest values for either sample.  In all cases presented below, we trim 10% of coupled observations 

in the left tail while we vary the amount of trimming in the right tail.  Note that we may expect DD 

(2006) to be more conservative than DD (2000) since a pre-condition to the former test is finding 

nonnegative t-statistics in the entire joint support of the two compared distributions (i.e., without 

trimming). 

In Tables IA.IV to IA.VI, we present simulated rejection probabilities of 0 2:H OT IT/f  by 

the DD (2006) test.  The null is true for BSM call prices and false for violating prices.  In all tables, 

we trim 10% of the paired outcomes in the left tail.  In Table IA.IV, we do not trim the paired 

outcomes in the right tail.  The probability of rejection of the null hypothesis when it is true is very 

low at all moneyness levels and improves dramatically when the sample size goes from 250 to 
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1,000.  On the other hand, the probability of rejecting the null when it is false is unacceptably low 

and does not improve when the sample size increases.  Tables IA.V and IA.VI present the same 

information but with trimming of the right-hand tail of the data by 5% and 10%, respectively.  With 

5% trimming the probability of rejecting the null hypothesis when it is false improves significantly, 

but still the test is very conservative in its rejection probabilities.  It shows some improvement when 

the sample size increases to 1,000, but the rejection probabilities remain low.  On the other hand, the 

probability of rejecting the null hypothesis when it is true depends strongly on the degree of 

moneyness of the mispriced option.  It is at acceptable levels when moneyness K/S is less than 1.02 

but rises for higher numbers at a sample size of 250, but improves in a major way in all cases when 

the sample size increases to 1,000 and becomes acceptable for all but the highest degree of 

moneyness.  The results are similar for 10% trimming: the probabilities of rejection of H0 when it is 

false improve for all but the highest degree of moneyness but the test remains very conservative in 

its rejections in all cases, with the sample size playing a relatively modest role; the probabilities of 

rejecting H0 when it is true at a sample size of 250 are acceptable only for in-the-money calls and 

improve dramatically at a sample size of 1,000, becoming acceptable for all but the highest degree 

of moneyness. 

We repeat the simulations by drawing returns from the empirical distribution instead of a 

lognormal distribution and obtain almost identical results for both tests. 
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Table IA.II 
Simulated Rejection Probabilities of 0 2:H IT OTf  by the DD (2000) Test 

 

K/S 
Writing at Black-Scholes Price Writing at Call Upper Bound 
α=0.1 α=0.05 α=0.01 α=0.1 α=0.05 α=0.01 

Panel A: Sample Size 250 
0.96 1 1 1 1 1 1 
0.98 1 1 1 1 1 1 
1.00 1 1 1 1 1 1 
1.02 1 1 1 1 1 1 
1.04 1 1 1 1 1 1 
1.06 1 1 1 1 1 1 
1.08 1 1 1 1 1 1 

Panel B: Sample Size 1,000 
0.96 0.863 0.863 0.863 1 1 1 
0.98 0.892 0.892 0.892 1 1 1 
1.00 0.935 0.935 0.935 1 1 1 
1.02 0.971 0.971 0.971 1 1 1 
1.04 0.983 0.983 0.983 1 1 1 
1.06 0.995 0.995 0.995 1 1 1 
1.08 1 1 1 1 1 1 

 
Table IA.III 

Simulated Rejection Probabilities of 0 2:H OT ITf  by the DD (2000) Test 
 

K/S 
Writing at Black-Scholes Price Writing at Call Upper Bound 
α=0.1 α=0.05 α=0.01 α=0.1 α=0.05 α=0.01 

Panel A: Sample Size 250 
0.96 0.007 0.003 0.002 0 0 0 
0.98 0.004 0.003 0 0 0 0 

1 0.001 0 0 0 0 0 
1.02 0 0 0 0 0 0 
1.04 0 0 0 0 0 0 
1.06 0 0 0 0 0 0 
1.08 0 0 0 0 0 0 

Panel B: Sample Size 1,000 
0.96 0.100 0.067 0.028 0.001 0.001 0 
0.98 0.079 0.051 0.018 0.001 0 0 

1 0.050 0.036 0.010 0 0 0 
1.02 0.021 0.015 0.003 0 0 0 
1.04 0.012 0.005 0.001 0 0 0 
1.06 0.003 0.003 0 0 0 0 
1.08 0 0 0 0 0 0 
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Table IA.IV 
Simulated Rejection Probabilities of 0 2:H OT IT/f  by the DD (2006) Test without Trimming 

 

K/S 
Writing at Black-Scholes Price Writing at Call Upper Bound 
α=0.1 α=0.05 α=0.01 α=0.1 α=0.05 α=0.01 

Panel A: Sample Size 250 
0.96 0.008 0.003 0 0.099 0.052 0.014 
0.98 0.009 0.005 0 0.107 0.059 0.016 

1 0.013 0.007 0.002 0.110 0.062 0.015 
1.02 0.020 0.013 0.002 0.123 0.065 0.021 
1.04 0.029 0.018 0.005 0.136 0.078 0.028 
1.06 0.048 0.032 0.010 0.156 0.093 0.040 
1.08 0.099 0.066 0.031 0.187 0.136 0.072 

Panel B: Sample Size 1,000 
0.96 0 0 0 0.090 0.051 0.007 
0.98 0 0 0 0.098 0.053 0.010 

1 0 0 0 0.111 0.056 0.013 
1.02 0.001 0 0 0.110 0.060 0.020 
1.04 0.005 0.003 0 0.124 0.073 0.028 
1.06 0.009 0.004 0 0.124 0.069 0.025 
1.08 0.024 0.010 0.001 0.145 0.088 0.028 

 
Table IA.V 

Simulated Rejection Probabilities of 0 2:H OT IT/f  by the DD (2006) Test with 5% Trimming in the Right Tail 
 

K/S 
Writing at Black-Scholes Price Writing at Call Upper Bound 
α=0.1 α=0.05 α=0.01 α=0.1 α=0.05 α=0.01 

Panel A: Sample Size 250 
0.96 0.020 0.009 0 0.188 0.120 0.044 
0.98 0.028 0.013 0.003 0.221 0.142 0.053 

1 0.043 0.023 0.007 0.274 0.179 0.081 
1.02 0.119 0.075 0.027 0.341 0.268 0.130 
1.04 0.149 0.106 0.046 0.468 0.406 0.286 
1.06 0.267 0.240 0.191 0.508 0.462 0.371 
1.08 0.366 0.365 0.365 0.544 0.544 0.544 

Panel B: Sample Size 1,000 
0.96 0.002 0 0 0.319 0.207 0.083 
0.98 0.005 0 0 0.375 0.263 0.115 

1 0.010 0.005 0.000 0.454 0.357 0.183 
1.02 0.039 0.039 0.022 0.485 0.460 0.316 
1.04 0.069 0.060 0.033 0.489 0.489 0.483 
1.06 0.113 0.113 0.113 0.505 0.505 0.502 
1.08 0.209 0.209 0.209 0.509 0.509 0.509 
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Table IA.VI 
Simulated Rejection Probabilities of 0 2:H OT IT/f  by the DD (2006) Test with 10% Trimming in the Right Tail 

 

K/S 
Writing at Black-Scholes Price Writing at Call Upper Bound 
α=0.1 α=0.05 α=0.01 α=0.1 α=0.05 α=0.01 

Panel A: Sample Size 250 
0.96 0.046 0.022 0.005 0.360 0.255 0.122 
0.98 0.062 0.037 0.010 0.416 0.313 0.156 

1 0.094 0.060 0.022 0.470 0.414 0.262 
1.02 0.196 0.195 0.167 0.489 0.481 0.420 
1.04 0.225 0.221 0.203 0.512 0.512 0.512 
1.06 0.288 0.288 0.288 0.536 0.536 0.536 
1.08 0.366 0.366 0.366 0.544 0.544 0.544 

Panel B: Sample Size 1,000 
0.96 0.010 0.005 0 0.453 0.453 0.371 
0.98 0.015 0.008 0.004 0.479 0.479 0.465 

1 0.025 0.023 0.010 0.478 0.478 0.478 
1.02 0.039 0.039 0.039 0.485 0.485 0.485 
1.04 0.072 0.072 0.072 0.489 0.489 0.489 
1.06 0.113 0.113 0.113 0.505 0.505 0.505 
1.08 0.209 0.209 0.209 0.509 0.509 0.509 
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Appendix D: Returns to Straddles/Strangles Triggered by Call Upper Bound Violations 

We examine the existence of good sell put options by testing the policy of shorting straddles 

and strangles triggered by observing call options violating their upper bounds at the same or similar 

strike price.  The results are reported in Table IA.VII and show that the portfolio of the OT trader 

stochastically dominates the portfolio of the IT trader. 

 
Table IA.VII 

Returns of Straddles/Strangles Trader and Index Trader 
 

The equally weighted average of all violating options equivalent to one call and one put per share was traded at each 
date.  Trades were executed whenever there was a call violating the upper bound and a put traded at the same strike (for 
straddles) or within 0.98 to 1.02 moneyness bound (for strangles) for the same date.  The symbols * and ** denote a 
difference in sample means of the OT and IT traders significant at the 5% and 1% levels in a one-sided bootstrap test 
with 9,999 trials.  Maximal t-statistics for the Davidson and Duclos (2000) test are compared to critical values of the 
Studentized Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for nominal levels of 1%, 5%, and 
10% with k = 20 and ν = ∞ .  The p-values for 0 2:H OT ITf  , which are greater than 10%, the highest nominal level 
available in the Stoline and Ury (1979) tables, are not reported here.  p-values for the Davidson and Duclos (2006) test 
are based on 999 bootstrap trials.  The p-values for 0 2:H IT OT/f  are equal to one and are not reported here. 
 

Volatility 
prediction 
mode 

#months 
with viol. 

(# months) 

ˆ ˆµ µ−OT IT  
(annualized) 

DD (2000) 
p-value 
0 2: fH IT TO  

DD (2006) p-value 0 2:H OT IT/f   
10% trimming in left tail, trimming in right 

tail as below: 

no trimming 5% 
trimming 

10% 
trimming 

 
Panel A: Straddles 

Unconditional 34 (247) 0.0058 <0.1 0.290 0.171 0.066 
90-day 66 (247) 0.0068 <0.05 0.262 0.157 0.040 
Adjusted IV 71 (226) 0.0165** <0.05 0.048 0.016 0.018 
EGARCH 40 (247) 0.0158** <0.1 0.034 0.039 0.042 

 
Panel B: Straddles and Strangles 

Unconditional 40 (247) 0.0081 <0.1 0.231 0.138 0.054 
90-day 80 (247) 0.0143* <0.01 0.126 0.042 0.011 
Adjusted IV 94 (226) 0.0235** <0.01 0.020 0.023 0.025 
EGARCH 54 (247) 0.0172** <0.05 0.053 0.012 0.014 
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Appendix E: Robustness to Initial Portfolio Composition 

We investigate the robustness of the results to the initial portfolio composition by including 

various open option positions in the stock account portion of the IT portfolio.  The results are 

reported in Table IA.VIII and show that our main conclusion that the portfolio of the OT trader 

stochastically dominates the portfolio of the IT trader is robust to the initial portfolio composition. 

 
Table IA.VIII 

Returns of Options Trader and Index Trader with Open Options Positions in the IT Portfolio 
 

The equally weighted average of all violating options within the indicated moneyness range equivalent to 0.8 options per 
share in Panel A and one option per share in Panels B and C was traded at each date.  The symbols * and ** denote a 
difference in sample means of the OT and IT traders significant at the 5% and 1% levels in a one sided bootstrap test with 
9,999 trials.  Maximal t-statistics for the Davidson and Duclos (2000) test are compared to critical values of the 
Studentized Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for nominal levels of 1%, 5%, and 
10% with k = 20 and ν = ∞ .  The p-values for 0 2:H OT ITf  , which are greater than 10%, the highest nominal level 
available in the Stoline and Ury (1979) tables, are not reported here.  The p-values for the Davidson and Duclos (2006) 
test are based on 999 bootstrap trials.  The p-values for 0 2:H IT OT/f  are equal to one and are not reported here. 
 

Volatility 
prediction 
mode 

#months 
with viol. 

(# months) 

ˆ ˆOT ITµ µ−  
(annualized) 

DD (2000) 
p-value 

0 2:H IT OTf  

DD (2006) p-value 0 2:H OT IT/f  
10% trimming in left tail, trimming in right 

tail as below: 

no trimming 5% 10% 
 

Panel A: 0.2 ATM Calls Short, Equivalent of 0.8 Calls in Violation Written 
Unconditional 43 (247) 0.0028 <0.01 0.244 0.026 0.000 
90-day 100 (247) 0.0042 <0.01 0.149 0.005 0.002 
Adjusted IV 120 (226) 0.0055* <0.01 0.133 0.032 0.000 
EGARCH 65 (247) 0.0055** <0.01 0.071 0.000 0.000 

 
Panel B: One ATM Call Long, Equivalent of One Call in Violation Written 

Unconditional 43 (247) 0.0035 <0.01 0.244 0.062 0.000 
90-day 100 (247) 0.0052 <0.01 0.149 0.020 0.002 
Adjusted IV 120 (226) 0.0069* <0.01 0.133 0.047 0.000 
EGARCH 65 (247) 0.0068** <0.01 0.071 0.000 0.000 

 
Panel C: 0.5 ATM Puts Long, Equivalent of One Call in Violation Written 

Unconditional 43 (247) 0.0031 <0.01 0.244 0.023 0.001 
90-day 100 (247) 0.0048 <0.01 0.149 0.007 0.000 
Adjusted IV 120 (226) 0.0065* <0.01 0.133 0.036 0.000 
EGARCH 65 (247) 0.0065** <0.01 0.067 0.002 0.003 
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Appendix F: Robustness to the Risk Aversion Coefficient 

We estimate the returns of the IT portfolio by optimally rebalancing it according to the 

procedure described in Section II.C of the paper, assuming that the risk aversion coefficient is equal 

to 10 rather than two.  The results are shown in Table IA.IX.  As noted in Section IV.C of the paper, 

the results are virtually indistinguishable from those of Table V in the main paper. 

 
Table IA.IX 

Returns of Options Trader and Index Trader with Risk Aversion Coefficient 10 
 
The equally weighted average of all violating options equivalent to one option per share was traded at each date.	   	  The 
symbols * and  ** denote a difference in sample means of the OT and IT traders significant at the 5% and 1% levels in a 
one sided bootstrap test with 9,999 trials.  Maximal t-statistics for the Davidson and Duclos (2000) test are compared to 
critical values of the Studentized Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for nominal levels 
of 1%, 5%, and 10% with k = 20 and ν = ∞ .  The p-values for 0 2:H OT ITf  , which are greater than 10%, the highest 
nominal level available in the Stoline and Ury (1979) tables, are not reported here.  The p-values for the Davidson and 
Duclos (2006) test are based on 999 bootstrap trials.  The p-values for 0 2:H IT OT/f  are equal to one and are not reported 
here. 
 

Volatility 
prediction 
mode 

#months 
with viol. 

(# months) 

ˆ ˆOT ITµ µ−  
(annualized) 

DD (2000) 
p-value 

0 2:H IT OTf  

DD (2006) p-value 0 2:H OT IT/f  
10% trimming in left tail, trimming in right 

tail as below: 

no trimming 5% 10% 
 

Panel A: Call Upper Bound 
Unconditional 43 (247) 0.0006 <0.01 0.275 0.041 0.001 
90-day 100 (247) 0.0008  <0.01 0.201 0 0.004 
Adjusted IV 120 (226) 0.0013* <0.01 0.124 0.031 0 
EGARCH 65 (247) 0.0012** <0.01 0.083 0 0 

 
Panel B: Put Upper Bound 

Unconditional 23 (247) 0.0002 >0.1 0.427 0.210 0.157 
90-day 16 (247) -0.0002 >0.1 1 1 1 
Adjusted IV 4 (226) n/a n/a n/a n/a n/a 
EGARCH 9 (247) n/a n/a n/a n/a n/a 
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Appendix G: Robustness to the Futures Basis Risk 

We investigate the robustness of the results to the futures basis risk by estimating the bounds 

under the assumption that futures basis risk is zero, 0ε = , in equation (2) of the paper.  The results 

are reported in Table IA.X and are very similar to those in Table V in the paper.  We conclude that 

the results are robust to the futures basis risk. 

 
Table IA.X 

Returns of Options Trader and Index Trader without Futures Basis Risk 
 
The table differs from Table V only in that the basis risk is set at zero, 0ε = , instead of bounding the risk by 0.5%ε = . 
The equally weighted average of all violating options equivalent to one option per share was traded at each date.  The 
symbol ** denotes a difference in sample means of the OT and IT traders significant at the 5% level in a one-sided 
bootstrap test with 9,999 trials.  Maximal t-statistics for the Davidson-Duclos (2000) test are compared to critical values 
of the Studentized Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for nominal levels of 1%, 5%, 
and 10% with k = 20 and ν = ∞ .  The p-values for 0 2:H OT ITf  , which are greater than 10%, the highest nominal 
level available in the Stoline and Ury (1979) tables, are not reported here.  The p-values for the Davidson-Duclos (2006) 
test are based on 999 bootstrap trials.  The p-values for 0 2:H IT OT/f  are equal to one and are not reported here. 

 

Volatility 
prediction 
mode 

#months 
with viol. 

(# months) 

ˆ ˆOT ITµ µ−  
(annualized) 

DD (2000) 
p-value 

0 2:H IT OTf  

DD (2006) p-value 0 2:H OT IT/f  
10% trimming in left tail, trimming in right tail as 

below: 

0% 5% 10% 
 

Panel A: Call Upper Bound 
Unconditional 67 (247) 0.0012 <0.01 0.412 0.128 0.005 
90-day 156 (247) 0.0083** <0.01 0.083 0.011 0.000 
Adjusted IV 195 (226) 0.0032 <0.01 0.337 0.255 0.076 
EGARCH 112 (247) 0.0037 <0.01 0.261 0.074 0.000 

 
Panel B: Put Upper Bound 

Unconditional 36 (247) -0.0015 <0.1 1 1 1 
90-day 52 (247) -0.0003 <0.01 1 1 1 
Adjusted IV 64 (226) -0.0012 <0.01 1 1 1 
EGARCH 38 (247) 0.0014 <0.01 0.374 0.199 0.004 
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Appendix H: Robustness to the Assumed Equity Risk Premium 

In the paper, we set the expected premium on the index to 4%.  We investigate the 

robustness of the results to the assumed equity risk premium.  Here we set the expected premium on 

the index at 2% instead of 4%.  The results are reported in Table IA.XI, Panel A.  Since the call and 

put upper bounds are higher, the options trader is more selective than before in writing options that 

violate these bounds.  In Panel B, we report the results when we set the premium to 6%.  In both 

cases, the stochastic dominance results in writing calls are as strong as in Table V.  We conclude 

that the results in Table V are robust to the assumption that the expected premium on the index is 

4%. 

 
Table IA.XI 

Returns of Options Trader and Index Trader with Different Risk Premium 
 
 The equally weighted average of all violating options equivalent to one option per share was traded at each date.  The 
symbol ** denotes a difference in sample means of the OT and IT traders significant at the 5% level in a one-sided 
bootstrap test with 9,999 trials.  Maximal t-statistics for the Davidson-Duclos (2000) test are compared to critical values 
of the Studentized Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for nominal levels of 1%, 5%, 
and 10% with k = 20 and ν = ∞ .  The p-values for 0 2:H OT ITf  , which are greater than 10%, the highest nominal 
level available in the Stoline and Ury (1979) tables, are not reported here.  The p-values for the Davidson-Duclos (2006) 
test are based on 999 bootstrap trials.  The p-values for 0 2:H IT OT/f  are equal to one and are not reported here. 

 

Volatility 
prediction 
mode 

#months 
with viol. 

(# months) 

ˆ ˆOT ITµ µ−  
(annualized) 

DD (2000) 
p-value 

0 2:H IT OTf  

DD (2006) p-value 0 2:H OT IT/f  
10% trimming in left tail, trimming in right tail 

as below: 

no trimming 5% 10%  
 

Panel A: Equity Risk Premium 2% 
Unconditional 48 (247) 0.0048 <0.01 0.176 0.016 0.000 
90-day 114 (247) 0.0057 <0.01 0.168 0.005 0.000 
Adjusted IV 140 (226) 0.0058* <0.01 0.199 0.120 0.000 
EGARCH 77 (247) 0.0045 <0.01 0.214 0.045 0.000 

 
Panel B: Equity Risk Premium 6% 

Unconditional 38 (247) 0.0009 <0.01 0.434 0.052 0.004 
90-day 85 (247) 0.0035 <0.01 0.228 0.012 0.002 
Adjusted IV 96 (226) 0.0052* <0.01 0.156 0.042 0 
EGARCH 58 (247) 0.0051* <0.01 0.118 0 0 
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Appendix I: Restricting the Moneyness Range of Violating Calls 

In  Internet Appendix C, using simulated data with characteristics that mirror our sample, we 

compute the rejection probabilities of the null hypothesis when it is true as well as when it is false.  

DD (2006) is a weak test without trimming, since it has very low probabilities of rejection of the 

nondominance null even when it is false.  With 5% trimming, the test is still conservative as far as 

rejecting the false nondominance null.  Problems with rejection of the null when it is true occur only 

for deep OTM options.  For this reason, we repeat the stochastic dominance tests for the call upper 

bound in Panel A of Table V for a restricted moneyness range, that is, by removing violating OTM 

calls outside the range from the sample.  The results are reported in Table IA.XII and remain 

essentially unchanged. 
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Table IA.XII 
Returns of Call Trader and Index Trader When Restricting the Moneyness Range of Violating Calls 

 
The equally weighted average of all violating calls within the indicated moneyness range equivalent to one call per share 
was traded at each date.  The symbols * and ** denote a difference in sample means of the OT and IT traders significant at 
the 5% and 1% levels in a one sided bootstrap test with 9,999 trials.  Maximal t-statistics for the Davidson and Duclos 
(2000) test are compared to critical values of the Studentized Maximum Modulus Distribution tabulated in Stoline and 
Ury (1979) for nominal levels of 1%, 5%, and 10% with k = 20 and ν = ∞ .  The p-values for 0 2:H OT ITf  , which are 
greater than 10%, the highest nominal level available in the Stoline and Ury (1979) tables, are not reported here.  The p-
values for the Davidson and Duclos (2006) test are based on 999 bootstrap trials.  The p-values for 0 2:H IT OT/f  are 
equal to one and are not reported here. 
 

Volatility 
prediction 
mode 

#months 
with viol. 

(# months) 

ˆ ˆOT ITµ µ−  
(annualized) 

DD (2000) 
p-value 

0 2:H IT OTf  

DD (2006) p-value 0 2:H OT IT/f  
10% trimming in left tail, trimming in right tail 

as below: 

no trimming 5%  10% 
 

Panel A: K/F < 1.04 
Unconditional 42 (247) 0.0034 <0.01 0.184 0.004 0.004 
90-day 87 (247) 0.0051 <0.01 0.164 0.000 0.000 
Adjusted IV 108 (226) 0.0089** <0.01 0.106 0.002 0.004 
EGARCH 58 (247) 0.0079** <0.01 0.124 0.000 0.000 

 
Panel B: K/F < 1.03 

Unconditional 42 (247) 0.0026 <0.01 0.303 0.068 0.002 
90-day 80 (247) 0.0045 <0.01 0.199 0.018 0.000 
Adjusted IV 98 (226) 0.0088* <0.01 0.088 0.016 0.004 
EGARCH 50 (247) 0.0082** <0.01 0.088 0.000 0.000 

 
Panel C: K/F < 1.02 

Unconditional 39 (247) 0.0027 <0.01 0.362 0.094 0.002 
90-day 75 (247) 0.0047 <0.01 0.256 0.050 0.000 
Adjusted IV 90 (226) 0.0071* <0.01 0.174 0.072 0.000 
EGARCH 46 (247) 0.0079** <0.01 0.088 0.008 0.000 
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