
Internet Appendix to �Blockholder Trading, Market E¢ ciency, and
Managerial Myopia�*

IA.A. Costly Short-Sales

The blockholder can now short-sell, but faces a short-sales cost of � (� � �)2 if she sells
� > �. Upon receiving ib, she chooses � to solve

max �e���X

241 + e��b� + �
�
1� e��b��

2
�
1 + e��b�� � 1� �

2

35� � [max((� � �) ; 0)]2 :
There are three possible solutions: � = �, � = 1

�
< �, or 1

�
> � > �. Since the �rst

two solutions are as in the core model, the analysis here focuses on the third solution. The

�rst-order condition is
(1� ��)e���
1 + e���

�X � 2� (� � �) = 0:

Since � =
1

�(1� �) , we obtain

[�(1� �)� �] �X
2��

= (1� �)(� � �)(1 + e
�

�(1��) ):

Using � = �X
4c
and de�ning D =

X2

8��c
yields

[�(1� �)� �] �D = (1� �)(� � �)(1 + e
�

�(1��) ):

Taking the partial derivative with respect to � on both sides gives�
�� � @�

@�

�
�D + [�(1� �)� �] @�

@�
D

= �(� � �)
�
1 + e

�
�(1��)

�
+ (1� �)

�
@�

@�
� 1
��

1 + e
�

�(1��)
�

+ (1� �)(� � �)e
�

�(1��)

�
@�

@�

1

�(1� �) +
�

�(1� �)2

�
;
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and so

@�

@�

"
��D + [�(1� �)� �]D � (1� �)

�
1 + e

�
�(1��)

�
� (1� �)(� � �)e

�
�(1��)

�(1� �)

#

= ��D � (� � �)
�
1 + e

�
�(1��)

�
� (1� �)

�
1 + e

�
�(1��)

�
+ (1� �)(� � �)e

�
�(1��)

�

�(1� �)2 :

To conclude that @�
@�
> 0, it is su¢ cient to show that

��D � (� � �)
�
1 + e

�
�(1��)

�
� (1� �)

�
1 + e

�
�(1��) � (� � �)e

�
�(1��)

�

�(1� �)2

�
< 0 (IA.1)

and

��D + [�(1� �)� �]D � (1� �)
 
1 + e

�
�(1��) +

(� � �)e
�

�(1��)

�(1� �)

!
< 0: (IA.2)

We wish to show that @�
@�
> 0, that is, as � rises from zero, B trades more (as in the core

model). When � = 0, inequality (IA.1) becomes

��D � �
�
1 + e

�
�

�
�
 
1 + e

�
� � �

2e
�
�

�

!
< 0

D <
(1 + �) +

�
1 + � � �2

�

�
e
�
�

��
: (IA.3)

Note that we have � < 1
�
as a solution. For � = 0, this equates to � < �. Hence,

� � �2

�
= �(���)

�
> 0, and so the right-hand side is positive. Equation (IA.3) becomes

X2

8�c
<
(1 + �) +

�
1 + � � �2

�

�
e
�
�

�
: (IA.4)

This condition is most stringent when the right-hand side is smallest. Di¤erentiating the

right-hand side with respect to � and ignoring the denominator yields

�

�
1 +

�
1� 2�

�

�
e
�
� +

1

�

�
1 + � � �

2

�

�
e
�
�

�
� 1� � �

�
1 + � � �

2

�

�
e
�
�

= �1 + e
�
�

�
�

�
1� 2�

�

�
+

�
�

�
� 1
��

1 + � � �
2

�

��
= �1 + e

�
�

�
� � 2�

2

�
+
�

�
+
�2

�
� �

3

�2
� 1� � + �

2

�

�
= �1 + e

�
�

�
�

�
� �

3

�2
� 1
�
;

which is negative since �
�
< 1. Hence, the right-hand side of (IA.4) is smallest when � is at its
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maximum value of �. Then we have

X2

8�c
<
1 + � + e

�

� >
X2

8c

�

1 + � + e
:

When � = 0, the second inequality, (IA.2), becomes

(� � 2�)D �
 
1 + e

�
� +

�e
�
�

�

!
< 0:

If � > �
2
, the left-hand side is automatically satis�ed so this constraint can be ignored. We

consider � < �
2
and thus obtain

D <

�
1 +

�
1 + �

�

�
e
�
�

�
� � 2� :

The right-hand side is lowest when � is lowest, as this reduces the numerator and increases the

denominator. Setting � = 0 yields

X2

8��c
<
2

�

� >
X2

16c
:

Overall, a su¢ cient condition for @�
@�
at � = 0 is

� >
X2

8c
max

�
�

1 + � + e
;
1

2

�
:

If this condition is satis�ed, if � rises from zero, B�s optimal sale volume also increases (positive

trading e¤ect). This in turn increases her monitoring e¤ort (positive e¤ort e¤ect). Combined

with the direct e¤ect of � on liquidity (positive camou�age e¤ect), the rise in � augments market

e¢ ciency and thus investment. As in the core model, if � rises too high, liquidity becomes a

constraint and so � declines.
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IA.B. Blockholder Purchases

We now allow B to buy up to 
 upon receiving ig.1 For simplicity, we return to the main

model with short-sale constraints, although again the results are robust to replacing them with

short-sales costs.

If B receives ig, her objective function is

max

�



X

/Z
0

241 + �
2

�
1 + e��(

b�+b
) + b��1� e��(b�+b
)�
2
�
1 + e��(

b�+b
)�
35�e��udu:

If B buys 
, the market maker observes d = u+ 
. However, since u has no upper bound, this

value of d is both consistent with B having bought and B having sold. Therefore, B earns a

trading pro�t regardless of the realized value of u2, and so the integral is over the full domain

of u (from 0 to 1). The �rst-order condition is always positive, and so B chooses 
 = 
.
If d < 
 (i.e., u < � + 
), the market maker knows that B has not bought, and therefore

must have sold. Hence, he sets price �bX. This contrasts with the core model, where the price

is �bX only if d < 0 (i.e., u < �). Hence, if B receives ib, her objective function is

max
���

�X

/Z
�+


241 + e��(b�+
) + b�
�
1� e��(b�+
)�

2
�
1 + e��(

b�+
)� � 1� �
2

35�e��udu
and she chooses � = min( 1

�
; �) as before.

The blockholder�s objective function for her monitoring decision is

1

2
�X

"
e��(�+
)

1 + e��(�+
) + b� �1� e��(�+
)�
2 (1 + e��(�+
))

+
�
1� e��(�+
)

� 1� b�
2

� 1� �
2

#

+
1

2

X

"
1 + �

2
�
1 + e��(�+
) + b� �1� e��(�+
)�

2 (1 + e��(�+
))

#
� 1
2
c�2

and so she exerts e¤ort level

� =
(� + 
)X

4c
;

1An upper bound on purchases (which result from, say, wealth constraints) is a feature of many informed
trading models, for example, Admati and P�eiderer (2009), Boot and Thakor (1993), Dow, Goldstein, and
Guembel (2007), Fulghieri and Lukin (2001), Goldstein, Ozderonen, and Yuan (2008), Kahn and Winton (1998),
and Manove (1989). In particular, it is a necessary feature of any model with exponential liquidity trader demand
as, otherwise, the optimal purchase would be in�nite (see also Barlevy and Veronesi (2000), who also use an
exponential distribution and limit purchases). The results of the model will hold under normally distributed
liquidity trader demand, where purchases do not have to be restricted; however, the model would not be solvable
in closed form. The idea that a rise in � allows B to sell more upon negative information, thus inducing her
to gather more information in the �rst place, is not dependent upon the functional form for liquidity trader
demand.

2Indeed, the level of B�s pro�t is independent of u. This is allied to the �memorylessness� property of
exponential distributions.
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which is increasing in �.

Hence, as in the core model, a rise in � increases �, increases �, and reduces �. The

trading, e¤ort and camou�age e¤ects of an increase in � are thus all as in the core model, and

so the results still hold. The intuition is that, while B�s purchase volume is independent of �,

it remains the case that her sale volume is increasing in � (for � < �
�+1
). Hence, it remains

the case that a rise in � increases B�s trading pro�ts from private information, and thus her

incentives to gather information in the �rst place.

IA.C. Known Investment Opportunity

In the core model, the availability of the investment opportunity � is known only to M .

This section shows that the results are robust to allowing � to be known also to B and the

market maker.

Let b� be the conjecture possessed by B and the market maker regarding the investment

level undertaken by a high-quality �rm. The blockholder therefore believes the fundamental

value of a high-quality �rm is X + gb�, and so monitors with intensity
� =

�
�
X + gb��
4c

: (IA.5)

Let b� be M�s conjecture regarding B�s monitoring e¤ort. His objective function becomes
(1� !) (X + g�) + !�2c�X �X + gb��+ !(1� �2)�X + gb�� ;

where c�X = 1

2

�b�21� e���
1 + e���

+ 1

�
:

Since the market maker conjectures an investment level of b�, the t = 2 stock price is a function
of X + gb�. The manager�s optimal investment level is given by

� =
(1� !) g

2!
�
X + gb�� (1� c�X) :

In equilibrium, � = b�, and so � is implicitly de�ned by
� =

(1� !) g
2! (X + g�)

�
1� 1

2

�
�2(X+g�)2

16c2
1�e���
1+e��� + 1

�� :
We wish to show that � is weakly increasing (decreasing) in � for � < (>)��, as in the core
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model. We �rst consider the case of � < ��, and so � = �. We therefore have

�(X + g�)
�
1� L(X + g�)2

�
=
(1� !)g
!

F (�; �) = ln � + ln(X + g�) + ln
�
1� L(X + g�)2

�
= ln

(1� !)g
!

; (IA.6)

where

L =
�2

16c2
1� e�

�
�(1��)

1 + e�
�

�(1��)
: (IA.7)

Since all three components of F (�; �) are concave in �, there are potentially two values of

� that make F (�; �) = ln (1�!)g
!
. Since F (0) = �1 and @F

@�
> 0, it is su¢ cient to show that

@F
@�
> 0 at the maximum value of � = 1 to prove that there is at most one � 2 [0; 1] where

(IA.6) holds. We have
@F

@�
=
1

�
+

g

X + g�
� 2Lg(X + g�)

1� L(X + g�)2 :

Using � � 1 and � � �
�+1
, this yields

1� L(X + g�)2 = 1� �21� e
� �
�(1��)

1 + e�
�

�(1��)
� 1� 1� e

�1

1 + e�1
; (IA.8)

which implies that

L(X + g�)2 � e� 1
e+ 1

L(X + g�) � e� 1
e+ 1

1

X + g�
: (IA.9)

Therefore,

@F

@�
� 1

�
+

g

X + g�
�
�
1� 1� e

�1

1 + e�1

��1
2Lg(X + g�) (from (IA.8))

=
1

�
+

g

X + g�
� (e+ 1)gL(X + g�)

� 1

�
+

g

X + g�
� (e+ 1)ge� 1

e+ 1

1

X + g�
(from (IA.9))

=
1

�
+

g

X + g�
� (e� 1) g

X + g�
:

We have that

@F

@�
j�=1 � 1 +

g

X + g
� (e� 1) g

X + g

= 1� (e� 2)g
X + g

� 1� (e� 2) > 0:
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Hence, there can be at most one value of � 2 [0; 1] for which F (�; �) = ln (1�!)g
!
. If F (�; �) =

ln (1�!)g
!

for some �, this � is chosen by the manager. If F (�; �) < ln (1�!)g
!

for all � 2 [0; 1],
then � = 1. In either case, @F

@�
> 0.

Di¤erentiating F (�; �) with respect to � gives

@F

@�
+
@F

@�

@�

@�
= 0: (IA.10)

From (IA.6) and the de�nition of L in (IA.7), it is immediate that F (�; �) is decreasing in �.

Moreover, since @F
@�
> 0, we have @�

@�
� 0 as required, with a strict inequality if � < 1.

Now consider � > �
�+1
. We have

F (�; �) = ln � + ln(X + g�) + ln
�
1� L(X + g�)2

�
= ln

(1� !)g
!

; (IA.11)

where

L =
�2(1� �)2
16c2

1� e�1
1 + e�1

:

Again, F (�) is concave in �. Following the exact same steps as earlier gives

@F

@�
j�=1 � 1� (e� 2) > 0:

As before, we have @F
@�
> 0. From (IA.11), it is immediate that F (�; �) is increasing in �.

Moreover, since @F
@�
> 0, (IA.10) implies that @�

@�
� 0 as required.
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