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I . Additional Proofs

Proof of Corollary 1.1: Taking the limit ζ → 0 in (1) we obtain the Brownian motion case.

The ordinary differential equation describing the limited liability option is

1
2
σ2U

′′
(p) + µQU ′(p)− rU(p) = 0. (IA.1)

The general solution to (IA.1) is of the form U(pt) = Aeφpt . After imposing the boundary

condition limpt→∞ U(pt) = 0 and setting µQ = r − δ − 1
2σ

2, the equity value V (pt) is given by

equation (9) with φ given in (10). Solving the value-matching and smooth pasting conditions (7)

and (8) for ζ → 0 yields the expressions of the constant A and the default threshold p in (11).

Proof of Corollary 1.2: The equity βt of a firm that is still operating at time t, that is, for

pt > p, is

βt =
dlog V (pt)

dpt
=

1
V (pt)

(
ept

δ
+ πt

(
ηb− 1

δ

)
ep
)

(IA.2)

= 1 +
1

V (pt)

[
c+ l

r
+ πt

(
1− 1

φ

)(
ηb− 1

δ

)
ep
]
, (IA.3)

where (IA.2) follows by using the definition of risk-neutral probability of default (13) and (IA.3)

obtains by isolating the expression of V (pt) in (12) for pt ≥ p. The corollary follows after

substituting the expression of p in (11) and rearranging terms.

Proof of Corollary 1.3: Let us consider the case of η = 0 first. Because, from (13), πt is

inversely related to pt, to show that dβt/dπt > 0 it is sufficient to show that dβt/dpt < 0. Using

the expressions in equations (12) and (13) with η = 0, we obtain

βt =
d log V (pt)

dpt
=
ept − πtep

δV (pt)
. (IA.4)
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Hence,

dβt
dpt

=
d2 log V (pt)

dp2
t

=
δV (pt)(ept − φπtep)− (ept − πtep)2

δ2V 2(pt)

= −ept+p
(

(πt + φ− 1) + φ(φ− 2)πt − φ(φ− 1)πtep−pt

φδ2V 2(pt)

)

= −ept+p
(
φ− 1
φ

)(
1 + (φ− 1)πt − φπtep−pt

δ2V 2(pt)

)
,

where to arrive at the second equality, we use the expression c+l
r = φ−1

φ
e
p

δ derived from equation

(11) with η set to zero. Therefore, to show that d2 log(V (pt))/dp2
t < 0, we only need to show

that

1 + (φ− 1)πt − φπtep−pt > 0 (IA.5)

for all pt. Because pt is bounded from below by p, we first check if the equality (IA.5) holds

when pt → p. Let ε = pt − p > 0. Using a second-order Taylor expansion of e−ε around ε, we

obtain

ep−pt = e−ε ≈ 1− ε+
1
2
ε2 + o(ε2), (IA.6)

πt = e−φε ≈ 1 + φε+
1
2
φ2ε2 + o(ε2). (IA.7)

Substituting the above expressions in (IA.5) and simplifying we have that the leading-order term

is 1
2φ(φ− 1)ε2 > 0. We then note that the derivative of the left-hand side of (IA.5) with respect

to pt is φ(φ− 1)(1− ep−pt) > 0. This proves that dβ/dpt < 0 and hence dβ/dπt > 0 when η = 0.

In particular, when πt → 1, using a second-order Taylor expansion of V (pt),

V (pt) ≈ −
1
2
φ ε2

c+ l

r
+ o(ε2), (IA.8)

and substituting (IA.7) in (IA.4), we have βt ≈ 2
ε + 1 + φ→ +∞ as πt → 1.

3



To analyze the case of η > 0, let us rewrite the beta expression in Corollary 1.2 as

βt = 1 +
c+ l − πt(ηar + c+ l)

rV (pt)
. (IA.9)

Then,
dβt
dπt

=
−(ηar + c+ l)rV (pt)− (c+ l − πt(ηar + c+ l))r dV (pt)

dπt

(rV (pt))2
. (IA.10)

Applying the chain rule,

dV (pt)
dπt

=
dV (pt)
dpt

(
dπt
dpt

)−1

=
dV (pt)
dpt

1
φπt

, (IA.11)

and the definition of βt = 1
V (pt)

dV (pt)
dpt

in (IA.10), we obtain

dβt
dπt

= − 1
V (pt)

(ηar + c+ l)
r

− (βt − 1)βt
φπt

. (IA.12)

When πt → 0, that is, pt � p, the first term in (IA.12) goes to zero as V (pt)→∞. The second

term will be positive as βt > 1 and φ < 0. Therefore, βt increases in πt for small levels of πt.

When πt → 1, the first term in (IA.12) is negative because V (pt) > 0. Furthermore, from (IA.9),

βt − 1→ − ηa
V (pt)

< 0. Because φ < 0, the second term in (IA.12) is negative as well. Therefore,

dβt
dπt

< 0, that is, βt decreases in πt when π → 1.

Proof of Corollary 1.4: Because λ > 0, from (17), AC(pt) > 0 if and only if θt ≡ 1
βt
dβt
dpt

> 0.

From (IA.12), we have that

θt =
1
βt

dβt
dπt

dπt
dpt

= 1− βt −
1

βtV (pt)
φ(ηar + c+ l)

r
πt. (IA.13)

We now show that when η = 0, ACt < 0. If λ > 0 and βt > 0, then it suffices to show that

d2 log(V (pt))/dp2
t < 0. This is true from the proof of Corollary 1.3.
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For η > 0, when πt → 0, θt < 0 because βt > 1. When πt → 1, as shown in the proof of

Corollary 1.3, 1− βt > 0. Because φ < 0, the second term in (IA.13) is also positive. Therefore,

when η > 0 and πt → 1, θt > 0.

We now show that the boundary for log-convexity of the equity value, p∗(η), is increasing in

η. From the expression of equity value (9) with pt > p, we have

d2 log V (pt)
dp2

t

=
(φ−1)2Ae(φ+1)pt

δ − c+l
r

(
ept
δ + φ2Aeφpt

)
V 2(pt)

. (IA.14)

Because d2 log V (p∗(η))
dp2t

= 0, p∗(η) satisfies

(φ− 1)2Ae(φ+1)p∗(η)

δ
=
c+ l

r

(
ep
∗(η)

δ
+ φ2Aeφp

∗(η)

)
. (IA.15)

Taking derivatives with respect to η on both sides of (IA.15), and denoting X = ep
∗(η), we obtain

∂X

∂η
=

∂A
∂η

(
(φ−1)2Xφ

δ −
(
c+l
r

)
φ2Xφ−1

)
A
(
(φ− 1)φ2

(
c+l
r

)
Xφ−2 − φ(φ−1)2

δ Xφ−1
)

=
∂A
∂ηX

(1− φ)A

 (φ−1)2

δ X − c+l
r φ

2

φ(φ−1)
δ X − c+l

r φ
2

 . (IA.16)

From the expressions in (11), ∂A∂η > 0. Moreover, because φ < 0, 1−φ > 1, and (φ−1)2

δ X− c+l
r φ

2 >

φ(φ−1)
δ X − c+l

r φ
2. Finally, because p∗ > p, it can be shown that φ(φ−1)

δ X − c+l
r φ

2 > 0. Hence

∂X

∂η
>

∂A
∂ηX

(1− φ)A
> 0, (IA.17)

implying that ∂p∗(η)/∂η > 0.
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II . A General Model of Levered Equity Returns

In this section we generalize the model in the paper to account for endogenous investment

and financing decisions. We adopt the neoclassical Lucas-Prescott framework and construct

a stationary economic environment that can be used as a laboratory for analyzing the effect

of shareholder recovery upon financial distress on the cross-section of equity returns. In this

environment, each firm is characterized by a production technology generating cash flows that

are subject to both economy-wide and firm-specific shocks. The firm’s manager maximizes equity

value by optimally choosing (i) the level of capital investment, (ii) financing through a mix of

debt and equity, and (iii) whether to default.

The structure of the model closely follows that in Gomes and Schmid (2010), with the

following exceptions: (i) we explicitly allow for shareholder recovery in the event of default; (ii)

we do not impose that investment is irreversible; and (iii) we explicitly model capital adjustment

costs (see also Li (2008), Livdan, Sapriza, and Zhang (2009), and Obreja (2006)).

A. Production Technology

The production output Yi,t of firm i at time t is

Yi,t = Kα
i,te

Xt+Zi,t , α ∈ (0, 1), (IA.18)

where Ki,t is the firm’s capital level at the beginning of period t, and α is the capital share in total

output, chosen to be between zero and one in order to obtain decreasing return to scale. The

variables Xt and Zi,t in (IA.18) represent, respectively, the aggregate and firm-specific shocks

to output. These shocks are modeled as stationary Markov processes evolving according to the

following autoregressive processes:

Xt+1 = Xt + (1− ρx)(X −Xt) + σxε
x
t+1, (IA.19)

Zi,t+1 = Zi,t + (1− ρz)(Z − Zi,t) + σzε
z
i,t+1, (IA.20)
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where X and Z are the long-run averages, ρx and ρz the autocorrelation coefficients, and σx

and σz the volatility coefficients. The innovations εxt+1 and εzi,t+1 are normally distributed with

mean zero and unit variance, E[εzi,tε
x
t ] = 0 for all i, and E[εzi,tε

z
j,t] = 0 for all i 6= j. In period t,

the firm’s after-tax profit is

Πi,t = (1− τ)(Yi,t − fKi,t − F ), (IA.21)

where τ is the corporate tax rate, and f and F are the proportional and fixed costs, respectively.

B. Investment

Each period, the firm makes an investment decision that affects its capital stock in the next

period according to the capital accumulation equation

Ki,t+1 = Ii,t + (1− κ)Ki,t, (IA.22)

where Ii,t is the amount of new investment at time t, and κ is the depreciation rate of the installed

capital. Following Lucas (1967), we assume a quadratic adjustment cost for new investment,

that is,

h(Ii,t) =
θ

2

(
Ii,t
Ki,t

)2

Ki,t, (IA.23)

where θ > 0 is the adjustment cost coefficient.

C. Financing

In order to finance new investment and distribution to shareholders, the firm chooses whether

to issue new equity (that is, negative dividends), new debt, or a combination of both. As in

Li (2008) and Gomes and Schmid (2009), we assume that the only debt instrument available to

the firm is a one-period bond. At each date t the firm decides to issue a bond with promised
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principal Bi,t+1 and coupon bi,t+1, to be repaid at time t+ 1. The debt is assumed to be issued

at par, so at time t firm i raises an amount equal to Bi,t+1. The firm is implicitly allowed to

refinance all its liability in each period. Accounting for tax deductibility of the coupon payment,

we define firm i’s total debt commitment at time t as

Di,t = Bi,t + (1− τ)bi,t. (IA.24)

This quantity represents the amount needed to service the debt issued by the firm in the previous

period and coming due at time t.

If we assume that the net cash flow to the equity is paid out as dividends to equityholders,

the dividend at time t is then

ci,t = Πi,t + τκKi,t − Ii,t − h(Ii,t)−Di,t +Bi,t+1. (IA.25)

If ci,t < 0, the firm can raise external financing through a seasoned equity offering. Following

Gomes (2001) and Hennessy and Whited (2007), we assume that it is costless to increase debt

but costly to raise new equity. The cost of raising new financing through a seasoned equity

offering is assumed to be

Λ(ci,t) = (λ0 + λ1(−ci,t))1ci,t<0, (IA.26)

where λ0 is the fixed cost and λ1 represents the proportional cost. Therefore, the net dividend

is

di,t = ci,t − Λ(ci,t). (IA.27)

D. Equity Valuation

A firm’s equity value is the maximal present value of the discounted stream of dividends that

the firm can achieve by altering its investment and financing policy. To evaluate cash flow, we

assume a process for the pricing kernel Mt,t+1 similar to that in Berk, Green, and Naik (1999)
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and Zhang (2005),

Mt,t+1 = β exp {Γt(Xt −Xt+1)} , Γt = γ0 + γ1(Xt −X), (IA.28)

where 0 < β < 0 is the time discount factor, and γ0 and γ1 are constants.1

At any point in time a firm is entirely described by four state variables: the aggregate shock

Xt, the firm-specific shock Zi,t, the capital level Kt, and the total debt commitment Di,t defined

in (IA.24). We denote by Si,t = {Xt, Zi,t,Ki,t, Di,t} the vector of state variables. Equity value,

V (St), is the solution to a dynamic programming problem with optimal investment financing

and default choices. Unless the company optimally defaults at time t, these choices will result

in a new level of capital Ki,t+1 and a new level of total debt commitment Di,t+1. Hence, the

future levels of capital Ki,t+1 and total debt commitment Di,t+1 are control variables at time t,

but become state variables at time t+ 1.

In the absence of shareholder recovery upon financial distress, the firm is financially viable

as long as equity has a positive value, that is, V (Si,t) > 0; default occurs when V (Si,t) = 0. In

the presence of shareholder recovery, equity can extract a fraction η of the residual asset value

upon financial distress, R(St). Following Hennessy and Whited (2007), we model the residual

asset value as

R(Si,t) = max {Πi,t + τκKi,t + ξ1(1− κ)Ki,t − ξ0, 0} , (IA.29)

where Πi,t is the after-tax profit defined in (IA.21), and 1− ξ1 and ξ0 are the proportional and

fixed distress costs, respectively. Firm i’s equity value is therefore determined by the solution

to the following Bellman equation:

V (Si,t) = max

{
ηR(Si,t), max

{Ki,t+1,Di,t+1}
{d(Si,t) +Et [Mt,t+1V (Si,t+1)]}

}
. (IA.30)

One potential difficulty in computing the net cash flow—ci,t in (IA.25), and in turn di,t in (IA.27)—

needed for the solution to the dynamic programming problem (IA.30) relates to the determi-
1The market price of risk is equal to λm,t = V art[Mt,t+1]/Et[Mt,t+1]. Given the assumption of normality in

the innovations of Xt, λm,t = β(eσ
2
m − 1), where σm = σx[γ0 + γ1(Xt −X)].
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nation of the face value Bi,t+1 (and the coupon bi,t+1) of the newly issued debt. As argued in

Li (2008), the use of the total debt commitment Di,t as a state variable simplifies the problem

considerably because we can avoid having to keep track of the coupon bi,t+1. Denoting by

χi,t+1 = 1{V (Si,t+1)>ηR(Si,t+1)} (IA.31)

the indicator function for the firm’s solvency, we can evaluate the market value of the bond as

follows:

Bi,t+1 = Et [Mt,t+1 (χi,t+1(bi,t+1 +Bi,t+1) + (1− χi,t+1)(1− η)R(Si,t+1))]

=
Et

[
Mt,t+1

{
χi,t+1

Di,t+1

1−τ + (1− χi,t+1)(1− η)R(Si,t+1)
}]

1 + τ
1−τEt [Mt,t+1χi,t+1]

, (IA.32)

where the first equality considers the debt value in the cases of solvency and default, respectively,

and the last equation uses the definition of total debt commitment (IA.24) to express the coupon

bi,t+1 as a function of Di,t+1 and Bi,t+1. The bond pricing equation (IA.32) involves only

knowledge of the evolution of the state variables Si,t and will be used to determine the cash

flows net of investment and financing defined in (IA.25).

We solve the model numerically by using value function iterations and discretization of the

state space. The model contains a total of 19 parameters, summarized in Table IA.I. While it

would be ideal to calibrate these parameters by matching relevant moments via, for example, a

simulated method of moments (SMM) methodology, the large dimensionality of the state space

makes this approach computationally infeasible.2 To calibrate the model, we instead follow Liv-

dan, Sapriza, and Zhang (2009) and Gomes and Schmid (2009), who base their parameter choice

on the values used in the existing macro and finance literatures (e.g., Gomes (2001), Cooley and

Quadrini (2001), Cooper and Ejarque (2003), Zhang (2005), and Hennessy and Whited (2005,

2007)). The model is solved on a monthly basis. Details of the solution methodology are provided

in Section III of this Internet Appendix.
2The problem is characterized by four state variables. After discretization, the state space contains a total of

6,630,000 grid points.
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Table IA.I
Parameters for the General Model

The table reports the parameters used in solving the model described in Section II of the Internet
Appendix. Parameter values are consistent with those in Gomes and Schmid (2009), Li (2008), and
Zhang (2005).

Parameter Description Value

X Long-run average of aggregate productivity -3.100
σx Conditional volatility of aggregate productivity 0.002
ρx Persistence of aggregate productivity 0.983
Z Long-run average of firm-specific productivity 0.000
σz Conditional volatility of firm-specific productivity 0.100
ρz Persistence of firm-specific productivity 0.900
α Capital share 0.650
δ Capital depreciation 0.010
f Variable cost of production 0.000
F Fixed cost of production 0.034
θ Adjustment cost 15.000
γ0 Constant price of risk 50
γ1 Time-varying price of risk -1000
β Time-preference coefficient 0.995
τ Tax rate 0.350
ξ0 Fixed bankruptcy cost 0.120
ξ1 Liquidation value per unit of capital 0.900
λ0 Fixed equity issuance cost 0.080
λ1 Variable equity issuance cost 0.025

For each firm, the solution of the model consists of the firm’s equity value and the associated

optimal investment, financing, and default policies over the state space. Knowledge of these

quantities allows us to analyze the cross-sectional properties of equity returns and the effect of

shareholder recovery η under a stationary distribution of the underlying state variables. We

construct the cross-section by bootstrapping expected returns from the stationary distribution

and form portfolios according to the model-implied default probability. According to the intu-

ition developed in Section I of the paper, the absence of shareholder recovery leads to expected

returns that are increasing in default probability, while the presence of such recovery leads to

expected returns that are hump-shaped in default probability.
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Panel A: No shareholder recovery (η = 0) Panel B: Shareholder recovery (η = 10%)
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Figure IA.1. Expected return and default probability. The figure reports the monthly expected
return as a function of default probability obtained from the general model of Section II of the Internet
Appendix. Panel A refers to the case of no shareholder recovery, η = 0, while Panel B refers to the case
in which shareholder recovery is set to η = 10% of the recovery value in (IA.29).

Figure IA.1 confirms the above intuition within the general model of this section.3 Panel A

presents the case of no shareholder recovery (η = 0), while Panel B depicts the case with

expected shareholder recovery equal to 10% of the residual firm value defined in (IA.29). As

can be clearly seen from the figure, the case of no recovery leads to a monotonically increasing

relation between expected return and default probability that “explodes” in the highest decile

when default becomes almost certain. In contrast, in the presence of expected shareholder

recovery upon distress, the relation between expected return and default probability is humped,

increasing at low levels of default probability and decreasing at high levels of default probability.

These patterns are consistent with the implications of the simple equity valuation model as well

as with the empirical results presented in Garlappi, Shu, and Yan (2008).

The simple model of Section I in the paper predicts that the value premium should be in-

creasing in default probability in the absence of shareholder recovery and humped in default
3Numerical details for the figures reported in this section of the Internet Appendix are contained in Section III

of this Appendix.
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Panel A: No shareholder recovery (η = 0) Panel B: Shareholder recovery (η = 10%)
V

a
lu

e
p
re

m
iu

m

1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10
x 10−3

Default probability deciles Default probability deciles

Figure IA.2. Value premium and default probability. The figure reports the monthly spread
between the average expected returns of high book-to-market firms and those of low book-to-market
firms within each decile of default probability in the cross-section of firms generated from the stationary
solution of the general model of Section II of the Internet Appendix. Panel A corresponds to the case
with η = 0, while Panel B refers to the case with η = 10%.

probability in the presence of shareholder recovery. We construct the value premium in our sta-

tionary economy by following a similar bootstrapping methodology as the one used for expected

returns. Figure IA.2 confirms that the prediction of the simple model is valid also for the general

model of this section. Panel A plots the value premium on a monthly basis for the case of no

shareholder recovery, while Panel B considers the case of expected shareholder recovery equal to

10% of the residual value defined in (IA.29). The presence of shareholder recovery substantially

affects the pattern of the value premium conditional on default probability. The value premium

is positive and increasing in the absence of shareholder recovery, while it is hump-shaped when

shareholder recovery is present, turning negative in the highest default probability decile.

Finally, according to the simple model of Section I in the paper, in the presence of possible

shareholder recovery, the humped relationship between expected returns and default probability

implies the concentration of momentum profits in low-credit-quality firms, and no momentum

in the absence of shareholder recovery. To verify whether this conjecture is also true in the
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Panel A: No shareholder recovery (η = 0) Panel B: Shareholder recovery (η = 10%)
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Figure IA.3. Momentum profits and default probability. The figure reports the monthly mo-
mentum profits as a function of default probability generated from the general model of Section II of the
Internet Appendix. Panel A refers to the case of no shareholder recovery, η = 0, while Panel B refers to
the case in which shareholder recovery is set to η = 10% of the recovery value in (IA.29).

general model of this section, we generate momentum profits by computing the spread between

the model-implied expected returns of winners and losers, as described in the next section, and

report the results in Figure IA.3. As before, Panel A considers the case of no shareholder recovery

while Panel B examines the case of shareholder recovery equal to 10% of the residual value defined

in (IA.29). The figure illustrates that momentum profits are positive and significant only for

firms with shareholder recovery and with high default probability. The range of momentum

profits runs from 2% to 12% annually, depending on the level of default probability, which

is comparable to empirical estimates. For firms without shareholder recovery, the momentum

strategy does not work, as it would only generate losses, as indicated in Panel A.4

In summary, the analysis in this section confirms that the intuition developed within the

simple model of Section I in the paper is robust in a more general framework that allows firms

to optimally choose their capital structure and investment levels.
4The large magnitude of losses is attributable to the explosive nature of expected returns as default probability

approaches one.
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III . Numerical Details of the General Model

A. Solution

We solve for the fixed point in the Bellman equation (IA.30) by using a standard value

function iteration algorithm on a discretized grid space (see, for example, Judd (1998)). In

particular, we discretize the four-dimensional state space by choosing (i) 100 equally spaced grid

points between zero and 20 for both the capital level Ki,t and the debt commitment level Di,t,

(ii) 17 grid points for the systematic shock Xi,t, and (iii) 39 grid points for the idiosyncratic shock

Zi,t. We use Tauchen’s (1986) quadrature method to choose the grid points for the systematic and

idiosyncratic shocks. As a result, the state space is discretized into 17×39×100×100 = 6, 630, 000

grid points.

B. Expected Equity Return

To simplify notation, in the following we drop the subscript i from firm-specific quantities.

The expected equity return is defined as

Et[Rt+1] =
Et[V (St+1)]
V (St)− d(St)

, (IA.33)

where the expectation Et is taken with respect to the probability measure induced by the Markov

processes (IA.19) and (IA.20) for the systematic and idiosyncratic shocks and by the optimal

investment and financing policies. We subtract the dividend d(St) from the equity value in the

denominator of (IA.33) because equity value in (IA.30) is cum dividend. From the stationary

solution we compute recursively the τ -month-ahead probability of default as follows:

pτ (St) = (1− χ(St)) + χ(St) ·Et[pτ−1(St+1)], p0(St+1) = 1− χ(St+1), (IA.34)

where χ is the stationary default boundary (IA.31).
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Figure IA.1 is obtained by bootstrapping expected returns from the stationary distribution.

Specifically, according to the processes (IA.19), the unconditional distribution for Xt is normal

with mean X and variance σ2
x/(1−ρ2

x). Similarly, the unconditional distribution for Zt is normal

with mean Z and variance σ2
z/(1− ρ2

z). A firm is characterized by a point St = {Xt, Zt,Kt, Zt}

in the state space. We construct three representative panels of 10,000 firms each. Each panel

corresponds to a different realization of the systematic state variable Xt. We select these three

points to be {X − sX , X,X + sX}, where X is the long-run mean and sX = σx/(1 − ρ2
x)1/2

the long-run volatility of Xt. These values are chosen to represent three phases of the business

cycle. For each realization of Xt we randomly select 100 points from the stationary distribution

of Zt and 10 points each for Kt and Dt, chosen uniformly from their respective support. After

forming each panel, we sort firms into 10 portfolios according to their default probability (IA.34)

and compute the equal-weighted expected returns of the portfolios thus obtained. We repeat this

procedure 500 times for each panel and compute the average expected return conditional on the

realization of Xt. Figure IA.1 reports the unconditional expected return, obtained by weighting

each conditional expected return by the long-run probability of the chosen realization of Xt.

Panel A presents the case of no shareholder recovery (η = 0), while Panel B considers the case

with expected shareholder recovery equal to 10% of the residual value R(St) defined in (IA.29).

C. Value Premium

From the stationary solution of the general model, we can construct the book-to-market ratio

BM(St) at each point St of the state space as

BM(St) =
Kt −Dt

V (St)− d(St)
. (IA.35)

To study the structure of the value premium in the cross-section, we follow the bootstrap method-

ology in the previous subsection. For each realization of Xt we draw a panel of 10,000 firms

by randomly selecting 100 points from the stationary distribution of Zt and 10 points each for

Kt and Dt chosen uniformly from their support. We then sort firms into 10 portfolios based on
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their default probability (IA.34). We finally sort each of these portfolios into five subportfolios

according to the firms’ book-to-market ratio. Within each default probability decile, we com-

pute the value premium as the spread between the expected returns of the highest and lowest

book-to-market quintiles. We repeat this procedure 500 times for each panel and aggregate the

results from each panel by weighting them according to the long-run probability of the chosen re-

alization of Xt. Figure IA.2 above reports the average value premium in each default probability

decile across the 500 repetitions.

D. Momentum Profits

To construct momentum portfolios we generate a time series of realized returns that deter-

mines winners and losers in each period. For this purpose, we follow the bootstrapping procedure

of the previous two subsections. For each realization of Xt we draw a panel of 10,000 firms by ran-

domly selecting 100 points from the stationary distribution of Zt and 10 points each for Kt and

Dt, chosen uniformly from their support. Based on the dynamics of the state variables Xt and

Zt, and the optimal investment and financing strategies derived from the solution of the model,

each state St will evolve to a future state St+1. The realized return is hence V (St+1)
V (St)−d(St) , which is

used to separate winners from losers. The expected return in the state St+1 can be subsequently

deduced directly from the stationary solution as discussed above in Subsection III.B.

We construct momentum profits by sorting the panel of firms in state St+1 into 10 portfolios

based on their default probability and, independently, into five portfolios based on the realized

return from state St to state St+1. The bottom quintile represents the portfolio of losers and

the top quintile the portfolio of winners. The expected momentum profits are calculated as the

difference in the equal-weighted expected returns of winners and losers in each default probability

decile. We repeat this procedure 500 times for each panel and aggregate the results from each

panel by weighting them according to the long-run probability of the chosen realization of Xt.

Figure IA.3 above reports the average monthly momentum profits in each default probability

decile across the 500 repetitions.
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IV. Additional Empirical Results

In this section we present additional empirical results that are mentioned in the main text of

the paper, but omitted there because of space limitation. Table IA.II is equivalent to Table III

in the paper except that portfolio returns are recorded for the second month after portfolio

formation, instead of the subsequent month. Table IA.III reports the equal-weighted results

that complement the value-weighted results contained in Table V in the paper.
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Table IA.III
Momentum Profits and Default Probability: Equal-weighted returns

The column labeled “Uncond.” reports momentum profits computed according to the “6-1-6”
procedure in Jegadeesh and Titman (1993). The remaining columns report momentum profits
similarly computed within EDF quintiles. To obtain these values, each month all stocks are
sorted independently into quintiles of EDF scores and quintiles of winners/losers according
to past six-month returns. We skip a month after portfolio formation. The equal-weighted
returns of each portfolio for the subsequent six-month period are recorded and averaged
over time. Portfolio returns are expressed in percentage per month. Momentum alphas are
obtained after controlling for risk according to the Carhart four-factor model.

Uncond. EDF Diff
1 2 3 4 5

Raw profits 1.00 0.99 1.01 1.17 1.25 0.98 -0.02
t-stat 4.508 4.612 5.009 6.286 6.537 4.448 -0.070

4-Factors alphas 0.26 0.15 0.20 0.42 0.53 0.35 0.20
t-statistic 1.899 1.178 1.861 3.876 4.264 1.941 0.878

Factor loadings

UMD 0.906 0.924 0.910 0.810 0.785 0.702 -0.222
t-stat 28.706 30.826 36.813 32.140 27.087 16.822 -4.277

MKT 0.028 0.013 0.013 0.043 0.043 0.013 0.000
t-stat 0.859 0.429 0.516 1.665 1.438 0.300 -0.007

HML 0.033 0.115 0.082 0.129 0.117 0.166 0.051
t-stat 0.687 2.496 2.164 3.328 2.618 2.583 0.633

SMB -0.275 0.136 0.122 -0.015 -0.043 -0.210 -0.345
t-stat -6.567 3.405 3.731 -0.435 -1.112 -3.792 -5.004
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