
Internet Appendix to

“Frailty Correlated Default”∗

This document contains results and other material that is supplementary
to Duffie, Eckner, Horel, and Saita (2009). Section I extends the basic model
to allow for unobserved cross-sectional heterogeneity of default risk. Section II
allows for a nonlinear dependence of default intensity on distance to default,
through a simple non-parametric specification. Section III provides some infor-
mation on out-of-sample predictive accuracy. Finally, Section IV provides the
specification and parameter estimates of the time-series model for covariates.

I. Unobserved Heterogeneity

The Monte Carlo EM algorithm described in Appendix A and the Gibbs
sampler described in Appendix B of Duffie, Eckner, Horel, and Saita (2009) are
extended to treat unobserved heterogeneity as follows.

The extension of the Monte Carlo EM algorithm is:

0. Initialize Z
(0)
i = 1 for 1 ≤ i ≤ m and initialize θ(0) = (β̂, 0.05, 0), where β̂

is the maximum likelihood estimator of β in the model without frailty.

1. (Monte-Carlo E-step.) Given the current parameter estimate θ(k), draw
samples

(
Y (j), Z(j)

)
for j = 1, . . . , n from the joint posterior distribution

pY,Z( · | W, D, θ(k)) of the frailty sample path Y = {Yt : 0 ≤ t ≤ T} and
the vector Z = (Zi : 1 ≤ i ≤ m) of unobserved heterogeneity variables.

∗Citation format: Duffie, Darrell, Andreas Eckner, Guillaume Horel, and Leandro Saita,
2009, Internet Appendix to “Frailty Correlated Default,”Journal of Finance Vol. 64, 2089-
2123, http://www.afajof.org/IA/2009.asp.
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This can be done, for example, by using the Gibbs sampler described
below. The expected complete-data log-likelihood is now given by

Q
(
θ, θ(k)

)
= Eθ(k) (logL (θ | W, Y, Z, D))

=

∫
logL (θ | W, y, z, D) pY,Z

(
y, z | W, D, θ(k)

)
dy dz. (IA.1)

Using the sample paths generated by the Gibbs sampler, (IA.1) can be
approximated by

Q̂
(
θ, θ(k)

)
=

1

n

n∑

j=1

logL
(
θ |W, Y (j), Z(j), D

)
. (IA.2)

2. (M-step.) Maximize Q̂(θ, θ(k)) with respect to the parameter vector θ,
using the Newton-Raphson algorithm. Set the new parameter estimate
θ(k+1) equal to this maximizing value.

3. Replace k with k + 1, and return to Step 2, repeating the MC E-step and
the M-step until reasonable numerical convergence.

The Gibbs sampler for drawing from the joint posterior distribution of
{Yt : 0 ≤ t ≤ T} and {Zi : 1 ≤ i ≤ m} works as follows:

0. Initialize Yt = 0 for t = 0, . . . , T . Initialize Zi = 1 for i = 1, . . . , m.

1. For t = 1, . . . , T draw a new value of Yt from its conditional distribution
given Yt−1, Yt+1 and the current values for Zi. This can be done using
a straightforward modification of the Metropolis-Hastings algorithm de-
scribed in Appendix B by treating log Zi as an additional covariate with
corresponding coefficient equal to one.

2. For i = 1, . . . , m, draw the unobserved heterogeneity variables Z1, . . . , Zm

from their conditional distributions given the current path of Y . See
below.

3. Store the sample path {Yt : 0 ≤ t ≤ T} and the variables {Zi : 1 ≤ i ≤ m}.
Return to Step 1 and repeat until the desired number of scenarios has been
drawn, discarding the first several hundred as a burn-in sample.
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It remains to show how to draw the heterogeneity variables Z1, . . . , Zm from
their conditional posterior distribution. First, we note that

p (Z |W, Y, D, θ) =
m∏

i=1

p (Zi |Wi, Y, Di, θ) ,

by conditional independence of the unobserved heterogeneity variables Zi. In
order to draw Z from its conditional distribution, it therefore suffices to show
how to draw the Zi’s from their conditional distributions. Recall that we have
chosen the heterogeneity variables Zi to be gamma distributed with mean one
and standard deviation 0.5. A short calculation shows that in this case the
density parameters a and b are both four. Applying Bayes’ rule,

p (Zi |W, Y, D, θ) ∝ pΓ (Zi; 4, 4)L (θ |Wi, Y, Zi, Di)

∝ Z3
i e

−4Zie
−

Ti∑
t=ti

λit∆t
Ti∏

t=ti

[Ditλit∆t + (1 − Dit)] , (IA.3)

where pΓ ( · ; a, b) is the density function of a Gamma distribution with parame-
ters a and b. Plugging (7) of Duffie, Eckner, Horel, and Saita (2009) into (IA.3)
gives

p (Zi |W, Y, D, θ) ∝ Z3
i e−4Zi exp

(
−

Ti∑

t=ti

λ̃ite
γYtZi

)
Ti∏

t=ti

[Ditλit∆t + (1 − Dit)]

= Z3
i e−4Zi exp (−AiZi) ·

{
BiZi if company i did default

1 if company i did not default

}
, (IA.4)

for company specific constants Ai and Bi. The factors in (IA.4) can be combined
to give

p (Zi |Wi, Y, Di, θ) = pΓ (Zi; 4 + Di,Ti
, 4 + Ai) . (IA.5)

This is again a Gamma distribution, but with different parameters, and it is
therefore easy to draw samples of Zi from its conditional distribution.

Table IA.I shows the MLE of the covariate parameter vector β and the
frailty parameters η and κ together with estimated standard errors. We see
that, while including unobserved heterogeneity decreases the coefficient η of
dependence (sometimes called volatility) of the default intensity on the OU
frailty process Y from 0.125 to 0.112, our general conclusions regarding the
economic significance of the covariates and the importance of including a time-
varying frailty variable remain. Moreover, Figure IA.I shows that the posterior
distribution of the frailty qualitatively remains essentially the same.
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Table IA.I

MLE Frailty with Unobserved Heterogeneity

Maximum likelihood estimates of the intensity parameters in the model with frailty and
unobserved heterogeneity. Asymptotic standard errors are computed using the Hessian matrix
of the likelihood function at θ = θ̂.

Coefficient Std. error t-statistic
constant −0.895 0.134 −6.7
distance to default −1.662 0.047 −35.0
trailing stock return −0.427 0.074 −5.8
3-month T-bill rate −0.241 0.027 −9.0
trailing S&P 500 return 1.507 0.309 4.9
latent factor volatility 0.112 0.022 5.0
latent factor mean reversion 0.061 0.017 3.5

II. Nonlinearity Check

Duffie, Eckner, Horel, and Saita (2009) assume a linear dependence of the
log-intensity on the covariates. This assumption might be overly restrictive,
especially in the case of the distance to default (DTD), which explains most
of the variation of default intensities across companies and across time. It is
indeed possible that, if the response of the true log-intensity to DTD is faster
than linear, then the latent variable in our current formulation would be higher
when DTDs go well below normal and vice versa.

To check the robustness of our findings with respect to the linearity assump-
tions, we therefore re-estimate the model using a non-parametric model for the
contribution of distance to default, replacing DTD(t) with − log U(t) in (1) of
Duffie, Eckner, Horel, and Saita (2009), where U(t) = f(DTD(t)) and f(x) is
the non-parametric kernel-smoothed fit of one-year frequency of default in our
sample at distance to default of x. Figure IA.II shows the historical occurrence
of different levels of distance to default for 402,434 firm-months, while Figure
IA.III shows the estimated relationship between the current level of DTD and
the annualized default intensity. For values of DTD ≤ 9, a Gaussian kernel
smoother with bandwidth equal to one was used to obtain the intensity esti-
mate, whereas due to lack of data the tail of the distribution was approximated
by a log-linear relationship, smoothly extending the graph in Figure IA.II.

Using this extension, we re-estimate the model parameters as before. Table
IA.II shows the estimated covariate parameter vector β̂ and frailty parameters
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Figure IA.I. Conditional posterior mean {E (ηYt | FT ) : 0 ≤ t ≤ T} with one-
standard deviation bands, for the scaled Ornstein-Uhlenbeck frailty variable ηYt in
the model that also incorporates unobserved heterogeneity.

η̂ and κ̂ together with “asymptotic” estimates of standard errors.
Comparing Table II in Duffie, Eckner, Horel, and Saita (2009) and Table

IA.II in this Internet Appendix, we see that none of the coefficients linking a
firm’s covariates to its default intensity has changed noteworthily. In particular,
the coefficient now linking the default intensity and − log U(t) is virtually the
same as the coefficient for DTD in the original model. Note, however, that the
intercept has changed from -1.20 to 2.28. This difference is due to the fact that
− log U(t) ≈ DTD−3.5. Indeed, for the intercept at DTD = 0 in Figure IA.III
we have 10−1.5 ≈ 0.032 ≈ exp(−1.20 − 2.28). In addition, the posterior path of
the latent Ornstein-Uhlenbeck frailty variable looks as before (not shown here).

III. Out-of-Sample Accuracy Ratios

This section provides out-of-sample accuracy ratios for our model and some
variants. Given a future time horizon and a particular default prediction model,
the “power curve” for out-of-sample default prediction is the function f that
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Figure IA.II. DTD population density. Population density estimate of distance
to default for 402,434 firm-months between January 1979 and March 2004. The
estimate was obtained by applying a Gaussian kernel smoother (bandwidth equal to
0.2) to the empirical distribution.

maps any x in [0, 1] to the fraction f(x) of firms that default before the time
horizon that were initially ranked by the model in the lowest fraction x of the
population. For example, for the model without frailty, on average over 1993
to 2004, the highest quintile of firms ranked by estimated default probability at
the beginning of a year accounted for 92% of firms defaulting within one year.
Power curves for the model without frailty are provided in Duffie, Saita, and
Wang (2007).

The “accuracy ratio” of a model with power curve f is defined as

2

∫ 1

0

(f(x) − r(x)) dx,

where x 7→ r(x) = x, the identity, is the expected power curve of a completely
uninformative model, one that sorts firms randomly. So, a random-sort model
has an expected accuracy ratio of zero. A “crystal ball” perfect-sort model has
an accuracy ratio of one minus the total ex-post default rate. The accuracy
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Figure IA.III. Default frequency vs. DTD. Non-parametric estimate of the
dependence of annual default frequency on the current level of distance to default
(DTD). For values of distance to default less than 9, a Gaussian kernel smoother with
bandwidth of 1 was used to obtain the intensity estimate. For DTD larger than 9, a
log-linear relationship was assumed.

ratio is a benchmark for comparing the default prediction accuracy of different
models.

Duffie, Saita, and Wang (2007), who do not allow for frailty, find accuracy
ratios that are an improvement on those of any other model in the available
literature. A comparison of the accuracy ratios found in Duffie, Saita, and
Wang (2007) with those for the frailty model shown in Figure IA.IV shows
that accuracy ratios are essentially unaffected by allowing for frailty. This may
be due to the fact that, because of the dominant role of the distance-to-default
covariate, firms generally tend to be ranked roughly in order of their distances to
default, which of course do not depend on the intensity model. Accuracy ratios,
however, measure ordinal (ranking) quality, and do not fully capture the out-
of-sample ability of a model to estimate the magnitudes of default probabilities.
Our results, however, suggest that the frailty model that we have proposed
does not improve the out-of-sample accuracy of the magnitudes of firm-level

7



Table IA.II

MLE Frailty Nonlinearity Check

Maximum likelihood estimates of the intensity parameters θ in the model with frailty, replac-
ing distance to default with − log(f(DTD)), where DTD is distance to default and f( · ) is the
non-parametric kernel estimated mapping from DTD to annual default frequency, illustrated
in Figure IA.III. The frailty volatility is the coefficient η of dependence of the default inten-
sity on the standard Ornstein-Uhlenbeck frailty process Y . Estimated asymptotic standard
errors were computed using the Hessian matrix of the expected complete data log-likelihood
at θ = θ̂.

Coefficient Std. Error t-statistic
Constant 2.279 0.194 11.8
− log(f(DTD)) −1.198 0.042 −28.6
Trailing stock return −0.618 0.075 −8.3
3-month T-bill rate −0.238 0.030 −8.1
Trailing S&P 500 return 1.577 0.312 5.1
Latent factor volatility 0.128 0.020 6.3
Latent factor mean reversion 0.043 0.009 4.8

estimates of default probabilities over the model without frailty.
Figure IA.V shows accuracy ratios for the variant of our model that replaces

the unobserved frailty variable Y with the one-year trailing average default rate.
The accuracy ratios are comparable to those of the model with frailty.

IV. Summary of Covariate Time-Series Model

We summarize here the particular parameterization of the time-series model
for the covariates that we adopt from Duffie, Saita, and Wang (2007). Because of
the high-dimensional state vector, which includes the macroeconomic covariates
as well as the distance to default and size of each of almost 3000 firms, we opt for
a Gaussian first-order vector autoregressive time series model with the following
simple structure.

The 3-month and 10-year Treasury rates, r1t and r2t, respectively, are mod-
eled by taking rt = (r1t, r2t)

′ to satisfy

rt+1 = rt + kr(θr − rt) + Crǫt+1 ,

where ǫ1, ǫ2, . . . are independent standard-normal vectors, Cr is a 2 × 2 lower-
triangular matrix, and the time step is one month. Provided Cr is of full rank,
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Figure IA.IV. Out-of-sample accuracy ratios. Out-of-sample accuracy ratios
(ARs), based on models estimated with data up to December 1992. The solid line
provides one-year-ahead ARs based on the model without frailty. The dashed line
shows one-year-ahead ARs for the model with frailty. The dash-dot line shows five-
year-ahead ARs for the model with frailty.

this is a simple arbitrage-free two-factor affine term-structure model. Maximum
likelihood parameter estimates and standard errors are reported in Duffie, Saita,
and Wang (2007).

For the distance to default Dit and log-assets Vit of firm i, and the trailing
one-year S&P500 return, St, we assume that

[
Di,t+1

Vi,t+1

]
=

[
Dit

Vit

]
+

[
kD 0
0 kV

]([
θiD

θiV

]
−

[
Dit

Vit

])
+

+

[
b · (θr − rt)

0

]
+

[
σD 0
0 σV

]
ηi,t+1 (IA.6)

St+1 = St + kS(θS − St) + ξt+1, (IA.7)
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Figure IA.V. Alternative out-of-sample accuracy ratios. Out-of-sample one-
year (solid line) and five-year (dashed line) accuracy ratios (ARs), based on the DSW
model enhanced with the trailing one-year default rate as an additional covariate.

where

ηit = Azit + Bwt (IA.8)

ξt = αSut + γSwt

for {z1t, z2t, . . . , znt, wt : t ≥ 1} that are iid two-dimensional standard normal, all
independent of {u1, u2, . . .}, which are independent standard normals. The 2×2
matrices A and B have A12 = B12 = 0, and are normalized so that the diagonal
elements of AA′ + BB′ are one. For estimation, some such standardization
is necessary because the joint distribution of ηit (over all i) is determined by
the six (non-unit) entries in AA′ + BB′ and BB′. Our standardization makes
A and B equal to the Cholesky decompositions of AA′ and BB′, respectively.
For simplicity, although this is unrealistic, we assume that ǫ is independent of
(η, ξ). The maximum likelihood parameter estimates, with standard errors, are
provided in Duffie, Saita, and Wang (2007) and are relatively unsurprising.
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