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Part A. Dealer Intermediation between Retail and

Institutional Investors and Price Asymmetries.

This section elaborates on how the timing and structure of dealer intermediation between

large investors on the bid side of the market, and smaller investors on the ask side produces

asymmetries in prices and dealer spreads.

Dealers in the municipal market operate differently than intermediaries in the equities

market or the Treasury market, where dealers are routinely holding inventories of specific

securities, or are net short almost as often as they are net long. In those markets, trade is

high-frequency on the time-series dimension. Dealers can have some confidence that if they

sell a specific security, they can later repurchase the same security to replenish inventory or

cover a short position.

In the market we study, this is not the case. There are very few pairs of transactions

where the dealer sells bonds to a customer from inventory and later purchases bonds for

customers to replenish inventory. Trade in specific bonds is sufficiently infrequent that the

dealer cannot with confidence anticipate being able to find the bond in question. Dealers

are never short because of this.

Since we cannot identify individual dealers in our data, we cannot verify directly in the

data that dealers are never, or rarely, short. It is obvious, however, from simply looking at

the raw data that purchases from customers almost invariably precede sales to customers in

time. We provide an example of the raw data in Table I.

We can also provide indirect evidence that matched pairs of transactions are rarely sales

by dealers from inventory, with subsequent purchases covering or replenishing the sale. Ta-

ble II below shows all the transactions in our database we could identify as “round-trip”

transactions: a purchase from a customer followed by a sale of the same bond in the same



par amount. There are over three and a half million of these. It also shows all of the pairs

that reverse the ordering. These are sales to customers followed by a purchase of the same

bond in the same par amount. There are about one million of these. The table sorts all

these pairs by the time between the two sides of the trade. Note that most of the “reverse

round trip” pairs are time stamped within less than one minute of each other (15.94%), or

are more than five days apart (48.06%). This strongly suggests that the trade was either

pre-arranged, and the two legs are essentially simultaneous, or that the two sides of the pairs

are not, in fact, going through the same dealer. Notice that the distribution of durations for

the round trip pairs are very different. It peaks at 1 day.

2



Table I
History of Trades in One Bond.

Trade Date Time Price Size Type

4/19/2002 8:45 103.75 10K Purchase from Customer
4/22/2002 10:33 106.28 10K Sale to Customer
4/24/2002 9:53 103.25 25K Purchase from Customer
4/25/2002 14:25 106.23 25K Sale to Customer
6/11/2002 14:14 103.5 15K Purchase from Customer
6/12/2002 9:02 105.98 15K Sale to Customer
8/12/2002 15:59 102.38 10K Inter-dealer
8/12/2002 15:59 99.75 10K Purchase from Customer
8/12/2002 16:32 103.88 10K Inter-dealer
8/13/2002 6:07 104.88 10K Sale to Customer
8/15/2002 9:12 103 20K Purchase from Customer
8/16/2002 10:00 105.64 20K Sale to Customer
8/19/2002 11:23 104 10K Purchase from Customer
8/20/2002 9:43 105.62 10K Sale to Customer
8/26/2002 11:05 102.75 25K Purchase from Customer
8/27/2002 9:02 105.5 25K Sale to Customer
10/18/2002 17:21 98.43 25K Purchase from Customer
10/18/2002 17:21 100.18 25K Inter-dealer
10/21/2002 12:00 102.18 25K Inter-dealer
11/5/2002 8:27 103.97 25K Sale to Customer
11/11/2002 9:11 101.75 25K Purchase from Customer
11/12/2002 15:08 104.55 25K Sale to Customer
11/15/2002 12:03 101.5 25K Purchase from Customer
11/18/2002 10:19 103.5 25K Sale to Customer
11/20/2002 12:44 102.75 20K Purchase from Customer
11/20/2002 15:48 99.98 10K Purchase from Customer
11/20/2002 15:48 101.36 10K Inter-dealer
11/21/2002 11:00 102.86 10K Inter-dealer
11/21/2002 11:16 103.76 10K Sale to Customer
11/22/2002 8:42 104.4 20K Sale to Customer
1/14/2003 7:52 102.25 30K Purchase from Customer
1/15/2003 9:04 103.71 30K Sale to Customer
1/15/2003 12:28 101.25 10K Purchase from Customer
1/16/2003 8:54 103.74 10K Sale to Customer
2/3/2003 16:59 101.39 20K Inter-dealer
2/4/2003 0:00 102.39 20K Inter-dealer
2/4/2003 9:24 103.28 20K Sale to Customer
2/4/2003 9:45 101.39 20K Purchase from Customer
4/30/2003 12:09 102.1 60K Purchase from Customer
4/30/2003 13:04 102.2 60K Sale to Customer
5/5/2003 15:16 102 10K Purchase from Customer
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Table II
Distribution of Durations for Round-Trips and Reverse Round-Trips.

Round-trip Reverse Roundtrip
Time gap N pct cpct N pct cpct
<1 min 154,794 4.32% 4.32% 163,087 15.94% 15.94%
<2 min 122,997 3.44% 7.76% 35,615 3.48% 19.42%
<5 min 81,378 2.27% 10.03% 21,248 2.08% 21.50%
<15 min 137,920 3.85% 13.88% 30,068 2.94% 24.44%
<1 hour 331,875 9.27% 23.15% 60,816 5.94% 30.38%
<2 hours 215,585 6.02% 29.18% 39,878 3.90% 34.28%
<5 hours 217,971 6.09% 35.26% 50,629 4.95% 39.22%
>5 hours 34,240 0.96% 36.22% 17,727 1.73% 40.96%

1 day 960,002 26.81% 63.04% 44,116 4.31% 45.27%
2 days 210,101 5.87% 68.90% 18,588 1.82% 47.09%
3 days 242,931 6.79% 75.69% 17,759 1.74% 48.82%
4 days 169,814 4.74% 80.43% 16,100 1.57% 50.39%
5 days 128,877 3.60% 84.03% 15,768 1.54% 51.94%
>5 days 571,610 15.97% 100.00% 491,792 48.06% 100.00%

Total 3,580,095 100.00% 1,023,191 100.00%

We now illustrate through simulation that the asymmetric behaviors we document for

prices and dealer spreads are mutually consistent if pricing on the bid side of the market is

more likely to reflect transactions with informed, institutional investors. This is clearly the

case. The aggregate par value of purchases from customers is roughly equal to the value of

sales to customers in our sample of seasoned bonds, but the number of sales is twice as large.

On average, therefore, purchases are twice the size of sales. Still, there are many purchases

by dealers at par values that suggest the intermediaries are dealing with retail investors. If

dealers have a timing option that allows them to delay recognition of movements in intrinsic

value for retail investors, but those investors are more predominant when dealers are selling
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than when they are buying, then we will see half spreads on both sides of the market rising

when prices move in a direction that favors the dealer, while our measure of the price, the

mid-point of the implicit inside spread, will rise faster than it falls.

The results below expand on the simple numerical example in Section III of the paper and

Table II. We simulate the intrinsic value of an hypothetical bond using the Vasicek process.

Using our data, we calibrate arrival rates for trades of various sizes on both sides of the

market. Dealers then earn profits from two sources. They mechanically earn a proportional

half-spread that varies with transaction size. This is just compensation for transaction

services they provide. They also have a timing option. They can, with a certain probability,

succeed in buying or selling at the lagged intrinsic value. Otherwise they trade at the current

intrinsic value. The probability they succeed can depend on whether the trade is a buy or

a sale, and on the size of the trade. (In the numerical example, the probability is 1 for

all retail trades and zero for all institutional trades.) We then use these arrival rates and

price determination rules to simulate transaction histories, prices, and inventories, subject

to a constraint that the dealer’s inventory never goes negative. (If a buyer arrives and the

dealer has no bonds, no trade occurs.) Using this artificial sample of trades, we can calculate

midpoints and half-spreads as we do in the paper, and run tests on the data that are analogous

to those in Table VI and Table VIII in the paper. Generating the basic asymmetries is not

difficult. Matching the magnitudes of our coefficients requires a substantial time lag (see the

row of the table in bold face), suggesting that retail investors on the ask side of the market

are quite uninformed about prices.

Below we outline the procedure we use to simulate intrinsic values, midpoints, and half

spreads.

Step 1 - we compiled the subsample of bond-days used in the tests that require vit for
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two consecutive days. Pooling all these bond-days, we can estimate the probability a buyer

and a seller arrive and trade a specific quantity within a day. If the arrivals are Poisson, this

gives us parameters for the arrival intensities, λs(q) and λb(q), q = 10K, 15K, 25K, 50K,

100K, 250K, 1, 000K.

Step 2 - Use the Vasicek model to simulate bond prices for a 20-yr maturity bond. This

gives us a simulated series of daily intrinsic values p∗t or yield spreads, y∗t .

Step 3 - Assume dealer profits on trades are due to two components. They earn a

proportional half-spread that varies with transaction size φ(q). We use values of 100 basis

points for q = 10K − 15K, 75 b.p. for q = 25K − 50K, 10 b.p. for q = 100K, and 2 b.p. for

q = 250K − 1, 000K.

Dealers also have a timing option that allows them to charge a buyer max{p∗t , p∗t−lb} with

probability πb(q), and p∗t with probability 1−πb(q). The index lb ≥ 1 denotes the information

lag of an uninformed buyer. We vary lb between 1 to 10 days. Similarly, a dealer can charge

a seller min{p∗t , p∗t−ls} with probability πs(q), and p∗t with probability 1 − πs(q). The index

ls ≥ 1 denotes the information lag of an uninformed seller. We start with πb(q) = πs(q) = 1

for trades of less than 100K, and πb(q) = πs(q) = 0 for q ≥ 100K.

Step 4 - On each day, use the arrival rates from Step 1 and the price determination rules

in Step 2 to simulate transaction prices, subject to the constraint that dealer inventory does

not go negative. If a buyer arrives with quantity q, and the dealer inventory is bigger than

q, the buyer pays the price given by the dealer’s timing option plus the fixed half spread. If

a seller arrives, the dealer always buys, and the seller receives a price given by the timing

option less φ(q).

Step 5 - For each simulated day with sufficient transactions, we compute the midpoint

as the average of the minimum customer buy price and the maximum customer sale price.
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Compute the average customer buy price at and average customer sale price bt. Then we

compute the ask- and bid-side half spreads, (at − vt)/vt and (bt − vt)/vt.

Step 6 - We now have an artificial sample on which to run two tests that are analogous

to the central results in our paper in Tables 6 and 8. Analogous to Table 6, we run the

regression:

spt = β+(∆vt)
+ + β−(∆vt)

− + εt.

Corresponding to Table 8, we run

∆yt = δ+(y∗t − yt−1)+ + δ−(y∗t − yt−1)− + εt.

Predicted results - We should obtain asymmetries in the coefficients like we observe

in the tables. If we manipulate the arrival rates and timing option so the arrival rates are

symmetric for institutionally sized trades on the ask and bid side, and so that π(q) = 0 for

trades of all size. The asymmetries in the coefficients should then disappear.

For the subsample of bond-days used in the tests that require vit for two consecutive days,

we estimated the arrival intensities, λs(q) and λb(q), for q = 10K, 15K, 25K, 50K, 100K,

250K, 1, 000K by pooling all bond-days. The corresponding probabilities for ask trades of

size 10, 15, 25, 50, 100, 250, 1,000 are 16.49, 4.40, 12.12, 9.89, 5.95, 3.48, and 4.09 percent.

The corresponding probabilities for bid trades of size 10, 15, 25, 50, 100, 250, 1,000 are 10.83,

2.94, 8.29, 7.89, 5.30, 3.44, and 4.88 percent. That means, 48.86 (35.25) percent of all trades

in the estimation sample are dealer sales to (purchases from) retail customers (defined by

trade of 50 or fewer bonds), and 7.57 (8.32) percent of all trades in the estimation sample

are dealer sales to (purchases from) institutional clients (defined by trade of 100 or more

bonds). Finally, we calibrated the arrival intensities by scaling the probabilities to match
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the average number of transactions per day given trading takes place, which is 3.3 trades

per day.

Table III reports the results. The first row replicates the data moments found in Tables

6 and 8. The second row shows that when all traders are informed (πs(q) = πb(q) = 0

for all q), the coefficient estimates are symmetric, as we would expect. In the last column

we compute a measure of fit as the squared distance between the empirical moments and

the simulated model moments. A smaller number means better fit. In the first simulation

panel we vary the fraction of uninformed buyers from zero to 100 percent. Across rows, the

coefficient β− captures the widening ask half-spread in falling markets and becomes closer

to the data. However, the coefficients for the bid half-spread and for rising markets cannot

be captured by the presence of uninformed buyers only. In the next two panels, we vary the

fraction of uninformed sellers from zero to 100 percent. The coefficient β+ for the widening

bid half-spread in rising markets can now be captured but the other parameters are still

mismatched. An informational disadvantage for retail investors of only one day, hence, can

be refuted.

Next we increase the information lag of uninformed retail buyers and, respectively, sellers

from one to two, five, and ten days. The simulations are now able to capture the price elas-

ticities observed in the data. To match the data one needs a sizeable fraction of uninformed

investors buying bonds at inflated prices and selling bonds at deflated prices. The informa-

tional disadvantage of retail investors is striking. At the specification that best matches the

data, the row in bold face, the information lag is between five to ten trading days.

The simulations also reveal that when information is symmetrically distributed among

retail buyers and sellers, the simulated data does not generate sufficient asymmetry in the

coefficients. The reason is that, contrary to our illustrative example, there is not enough
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asymmetry in transaction sizes at the bid compared to the ask when calibrated to the data.

In unreported results we show that it is easy to generate the observed price asymmetry when

transaction sizes are sufficiently asymmetric.

In summary, the simulations show that the data is broadly consistent with a time delay

in the information of retail investors. The portion of uninformed investors is particularly

large at the ask. The information lag is substantial and reaches up to two weeks. This is

consistent with our findings in the early part of the paper (Figure 1).

Part B. Supplementary and Robustness Tests
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Table III
Information lag & probability of information in simulated data.

The table reports parameter estimates from simulated data for the elasticity of the bid-ask spread and for
the speed of adjustment in the yield spread to changing market conditions. The simulated prices and yields
are for a sample of 10,000 bonds with twenty years to maturity simulated for one year. Across panels, we
vary the probability of uninformed retail traders at the ask and, respectively, the bid, (πb, πs), and the
information lag in days of retail traders at the ask and, respectively, bid, (lb, ls), as specified in the first
column. The coefficients are from the regressions

spt = β+(∆vt)
+ + β−(∆vt)

− + εt,

∆yt = δ+(y∗t − yt−1)+ + δ−(y∗t − yt−1)− + εt.

In the last column, we compute a measure of the distance between the empirical moments and the simu-
lated model moments by summing the squared deviations. The specification with the minimum distance is
highlighted.

Bid-Ask Ask Bid Yield Spread Moment
Parameters Spread Spread Spread Adj. Speed Distance

πb πs lb ls β+ β− β+ β− β+ β− δ+ δ−

Data moments 10 -30 3 -40 10 -5 0.92 0.74 –

0 0 1 1 -2 -2 -6 -6 4 5 1.00 1.01 3,100
.5 0 1 1 -11 -9 -10 -18 -1 9 1.00 1.01 2,609
1 0 1 1 -22 -12 -14 -24 -7 13 1.01 1.01 3,263

0 .5 1 1 1 8 -10 -2 11 10 1.00 1.01 4,178
.5 .5 1 1 -7 -1 -14 -14 7 13 1.00 1.01 3,257
1 .5 1 1 -17 -4 -17 -21 0 16 1.00 1.01 3,478

0 1 1 1 1 19 -15 5 15 14 1.00 1.01 5,960
.5 1 1 1 -6 9 -18 -7 11 17 1.00 1.01 4,565
1 1 1 1 -15 5 -20 -15 6 19 1.01 1.01 4,370

1 0 2 1 -14 -7 -11 -22 -3 15 1.08 0.89 2,625
1 .5 2 1 -11 0 -15 -19 3 19 1.01 0.90 3,029
1 1 2 1 -12 7 -19 -15 7 22 0.96 0.92 3,966

1 0 5 1 14 -13 3 -28 11 15 1.23 0.73 1,776
1 .5 5 1 15 -7 0 -25 15 18 1.12 0.74 1,744
1 1 5 1 14 -1 -4 -22 18 21 1.05 0.75 2,127

1 0 10 1 46 -25 20 -38 26 13 1.36 0.64 4,154
1 .5 10 1 46 -20 17 -36 29 15 1.21 0.65 3,365
1 1 10 1 46 -16 14 -33 31 17 1.12 0.66 3,108

1 0 5 2 14 -13 3 -28 11 15 1.23 0.73 1,776
1 .5 5 2 10 -7 -3 -26 12 18 1.05 0.74 1,469
1 1 5 2 5 -2 -9 -22 14 20 0.91 0.75 1,953

1 0 10 2 46 -25 20 -38 26 13 1.36 0.64 4,154
1 .5 10 2 40 -20 15 -36 26 16 1.13 0.65 2,371
1 1 10 2 36 -15 9 -33 27 17 0.97 0.66 1,834

1 0 5 5 14 -13 3 -28 11 15 1.23 0.73 1,776
1 .5 5 5 6 -17 -4 -30 11 13 0.97 0.72 670
1 1 5 5 -1 -13 -15 -25 14 12 0.76 0.73 1,485

1 0 5 10 14 -13 3 -28 11 15 1.23 0.73 1,776
1 .5 5 10 11 -40 -3 -39 14 -1 0.93 0.72 179
1 1 5 10 7 -41 -15 -35 21 -6 0.69 0.75 1,130

1 0 10 10 46 -25 20 -38 26 13 1.36 0.64 4,154
1 .5 10 10 29 -39 8 -43 21 4 0.93 0.63 779
1 1 10 10 16 -35 -7 -36 23 1 0.68 0.64 1,070
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Table IV
Granger Causality test for yields of all maturity.

The body of the table reports p-values for Granger tests of causality between municipal yield indices and
treasuries of matched maturity. The first row compare the Bond Buyer 40 yield to call to the 10 year
Treasury rate. The remaining rows consider Lehman Brothers indicative yields to treasuries of comparable
maturity.

Maturity P-value Trsy Causes Muni P-value Muni Causes Trsy

BBI vs. 10Y Treasury Note 0.001 TRUE 0.459 FALSE
3M 0.000 TRUE 0.006 TRUE
6M 0.000 TRUE 0.840 FALSE
1Y 0.000 TRUE 0.175 FALSE
2Y 0.000 TRUE 0.960 FALSE
3Y 0.000 TRUE 0.930 FALSE
5Y 0.000 TRUE 0.719 FALSE
7Y 0.000 TRUE 0.830 FALSE
10Y 0.000 TRUE 0.646 FALSE
20Y 0.000 TRUE 0.256 FALSE
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Table V
Effects of Macroeconomic News on Yield Spreads.

The table documents the effect of macro announcements on municipal bond yields and spreads between
municipal bonds and treasuries. The yield log-spread is the natural logarithm of the ratio of the maturity-
matched Treasury rate and the midpoint yield on the muni bond. Yields are measured in basis points. The
explanatory variables capturing the effect of macro news are the standardized surprise component in the
macro announcement. We compute the standardized surprise, as in ?, as the actual value minus the consensus
forecast divided by their standard deviation across all observations. Additional control variables are omitted
from the table, including macro announcement dummies that equal one if there is an announcement of the
corresponding item on the given day and zero otherwise, and various bond controls. These control variables
are the bond and issuer characteristics described in Appendix ??, order flow variables (bond-level trading
volume and aggregate order imbalances over the past ninety sessions), dummies for the calendar year and the
US state of issuance, and control variables for the par sizes and the daily changes in the size of the trades used
to measure muni yields. The estimation results are from a cross-sectional regression on the announcement
day, and standard errors are adjusted for heteroskedasticity. The sample is restricted to investment-grade
bonds. *, ** and *** indicate that the corresponding p-values are less than 0.10, 0.05, and 0.01, respectively.

∆ Yield Log-Spread ∆ Yield ∆ Treasury Yield

Positive Macro Surprise:
Advance Retail Sales 0.41∗∗∗ 0.07 1.92∗∗∗

Capacity Utilization 0.12∗∗ −0.27 0.74∗∗∗

Nonfarm Payrolls 1.23∗∗∗ 1.56∗∗∗ 7.58∗∗∗

Consumer Price Index 0.14∗∗∗ 0.42∗∗ 0.97∗∗∗

GDP Annualized 0.36∗∗∗ 0.39∗∗∗ 2.28∗∗∗

Industrial Production −0.02 −0.34 −0.46∗∗∗

Producer Price Index −0.42∗∗∗ −0.04 −2.53∗∗∗

Consumer Confidence 0.09∗∗∗ 0.08 0.72∗∗∗

Jobless Rate 0.20∗∗∗ −0.22 0.60∗∗∗

FOMC Rate Decision −0.03 0.16 −0.01

Negative Macro Surprise:
Advance Retail Sales 0.25∗∗∗ 0.38∗∗ 1.95∗∗∗

Capacity Utilization 0.44∗∗∗ 0.12 1.97∗∗∗

Nonfarm Payrolls 0.56∗∗∗ 0.41∗∗∗ 2.88∗∗∗

Consumer Price Index 0.44∗∗∗ 0.20 2.29∗∗∗

GDP Annualized −0.03 0.16 −0.01
Industrial Production −0.35∗∗∗ 0.41∗∗ −1.36∗∗∗

Producer Price Index 0.15∗∗∗ 0.18 1.27∗∗∗

Consumer Confidence −0.02 0.13 −0.03
Jobless Rate −0.01 −0.15 −0.30∗∗∗

FOMC Rate Decision −0.01 0.10 0.08∗∗∗

Observations 226, 065 228, 019 228, 019
R2 0.13 0.12 0.14
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Part C. Panel Estimator of Asymmetric and Sluggish

Response

Denote by yit the realization of the dependent variable at time t for bond i, and let its

latent equilibrium value be y∗it. The variable yit can be the bid-ask spread or the yield spread

of municipals over treasuries. Let xit and zit be observable characteristics of bond i at time

t. The observed sample is (xit, yit, zit) for bond i = 1, ..., N and date t = 1, ..., T .

The adjustment of yit towards its new equilibrium value can be expressed as follows:

∆yit = f(y∗it − yit−1; zit), (C1)

where f : R → R is a monotonic invertible function with f(0) = 0, f ′(ε) > 0 for ε ∈ R.

The model (C1) allows the speed of adjustment to depend on the endogenous deviation

from equilibrium, y∗it− yit−1, and on exogenous determinants zit through their effects on the

functional form of f . Let δ be the set of parameters that determine f .

Assume

y∗it = β′xit + αi + εit, (C2)

where αi is a bond-specific unobserved effect and εit = y∗it − E(y∗it|xit, αi) is the residual.

We now make a standard random effects assumption. Assume that, as in Ahn and Thomas

(2006), the random vector (yi1, αi, (εit)t=2,...,T )′ ∈ RT+1 exhibits a Gaussian distribution:


yi1

αi

(εit)
′
t=2,...,T

 = N




m

0

0

 ,


σ2
y σyα 0

σyα σ2
α 0

0 0 Σit


 . (C3)
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Introduce the parameters γ0 = −σyα
σ2
y
m and γ1 = σyα

σ2
y
−1, and let σ be the set of parameters

that determine Σit, ∀i, t. After inverting and first-differencing, equation (C1) yields a system

of equations with autocorrelated error ∆εit:

f−1(∆yit)− f−1(∆yit−1) + ∆yit−1 = β′∆xit + ∆εit, for t = 3, ..., T,

f−1(∆yit)− γ1yit−1 = γ0 + β′xit + ui, for t = 2.
(C4)

In (C4), the error term ui = αi + εi2−E(αi + εi2|yi1), with E(αi + εi2|yi1) = γ0 + (1 + γ1)yi1,

has zero mean and variance equal to σ2
iu = σ2

i2 + s2u with s2u = σ2
α −

σ2
yα

σ2
y

.

Under the random-effects assumption (C3), the error distribution f of (ui,∆ε
′
i)
′ in (C4) is

jointly Gaussian. Let µit = E(∆εit|∆εit−1, ...,∆εi3, ui) and s2it = V (∆εit|∆εit−1, ...,∆εi3, ui)

be the conditional mean and variance of the error given past observations. The properties

of the normal distribution yield the following recursive structure: µi3 =
−σ2

i2

σ2
iu
ui, s

2
i3 = σ2

i3 +

σ2
i2 −

(σ2
i2)

2

σ2
iu

, and for t = 4, ..., T ,

µit =
−σ2

it−1

s2it−1
(∆εit−1 − µit−1), s2it = σ2

it + σ2
it−1 −

(σ2
it−1)

2

s2it−1
. (C5)

We can now derive the log-likelihood of the parameter vector θ = (β, δ, γ, σ, su) given

the data (yi2, ..., yiT )′ for bond i = 1, ..., N conditional on the initial observation yi1, as yi1 is

uncorrelated with the error vector (ui,∆ε
′
i)
′:

lnL(θ|y) =
N∑
i=1

lnL(θ|yi), (C6)
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where

lnL(θ|yi) = ln f(ui|yi1) +
T∑
t=3

ln f(∆εit|∆εit−1, ...,∆εi3, ui, yi1) +
T∑
t=2

ln

∣∣∣∣∂f−1(∆yit)∂∆yit

∣∣∣∣
= −(T − 1) ln

√
2π − lnσiu −

1

2

(ui)
2

σ2
iu

+
T∑
t=3

(
− ln sit −

1

2

(∆εit − µit)2

s2it

)
+

T∑
t=2

ln

∣∣∣∣∂f−1(∆yit)∂∆yit

∣∣∣∣ . (C7)

Standard error estimates A reasonable concern is whether the observations are indepen-

dent in expression (C6). Many of the observations took place on the same days, and many

issuers have several bond issues outstanding. In addition, the errors may be heteroskedastic

and autocorrelated for given bonds even after controlling for unobserved bond-specific ef-

fects. In the presence of clustered errors, our MLE estimates are still consistent but standard

errors can be understated, overstating significance and leading to incorrect inference in finite

sample.

The common correction is to compute cluster-robust standard errors that generalize the

White (1980) heteroskedasticity-consistent variance estimator (see Petersen (2009)). This

permits both heteroskedasticity and error correlation of unknown form within clusters. In

our setting, the natural adjustment to the variance of the estimator is to allow for two-way

non-nested clustering. Following Cameron, Gelbach and Miller (2007), we cluster errors

across bonds for particular calendar days (capturing time effects) and across bond-days for

particular bond issuers (capturing municipality effects). Bond issue effects (that are not

already captured by the random effects αi) are nested within issuer clusters and need not be

considered separately.

Denote the score vector by g(θ) = D lnL(θ|y) and the Hessian by H(θ) = D2 lnL(θ|y).
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Under standard assumptions, the estimated coefficient vector θ̂ is asymptotically normal

with covariance matrix V ar[θ̂] = {−E[H(θ)]}−1V ar[g(θ)]{−E[H(θ)]}−1. The cluster-robust

estimator for the variance of the coefficient estimates equals

V̂ ar[θ̂] = {−H(θ̂)}−1V̂ ar[g(θ̂)]{−H(θ̂)}−1, (C8)

where {−H(θ̂)}−1 is the standard covariance estimate and V̂ ar[g(θ̂)] = V̂10 + V̂01− V̂11 where

V̂r =
∑
m

∑
n

gm(θ̂)gn(θ̂)′Ir(m,n) (C9)

and Ir(m,n) is an indicator that takes the value one if observations m and n share all clusters

referenced by r, and zero otherwise.
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