
Internet Appendix to “Technological Growth and Asset

Pricing”∗

This appendix complements the paper in a number of ways. Section A contains the proofs of

the formal results stated in the paper. Section B discusses several of the model’s assumptions

and offers details concerning the introduction of tree-specific schocks in Section III.C of the

paper. Section C contains the calculation of the covariance between excess returns and

subsequent long-run consumption growth in the models of Campbell and Cochrane (1999)

and Bansal and Yaron (2004). Finally, Section D provides details concerning the covariance

decomposition (equation (24)) inside our model.

A. Proofs

Proof of Proposition 1. Equation (3) can be rewritten as

P oj,t ≡ sup
τj
Et

[
Hτj

Ht

(
βζ(ij)θτj − q

)]
, (IA.1)

where β is defined as

β ≡ Et

[∫ ∞
t

Hs

Ht

θs
θt
ds

]
(IA.2)

=

∫ ∞
t

Ete
−
(
r−µ+σ2

2
+κ2

2

)
(s−t)+(σ−κ)(Bs−Bt)ds.

=
1

r + κσ − µ
.
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The second line in equation (IA.2) follows from solving the stochastic differential equations (6) and

(1), while the third line of (IA.2) follows from the properties of lognormal variables.

To, solve (IA.1), we choose to to work under the risk-neutral measure and re-write it as

P oj,t ≡ sup
τj
EQt

{
e−r(τj−t)

(
βζ(ij)θτj − q

)}
, (IA.3)

where the Brownian motions under the risk-neutral and the natural probability measurea are related

by dBQ
t = dBt + κdt, so that the dynamics of θt are given by

dθt
θt

= (µ− κσ) dt+ σdBQ
t .

To solve problem (IA.3), we use the fact that in the continuation region P oj,t satisfies the ODE

σ2

2
θ2
tP

o
θθ + (µ− κσ) θtP

o
θ − rP o = 0,

which has the general solution P oj,t = D1θ
φ+

+ D2θ
φ− with

φ± =
−
(
µ− κσ − σ2

2

)
±
√(

µ− κσ − σ2

2

)2
+ 2σ2r

σ2
.

For our purposes, given that φ− < 0 we can set D2 = 0, since otherwise limθt→0 P
o
j,t = ±∞, which

clearly is not a solution that corresponds to the economic problem (IA.3). We also observe that

the assumption r + κσ > µ implies that φ+ > 1.1

At the level θ(ij) where the firm plants a new tree, the function P oj,t satisfies the value-matching

and smooth-pasting conditions

P o
(
θ(ij)

)
= βζ(ij)θ(ij) − q, (IA.4)

P oθ

(
θ(ij)

)
= βζ(ij). (IA.5)

Using P oj,t = D1θ
φ+

t inside (IA.4) and (IA.5) gives a solution of two equations in the two unknown

constants D1 and θ(ij). The solution of this system is given by

θ(ij) =
φ+

φ+ − 1

q

βζ(ij)
, (IA.6)

D1 =
[
θ(ij)

]−φ+ (
βζ(ij)θ(ij) − q

)
.

1φ± are the roots of the quadratic σ2

2 φ (φ− 1) + (µ− κσ)φ− r = 0. The value of this quadratic at φ = 1

is µ− κσ − r < 0. Hence, the positive root φ+ must be larger than one.
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Using the definition of υ and the fact that firm ij plants a tree the first time that θt reaches θ(ij)

leads to (7). Furthermore, the value of a growth option is

P oj,t = D1θ
φ+

t =

(
θt

θ(ij)

)φ+ (
βζ(ij)θ(ij) − q

)
=

(
θt

θ(ij)

)φ+ (
q

φ+ − 1

)
. (IA.7)

Since the first time that θt reaches θ(ij) is also the first time that the running maximum of

θt reaches a new level, the running maximum of θt can be used to recover the mass of trees Kt

that have been planted. Indeed, equation (IA.6) implies that max0≤s≤t θs = φ+

φ+−1
q

βζ(Kt)
. Using this

equation along with the definition of ζ(Kt) to solve for Kt leads to (8).

Proof of Lemma 1. Since the expected excess return of any claim equals the product of

its quadratic variation times the volatility of the pricing kernel (κ) , it suffices to show that
∂ logPAt
∂ log θt

<
∂ logP ot
∂ log θt

. The quadratic variation of assets in place is
∂ logPAt
∂ log θt

σ = σ, and similarly

the quadratic variation of growth options is
∂ logP ot
∂ log θt

σ = φ+σ. Since φ+ > 1 (see the proof of

Proposition 1), the result follows.

Proof of Lemma 2. Using the definition

Xj,t ≡
∑
n<N

Anζ(in,j)1{χ̃n,j=1}, (IA.8)

a firm’s total output of consumption goods is given by Xj,tθt, and accordingly total output of

consumption goods is
(∫ 1

0 Xj,tdj
)
θt. A straightforward computation gives∫ 1

0
Xj,tdj =

∑
n≤N−1

An

∫ Kn,τn+1

0
ζ(i)di+AN

∫ KN,t

0
ζ(i)di

=
∑

n≤N−1

(An+1 −An) +AN

∫ KN,t

0
ζ(i)di

= AN

(
1− lim

n→−∞
(An/AN ) + F (KN,t)

)
.

If Pr
(
Kn,τ−n+1

> ε
)

= p > 0 for some ε > 0, then limn→−∞ (An/AN ) = 0 with probability one, and

(13) follows.

Next we prove that there exists an appropriate constant υ = υ∗ such that if a firm perceives

the equilibrium process for KN,t to be given by (21) and the stochastic discount factor to be given

by Ht = e−ρtUc(ct,M
C
t ), with ct = Ct given by (13), then that firm will optimally plant a tree the

first time that θt reaches the threshold value given by equation (19). We also provide closed-form

expressions for the equilibrium value of any firm j in round N at time t.
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We start by defining some constants and functions that appear repeatedly in the proof. Specif-

ically, let constants γ1 and γ∗1 be defined as

γ1 ≡

√(
µ− σ2

2

)2
+ 2σ2 (ρ+ λ)−

(
µ− σ2

2

)
σ2

> 0,

γ∗1 ≡

√(
µ− σ2

2

)2
+ 2σ2ρ−

(
µ− σ2

2

)
σ2

> 0,

and constants β1 and β2 be defined as

β1 ≡ 1

ρ+ λ− µ (1− γ) + γ (1− γ) σ
2

2

,

β2 ≡ −νp
1− p+ νp

− ν − γ1 < 0.

We assume that β1 > 0. Furthermore, let the functions g1 (x) and g̃1 (x) be given by

g1 (x) ≡ β2 + γ1 + γ + x,

g̃1 (x) ≡ α (1− γ) p

1− p+ νp
+ (γ − 1) (1− α) + x,

the functions g2 (x) and g̃2 (x) be defined as

g2 (x) ≡ (γ − 1) (1− α) + x

αγ − α+ γ1
+
g1 (x)

1 + β2
,

g̃2 (x) ≡ (γ − 1) (1− α) + x

αγ − α+ γ1
+

g̃1 (x)

1 + β2 + p
1−p+νp

,

and g3 (x) be given by

g3 (x) ≡ λ

(ρ+ λ) + σ2

2 (γ + x) (1− γ − x)− µ (1− γ − x)
.

A useful first result is contained in the following lemma.

LEMMA 3 Fix a constant υ ≥ bp and suppose that KN,t is given by

KN,t = K

(
Mt

MτN

)
= min

max


[(

bp
υ

)
Mt
MτN

] 1
1−p+νp − 1

b
, 0

 , 1
 . (IA.9)

Ct is given by Ct = θtXτn (1 + bKN,t)
p, and Ht is given by Ht = e−ρtC

−γ+(γ−1)(1−α)
t

(
θt
Mt

)(1−γ)(1−α)
.

Define mt ≡ Mt
MτNt

, and also let

g4 (x) ≡ g3 (x)

[
(γ − 1) (1− α) + x

α (γ − 1) + γ1
+

(
bp

υ

)α(γ−1)+γ1

g2 (x)
[
(1 + b)(1−p+νp)(1+β2) − 1

]]
,

g̃4 (x) ≡ g3 (x)

[
(γ − 1) (1− α) + x

α (γ − 1) + γ1
+

(
bp

υ

)α(γ−1)+γ1

g̃2 (x)
[
(1 + b)(1−p+νp)(1+β2)+p − 1

]]
.
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Furthermore, let the constants α1 and m∗ be defined as

α1 =

[
(γ − 1) (1− α)

α (γ − 1) + γ1
+

(
bp

υ

)α(γ−1)+γ1

g2 (0)
[
(1 + b)(1−p+νp)(1+β2) − 1

]]
β1,

m∗ =
υ

bp
(1 + b)1−p+νp ,

and the constants ∆1 and ∆2 be given by

∆1 = −
α1 + β1

1−λβ1
g4 (0)

g4 (1− γ − γ∗1)
, (IA.10)

∆2 =
β1

1− λβ1
. (IA.11)

We assume throughout that ∆1 > 0. Finally, let χt denote the following conditional expectation:

χt ≡ Et

∫ ∞
t

e−ρ(s−t)
(
Cs
Ct

)−ν (Ms
θs
Mt
θt

)(γ−1)(1−α)
θs
θt
ds. (IA.12)

Then χt = χ
(
θt
Mt
,mt

)
, where

χ
(
θt
Mt
,mt

)
= ∆2

{
1 +

(
θt
Mt

)γ−1+γ1
[

(γ−1)(1−α)
α(γ−1)+γ1

+
(
bpmt
υ

)α(γ−1)+γ1

g2 (0)
(

(1 + b)(1−p+νp)(1+β2) − 1
)]}

+∆1

(
θt
Mt

)γ+γ∗1−1

1 +
(
θt
Mt

)γ1−γ∗1

 −α(γ−1)+γ∗1
α(γ−1)+γ1

+
(
bpmt
υ

)α(γ−1)+γ1

×

g2 (1− γ − γ∗1)
[
(1 + b)(1−p+νp)(1+β2) − 1

]


when mt ≤ υ
bp ,

χ
(
θt
Mt
,mt

)
= ∆2

{
1 +

(
θt
Mt

)γ−1+γ1
[
− g1(0)

1+β2
+
(
bpmt
υ

)−(1+β2)
(1 + b)(1−p+νp)(1+β2) g2 (0)

]}
+∆1

(
θt
Mt

)γ+γ∗1−1

1 +
(
θt
Mt

)γ1−γ∗1

 −g1(1−γ−γ∗1)
1+β2

+
(
bpmt
υ

)−(1+β2)
×

(1 + b)(1−p+νp)(1+β2) g2 (1− γ − γ∗1)


when υ

bp ≤ mt ≤ m∗, and finally

χ

(
θt
Mt

,mt

)
= ∆2

{
1 +

(
θt
Mt

)γ−1+γ1 (γ−1)(1−α)
α(γ−1)+γ1

}
+ ∆1

(
θt
Mt

)−(1−γ−γ∗1)
{

1− α(γ−1)+γ∗1
α(γ−1)+γ1

(
Mt
θt

)γ∗1−γ1
}

when mt ≥ m∗.

Proof of Lemma 3. To save space we only give a sketch of the argument. As a first step,

let Z
(
Mτn
θτn

)
be given as

Z

(
Mτn

θτn

)
≡ Eτn

∫ ∞
τn

e−ρ(s−τn)

(
Cs
Cτn

)−ν (Ms
θs

)(γ−1)(1−α)

(
Mτn
θτn

)(γ−1)(1−α)

θs
θτn

ds.
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Z
(
Mτn
θτn

)
satisfies the recursive relationship

Z

(
Mτn

θτn

)
= Eτn

∫ τn+1

τn

e−ρ(s−τn)

(
Cs
Cτn

)−ν (Ms
θs

)(γ−1)(1−α)

(
Mτn
θτn

)(γ−1)(1−α)

θs
θτn

ds (IA.13)

+Eτn

e−ρ(τn+1−τn)

(
Cτn+1

Cτn

)−ν (Mτn+1

θτn+1

)(γ−1)(1−α)

(
Mτn
θτn

)(γ−1)(1−α)

(
θτn+1

θτn

)
Z

(
Mτn+1

θτn+1

) .
Let ωt ≡ θt

θτn
and let ξ (ωt,mt) be defined as

ξ (ωt,mt) ≡ Et

∫ τn+1

t
e−ρ(s−t)

(
Cs
Cτn

)−ν (Ms
θs

)(γ−1)(1−α)

(
Mτn
θτn

)(γ−1)(1−α)

θs
θτn

ds

= Et

∫ τn+1

t
e−ρ(s−t) (1 + F (K (mt)))

−νω1−γ
t m

(γ−1)(1−α)
t ds, (IA.14)

where the second line follows the definitions of ωt and mt and from Ct = θtXτn (1 + F (K (mt))).

To provide a closed-form solution for ξ (ωt,mt), we solve the ordinary differential equation (ODE)

σ2

2
ω2ξωω + µωξω − (ρ+ λ) ξ + (1 + F (K (mt)))

−νω1−γ
t m

(γ−1)(1−α)
t = 0 (IA.15)

subject to the boundary conditions

ξm

((
Mτn

θτn

)
mt,mt

)
= 0, lim

ωt→0

ξ (ωt,mt)

(1 + F (K (mt)))−νm
−α(γ−1)
t

(
ωt
mt

)1−γ <∞. (IA.16)

By the results in Heinricher and Stockbridge (1991), a continuously differentiable function (in ωt)

that solves (IA.15) and (IA.16) is the solution to (IA.14).2 The function that solves (IA.15) subject

2A sketch of the argument follows: Apply Ito’s Lemma to e−(ρ+λ)tξ (ωtmt) to obtain

E
(
e−(ρ+λ)(T−t)ξ (ωT ,mT )

)
− ξ (ωt.mt) = E

∫ T

t

e−(ρ+λ)(s−t)
(
σ2

2
ω2ξωω + µωξω − (ρ+ λ) ξ

)
ds

+E

∫ T

t

e−(ρ+λ)(s−t)ξm

((
Mτn

θτn

)
ms,ms

)
dms,

where the second line of the above display uses the fact that mt increases whenever θt = Mt, that is, whenever

ωt =
(
Mτn

θτn

)
mt. Now, let T →∞, and use (IA.15) together with (IA.16) to arrive at (IA.14).
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to (IA.16) is given by

ξ (ωt,mt) =



β1m
−α(γ−1)
t

(
ωt
mt

)1−γ

×

1 +
(
θτnωt
Mτnmt

)γ1+γ−1

 (γ−1)(1−α)
α(γ−1)+γ1

+
(
bpmt
υ

)α(γ−1)+γ1

×g2 (0)
[
(1 + b)

(1−p+νp)(1+β2] − 1
)
 ; mt ≤ υ

bp

β1m
−α(γ−1)
t

(
bpmt
υ

) −νp
1−p+νp

(
ωt
mt

)1−γ

×
{

1 +
(
θτnωt
Mτnmt

)γ1+γ−1
[
− g1(0)

1+β2
+
(
bpmt
υ

)−(1+β2)

(1 + b)
(1−p+νp)(1+β2)

g2 (0)

]}
; mt ∈

[
υ
bp ,m

∗
]

β1m
−α(γ−1)
t (1 + b)

−νp
(
ωt
mt

)1−γ
{

1 +
(
θτnωt
Mτnmt

)γ1+γ−1
(γ−1)(1−α)
α(γ−1)+γ1

}
; mt ≥ m∗,

(IA.17)

which can be verified by direct substitution into (IA.15) and (IA.16).

We next take a number δ ≥ 1− γ − γ1, and compute the function Φ (ωt,mt; δ) , defined as

Φ (ωt,mt; δ) (IA.18)

≡ Et

e−ρ(τn+1−t)
(
Cτn+1

Cτn

)−ν (Mτn+1

θτn+1

)(γ−1)(1−α)

(
Mτn
θτn

)(γ−1)(1−α)

(
θτn+1

θτn

)(
Mτn+1

θτn+1

)δ
=

(
Mτn

θτn

)δ
·B (ωt,mt, δ) , (IA.19)

where

B (ωt,mt; δ) ≡ Et
[
e−ρ(τn+1−t)

(
(1 + F (K(mτ−n+1

)))
)−ν

m
(γ−1)(1−α)+δ

τ−n+1

ω1−γ−δ
τ−n+1

]
.

The last line of equation (IA.18) follows from the definitions of ωt and mt and from Ct =

θtXτn (1 + F (K (mt))). The expressions mτ−n+1
and ωτ−n+1

denote the values of mt and ωt at the

end of epoch n (i.e., an “instant” before the epoch changes).

To determine the expression for B (ωt,mt; δ), we repeat the same argument as for V (ωt,mt) .

Specifically, B (ωt,mt) satisfies the ODE

σ2

2
ω2Bωω + µωBω − (ρ+ λ)B + (1 + F (K (mt)))

−νm
(γ−1)(1−α)+δ
t ω1−γ−δ

t = 0 (IA.20)

subject to the boundary conditions

Bm

((
Mτn

θτn

)
mt,mt

)
= 0, lim

ωt→0

B (ωt,mt; δ)

ω1−γ−δ
t

<∞. (IA.21)
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It can be verified by direct substitution that the solution to (IA.20) and (IA.21) is given by

B (ωt,mt; δ) =



g3 (δ)
(
ωt
mt

)1−γ−δ
m
−α(γ−1)
t

×

1 +
(
Mτnmt
θτnωt

)1−γ−γ1−δ
 (γ−1)(1−α)+δ

α(γ−1)+γ1
+
(
bpmt
υ

)α(γ−1)+γ1

×g2 (δ)
[
(1 + b)(1−p+νp)(1+β2) − 1

]
 ;mt ≤ υ

bp

g3 (δ)
(
bpmt
υ

) −νp
1−p+νp

(
ωt
mt

)1−γ−δ
m
−α(γ−1)
t

×

1 +
(
Mτnmt
θτnωt

)1−γ−γ1−δ
 − g1(δ)

1+β2
+
(
bpmt
υ

)−(1+β2)

× (1 + b)(1−p+νp)(1+β2) g2 (δ)

 ; mt ∈ [ υbp ,m
∗]

g3 (δ) (1 + b)−νp
(
ωt
mt

)1−γ−δ
m
−α(γ−1)
t

×
[
1 + (γ−1)(1−α)+δ

α(γ−1)+γ1

(
Mτnmt
θτnωt

)1−γ−γ1−δ
]

; mt ≥ m∗.

(IA.22)

Hence, at the beginning of epoch, ωt = 1 and mt = 1, and therefore

B (1, 1; δ) = g3 (δ) + g4 (δ)

(
Mτn

θτn

)1−γ−γ1−δ
, (IA.23)

where the function g3 (δ) and g4 (δ) are given in the statement of the lemma. Combining (IA.23)

with (IA.19), it follows that

Φ (1, 1; δ) = g3 (δ)

(
Mτn

θτn

)δ
+ g4 (δ)

(
Mτn

θτn

)1−γ−γ1

. (IA.24)

To complete the computation of Z
(
Mτn
θτn

)
, we employ a “guess and verify” approach. We first

guess that Z
(
Mτn
θτn

)
can be written as

Z

(
Mτn

θτn

)
= ∆1

(
Mτn

θτn

)δ1
+ ∆2 (IA.25)

for some appropriate constants δ1, ∆1, and ∆2. Using (IA.25) inside the recursive equation (IA.14),

recalling that at the beginning of the epoch ωτn = 1 and mτn = 1, and using the definition of
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Φ (ωτn ,mτn ; δ) (equation (IA.18)), we obtain

∆1

(
Mτn

θτn

)δ1
+ ∆2 (IA.26)

= ξ (ωτn ,mτn) + ∆1Φ (ωτn ,mτn ; δ1) + ∆2Φ (ωτn ,mτn ; 0)

= β1 + α1

(
Mτn

θτn

)1−γ−γ1

+ ∆1

[
g3 (δ1)

(
Mτn

θτn

)δ1
+ g4 (δ1)

(
Mτn

θτn

)1−γ−γ1
]

+∆2

[
g3 (0) + g4 (0)

(
Mτn

θτn

)1−γ−γ1
]

= [β1 + ∆2g3 (0)] + [α1 + ∆1g4 (δ1) + ∆2g4 (0)]

(
Mτn

θτn

)1−γ−γ1

+ ∆1g3 (δ1)

(
Mτn

θτn

)δ1
.

Conjecture (IA.25) is true if the coefficients on the left- and the right-hand sides of (IA.26) match.

Matching free-term coefficients, that is, setting

∆2 = β1 + ∆2g3(0) = β1 + ∆2λβ1,

gives ∆2 as in (IA.11). The value δ1 = 1−γ−γ∗1 follows from equating the coefficients of
(
Mτn
θτn

)δ1
:

∆1 = ∆1g3(δ1).

Finally, the term that pre-multiplies
(
Mτn
θτn

)1−γ−γ1

needs to equal zero,

0 = α1 + ∆1g4(δ1) + ∆2g4(0),

which leads to ∆1 as in (IA.10). This completes the computation of Z
(
Mτn
θτn

)
.

Having determined Z
(
Mτn
θτn

)
, we observe next that χt in equation (IA.12) can be written as

χ

(
θt
Mt

,mt

)
= Et

∫ τn+1

t
e−ρ(s−t)

(
Cs
Ct

)−ν (Ms
θs
Mt
θt

)(γ−1)(1−α)
θs
θt
ds


+Et

e−ρ(τn+1−t)
(
Cτn+1

Ct

)−νMτn+1

θτn+1

Mt
θt

(γ−1)(1−α)

θτn+1

θt

× Z (Mτn+1

θτn+1

)
,

9



which implies that

χ

(
θt
Mt

,mt

)

=

(
Cτn
Ct

)−ν (Mτn
θτn

)(γ−1)(1−α)

(
Mt
θt

)(γ−1)(1−α)

θτn
θt
× Et

∫ τn+1

t
e−ρ(s−t)

(
Cs
Cτn

)−ν Ms
θs
Mτn
θτn

(γ−1)(1−α)

θs
θτn

ds



+

(
Cτn
Ct

)−ν (Mτn
θτn

)(γ−1)(1−α)

(
Mt
θt

)(γ−1)(1−α)

θτn
θt

×Et


e−ρ(τn+1−t)

(
Cτn+1

Cτn

)−νMτn+1

θτn+1

Mτn
θτn

(γ−1)(1−α)

θτn+1

θτn

×(∆1

(
Mτn+1

θτn+1

)δ1
+ ∆2

) .

Therefore,

χ

(
θt
Mt

,mt

)
=

(
Cτn
Ct

)−ν (Mτn
θτn

)(γ−1)(1−α)

(
Mt
θt

)(γ−1)(1−α)

θτn
θt
· ξ (ωt,mt) (IA.27)

+

(
Cτn
Ct

)−ν (Mτn
θτn

)(γ−1)(1−α)

(
Mt
θt

)(γ−1)(1−α)

θτn
θt

[∆1Φ (ωt,mt; δ1) + ∆2Φ (ωt,mt; 0)] .

Plugging the expressions for ξ (ωt,mt) and Φ (ωt,mt; δ1) into equation (IA.27) and simplifying

the resulting expression we arrive at the expression for χ
(
θt
Mt
,mt

)
given in the statement of the

lemma.

Corollary 1 The value of assets in place for firm j is given by

PAj,t = Xj,tθt · χ
(
θt
Mt

,mt

)
.

Proof of Corollary 1. Combine the definitions of χ and PAj,t.

With this lemma we are now in a position to discuss the solution to the firm’s optimization

problem. The option to plant a tree in epoch N does not affect the option to plant a tree in any

subsequent epoch.

The individual firm takes the processes for new trees (KN,t) and consumption (Ct), and hence

the stochastic discount factor Ht and the costs of planting a tree (equation (18)), as given. For the

remainder of the proof we consider a firm that expects KN,t to behave as in (IA.9). Such a firm

solves the problem

J (θt,Mt) = sup
τ
Et

[
1{τ<τN+1}e

−ρ(τ−t)

(
ζ(iN,j)G (θτ ,Mτ )− ηMτNX

−ν
τN
θ−ντ

(
Mτ

θτ

)(γ−1)(1−α)
)]

,

10



(IA.28)

with G (θt,Mt) defined as

G (θt,Mt) ≡ Et

∫ ∞
t

e−ρ(s−τ)C−γs
(
MC
s

)(γ−1)(1−α)
θsds

= [XτN (1 + F (K(mt)))]
−ν θ

α(1−γ)
t

(
Mt

θt

)(γ−1)(1−α)

· χ
(
θt
Mt

,mt

)
. (IA.29)

Hence, the firm’s optimization problem is

J (θt,Mt) (IA.30)

= sup
τ
Et

1{τ<τN+1}e
−ρ(τ−t)

 ζ(iN,j) [XτN (1 + F (K(mt)))]
−ν
θ
α(1−γ)
τ

(
Mτ

θτ

)(γ−1)(1−α)

· χ
(
θτ
Mτ

,mτ

)
−ηMτNX

−ν
τN θ

−ν
τ

(
Mτ

θτ

)(γ−1)(1−α)


 .

To solve the optimization problem inside the square brackets we proceed in two steps. First,

we derive the optimal policy in a heuristic way by constraining attention to the class of “trigger

strategies.” Such strategies assume that the firm invests the first time that θt (and hence Mt)

crosses an (optimally determined) threshold θ̄. Formally, the stopping times associated with these

strategies are given by

τθ̄ = inf{s ≥ t : θs ≥ θ̄}. (IA.31)

Additionally, we assume that the optimal θ̄ lies in the interval
[
υ
bpMτN ,m

∗MτN

]
.3 We let Θ denote

the class of such trigger strategies. We do not attempt to justify ex-ante why the optimal strategy

should lie in this class. Instead, in a second step, we verify the optimality of these strategies via a

standard verification theorem for optimal stopping (Proposition 2).

To start, let Ṽ (θt,Mt) denote the value function for τθ̄ ∈ Θ:

Ṽ (θt,Mt) (IA.32)

≡ sup
τθ̄∈Θ

Et

1{τ<τN+1}e
−ρ(τθ̄−t)

 ζ(iN,j) [XτN (1 + F (K(mt)))]
−ν
θ
α(1−γ)
τθ̄

(
Mτ

θ̄

θτ
θ̄

)(γ−1)(1−α)

· χ
(
θτ
θ̄

Mτ
θ̄

,mτθ̄

)
−ηMτNX

−ν
τN θ

−ν
τθ̄

(
Mτ

θ̄

θτ
θ̄

)(γ−1)(1−α)


 .

We first observe that τθ̄ ∈ Θ implies that θτθ̄ = Mτθ
and also 1 + F (K(mt)) = [1 + bK(mt)]

p =[(
bp
υ

)
mt

] p
1−p+νp

. Furthermore, by Øksendal (2003), p. 210-211, we obtain

Et

[
1{τ<τN+1}e

−ρ(τθ̄−t)
]

=

(
θt
θ̄

)γ1

.

3This implies that equation (IA.9) simplifies to

KN,t =

[(
bp
υ

)
Mt

MτN

] 1
1−p+νp − 1

b
.
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Accordingly, letting

ϕ

(
θ̄

MτN

)
≡
(

θ̄

MτN

)β2
[

θ̄

MτN

ζ(iN,j)χ

(
1,

θ̄

MτN

)
− η

(
bpθ̄

υMτN

) νp
1−p+νp

]
,

equation (IA.32) can be re-written as

Ṽ (θt,Mt) =

(
bp

υ

) −νp
1−p+νp

Mα(1−γ)−γ1
τN

θγ1
t X

−ν
τN
× sup
θ̄∈
[
υ
bp
MτN

,m∗MτN

]ϕ
(

θ̄

MτN

)
. (IA.33)

By the assumption τθ̄ ∈ Θ, υ
bp ≤ mτθ̄ ≤ m

∗ and hence Lemma 3 implies that

ϕ

(
θ̄

MτN

)
=

(
θ̄

MτN

)β2+1

ζ(iN,j)


∆2

{
1− g1(0)

1+β2
+
(

bpθ̄
υMτN

)−(1+β2)

(1 + b)
(1−p+νp)(1+β2)

g2 (0)

}
+ ∆1×{

1− g1(1−γ−γ∗
1 )

1+β2
+
(

bpθ̄
υMτN

)−(1+β2)

(1 + b)
(1−p+νp)(1+β2)

g2 (1− γ − γ∗1 )

}


−
(

θ̄

MτN

)β2

η

(
bpθ̄

υMτN

) νp
1−p+νp

.

Assuming an interior solution and setting ϕ′
(

θ̄
MτN

)
= 0, we obtain

θ̄

MτN

=

(
νp

1−p+νp + β2

)
η
(

bpθ̄
υMτN

) νp
1−p+νp

ζ(iN,j) [(1 + β2 − g1 (0)) ∆2 + (1 + β2 − g1 (1− γ − γ∗1)) ∆1]
. (IA.34)

Notice that policy (IA.34) has the same form as policy (19), which is given by

θ̄

MτN

=
υ (1 + F (iN,j))

ν

ζ(iN,j)
=
υ
(

bpθ̄
υMτN

) νp
1−p+νp

ζ(iN,j)
. (IA.35)

Combining (IA.34) with (IA.35) implies that

υ =
η
(
β2 + νp

1−p+νp

)
∆2 (1 + β2 − g1 (0)) + ∆1 (1 + β2 − g1 (1− γ − γ∗1))

. (IA.36)

Notice that ∆1 is a function of υ, although other parameters are independent of υ. Hence, equation

(IA.36) is a non-linear equation in υ. We denote the solution to this equation by υ∗ and assume

that parameters are such that υ∗ ≥ bp.4

Now note that if all other firms follow trigger strategies of the form (IA.34) with υ = υ∗, then

the resulting process for Kt is given by (IA.9) with υ = υ∗, confirming the conjecture of firm j

about the behavior of KN,t. Assuming that the optimal stopping policy of any firm j lies in the

interior of the “trigger” class Θ, firm j behaves optimally by following policy (IA.35) evaluated at

υ = υ∗.

4This can be achieved by assuming a large enough value for η.

12



The next proposition shows that if all firms j′ 6= j follow policies of the form (IA.35) with

υ = υ∗, then the optimal stopping strategy for firm j (across all possible stopping strategies)

indeed takes the form (IA.35). We use the notation x ∧ y for min (x, y) and x ∨ y for max (x, y).

Proposition 2 Assume φ ≡ ρ + λ + µγ − (γ + 1) γ σ
2

2 > 0 and γ + γ1 > 1. Let υ∗ denote the

solution to (IA.36), K (mt) be given by (IA.9) with υ = υ∗, and G (θt,Mt) by (IA.29). Define

θ̄ (Mt) as the solution to the equation

θ̄ (Mt) = arg max
θ̄

(
1

θ̄

)γ1
[
ζ(iN,j)G

(
θ̄,Mt ∨ θ̄

)
− ηMτN θ̄

−νX−ντN

(
θ̄

Mt
∧ 1

)(1−γ)(1−α)
]
. (IA.37)

Then it is optimal for firm j in epoch N to plant a tree the first time that θt ≥ θ̄ (Mt).

Proof of Proposition 2. The marginal firm solves the optimal stopping problem specified

by (IA.28). For any C1 function f : R→ R that is twice-differentiable a.e. define the infinitesimal

operator A (f) ≡ σ2

2 θ
2fθθ + µθfθ − (ρ+ λ) f . Next, note that Lemma 3 implies that the function

G (θt,Mt) can be written as

G (θt,Mt) = [XτN (1 + F (Kt))]
−νM

(γ−1)(1−α)
t (IA.38)

×

[
∆2θ

1−γ
t + ∆1θ

γ∗1
t

(
1

Mt

)γ+γ∗1−1

+ Const (mt) · θγ1
t

]
,

where Const depends on mt but is independent of θt. Since A (θγ1
t ) = 0, it is straightforward to

check that

AG (θt,Mt) = − [XτN (1 + F (Kt))]
−ν
[

1

1− β1λ
θ1−γ
t (Mt)

(γ−1)(1−α) + λ∆1θ
γ∗1
t M

−α(γ−1)−γ∗1
t

]
.

(IA.39)

Furthermore, by the construction of G (θt,Mt) (see Lemma 3) we also obtain

GM (Mt,Mt) = 0. (IA.40)

With these observations, let θ̄ (Mt) be defined as in equation (IA.37) and define the “candidate”

value function V (θt,Mt) as

V (θt,Mt) =

(
θt
θ̄

)γ1
[
ζ(iN,j)G

(
θ̄,Mt ∨ θ̄

)
− ηMτN θ̄

−νX−ντN

(
θ̄

Mt
∧ 1

)(1−γ)(1−α)
]

(IA.41)

whenever θt ≤ θ̄ (Mt) and

V (θt,Mt) = ζ(iN,j)G (θt,Mt)− ηMτN θ
−ν
t X−ντN

(
θt
Mt

)(1−γ)(1−α)

(IA.42)
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whenever θt > θ̄ (Mt) . In what follows we show the following four properties of the function

V (θt,Mt):

V (θt,Mt) ≥ ζ(iN,j)G (θt,Mt)− ηMτN θ
−ν
t X−ντN

(
θt
Mt

)(1−γ)(1−α)

, (IA.43)

V (θt,Mt) is continuously differentiable in θt, (IA.44)

VM (θt,Mt) ≤ 0 for θt = Mt, (IA.45)

AV (θt,Mt) ≤ 0 . (IA.46)

Property (IA.43) is immediate for θt ≥ θ̄(Mt), and for θt ≤ θ̄(Mt) it follows from

ζ(iN,j)G (θt,Mt)− ηMτN θ
−ν
t X−ντN

(
θt
Mt

)(1−γ)(1−α)

=

= ζ(iN,j)G (θt,Mt ∨ θt)− ηMτN θ
−ν
t X−ντN

(
θt
Mt
∧ 1

)(1−γ)(1−α)

=

(
θt
θt

)γ1
[
ζ(iN,j)G (θt,Mt ∨ θt)− ηMτN θ

−ν
t X−ντN

(
θt
Mt
∧ 1

)(1−γ)(1−α)
]

≤ θγ1
t max

θ

(
1

θ̄

)γ1
[
ζ(iN,j)G

(
θ̄,Mt ∨ θ̄

)
− ηMτN θ̄

−νX−ντN

(
θ̄

Mt
∧ 1

)(1−γ)(1−α)
]

= V (θt,Mt) .

To show property (IA.44) consider first the case θt ≤ θ(Mt). Differentiating (IA.41) gives

∂V

∂θ
= γ1

1

θt
V (θt,Mt) , (IA.47)

which is a continuous function. Furthermore, when θt → θ(Mt), we obtain

lim
θt→θ(Mt)

∂V (θt,Mt)

∂θt
(IA.48)

=
γ1

θ̄ (Mt)

[
ζ(iN,j)G

(
θ̄ (Mt) ,Mt ∨ θ̄ (Mt)

)
−X−ντN

[
θ̄ (Mt)

]−ν ( θ̄ (Mt)

Mt
∧ 1

)(1−γ)(1−α)

ηMτN

]
.

Turning next to the case where θt > θ̄ (Mt), direct differentiation of (IA.42) shows that the partial

derivative of V (θt,Mt) with respect to θt is a continuous function, whose value at θt = θ̄ (Mt) is

given by

lim
θt→θ(Mt)

∂V (θt,Mt)

∂θ
(IA.49)

= ζ(iN,j)Gθ
(
θ̄ (Mt) ,Mt

)
+ γ

[
θ̄ (Mt)

]−ν 1

θ̄ (Mt)

(
Mt

θ̄ (Mt)

)(γ−1)(1−α)

ηX−ντN MτN .
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To establish (IA.44), we need to show that the “left” hand side derivative (equation (IA.48)) and

the “right” hand side derivative (equation (IA.49)) coincide. Note that this statement is meaningful

only when θ̄ (Mt) ≤Mt, for otherwise θt ≤Mt < θ̄(Mt). Then the necessary condition for optimality

(first order condition) of equation (IA.37) implies that

0 =

(
1

θ̄

)γ1
[
ζ(iN,j)Gθ

(
θ̄,Mt

)
− (−γ) θ̄−ν

(
Mt

θ̄

)(γ−1)(1−α) 1

θ̄
ηX−ντN MτN

]

−γ1

(
1

θ̄

)γ1 1

θ̄

[
ζ(iN,j)G

(
θ̄,Mt

)
− θ̄−ν

(
Mt

θ̄

)(γ−1)(1−α)

ηX−ντN MτN

]
. (IA.50)

Dividing both sides of equation (IA.50) by
(

1
θ̄

)γ1

, we obtain that the right hand side of equation

(IA.48) and the right hand side of equation (IA.49) are identical, so that ∂V (θt,Mt)
∂θ is continuous at

θt = θ (Mt) .

To establish (IA.45), consider two cases. When Mt ≥ θ (Mt) , then whenever θt = Mt, equation

(IA.42) along with (IA.40) leads to

VM (Mt,Mt) = ζ(iN,j)GM (Mt,Mt)− (γ − 1) (1− α)M
(γ−1)(1−α)−γ
t

(
Mt

Mt

)(γ−1)(1−α) MτN

Mt
η

= −η (γ − 1) (1− α)M−ν−1
t MτN ≤ 0.

When Mt ≤ θ̄ (Mt) , Mt ∨ θ̄ = θ and hence whenever θt = Mt, V (θt,Mt) is given by(
θt
θ̄

)γ1

·
[
ζ(iN,j)G

(
θ̄, θ̄
)
− θ̄(γ−1)(1−α)−γηX(γ−1)(1−α)−γ

τN
MτN

]
,

which is independent of Mt. Hence, VM (Mt,Mt) = 0.

To show property (IA.46), we start by noting that when θt < θ̄ (Mt), V (θt,Mt) is given by

(IA.41). Hence, A (V ) = 0, since A (θγ1) = 0. When θt ≥ θ̄ (Mt), V (θt,Mt) is given by (IA.42).

Using (IA.39) we obtain

AV = X(γ−1)(1−α)−γ
τN

(
Mt

θt

)(γ−1)(1−α)

θ
−α(γ−1)−1
t (IA.51)

×

[
φηMτN − ζ(iN,j) [1 + F (Kt)]

−ν θt

(
1

1− λβ1
+ λ∆1

(
Mt

θt

)1−γ−γ∗1
)]

.

Hence, we only need to show that the term inside square brackets in (IA.51) is nonpositive for

θt ≥ θ̄ (Mt) . This amounts to showing that

φηMτN [(1 + F (Kt))]
ν

ζ(iN,j)
≤ θt ·

(
1

1− λβ1
+ λ∆1

(
Mt

θt

)1−γ−γ∗1
)
. (IA.52)
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Since the right hand side of (IA.52) is increasing in θt and θt ≥ θ̄ (Mt), it suffices to show that

φηMτN [1 + F (K (Mt))]
ν

ζ(iN,j)
≤ θ̄ (Mt)

(
1

1− λβ1
+ λ∆1

(
Mt

θ̄ (Mt)

)1−γ−γ∗1
)
. (IA.53)

Since Mt ≥ θt ≥ θ̄ (Mt) , equation (IA.50) can be re-written as

0 = ζ(iN,j)

[
−γ1

1

θ̄
G
(
θ̄,Mt

)
+Gθ

(
θ̄,Mt

)]
+ γ1

1

θ̄
θ̄−ν

(
θ̄

Mt

)(1−γ)(1−α)

ηX−ντN MτN

+γ
1

θ̄
θ̄−ν

(
θ̄

Mt

)(1−γ)(1−α)

ηX−ντN MτN . (IA.54)

By (IA.38),

−γ1
1

θ̄
G
(
θ̄,Mt

)
+Gθ

(
θ̄,Mt

)
(IA.55)

= [XτN (1 + F (Kt))]
−νM

(γ−1)(1−α)
t ×[

−γ1∆2θ̄
−γ − γ1∆1θ̄

γ∗1−1

(
1

Mt

)γ+γ∗1−1

+ ∆2 (1− γ) θ̄−γ + γ∗1∆1θ̄
γ∗1−1

(
1

Mt

)γ+γ∗1−1
]
.

Combining equations (IA.54) and (IA.55) and simplifying yields

θ̄ (Mt) =
φηMτN (1 + F (K (Mt)))

ν

ζ(iN,j)

(γ1 + γ)

φ

(
(γ+γ1−1)

1−λβ β + ∆1 (γ1 − γ∗1)
(

Mt

θ̄(Mt)

)1−γ−γ∗1
) .

Hence, to show equation (IA.53), we only need to verify that

φηMτN (1 + F (Kt))
ν

ζ(iN,j)

(γ1 + γ)

(
1

1−λβ1
+ λ∆1

(
Mt

θ̄(Mt)

)1−γ−γ∗1
)

φ

(
(γ+γ1−1)

1−λβ β1 + ∆1 (γ1 − γ∗1)
(

Mt

θ̄(Mt)

)1−γ−γ∗1
)

≥ φηMτN [1 + F (K (Mt))]
ν

ζ(iN,j)
.

To this end, we only need to show

γ1 + γ

1− λβ1
+ λ∆1 (γ1 + γ)

(
Mt

θ̄ (Mt)

)1−γ−γ∗1
≥ φβ1

γ + γ1 − 1

1− λβ1
+ φ∆1 (γ1 − γ∗1)

(
Mt

θ̄ (Mt)

)1−γ−γ∗1
.

(IA.56)

Define γ2 as

γ2 ≡
−
√(

µ− σ2

2

)2
+ 2σ2 (ρ+ λ)−

(
µ− σ2

2

)
σ2

< 0.
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Then,

γ1γ2 = −2 (ρ+ λ)

σ2

γ1 + γ2 =
−2
(
µ− σ2

2

)
σ2

.

Hence,

φ = −
[
(γ + 1) γ

σ2

2
− µγ − ρ− λ

]
= −σ

2

2
(γ1 + γ) (γ + γ2) > 0, (IA.57)

which implies that γ + γ2 < 0 (recall that, by assumption, φ > 0). Direct algebra gives

β1φ =
γ + γ2

γ + γ2 − 1
× γ + γ1

γ + γ1 − 1
≤ γ1 + γ

γ + γ1 − 1
.

Consequently,

γ1 + γ

1− λβ1
≥ φβ1

γ + γ1 − 1

1− λβ1
. (IA.58)

Therefore, to show inequality (IA.56), equation (IA.58) implies that we only need to show

λ∆1 (γ1 + γ)

(
Mt

θ̄

)1−γ−γ∗1
≥ φ∆1 (γ1 − γ∗1)

(
Mt

θ̄

)1−γ−γ∗1
,

which is equivalent to showing that λ (γ1 + γ) ≥ φ (γ1 − γ∗1). Direct algebra shows that

2λ

σ2
= (γ∗1 − γ2) (γ1 − γ∗1) . (IA.59)

By (IA.57) and (IA.59),

λ (γ1 + γ) =
σ2

2
(γ1 + γ) (γ∗1 − γ2) (γ1 − γ∗1) (IA.60)

= − φ

γ + γ2
(γ∗1 − γ2) (γ1 − γ∗1) .

Furthermore,

(γ∗1 − γ2) ≥ − (γ + γ2) , (IA.61)

since γ∗1 + γ ≥ 0. Given that γ1 > γ∗1 and γ + γ2 < 0, (IA.61) and (IA.60) yield the desired

conclusion, namely, λ (γ1 + γ) ≥ φ (γ1 − γ∗1) . This completes the proof of (IA.46).

The rest of the proof follows steps similar to Øksendal (2003), Chapter 9. For complete-

ness we give a brief sketch omitting technical details. Take any stopping time τ and apply

Ito’s Lemma to e−(ρ+λ)tV (θt,Mt) to obtain

Ee−(ρ+λ)(τ−t)V (θτ ,Mτ )− V (θt,Mt) = Et

∫ τ

0

e−(ρ+λ)(s−t)AV (θs,Ms) ds+ (IA.62)

+Et

∫ τ

t

e−(ρ+λ)(s−t)VM (Ms,Ms) dMs.
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Re-arranging (IA.62) and using (IA.43)–(IA.46) yields

V (θt,Mt) ≥ Ee−(ρ+λ)(τ−t)V (θτ ,Mτ )

≥ Ee−(ρ+λ)(τ−t)

[
ζ(iN,j)G (θτ ,Mτ )− ηMτN [θτ ]−ν X−ντN

(
θτ
Mτ

)(1−γ)(1−α)
]
.

Since τ is arbitrary, V (θt,Mt) provides an upper bound to the value function for all feasible policies.

Furthermore, this bound is attainable if the firm plants a tree the first time that θt = θ̄ (Mt) . Hence,

V (θt,Mt) is the value function for firm j in round N and planting a tree once θt = θ̄ (Mt) is optimal.

Proposition 2 shows that if firms perceive the equilibrium stochastic discount factor to be given

by Ht = e−ρtUc(ct,M
C
t ), then it is optimal for them to plant a tree according to equation (19).

Furthermore, Corollary 1 gives the equilibrium value of assets in place for firm j in round N at

time t. To complete the determination of the value of a firm, the following proposition provides the

equilibrium value of “current-epoch” growth options and “future-epoch” growth options.

Proposition 3 Let K(mt) be given by (IA.9) with υ = υ∗. Then the price of firm j in technological

epoch N is given by PAj,t + P oN,j,t + P fN,t, where the asset in place PAj,t is given by

PAj,t = Xj,tθtχ

(
θt
Mt

,mt

)
(IA.63)

and the current-epoch growth option at time t for firm j is

P oN,j,t = XτN θt

(
θt
Mt

)γ1+γ−1( Mt

MτN

)γ1+α(γ−1)

(1 + F (K (mt)))
ν (IA.64)

×
(
bp

υ∗

) −νp
1−p+νp−β2

υ∗Cindop (iN,j)
(

1− 1{χ̃N,j=1}

)
,

where the constant Cindop (iN,j) is given by

Cindop (iN,j) = (1 + biN,j)
(1−p+νp)β2+νp

(
− η
υ∗

1− νp
1−p+νp
1+β2

+ (1 + bij,N )−(1−p+νp)(1+β2)

× (1 + b)(1−p+νp)(1+β2) [∆2g2 (0) + ∆1g2 (1− γ − γ∗1)]

)
.

Finally, define the constants Cop and ∆̃1 as

Cop =

[
bp

υ∗

] −νp
1−p+νp−β2

υ∗

 (1 + b)[1−p+νp](1+β2) [∆2g2 (0) + ∆1g2 (1− γ − γ∗1)] (1+b)p−1
bp

− η
υ∗

(
1− νp

1−p+νp

)
1+β2

(1+b)[1−p+νp]β2+νp+1−1
b([1−p+νp]β2+νp+1)

 ,

∆̃1 = − Cop
g̃4 (1− γ − γ∗1)

.
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Then the value of all “future epoch” growth options is given by

P fN,t (IA.65)

= ∆̃1Xtθt



(
θt
Mt

)γ+γ∗
1−1

1 +
(
θt
Mt

)γ1−γ∗
1

 −α(γ−1)+γ∗
1

α(γ−1)+γ1
+
(
bpmt
υ∗

)α(γ−1)+γ1

×

g̃2 (1− γ − γ∗1 )
[
(1 + b)

(1−p+νp)(1+β2)+p − 1
]
 ; mt ≤ υ∗

bp

(
θt
Mt

)γ+γ∗
1−1

1 +
(
θt
Mt

)γ1−γ∗
1

 −g̃1(1−γ−γ∗
1 )

1+β2+ p
1−p+νp

+
(
bpmt
υ∗

)−(1+β2)− p
1−p+νp ×

(1 + b)
(1−p+νp)(1+β2)+p

g̃2 (1− γ − γ∗1 )

 ; mt ∈
[
υ∗

bp ,m
∗
]

(
θt
Mt

)γ+γ∗
1−1

[
1− α−αγ−γ∗

1

α−αγ−γ1

(
θt
Mt

)γ1−γ∗
1

]
; mt ≥ m∗.

Proof of Proposition 3. The proof of (IA.63) is given in Corollary 1. The proof of (IA.64)

follows upon computing expression (IA.41) explicitly. The proof of equation (IA.65) follows similar

steps to that of Lemma 3 and is omitted to save space.
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B. Some Remarks on the Model Setup and Extensions

B.1. The Representative-Agent Assumption

Throughout the paper we speak of a “representative” consumer-worker to expedite the presen-

tation. As we also discuss in footnote 11 in the text, Rogerson (1988) shows how the assumption of

a “representative” consumer-worker is consistent with the presence of indivisible labor supply, as

long as one allows for labor-supply lotteries as one of the tradable contingent claims. Intuitively,

even if firms randomly choose a worker to plant a tree, trading between workers allows them to

share that risk, and hence there is no idiosyncratic endowment risk.

Even though the assumption of labor-supply lotteries introduced by Rogerson (1988) (and

followed by the strand of the macroeconomics literature that builds on his paper) is sufficient

to justify the existence of a representative agent, we note that it can be relaxed in our setup.

Instead of introducing labor-supply lotteries, we can instead easily enrich the model and assume

that the planting of each tree is a divisible task amongst workers. Specifically, if a) planting a single

tree takes a continuum of tasks z ∈ [0, 1], b) each worker incurs a disutility of effort ηt per task

performed, and c) any worker can perform any set of tasks in perfect competition, then there exists

an equilibrium whereby tasks are divided equally across workers and the proceeds from planting a

tree are allocated equally between them, even in the absence of labor-supply lotteries.

B.2. Market Completeness in the Context of the Full Model

In addition to markets in which agents can trade claims contingent on the realization of the

diffusive shock θt, the assumption of market completeness in the context of the complete model

also requires the existence of markets in which agents can trade securities (in zero net supply)

that promise to pay one unit of the numeraire when technological round N arrives. An argument

similar to Duffie and Huang (1985) implies, however, that these additional markets are redundant

in general equilibrium, provided the existence of the usual traded assets, since agents are able

to create dynamic portfolios of stocks and bonds that produce the same payoff as these claims.

(For instance, the spread between short-maturity and long-maturity bonds jumps by a predictable

magnitude when a new epoch arrives.) Hence, by trading in the stock market, a short-maturity

bond, and a long-maturity bond, agents can synthetically “span” the assumed contingent-claims

markets.
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B.3. Trees and Previous Epochs

The assumption that a firm can plant a tree corresponding only to the current epoch can

be relaxed (assuming that a firm can plant one tree each epoch), if we modify equation (12) to

An+1 = AnĀ
(

1 +
∫Kn,τn+1

0 ζ (i) di
)
, where Ā ≥ ζ(0)

ζ(1) . Under this alternative assumption, for any

firm j and any epoch n, we obtain An+1ζ(ij,n+1) ≥ An+1ζ(1) ≥ AnĀζ(1) ≥ Anζ(0) ≥ Anζ(ij,n).

Assuming that it costs the same to plant a tree of vintage N + 1 or of vintage n ∈ (−∞, N ], firm j

would never find it optimal to plant a tree of a previous vintage. However, this model modification

adds complexity but no extra insights, and hence we do not pursue it in the paper for parsimony.

B.4. The Intertemporal Elasticity of Substitution Implied by the

Preference Specification (14)

We start by defining the intertemporal elasticity of substitution for two arbitrary times t1 < t2

as

IES ≡ d log(c2/c1)

d log (Uc1/Uc2)
,

where c1 and c2 denote consumption at times t1 and t2, respectively. For the purpose of building

intuition, suppose that the representative agent has preferences of the form (14), and consider a

deterministically growing consumption path at the rate g (so that d log(ct) = d log(MC
t )). Then

a simple computation yields IES = 1
γ+(γ−1)(α−1) , and the equilibrium interest rate is given by

ρ+ g
IES . Accordingly, for levels of γ above one, the equilibrium interest rate in an economy where

the agent has no external habit formation (α = 1) is higher than in an economy where α < 1.

Similarly, the higher values of IES associated with external habit formation imply that changes in

g have a smaller impact on the interest rates.

B.5. Tree-Specific Shocks

As we note in Section III.C of the text, the cross-sectional simulations in Table V assume the

presence of idiosyncratic (disembodied) tree-specific shocks.

Besides allowing us to better match the cross-sectional distributions of firm size and valuation

ratios, such shocks seem plausible on first principles. Specifically, in the paper we make the as-

sumption that technology is fully embodied in the new trees. However, in reality new technological

paradigms also affect the internal organization of firms, their marketing practices, and potentially

the way existing technologies are used in the production process. Hence, the arrival of a new epoch

may affect the profitability of existing trees. To account for this possibility, we allow for the presence

of tree-specific shocks Z(i, t), so that the time-t output of tree i ∈ [0, 1] that is planted at time s in
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epoch N is given by ANζ(i)Z(i, t)θt. The shock Z(i, t) is equal to one at the time s that the tree is

planted (i.e., Z(i, s) = 1), stays constant within each epoch (i.e., Z(i, t) = Z(i, τN ), t ∈ [τN , τN+1)),

and jumps between epochs so that Z(i, τN+1) = Z(i, τN )u(i, τN+1), where u(i, τN+1) is i.i.d. across

trees and epochs, distributed lognormally with mean one and variance σ2
u(τN+1), and independent

of all other shocks in the model.

As we explain in the text, by their construction the idiosyncratic shocks Z(i, t) do not affect a

firm’s optimal stopping problem, the stochastic discount factor, or any other aggregate quantity.

Hence, they do not affect any of the conclusions of the paper. They simply add more variability

to the stationary cross-sectional distribution of the size and book-to-market ratios, so as to allow

us to match these distributions more accurately. With this goal in mind, we choose σu(τN+1) = 2,

thus approximately matching the deciles of each of the two distributions.5

B.6. Investment-Related Statistics

In this section of the Internet Appendix, we report additional investment-related statistics. To

match model-implied statistics to National Income and Products Accounting (NIPA), we start by

defining Gross Domestic Product (GDP) in the sense of NIPA within our model. Over the period of

a year, aggregate output (in units of the numeraire good, namely, consumption) is simply given by

the total added value in the consumption sector and the investment sector of the economy. Given

that investment goods have a price of qs in units of the numeraire, GDP is thus given by

GDPt+1 =

∫ t+1

t
Csds︸ ︷︷ ︸

Consumption

+

∫ t+1

t
qsdKN,s︸ ︷︷ ︸

Investment

. (IA.66)

Equation (IA.66) states the familiar fact that in the absence of a government and an exter-

nal sector, GDP is equal to consumption plus investment. Table IA.I tabulates statistics of the

investment-to-GDP ratio in both the model and the data. Since the model abstracts from both

government expenditure and net exports, we compute the investment-to-GDP ratio (in the data) as

private investment divided by the sum of the consumption of nondurables and services plus private

investment.

Table IA.I shows that the model implies an investment-to-GDP ratio that is on average lower

and has a wider range of values than in the data. (Since investment in the model is skewed,

5A technical condition to ensure stationarity of the cross-sectional size distribution is limN→∞σ
2
u(τN+1) =

0. In the simulations we enforce this condition by simply assuming that the idiosyncratic shocks have

constant variance σ2
u for M epochs after the tree is planted and zero variance thereafter. We choose σ2

u

and M as free parameters to match as closely as possible the 20 cross-sectional moments of the size and

book-to-market distributions. Specifically, we choose σu = 2 and M = 2.
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Table IA.I: Investment-Related Statistics

The data are annual and time integrated. Source: Bureau of Economic Analysis. Years:

1929-2010.

Data Model

Mean of Investment
Consumption+Investment

19.9% 12.4%

First decile of Investment
Consumption+Investment

10.8% 0%

Ninth decile of Investment
Consumption+Investment

25.0% 40.8%

we choose to report the 10th and 90th percentiles, so as to give a better picture of both the

variability and the skewness of the investment-to-GDP ratio). Given our highly stylized modeling

of investment, we consider the model’s ability to reproduce the properties of the investment-to-GDP

ratio as satisfactory.

In conclusion, it is useful to note that our modeling of investment is intentionally stylized, since

we want to isolate and highlight only one motivation for investing, namely, the adoption of new

technological vintages. If one were to set the additional goal to exactly match all business cycle

statistics, the performance of the model could be further improved by introducing additional mo-

tivations for investment (replacing depreciated capital, adjusting the scale of existing investments,

etc.), while attenuating the motivation we isolate and highlight in the paper. However, such an

extension is outside the scope of the current paper. For our purposes, it suffices that our general-

equilibrium framework reproduces (qualitatively and quantitatively) the joint time-series properties

of consumption and returns, which form the focus of our analysis.

C. The Covariance between Current Excess Returns

and Long-Run Consumption Growth: Some Further

Details

In this section we provide additional details on the covariance between excess returns and

subsequent consumption growth from the perspective of alternative models. We structure this

section as follows.

First, we postulate a decomposition of log-consumption into a stochastic trend and a stochastic

cycle. This decomposition encompasses both our model and the model by Bansal and Yaron (2004)
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as special cases, and it serves two purposes: a) it facilitates some of the derivations that follow in

Sections C.2 and C.3, and b) it helps us relate our (endogeneous) consumption process to the one

assumed by Bansal and Yaron (2004).

Second,we use the decomposition postulated in Section C.1 to derive the covariance between cur-

rent excess returns and subsequent consumption growth in the models by Campbell and Cochrane

(1999) (Section C.2) and Bansal and Yaron (2004) (Section C.3).

C.1. Preliminaries: A Trend-Cycle Decomposition of Log Con-

sumption

For the derivations that follow, we use the following Beveridge and Nelson (1981) decomposition

of log-consumption:

log ct = Tt + x̃t (IA.67)

Tt+1 = Tt + µ+ ξt+1 (IA.68)

gt+1 = log ct+1 − log ct = µ+ ξt+1 + x̃t+1 − x̃t, (IA.69)

where Tt is the stochastic trend component of consumption, x̃t is a stationary process capturing

the economic cycle, and Et (ξt+1) = 0. The decomposition (IA.67)–(IA.69) is useful because it

is general enough to encompass many models in the literature. For instance, the basic random

walk specification for log-consumption as assumed by Campbell and Cochrane (1999) is a special

case of (IA.67)–(IA.69) with x̃t = 0. Our own consumption process also allows such a trend-cycle

decomposition. Finally, the model by Bansal and Yaron (2004) can be easily written in the form

(IA.67)–(IA.69). To see how, assume that x̃t follows an AR(1) process

x̃t+1 ≈ ρxx̃t + εt+1, (IA.70)

where ρx ∈ (0, 1) and Et (εt+1) = 0. Defining x∗t+1 ≡ (ρx − 1) x̃t+1, σηt+1 ≡ ξt+1 + εt+1, and

ψeσet+1 ≡ (ρx − 1) εt+1, and using these definitions inside (IA.67)–(IA.69) results exactly in the

Bansal-Yaron specification

gt+1 = µ+ x∗t + σηt+1, (IA.71)

x∗t+1 = ρxx
∗
t + ψeσet+1.

The constants σ and ψe refer to notation used in Bansal and Yaron (2004) and the shocks ηt+1 and

et+1 are normalized to have unitary variance. Bansal and Yaron (2004) additionally assume that

cov(ηt, et) = 0.

For future reference, we next prove that the model of Bansal and Yaron (2004) implies that the

correlation between shocks to the stochastic trend (ξt) and shocks to the cycle (εt) are negative.
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LEMMA 4 If x̃t follows an AR(1) process of the form (IA.70) and cov(ηt, et) = 0, then the

correlation ρξ,ε ≡ corr (ξt, εt) is negative. More precisely,

ρξ,ε = −σε
σξ
, (IA.72)

where σξ and σε denote the standard deviations of the shocks ξt and εt, respectively.

Proof of Lemma 4. By the definitions of ηt and et we obtain

0 = cov (ηt, et) =
1

σψeσ
cov (ξt + εt, (ρx − 1) εt)

=
(ρx − 1)

σ2ψe

[
ρξ,εσεσξ + σ2

ε

]
,

which gives (IA.72).

Similar to Bansal and Yaron (2004), our process for the stochastic cycle is persistent. However,

in our model the dynamics of the stochastic cycle arise endogenously and follow more complicated

dynamics than the AR(1) dynamics postulated by Bansal and Yaron (2004).

To summarize, several models in the literature can be thought of as special cases of the decom-

position (IA.67)–(IA.69). Besides allowing us to relate different models, our primary motivation

for using the decomposition (IA.67)–(IA.69) is that it simplifies the computations that follow in

the next two subsections.

C.2. The Covariance between Excess Returns and Subsequent Con-

sumption Growth in Campbell and Cochrane (1999)

The key mechanism in Campbell and Cochrane (1999) is that current excess returns are inversely

related to the “surplus ratio,” that is, the ratio of current consumption over a moving, smooth

average of past consumption. Specifically, the excess return ret+1 can be expressed as

ret+1 = −βst + ut+1, (IA.73)

where Et (ut+1) = 0 and β ≥ 0. The process for the surplus st is a carefully designed process that

reflects exclusively past consumption-growth shocks, so that excess returns are time varying, but

interest rates are not. For our purposes, we can consider more general specifications of the surplus

ratio by allowing it to take any form

st =
∞∑
j=0

φjgt−j . (IA.74)

As Wachter (2006) and Yu (2007) discuss, the special case φj = φj for some positive φ < 1 provides

a good approximation to the model by Campbell and Cochrane (1999). To allow for more generality,
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while capturing the idea that st is persistent and “countercyclical” (in the sense of Campbell and

Cochrane (1999)), we simply require that φj ≥ 0 for all j and
∑∞

j=0 φj <∞.
Clearly, since Campbell and Cochrane (1999) assume that log-consumption growth is i.i.d., their

model implies that cov (ret , gt+k) = 0 for any k ≥ 1. Therefore, the baseline model of Campbell and

Cochrane (1999) implies that cov

(
ret ,

T∑
k=1

gt+k

)
= 0 for any T > 1 and cannot explain the upward-

sloping of covariances in Figure 3 of the paper.

However, even with a stochastic cycle of the form (IA.70), we obtain the following result.

LEMMA 5 If the excess return ret+1 is given by (IA.73), st is given by (IA.74), cov (ut, εt) > 0,

and 1 + ρξ,ε
σξ
σε

(1 + ρx) ≤ 0, then

cov (ret , gt+k) ≤ 0 (IA.75)

for any k ≥ 1 .

Proof of Lemma 5. Combining (IA.73) and (IA.70) gives, for any k ≥ 1,

cov
(
ret,gt+k

)
= cov (−βst−1 + ut, ξt+k + x̃t+k − x̃t+k−1)

= cov (−βst−1 + ut, (ρx − 1) x̃t+k−1)

= cov
(
−βst−1 + ut, (ρx − 1) ρk−1

x (ρxx̃t−1 + εt)
)

= (ρx − 1) ρk−1
x cov (ut, εt) + (1− ρx) ρkxβcov (st−1, x̃t−1) . (IA.76)

Clearly, the assumption that cov (ut, εt) > 0 implies that the first term in (IA.76) is negative since

ρx < 1. To show that the second term in (IA.76) is negative, we let var (xt) = σ2
x and we compute

cov (st−1, x̃t−1) =
∞∑
j=1

φj−1cov (ξt−j + (ρx − 1) x̃t−j−1 + εt−j , x̃t−1)

=

∞∑
j=1

φj−1

[
cov

(
ξt−j + (ρx − 1)xt−j−1 + εt−j ,

j∑
i=1

ρi−1
x εt−i + ρjxxt−j−1

)]

=
∞∑
j=1

φj−1

[
(ρx − 1) ρjxσ

2
x + ρj−1

x cov (ξt−j + εt−j , εt−j)
]

=
∞∑
j=1

(
ρj−1
x φj−1

) [(
ρ2
x − ρx

)
σ2
x + σ2

x

(
1− ρ2

x

)
+ cov (ξt−j , εt−j)

]
=

∞∑
j=1

(
ρj−1
x φj−1

) [
σ2
x (1− ρx) + cov (ξt−j , εt−j)

]
= σ2

x (1− ρx)

∞∑
j=1

(
ρj−1
x φj−1

) [
1 + ρξ,ε

σξ
σε

(1 + ρx)

]
.
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Given 1+ρξ,ε
σξ
σε

(1 + ρx) ≤ 0, it follows that cov (st−1, x̃t−1) ≤ 0, and hence (IA.76) implies (IA.75).

Lemma 5 asserts that the covariance between the current excess return and consumption growth

at some future point is negative, as long as two conditions are met. The first condition is that inno-

vations to excess returns are positively correlated with innovations in the cycle. This requirement

is empirically desirable,6 so it is plausible to work out the implications of the model under the

assumption that it holds. The second condition states that 1 + ρξ,ε
σξ
σε

(1 + ρx) ≤ 0. This condition

is easy to satisfy if the standard deviation of trend-shocks (ξt) is larger than the standard devia-

tion of cycle-shocks (εt), or the correlation between ξt-shocks and εt-shocks is sufficiently negative.

For instance, 1 + ρξ,ε
σξ
σε

(1 + ρx) is automatically negative in the model specification of Bansal and

Yaron (2004), in light of Lemma 4.

To summarize, in this section we consider an external habit formation model in the spirit of

Campbell and Cochrane (1999) appropriately extended to allow for predictable consumption growth

as in Bansal and Yaron (2004). We show that any external-habit specification associated with

positively correlated innovations between cycle and returns would also lead to negative covariances

between current excess returns and future consumption growth. Accordingly, such a model would

not be able to reproduce the pattern of covariances in Figure 3 of the paper.

C.3. The Covariance between Excess Returns and Subsequent Con-

sumption Growth in Bansal and Yaron (2004)

In this section, we show that the Bansal and Yaron (2004) model implies a positive covariance

between the excess return at time t and consumption growth at some t+ k for k ≥ 1.

To save notation, we simply consider a Bansal and Yaron (2004) model without any shocks to

volatility. None of our conclusions depends on this simplifying assumption, as long as we retain the

assumption of Bansal and Yaron (2004) that shocks to the cycle and shocks to stochastic volatility

are independent.

Specifically, up to a first-order approximation, the excess return on a dividend claim in the

model of Bansal and Yaron (without stochastic voalility) is given by

ret = r̄ + κ1mA1mψeσet + ψdσu
d
t , (IA.77)

where udt is not correlated with any other shocks in the model, and the constants r̄, κ1m, A1m, ψe, ψd,

and σ refer to the notation used in their paper. Equation (IA.77) and the assumed dynamics (IA.71)

6In the data the price-to-dividend ratio is low when consumption is below its stochastic trend (low values

of x̃t), and high when consumption is above its stochastic trend (high values of x̃t). This implies that

innovations to returns (which mirror movements in the price-to-dividend ratio over short frequencies of the

data, such as a quarter) are positively related to innovations in x̃t.
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imply

cov (ret , gt+k) = κ1mA1mψeσcov
(
et, x

∗
t+k

)
(IA.78)

= κ1mA1mψeσcov
(
et, ρ

k
xx
∗
t

)
= ρkxκ1mA1m (ψeσ)2 > 0.

Even though the Bansal and Yaron (2004) model leads to a positive covariance between current

excess returns and subsequent consumption growth, and hence can explain the pattern in Figure 3

of the paper, inspection of (IA.78) reveals that this covariance between current excess returns and

subsequent consumption growth in Bansal and Yaron (2004) is driven exclusively by the innovations

(et) to the excess return, rather than the expected component of the excess return.
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D. Covariance Decomposition along the Lines of Equa-

tion (24) in the Paper

Table IA.II gives the model-implied covariance of expected excess returns with subsequent

consumption growth inside the model (the first term on the right-hand side of equation (24)).

In computing the expected excess returns inside the model, we use the two underlying state

variables as instruments (i.e., θt
Mt

and Mt

MτN
). We note that, since all endogenous valuation

ratios, interest rates, investment, the economic cycle, etc, are combinations of these two

variables, the results remain virtually identical when we use combinations of two of the

aforementioned endogenous variables as predictive instruments. To take into account small-

sample estimation issues, we draw 1,000 samples of 240-quarter-long paths, and report in

the first row of the table the average value of the resulting covariance (by horizon T ).

We also report in the second and third rows the respective quantities in the data using

the instruments in Panels A and B of Table IV in the paper. The bottom part of the

table (fourth through sixth rows) reports the results of the top three rows as fractions

of the overall covariance between excess returns and subsequent consumption growth (the

left-hand side of equation (24)). Specifically, the fourth row expresses the covariance of

expected excess returns with subsequent consumption growth as a fraction of the overall

model-implied covariance between excess returns and subsequent consumption growth, as

depicted in Figure 3 in the paper. Similarly, rows five and six report the results in rows

two and three as fractions of the overall covariance between excess returns and subsequent

consumption growth in the data. These last two rows correspond to the respective rows

denoted “Exp. component” in Table IV in the paper.

Table IA.II: Covariance Decompositions: Data and Model

Horizon (T) 1 2 3 7 11 15 19

Cov. - Model (×10−4) 0.113 0.222 0.326 0.698 1.017 1.246 1.409

Cov. - Data - IV of Panel A (×10−4) 0.291 0.622 0.964 2.092 2.457 2.503 2.925

Cov. - Data - IV of Panel B (×10−4) 0.196 0.450 0.722 1.523 2.140 2.495 3.107

Cov. - Model (fraction) 0.215 0.240 0.294 0.380 0.411 0.471 0.513

Cov. - Data - IV of Panel A (fraction) 0.296 0.367 0.379 0.878 0.864 0.974 0.853

Cov. - Data - IV of Panel B (fraction) 0.199 0.266 0.284 0.639 0.752 0.971 0.906
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