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Abstract

Existing studies often regard return predictability as an attribute of predictors or

models. This paper argues that return predictability is an unobserved yet inher-

ent asset characteristic linked to expected returns, varying across stocks and over

time. We propose a novel tree-based clustering method to measure heterogeneous

return predictability by grouping asset-return observations with similar levels of

predictability. The resulting clusters are characterized using high-dimensional

firm characteristics and aggregate predictors. Our empirical analysis reveals sig-

nificant patterns of heterogeneous return predictability in individual U.S. stocks.

First, asset clusters with low trading volumes, high earnings-to-price ratios, and

high unexpected earnings exhibit the highest predictability. Second, predictability

declines sharply when the dividend yield is low, while it peaks during periods of

high dividend yield and low default yield. Furthermore, we identify a new pre-

dictability anomaly: highly predictable long-only portfolios generate unexplained

alphas of about 1% across various factor models over the past two decades, while

a long-short portfolio based on predictability yields even higher alphas.
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Goal-oriented Clustering.
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1 Introduction

Forecasting asset returns has long been a central question in asset pricing. Previ-

ous research has provided substantial evidence of return predictability across various

asset classes1. However, literature often regards return predictability as an attribute

of the predictors or models themselves. On one hand, researchers have identified sev-

eral aggregate or macroeconomic predictors for forecasting market returns, such as

market dividend yield (e.g., Fama and French, 1988) and default yield (e.g., Keim and

Stambaugh, 1986); while firm characteristics, such as size and value (e.g., Fama and

French, 1992), can predict cross-sectional variations in returns. On the other hand, nu-

merous methods have been developed to examine return predictability, including pre-

dictive regressions (e.g., Stambaugh, 1999), security sorting (e.g., Jensen et al., 1972),

cross-sectional models (e.g., Fama and MacBeth, 1973; Han et al., 2024), and machine

learning approaches (e.g., Kelly and Pruitt, 2013; Gu et al., 2020; Kelly et al., 2024).

Return predictability is unobservable2, and it lacks a clear, consistent definition

in the literature. Existing studies often evaluate predictability at an aggregate or av-

erage level, typically relying on constant-coefficient models that assume homogeneity

across observations and uniform predictability. However, it neglects the potential het-

erogeneity in return predictability, particularly at the level of individual assets.

This paper offers a novel perspective on return predictability by addressing two

key questions: which types of assets exhibit higher return predictability, and how does

this predictability evolve across different macroeconomic regimes? We propose that,

beyond predictors or models, return predictability represents an unobserved yet in-

trinsic characteristic of assets, potentially linked to the cross section of expected re-

turns. Our findings indicate that return predictability is inherently heterogeneous,

varying significantly across stocks and over time.

1For example, empirical studies have documented return predictability in the aggregate market (e.g.,
Welch and Goyal, 2008; Campbell and Thompson, 2008), individual stocks (e.g., Fama and French, 2008;
Rapach et al., 2013; Lewellen, 2015), corporate bonds (e.g., Feng et al., 2024), treasury bonds (e.g., Bianchi
et al., 2021), and mutual fund alphas (e.g., Kaniel et al., 2023; DeMiguel et al., 2023).

2Many equity characteristics are unobservable and require measurements, such as beta and volatility.
Concepts related to predictability include anomaly average return, predictor significance, out-of-sample
R2, forecast-implied portfolio, etc.
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First, substantial empirical evidence suggests that return predictability is not ho-

mogeneous. For example, Avramov et al. (2023) demonstrate that predictability is

concentrated in micro-cap stocks, distressed stocks, and during periods of high mar-

ket volatility. Additionally, Green et al. (2017) document a decline in the significance of

characteristics since 2003, indicating a sharp reduction in return predictability. Long-

established research also links stock market return predictability to business cycle indi-

cators (e.g., Keim and Stambaugh, 1986; Fama and French, 1989), with further support

for the use of advanced time-varying predictive models.3 Thus, while unobservable,

return predictability may vary significantly across stocks and evolve over time.

Second, if heterogeneous return predictability is an inherent characteristic of as-

sets, how can it be measured? Since predictability is closely linked to the signal-to-

noise (S2N) ratio or the regression R24, we thus focus on estimating R2 as the measure

of heterogeneous return predictability. Given this measure, an important question

arises: what is the potential relationship between predictability and average returns?

While Rapach, Strauss, and Zhou (2010) and Kelly, Malamud, and Zhou (2024) argue

that there is no direct link between out-of-sample (OOS) predictive R2 and investment

gains, we identify an anomaly through our proposed measure of return predictability,

revealing a positive relationship between predictability and average returns.

To the best of our knowledge, this paper is the first to systematically investigate

and measure the heterogeneous return predictability of individual stocks. We propose

the concept of mosaics of predictability, where return predictability varies across time

and the cross section, revealing partitioning patterns that resemble mosaics on the

panel. Specifically, instead of measuring global-level R2, we focus on group-level R2
j ,

which reflects the predictability of stock-return observations within the same group j.

The regression R2 serves as a summary statistic for the aggregate goodness of fit, but it

is impossible to calculate for each stock given the unbalanced short panel of monthly

3Studies investigating time-varying return predictability highlight stronger predictability during
economic recessions (e.g., Henkel et al., 2011; Dangl and Halling, 2012). Recently, the pockets of pre-
dictability have been revisited in Farmer, Schmidt, and Timmermann (2023); Cakici, Fieberg, Neumaier,
Poddig, and Zaremba (2024); Farmer, Schmidt, and Timmermann (2024).

4In predictive or cross-sectional regressions, a higher predictor coefficient correlates with greater
return predictability and a larger long-short portfolio spread, which results in a higher R2.
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data. As demonstrated by Cong et al. (2023), heterogeneous panel data analyses can

be framed as a clustering problem, where observations are grouped based on their

similar exposure to factors.

The empirical solution involves developing a clustering algorithm that separates

predictable observations from less predictable ones. First, we propose measuring re-

turn predictability using the R2 of the cluster-wise predictive model, ensuring that

observations within a cluster share similar predictability. Second, we introduce a cus-

tomized panel tree approach to identify the optimal clustering structure that captures

variations in stock return predictability, grouping stocks with similar predictability

levels. The decision tree structure then organizes these clusters into mosaics on the

panel, described by firm characteristics and aggregate predictors for easier visualiza-

tion. This approach preserves economic interpretability and highlights key variables

associated with different levels of predictability. By leveraging the asymmetric inter-

actions between aggregate predictors and firm characteristics, we measure heteroge-

neous return predictability through cluster-wise predictive models.

Empirical Highlights. We conduct our empirical analysis using a panel of U.S. monthly

individual stock returns from 1973 to 2022, incorporating 58 firm-level characteristics

spanning eight major categories, along with eight monthly aggregate predictors.

First, our findings reveal significant heterogeneity in the cross-sectional predictabil-

ity of stock returns. Specifically, our approach identifies approximately 15 clusters

(distinct leaf nodes in a decision tree), as shown in Figure 4. We find that asset clus-

ters with low trading volumes, high earnings-to-price ratios, and high unexpected

earnings are the most predictable, while asset clusters with non-low trading volumes,

non-high return variance, and non-high unexpected earnings are the least predictable.

The predictability gap between highly and less predictable clusters remains consistent

out of the sample, validating the robustness of the relationship between unobservable

predictability and underlying high-dimensional characteristics.

Second, we demonstrate that our measure of heterogeneous predictability can be

linked to a risk anomaly. By ranking clusters based on their return predictability —
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effectively sorting assets by predictability, since the uniformity within a cluster — we

reveal a significantly positive relationship between predictability and average returns.

We find that highly predictable long-only value-weighted portfolios generate signifi-

cantly unexplained alphas of approximately 1% across various factor models over the

two-decade OOS period, while a predictability-based long-short portfolio yields even

higher unexplained alphas. These findings demonstrate that predictability-driven

strategies yield superior risk-adjusted returns, presenting a contrasting empirical con-

clusion to Rapach et al. (2010) and Kelly et al. (2024).

Third, building on the work of Cong et al. (2023) and Feng et al. (2024), we ex-

tend the clustering analysis to account for regime shifts driven by aggregate macroe-

conomic predictors or calendar months (structural breaks). This approach learns dy-

namic patterns in stock return predictability across both cross-sectional and time-

series dimensions. We find that the predictability regimes are driven by two macroeco-

nomic variables: dividend yield and default yield, both are key indicators of business

cycles (Fama and French, 1988; Keim and Stambaugh, 1986; Fama and French, 1989).

Notably, return predictability declines sharply when the dividend yield is low but

peaks during periods of high dividend yield and low default yield—conditions typi-

cally associated with recessions. These findings are consistent with those of Henkel

et al. (2011) and Dangl and Halling (2012). Across three macroeconomic regimes,

each decision tree selects different characteristics, with value characteristics consis-

tently emerging as significant predictors. Similar patterns observed through structural

breaks by calendar months further validate the robustness of these results.

Finally, while the primary objective of our approach is to cluster asset returns

based on predictability, it also produces cluster-wise predictive models as a byproduct.

We evaluate the effectiveness of these models using forecast-implied trading strategies

and compare their performance to that of homogeneous predictions. Our analysis

demonstrates consistent improvements across multiple investment metrics, including

average returns, Sharpe ratios, market alphas, and maximum drawdowns.
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Methodological Innovations. There is no off-the-shelf clustering method available to

solve this finance-driven empirical challenge. We introduce a ”divide-and-conquer”

goal-oriented clustering approach that sequentially partitions the panel of stock-return

observations according to their predictability. The goal is to separate highly pre-

dictable observations from less predictable ones while simultaneously providing the

group-level predictability measure of R2. This partitioning is achieved by maximizing

the difference in the S2N ratios, or R2, across clusters using cluster-wise heterogeneous

return forecasting models. The panel tree-based clustering offers an interpretable eco-

nomic framework by describing clusters through firm-specific characteristics for the

cross section, or macro aggregate predictors for regime switching. Generalizing the

security sorting, our clustering can be viewed as multi-way sorting with multiple char-

acteristics. Our study contributes to the broader literature on asset heterogeneity, as

explored by Cong et al. (2023). However, it differs in its economic objective: while

Cong et al. (2023) focuses on maximizing the marginal likelihood of heterogeneous

factor models, this paper emphasizes distinguishing stock return predictability.

The return prediction literature (e.g., Gu et al., 2020) often fit a homogeneous,

time-invariant global model applied uniformly to all asset return observations. How-

ever, Feng and He (2022) and Evgeniou et al. (2023) highlight that such global models

ignores the inherent heterogeneity of asset returns. Our framework addresses this lim-

itation by fitting cluster-wise predictive models based on an identified clustering struc-

ture, grouping asset-return observations with similar predictability as depicted by

firm-level characteristics and/or aggregate predictors. The key innovation of our ap-

proach is the seamless integration of clustering and cluster-wise model fitting within

a unified framework, rather than treating these processes as separate steps. Moreover,

the framework is model-agnostic, allowing it to be combined with various machine

learning (ML) methods, including Lasso, PCA, and others.

Literature Positions. Our paper contributes to the extensive empirical literature on

return predictability. Early studies (e.g., Keim and Stambaugh, 1986; Fama and French,

1988, 1989) identify market-wide predictors (e.g., default yield, dividend yield) for
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time-series return predictability over business cycles in aggregate equity and bond

markets. Various characteristics, anomalies, or long-short factors (e.g., size, value,

momentum) are documented (e.g., Fama and French, 1992, 1993; Jegadeesh and Tit-

man, 1993) in studies on cross-sectional return predictability. However, many em-

pirical findings appear unstable in OOS or post-publication evaluations (Pesaran and

Timmermann, 1995; Welch and Goyal, 2008; Harvey et al., 2016; McLean and Pontiff,

2016). In addition to first measuring the stock characteristic of return predictability,

our research complements these studies by investigating the heterogeneity in return

predictability, which may help explain the inconsistencies of predictability findings.

Our paper contributes to studies on heterogeneous return predictability. Research

on time-varying return predictability shows market returns are more predictable dur-

ing recessions using a regime-switching VAR (Henkel et al., 2011) and a time-varying

coefficient model (Dangl and Halling, 2012). In the cross section, Avramov (2002) find

small-cap value stocks more predictable than large-cap growth stocks, and Green et al.

(2017) show forecast-implied portfolios exploiting characteristics-based predictability

are insignificant outside micro-caps since 2003. Avramov et al. (2023) further dis-

cover predictability is concentrated in micro-caps, distressed stocks, or during high-

volatility periods. Our model systematically analyzes heterogeneity in return pre-

dictability, extending traditional time-varying coefficient models by incorporating high-

dimensional firm characteristics and aggregate predictors.

This paper, along with Cong et al. (2024) and Cong et al. (2023), is among the

first to develop economically guided panel tree-based clustering, part of the emerg-

ing AI literature on goal-oriented search — a data-driven approach to optimizing an

economic goal in a large, flexible modeling space (e.g., Cong et al., 2020; Feng et al.,

2024). The panel trees’ ”divide-and-conquer” approach mimics how humans solve

complex problems by completing constituent tasks. Cong et al. (2023) and Feng et al.

(2024) extend the panel-tree framework to fit heterogeneous models by maximizing

marginal likelihood, while our paper focuses on separating observations for heteroge-

neous S2N ratios. Closely related by analyzing endogenous grouped heterogeneity in

7



financial markets, Ahn et al. (2009) use unsupervised clustering based on return cor-

relations, and Patton and Weller (2022) generalize K-means to group assets by within-

group slopes and averages, finding pervasive risk-price heterogeneity. More recently,

Evgeniou et al. (2023) apply unsupervised K-means to cluster firms by characteristics

and estimate post-cluster heterogeneous predictive models. Due to the finance-driven

empirical challenge, only our customized clustering can separate predictable from less

predictable observations for predictability ”mosaics” in return panels.

The sections are organized as follows: Section 2 introduces the R2 measure of

predictability and the clustering model, while Section 3 describes the data and model

evaluation. Section 4 focuses on cross-sectional heterogeneous predictability and presents

the anomaly. Section 5 discusses the time-varying predictability and regime switches.

Section 6 reports investment performance gains based on cluster-wise models. Finally,

Section 7 concludes with appendices detailing algorithms, data, and additional results.

2 Methodology

2.1 Measurement of Return Predictability for Clustering

As discussed in the introduction, return predictability is unobservable and lacks

a consensus definition in the literature. We propose that the in-sample R2 of a pre-

dictive model serves as a natural measure of data predictability. While statisticians

traditionally interpret R2 as a property of the model, representing the proportion of

return variation explained by the model, we extend this interpretation from a data

perspective. Specifically, we view R2 as a measure of how much variation in a specific

dataset can be explained by the best-fitted ML model. Equivalently, it serves as an

indication of the difficulty in predicting the dataset.

Intuitively, if the stock universe is already partitioned into multiple clusters, fit-

ting a predictive model (with the necessary turning of parameters) for each cluster

allows each model to achieve optimal predictive performance within its respective

cluster. However, the resulting R2 values for each cluster may still vary, reflecting the

intrinsic difficulty of predicting returns within that cluster. A cluster with lower R2
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value suggests that its returns contain less signal to be explained by the predictors,

making it more challenging to predict out of the sample.

Specifically, we revisit the calculation of R2 to justify its usage as a measure of

return predictability. First, in the literature (e.g., Fama and French, 2008; Lewellen,

2015; Gu et al., 2020), a predictive model is typically represented as:

ri,t = Et−1[ri,t] + εi,t, (1)

with the assumption E[εi,t] = 0 such that the prediction of expected return is unbiased.

The information regarding the heterogeneous predictable difficulty can be represented

by the S2N ratio in Equation (2):

R2
i,t = 1− Var(εi,t)

Var(ri,t)
:= 1− σ2

ε,i,t

σ2
i,t

, (2)

where σ2
ε,i,t and σ2

i,t denote the variances of εi,t and ri,t, respectively. Subscripts i and

t of this metric emphasize its cross-sectional and time-series variability. Conceptually,

when R2
i,t is high for asset i at a specific period t, it is relatively easier for a predictive

model to capture the conditional expectation. Conversely, if the noise for asset i is

large, even with knowledge of the true Et−1[ri,t], the resulting R2 would still be low, let

alone when learning the conditional expectation from noisy data. Thus, with appro-

priate model regularization, the in-sample R2
i,t provides a reasonable measure of the

S2N ratio, reflecting the return predictability of various assets across different periods.

Second, estimating R2
i,t for each asset i at time t is challenging due to the lack of

data. The literature often addresses this issue by fitting a pooled model and calculat-

ing a single R2 for all assets across all periods (Gu et al., 2020). However, this approach

combines all data under one homogeneous predictive model, neglecting the potential

heterogeneity of return predictability on the panel. Our approach balances these ex-

tremes by dividing asset returns into a few subsets and calculating the R2 for each

group to measure cluster-wise predictability. This goal-oriented clustering method is

specifically designed to maximize differences in predictability across clusters. Details

9



of the splitting process are discussed in the following subsections.

Third, readers may ask why we do not use OOS R2 to guide our clustering ap-

proach. The primary reason is that our clustering method relies on this measure to

determine the clustering structure of assets. Incorporating OOS data would intro-

duce future information into the clustering process and result in data-snooping bias.

Instead, we treat the clustering approach and the cluster-wise predictive model as a

whole, both determined using in-sample data. The performance of this system is then

independently evaluated on OOS data. Additionally, the expected OOS mean squared

error has the well-known bias-variance decomposition:

Et

[
(ri,t+1 − Et [ri,t+1])

2] = (
Bias{Êt [ri,t+1]}

)2

+ σ2
ε,i,t+1 + Var{Êt [ri,t+1]}. (3)

When predicting stock returns, σ2
ε,i,t+1 dominates due to the low S2N ratio. Robust

prediction benchmarks, such as zero for individual stocks or the historical average

for the market index, may not reduce predictive bias but typically result in almost

zero predictive variance. Furthermore, as documented in the literature, the OOS R2

generally remains below 1%, making it hard to produce robust clustering results based

on OOS R2 in environments with low S2N ratios.

Finally, once our clustering system is established, we evaluate its out-of-sample

(OOS) performance by examining the detected clustering patterns and the fitted cluster-

wise predictive models. This standard OOS evaluation mitigates concerns about data

snooping and further validates the effectiveness of our clustering algorithm.

2.2 Cluster-wise Predictive Modeling

Clustering and predictive modeling are two fundamental tasks in machine learn-

ing, typically addressed by different models. However, our approach integrates both

tasks within a unified framework, decision trees are customized for clustering, and

ML models (e.g., Ridge regression) are used for prediction.

In this section, we assume the clusters are predetermined and focus on introduc-

ing the cluster-wise analysis. The subsequent section details our approach for detect-
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ing clusters using cluster-wise predictive models.

We denote the data as D = (ri,t, zi,t−1,xt−1) | i = 1, . . . , N ; t = 1, . . . , Ti, where ri,t

represents the excess return of stock i at time t. Predictors commonly used in the stock

return prediction literature include zi,t−1, a C-dimensional vector of firm characteris-

tics, and xt−1, an M -dimensional vector of aggregate predictors.

Ideally, heterogeneous and time-varying expected excess returns, Et−1[ri,t], would

be modeled as gi,t(zi,t−1,xt−1), a function that varies across assets and time periods.

However, due to the limited observations available for individual stock returns, esti-

mating each gi,t(·) separately is infeasible. As a result, many studies (e.g., Gu et al.,

2020) adopt a homogeneous predictive function, gt(·), and update time-varying coef-

ficients using a rolling-window scheme. However, Feng and He (2022) and Evgeniou

et al. (2023) emphasize that such homogeneous modeling overlooks the heterogene-

ity in predictive power across different assets. Moreover, this approach implicitly as-

sumes homogeneous return predictability—i.e., the same R2 for every asset—which

is inconsistent with empirical findings (Hou et al., 2020; Avramov et al., 2023). Ad-

ditionally, while rolling-window estimation provides robustness, it fails to capture

macroeconomic-driven regime shifts in the stock market.

We propose a cluster-wise predictive modeling approach that bridges the gap be-

tween individual and pooled models by fitting a cluster-wise predictive model. Unlike

the two-step clustering and estimation approach in Evgeniou et al. (2023), we adopt

the panel tree framework introduced by Cong et al. (2023), customizing it to cluster as-

sets based on return predictability. This clustering method partitions the stock return

panel into multiple clusters (leaf nodes) through characteristics for cross-sectional and

aggregate predictors for time-series dimensions. Figure 1 illustrates an example out-

put of our approach, where the panel of stock-return are split to three non-overlapping

clusters, described by characteristics or aggregate predictors.5

Rather than fitting individual predictive models, gi,t(·), for each asset i in period

5A company’s cluster membership may evolve over time as its characteristic values change. For
example, if a company transitions from a small-cap to a large-cap firm, as reflected by market equity
values, its cluster assignment may shift based on the partitioning outcome: D3: high inflation; D4:
non-high inflation and small-cap; D5: non-high inflation and non-small cap.
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Figure 1: Clustering Illustration via Partitions

This figure separates the whole panel of stock returns into three rectangular D3, D4, and D5. The first
partition is inflation at 0.7, and the second partition is size at 0.3 when inflation is not high.

0.3

0.70 1

1

Inflation
(Time Series)

Size
(CS Cluster)

D3

D5

D4

t, or a single pooled model, we estimate a small number of cluster-wise homogeneous

models that vary across clusters. As a result, the cluster-wise predictive model is:

Et−1[ri,t] = gj(zi,t−1,xt−1), (4)

where stock-return observations in the j-th cluster follow the same predictive model

gj(·). Our approach simultaneously clusters observations and estimates local predic-

tive models, grouping stock-return observations with similar return predictability into

the same cluster. This contrasts with the two-step approach of Evgeniou et al. (2023),

which separates based on firm IDs {ri ∈ j}.

Remarkably, our clustering approach allows the user’s specific choice of predic-

tive model gj(·). For simplicity, we illustrate our approach using Ridge regression,

which is suggested to be robust under weak signal scenarios by Shen and Xiu (2024).

Consequently, the in-sample R2
j is calculated with stock returns falling in the specific

j-th cluster. Next, we illustrate our tree-based clustering approach step-by-step.

2.3 Clustering: First Split

The objective of our clustering approach is to group asset returns with similar pre-

dictability into the same cluster. As discussed in the previous subsection, predictabil-
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ity is measured using the in-sample R2 of a cluster-wise predictive model, such as

Ridge regression. Traditional clustering methods in the machine learning literature,

such as K-means, are not well-suited for this task. These methods typically minimize

within-cluster distances and maximize cross-cluster distances based on characteristics,

but they do not account for return predictability. Moreover, their resulting clusters of-

ten lack clear interpretability.

We propose a novel model-based clustering approach that partitions the panel of

stock returns based on unobservable predictability, distinguishing between highly and

less predictable observations. This method optimizes the separation of samples into

two subgroups by maximizing the difference in their S2N ratios or R2 values6.

Our approach is implemented iteratively to partition the entire panel of stock-

return observations, adding one cluster at a time. The results are visualized using a

decision tree structure. Unlike the Random Forest algorithm, which constructs mul-

tiple trees for prediction only, our method uses lagged (observable) information to

iteratively partition the sample, resulting in a deterministic clustering output.

The initial step tries to find the first split point (split predictor and cut-point value)

to divide the data into two sets. This process includes fitting cluster-wise predictive

models and calculating the absolute R2 difference for each split candidate, ultimately

selecting the one that maximizes the R2 difference.

Figure 2 illustrates a candidate for the first split in a decision tree, where the root

node, D1, containing the entire dataset, is divided into two clusters, or leaf nodes—D2

and D3. Following terminologies in Cong et al. (2024), leaf nodes refer to the nodes

at the bottom of decision trees without subsequent branches. The split is based on

the rule “varp(Inflation) ≤ ck(0.7),” where the p-th variable (firm characteristic,

aggregate predictor, or calendar month) is inflation, and the k-th cut-point value is 0.7.

To evaluate the quality of this split candidate, we define a goal-oriented split criterion

that measures its effectiveness in distinguishing returns with high predictability from

those with low predictability.

6Alternative clustering objectives could achieve similar goals, but maximizing the R2 difference is
both interpretable and practical.
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Figure 2: Illustration for the First Split

This figure illustrates one of the first split candidates, such as Inflation≤ 0.7. The left figure shows a
decision tree that divides the sample, and the right figure shows the corresponding partition plot that
only partitions over time.

D1 : Inflation ≤ 0.7

D2 D3

Yes No

0.70 1

1

Inflation
(Time Series)

D3D2

The first split candidate divides the entire return sample D1 into two clusters, D2

and D3. We fit two cluster-wise predictive models, denoted as ĝ2(·) and ĝ3(·), respec-

tively. Generally, for the j-th leaf node, we fit a specific predictive model gj(·) in Equa-

tion (5), and the return predictions will be denoted as r̂i,t = ĝj(zi,t−1,xt−1), where zi,t−1

and xt−1 are lagged stock characteristics and aggregate macro predictors, respectively.

Notably, Fama and French (2008) have criticized that small-cap stocks with high

return variance largely dominate the panel regressions, and Hou et al. (2020) show

that many anomalies are replicable due to the dominance of micro-caps (about 60% of

all firms) in the cross-sectional regressions. Therefore, we consider using the volatility-

weighted Ridge regression for the cluster-wise predictive regressions and further split

criterion calculations.

gj(·) = β0 + β⊺si,t−1 + εi,t,

β̂j = argmin
β0,β

 1

Nleafj

∑
leafj

wi,t−1 (ri,t − β0 − β⊺si,t−1)
2 + λ||β||22

 ,

wi,t−1 = 1/σ2
i,t−1

(5)

where si,t−1 = {zi,t−1,xt−1} include lagged firm characteristics and aggregate predic-
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tors, and wi,t−1 is the inverse of idiosyncratic return variance. The volatility, σ2
i,t−1, is

estimated on a rolling-window basis, which helps to incorporate both cross-sectional

and time-series variation for observation weights within the leaf cluster. The hyper-

parameter λ is determined by cross-validation.

Therefore, r̂i,t = β̂j,0 + β̂⊺
j si,t−1 is the heterogeneous return forecast for calculating

the corresponding S2N ratios, R2. Within the j-th leaf node:

R2
j = 1−

∑
{i,t}∈leafj(ri,t − r̂i,t)

2∑
{i,t}∈leafj r

2
i,t

. (6)

Since our goal is to separate returns with high predictability from those with lower

predictability, it is natural to use the absolute value of the R2 difference between the

left and right clusters as the split criterion:

S{leafl,leafr} (varp, ck) =
∣∣R2

leafl −R2
leafr

∣∣ . (7)

Intuitively, this criterion evaluates how effectively each split candidate differentiates

the R2 values between the two leaf nodes, regardless of which one is higher. A split

candidate achieving a high value for this criterion indicates its success in partitioning

stock returns into a highly predictable leaf node and a less predictable one.

We then evaluate the criterion in Equation (7) across all potential split candidates,

considering the full combination of split variables and cut-point values. Different pairs

of split candidates, varp, ck, result in various partitions of the data, producing non-

overlapping sub-samples as leaf nodes, D2 and D3, which correspond to cluster-wise

predictive models, ĝ2(·) and ĝ3(·). These partitions ultimately yield different values

for the split criterion in Equation (7), with a successful split candidate maximizing

this criterion. Consequently, P candidate variables and K potential cut-point values

provide a total of P ×K possible split combinations for the first split, and we evaluate

each of them to pick the optimal one as the first split. Then the root node will be

divided into two child nodes (clusters).
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2.4 Clustering: Subsequent Splits and Stopping Criteria

We essentially take a sequential approach to partition the panel into multiple clus-

ters. Once the first split is determined, it creates two leaf nodes, and subsequent splits

can occur at either of these nodes to further separate the clusters. Figure 3 illustrates

two potential candidates for the second split, which may occur on the left (non-high

inflation) or right (high inflation) leaf, depending on different characteristics, high-

lighting the asymmetric interaction of split predictors.

Figure 3: Illustration for the Second Split

This figure illustrates two example candidates for the second split, which can happen on the left or right
child node, demonstrating the asymmetric interaction of split predictors.
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Specifically, the second split can occur within the left leaf node D2, partitioning it

into D4 and D5, or within the right leaf node D3, dividing it into D6 and D7. Each side

still evaluates P ×K split candidates, resulting in a total of 2 × P ×K combinations.

When evaluating split candidates for D2, cluster-wise predictive models ĝ4(·) and ĝ5(·)

are fitted using the observations in D4 and D5, respectively, and the split criterion

values are calculated. A similar procedure is applied for candidate splits within D3.

Among all split candidates across D2 and D3, the one that maximizes the split criterion

is selected as the second split.

This procedure adopts a local-global approach: it evaluates the benefits of split-

ting each leaf node based on local R2 differences between sub-samples and globally

selects the split that best differentiates return predictability.

All subsequent splits are determined in the same manner. Each time, we examine

all existing leaf nodes, search for all possible split candidates, and choose the one with

the maximum value as the best partitioning of the specific leaf node. Without prior

knowledge of the “correct” clustering pattern, this self-supervised clustering approach

partitions stock-return observations into multiple clusters, maximizing the split crite-

rion and predictability heterogeneity between clusters, and then fitting post-cluster

heterogeneous predictive models.

Stopping Criteria. Stopping criteria are essential for regularizing in-sample model

training, preventing overfitting. The clustering process stops when predetermined

conditions are satisfied. We impose a minimum sample size requirement for each

leaf cluster, eliminating split candidates whose resulting sub-samples fail to meet this

threshold. This ensures the cluster-wise predictive model in each cluster can be fit-

ted with sufficient observations. Additionally, we limit the tree structure’s maximum

depth and the number of terminal leaves to control its complexity. Finally, a node is no

longer split if all split candidates fail to improve predictability -—- specifically, when

the R2 values of both child nodes are smaller than that of their parent node.

Cluster-wise Predictions. Once tree growth terminates, the entire panel of observa-

tions is partitioned into multiple non-overlapping clusters based on variable interac-
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tions, such as firm characteristics, aggregate predictors, or calendar months. Within

each cluster, we refit cluster-specific predictive models using the corresponding obser-

vations. As outlined in Section 2.2, we employ Ridge regression for return predictions.

The final output of our approach is a decision tree structure that delineates the clus-

tering pattern, with each cluster linked to its own Ridge prediction model. We refer to

this as a heterogeneous prediction model, in contrast to a global prediction model that

fits a single Ridge regression across all stock-return observations.

Notably, while we demonstrate our clustering approach using Ridge regression

in Equation (5) for simplicity, the framework is not restricted to any specific predictive

model. Instead, it provides a flexible and generalizable framework for heterogeneous

predictions that can incorporate a wide range of ML models.

3 Empirical Data and Evaluations

We apply our approach to U.S. individual stock returns to study their heteroge-

neous predictability.7 The monthly sample spans from 19738 to 2022, with the first

30 years used for model training and the most recent 20 years for the OOS analyses.

The average and median number of stocks in the training sample are 4,840 and 4,772,

respectively, while in the test sample, these numbers are 3,911 and 3,696.9

Aggregate Predictors. We analyze eight aggregate predictors to define and select

macroeconomic regimes characterized by time-varying return predictability. As de-

tailed in Table A.6, these predictors include the 3-month Treasury bill rate, inflation,

term spread, default yield, and market-level characteristics such as dividend yield,

volatility, net equity issues, and liquidity.

To ensure comparability of these predictors over time, we standardize them to the

7We use standard filters (see, e.g., Fama and French, 1992), including: (1) restricting the sample to
stocks listed on NYSE, AMEX, or NASDAQ for more than one year; (2) selecting observations for firms
with CRSP share codes of 10 and 11; and (3) excluding stocks with negative book equity or negative
lagged market equity.

8We begin in 1973 as CRSP expanded its data coverage in 1987 to include NASDAQ daily and
monthly stock data, with information on domestic common stocks and ADRs traded on the NASDAQ
Stock Market starting December 14, 1972.

9Note that our algorithm allows the panel data to be unbalanced.
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[0, 1] range using their empirical percentile values within a rolling 10-year window.10

This standardization enables consistent evaluation of each predictor on a unified scale

while avoiding look-ahead biases. Consistent with the approach for firm-level char-

acteristics, we select two cut-point values, 0.3 and 0.7, for each aggregate predictor,

employing a ”top-middle-bottom” sorting method.

Characteristics. As detailed in Table A.7, our dataset comprises 58 firm-level char-

acteristics categorized into eight major groups: size, value, investment, momentum,

profitability, liquidity, volatility, and intangibles. Each characteristic is standardized

cross-sectionally and scaled uniformly to the range [0, 1] for every month. To mimic

the ”top-middle-bottom” sorting approach, we define two cut-point values, 0.3 and

0.7, as split-value candidates for each characteristic. These characteristics are utilized

for forecasts to construct tree-based clustering and cluster-wise predictive models.

Model Fitting Design. The baseline analyses for cross-sectional partitions use the

first 30 years of data for both tree-based clustering and model estimation, with the

most recent 20 years serving as testing samples. To enhance the predictive perfor-

mance, we update the tree-based clustering and cluster-specific predictive models ev-

ery five years, employing a 30-year rolling window of in-sample data to retrain the

decision tree structure. This process is repeated four times over the 20-year OOS data.

For extended analyses involving time-series splits, we conduct a full-sample anal-

ysis to account for the long and overlapping nature of business cycles. Additionally,

we use cross-validation to optimize the hyperparameters during the post-cluster pre-

dictive model training phase.

Performance Evaluation. As mentioned in Section 2.1, we use in-sample R2 to mea-

sure predictability. In addition to the in-sample R2, we evaluate the OOS R2 to check

whether the predictability gap is consistent. This approach aligns with the standard

practice in recent studies. Following Gu et al. (2020), we define the OOS R2 (R2
OOS)

10For instance, an inflation value exceeding 0.7 indicates that the current inflation level is higher than
70% of observations in the past ten years.
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using zero forecasts as the benchmark,

R2
OOS,j = 1−

∑
{i,t}∈leafj(ri,t+1 − r̂i,t+1)

2∑
{i,t}∈leafj r

2
i,t+1

, (8)

where subscript j represents the specific OOS predictions by the related in-sample

cluster-wise predictive model of the j-th cluster.

4 Cross-Sectional Heterogeneous Return Predictability

The baseline model investigates heterogeneous return predictability in the cross

section, addressing two key questions: Does heterogeneity exist, and which stock re-

turns are more predictable? This section also demonstrates that our goal-oriented clus-

tering approach effectively can capture this heterogeneity. Unlike methods that assign

stocks to fixed clusters across all periods (e.g., Evgeniou et al., 2023), we allow stocks

to move between clusters over time. Since clusters are defined by values of character-

istics, these transitions occur naturally as stock-specific characteristics evolve.

We refer to the clustering model in this section, which considers only cross-sectional

splits, as ”CS clusters” to distinguish it from the ”TS+CS clusters” model discussed

in the Section 5, which incorporates both time-series regime switching and cross-

sectional heterogeneity.

4.1 Cluster and Heterogeneous Predictability

Clustering Pattern. We present our self-supervised cross-sectional clustering results

in Figure 4, derived from training the model on data from the first 30-year period

(1973–2002). This tree stops growing after reaching 15 final leaves, following our pre-

determined stopping criteria.11

Each leaf node in Figure 4 contains two or three rows of information. The first

row identifies the leaf number and split order; for example, the root node represents

the initial split and is labeled as leaf node N1 and split S1. The second row displays

11A moderately deep decision tree with large leaves (sample size) is both robust and easy to interpret.
To achieve this, we set the maximum tree depth to 5 (allowing up to 16 leaves) and specify a minimum
leaf size of 10,000 stock-return observations to ensure robust model training. Under these parameters,
the algorithm automatically halts after 14 splits.

20



Fi
gu

re
4:

Tr
ee

-B
as

ed
C

lu
st

er
(C

S
C

lu
st

er
)

Th
is

fig
ur

e
ill

us
tr

at
es

th
e

cr
os

s-
se

ct
io

na
lt

re
e-

ba
se

d
cl

us
te

ri
ng

st
ru

ct
ur

e
de

ri
ve

d
fr

om
m

on
th

ly
da

ta
(1

97
3–

20
02

).
Th

e
tr

ee
pa

rt
it

io
ns

st
oc

k
re

tu
rn

s
ba

se
d

on
th

e
m

on
th

ly
st

an
da

rd
iz

at
io

n
of

fir
m

ch
ar

ac
te

ri
st

ic
ra

nk
s

w
it

hi
n

th
e

[0
,1

]r
an

ge
.T

er
m

in
al

le
av

es
re

pr
es

en
tc

lu
st

er
s

fo
rm

ed
by

sp
ec

ifi
c

fir
m

ch
ar

ac
te

ri
st

ic
ra

ng
es

.E
ac

h
no

de
,i

nc
lu

di
ng

in
te

rm
ed

ia
te

an
d

te
rm

in
al

le
av

es
,i

s
la

be
le

d
w

it
h

an
ID

(N
#

)a
nd

sp
lit

or
de

r
(S

#
).

C
lu

st
er

-w
is

e
R

2
va

lu
es

,i
nd

ic
at

in
g

re
tu

rn
pr

ed
ic

ta
bi

lit
y,

ar
e

sh
ow

n
fo

r
ea

ch
no

de
.

N
1

S1
D

O
LV

O
L
≤

0.
3

1.
55

N
2

S2
EP

≤
0.

7
2.

72

N
4

S6
M

O
M

1M
≤

0.
3

2.
36

N
8

S7
Z

ER
O

TR
A

D
E
≤

0.
3

3.
77

N
16

7.
92

Y

N
17

3.
08

NY

N
9

S8
SU

E
≤

0.
3

2.
10

N
18

3.
20

Y

N
19

1.
76

N

N

Y

N
5

S3
SU

E
≤

0.
7

4.
42

N
10

S5
Z

ER
O

TR
A

D
E
≤

0.
3

3.
46

N
20

6.
85

Y

N
21

3.
21

NY

N
11

S4
BM

IA
≤

0.
7

9.
37

N
22

7.
39

Y

N
23

11
.9

2

N

N

N

Y

N
3

S9
SV

A
R
≤

0.
7

1.
34

N
6

S1
2

SU
E
≤

0.
7

1.
35

N
12

S1
4

N
IN

C
R
≤

0.
3

1.
10

N
24

0.
95

Y

N
25

2.
19

NY

N
13

S1
3

EP
≤

0.
7

2.
33

N
26

1.
90

Y

N
27

4.
25

N

N

Y

N
7

S1
0

R
VA

R
C

A
PM

≤
0.

7
2.

45

N
14

4.
20

Y

N
15

S1
1

M
O

M
6M

≤
0.

3
2.

43

N
30

3.
28

Y

N
31

1.
98

N

N

N

N

21



the optimal split rule determined by the algorithm, directing observations meeting the

split condition to the left child node, while those not meeting the condition proceed

to the right child node. Terminal leaves, which are not subject to further splits, are

represented solely by their index number in the first row. The bottom row presents

the signal-to-noise (S2N) ratio, R2, reflecting the cluster-wise return predictability for

each node. This design provides an intuitive visualization of the clustering processes

and the interactions among different characteristics.

Before any split, the aggregate return predictive ability (R2) of the homogeneous

model is 1.55% (root node). After the first split, the R2 improves significantly for stock

returns with low dollar trading volume (DOLVOL ≤ 0.3), increasing to 2.72% at N2,

while slightly declining for the complement set, reducing to 1.34% at N3. The R2

difference (2.72 - 1.34)% represents the maximum value identified among all split can-

didates (58 × 2) by the algorithm. Stocks with low trading volumes are typically as-

sociated with low liquidity and are usually small-cap or distressed stocks, consistent

with the findings of Avramov et al. (2023).

Additionally, Figure 5 highlights marginal information extracted from the deci-

sion tree shown in Figure 4. It illustrates the average decile R2 values for each year

and/or decile cluster sorted by various characteristics. A clear pattern emerges, indi-

cating a decline in return predictability for stocks with higher dollar trading volumes,

a trend that has persisted over time. The bottom-left sub-figure further corroborates

the superior forecast accuracy for small-cap stocks.

The second split selects high earnings-to-price stocks (EP > 0.7), resulting in a

higher R2 value of 4.42% at N5 under the low dollar trading volume condition. Value

stocks with low trading volumes exhibit greater return predictability, while non-value

stocks with small trading volumes show lower forecasting accuracy (2.36% at N4).

In addition, as shown in Figure 5, the EP-sorted decile clusters in the middle ex-

hibit the lowest predictability compared to those at both extremes, with higher value

stocks consistently achieving greater accuracy. The bottom-right sub-figure, sorted by

DOLVOL and EP, highlights an interaction pattern where stocks with low DOLVOL and
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Figure 5: Mosaics of Predictability by Predictors (CS Cluster)

These heat maps summarize average return predictability (R2 values, % in the color bar) for stock
returns based on the tree-based clustering in Figure 4. The first three heat maps show average R2

values for groups sorted by years and deciles of dollar trading volume, earnings-to-price, and market
equity value. The fourth heat map displays average R2 values for 10 × 10 groups formed by bivariate
decile sorting of the top two characteristics.

high EP exhibit the highest return predictability, indicated by the darkest shading.

These mosaic-like patterns emphasize the differences in return predictability arising

from the interactions among various characteristics.

Figure 6 presents the return predictability derived from tree-based clustering in

a visually distinct, mosaic-like format. The sample period spans 360 months, corre-

sponding to the tree structure shown in Figure 4, with approximately 4,000 to 5,500
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Figure 6: Mosaics of Predictability by Clusters (CS Cluster)

This heat map summarizes monthly return predictability (R2 values, % in the color bar) for stock returns
based on the tree-based clustering in Figure 4. The vertical axis shows the proportion of observations
per cluster, while the horizontal axis represents months. Colors range from light to dark, indicating
increasing levels of return predictability.

observations per month. Notably, since clusters are defined based on characteristic

values, the number of stocks within each cluster is not fixed over time. For each

month, clusters are arranged in ascending order of predictability, with the height of

each segment reflecting the proportion of stocks within that cluster for that month.12

As R2 values increase (darker colors), the proportion of observations decreases, indi-

cating that the majority of stock returns are hard to predict. By setting the lower bound

of the color bar to 0, it becomes apparent that more than half of the observations shift

toward lighter shades of yellow each month. In contrast, only a small fraction of obser-

vations exhibit high predictability, represented by the deepest colors, corresponding

to R2 values exceeding 10%. This horizontal, mountain-like cascading pattern, with its

variations across cross-sectional, time-series, and color dimensions, provides valuable

insights into the heterogeneous nature of stock return predictability.

12The denominators for the monthly proportions are based on the total number of observations in
each month. The gap around 1982 may be attributed to a surge in IPOs during that period, potentially
linked to the launch of the NASDAQ National Market in April 1982, which included larger and more
actively traded NASDAQ securities.
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Cluster-Wise Performance. Panel A of Table 1 provides summary statistics for each

cluster. Ordered by descending predictability, the table reveals substantial heterogene-

ity across clusters, with R2 values ranging from 11.92% to 0.95%, reflecting a differ-

ence exceeding 10%. These variations in R2 demonstrate that each cluster exhibits a

distinct level of predictability, underscoring the diversity in the cross-sectional dimen-

sion. Furthermore, the least predictable cluster, N24, accounts for a large portion of

stocks, whereas the most predictable cluster, N23, includes only a small subset. This

disparity highlights the limited availability of highly predictable stocks.

Table 1: Cluster-Wise Performance (CS Cluster)

This table summarizes cluster-based information from the cross-sectional tree structure in Figure 4.
Panel A reports the number of observations per cluster (# obs) and return predictability (R2 values in
%) for each cluster. Panel B shows the monthly average return (Avg in %) and annualized Sharpe ratio
(SR) for equal/value-weighted (EW/VW) portfolios based on all observations. Leaf nodes are ordered
by descending R2.

Panel A: Summary Statistics Panel B: Profitability

Leaf # obs R2 AvgEW SREW AvgVW SRVW

N23 11,627 11.92 4.34 2.17 3.54 1.92
N16 14,695 7.92 3.58 1.08 2.93 0.96
N22 16,341 7.39 3.15 1.73 2.50 1.58
N20 12,116 6.85 1.95 0.89 1.55 0.76
N27 79,752 4.25 1.98 1.26 1.24 0.81
N14 14,402 4.20 0.30 0.10 -0.22 -0.07
N30 115,528 3.28 -0.92 -0.31 -1.55 -0.53
N21 97,131 3.21 0.66 0.39 0.65 0.44
N18 49,275 3.20 -2.20 -1.15 -1.76 -1.15
N17 87,763 3.08 1.52 0.62 0.70 0.36
N25 179,412 2.19 0.94 0.57 0.62 0.40
N31 126,050 1.98 -0.14 -0.05 -0.37 -0.14
N26 178,691 1.90 1.30 0.78 0.68 0.46
N19 133,911 1.76 0.24 0.13 0.42 0.27
N24 625,549 0.95 0.36 0.24 0.32 0.24

We further examine the relationship between return predictability and average

returns by constructing equal- and value-weighted portfolios of stocks within each

cluster over time. Panel B of Table 1 reports the average returns and Sharpe ratios

for these portfolios. Notably, the most predictable cluster (N23, with R2 = 11.92%)

delivers an average monthly return of 3.54% (4.34%) and an annualized Sharpe ratio

of 1.92 (2.17) for value- (equal-) weighted strategies, reflecting both strong profitability
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and an attractive risk-return trade-off. In contrast, the least predictable cluster (N24,

with R2 = 0.95%) exhibits significantly weaker investment performance.

These results highlight a clear relationship between average returns and return

predictability, suggesting the potential for identifying anomalies associated with pre-

dictability. A more detailed discussion of this anomaly is postponed to Section 4.2.

Out-of-sample Predictability. Thus far, the easy- and hard-to-predict clusters have

been identified using in-sample information. This naturally raises a question: do these

patterns persist out of the sample? Importantly, the goal is not to engage in a horse

race of OOS R2 metrics against various ML models. Instead, the primary objective is to

evaluate the persistence of the heterogeneous predictability pattern out of the sample,

which cannot be detected by other ML models. To evaluate OOS performance, we

adopt a five-year rolling clustering setup with a two-fold cross-validation strategy for

hyperparameter optimization.13

Using the tree structure and cluster-wise performance detailed in Table 1, we cat-

egorize all leaves into three groups based on return predictability rankings: high,

medium, and low. Observations from clusters such as N23, N16, N22, and N20 are

aggregated to form the highly predictable group, while N24 represents the least pre-

dictable cluster. The remaining leaves are combined to create the medium predictabil-

ity group.14 We use OOS R2 values, as defined in Equation (8), to validate the cross-

sectional patterns of stock return predictability.

Table 2 reports the R2 statistics for global models (Panel A) and cluster-wise pre-

dictive models (Panel B). The ”Global” model in Panel A fits all data using a single pre-

dictive model without any clustering, and is also evaluated on sub-samples of high,

medium, and low predictability clusters identified by our approach. The “Aggregate”

model in Panel B represents the aggregation results of predictions from all cluster-wise

models. For instance, Panel A global Ridge model achieves 1.62% R2 out of the sample
13The in-sample data is divided into two equally continuous periods. The model is trained on one

period and validated on the other. The optimal hyperparameters are selected based on the average
MSE, and the model is then retrained using all in-sample data. Finally, the resulting coefficients are
applied to predict the next five years of OOS values.

14Predictability levels are determined by balancing R2 values with the proportion of observations,
prioritizing clusters with large R2 gaps while acknowledging that most returns show low predictability.
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Table 2: Evaluations of Predictability (CS Cluster)

This table presents return predictability (R2 values, %) for different predictive methods, within-sample
and out-of-sample results for cross-sectional splits. Panel A shows the global model, fitted on all data
but evaluated on the full sample or clusters identified by our approach. Panel B summarizes the cluster-
wise model performance, reporting five samples: Global (no clustering), Aggregate (aggregation of
cluster-wise predictions), and High, Medium, and Low, based on the ranking of predictability of clus-
ters.

In-Sample (1973 - 2002) Out-of-Sample (2003 - 2022)

Sample OLS Lasso Ridge OLS Lasso Ridge

Panel A: Global Forecasts

Global 1.56 0.57 1.00 0.49 0.35 0.47
High 2.96 1.58 2.02 1.94 1.31 1.62
Medium 1.63 0.55 1.01 0.53 0.32 0.45
Low 1.06 0.41 0.77 0.09 0.27 0.32

Panel B: Cluster-Wise Forecasts

Aggregate 2.48 1.71 1.60 0.28 0.55 0.62
High 8.12 7.01 6.50 1.64 1.83 2.05
Medium 2.61 1.82 1.66 0.24 0.56 0.63
Low 0.95 0.29 0.43 0.13 0.26 0.34

for highly predictable clusters, while the cluster-wise model achieves 2.05% in Panel

B. The aggregate model demonstrates slight improvements in R2 values, highlighting

the benefits of the cluster-wise predictive model.

When comparing clusters with different levels of predictability, highly predictable

clusters consistently outperform their less predictable counterparts, regardless of the

model used. For instance, when comparing the values in each row for the highly

predictable cluster against the low predictability cluster, every metric—whether in-

sample or out-of-sample, OLS or Ridge regression, global or cluster-wise model—shows

higher R2 for the more predictable cluster. These results confirm that predictability is

a persistent characteristic of stocks, remaining consistent out of the sample. Further-

more, they validate the effectiveness of our tree-based clustering approach in captur-

ing and identifying this heterogeneity.

4.2 Anomaly of Predictability

Thus far, we have introduced the novel clustering approach to group stocks based

on predictability and demonstrated its variation across the cross section of stocks. It
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provides a new measurement of the unobservable return predictability of individual

stocks. This naturally raises the question: do these heterogeneous predictability mea-

sures capture risks that are orthogonal to established factor models?

To investigate this, we construct value-weighted and equal-weighted long-only

portfolios for each cluster and analyze whether their average returns exhibit signifi-

cant spreads. Panel B of Table 1 highlights the potential return spreads, while Figure 7

visualizes the relationship between cluster predictability and the average returns and

Sharpe ratios of these portfolios. The plot reveals a clear, significantly positive relation-

ship: clusters with higher return predictability tend to deliver superior profitability, as

reflected in both higher average returns and Sharpe ratios.

Figure 7: Connections between Predictability and Profitability (CS Cluster)

This figure shows the relationship between in-sample cluster-wise return predictability (R2 values, hor-
izontal axis) and the monthly average return (in %, left vertical axis) and annualized Sharpe ratio (right
vertical axis) of value/equal-weighted portfolios (see Table 1). The red solid and blue dashed lines
represent the fitted scatter plots for the average return (Avg) and Sharpe ratio (SR), respectively.

This result motivates the construction of long-short portfolios to capture anoma-

lies associated with predictability. Our clustering results, organized through a deci-

sion tree structure, reveal that each cluster exhibits a distinct level of predictability.

This methodology can be interpreted as a generalized sorting approach based on the

latent characteristics of heterogeneous predictability.

Specifically, we focus on the value-weighted portfolios depicted in Table 1. At

the end of each month, we rank all clusters by their predictability and implement a

long-short strategy. This strategy shorts the least predictable cluster portfolio (S1, con-
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taining around 35.9% of in-sample observations) and longs the top one to five most

predictable cluster portfolios (L1 to L5, which account for 0.7% to 7.7% of in-sample

observations). To evaluate the abnormal returns of these anomalies, we run the span-

ning regressions with the portfolio returns on various widely used factor models.

Table 3: Testing Anomaly of Predictability

This table presents summary statistics (Panel A) and abnormal returns (Panel B) for the long-short fac-
tor based on cross-sectional return predictability across clusters. ”L” and ”S” indicate the number of
long and short clusters, respectively. Panel A reports the average return (Avg, %), median (Median,
%), standard deviation (Std, %), skewness, kurtosis, annualized Sharpe ratio (SR), and maximum draw-
down (MDD). Panel B provides abnormal return estimates (alphas, %) and significance (denoted by ”*”
and t-values in parentheses) from various factor models.

In-Sample (1973 - 2002) Out-of-Sample (2003 - 2022)

L1-S1 L2-S1 L3-S1 L4-S1 L5-S1 L1-S1 L2-S1 L3-S1 L4-S1 L5-S1

Panel A: Summary Statistics

Avg 3.22 2.92 2.67 2.31 2.03 2.78 1.67 1.45 1.32 1.08
Median 2.82 2.23 2.18 1.79 1.67 2.48 1.61 1.45 1.46 1.00
Std 4.94 5.79 4.72 4.58 3.82 4.70 4.36 3.66 3.31 3.30
Skewness 1.09 1.28 0.94 1.04 1.04 1.09 0.24 0.24 0.22 0.45
Kurtosis 3.62 4.16 2.61 3.17 3.06 4.61 1.89 0.52 0.24 1.37
SR 2.26 1.74 1.96 1.75 1.85 2.05 1.33 1.37 1.38 1.13
MDD 9.74 12.84 10.47 10.84 8.66 13.99 13.76 8.68 6.80 8.29

Panel B: Abnormal Returns

CAPM 3.26*** 2.87*** 2.67*** 2.31*** 2.03*** 2.76*** 1.71*** 1.41*** 1.27*** 0.92***
(12.53) (9.40) (10.66) (9.52) (10.03) (8.93) (5.97) (5.86) (5.87) (4.40)

FF3 2.87*** 2.53*** 2.32*** 1.94*** 1.68*** 2.80*** 1.75*** 1.45*** 1.31*** 0.97***
(13.23) (11.20) (13.42) (12.12) (12.49) (9.63) (6.63) (7.03) (7.12) (5.80)

FF3+IVOL 2.80*** 2.69*** 2.38*** 1.98*** 1.69*** 2.94*** 1.85*** 1.52*** 1.36*** 1.04***
(12.52) (11.63) (13.32) (11.98) (12.21) (10.49) (7.12) (7.53) (7.43) (6.40)

FF3+MOM 2.94*** 2.68*** 2.41*** 2.04*** 1.76*** 2.89*** 1.80*** 1.51*** 1.33*** 1.01***
(13.08) (11.54) (13.51) (12.36) (12.74) (10.20) (6.86) (7.48) (7.25) (6.20)

FF5 2.72*** 2.56*** 2.27*** 1.88*** 1.61*** 2.88*** 1.81*** 1.52*** 1.37*** 1.07***
(12.43) (11.01) (12.74) (11.39) (11.69) (9.60) (6.78) (7.23) (7.24) (6.31)

FF5+MOM+IVOL 2.82*** 2.73*** 2.39*** 2.00*** 1.72*** 2.98*** 1.87*** 1.58*** 1.40*** 1.12***
(12.57) (11.52) (13.10) (11.91) (12.24) (10.48) (7.10) (7.73) (7.42) (6.84)

Q5 2.70*** 2.64*** 2.31*** 1.93*** 1.64*** 2.88*** 1.74*** 1.58*** 1.39*** 1.09***
(10.27) (9.69) (10.92) (9.78) (9.75) (9.35) (6.30) (7.43) (7.18) (6.14)

BS6 2.48*** 2.60*** 2.20*** 1.80*** 1.49*** 2.83*** 1.76*** 1.51*** 1.31*** 0.98***
(10.62) (10.40) (11.54) (10.27) (10.27) (9.78) (6.58) (7.37) (6.97) (5.88)

Panel A of Table 3 summarizes the performance of the anomalies, showing that

portfolios formed based on return predictability generate distinct return spreads. Long-

short strategies with larger predictability gaps (e.g., “L1-S1”) outperform those with

smaller gaps (e.g., “L5-S1”), with higher average returns, Sharpe ratios, and profitabil-

ity across both sample periods. Even the strategy with the largest number of long clus-
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ters (“L5-S1”) delivers solid performance, with an average monthly return of 1.08%

and a Sharpe ratio of 1.13 for the OOS data.

Panel B of Table 3 reports the results of evaluating these anomalies using various

factor models, including CAPM, FF3, FF3+IVOL, FF3+MOM, FF5, FF5+MOM+IVOL,

Q5, and BS6 (Barillas and Shanken, 2018). All models show statistically significant

unexplained alphas, both in-sample and out-of-sample. Notably, the OOS monthly

alphas for the strategy with the smallest predictability gap (“L5-S1”) are highly sig-

nificant, ranging from 0.92% to 1.12% with high t-stats. These indicate that the unex-

plained alphas generated by the strategy remain robust even after adjusting for risk

factors explained by traditional asset pricing models.

We further examine whether the abnormal return comes from the long-leg, short-

leg of the portfolio, or both. Table A.1 reveals that the long-only portfolios with high

predictability consistently contribute to abnormal returns, while the short-leg portfo-

lios show mostly non-significant negative alphas. Thus the most predictable stocks

(long-leg) contribute to the abnormal returns.

In conclusion, we identify a novel anomaly arising from the cross-sectional het-

erogeneity of predictability. Portfolios constructed from sorted predictability clusters

exhibit significant spreads in average returns, with the corresponding anomaly gen-

erating substantial alpha even after accounting for popular factor models in the liter-

ature. These findings highlight predictability as a latent stock characteristic that pro-

vides information orthogonal to established factor models. Consequently, our results

offer new insights into the role of predictability in stock market dynamics. Moreover,

predictability-driven strategies deliver superior risk-adjusted returns, presenting an

empirical contrast to the findings of Rapach et al. (2010) and Kelly et al. (2024).

5 Heterogeneous Predictability and Regime Switches

The previous section examined the clustering pattern of predictability in the cross

section. A natural follow-up question is whether such heterogeneity varies over time.

To address this, the current section extends the analysis to the time-series dimension.
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Specifically, it is important to note that the split variables are not necessarily to be char-

acteristics (CS Clusters, in Section 4); they can also include macroeconomic variables

(TS+CS Clusters). By identifying splits based on macroeconomic variables, we can ex-

plain the observed clustering in stock return predictability across different time hori-

zons (Section 5.1). In addition, for robustness checks, we demonstrate that calendar

months can also serve as a valid split variable, thereby helping to identify structural

breaks in return predictability (Section 5.2).

Notably, unlike the cross-sectional clusters, the time-series heterogeneity ana-

lyzed in this section involves splitting the full sample period from 1973 to 2022. The

reason is to detect regimes for the full sample.

5.1 Macro-Driven Regime Change

We begin by using aggregate macro predictors to split the time horizons and

identify regimes of predictability. This approach divides the entire sample based on

macroeconomic variables, providing clear and intuitive interpretations. Notably, be-

cause the regimes are defined by macroeconomic values, a single regime may not cor-

respond to a continuous time horizon.

In particular, we restrict the use of aggregate predictors to time-series data for the

first two splits,15 while utilizing firm characteristics for subsequent cross-sectional par-

titions. This methodology establishes a systematic framework that learns the cluster-

ing of predictability across both time-series and cross-sectional dimensions, enabling

the implementation of both timing and stock selection strategies.

Clustering Pattern. For the macro-driven regime case, we fit the model using the

full sample of data, resulting in a single tree-based clustering structure for the 50-

year sample. Figure 8 illustrates the decision tree structure, where the initial splits are

based on macroeconomic variables, followed by splits based on firm characteristics.

15We also experimented with relaxing these constraints, allowing both aggregate predictors and firm
characteristics to be considered as candidates for all splits. However, our results show that in all cases,
the trees consistently select aggregate predictors for the first two layers of partitions. This suggests a
clear preference for initial separation based on time series data. To mitigate the potential for excessive
regime changes, we restrict the first two splits to the time dimension, reserving subsequent splits for
cross-sectional characteristics.
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This structure allows the clustering pattern to jointly account for both time-series and

cross-sectional heterogeneity. This tree ultimately produces 32 leaves16 corresponding

to different levels of predictive ability.

Specifically, the overall in-sample R2 for the global model across the entire sample

is 1.51% before any partitions. Our approach identifies dividend yields and default

yields as the two most important macroeconomic predictors for detecting regimes of

predictability, and creates the following three regimes:

1. Regime I: X DY ≤ 0.7, when the dividend yield is not very high.

2. Regime II: X DY > 0.7 and X DFY ≤ 0.3, when the dividend yield is high, and the

default yield is low.

3. Regime III: X DY > 0.7 and X DFY > 0.3, when the dividend yield is high, and

the default yield is not very low.

Notably, these two predictors are highly related to business cycles (Fama and French,

1988; Keim and Stambaugh, 1986; Fama and French, 1989). Thus, we find that the

business cycle affects the return predictability of stock returns.

After the first two splits based on macroeconomic variables, this value increases

significantly during the period with higher dividend yields and lower default yields

(Regime II), reaching 14.82% at node N6. Delving deeper into this subset, the regime

with low default yields (X DFY ≤ 0.3) reflects less market uncertainty or corporate de-

fault risks, which can lead to greater predictability than the opposite direction (Regime

III), with 3.07% at N7. These two periods, conditions typically associated with reces-

sions (consistent with Henkel et al., 2011 and Dangl and Halling, 2012), outperform

those when the dividend yield is not-high (Regime I), whose R2 slightly decreases to

1.34% at node N2.

Furthermore, subsequent partitions based on cross-sectional characteristics fur-

ther uncover the heterogeneity in stock return predictability within each regime. For

16We limit the maximum tree depth within each regime to 5 (resulting in at most 48 leaves) and set
the minimum leaf size to 10,000 stock-return observations.
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example, leaf node N13 (labeled in red) exhibits the highest R2 of 21.54%, while the

poorest cluster, node N32 (labeled in blue), shows the lowest value at 1.19%. This

range is wider than the cross-sectional clustering results presented in Section 4, sug-

gesting that incorporating time-series heterogeneity allows us to identify larger gaps

of return predictability.

Figure 9: Time-Series Regimes (Macro Variables)

This figure shows time-series regime switches for aggregate predictors from 1973 to 2022 (see Figure
8). Three regimes are represented by different colors: non-high dividend yield (X DY ≤ 0.7, orange, 426
months), high dividend yield with low default yield (X DY > 0.7 & X DFY ≤ 0.3, purple, 16 months),
and high dividend yield with non-low default yield (X DY > 0.7 & X DFY > 0.3, green, 158 months),
reflecting varying predictability based on their position in the color bar. Shaded areas denote NBER
recessions, and labeled texts indicate major global events. The vertical axis shows the cross-sectional
predictability of clusters, ranging from highly (black) to less predictable (white) under each regime.

Figure 9 illustrates regime switches from another perspective. The color changes

reflect regime shifts detected by the decision tree in Figure 8, with the colors indicat-

ing different levels of heterogeneity. The range is broader than in the cross-sectional

case (from around 1% in orange to nearly 15% in purple). Cross-sectional splits by

firm characteristics further widen the intervals across sub-samples. Highly predictable

clusters (black lines) consistently outperform less predictable ones (white lines) and

are more robust before additional clustering. Regime transitions are linked to reces-

sions (e.g., 1974, 1981, 1983, 2020) and global events like the Oil Crisis (1973, 1979),

Brexit (2016), and the 2020 Oil Price Collapse. Other events, often occurring during

34



less predictable periods, include the 1987 Black Monday, the 1997-1998 Asian Finan-

cial Crisis, the 2000 Internet Bubble, and the 2014 Euro Negative Interest Rate.

Figure 10: Mosaics of Predictability by Clusters (TS+CS Cluster)

This heat map summarizes the predictability, R2 values (% in the color bar), for the panel of stock
returns based on the tree-based clustering in Figure 8. The horizontal axis represents months, and
colors from light to dark indicate ascending levels of return predictability of each cluster within each
month. Vertically, the length of each color bin denotes the proportion of observations for each cluster.

Compared to the CS clusters, the mosaics of stock return predictability for time

series in Figure 10 appear more diverse. The horizontal axis represents all 600 months.

Sorting the cluster-wise model R2 values in ascending order from bottom to top and

aggregating monthly reveals layered heterogeneity with three hierarchical types. Most

clusters show lower predictability in light green, while specific regimes (e.g., 1979 and

2017) show higher predictability for all clusters compared with other regimes. The

frequent color shifts across clusters highlight regime variations.

Additionally, we incorporate aggregate predictors with representative character-

istics and generate four heat maps using bivariate-sorted deciles (see Figure A.1). The

top-left sub-figure highlights the highly predictable periods, while the other three

sub-figures show interactions within the cross-sectional dimensions, such as higher

earnings-to-price ratios, performance scores, and earnings surprises. These mosaic

patterns can be observed before precise interpretations, especially when considering
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time-series effects.

Cluster-Wise Performance. Next, we analyze single-leaf statistics to evaluate predic-

tive abilities. Incorporating time-series partitions, Table A.2 translates the tree struc-

ture in Figure 8 into descending rankings of predictability within each regime, high-

lighting heterogeneity.

The gaps between the highest and lowest R2 values are more pronounced than in

the cross-sectional case (Table 1). For instance, the highest R2 (N13: 21.54%) contrasts

sharply with the lowest (N32: 1.19%). Examining the table longitudinally reveals sub-

stantial variability across regimes, each exhibiting a wide range of return predictabil-

ity. Sorting R2 values in descending order within specific time periods further illus-

trates the mosaic patterns of predictability across clusters. Investment performance

does not uniformly decline with lower predictability, unlike in the cross-sectional anal-

ysis, where slight positive correlations are observed between predictability and invest-

ment gains in certain time horizons, such as Regimes I and III.

Regime II, spanning only 16 months, represents the most predictable period but

shows negative correlations between predictability and returns. This suggests sig-

nificant opportunities to anticipate return patterns during this challenging financial

landscape, warranting alternative strategies like long-short approaches.

Overall, these findings emphasize the importance of analyzing the diversity of

return prediction accuracy at the time-series level.

Aggregate Evaluations. Following a similar approach as in the cross-sectional anal-

ysis, we perform aggregate evaluations to assess improvements in heterogeneous re-

turn predictability after incorporating time-series information. We focus on a large-cap

sub-sample analysis. Clusters are aggregated into several sub-samples, with Table 4

presenting the resulting predictability metrics.

When comparing performance without cross-sectional splits, most aggregated

clustering results have higher prediction accuracy. Filtering out large-cap stocks fur-

ther reveals specific predictability trends under varying market conditions.

Among the three regimes, Regime II (X DY > 0.7 and X DFY ≤ 0.3) consistently
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Table 4: Evaluating Return Predictability (TS+CS Cluster)

This table reports return predictability (R2 values, %) for different predictive methods under specific
regimes. We present full-sample results from the tree-based cluster model, incorporating cross-sectional
and time-series splits. For each regime, we generate two panels: global and cluster-wise predictions.
Five samples are presented: Global (homogeneous forecasts), Aggregate (aggregated cluster-wise pre-
dictions), and High, Medium, and Low, based on predictive rankings within the tree clusters.

Sample A: All Stocks Sample B: Large-Cap

Regime I: 1{X DY ≤ 0.7}
OLS Lasso Ridge OLS Lasso Ridge

Panel A: Global Forecasts
Global 1.34 0.65 1.26 1.32 0.89 1.29
High 5.14 3.68 4.96 4.80 3.94 4.78
Medium 1.78 0.99 1.69 1.62 1.11 1.57
Low 1.17 0.51 1.10 1.17 0.77 1.15

Panel B: Cluster-Wise Forecasts
Aggregate 1.84 1.11 1.79 1.55 1.08 1.53
High 7.79 6.63 7.78 5.20 5.00 5.41
Medium 2.86 2.07 2.84 2.38 1.81 2.37
Low 1.52 0.81 1.47 1.26 0.80 1.24

Regime II: 1{X DY > 0.7}1{X DFY ≤ 0.3}
OLS Lasso Ridge OLS Lasso Ridge

Panel A: Global Forecasts
Global 15.16 10.86 12.85 20.43 15.56 17.50
High 21.47 14.44 17.42 25.02 18.11 20.55
Medium 14.94 10.79 12.68 18.56 14.33 16.07
Low 10.74 8.18 9.68 18.02 14.76 16.38

Panel B: Cluster-Wise Forecasts
Aggregate 16.52 12.20 14.23 21.26 16.43 18.48
High 21.97 15.56 18.25 25.73 19.24 21.55
Medium 16.89 12.98 14.73 19.26 15.61 17.11
Low 10.97 7.10 9.48 19.39 14.10 17.19

Regime III: 1{X DY > 0.7}1{X DFY > 0.3}
OLS Lasso Ridge OLS Lasso Ridge

Panel A: Global Forecasts
Global 3.08 2.24 2.90 3.22 2.66 3.04
High 7.91 5.48 7.53 6.05 5.02 5.80
Medium 3.40 2.49 3.20 3.51 2.88 3.31
Low 2.35 1.70 2.23 2.61 2.19 2.47

Panel B: Cluster-Wise Forecasts
Aggregate 3.63 2.78 3.47 3.60 2.81 3.41
High 10.76 10.12 10.49 6.94 6.43 6.72
Medium 4.31 3.18 4.12 4.21 3.18 4.01
Low 2.31 1.83 2.17 2.43 2.05 2.26

outperforms the others. This regime corresponds to periods characterized by high

dividend yields and low default yields, typically signaling the start of a business ex-

pansion phase. Declining trends are evident in the last three rows within each period.
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The highly predictable sub-sample achieves the largest R2 values, while the least pre-

dictable sub-sample underperforms all others, including the ”Global” sample without

cross-sectional clustering.

Despite differences in magnitude, the patterns of improvement and decline are

similar across methods, particularly for return predictions based on cluster-wise mod-

els. These results provide insights into the mosaics of return predictability and the

heterogeneity of stocks under different characteristics and market conditions.

5.2 Structural Breaks by Calendar Months

Splitting by aggregate predictors generates non-continuous regimes on the time

horizon. For robustness check, we also examine results from splitting by calendar

months. One advantage of this approach is that calendar months increase over time,

leading to single, continuous regimes that resemble structural breaks (e.g., Smith and

Timmermann, 2021). This method continues to assess whether dividing continuous

periods effectively captures the heterogeneity in stock return predictability.

Figure 11: Time-Series Regimes (Calendar Months)

This figure shows time-series regime switches by calendar month from 1973 to 2022. Eight colors repre-
sent different regimes, indicating varying predictability based on their position in the color bar. Shaded
areas denote NBER recessions, and labeled texts highlight global events affecting the world economy.
The vertical axis shows the cross-sectional predictability of clusters, from highly (black) to less pre-
dictable (white) under each regime.

Figure 11 illustrates that stock return predictability varies across time horizons,
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although the variability is less than the version using aggregate predictors. For in-

stance, predictability peaks at 7.99% from September 1978 to August 1983 (labeled in

purple) but falls to just 2.01% from December 1988 to March 1998 (labeled in red).

Certain events, such as Black Monday (1987), the Asian Financial Crisis (1997–1998),

the Euro’s official circulation (2002), and the Brexit Referendum (2016), likely triggered

regime shifts to different levels of predictability. Conversely, structural breaks may

also have contributed to other incidents, such as the Oil Crisis (1979), Lehman Broth-

ers’ bankruptcy (2008), and the US-China Trade War (2018).

Splitting further in the cross section within each time-series period would likely

increase these heterogeneity gaps. The predictive abilities and investment perfor-

mance across regimes remain between relatively high (black) and low (white) pre-

dictable sub-samples, with trends showing some consistency across periods. These

findings confirm the heterogeneous predictability of stock returns in the time-series

dimension, highlighting their mosaic-like nature.

6 Investment Gains on Cluster-wise Models

The previous sections primarily focus on illustrating the heterogeneous nature

of return predictability, both across the cross section and over time, using our novel

clustering approach. In doing so, we uncover an anomaly associated with return pre-

dictability. A key byproduct of our clustering analysis is a cluster-wise predictive

model. Specifically, we partition assets into multiple clusters, each linked to its cluster-

specific predictive model. Together, these cluster-wise models form a heterogeneous

predictive model, in contrast to a global predictive model that employs a single, uni-

form approach to all asset returns.

In this section, we explore the investment gains derived from the cluster-wise pre-

dictive model by constructing a new type of forecast-implied portfolio, which evalu-

ates predictive accuracy through portfolio returns. We construct three types of port-

folio weights based on model predictions. For equal-weighted and value-weighted

portfolios, the stock weights are determined by the absolute value of the respective
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weighting schemes, but the sign is determined by the model’s prediction. Addition-

ally, we construct forecast-weighted portfolios based on the normalized predictions,

controlling for leverage (e.g., Guijarro-Ordonez et al., 2021). In this framework, stocks

that are predicted to have high returns will receive a larger long weight, while those

with lower predicted negative returns will receive a larger short weight.

Specifically, let weights wi,t be absolute value of original equal-weighted (1/Nt) or

value-weighted (sizei,t−1/
∑

i sizei,t−1) portfolios for each cross-sectional dimension

at time t. The three portfolio weights are as follows:

Sign-adjusted Equal/Value-weighted: ŵi,t =


wi,t, if r̂i,t ≥ 0

−wi,t, if r̂i,t < 0

Forecast-weighted: ŵi,t =
r̂i,t∑
i |r̂i,t|

.

(9)

Then, within each leaf cluster j, we define the forecast-implied portfolio as:

Rj,t =
∑

{i,t}∈leafj

ŵi,tri,t. (10)

It is important to note that these forecast-implied portfolios differ from cluster

portfolios discussed in Section 4.2, where only value-weighted portfolios were created

for each cluster to investigate the relationship between predictability and average re-

turns. In contrast, the forecast-implied portfolios in this section are long-short, with

the long and short positions determined by the model’s predictions, and the absolute

weights being either equal- or value-weighted. Intuitively, if the predictive model is

more accurate, the resulting portfolio should generate greater investment gains.

Table 5 presents the results of direction-adjusted value- and equal-weighted port-

folios, as well as forecast-weighted portfolios, constructed from all observations. These

results are derived from the cross-sectional clustering model described in Section 4.

First, our results confirm that highly predictable stocks remain easier to predict

out of the sample, and as a result, the corresponding trading strategies generate sig-

40



Table 5: Forecast-Implied Investment Performance (CS Cluster)

This table reports in-sample and out-of-sample investment performance for forecast-implied portfolios
(Equation 10). The first two panels show sign-adjusted value- and equal-weighted portfolios, while
Panel C reports forecast-weighted portfolios, constructed based on all observations (Equation 9). We
present five samples: Global (no clustering), Aggregate (aggregation of clustering results), and High,
Medium, and Low, based on predictive rankings within the tree clusters. Each panel includes five
columns: monthly average return (Avg, %), standard deviation (Std, %), annualized Sharpe ratio (SR),
market alpha (in %), and maximum drawdown (MDD, %).

In-Sample (1973 - 2002) Out-of-Sample (2003 - 2022)

Panel A: Sign-adjusted Value-Weighted

Avg Std SR Alpha MDD Avg Std SR Alpha MDD

Global 0.81 2.87 0.98 0.66∗∗∗ 17.91 0.64 3.53 0.63 0.02 15.52
Aggregate 0.71 3.54 0.70 0.42∗∗∗ 20.02 0.74 3.98 0.64 0.02 16.26

High 2.70 5.92 1.58 2.35∗∗∗ 22.08 1.71 5.31 1.12 0.96∗∗∗ 28.65
Medium 0.88 4.27 0.71 0.52∗∗∗ 20.43 0.86 3.72 0.81 0.29∗∗ 15.76
Low 0.61 3.19 0.66 0.41∗∗∗ 19.78 0.65 4.13 0.55 −0.09∗ 16.78

Panel B: Sign-adjusted Equal-Weighted

Avg Std SR Alpha MDD Avg Std SR Alpha MDD

Global 1.51 2.59 2.02 1.41∗∗∗ 11.85 1.09 3.78 1.00 0.53∗∗∗ 15.91
Aggregate 1.54 2.85 1.87 1.38∗∗∗ 11.55 1.07 3.65 1.02 0.51∗∗∗ 16.74

High 3.41 7.50 1.57 2.98∗∗∗ 25.79 2.70 5.62 1.66 1.90∗∗∗ 16.49
Medium 1.86 3.11 2.07 1.72∗∗∗ 12.34 1.29 3.88 1.16 0.95∗∗∗ 18.75
Low 0.79 2.46 1.11 0.65∗∗∗ 11.62 0.70 4.42 0.55 −0.04 21.56

Panel C: Forecast-Weighted

Avg Std SR Alpha MDD Avg Std SR Alpha MDD

Global 2.28 3.57 2.21 2.16∗∗∗ 17.84 1.44 4.43 1.13 0.75∗∗∗ 19.36
Aggregate 3.09 3.86 2.77 2.95∗∗∗ 12.24 1.83 4.37 1.45 1.22∗∗∗ 19.46

High 4.46 8.72 1.77 3.99∗∗∗ 27.71 3.24 6.87 1.63 2.34∗∗∗ 19.73
Medium 3.10 3.99 2.69 3.02∗∗∗ 23.14 1.95 4.61 1.46 1.54∗∗∗ 19.98
Low 1.18 3.08 1.33 1.02∗∗∗ 13.71 0.86 4.77 0.62 0.06 21.80

nificant investment gains. The sign-adjusted value-weighted portfolio also performs

well, indicating that the results are not dominated by small stocks. For example, in

Panel A of Table 5, the highly predictable sub-sample shows an OOS Sharpe ratio of

1.12 and an average return of 1.71%. In contrast, clusters with the lowest predictability

achieve only about half of these values, with a Sharpe ratio of 0.55 and an average re-

turn of 0.65%. Similarly, in Panels B and C, highly predictable stocks generate Sharpe

ratios of 1.66 and 1.63, and averages of 2.70% and 3.24%, respectively. These figures
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significantly outperform the portfolio of medium- and low-predictability stocks. Sim-

ilar patterns are observed for market alphas and maximum drawdowns.

Second, the cluster-wise predictive models (”Aggregate”) have better performance

compared to the homogeneous predictive model (”Global”), which trains on all stocks

without accounting for clustering patterns. For example, in Panel C, the OOS average

return for the Aggregate model is 1.83%, higher than the 1.44% achieved by the Global

model, with Sharpe ratios of 1.45 and 1.13, respectively. The gap is smaller in Panels

A and B, primarily because the absolute weights of the two portfolios are identical,

with only the sign adjusted by the predictive model. Overall, while both Aggregate

and Global models perform similarly in predicting whether a stock price will go up or

down in the next month (Panel A and B), the Aggregate model demonstrates superior

accuracy in forecasting how much the price will go up or down (Panel C).

The time-series and cross-sectional clustering model exhibits similar economic

gain for the heterogenous predictive model, for more details, see Appendix II..4.

All evaluations confirm that highly predictable stocks, identified through our

cross-sectional tree clusters, significantly dominate the economic profitability of the

entire sample. Excluding these highly predictable stocks from the sample markedly

reduces potential gains for investors. Extending the findings from the stock return

predictability mosaics to the contributions of investment strategies, it is clear that in-

vestors can achieve higher economic benefits by allocating funds to stocks with low

trading volumes, high earnings surprises, or high valuations (e.g., Basu, 1983; Lakon-

ishok et al., 1994; Piotroski, 2000). Furthermore, the aggregate performance of the

cluster-wise predictive model consistently delivers superior forecasts compared to the

Global homogeneous model.

7 Conclusion

Existing studies often treat return predictability as a characteristic of the predic-

tors or models employed, evaluating it at an aggregate or average level. This paper

offers a novel perspective on the return predictability literature. We argue that return
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predictability is an inherent yet unobserved asset characteristic, potentially linked to

the cross section of expected returns. Specifically, we demonstrate that return pre-

dictability is heterogeneous, varying both across stocks and over time. The central

question we address is: Which assets exhibit higher return predictability, and how

does this vary across various macroeconomic regimes? Answering this question leads

us to uncover what we term the ”mosaics of predictability.”

To measure heterogeneous return predictability, we introduce a novel tree-based

clustering method that groups asset-return observations based on similar predictabil-

ity levels. Our empirical analysis reveals substantial heterogeneity in return predictabil-

ity among individual U.S. stocks, advancing our understanding of asset return pre-

dictability in several key dimensions. First, we find that asset clusters characterized

by low trading volumes, high earnings-to-price ratios, and high unexpected earn-

ings are the most predictable. Second, we observe that return predictability declines

sharply when the dividend yield is low, but peaks during periods of high dividend

yield and low default yield. Finally, we identify a new predictability anomaly: highly

predictable long-only portfolios generate significantly unexplained alphas of approx-

imately 1% over the OOS period of two decades. Moreover, a long-short portfolio

based on predictability achieves even greater alphas.
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Appendix

I. Panel Regression Tree Algorithm

Section 2.3 and 2.4 present the step-by-step tree growing examples, while this

section illustrates the complete growing algorithm in pseudo-codes.

Algorithm Panel Regression Tree

1: procedure PANEL REGRESSION TREE
2: Input: Asset returns ri,t, firm characteristics zi,t−1, aggregate predictors xt−1, and tree parameters.
3: Output: A tree architecture with many split rules.
4: for i from 1 to num iter do ▷ Loop over number of iterations
5: if current depth ≥ dmax then
6: return.
7: else
8: Search the tree, find all potential leaf nodes N
9: for each leaf node N in N do ▷ Loop over all current leaf nodes

10: for each split candidate c̃p,k,N in CN do
11: Partition data temporally in N according to c̃p,k,N .
12: if Left or right child node cannot satisfy minimal leaf size then
13: continue.
14: else
15: Obtain cluster-wise return predictions as in (1).
16: Calculate the cluster-based R2

j by (6).
17: end if
18: end for
19: end for
20: Find the best leaf node and split rule that maximizes split criteria for this iteration

c̃i = maxN∈N ,c̃p,k,N∈CN
|R2

left − R2
right|

21: Compare globally for this iteration’s split candidates among all leaf nodes.
22: Split the node selected at the i-th split rule of the tree c̃i.
23: end if
24: end for
25: return
26: end procedure
Note: p, k, N in c̃p,k,N represent the p-th variable with the k-th value used for leaf node N (Figure 2).
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II. Additional Empirical Results

II..1 Cross Section

This section presents additional results related to cross-sectional clustering. Table

A.1 reports the performance of two specific long- and short-leg portfolios associated

with the ”long-short cluster” anomalies detailed in Table 3. Notably, the long-only

portfolios comprising highly predictable stocks significantly drive the abnormal re-

turns observed in the long-short strategies.

Table A.1: Predictability-Implied Anomaly Testing

This table reports summary statistics (Panel A) and abnormal returns (Panel B) for the long-short factor
based on cross-sectional return predictability across clusters. Two representative anomalies, ”L1-S1”
and ”L5-S1,” are used to present the long- and short-leg numbers, as shown in Table 3. The numbers
after ”L” and ”S” denote the number of long and short clusters. Panel A provides the average return
(Avg, %), median (Median, %), standard deviation (Std, %), skewness, kurtosis, annualized Sharpe ratio
(SR), and maximum drawdown (MDD). Panel B reports abnormal return estimates (alphas, %) and their
significance (denoted by ”*” and t-values in parentheses) from various factor models.

In-Sample (1973 - 2002) Out-of-Sample (2003 - 2022)

S1 L1 L5 L1-S1 L5-S1 S1 L1 L5 L1-S1 L5-S1

Panel A: Summary Statistics

Avg 0.32 3.54 2.35 3.22 2.03 0.73 3.51 1.81 2.78 1.08
Median 0.56 3.50 2.23 2.82 1.67 1.12 3.20 2.29 2.48 1.00
Std 4.57 6.39 6.01 4.94 3.82 4.37 6.43 6.08 4.70 3.30
Skewness -0.30 0.84 0.46 1.09 1.04 -0.56 0.70 -0.25 1.09 0.45
Kurtosis 2.60 4.34 6.59 3.62 3.06 1.68 4.52 1.91 4.61 1.37
SR 0.24 1.92 1.35 2.26 1.85 0.58 1.89 1.03 2.05 1.13
MDD 22.39 19.02 25.89 9.74 8.66 17.82 19.34 21.39 13.99 8.29

Panel B: Abnormal Returns

CAPM -0.08 3.19*** 1.95*** 3.26*** 2.03*** -0.06 2.70*** 0.87*** 2.76*** 0.92***
(-1.48) (12.04) (9.34) (12.53) (10.03) (-1.37) (8.86) (4.21) (8.93) (4.40)

FF3 -0.19*** 2.68*** 1.49*** 2.87*** 1.68*** -0.05 2.75*** 0.91*** 2.80*** 0.97***
(-4.14) (12.53) (11.09) (13.23) (12.49) (-1.42) (9.62) (5.64) (9.63) (5.80)

FF3+IVOL -0.21*** 2.59*** 1.48*** 2.80*** 1.69*** -0.06* 2.87*** 0.97*** 2.94*** 1.04***
(-4.51) (11.75) (10.69) (12.52) (12.21) (-1.78) (10.38) (6.11) (10.49) (6.40)

FF3+MOM -0.09** 2.85*** 1.67*** 2.94*** 1.76*** -0.04 2.85*** 0.98*** 2.89*** 1.01***
(-2.11) (12.98) (12.46) (13.08) (12.74) (-1.11) (10.36) (6.24) (10.20) (6.20)

FF5 -0.19*** 2.53*** 1.42*** 2.72*** 1.61*** -0.08** 2.80*** 1.00*** 2.88*** 1.07***
(-4.12) (11.79) (10.35) (12.43) (11.69) (-2.04) (9.50) (6.00) (9.60) (6.31)

FF5+MOM+IVOL -0.12*** 2.70*** 1.59*** 2.82*** 1.72*** -0.07** 2.91*** 1.05*** 2.98*** 1.12***
(-2.91) (12.41) (11.77) (12.57) (12.24) (-2.10) (10.45) (6.61) (10.48) (6.84)

Q5 -0.04 2.65*** 1.59*** 2.70*** 1.64*** -0.06 2.81*** 1.03*** 2.88*** 1.09***
(-0.72) (9.90) (9.05) (10.27) (9.75) (-1.56) (9.25) (5.83) (9.35 (6.14)

BS6 -0.14*** 2.34*** 1.35*** 2.48*** 1.49*** -0.06* 2.77*** 0.91*** 2.83*** 0.98***
(-3.00) (10.24) (9.67) (10.62) (10.27) (-1.76) (9.84) (5.73) (9.78) (5.88)
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II..2 Time Series

Figure A.1 illustrates interactions between macroeconomic predictors and firm

characteristics. The discontinuous regime identified by two business cycle predic-

tors—higher dividend yield and lower default yield—exhibits the highest level of pre-

dictability. Table A.2 summarizes the cluster-wise information under each regime.

Figure A.1: Mosaics of Predictability by Predictors (TS+CS Cluster)

We present four heat maps summarizing average return predictability (R2 values, % in the color bar)
for stock returns based on the tree-based clustering results from Figure 8. Each sub-figure shows the
average R2 values for 10 × 10 groups, formed by bivariate-sorted deciles of different predictor pairs.
Empty grids with × indicate no observations in those interacted sub-samples.
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Table A.2: Cluster-Wise Performance (TS+CS Cluster)

This table summarizes the cluster-based information under each regime within two panels correspond-
ing to the cross-sectional and time-series tree structure in Figure 8. Panel A counts the number of
observations for each cluster (“# obs”) and displays the return predictability (R2 values in %) for each
cluster. In Panel B, “Avg” and “SR” denote the monthly average return (in %) and annualized Sharpe
ratio for equal/value-weighted (EW/VW) portfolios based on all observations. Each regime of values
is arranged downward in the descending order of R2.

Panel A: Summary Statistics Panel B: Profitability

Regime I: 1{X DY ≤ 0.7}
Leaf # obs R2 AvgEW SREW AvgVW SRVW

N38 44,913 8.33 2.52 2.02 1.44 1.14
N22 17,380 7.75 1.47 1.04 1.09 0.64
N43 13,344 7.66 1.08 0.52 1.46 0.66
N46 15,584 6.20 1.51 1.13 1.07 0.74
N39 77,804 3.30 1.74 1.08 0.95 0.64
N37 33,025 3.20 2.30 1.34 1.07 0.71
N34 47,992 2.95 -1.19 -0.36 -1.31 -0.40
N47 19,904 2.73 1.20 0.65 1.24 0.78
N33 14,486 2.47 -0.59 -0.21 -0.67 -0.21
N41 21,982 2.25 1.18 0.64 0.85 0.48
N42 11,929 2.18 0.96 0.37 0.77 0.25
N35 397,816 1.80 -0.85 -0.35 -0.85 -0.35
N36 273,572 1.47 1.15 0.65 0.82 0.60
N40 64,672 1.32 0.60 0.34 0.58 0.37
N32 938,700 1.19 0.39 0.28 0.55 0.45

Regime II: 1{X DY > 0.7}1{X DFY ≤ 0.3}
Leaf # obs R2 AvgEW SREW AvgVW SRVW

N13 11,785 21.54 -0.03 -0.01 -0.86 -0.55
N25 13,568 17.87 -0.64 -0.31 -0.50 -0.35
N49 10,119 16.04 0.67 0.30 0.01 0.01
N96 10,659 15.34 1.29 0.66 -0.15 -0.09
N97 13,481 10.81 0.69 0.36 -0.13 -0.10

Regime III: 1{X DY > 0.7}1{X DFY > 0.3}
Leaf # obs R2 AvgEW SREW AvgVW SRVW

N63 10,928 10.75 4.14 1.65 1.93 0.92
N62 18,667 6.69 3.46 1.47 2.07 1.09
N59 12,040 6.02 1.97 0.84 1.25 0.54
N114 12,910 5.90 0.85 0.29 0.51 0.18
N61 17,589 5.77 2.85 1.27 1.47 0.83
N117 14,648 5.48 2.08 0.76 2.05 0.79
N121 19,622 5.46 2.05 1.12 1.30 0.82
N115 48,112 3.69 1.27 0.56 0.74 0.41
N120 74,177 3.62 1.59 0.85 0.70 0.44
N113 95,937 3.40 0.72 0.39 0.35 0.21
N116 31,856 3.23 1.28 0.51 0.84 0.36
N112 271,598 2.30 0.78 0.41 0.38 0.24
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II..3 Structural Break

Table A.3: Cluster-Wise Performance (+ Structural Break)

This table shows the performance of the tree-based cluster model using both cross-sectional and time-
series splits. In-sample return predictability (R2, %) is calculated using Equation (6). ”# obs” indicates
the stock returns count for each cluster. ”Avg” and ”SR” denote the monthly average return (in %) and
annualized Sharpe ratio for cluster-wise equal-weighted and value-weighted forecast-implied portfo-
lios. Regimes are ordered by descending R2 from left to right.

197301-197808 N7 N13 N24 N4 N10 N23 N25 N22

# obs 12,456 10,468 11,341 19,069 16,687 16,022 11,907 148,017
R2 17.80 12.17 11.03 10.78 10.33 9.80 7.85 5.37
AvgEW 4.49 4.89 5.15 3.50 3.27 2.89 3.68 2.65
SREW 1.85 2.42 2.86 2.00 2.33 1.91 2.15 1.76
AvgVW 3.82 3.97 4.75 2.65 2.61 2.42 3.40 1.67
SRVW 1.76 2.29 3.02 1.70 2.28 1.89 2.09 1.70

197809-198308 N15 N14 N19 N10 N11 N16 N18 N6 N17

# obs 13,683 15,824 11,955 12,017 10,097 21,130 33,132 14,132 107,707
R2 16.28 13.25 12.05 11.41 9.76 9.52 9.20 8.34 6.21
AvgEW 4.40 4.05 3.46 3.86 3.94 2.50 3.53 2.78 2.98
SREW 2.74 2.65 2.43 2.55 2.14 2.45 2.38 2.31 2.08
AvgVW 2.97 2.31 3.45 3.00 2.38 2.06 3.53 1.91 1.86
SRVW 2.15 1.82 2.30 2.20 1.65 2.20 2.29 1.69 1.83

198309-198811 N30 N13 N28 N31 N24 N17 N19 N16 N29 N25 N18 N5

# obs 20,934 11,204 12,120 104,173 11,733 10,950 10,502 10,490 21,443 27,032 46,428 12,370
R2 10.08 8.07 7.51 7.11 6.80 6.68 5.69 5.60 4.72 3.17 2.07 -7.77
AvgEW 2.82 2.03 3.05 2.22 2.98 2.78 2.70 2.46 3.19 1.68 1.86 1.00
SREW 1.75 2.06 2.25 1.43 1.76 2.17 2.03 2.25 2.64 1.55 1.83 1.22
AvgVW 2.04 1.75 2.95 1.61 1.77 2.53 1.99 2.41 3.25 1.13 1.42 0.95
SRVW 1.33 1.60 2.18 1.12 1.24 2.10 1.42 2.30 2.53 1.05 1.31 1.04

198812-199803 N14 N31 N12 N20 N18 N30 N26 N21 N19 N23 N17 N27 N22 N16

# obs 14,635 14,915 12,594 14,883 33,550 12,315 107,725 10,176 57,794 18,007 264,478 23,615 14,053 21,101
R2 12.78 8.11 7.11 6.74 4.87 4.46 3.38 2.75 2.74 2.31 1.94 1.30 0.60 0.39
AvgEW 3.38 3.12 2.10 4.02 1.16 1.75 1.60 2.74 1.59 2.03 2.04 1.54 2.23 0.91
SREW 3.50 2.66 1.89 2.28 1.77 1.56 2.13 1.50 1.92 1.84 3.02 2.25 2.41 1.97
AvgVW 2.20 2.32 2.13 2.07 1.19 1.52 1.31 2.08 1.23 1.78 1.48 1.10 2.22 0.93
SRVW 2.52 2.36 1.67 1.11 1.35 1.35 1.76 1.07 1.44 1.45 1.69 0.98 2.46 1.32

199804-200303 N6 N15 N10 N19 N14 N18 N11 N16 N17

# obs 19,659 11,027 10,722 12,155 11,809 54,089 10,912 24,346 197,515
R2 12.94 10.97 9.93 9.61 7.50 6.50 5.84 5.28 2.83
AvgEW 9.61 6.31 7.47 7.02 5.88 5.77 4.49 3.41 1.63
SREW 2.53 1.67 2.07 2.12 2.24 3.18 2.37 2.10 1.86
AvgVW 7.41 6.96 4.94 6.55 4.01 5.79 2.27 3.97 0.63
SRVW 2.12 1.87 1.38 1.90 1.59 2.69 0.96 2.01 0.64

200304-200808 N11 N6 N20 N17 N19 N7 N21 N16 N18

# obs 18,849 20,951 16,527 12,396 52,975 16,343 36,240 30,237 91,152
R2 10.75 9.39 7.37 7.18 4.67 4.49 4.29 3.88 2.51
AvgEW 2.85 3.18 1.75 1.96 1.65 2.85 1.90 2.20 1.27
SREW 2.70 1.64 2.76 1.58 1.99 1.88 1.69 2.15 1.81
AvgVW 1.32 2.02 1.10 1.69 1.46 2.20 0.96 1.01 0.66
SRVW 1.34 1.02 1.82 1.34 1.91 1.48 1.34 1.21 1.06

200809-201708 N14 N25 N11 N15 N21 N24 N26 N19 N27 N20 N17 N18 N16

# obs 10,211 14,442 10,783 20,192 14,600 19,766 13,437 24,431 41,970 47,813 101,001 17,378 64,402
R2 11.40 9.41 7.40 7.29 6.84 6.60 6.10 5.37 4.51 4.18 3.44 3.13 1.87
AvgEW 2.98 2.15 3.94 2.51 3.44 1.53 2.51 1.65 2.29 2.83 1.88 1.48 1.64
SREW 2.43 1.78 1.80 1.81 1.84 1.20 2.08 1.34 1.36 1.52 1.45 1.34 1.60
AvgVW 1.69 2.24 4.00 1.81 1.92 1.28 2.07 1.33 1.97 2.02 1.50 1.39 1.50
SRVW 1.19 1.44 1.74 1.72 1.33 1.20 1.65 1.20 1.18 1.16 1.34 1.36 1.47

201709-202212 N13 N22 N30 N12 N31 N23 N18 N10 N14 N19 N17 N16

# obs 16,828 11,479 14,059 12,671 11,678 13,599 15,872 11,654 12,834 81,762 13,429 11,740
R2 13.59 9.39 9.38 9.26 6.79 6.75 6.74 5.00 4.35 3.98 1.54 -6.82
AvgEW 1.94 4.34 2.72 2.11 2.96 3.77 2.47 3.47 3.00 2.64 1.91 2.11
SREW 1.38 1.65 1.60 1.74 1.69 1.75 1.84 2.10 1.34 1.77 1.36 1.36
AvgVW 2.03 2.73 2.62 1.68 2.80 2.46 1.56 1.44 2.06 1.84 1.67 2.42
SRVW 1.27 1.15 1.58 1.50 1.57 1.59 1.39 1.34 0.92 1.50 1.26 1.44
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Table A.4: Evaluating Return Predictability (+ Structural Break)

This table reports return predictability (R2, %) for different predictive methods under various regimes.
We present full-sample results from the tree-based cluster model, incorporating both structural breaks
and cross-sectional splits. For each regime, we show four samples: Aggregate, High, Medium, and
Low, based on the predictive rankings within the tree clusters.

Sample A: All Stocks Sample B: Large-Cap

197301-197808 OLS Lasso Ridge OLS Lasso Ridge

Aggregate 8.61 7.12 8.21 6.67 5.45 6.34
High 12.94 10.95 12.46 7.37 6.81 7.48
Medium 9.27 7.31 8.95 9.11 7.23 8.83
Low 5.45 4.41 5.11 5.92 4.74 5.51

197809-198308 OLS Lasso Ridge OLS Lasso Ridge

Aggregate 8.55 7.11 8.21 11.05 9.46 10.60
High 13.37 11.75 12.80 13.10 11.20 12.44
Medium 9.32 7.83 8.98 9.08 7.39 8.71
Low 6.26 4.90 6.00 9.08 7.99 8.90

198309-198811 OLS Lasso Ridge OLS Lasso Ridge

Aggregate 5.28 3.55 4.98 7.78 5.35 7.25
High 10.07 8.22 9.59 13.38 11.08 12.74
Medium 6.88 4.40 6.30 8.49 5.50 7.67
Low 2.51 1.70 2.57 1.41 1.30 2.14

198812-199803 OLS Lasso Ridge OLS Lasso Ridge

Aggregate 2.86 2.37 2.79 3.66 2.74 3.52
High 12.94 11.86 12.86 11.25 10.78 11.40
Medium 7.26 5.95 7.19 9.81 6.60 9.36
Low 2.31 1.91 2.24 3.36 2.51 3.22

199804-200303 OLS Lasso Ridge OLS Lasso Ridge

Aggregate 7.50 5.78 6.60 6.56 5.04 5.79
High 11.94 10.20 10.34 11.67 10.23 10.58
Medium 6.48 4.62 5.88 6.82 4.66 6.15
Low 3.03 1.60 2.60 2.54 1.22 1.97

200304-200808 OLS Lasso Ridge OLS Lasso Ridge

Aggregate 6.71 4.98 6.25 6.27 4.76 5.82
High 11.40 10.32 11.03 9.89 8.95 9.40
Medium 8.58 6.40 8.20 8.40 7.45 8.42
Low 5.11 3.26 4.62 5.55 3.91 5.08

200809-201708 OLS Lasso Ridge OLS Lasso Ridge

Aggregate 4.29 2.42 4.27 6.12 3.76 6.12
High 10.88 7.63 10.72 9.59 5.80 9.59
Medium 6.67 4.40 6.61 8.24 5.48 8.23
Low 3.30 1.61 3.30 5.08 2.95 5.08

201709-202212 OLS Lasso Ridge OLS Lasso Ridge

Aggregate 3.83 3.18 3.99 5.76 4.95 5.86
High 9.64 8.38 9.37 11.68 9.79 11.19
Medium 5.89 4.27 5.59 6.83 5.38 6.55
Low 1.91 1.64 2.27 3.16 2.98 3.61
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II..4 Investment Gains: Forecast-implied Portfolio

This appendix section explores the investment gains of forecast-implied port-

folios constructed from TS+CS clusters. The observed patterns are consistent with

those of the CS clusters: highly predictable clusters outperform medium- and low-

predictability clusters, and the aggregate forecast model delivers superior performance

compared to the global model.

Table A.5: Forecast-Implied Investment Performance (TS+CS Cluster)

This table reports full-sample and large-cap sub-sample baseline long-short investment performance
for forecast-implied portfolios (Equation 10). The first two panels show sign-adjusted value- and equal-
weighted portfolios, while Panel C reports forecast-weighted portfolios, all constructed from observa-
tions in specific samples (Equation 9). We show five samples: Global (no clustering), Aggregate (aggre-
gation of clustering results), and High, Medium, and Low, based on predictive rankings within the tree
clusters. We show results of monthly average return (Avg, %), standard deviation (Std, %), annualized
Sharpe ratio (SR), market alpha (in %), and monthly maximum drawdown (MDD, %).

Sample A: All Stocks Sample B: Large-Cap

Panel A: Sign-adjusted Value-Weighted

Avg Std SR Alpha MDD Avg Std SR Alpha MDD

Global 0.92 3.20 0.99 0.81∗∗∗ 15.54 0.89 3.20 0.96 0.77∗∗∗ 16.04
Aggregate 1.10 3.12 1.22 0.95∗∗∗ 13.20 1.06 3.12 1.17 0.91∗∗∗ 13.02

High 1.98 3.82 1.79 1.91∗∗ 3.90 1.82 3.71 1.70 1.76∗ 4.10
Medium 1.39 3.57 1.34 1.23∗∗∗ 13.54 1.32 3.58 1.28 1.16∗∗∗ 13.75
Low 0.85 2.93 1.01 0.69∗∗∗ 13.31 0.83 2.96 0.97 0.66∗∗∗ 13.20

Panel B: Sign-adjusted Equal-Weighted

Avg Std SR Alpha MDD Avg Std SR Alpha MDD

Global 1.62 3.71 1.51 1.59∗∗∗ 19.86 1.10 3.57 1.07 1.00∗∗∗ 18.04
Aggregate 1.83 3.62 1.75 1.77∗∗∗ 17.45 1.27 3.46 1.27 1.13∗∗∗ 14.18

High 3.84 5.21 2.55 3.74∗∗∗ 2.68 2.87 4.54 2.19 2.77∗∗∗ 3.79
Medium 2.31 3.83 2.09 2.17∗∗∗ 17.47 1.63 3.86 1.46 1.47∗∗∗ 16.39
Low 1.46 3.11 1.63 1.50∗∗∗ 17.45 0.95 3.17 1.04 0.84∗∗∗ 13.78

Panel C: Forecast-Weighted

Avg Std SR Alpha MDD Avg Std SR Alpha MDD

Global 2.30 4.37 1.83 2.28∗∗∗ 22.73 1.48 4.17 1.23 1.36∗∗∗ 18.58
Aggregate 2.87 4.62 2.15 2.83∗∗∗ 20.50 1.80 4.13 1.51 1.66∗∗∗ 16.15

High 4.68 5.40 3.00 4.58∗∗∗ 2.17 3.26 4.64 2.43 3.16∗∗∗ 4.35
Medium 3.26 4.77 2.37 3.17∗∗∗ 22.64 2.21 4.84 1.58 2.12∗∗∗ 24.15
Low 2.45 4.14 2.05 2.59∗∗∗ 20.05 1.37 3.72 1.27 1.25∗∗∗ 14.31
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III. Predictor Descriptions

Table A.6: Aggregate Predictors

No. Variable Name Description

1 X TBL 3-month treasury bill rate
2 X INFL Inflation
3 X TMS Term spread
4 X DFY Default yield
5 X DY Dividend yield of S&P 500
6 X SVAR Rolling 12-month market excess return volatility
7 X NI Net equity issuance of S&P 500
8 X LIQ Rolling 12-month Pastor-Stambaugh illiquidity

Table A.7: Equity Characteristics

No. Acronym Description Category

1 abr Cumulative abnormal returns around
earnings announcement dates

Momentum

2 acc Operating Accruals Investment

3 adm Advertising Expense-to-market Intangibles

4 agr Asset growth Investment

5 alm Quarterly Asset Liquidity Intangibles

6 ato Asset Turnover Profitability

7 baspread Bid-ask spread rolling 3m Liquidity

8 beta Beta rolling 3m Volatility

9 bm Book-to-market equity Value

10 bm ia Industry-adjusted book to market Value

11 cash Cash holdings Value

12 cashdebt Cash to debt Value

13 cfp Cashflow-to-price Value

14 chpm Industry-adjusted change in profit margin Profitability

15 chtx Change in tax expense Momentum

16 cinvest Corporate investment Investment

17 depr Depreciation / PPandE Momentum

18 dolvol Dollar trading volume Liquidity

19 dy Dividend yield Value

20 ep Earnings-to-price Value

21 gma Gross profitability Investment

22 grltnoa Growth in long-term net operating assets Investment

23 herf Industry sales concentration Intangibles
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Table A.7: Equity Characteristics (Continued)

No. Acronym Description Category

24 hire Employee growth rate Intangibles

25 ill Illiquidity rolling 3m Liquidity

26 lev Leverage Value

27 lgr Growth in long-term debt Investment

28 maxret Maximum daily returns rolling 3m Volatility

29 me Market equity Size

30 me ia Industry-adjusted size Size

31 mom12m Momentum rolling 12m Momentum

32 mom1m Momentum Momentum

33 mom36m Momentum rolling 36m Momentum

34 mom60m Momentum rolling 60m Momentum

35 mom6m Momentum rolling 6m Momentum

36 ni Net Stock Issues Investment

37 nincr Number of earnings increases Momentum

38 noa (Changes in) Net Operating Assets Investment

39 op Operating profitability Profitability

40 pctacc Percent operating accruals Investment

41 pm Profit margin Profitability

42 pscore Performance Score Profitability

43 rd sale R&D to sales Intangibles

44 rdm R&D Expense-to-market Intangibles

45 rna Quarterly Return on Net Operating Assets,
Quarterly Asset Turnover

Profitability

46 Roa1 Return on Assets Profitability

47 roe Return on Equity Profitability

48 rsup Revenue surprise Momentum

49 rvar capm Residual variance - CAPM rolling 3m Volatility

50 svar Return variance rolling 3m Volatility

51 seas1a Seasonality Intangibles

52 sgr Sales growth Value

53 sp Sales-to-price Value

54 std dolvol Std of dollar trading volume rolling 3m Volatility

55 std turn Std. of Share turnover rolling 3m Volatility

56 sue Unexpected quarterly earnings Momentum

57 turn Shares turnover Liquidity

58 zerotrade Number of zero-trading days rolling 3m Liquidity
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