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Abstract

We study lending in decentralized finance facilitated by a programmable interest rate rule
set by a Protocol for Loanable Funds (PLF). PLFs suffer a disadvantage when compared to
traditional lending platforms, given their inability to incorporate off-chain information into the
borrowing and lending rates that they set. For this reason, for a pre-determined PLF interest
rate function, the DeFi equilibrium is sub-optimal when compared to a competitive lending
market equilibrium. We nonetheless show that an optimally designed PLF interest rate function
is able to generate equilibrium interest rates, and therefore welfare, that is arbitrarily close to a
competitive lending market equilibrium when there are no frictions in the DeFi lending market.
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1 Introduction

Decentralized finance (DeFi) is a new technology that allows users to access traditional financial

services without relying on a trusted intermediary. In this paper, we study a new type of DeFi

protocol that allows agents to borrow and lend funds in a peer-to-peer fashion through smart

contracts on a blockchain (e.g., Ethereum). These smart contracts, generally referred to as a

protocol for loanable funds (PLF), allow agents to freely supply loanable funds from which other

agents may borrow. Agents who borrow pay interest on their loan, and the PLF passes along the

borrower interest payments to the suppliers of loanable funds.

This paper derives a model of DeFi lending in order to understand the welfare implications of the

PLF interest rate-setting mechanism. A defining feature of DeFi lending is that technical constraints

limit the ability of blockchain applications to incorporate external (off-chain) information in their

functioning (see John et al. 2023). Due to these constraints, DeFi lending relies on an exogenous

interest rate function which sets the borrowing and lending rates strictly as a function of the

observed ratio of borrowed-to-available loanable funds, referred to as the utilization rate. We study

how this interest rate-setting mechanism affects the performance of DeFi lending when compared to

a competitive lending market. Our contribution is threefold. We first prove that any PLF interest

rate function that is increasing in the utilization rate always admits a unique equilibrium. Second,

we characterize the informational frictions in the interest rate-setting mechanism and show that the

existence of simultaneous shocks to borrowing demand and lending supply imply that it is infeasible

to design a PLF function under which the DeFi lending market always clears without rationing.

This rationing, due to excess supply or demand at the equilibrium PLF interest rates, leads to a

welfare loss when compared to the competitive equilibrium outcome. Finally, we investigate the

optimal design of the PLF interest rate function and show that the expected welfare loss due to

inefficient equilibrium interest rates can be made arbitrarily small under the appropriate design.

As a consequence, a well-designed PLF function can generate equilibrium interest rates that are

arbitrarily close to the market clearing rates for any realization of the underlying market conditions,

thereby rendering the technical friction inherent to DeFi lending inconsequential to welfare.
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A Primer on PLF Interest Rates A DeFi lending market is characterized by a Protocol for

Loanable Funds, which serves the role of a intermediary within a traditional lending market. The

PLF is a set of smart contracts that encodes transparent rules for setting interest rates, which is

the feature of DeFi lending that we focus on in this paper. The PLF rules are typically defined

by a single pre-determined interest rate function which sets the borrower interest rate directly and

the lender interest rate indirectly. More explicitly, the borrower interest rate corresponds to a

specific point on the PLF interest rate function, whereas the lender interest rate is the implied rate

from passing borrower payments onto lenders. The direct pass-through of borrower interest rate

payments to lenders is considered desirable because it contrasts with traditional settings (e.g., bank

deposits) in which the interest rate intermediation markups are typically high, reflecting the large

market power of banks (see e.g., Drechsler et al. 2017).

A PLF sets the borrower interest rate by inputting on-chain information regarding lending

supply and borrowing demand into the previously referenced interest rate function. More precisely,

the PLF sets its borrowing interest rate as a function of the utilization rate, defined as follows:

Utilization Rate =
Observed Borrowing

Observed Lending
(1.1)

In turn, the borrower interest rate is determined as:

Borrower IR = ρ(Utilization Rate) (1.2)

where ρ denotes the exogenous interest rate function that defines the PLF.

The interest rate function, ρ, is specified as an increasing function of the utilization rate, so

that borrower interest rates increase with observed borrowing demand and decrease with observed

lending supply. Then, since the PLF passes borrower payments onto lenders, the PLF lender

interest rate must satisfy the following equation:1

1In practice, a PLF generally passes a fixed proportion of payments onto the lender. That proportion is generally
close to 100%, so we abstract from this detail and assume a 100% pass-through.
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Observed Lending · Lender IR︸ ︷︷ ︸
Lender Payments

= Observed Borrowing · Borrower IR︸ ︷︷ ︸
Borrower Payments

(1.3)

Combining these features yields the mechanical rule for determining lender interest rates in a

PLF as a function of the observed utilization rate:

Lender IR = Utilization Rate · ρ(Utilization Rate) (1.4)

Finally, we note that given the pseudonymous nature of blockchain accounts, the current form of

DeFi lending is collateralized lending and, therefore, analogous to margin lending or repo. As men-

tioned above, our focus in this paper is on the interest rate-setting mechanism, which is determined

independently of the collateral mechanism.

Model Preview We derive a model of DeFi lending in order to study the interest rate-setting

procedure of a PLF. More explicitly, we assume that in each period, a mass of potential borrowers

and a mass of potential lenders randomly arrive. Potential borrowers arrive with no capital but have

an investment opportunity that generates heterogeneous returns for each such borrower. Potential

lenders arrive with a unit of capital with which they can lend to the platform or invest in an

alternative outside option, also with heterogeneous returns for each such lender. Given the design

of the PLF, the borrowers whose investment opportunities generate a higher return than the PLF

borrowing rate will optimally borrow from the PLF. Similarly, lenders with outside options that

generate lower returns than the PLF lending rate will optimally lend to the PLF.2 Importantly,

although Equations (1.2) and (1.4) fully specify a PLF by specifying rules for setting both borrower

and lender interest rates, it is not immediately clear that the PLF procedure is consistent with

equilibrium. In particular, the utilization rate cannot be specified arbitrarily in equilibrium because

it itself depends upon supply and demand for loanable funds (see Equation 1.1), whereas supply

and demand depend upon interest rates. Our first contribution is to formally establish the existence

and uniqueness of a DeFi lending equilibrium by establishing that an equilibrium utilization rate

2These assumptions are made only to generate downward-sloping demand curves and upward-sloping supply curves
for loanable funds.
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always exists and that this utilization rate is always unique for a PLF function that is monotonically

increasing in the utilization rate.

We then turn to analyze the performance of a DeFi lending scheme. First, we show that for any

fixed PLF interest rate function, the DeFi lending equilibrium generates a lower level of welfare

when compared to a perfectly competitive market-clearing equilibrium. To understand this result,

first note that the first best outcome is achieved only when lending supply and borrowing demand

are equalized, which is equivalent to requiring a utilization rate of unity. Nonetheless, since the

PLF sets interest rates as a function of the utilization rate, a PLF utilization rate of unity would

therefore imply that the PLF borrower and lender interest rates become static at ρ(1). In turn,

a DeFi lending market cannot simultaneously ensure that lending supply equates with borrowing

demand and that interest rates respond to shocks to lending supply and borrowing demand. In more

detail, when borrowing demand is high relative to lending supply, the PLF obtains a utilization

rate of unity, but interest rates become static at ρ(1) because it is not possible to borrow more

funds than are available at the PLF. In turn, PLF interest rates become unresponsive to further

positive borrowing demand shocks and negative lending supply shocks in this case. In contrast,

when borrowing demand is low relative to lending supply, the utilization rate falls below unity and

interest rates adjust but are sub-optimal precisely because supply is in excess of demand at the

prevailing rate whenever the utilization rate is less than unity.

We then study the optimal design of the PLF interest rate function. We show that it is possible

to generate DeFi equilibrium interest rates and welfare that are arbitrarily close to the interest

rates and welfare from a competitive equilibrium. Although interest rates at a PLF only adjust

when the utilization rate is below unity, it is nonetheless not necessary for equilibrium utilization

rates to deviate far from unity in order to generate adjustments in the PLF interest rates that are

necessary to match the changes in market conditions. In particular, we show that it is possible

to design the PLF interest rate function to ensure that the equilibrium utilization rate for any

market condition is arbitrarily close to unity and that, as a consequence, the PLF interest rate is

also arbitrarily close to the competitive lending equilibrium rate. Such a design involves setting

the interest rate function with a steep curvature to ensure that interest rates will move sufficiently
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fast as utilization rates move in a narrow range near unity. In that case, the PLF will only require

small variations in utilization rates in order to produce large variations in the realized interest rates.

Thus, by designing the PLF function to concentrate all utilization rates arbitrarily close (but not

equal) to one, the PLF can generate DeFi equilibrium interest rates, and therefore welfare, that is

arbitrarily close to the competitive equilibrium.

Our results generate important implications for DeFi lending markets. In particular, by properly

designing the PLF interest rate function, it is possible to generate an outcome that approximates

the competitive equilibrium outcome. Therefore, utilizing such designs can generate welfare gains

in DeFi lending which can help to facilitate the use and growth of DeFi lending applications.

Literature Our paper contributes to the literature that studies the economics of blockchain

technology. While much of the early work in that literature examines economic security (see,

e.g., Biais et al. 2019, Easley et al. 2019, and Saleh 2021), we abstract from such concerns and

focus instead upon economic implications that arise from a secure blockchain. We specifically

examine a secure blockchain with smart contract functionality (e.g., Ethereum) and study welfare

implications arising from a prominent application, DeFi lending facilitated by a PLF. The economics

literature that studies blockchains with smart contract functionality is young and growing (see

John et al. 2023) - topics of study within this literature include tokenomics (see, e.g., Cong et al.

2021 and Mayer 2022), stablecoins (see, e.g., d’Avernas et al. 2022 and Li and Mayer 2022), and

decentralized exchanges (see, e.g., Capponi and Jia 2021, Park 2021, Lehar and Parlour 2022a,

and Hasbrouck et al. 2023). We add to the smart contracts literature by providing a formal

economic model of a PLF with a particular focus on the PLF’s interest rate setting mechanism.

Other notable papers that also examine PLFs include Aramonte et al. (2022), Chiu et al. (2022),

Lehar and Parlour (2022b), and Mueller (2022). Aramonte et al. (2022) highlight that PLFs serve

largely as a vehicle for leveraged cryptoasset trading. Chiu et al. (2022) theoretically model a

PLF while focusing on asymmetric information between borrowers and lenders. Lehar and Parlour

(2022b) and Mueller (2022) provide empirical insights regarding PLFs. Our work differs from prior

PLF papers in that we focus upon the interest rate setting mechanism and the associated welfare
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implications. Crucially, Aramonte et al. (2022) point out that the mechanics of a PLF can be applied

even to non-cryptoassets through tokenization of real assets and that such tokenization could have

important welfare implications for SMEs; our analysis formalizes that assertion, clarifying the

welfare implications of PLFs if integrated with traditional finance (see also John et al. 2023).

2 Model

We examine a discrete time infinite horizon model in which time is indexed by t ∈ N. At the

beginning of each period, a random measure of lenders and a random measure of borrowers arrive

to a DeFi lending market, which consists of a single PLF. Lenders possesses a unit of capital

and heterogeneous investment opportunities so that each lender may either lend to the PLF or

invest in her alternative investment opportunity instead. Borrowers possess no capital but have

heterogeneous investment opportunities which they can borrow funds from the PLF to invest in,

if they find it optimal to do so.3 We assume that the PLF sets borrower and lender interest rates,

as in practice, and lenders and borrowers decide whether to participate in the PLF, knowing how

those interest rates are determined. At the end of each period, each borrower who borrows from

the PLF repays her loan with interest, and the PLF allocates the borrower payments to pay off

the lenders who lent to the PLF. The next period then commences with a new random measure of

borrowers and lenders arriving to the DeFi lending market.

2.1 Lenders and Borrowers

At the beginning of each period, a measure λt of lenders and a measure µt of borrowers arrive

where both {λt}∞t=1 and {µt}∞t=1 constitute strictly positive sequences with i.i.d elements and finite

first moments. As we shall see, λt and µt affect equilibrium solutions only through their ratio (i.e.,

µt

λt
) so that it is convenient to define an additional random sequence, {θt}∞t=1, as:

3Note that we abstract from collateral given that the focus of this paper is on the PLF interest rate mechanism
which is entirely orthogonal to the collateral mechanism. All of our results would hold if we required borrowers to
post collateral to secure their loans.
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θt :=
µt

λt
(2.1)

Note that θt captures the credit market tightness from the borrower’s perspective with high values

of θt corresponding to high market tightness — relatively more borrowers as compared to lenders

(i.e., high µt or low λt) — and low values of θt corresponding to low market tightness — relatively

few borrowers as compared to lenders (i.e., low µt or high λt). Consequently, we hereafter refer to θt

as the market tightness in period t. Moreover, as a simplifying regularity condition, we require that

θt possesses a strictly increasing and continuously differentiable distribution, G, which is supported

on (0,∞).

2.1.1 Lenders

We uniquely identify each lender by the ordered pair (j, t) ∈ [0, λt] × N where t denotes the

period in which the lender arrives and j denotes the index of each lender among the lenders within

period t. We assume that Lender (j, t) possesses a unit of capital and has access to an investment

opportunity with net expected return rl,(j,t) ∼ Fl[0,∞) where Fl ∈ C1[0,∞) denotes a continuously

differentiable and strictly increasing cumulative distribution function with a finite first moment.

Lender (j, t) may invest her capital in the PLF or invest it in her investment opportunity. As a

consequence, denoting by lt ≥ 0 the PLF lending rate in period t, Lender (j, t)’s utility, Ul,(j,t), is

given as follows:

Ul,(j,t)(bt, lt) = max{lt, rl,(j,t)} (2.2)

Moreover, the period t lender supply curve for the PLF, St(lt), is given explicitly as follows:

St(lt) = λt · P(rl,(j,t) ≤ lt) = λt · Fl(lt) (2.3)
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2.1.2 Borrowers

We uniquely identify each borrower by the ordered pair (i, t) ∈ [0, µt] × N where t denotes the

period in which the borrower arrives and i denotes the index of the borrower among the borrowers

within period t. We assume that Borrower (i, t) possesses no capital and has access to an investment

opportunity with net expected return rb,(i,t) ∼ Fb[0,∞) where Fb ∈ C1[0,∞) denotes a continuously

differentiable and strictly increasing cumulative distribution function with a finite first moment.

We assume that Borrower (i, t) may invest up to one unit of capital in her investment opportunity,

implying that it is optimal for her to borrow a unit of capital from the PLF so long as rb,(i,t) ≥ bt

with bt ≥ 0 denoting the PLF borrowing rate in period t. As a consequence, the demand curve for

the PLF, Dt(bt), is given as follows:

Dt(bt) = µt · P(rb,(i,t) ≥ bt) = µt · (1− Fb(bt)) (2.4)

As a practical matter, the PLF cannot lend out funds beyond the funds that it possesses; in

particular, whenever borrowing demand exceeds lending supply (i.e., Dt(bt) > St(lt)), then the PLF

cannot fulfill all borrowing demand. In turn, we assume that the PLF lends out its funds pro-rata

whenever borrowing demand exceeds lending supply, implying that each borrower seeking a unit of

capital receives St(lt)
Dt(bt)

in that case. Then, the utility of Borrower (i, t), Ub,(i,t), is given as follows:

Ub,(i,t)(bt, lt) =


max{rb,(i,t) − bt, 0} if Dt(bt) ≤ St(lt)

max{ St(lt)
Dt(bt)

· (rb,(i,t) − bt), 0} if Dt(bt) > St(lt)

(2.5)

2.2 Protocol for Loanable Funds (PLF)

A PLF is defined by an exogenous interest rate function, ρ : [0, 1] 7→ [0,∞), which is continuously

differentiable, strictly increasing and satisfies ρ(0) ≥ 0. Fixing the exogenous interest rate function,

ρ, the PLF sets the borrower’s interest rate in period t, bt, as follows:

bt = ρ(Ut) (2.6)
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where Ut is the utilization rate in period t. The utilization rate is defined as the proportion of

available lending that has been borrowed; more explicitly, Ut is given as follows:

Ut =
Total Borrowing

Total Lending
=

min{Dt(bt),St(lt)}
St(lt)

= min{ Dt(bt)

St(lt)
, 1 } (2.7)

where the min in the numerator of Equation (2.7) arises because, as previously discussed, the PLF

cannot lend out funds beyond those received from lenders - that is, total borrowing equals the

minimum of Dt(bt) and St(lt) because it is not feasible for the PLF to lend in excess of St(lt).

Turning to the procedure for setting the PLF lender rate, the PLF passes borrower payments

directly onto lenders, thereby implying:

St(lt) · lt︸ ︷︷ ︸
Payments To Lenders

= min{St(lt),Dt(bt)} · bt︸ ︷︷ ︸
Payments From Borrowers

(2.8)

In turn, dividing both sides of Equation (2.8) by total lending, St(lt), and applying the definition

of the utilization rate in Equation (2.7) yields the PLF’s mechanical rule for setting the lender

interest rate:

lt = Ut · ρ(Ut) (2.9)

2.3 Equilibrium

Given an interest rate function, ρ, a DeFi lending equilibrium is a sequence of borrower interest

rates, {b⋆t }∞t=1, lender interest rates, {l⋆t }∞t=1, and utilization rates, {U⋆
t }∞t=1, such that Equations

(2.5) - (2.9) hold for all t ∈ N. Of note, solving for such an equilibrium reduces to solving for the

sequence of utilization rates given that, as per Equations (2.6) and (2.9), equilibrium interest rates

in a given period are uniquely determined by the utilization rate in that period.

To determine equilibrium utilization rates, we apply the borrowing rate rule in Equation (2.6)

and the lending rate rule in Equation (2.9) to the definition of the utilization rate in Equation (2.7),

yielding:
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Ut = min{ Dt(ρ(Ut))

St(Ut · ρ(Ut))
, 1 } (2.10)

Additionally, applying the demand curve in Equation (2.4) and the supply curve in Equation

(2.3) to Equation (2.10) yields a fixed-point problem in Ut:

Ut = min{ θt ·
1− Fb(ρ(Ut))

Fl(Ut · ρ(Ut))
, 1 } (2.11)

which implies that an equilibrium exists if and only if there exists a sequence of utilization rates

{U⋆
t }∞t=1 that satisfy Equation (2.11) for all t ∈ N. Moreover, such an equilibrium is unique if

and only if the sequence of utilization rates is unique. In Section 3, we proceed to demonstrate

existence and uniqueness of a DeFi lending equilibrium precisely by demonstrating that Equation

(2.11) possesses a unique solution, as a function of θt, for each t.

3 Existence and Uniqueness of a DeFi Lending Equilibrium

Our first result states that a DeFi lending equilibrium always exists and that it is always unique:

Proposition 3.1. DeFi Lending Equilibrium

There always exists a unique DeFi lending equilibrium. Within this equilibrium, in each period t,

the borrower interest rate bt, the lender interest rate lt, and the utilization rate Ut depend only on

the market tightness θt =
µt

λt
with the equilibrium solutions being given explicitly as follows:

U⋆
t = U⋆(θt), b⋆t = b⋆(θt) ≡ ρ(U⋆(θt)), l⋆t = l⋆(θt) ≡ U⋆(θt) · ρ(U⋆(θt)) (3.1)

where U⋆ : [0,∞) 7→ [0, 1] is the point-wise unique function satisfying:

U⋆(θ) = min{ θ · 1− Fb(ρ(U
⋆(θ)))

Fl(U⋆(θ) · ρ(U⋆(θ)))
, 1 } (3.2)

Proposition 3.1 clarifies that PLFs generate a stable and unambiguous economic outcome (i.e., a
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unique equilibrium). This result arises because a PLF purposefully adjusts interest rates according

to market tightness (i.e., b⋆t and l⋆t vary with µt and λt through θt). In particular, since supply

and demand curves are not directly observable in practice, a PLF employs the utilization rate as

a proxy for market tightness and sets interest rates to be increasing in the utilization rate (see

Equation 2.6 and 2.9). In turn, positive borrowing demand shocks (i.e., increases in µt) increase

PLF interest rates because more demand implies a higher utilization rate which then mechanically

increases PLF interest rates. Similarly, positive lending supply shocks (i.e., increases in λt) imply

decreases in PLF interest rates because increases in supply decrease the utilization rate which

then mechanically decreases PLF interest rates. We formalize the aforementioned point with the

following supplementary result:

Proposition 3.2. Lending, Borrowing, and Utilization Rates Increase in Market Tightness

If θt < θt′, then the following results hold:

U⋆
t ≤ U⋆

t′ , b⋆t ≤ b⋆t′ , l⋆t ≤ l⋆t′ (3.3)

Additionally, if U⋆
t < 1, then the inequalities are all strict.

4 Sub Optimality of DeFi Lending Equilibrium

Having established the existence and uniqueness of a DeFi lending equilibrium, we now examine

how the welfare from this unique equilibrium differs from the welfare of a competitive lending

equilibrium. We define welfare at time t as the sum of expected utility of the borrowers and lenders

in period t. As a consequence, the realized period t welfare in a DeFi lending equilibrium, WDeFi
t ,

is given as follows:

WDeFi
t = W(b⋆t , l

⋆
t ;µt, λt) ≡

µt∫
0

E[Ub,(i,t)(b
⋆
t , l

⋆
t )] di︸ ︷︷ ︸

Borrower Welfare

+

λt∫
0

E[Ul,(j,t)(b
⋆
t , l

⋆
t )] dj︸ ︷︷ ︸

Lender Welfare

(4.1)
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In contrast, the realized period t welfare in a competitive lending equilibrium, WCE
t , is given by

the sum of utility of the borrowers and lenders in the case where the borrowing and lending rates

are both equal to the competitive equilibrium interest rate, rCt . In particular,

WCE
t = W(rCt , r

C
t ;µt, λt) ≡

µt∫
0

E[Ub,(i,t)(r
C
t , r

C
t )] di︸ ︷︷ ︸

Borrower Welfare

+

λt∫
0

E[Ul,(j,t)(r
C
t , r

C
t )] dj︸ ︷︷ ︸

Lender Welfare

(4.2)

where the competitive equilibrium interest rate is defined as the rate that equates lending supply

and borrower demand:

Dt(r
C
t ) = St(r

C
t ) (4.3)

As a preliminary result, we establish that the competitive equilibrium interest rate, rCt , always

exists, is unique, and increases with the credit market tightness θt:

Proposition 4.1. The Competitive Equilibrium Interest Rate is Unique

There always exists a unique competitive equilibrium lending equilibrium. Within this equilibrium,

in each period t, the borrower interest rate bCt , the lender interest rate lCt , and the utilization rate

UC
t only depend on the market tightness θt =

µt

λt
with the equilibrium solutions being given explicitly

as follows:

UC
t = UC(θt) = 1 bCt = lCt = rCt = rC(θt)

with rC : [0,∞) 7→ [0,∞) the is unique function satisfying:

Fl(r
C(θ)) = θ · (1− Fb(r

C(θ))) (4.4)

guaranteed to exist. Furthermore, rC is one-to-one, onto, and strictly increasing in the market

tightness θt.

4.1 The PLF identification Problem

We have shown in Proposition 4.1 that for any level of market tightness θt there exists a unique

market clearing rate rC(θt). Our next result demonstrates the PLF identification problem, which
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precludes PLF’s from setting the competitive equilibrium interest rate for each possible realization

of market tightness θt. We will present this result for a more general class of PLF interest rate

functions which map the realized supply, St, and demand, Dt, in each period to an interest rate

ρ(St,Dt).

Proposition 4.2. Consider a general PLF interest rate function ρ : R2
+ → R+ that sets an interest

rate, ρ(St,Dt), as a function of the realized supply St of loanable funds and borrowing demand Dt

in each period. Further assume that µt and λt are continuously distributed. Then, for any such

function ρ,

Pr(ρ(St,Dt) = rCt ) = 0

This result demonstrates the difficulty that PLFs face when trying to match the first best

lending rate. In particular, given that µt and λt are both random, we show that it is impossible for

the realized supply and demand to identify the market condition θt, which is necessary to know in

order to set the market clearing rate. We illustrate the identification problem in Figure 1 where we

r

S(r),D(r)

S(r;λ)

S(r;λ′)

D(r;µ′)
D(r;µ)

rC(µ
λ
) rC(µ

′

λ′ )

α

Figure 1: An illustration of the PLF identification problem when Fl(x) = Fb(x) = 1 − e−15x for
two different pairs of market conditions (µ, λ) = (.4, .6) and (µ′, λ′) = (.6, .4).

plot the supply and demand as a function of the interest rate r under two different pairs of market

conditions (µ, λ) = (.4, .6) and (µ′, λ′) = (.6, .4). Importantly, it can be seen that at the market

clearing rates, rC(µλ ) and rC(µ
′

λ′ ), the market clearing supply (equal to demand) is equal to α under
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both market conditions (µ, λ) and (µ′, λ′). Ideally, in this case the PLF would like to specify that

when realized supply is equal to realized demand and both are equal to α then the PLF interest rate

is set equal to the market clearing rate associated with that level of realized supply and demand

(for all possible α). Yet, as can be seen from Figure 1 it is not possible to determine what is the

correct market clearing rate when observing realized supply equal to realized demand equal to α

without knowing whether the market condition is (µ, λ) or (µ′, λ′). Further, this is demonstrated

for only two pairs of (µ, λ) and (µ′, λ′) but we can replicate this argument for infinitely many pairs,

each with their own unique market clearing rate. Hence, when arbitrarily specifying an interest

rate function, the probability of setting the correct market clearing rate is zero.

We note here that while Proposition 4.2 is derived using the most general PLF interest rate

function, the intention here was to demonstrate that it is not the fact that PLFs in practice only

adjust to the utilization rate that creates the identification problem. Therefore, a more general

PLF design that uses all available information (i.e., realized supply and demand) will also suffer

from this problem. In what follows we will revert back to studying the class of PLF interest rate

functions presented in Section 2.2, as our next results will show that even this subclass of PLF

interest rate functions (which have the added benefit of practical simplicity) can still perform well

when compared to the competitive equilibrium provided that the interest rate function, ρ, is selected

appropriately.

4.2 Welfare Results

As demonstrated above, due to the PLF identification problem the DeFi lending equilibrium will

always generates lower welfare than the competitive equilibrium. We formalize this in our next

result.

Proposition 4.3. Sub-Optimal Welfare For DeFi Lending Equilibrium

For any level of the market tightness θt, the DeFi lending equilibrium generates weakly lower welfare

than the competitive lending equilibrium so that WDeFi
t ≤ WCE

t for all t.

The DeFi lending equilibrium is sub-optimal because welfare is determined entirely by interest

rates (see Equations 4.1 and 4.2), and the PLF is not able to perfectly match the competitive
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market equilibrium interest rate for all realizations of the market tightness. Importantly, we prove

in our next result that the PLF interest rate function can match the competitive equilibrium lending

rates and welfare for only a single realization of market tightness θt.

Proposition 4.4. DeFi Equilibrium Matches CE at a Unique θt

There exists a unique realization of the market tightness θt such that the DeFi equilibrium matches

the competitive lending equilibrium in period t. More formally, there exists a unique θ̃ such that:

WDeFi
t = WCE

t if and only if θt = θ̃ (4.5)

For this value of θ̃, PLF interest rates and the competitive equilibrium interest rate all equal ρ(1):

rCt = b⋆t = l⋆t = ρ(1) ⇐⇒ θt = θ̃ (4.6)

The aforementioned unique value of θ̃ is given explicitly as follows:

θ̃ = (rC)−1
(
ρ(1)

)
(4.7)

where (rC)−1 refers to the inverse function of rC .

It is important to note that Proposition 4.4 holds for any interest rate function ρ. Therefore,

independently of how the interest rate function ρ is chosen, there always exists a unique level of

market tightness, θ̃, whereby the the interest rate function ρ generates the highest possible level of

welfare. To see how Proposition 4.4 arises, note that in order for both the PLF borrower and lender

interest rates, b⋆t and l⋆t , to be equal to the competitive equilibrium interest rate, rCt , then it must

be the case that PLF borrower and lender interest rates are identical. However, per Equations (2.6)

and (2.9), the PLF borrower and lender interest rates are identical only when the PLF achieves

full utilization (i.e., when U⋆
t = 1). Then, since the PLF sets interest rates as a mechanical

function of the utilization rate, full utilization sets both the PLF borrower and lender interest

rates at ρ(U⋆
t ) = ρ(1), and the DeFi lending equilibrium therefore achieves the competitive lending

equilibrium welfare only if the competitive equilibrium interest rate, rCt , equals ρ(1). Finally, since
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the competitive equilibrium interest rate, rCt , is an increasing function of the market tightness θt

(see Proposition 4.1), the equivalence of the competitive equilibrium interest rate, rCt , and the PLF

interest rates only occurs for one realization of the market tightness θt = θ̃, and this is the unique

realization of market tightness satisfying rC(θ̃) = ρ(1) hence Equation (4.7).

To better understand the inefficiency within DeFi lending markets, we offer the following sup-

plementary result which clarifies how PLF interest rates vary from the competitive equilibrium

interest rate when the market tightness is such that they are not identical (i.e., when θt ̸= θ̃):

Proposition 4.5. DeFi Interest Rates Deviate From CE

When the market tightness θt entails either excess borrowers or a shortage of lenders relative to θ̃

(i.e., when θt > θ̃), then the competitive equilibrium interest rate, rCt , strictly exceeds both the PLF

borrower interest rate, b⋆t , and the PLF lender interest rate, l⋆t :

θt > θ̃ =⇒ rCt > b⋆t and rCt > l⋆t (4.8)

When the market tightness θt entails either a shortage of borrowers or excess lenders relative to

θ̃ (i.e., when θt < θ̃), then the PLF borrower interest rate, b⋆t , strictly exceeds the competitive

equilibrium interest rate, rCt :

θt < θ̃ =⇒ b⋆t > rCt (4.9)

whereas the relationship between the competitive equilibrium interest rate, rCt , and the PLF lender

interest rate, l⋆t , is ambiguous.

The first part of Proposition 4.5 establishes that both the PLF borrower interest rate, b⋆t , and

PLF lender interest rate, l⋆t , are strictly lower than the competitive equilibrium interest rate, rCt ,

when borrowing demand is high or lending supply is low relative to θ̃ (i.e., when θt > θ̃). In

contrast, the second part of Proposition 4.5 demonstrates that the PLF borrower interest rate, b⋆t ,

strictly exceeds the competitive equilibrium interest rate, rCt , when borrowing demand is low or

lending supply is high relative to θ̃ (i.e., when θt < θ̃). In the latter case, the relationship between

the competitive equilibrium interest rate, rCt , and the PLF lender interest rate, l⋆t , is ambiguous.
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5 Optimal PLF Design

In this section we study the optimal design of the PLF interest rate function, ρ. What we will show

is that by properly designing the interest rate function, it is possible for the DeFi equilibrium to

achieve welfare that is arbitrarily close to the competitive equilibrium welfare. In that sense, the

optimally designed PLF will be approximately efficient.

We begin by first showing that it is possible to design the interest rate function ρ such that that

the equilibrium utilization rates, U⋆(θt), are arbitrarily close to one for all realizations of market

tightness θt.

Proposition 5.1. Suppose that θt ∼ G[θ,∞) where θ > 0. Then, for any sufficiently small ϵ > 0

there exists an interest rate function ρ such that U⋆(θ) ∈ (1− ϵ, 1) for all θ ∈ [θ,∞).

What this result states is that by properly designing the interest rate function, the PLF can

guarantee that all equilibrium utilization rates are arbitrarily close to 1. The way that this interest

rate function is designed is by first targeting a minimal equilibrium utilization rate 1− ϵ. Next, for

the lowest realization of market tightness, θ, we solve for the value x that satisfies the following

equation and demonstrate that a unique such x always exists:

1− ϵ = θ
1− Fb(x)

Fl((1− ϵ) · x)
(5.1)

Next, we set ρ(1 − ϵ) = x which implies by construction that U⋆(θ) = 1 − ϵ. Finally, we set ρ as

any increasing function such that ρ(U) → +∞ as U → 1.4 We then prove that this design will

ensure that U⋆(θ) ∈ (1− ϵ, 1) for all θ ∈ [θ,+∞) and use the fact that ϵ was arbitrarily chosen to

guarantee that we can design ρ to ensure that all equilibrium utilization rates are arbitrarily close

to 1.

Finally, we leverage Proposition 5.1 to prove our next result, that when using the properly

designed interest rate function, DeFi equilibrium welfare can be made arbitrarily close to the

competitive equilibrium welfare.

4Note that this is not necessary if the distribution for θ is bounded above, in which case we can choose ρ such
that ρ(1) = B for some sufficiently large constant B.

17



Proposition 5.2. Suppose that θt ∼ G[θ,∞) where θ > 0. For any δ > 0 there exists an interest

rate function ρ such that E[WDeFi
t ] ≥ E[WCE

t ]− δ.

This last result arises because the PLF borrower and lender rates, b⋆t and l⋆t , can both be

made arbitrarily close to the competitive lending equilibrium rate, rC(θ), and thus welfare being

a continuous function of interest rates enables us to establish that the DeFi lending equilibrium

welfare can be made arbitrarily close to competitive lending equilibrium welfare. In more detail,

we generate a sequence of PLF interest rate functions such that the utilization rate converges to

unity via Proposition 5.1, and we demonstrate that when utilization rates converge to unity, then

the PLF borrower and lender interest rates must both converge to the competitive equilibrium

lending rate (i.e., r⋆t = ρ(U⋆(θt)) → rC(θt) and l⋆t = U⋆(θt) · b⋆t → rC(θt) when U⋆(θt) → 1). In

turn, invoking continuity of welfare in interest rates (see Equations 4.1 and 4.2), we establish that

the DeFi lending equilibrium welfare from the constructed sequence converges to the competitive

lending equilibrium welfare, implying that the there exists PLF interest rate functions that can

generate welfare within any arbitrary amount of the competitive lending equilibrium welfare.

5.1 Approximately Optimal Linear/Non-Linear PLF Interest Rate Functions

Finally, we will demonstrate the results of Proposition 5.1 and Proposition 5.2 with two examples.

First, we will illustrate the results of Proposition 5.1 by showing that we can generate equilibrium

utilization rates that are arbitrarily close to one using only linear interest rate functions.

Example 1. Optimal Linear Interest Rate Functions

Consider the class of linear PLF interest rate functions of the form ρ(U) = a+b·U with a, b ∈ R and

suppose that θ ∼ G[θ, θ̄].5 Then, for any sufficiently small ϵ > 0 we can choose constants aϵ, bϵ ∈ R

in order to guarantee that for all θ ∈ [θ, θ] the equilibrium utilization rates U⋆(θ) ∈ (1 − ϵ, 1). In

this case, the optimal linear interest rate function chooses a, b ∈ R to satisfy

ρϵ(1) = aϵ + bϵ = rC(θ̄) and ρ(1− ϵ) = aϵ + bϵ · (1− ϵ) = xϵ

5The results are easier to demonstrate with linear functions when the support of θ is bounded above. Choosing
an arbitrarily large bound θ̄ will also guarantee that the inefficiency incurred if θ > θ̄ is minimized whenever Fl and
Fb are continuous distributions with support [θ,+∞).
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where xϵ is chosen to solve (5.1). Equivalently, this implies that

aϵ =
1

ϵ
(xϵ − (1− ϵ)rC(θ)) and bϵ =

1

ϵ
(rC(θ)− xϵ)

We plot the equilibrium utilization rates as a function of θ for ϵ ∈ {.01, .02, .03} assuming [θ, θ] =

[ 150 ,
49
50 ] and Fl(x) = Fb(x) = 1−e−15x. In this case, note that rC(θ) ≈ .2608 while (x.01, x.02, x.03) ≈

(.001374, .001402, .00143). This implies that (a.01, a.02, a.03) ≈ (−25.68,−12.71,−8.39) while (b.01, b.02, b.03) ≈

(25.94, 12.97, 8.65). In order to avoid negative lending rates, we could also set ρϵ(U) = 0 for all

U < 1 − ϵ (although this is not necessary). Figure 2 (a) demonstrates the optimal design of the

interest rate functions ρϵ(U) for ϵ ∈ {.01, .02, .03}. As can be see from Figure 2 (b) when utilizing

the optimal linear interest rate functions, all equilibrium utilization rates U⋆(θ) ≥ 1 − ϵ for each

ϵ ∈ {.01, .02, .03}. The distinguishing feature of these interest rate functions is that as ϵ becomes

smaller (i.e., you want to target higher utilization rates) the slope of the interest rate function

increases to be able to exploit more variation in realized interest rates as a function of utilization

rates.

U

ρϵ(U)

(a) The optimal linear interest rate functions
ρϵ(U) for ϵ = .01 (solid), ϵ = .02 (dashed), and
when ϵ = .03 (dotted).

θ

U⋆(θ)

(b) Equilibrium utilization rates U⋆(θ) under the
optimal linear ρϵ(U) for ϵ = .01 (solid), ϵ = .02
(dashed), and when ϵ = .03 (dotted).

Figure 2: A demonstration of Proposition 5.1 for the optimal linear interest rate functions.

Next, we will demonstrate the same insights as in Example 1 but for the case of non-linear

functions. In this setting it is not possible to determine the optimal design of non-linear functions,
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but we can show how a very simple class of non-linear functions can still achieve arbitrarily high

utilization rates. Further, we exploit the non-linearity to demonstrate that this class of functions

can perform strictly better than the class of linear interest rate functions.

U

ρϵ(U)

(a) Approximately optimal non-linear interest rate
functions ρϵ(U) for ϵ = .01 (solid), ϵ = .02
(dashed), and when ϵ = .03 (dotted).

θ

U⋆(θ)

(b) Equilibrium utilization rates U⋆(θ) under the
approximately optimal non-linear ρϵ(U) for ϵ =
.01 (solid), ϵ = .02 (dashed), and when ϵ = .03
(dotted).

Figure 3: A demonstration of Proposition 5.1 for the approximately optimal non-linear interest
rate functions of Example 2.

Example 2. Optimal Non-Linear Interest Rate Functions

Consider the class of non-linear PLF interest rate functions of the form ρ(U) = a
1−U with a ∈ R and

suppose that θ ∼ G[θ, θ̄]. Then, again for any sufficiently small ϵ > 0 we can choose the constant

aϵ ∈ R in order to guarantee that for all θ ∈ [θ, θ] the equilibrium utilization rate U⋆(θ) ∈ (1− ϵ, 1).

In this case, the interest rate function is uniquely determined by the value of aϵ which is chosen to

satisfy

ρ(1− ϵ) =
aϵ
ϵ

= xϵ or equivalently aϵ = ϵ · xϵ

where xϵ is chosen (the same way as in Example 1) in order to solve (5.1).

Figure (3) (a) plots this class of non-linear interest rate functions ρϵ(U) for ϵ ∈ {.01, .02, .03}

while Figure (3) (b) plots the equilibrium utilization rates as a function of θ when using each

respective interest rate functions and the same distributional assumptions of Exercise 1. Similar

to Exercise 1 it can be seen that the utilization rate for all realizations of θ are above the targeted
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thresholds 1 − ϵ for each ϵ ∈ {.01, .02, .03}. More importantly, it can be seen that the utilization

rates go from the target of 1 − ϵ to 1 at a much faster rate than when utilizing the class of linear

interest rate functions.

Finally, we will demonstrate the results of Proposition 5.2 by plotting in Figure 4 the difference

between the DeFi equilibrium interest rates and the market clearing interest rate for each market

condition θ. As can be seen, given our choice of ϵ ∈ {.01, .02, .03} the difference between the DeFi

equilibrium interest rates and the market clearing rate is very small in magnitude for all of the

six interest rate functions we characterize but much smaller for the class of non-linear interest rate

functions than linear interest rate functions. Therefore, (as we prove) the welfare generated by the

DeFi equilibrium will be approximately equal to the welfare generated by the competitive market.

θ

ρϵ(U⋆(θ))− rC(θ)

(a) Interest rate differential between the optimal
linear ρϵ(U) and the competitive rate for ϵ = .01
(solid), ϵ = .02 (dashed), and when ϵ = .03 (dot-
ted).

θ

ρϵ(U⋆(θ))− rC(θ)

(b) Interest rate differential between the optimal
non-linear ρϵ(U) and the competitive rate for ϵ =
.01 (solid), ϵ = .02 (dashed), and when ϵ = .03
(dotted).

Figure 4: A demonstration of Proposition 5.2 for both linear (a) and non-linear (b) interest rate
functions.

6 Conclusion

In this paper we study an economic model of a DeFi lending market facilitated by a Protocol for

Loanable Funds (PLF). We focus on the design of the interest rate setting mechanism of the PLF in

order to describe the inefficiency of PLFs when compared to competitive lending markets. We first
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show that the design of PLF interest rate setting function, and the fact that it only relies on the

observed ratio of borrowed to lent funds, supports a unique DeFi lending equilibrium. Subsequently,

we compare DeFi equilibrium welfare to the competitive lending equilibrium welfare. The PLF

faces a natural disadvantage when compared to a competitive lending market in that the PLF

cannot incorporate off-chain information when setting interest rates. Despite this informational

disadvantage, we show that it is possible to design the PLF interest rate function to ensure that the

resulting DeFi equilibrium achieves a level of welfare that is arbitrarily close to the welfare generated

by the competitive lending market equilibrium. This design achieves this objective by ensuring that

the PLF interest rate function guarantees equilibrium interest rates that are arbitrarily close to

the competitive rates for all possible realizations of borrower demand and lender supply. We

then demonstrate a relatively simple procedure for designing approximately optimal interest rate

functions. These results therefore contribute to the practical design of PLF interest rate functions

which will be useful to maximize the use and growth of DeFi lending markets.
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Appendices

A Proofs

A.1 Proof of Proposition 3.1

Proof. To prove existence of U⋆, first note that

∂

∂U
[min{x · 1− Fb(ρ(U))

Fl(U · ρ(U))
, 1}] ≤ 0 (A.1)

which comes directly from the fact that

∂

∂U
[x·1− Fb(ρ(U))

Fl(Uρ(U))
] = −x·

F ′
b(U)ρ′(U)Fl(Uρ(U)) + F ′

l (Uρ(U)) · (ρ(U) + Uρ′(U)) · (1− Fb(ρ(U)))

(Fl(Uρ(U)))2
< 0

Further, note that

0 < lim
U→0

min{x · 1− Fb(ρ(U))

Fl(U · ρ(U))
, 1} = 1 and 1 ≥ min{x · 1− Fb(ρ(1))

Fl(ρ(1))
, 1}
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and therefore, for all x ∈ [0,∞), there must exist U such that

U = min{x · 1− Fb(ρ(U))

Fl(U · ρ(U))
, 1}

To prove uniqueness, suppose by contradiction that for some x ∈ [0,∞) there exists U ̸= U ′ such

that

U = min{x · 1− Fb(ρ(U))

Fl(U · ρ(U))
, 1} and U ′ = min{x · 1− Fb(ρ(U

′))

Fl(U ′ · ρ(U ′))
, 1}

Further, assume without loss of generality that U > U ′. Then, U − U ′ > 0 which implies that

min{x · 1− Fb(ρ(U))

Fl(U · ρ(U))
, 1} −min{x · 1− Fb(ρ(U

′))

Fl(U ′ · ρ(U ′))
, 1} > 0

Yet, (A.1) implies that

min{x · 1− Fb(ρ(U))

Fl(U · ρ(U))
, 1} −min{x · 1− Fb(ρ(U

′))

Fl(U ′ · ρ(U ′))
, 1} ≤ 0

whenever U > U ′, a contradiction.

A.2 Proof of Proposition 3.2

Proof. Let z be defined as

z(U) = θ · 1− Fb(ρ(U))

Fl(U · ρ(U))

Then, consider θ < θ′ and denote by

U = min{θ · z(U), 1} and U ′ = min{θ′ · z(U ′), 1}

with the existence and uniqueness of U and U ′ guaranteed by Proposition 3.1. We further know

from the proof of 3.1 that z′(U) < 0 for all U ∈ [0, 1]. Now, by contradiction suppose that U > U ′.

Then,

U ′ = min{θ′ · z(U ′), 1} ≥ min{θ · z(U ′), 1} ≥ min{θ · z(U), 1} = U
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where the last inequality comes from the fact that U > U ′ implies z(U ′) > z(U). This presents a

contradiction to the fact that we have assumed U > U ′. Therefore, we have shown that θt < θt′

implies that U⋆
t ≤ U⋆

t′ .

Finally, suppose that U < 1 but U = U ′. Then,

U = θ · z(U) < min{θ′ · z(U), 1} = min{θ′ · z(U ′), 1} = U ′

where the first inequality comes from the fact that θ · z(U) < 1 and θ < θ′. Again, this presents a

contradiction given that we have assumed that U = U ′.

In order to prove that b⋆t ≤ b⋆t′ and l⋆t ≤ l⋆t′ whenever θt < θt′ we note that b⋆t = ρ(U⋆
t ) and

l⋆t = U⋆
t · ρ(U⋆

t ). Therefore, noting that ρ′(U) > 0 and d
dU [U · ρ(U)] = U · ρ′(U) + ρ(U) > 0 implies

that whenever U⋆
t ≤ U⋆

t′ then b⋆t ≤ b⋆t′ and l⋆t ≤ l⋆t′ with all inequalities strict whenever U⋆
t < U⋆

t′

which we have shown is the case whenever U⋆
t < 1.

A.3 Proof of Proposition 4.1

Proof. The existence of r⋆CE comes immediately from the fact that F ′
l (r) > 0 and F ′

b(r) > 0 for all

r ∈ [0,+∞) and

Fl(0) = 0 ≤ x(1− Fb(0)) = x and lim
r→+∞

Fl(r) = 1 > lim
r→+∞

x(1− Fb(r)) = 0

Uniqueness comes from the fact that Fl(r) is strictly increasing while x(1 − Fb(r)) is strictly de-

creasing. Existence implies that r⋆CE is onto while uniqueness implies that r⋆CE is one-to-one.

A.4 Proof of Proposition 4.2

Proof. If λ and µ are continuously distributed then for any fixed α > 0:

|{(λ, µ) : α = S(rC(
µ

λ
)) = D(rC(

µ

λ
))}| = +∞

In particular, suppose that D(rC(µλ)) = µ(1−Fb(r
C(µλ ))) = α. In order to prove our claim, we will
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show that for all µ′ ̸= µ there exists λ′ ̸= λ such that S(rC(µ
′

λ′ )) = D(rC(µ
′

λ′ )) = α. In order to do

so, first take any µ′ ̸= µ. Then, using the fact that rC(µλ ) is continuous, strictly increasing in µ,

strictly decreasing in λ, and unbounded we know that if

µ′(1− Fb(r
C(

µ′

λ
))) > α

then there must exist λ′ < λ such that

µ′(1− Fb(r
C(

µ′

λ′ ))) = α

Similarly, if

µ′(1− Fb(r
C(

µ′

λ
))) < α

then there must exist λ′′ > λ such that

µ′(1− Fb(r
C(

µ′

λ′′ ))) = α

and therefore we have proven our claim.

Using this result, we know that for a fixed α = D(rC(µλ )) there exists infinitely many unique

pairs (λ′, µ′) such that α = D(rC(µλ)) = S(rC(µλ )) = D(rC(µ
′

λ′ )) = S(rC(µ
′

λ′ )). Further, ifD(rC(µ
′

λ′ )) =

D(rC(µλ )) then it must be the case that

µ(1− Fb(r
C(

µ

λ
))) = µ′(1− Fb(r

C(
µ′

λ′ )))

which implies that if µ′ > µ then µ′

λ′ > µ
λ and therefore rC(µ

′

λ′ ) > rC(µλ ). Similarly, if µ > µ′

then it must be the case that µ′

λ′ < µ
λ and therefore rC(µ

′

λ′ ) < rC(µλ). This implies that there are

an infinite number of market conditions (µ, λ) that generate realized supply and demand equal to

α at the market clearing rate, with each pair (µ, λ) having a unique market clearing rate rC(µλ).

Hence, when observing St = Dt = α the interest rate function cannot possibly set ρ(α, α) = rC(µλ )

without precisely knowing what the true market condition (µ, λ) is. Further, if ρ(α, α) is arbitrarily
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specified then this implies that there is a unique pair (µ, λ) such that ρ(α, α) = rC(µλ). Namely,

while multiple pairs (µ, λ) can generate the same market clearing interest rate, we have shown

above that no two such pairs can generate the same realized demand at that market clearing rate.

Hence, for any interest rate function ρ(St,Dt), it must be the case that Pr(ρ(α, α) = rC(µλ )) = 0

for all α > 0.

A.5 Proof of Proposition 4.3

Proof. We first note that

WDeFi
t = µt ·(1−Fb(bt)) ·min{ S(lt)

D(bt)
, 1}·(E[rb|rb ≥ bt]−bt)+λt ·(Fl(lt) · lt+(1−Fl(lt)) ·E[rl|rl ≥ lt])

and

WCE
t = µt · (1− Fb(r

C
t )) · (E[rb|rb ≥ rCt ]− rCt ) + λt · (Fl(r

C
t ) · rCt + (1− Fl(r

C
t )) · E[rl|rl ≥ rCt ])

Further, using the fact that rCt guarantees that supply equals demand for all θt implies µt · (1 −

Fb(r
C
t )) = λt · Fl(r

C
t ) and therefore

WCE
t = µt

+∞∫
rCt

rdFb(r) + λt

+∞∫
rCt

rdFl(r)

for all θt.

Now, let θ̃ = (rC)−1(ρ(1)) guaranteed to exist given that rC is a bijection. Whenever θt = θ̃

then l⋆t = b⋆t = rCt so that the DeFi market supply is equal to demand and therefore WDeFi
t = WCE

t .

What will show is that whenever θt ̸= θ̃ then WDeFi
t < WCE

t . We proceed with two cases.

Case 1: θt > θ̃: By construction, note that θt > θ̃ implies that rCt > ρ(1). Further, given

Proposition 3.2 we know that U⋆
t is weakly increasing in θt but cannot exceed one. Therefore, it

must be the case that U⋆
t = 1 and b⋆t = l⋆t = ρ(1) whenever θt > θ̃. Once this is the case, we know
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that θt > θ̃ implies that D(rCt ) = S(rCt ) while D(b⋆t ) > S(l⋆t ). Therefore, whenever θt > θ̃ then

using the fact that

µt(1− Fb(bt)) ·
S(lt)
D(bt)

= λt · Fl(lt)

we can see that in this case,

WDeFi
t =

λt · Fl(ρ(1))

1− Fb(ρ(1))
·
+∞∫

ρ(1)

rdFb(r) + λt

+∞∫
ρ(1)

rdFl(r)

Furthermore, denote by

Φ(ρ) :=
λt · Fl(ρ)

1− Fb(ρ)
·
+∞∫
ρ

rdFb(r) + λt

+∞∫
ρ

rdFl(r)

then

d

dρ
Φ(ρ) =

λt(F
′
l (ρ)(1− Fb(ρ)) + F ′

b(ρ)Fl(ρ))

(1− Fb(ρ))2

+∞∫
ρ

rdFb(r)− λt(
Fl(ρ)

1− Fb(ρ)
F ′
b(ρ) · ρ+ F ′

l (ρ) · ρ) >

λt(F
′
l (ρ)(1− Fb(ρ)) + F ′

b(ρ)Fl(ρ))

(1− Fb(ρ))2
· (1− Fb(ρ)) · ρ− λt(

Fl(ρ)

1− Fb(ρ)
F ′
b(ρ) · ρ+ F ′

l (ρ) · ρ) = 0

Therefore, given that rCt > ρ(1) and Φ(ρ) is increasing in ρ, then recalling that rCt clears the market

so that λtFl(r
C
t ) = µt(1− Fb(r

C
t )) implies

WDeFi
t <

λt · Fl(r
C
t )

1− Fb(r
C
t )

·
+∞∫
rCt

rdFb(r) + λt

+∞∫
rCt

rdFl(r) = µt

+∞∫
rCt

rdFb(r) + λt

+∞∫
rCt

rdFl(r) = WCE
t

Case 2: θt ≤ θ̃: In this case, we will prove that setting lt = bt = rC maximizes welfare subject

to the constraint S(lt) ≥ D(bt) which must hold whenever θt ≤ θ̃. In particular, when θt ≤ θ̃ then
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for any tuple (lt, bt), welfare is given by:

W(lt, bt) = µt

∞∫
bt

rdFb(r)− µt

∞∫
bt

btdFb(r) + λt

lt∫
0

ltdFl(r) + λt

∞∫
lt

rdFl(r)

Further noting that,

W(lt, bt)− λt

∞∫
0

r dFl(r) = µt ·
∞∫

bt

(r − bt)dFb(r) + λt ·
lt∫

0

(lt − r)dFl(r)

Then it can be seen that maximizing welfare with respect to (bt, lt) is equivalent to solving the

following optimization problem:

max
lt,bt

µt ·
∞∫

bt

(r − bt)dFb(r) + λt ·
lt∫

0

(lt − r)dFl(r)

s.t. λt · lt · Fl(lt) = µt · bt · (1 − Fb(bt)), S(lt) ≥ D(bt) where the first constraint arises due to the

fact that all interest paid by the borrowers is passed through to the lenders. Note that combining

the first constraint with the second implies that lt ≤ bt. Further, using the first constraint, this

optimization problem is equivalent to

max
lt,bt

µt ·
∞∫

bt

r · dFb(r)− λt ·
lt∫

0

r · dFl(r) (A.2)

s.t. λt · lt · Fl(lt) = µt · bt · (1− Fb(bt)), S(lt) ≥ D(bt). Next note that

d

dbt
[µt ·

∞∫
bt

r · dFb(r)− λt ·
lt∫

0

r · dFl(r)] = −µtbtF
′
b(bt) < 0

and therefore letting l′t and b′t denote the solution to (A.2), then it must be the case that l′t = b′t = r.

Further, whenever l′t = b′t = r then the pass through condition implies λt ·r ·Fl(r) = µt ·r ·(1−Fb(r))

which can only be the case if r = 0 or r = rC . Finally, we note that if r = 0 then D(0) = µt >

0 = S(0) which cannot be the case when θt ≤ θ̃ and therefore welfare is optimized at l′t = b′t = rC .
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Finally, noting that θt < θ̃ implies that S(l⋆t ) > D(b⋆t ) so that l⋆t =
D(b⋆t )
S(l⋆t )

· b⋆t < b⋆t , and therefore it

must be the case that WDeFi
t < WCE

t .

A.6 Proof of Proposition 4.4

Proof. We have shown that rC is a bijection and therefore its inverse (rC)−1 exists. Now, let

θ̃ = (rC)−1(ρ(1)). By construction, when θt = θ̃ then U⋆
t = 1 and b⋆t = l⋆t = ρ(1) = rCt therefore,

WCE
t = WDeFi

t . Furthermore, given that rC is a bijection then it must be the case that θ̃ is the

unique value such that Dt(ρ(1)) = St(ρ(1)) and therefore by Proposition 4.1 the unique value of θ̃

such that WCE
t = WDeFi

t .

A.7 Proof of Proposition 4.5

Proof. Note that θt > θ̃ implies that b⋆t = l⋆t = ρ(1) due to the fact that b⋆t ≤ ρ(1), l⋆t ≤ ρ(1),

b⋆t = l⋆t = ρ(1) when θt = θ̃ and b⋆t and l⋆t are weakly increasing in θt by Proposition 3.2. Further,

we know that rCt is strictly increasing in θt and therefore rCt > ρ(1) = b⋆t = l⋆t whenever θt > θ̃.

We know that whenever θt < θ̃, then D(b⋆t ) < S(l⋆t ) so that U⋆
t < 1 and therefore l⋆t < b⋆t . In

that case, we know

Fl(r
C
t )

1− Fb(r
C
t )

= θt <
Fl(l

⋆
t )

1− Fb(b
⋆
t )

<
Fl(b

⋆
t )

1− Fb(b
⋆
t )

and therefore b⋆t > rCt . The ambiguity of the relationship between l⋆t and rCt comes from the fact

that b⋆t = ρ(U⋆
t ) > rCt does not necessarily imply any relationship between U⋆

t ρ(U
⋆
t ) and rCt .

A.8 Proof of Proposition 5.1

Proof. We proceed by construction. More explicitly, for any ϵ > 0, we construct an interest rate

function ρϵ such that the equilibrium utilization rate arising from using this function as the PLF

interest rate function (i.e., ρ = ρϵ) satisfies U⋆(θ) ∈ (1 − ϵ, 1) for all θ ∈ [θ,∞). We construct ρϵ

explicitly as follows:

ρϵ(U) =
rC(θ) + δϵ
1− U

· ϵ (A.3)
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where δϵ is defined as the unique solution to the following equation:

1− ϵ = θ
1− Fb(r

C(θ) + δϵ)

Fl((1− ϵ) · (rC(θ) + δϵ))
(A.4)

Note that δϵ is always uniquely well-defined because the right hand side of Equation (A.4) is larger

than 1− ϵ at δϵ = 0 and strictly decreases to 0 as δϵ → ∞.6

To establish the stated result, we must prove that the equilibrium PLF Utilization rate, U⋆(θ),

implied by ρ = ρϵ satisfies U
⋆(θ) ∈ (1− ϵ, 1) . To demonstrate this result, we define:

∆ϵ(x, θ) = x−min{ θ · 1− Fb(ρϵ(x))

Fl(x · ρϵ(x))
, 1 } (A.5)

Note that ∆ϵ(1 − ϵ, θ) < ∆ϵ(1 − ϵ, θ) = 0, that lim
x→1−

∆ϵ(x, θ) = 1 and that ∆ϵ(x, θ) is strictly

increasing in x. In turn, continuity of ∆ϵ in x implies that, for an arbitrary θ, there exists a

unique solution x⋆ϵ (θ) to ∆ϵ(x
⋆
ϵ (θ), θ) = 0 such that x⋆ϵ (θ) ∈ (1 − ϵ, 1). Then, from Proposition

3.1, recall that U⋆(θ) is the unique solution to U⋆(θ) = min{ θ · 1−Fb(ρϵ(U
⋆(θ)))

Fl(U⋆(θ)·ρϵ(U⋆(θ)) , 1 } so that

U⋆(θ) = min{ θ · 1−Fb(ρϵ(U
⋆(θ)))

Fl(U⋆(θ)·ρϵ(U⋆(θ)) , 1 } ⇔ ∆ϵ(U
⋆(θ), θ) = 0 implies U⋆(θ) = x⋆ϵ (θ) ∈ (1 − ϵ, 1) as

desired.

A.9 Proof of Proposition 5.2

Proof. We apply Proposition 5.1 to generate a sequence of PLF interest rate functions, {ρϵn(U)}∞n=1,

where ϵn = 1
n so that the associated utilization rate, U⋆

n(θ), satisfies U⋆
n(θ) ∈ (1 − 1

n , 1). In turn,

we demonstrate that lim
n→∞

E[WDeFi
t,n ] = E[WCE

t ] where WDeFi
t,n refers to the realized welfare from a

PLF when the interest rate function is ρϵn .

Note that Proposition 4.3 implies sup
n∈N

|WDeFi
t,n | ≤ |WCE

t |. In turn, since E[|WCE
t |] ≤ E[|µt|]

+∞∫
0

r dFb(r)+

6The fact that the right hand side is larger than 1−ϵ at δϵ = 0 arises due to the definition of rC(θ). More explicitly,
as per Equation (4.4), Fl(r

C(θ)) = θ · (1− Fb(r
C(θ))) which implies (1− ϵ) · Fl((1− ϵ) · rC(θ)) < θ · (1− Fb(r

C(θ)))

and thus 1− ϵ < θ 1−Fb(r
C(θ))

Fl((1−ϵ)·(rC(θ)))
.
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E[|λt|]
+∞∫
0

r dFl(r) < ∞, we apply Dominated Convergence Theorem to yield:

lim
n→∞

E[WDeFi
t,n ] = E[ lim

n→∞
WDeFi

t,n ] (A.6)

Then, since welfare is a continuous function of the borrowing and lending rates (see Equations 4.1

and 4.2), it is sufficient for this proof to demonstrate that the lending and borrowing rates at the

PLF converge to the competitive equilibrium interest rate because then lim
n→∞

WDeFi
t,n = WCE

t which,

via Equation (A.6), further mplies lim
n→∞

E[WDeFi
t,n ] = E[WCE

t,n ] as desired.

To demonstrate that the lending and borrowing rates at the PLF converge to the competitive

equilibrium rate, note that, when the PLF interest rate function is ρϵn , then the equilibrium PLF

borrowing rate in period t, b⋆n(θt), must satisfy:

U⋆
n(θt) = θt ·

1− Fb(b
⋆
n(θt))

Fl(U⋆
n(θt) · b⋆n(θt))

(A.7)

Recall that U⋆
n(θt) ∈ (1− 1

n , 1) implying that lim
n→∞

U⋆
n(θt) = 1. In turn, taking limits as n → ∞ on

both sides of Equation (A.7) and using continuity of Fb and Fl implies:

1 = θt ·
1− Fb( lim

n→∞
b⋆n(θt))

Fl( lim
n→∞

b⋆n(θt))
⇔ Fl( lim

n→∞
b⋆n(θt)) = θt(1− Fb( lim

n→∞
b⋆n)(θt)) (A.8)

Equation (A.8) then implies lim
n→∞

b⋆n(θt) = rC(θt) because this equation uniquely defines the com-

petitive equilibrium interest rate as per Proposition 4.1. Moreover, recall that the PLF lending rate,

l⋆n(θt), is given explicitly by l⋆n(θt) = U⋆
n(θt) · b⋆n(θt) so that lim

n→∞
l⋆n(θt) = lim

n→∞
U⋆
n(θt) · lim

n→∞
b⋆n(θt) =

1 · rC(θt) = rC(θt). Finally, lim
n→∞

(b⋆n(θt), l
⋆
n(θt)) = (rC(θt), r

C(θt)) implies lim
n→∞

WDeFi
t,n = WCE

t

which implies lim
n→∞

E[WDeFi
t,n ] = E[WCE

t ] as per Equation (A.6), thereby completing the proof.
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