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Abstract
Web3 and DeFi are widely advocated as innovations for greater financial inclusion and de-

mocratization. We assemble (and share) the most comprehensive dataset to date about the largest
Web3 ecosystem and use one of the largest-scale computing in the economics literature to investi-
gate the claim. We document Ethereum’s network structure, time trends, and distributions of trans-
actions, mining, and ownership. Mining income and Ether ownership are concentrated in a few
nodes, even after excluding exchange and mining pool wallets, with inequalities more exacerbated
than observed in the real economy. Network activities are dominated by large transactions, shift-
ing from peer-to-peer to user-DApps/DeFi interactions, and from Ether-based to ERC-20-token-
based. High percentage transaction fees, congestion-induced gas-price fluctuation, suboptimal
reserve setting, and large return volatility of tokens disproportionally harm small, unsophisticated,
and new nodes, with high failure rates hurting all users. Finally, we present causal evidence that
prominent programs such as EIP-1559 base-fee burning mechanism and OmiseGo airdrop pro-
mote inclusion and equality through monetary redistribution.
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1. Introduction

How financial innovations facilitate financial inclusion and democratic access
to financial services is a central topic for policy discussions and applied research
(World Bank Group, 2016; Philippon, 2019). Blockchain, the foundation for
Web3 technologies, has spurred many innovations in digital financial services and
decentralized finance (DeFi).1 One oft-cited advantage of blockchains over tra-
ditional systems entails reduced centralization and intermediation costs, because
open consensus protocols and smart contracts ensure distributed recordkeeping
and transaction executions (Cong and He, 2019; John et al., 2023). Furthermore,
open access, transparency, and increasing interoperability conceptually can enable
DeFi to provide financial services to under-served groups and billions of unbanked
people around the globe (Harvey et al., 2020; Zhao et al., 2022).2

These technical possibilities offer serious contentions to traditional financial
services and are too big to ignore. In a way, Web3 and DeFi represent (financial)
innovations that treat users builders and owners of digitally assets and ecosystems,
“a fundamentally new approach to corporate governance, value creation and stake-
holder participation with pari passu interests” (the World Economic Forum 2022
Annual Meeting). The aggregate market cap of crypto assets once approached
U.S. $3 trillion and still hovered above 1.2 trillion us dollars as of late Feb 2023,
with transaction volumn multiple times that of the equity market, according to
statista.com. Despite the collapse of Terra-Luna, the bankruptcy of cryptocur-
rency lending firms Three Arrows Capital and Celsius, and the infamous implo-
sion of FTX, institutional venture funding for blockchain and web3 startups still
amounted to more than U.S. $29 billions in 2022, according to Coin Telegraph.
Yet, it is far from clear whether Web3 and DeFi’s facilitate financial inclusion,
equality, and democratization in reality, despite the given ethos of their enthu-

1Web3, a term coined by Gavin Wood in 2014, is a collective concept of a new iteration of the
Internet to incorporate decentralized ledgers, smart contracting, and token-based economics (see,
e.g., Fenwick and Jurcys, 2022); similarly, DeFi is a catch-all term for any provision of finan-
cial services through a permissionless blockchain and smart contracting, which includes lending,
stablecoins, decentralized exchanges, etc.

2Many argue that the dramatic failure of the FTX exchange is due to centralization and the
lack of transparency, for which DeFi offers potential remedies. Note that blockchain-based plat-
forms or distributed networks are not the only options for greater financial inclusion, as alternative
digital payment and FinTech platforms have developed by leaps and bounds, especially in emerg-
ing economies (Botta and Nadeau, 2022). That said, these alternatives typically do not give the
ownership and governance rights to the users and face antitrust issues (Cong and Mayer, 2023).
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siasts and advocates.3 Admittedly, financial inclusion and democratization can
have many definitions and interpretations.4 To sharpen the economic questions
we study, we focus on a few well-specified dimensions that are often negatively
associated with the general concepts of financial inclusion, equality, and democra-
tization: income inequality, wealth inequality, high fees for the underserved, and
transaction risks.5 In particular, while digitization and decentralization encourage
competition and innovation, they do not necessarily benefit consumers and users
if the costs and failure rates of financial services are high.

We use big data from the Ethereum ecosystem and large-scale computing to
systematically examine the first-order questions on whether Web3 and DeFi plat-
forms benefit the underserved and small players in a digital network, promote
economic equality and democratic access to the system, and offer reliable ser-
vices to all users involved. Ethereum is by far the most dominant Web3 platform
with smart contracting functionalities (Schär, 2021), boasting the second largest
native cryptocurrency by market capitalization and hosting 93% of all well-known
DeFi projects by number and over 60% in the total value locked (TVL) as of 2021

3The lack of scalability (Abadi and Brunnermeier, 2018; Chen et al., 2019), high transaction
fees (Haig, 2021), frauds and manipulation (Cong et al., 2021a; Li et al., 2021b), and token price
volatility (Cong and Xiao, 2021) all present significant obstacles.

4The world bank defines financial inclusion to mean that “individuals and businesses have
access to useful and affordable financial products and services that meet their needs – transac-
tions, payments, savings, credit and insurance – delivered in a responsible and sustainable way.
“ (https://www.worldbank.org/en/topic/financialinclusion/overview). When speaking of them be-
ing potentially enabled by Web3 and DeFi, people typically mean that those who are unserved or
underserved by the traditional financial systems now have access to functional financial services
such as payments, and that the systems allow more equal distribution of income and wealth. This
is so for several reasons and based on observations from the real economy and conventional (digi-
tal) marketplaces. For example, observations that decentralization helps to redistribute wealth and
recources and empower marginalized regions and populations (Yeo et al., 2022). Democracy is
expected to increase redistribution and reduce inequality (e.g., Acemoglu et al., 2015) and income
inequality is hypothesized to negative impact a country’s level of democracy over time because ex-
treme inequality generates class conflicts that are incompatible with stable democracies (Boix and
Stokes, 2003; Bollen and Jackman, 1995). Empirically, some argue that autocrat and developing
economies tend to feature greater wealth and income inequalities, which may fall after successful
democratization Miller (2021).

5We do not take a strong stand on these associations though. Nonetheless, specifying these
dimensions clearly is important for avoiding rendering our subjects of discussion “Chameleons”
(Pfleiderer, 2020)—items whose meanings shift with the application at hand—and preempting
sweeping dismissals by purists who cannot tolerate any use of industry terminology or buzzwords
in academic writings even though the economic contributions and messages are clear.
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(Browne, 2021), and the shares continue growing.6 Therefore, we assemble, an-
alyze, and share to our knowledge the most comprehensive datasets to date on
the Ethereum blockchain and its associated DeFi applications.7 We complement
on-chain data with several other online sources and apply one, to our knowledge,
the largest-scale computation in the economics literature for our analyses.

We (i) document trends and statistical patterns of network structure, owner-
ship, mining, and transaction on Ethereum, including high mining and ownership
concentration, indicating an even greater inequality than conventional systems,
(ii) show how small players are marginalized and excluded due to high percent-
age fees, failure rates, and token return volatility, and (iii) demonstrate how the
recently implemented EIP-1559 mechanism and airdropping mitigate these in-
equality and exclusion issues through monetary redistribution. Our work adds to
a better understanding of arguably the most dominant ecosystem for DeFi and
Web3, and provides a comprehensive source of information and useful bench-
mark for understanding the early landscape of the ecosystem and evaluating future
changes to researchers, policymakers, and practitioners.8

We start by describing various network structures in the ecosystem, which
reveals information concerning the importance of and competition among the
DApps and DeFi protocols. In particular, DeFi applications and exchanges play
a central role in the network and DApps mainly interact with users via ERC-
20 tokens. We then document that similar to the Bitcoin case, the top 5% of
mining pools (about 3 to 5 mining pools) receive about 60% of block rewards,
and the top 0.5% of individual miners receive 30-50% of the rewards overall.
The rewards are distributed to individual miners and subsequently sent by min-
ers primarily through centralized exchanges. Ether (ETH) ownership has grown
in concentration over time, with the top 0.1% (10%) of the nodes owning more

6Ethereum’s on-chain daily volume and total market cap in our sample period easily exceeds
5 billion USD and 200 billion USD respectively. According to the statistics of DeFi Prime
(https://defiprime.com/ethereum), 235 listed DeFi projects are listed and 219 are proposed on
Ethereum in 2021.

7Data used in our analyses are available through the public data repository we built.
8President Biden’s Executive Order specifically calls for a thorough understanding of

blockchain and DeFi infrastructure and applications to foster responsible development of digital
assets. See, e.g., https://www.whitehouse.gov/briefing-room/statements-releases/2022/03/09/fact-
sheet-president-biden-to-sign-executive-order-on-ensuring-responsible-innovation-in-digital-
assets/. It is worth noting that an “identification police” may jump to the hasty conclusion that
our main contribution is (iii). We emphasize that (i) and (ii) are equally significant because the
descriptive and correlational findings form the basis for further studies of this large market.
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than 80% (90%) in the second half of our sample. The concentration remains
severe when we focus on individual user accounts (excluding exchange-related
or DApp nodes). Overall, this concentration of income and ownership is sig-
nificantly higher than that of the income and wealth shares in the United States
(Saez and Zucman, 2020). Equity aside, the concentration may also harm the se-
curity of both focal and related networks, and thus token valuation and stability
(e.g., Bonneau, 2019; Ao et al., 2022). Moreover, we find that ERC-20 tokens
other than ETH gradually dominate transaction volume, and overall, transactions
have shifted from peer-to-peer to those between users and DApps. For example,
DApps accounted for less than 10% of transaction volume in 2017 but accounted
for about 90% since 2020. Importantly, token transfers and smart contracting are
concentrated at nodes with higher on-chain wealth and larger transactions.

We recognize that transactions (including both simple token transfers and exe-
cution of smart contracts) and network utilization provide direct litmus on how
inclusive and democratic a platform is. We first explain that any activity on
Ethereum requires a transaction fee, known as gas fee, which depends on the
computing resources consumed, as well as users’ willingness to pay (Zarir et al.,
2021). Gas fees incentivize miners to maintain proper record-keeping and smart
contract execution, and are crucial for the stability and sustainability of any DeFi
system (Ilk et al., 2021). We then take advantage of on-chain information related
to the gas mechanism to analyze how transactions fee mechanisms affect inclu-
sion and equality. For a financial system to be inclusive and democratic, it must be
functional, efficient, fair, and affordable to small, under-served groups (Corrado
and Corrado, 2017). A recent literature has demonstrated that both direct and in-
direct transaction costs can hinder financial inclusion (e.g., Dupas and Robinson,
2013; Jack and Suri, 2014; Bachas et al., 2018). We add by demonstrating that
digitization and DeFi are no panacea and, if not well-designed, can even further
the digital divide.

Specifically, we identify multiple transaction-related issues that hinder finan-
cial inclusion on Ethereum. First, the percentage transaction fee—transaction fee
as a fraction of the transaction amount—varies across the type of financial trans-
actions and is disporportionally high for smaller players in the ecosystem, due to
the gas mechanism, which features fixed costs for smart contract computation and
execution. While it is attractive for cross-border transactions by large institutions,
underserved groups likely find DeFi too costly as an inclusive finance instrument.
Consistent with Easley et al. (2019), we find that congestion of the network creates
significant fluctuations of gas prices, not to mention the Ether returns themselves
feature high volatility. Coupled with users’ limited knowledge and lack of expe-
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rience (and consequently suboptimal gas parameter setting), this causes a large
fraction of transactions to fail, incurring significant losses for users.

Despite the aforementioned challenges, recent programs intentionally or unin-
tentionally improve financial inclusion through redistributing income and wealth
across network nodes. The EIP-1559 fee mechanism change alleviates conges-
tion through an adjustable block gas limit, and dynamically moderates and burns
base fees based on supply and demand. While transaction fees for small players
can still be high (Roughgarden, 2020), the burning of base fees collected from
large players benefits all token holders, including small and new agents, by reduc-
ing the token supply (a “deflationary” action). Using a difference-in-difference
framework, we find that after the introduction of EIP-1559, miners with larger
shares of mining income or belonging to smaller mining pools experience greater
reductions in mining income, while smaller and less wealthy users conduct more
transactions in the network in terms of both frequency and amount. Exploiting
the first major airdrop on Ethereum of OmiseGo tokens, we also demonstrate how
airdrops can serve as redistributive policies to improve financial inclusion. In
particular, airdrops disproportionally encouraged less active and poorer users to
utilize the network. Promoting OMG as an alternative and somewhat competing
token within the ecosystem actually boosted Ether valuation.

Our study adds to the literature on transaction fees in blockchain-based sys-
tems (see Chung and Shi, 2021, for a survey). Easley et al. (2019) and Huberman
et al. (2021) are the earliest to analyze transaction fees and relate congestion to
transaction fees and system stability. Ilk et al. (2021) discuss self-regulation of
fees in Bitcoin, while Basu et al. (2019) and Lavi et al. (2019) study the design
of fees within an auction-based framework. We add a more nuanced picture by
documenting that the impact of congestion on transaction fees varies according
to transaction type. Several recent studies analyze fee mechanisms on DEXs:
Hasbrouck et al. (2022) argue that increases in fees can increase DEX trading vol-
ume; using data from Ethereum, Capponi et al. (2022b) show that traders bid high
fees on DEXs primarily to reduce the execution risk of their orders; Barbon and
Ranaldo (2021) document that CEX transactions are often less costly than DEX
transactions and that the most significant component of DEC trading costs arises
due to fees paid to blockchain validators. More recently, Lehar et al. (2022) show
that the significant fixed cost when liquidity providers on Uniswap interact with
the liquidity pool’s smart contract can lead to liquidity fragmentation on DEXs.
We are the first to analyze transaction fees in the entire Ethereum ecosystem,
which supports a richer ecosystem for DeFi and Web3 than Bitcoin or specific
DeFi protocols the extant literature focuses on.
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In terms of transaction fee design, several studies evaluate EIP-1559 as one
of the first deviations from the widely adopted first-price auction paradigm. For
example, Roughgarden (2020) assesses the game-theoretic strengths and weak-
nesses of the EIP-1559 proposal and explores alternative designs. Reijsbergen
et al. (2021) discuss unintended increases in inter-block variability in mining re-
wards. Most closely related to our analysis is Liu et al. (2022) which documents
that that EIP-1559 makes fee estimation easier for users, mitigates intra-block dif-
ference in gas price paid, and reduces users’ waiting times. We complement these
studies by showing that EIP-1559 helps with financial inclusion and democratiza-
tion through redistribution.

More broadly, our study contributes to the emerging literature on DeFi and
Web3, which thus far has emphasized security and scaling issues more than finan-
cial inclusion and democratization.9 John et al. (2023) describe the implemen-
tation, benefits, and limitations of smart contracts on the Ethereum blockchain.
Other extant studies are either theoretical (Chen and Bellavitis, 2020; Harvey
et al., 2020; Schär, 2021) or focus on specific DeFi applications such as Decen-
tralized Exchanges and automated market-making (e.g., Capponi and Jia, 2021;
Park, 2021; Augustin et al., 2022) or lending (e.g., Lehar and Parlour, 2022). Re-
lated to our emphasis on ecosystem states, several studies investigate mining con-
centration and wealth distribution (e.g., Cong et al., 2018; Capponi et al., 2021;
Roşu and Saleh, 2021). Capponi et al. (2022a) and Auer et al. (2022) examine
miner/maximal Extractable values.

Our study adds to recent efforts to assemble large datasets and utilize high-
power computation to analyze blockchain networks. For example, Makarov and
Schoar (2022) use novel datasets and algorithms to combine rich on-chain and
off-chain information to provide a detailed analysis of the Bitcoin network, in-
cluding geographic clustering of miners. Studies such as Foley et al. (2019) and
Cong et al. (2021a, 2022b,a) apply forensic finance to cryptocurrency big data to
detect and analyze market manipulation, tax evasion, and crypto-enabled crimes.
We complement by going beyond payments and examining the largest DeFi and
smart contracting platform. Importantly, we provide the first comprehensive doc-

9A related literature examines token valuation and users’ and miners’ behaviors under game-
theoretical settings (e.g., Cong et al., 2021b; Han and Makarov, 2021; Choi and Jarrow, 2022). A
number of studies also point to the limitations of blockchains. Hinzen et al. (2022) discuss the
limited adoption problem of PoW (proof-of-work) mechanism. Sokolov (2021) report congestion
and ransomware activities on Bitcoin. Furthermore, the concern about energy consumption and
majority attacks (e.g., Chen et al., 2019; Gonzalez-barahona, 2021) have been widely recognized.
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umentation of the Ethereum network structure, ownership distribution, mining
activities, transaction landscape, and programs such as fee mechanism changes
and airdrops. Our study also represents one of the largest non-GPU-based com-
putating effort in economic studies.

Also closely related is Zhang et al. (2022) highlighting the lack of research
concerning blockchain decentralization from the transaction aspects — exactly
the gap that our study bridges. Ao et al. (2022) document a significant core-
periphery structure in the AAVE network and higher returns and lower volatility
of the associated DeFi tokens predicted by more decentralization. We focus on
the larger Ethereum ecosystem and differ by emphasizing transactions and fee
mechanisms with their implications for financial inclusion and democratization.
We are also the first to highlight the redistributive effects of fee mechanisms and
airdrops, adding to recent studies on the monetary policy of crypto-tokens (e.g.,
Cong et al., 2020b), airdrops (Froewis et al., 2021; Liebi, 2021), and redistribution
through staking (John et al., 2021; Cong et al., 2020a), which are either theoretical
or descriptive without causal identification.

Finally, our study broadly relates to digitization and financial inclusion. While
the literature has mostly focused on the differential impact of FinTech and digi-
tal technologies on the digital and non-digital populations (e.g., Philippon, 2016;
Zhongming et al., 2021; Jiang et al., 2022), or informational frictions that lead
to discrimination (Bartlett et al., 2022), an increasing number of studies recog-
nize the important role of transaction costs. For example, Bachas et al. (2018)
and Jack and Suri (2014) show how high transaction costs reduce inclusion and
risk sharing, using evidence from Kenya and Mexico. We use the Web3 setting
to demonstrate that even among the digitally savvy, high fixed transaction fees
preclude financial democratization and inclusion.

The remainder of the paper is organized as follows. Section 2 provides the in-
stitutional background before introducing our data and computing setup. Section
3 describes the general network structure and distributions of token ownership,
mining, and transactions. Section 4 highlights the implications of transaction fees
on financial democratization and inclusion. Sections 5 and 6 document the redis-
tributive effect of the transaction fee reform and airdrops. Section 7 concludes.
The Online Appendix contains additional figures, tables, and analyses.
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2. Institutional Background, Data, and Computation

2.1. Smart Contracting and Ethereum Gas Mechanism
DeFi with smart contracts.. A smart contract is a set of codes based on decen-
tralized consensus, which can be executed automatically on-chain (Szabo et al.,
1994; Lauslahti et al., 2018; Cong and He, 2019). Most decentralized applica-
tions (DApps) and DeFi projects rely on smart contracts instead of third-party
institutions or infrastructure in traditional centralized systems to ensure trusted
transactions among (anonymous) entities. DeFi is widely advocated as inclusive
and representing the future of finance because it is believed to solve problems
of centralized control, limited access, inefficiency, lack of interoperability, and
opacity in the traditional financial system (Harvey et al., 2020).

Gas limit, price, and usage.. Transaction fees on Ethereum follow its gas mecha-
nism (Zarir et al., 2021). Gas measures the consumption of computing resources,
and gas usage is the amount of gas consumed for the transaction’s execution. The
three key parameters of gas limit, gas price, and gas usage, characterize the mech-
anism.

Gas limit is the maximum amount of gas consumption by a transaction set by
the initiator of the transaction, partially to protect users from malicious attacks on
the network. Gas price, usually measured in gwei/gas (1 gwei = 10−9 ETH), is
another parameter set by the user, which is the price the user is willing to pay for
each unit of gas. A typical Ether transfer between two wallets requires 21,000
gas units, with variations dependent on the bytecode operations of the activities
(Wood et al., 2018).

The gas fee for a transaction is simply the gas used multiplied by the gas price,
with the caveat that a user needs to reserve a gas fee limit in their wallet when
initiating a transaction. As in the Bitcoin blockchain, transaction fees are paid to
miners as rewards for maintaining the ledger and smart contracts. Since the block
size is limited, profit-maximizing miners rationally prioritize transactions with the
highest gas prices in auction-like processes (Basu et al., 2019; Ilk et al., 2021).

Ethereum gas mechanism and the Bitcoin fee mechanism differ in two salient
ways: (i) When a user initiates a transaction, her transaction fee on Bitcoin is
deterministic, while the transaction fee on Ethereum can only be known when
the transaction is completed. Therefore, Ethereum users reserve more Ethers than
actually used on average. (ii) If the gas limit is set to be less than the actual
gas usage, the transaction fails even if the user can afford the gas fee. In contrast,
transactions of Bitcoins get delayed (potentially indefinitely) when the transaction
fee is not set high enough, but they never truly fail.
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2.2. Data and Computation
We assemble a comprehensive database from multiple sources. First, our base-

line dataset covers billions of on-chain observations in the Ethereum ecosystem
from August 2015 (hen Ethereum was founded) to February 2022, including 14
million blocks, 1.7 billion external transactions, 4.6 billion internal transactions,
1.8 billion logs of smart contract usage, 1 billion token transfers and 4.4 million
smart contract information packets (containing bytecode, function, etc.). Specifi-
cally:

• Ethereum accounts entail two categories, external owned account (EOA)
and smart contract (SC). An EOA is an address controlled by a private key,
which can initiate transactions directly. A smart contract, in contrast, cannot
directly initiate a transaction.

• Transactions between EOAs only have external transaction records, sim-
ilar to transfers on the Bitcoin blockchain. Transactions between EOAs
and smart contracts contain an external transaction record, several internal
transaction records, several token transfer records, and several logs of smart
contract usage.

• External transactions include information regarding the total amount of Ether
transferred, the block hash the transaction was recorded (indicating the time
the transaction was completed), the gas used, the gas price and gas limit set
by the initiator, and the final status of transaction (success or failure).

• After a contract is called, it may also call other SCs or EOAs, forming a
chain reaction, whose intermediate steps are referred as internal transac-
tions. Each internal transaction contains a pair of call relationships in the
chain reaction, including the amount of Ether transferred, call type, status,
error type, reward type, etc.

• Token transfers involve ERC-20 and ERC-721 tokens. The records contain
the name and number of tokens transferred, the addresses of both parties,
etc. Logs record the specific called functions, parameters, etc.

Our computing architecture involves 14 servers with dual Xeon E5 CPUs,
128G memory, and 48TB hard disks. The first server runs an Ethereum node
exclusively to synchronize all raw Ethereum data. Another server runs several
web scrapers to collect other relevant data. The NIFI tool is adapted and run
on these two servers to send multiple sources of data into the HIVE-based data
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warehouse supported by 12 large servers, each with Hadoop, Hbase, Spark, and
Yarn installed.10

Based on the above nodes, we decode the raw Ethereum data using ETL tools
into 8 types of semi-structured HIVE tables. We further compute the amount of
Ether held by each address and align the amount with Etherscan.io periodically
to ensure the correctness. Moreover, we obtain block information, including the
address of the block verifier (i.e., address of the mining pool), block number,
timestamp of block verification, block reward, and gas limit and usage of the
block.

To associate addresses on the Ethereum blockchain with DApps, we scrape
public addresses and classification labels of DApps from DApp Radar, DAppon-
line, and Ethercan.11 We adopt the 9 categories of DApps by DApp Radar: ex-
changes, DeFi, gambling, games, collectibles, marketplaces, social, high-risk and
others. Our sample recognizes a total of 433 DeFi applications and 5,047 DApps
on Ethereum. Figure 1b depicts the DApp growth.

Because on-chain data does not contain information on the actual initiation
time of the transaction, we also collect “recommended gas prices” at 10-minute
intervals from ETH Gas Station (https://www.ethgasstation.info) covering Febru-
ary 2, 2021 to March 2, 2021. The recommended gas prices are the prices cor-
responding to various expected delays estimated based on a Poisson regression
model using the previous 100 blocks. In addition, we obtain historical market
information of tokens related to the Ethereum blockchain from CoinMarketCap
(https://coinmarketcap.com/), which covers the exchange rate, trading volume,
and market cap of thousands of cryptocurrencies. Finally, to measure the popular-
ity of the Ethereum blockchain, we obtain a weekly search index of the keyword
“Ethereum” from Google Trends (https://trends.google.com/).

To overcome the challenges of handling such gigantic data, we use the large-
scale computation tools on the aforementioned big data servers, such as Hive
and MapReduce for the distributed processing of transaction-level data, Gephi
for mapping the various networks, and Spark’s machine learning library for per-
forming linear and logistic regressions. We make available the data used in the

10To be concrete, it takes approximately 30 days to process the original Ethereum data and con-
vert them into the variables used in the analyses. An average regression using Spark takes between
10 minutes to 1 hour. The visualization of mining reward tracing, including data processing and
rendering, requires approximately one month to generate, while the visualization of the Ethereum
activities network takes approximately one day.

11See, https://DAppradar.com, https://DApponline.io, https://etherscan.io/, respectively.
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analyses through a public repository for other researchers, practitioners, and poli-
cymakers.

2.3. Key Variables
We take every external transaction as an observation unit, and also use infor-

mation on internal transactions, token transfers, logs, etc., for the construction of
variables. Table 3 constains a detailed list.

Transaction fee and extra gas reserved. The transaction fees in units of ETH
and USD are calculated, respectively, as:

GasFee(Ether) = GasPrice×GasUsed, (1)
GasFee(Dollar) = GasPrice×GasUsed×EtherPricet , (2)

where GasPrice is the per-unit transaction fee that users are willing to pay, GasUsed
is the amount of gas used to complete the transaction, and EtherPricet is the av-
erage daily Ether to US dollar exchange rate on day t. Table 1a lists gas-related
variables. The median gas price is 30.81 gwei/gas with a very large standard de-
viation of about 27063.14, and the median gas fee (in US dollar) is 0.434 with
a standard deviation of 135.55. The median gas used is 21,000, which equals to
the amount of gas needed for transactions among users, about more than half of
the transactions in our sample. The median gas limit is 51,000 with a standard
deviation of 257,359.

Because users are required to reserve more Ethers than the gas limit in order
to execute the transaction, we calculate the ExtraGasReserved as the gap between
gas limit and the actual gas used :

ExtraGasReserved = GasLimit−GasUsed, (3)

and ExtraGasFee as the gap between the reserved gas fee and the actual gas fee:

ExtraGasFee = GasPrice∗ (GasLimit−GasUsed)×EtherPrice. (4)

Transaction value. We define the value of a DeFi transaction as the total num-
ber of ERC-20 tokens (or Ether) transferred times the daily exchange rates of the
tokens. In the case of transactions with token swap (such as the swap between
USDC and WETH), we regard the total amount of tokens sent out by the initiator
as the total amount of ERC-20 involved in this transaction (instead of the sum of
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all ERC-20 tokens).

Token returns and volatility. The return of ETH (EthReturnt) and the return of
Ethereum-related tokens (TokenReturnit) are also calculated, respectively, as:

EthReturnt =
EtherPricet−EtherPricet−1

EtherPricet−1
, (5)

TokenReturnit =
Priceit−Priceit−1

Priceit−1
, (6)

where Priceit represents the exchange rate between token i and the U.S. dollar on
day t. Furthermore, we calculate the return volatility and exchange rate volatility
of Ether and related tokens: The annualized return volatility of the token is:

ReturnVolatilityiy =

√
∑

365
d=1(TokenReturniyd−TokenReturniy

)2

365−1
×
√

365, (7)

and the daily exchange rate volatility of Ether is:

EtherVolatilityt =

√√√√∑
n
j=1(EtherPricet j−EtherPricet

)2

n−1
×
√

n, (8)

where TokenReturniy represents the average return of token i in year y, TokenReturniyd
the return of token i on day d in year y, EtherPricet the average exchange rate of
Ether on day t, and EtherPricet j the jth exchange rate of Ether on day t.12

Failure rate. The overall failure rate of transactions at day t (including both
zero-value transactions and non-zero-value transactions) is the number of failed
transactions divided by the total number of transactions initiated:

FailureRatet =
#Failuret

#Transactionst
×100%. (9)

Panel C shows that the average daily failure rate is 2.03% with a standard devi-
ation of 1.85%; the number of failed transactions in a day is on average 16,392
with a standard deviation of 11,435. The failure rate is higher than that for credit

12We pull the exchange rate data every five minutes.
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card transactions.13

Miners’ rewards and users’ transactions. Miners earn block rewards by verify-
ing blocks with transactions. We use LnRewardmt to represent the log of weekly
mining rewards received by miners (in ETH). In addition, we use LnVolumeit and
LnDAppsit to denote the log of total transaction volume in ETH and the number
of DApps used by user i on week t.

Control variables. First, we use NetworkUtilizationt to denote network utiliza-
tion which also measures the congestion rate of the network on a certain day t:

NetworkUtilizationt =
TotalGasUsedt

TotalBlockGasLimitt
×100%. (10)

where TotalGasUsedt is the total amount of gas used in all transactions of Ethereum
at day t, TotalBlockGasLimitt is the maximum possible amount of gas limit used
for all transactions in a certain block, which is determined by both the network
and the miners.14 This mechanism of the total block gas limit ensures that blocks
are not infinitely large. As illustrated in Table 1b, the average congestion (net-
work utilization) during the study period is 87%, with a standard deviation of
about 11% (Figure 1a). In particular, the second half of 2020 saw the conges-
tion rate persistently above 90%. That said, the launch of EIP-1559 (August 5,
2021) with the ’gas targets,’ brought the network utilization down to about 50%.
Another variable that can measure the degree of congestion is the number of trans-
actions on Ethereum (#Transactiont). The average daily number of transactions
is 839,602, with a standard deviation of 279,352. The second key control variable
is BlockRewardst , which represents the average amount of Ether a miner gets for
each block mined on day t. During our study periods, the average block reward
is 2.57 with a standard deviation of 0.64. Finally, EthPopularityt measures the
popularity of Ethereum on day t. For Ethereum popularity, we use Google trends
score corresponding to the keyword “Ethereum.” A Google trends score ranging
from 0 to 100, with 100 points for the most searched terms. The average popular-
ity of Ethereum is 14 with a standard deviation of 17.936.

13The decline rate of credit card transactions is higher mostly for security reasons and anti-fraud
effort, which are not about the smart contract executions.

14Note that any miner of the block can alter it by a maximum of 0.1% from the gas limit of its
previous block. The current gas limit per block is 30,000,000 (around December 2022).
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3. The Ethereum Ecosystem

We start by describing basic patterns and trends in the ecosystem, focusing on
the distribution of mining, ETH ownership, transactions, and network structure
derived from on-chain data.

3.1. Network Structure and Activities
Ethereum represents a complex network and our first task is to map out net-

work activities. Figure 2a reveals that Ether flows among DApps and exchanges
are dominated by DeFi applications (one of the nine categories of DApps). i in-
dexes all labeled addresses belonging to DApp or exchange i, and an edge between
i to j corresponds to Ether flows. The edge size is proportional to the total trans-
action flow between the two entities, and the node size is proportional to the total
Ether received over the period 2015-2022.

The eigenvector centrality of each node (also used in Makarov and Schoar,
2022) reflects its importance. For DApp i, it is the largest solution (λ ) to the
equation Ax = λx, where matrix elements Ai j are the total Ether flows from DApp
i to j over 2015-2022. Figure 2b depicts the top 25 DApps and exchanges with
the highest network centrality and their total received ETH. Again, exchanges and
DeFi applications dominate.15

Next, we describe how various categories of DApps compete or complement.
Figure OA.1 plots the shared user network among DApps on Ethereum. Different
colors represent different categories of DApps. Shorter distance between nodes
indicates more common users. In other words, the DApps with the same color
close to each other are competitive, and the DApps with different colors close to
each other are cooperative. Uniswap, the largest decentralized exchanges (DEX)
on Ethereum, is taken as an example to show the above relationship. There is
strong competition between Uniswap and Sushiswap, and strong complementarity
between Uniswap and Mintbase marketplace.16

Finally, we can demonstrate any network of Ethereum-related activity centered
on DApp. The cluster of the sphere in Figure OA.2 represents a DApp and its
users, with the center of the cluster as the DApp, and surrounding points as users.

15Center nodes in the DApps network do not necessarily receive the most ETH (from other
DApp/exchange nodes, suggesting that some nodes (e.g., Uniswap) receive ETH mainly from
users.

16Sushiswap is a DApp that replicates Uniswap codes and firght for Uniswap users through
marketing campaigns.
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The color of the sphere represents its category. Lines in different colors represent
different Ethereum-related activities. The blue line represents trading activities
using Layer-1 token, i.e., Ether. The yellow line represents the holdings of ERC-
20 token. And the green line represents the interaction between users and DApps.

Overall, these illustrations demonstrate how the data we assemble allows visu-
alization of various network structure and can be useful to other researchers. We
also learn that DeFi apps also play central roles in the network.

3.2. Distribution of Mining and Rewards
Ethereum miners (now stakers after the Merge) are responsible for verifying

and recording transactions and executing smart contracts on Ethereum. They com-
pete via Proof-of-Work throughout our sample period. Miners are rewarded with
newly minted Ethers (block reward) and transaction fees (also in ETH).

It is important that mining is decentralized. If a miner or some colluding min-
ers possess excessive mining power, the ledger is prone to single point of failure
and attacks such as the 51% attacks. In such an attack, these miners can change
previously verified records, which jeopardizes the integrity and functionality of
the network.

As shown in Figure OA.3, most of the block rewards go to a few mining pools.
Specifically, the top 5% mining pools (3-5 pools) received about 60% of block re-
wards, and the top 50% of mining pools received almost 100% of block rewards.
The pattern in Figure 3a is similar to that in Bitcoin (e.g., top 6 mining pools
get 60% of block rewards Makarov and Schoar, 2022). Figure OA.3b reveals
a slightly downward trend in Gini coefficients for mining pools, but the level is
quite high throughout our sample, and higher than the average Gini coefficients
for Bitcoin (around 0.5). Figure OA.3a uses Shannon Entropy to quantify the ran-
domness in the block reward distribution among network nodes. Ethereum mining
is also slightly more centralized than Bitcoin mining based on Shannon Entropy
(around 4 for Bitcoin). These findings are consistent with Lin et al. (2021).

However, Cong et al. (2018) point out that risk diversification and markups in
pool fees ensure that no single mining pool would persistently dominate. Mining
pools also distribute the rewards to individual miners, and thus a mining pool con-
centration does not necessarily imply mining concentration at the individual miner
level. We use on-chain transactions to trace mining rewards from mining pools to
the individuals participating in the pools. Figure OA.4 illustrates this tracing pro-
cess using Ethermine pool. The top layer in the figure represents the nodes of the
mining pool (gold-colored dots). Though the block rewards of Ethermine mining
pool rarely flow directly to exchanges, its miners and miners’ “friends” mainly
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transfer ETH to exchanges, indicating that centralized nodes are still important.
The shares of received mining rewards for different percentiles of miners (ex-

cluding exchanges) is given in Figure 3b. At the individual node level, mining
is still concentrated: the top 0.5% individual miners receive around 50% of the
rewards (the fraction is 60% in Bitcoin). Note that the top 1% income earners in
the United States has less than 30% income shares (Saez and Zucman, 2020). In
that sense, the income inequality in DeFi and Web3 seems even more severe than
the traditional economy, based on evidence from the Ethereum ecosystem.

3.3. Distribution of Token Ownership
If Ethers are owned by a selected few, it is hard to imagine that the network

mitigates wealth inequality and enables inclusive DeFi for the masses. Figure 4
shows the ownership distribution. As shown in Panel 4a, the vast majority (about
80%) of Ethers in circulation are still held by EOAs, but the percentage has been
decreasing over time. Figure OA.5 depicts the top 50 users who hold Ether from
2015 to 2022, which shows the evolution of ownership of Ether and how the top
50 user addresses occupy a considerable wealth in the Ethereum ecosystem. Fur-
thermore, as shown in Figure 4c and Figure 4d, the top 0.1% of accounts, both
for all addresses and EOAs, own more than 80% of the Ethers and top 10% own
almost 100%. This trend has also increased over time. Note that despite the dra-
matic rise of wealth inequality globally, the wealthiest 10% of the population in
the United States own 65-85% of the wealth (Saez and Zucman, 2016, 2020). The
new financial paradigm in blockchains and DeFi ironically features more wealth
concentration, at least as of now.

One caveat is that we do not observe users’ off-line identities or their entire in-
come and investment portfolios (including off-chain and offline ones). We there-
fore can only draw limited inference from the distributions of token ownership
and mining incomes. But to the extent that wealthier agents or agents with higher
income tend to own multiple wallets, not connecting wallets using off-chain iden-
tities only biases against our findings. We are also agnostic on the mechanisms
leading to the concentration of on-chain wealth. Blockchain conglomerates’ cap-
turing the governance of a PoW-based ecosystem is one possibility (Ferreira et al.,
2022), but the “Merge” to switch to Proof-of-Stake (PoS) may alter the situation,
which constitutes interesting future research.
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3.4. Distribution of Transactions
We compute and show in Figure 5 the daily transaction volume (covering both

ETH and other tokens) between October 16, 2017 and October 3, 2022.17 Figure
5a-5b display the distributions of transaction volume (in dollars) among Ether
and tokens on Ethereum, and Figure 5c-5d display the distributions of transaction
volume (in dollars) among stakeholders on Ethereum ecosystem.

Transaction volume in the Ethereum ecosystem peaked in late 2017 to early
2018 and in the second half of 2020 to 2022. In the early years, transaction volume
mainly entailed the native cryptocurrency ETH. But in recent years, ERC-20 to-
kens have become dominant. Moreover, transactions have gradually shifted from
peer-to-peer to be between users and DApps. In particular, about 90% of the trans-
action volume in 2022 was contributed by DApps, of which DeFi applications and
exchanges accounted for about 30%, whereas DApps accounted for less than 10%
of the transaction volume in 2017.

4. Transaction Fees: Hindrance to Financial Democratization and Inclu-
sion?

As Corrado and Corrado (2017) describe, the three main characteristics of
inclusive finance are universal access, affordable costs, and diversity of financial
services, which are crucial to providing stable financial services to the poor or
marginalized groups. DeFi has been introducing a variety of financial products,
such as insurance and loans etc., which can be accessed globally and promptly
wherever the internet is accessible. However, transaction costs and unreliable
services constitute material challenges preventing DeFi from being inclusive or
democratic.

Fees constitute a major challenge in the adoption of Web3 and DeFi, and is
worth emphasizing also because of they differ from those in the conventional fi-
nancial industry. None of the high relative fees for small users, high failure rate, or
high uncertainty due to the high volatility of ETH that we document next is due to

17October 16, 2017 marks the date of Ethereum’s Byzantine fork, the success or failure status
of external transactions is only recorded from this date onwards. As such, the analyses on the
distribution of transactions and transaction fees have samples start from October 16, 2017. While
Makarov and Schoar (2022) illustrate the presence of large “spurious transactions” in the Bitcoin
network, this is not a severe problem in the Ethereum network because Ethereum accounts are
based on EOA and smart contract addresses instead of the UTXO model.
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market power or economic rents to those who run the platform. It is fundamentally
about the technology and suboptimal design of the fee mechanisms.

Percentage Transaction Fee. To better understand transaction costs, we compute
a percentage transaction fee as the transaction fee divided by the value transferred:

PercentageTransactionFee =
GasPrice×GasUsed

Value
×100%. (11)

Table OA.2 provides this fee rate of two types of received addresses (EOA
and contract acctouns), two types of cryptocurrencies (Ether and ERC-20 tokens
on Ethereum) and DApps and others. Panel A shows the percentage transaction
fee for transactions with EOA and contract accounts, Panel B concerns ETH trans-
actions and token transactions, and Panel C covers transactions with DApps and
others. Figure OA.6 further illustrates the median percentage transaction fee for
the aforementioned types of transactions.

Figure OA.7 reports the distribution of transaction value by transaction types.
Transactions with EOAs are typically under $100, while transactions with con-
tract accounts are typically over $1000. Transactions using Ether are typically
under $100, while transactions using tokens on Ethereum are typically over $100,
or even $1,000. Most transactions with DApps are over $1000, while other trans-
actions are usually under $100.

Moreover, the median percentage transaction fee for different groups varies
from 0.25% to 0.37%, but is overall cheaper than the transaction of major banks
in the SWIFT system (Table OA.3 in the online appendix).18 However, the trans-
action fee of small-value transactions is very high for the marginal area and com-
pared with current inclusive financial services. When the transaction value is less
than one dollar, a median amount of 23%, 102%, 23%, 201%, and 60.88% of the
transferred value ought to be paid as the fee, respectively, for transactions with
EOA, transactions with contract account, transactions using Ether, transaction us-
ing tokens on Ethereum and transactions with DApps. Using DeFi for daily trades
is expensive for people in poor countries living under $1.25/day (Bartley Johns
et al., 2015; Ventura, 2021). In addition, existing institutions that commit to pro-
viding financial inclusive services, such as PayPal, typically charge no fees for

18The sample contains outliers, as seen from the extremely large average percentage transaction
fees. For example, a user paid five high transaction fees (210 ether, 420 ether, 420 ether, 840 ether,
and 2100 Ether) on February 19, 2019 for five transactions with values of no more than 0.1 ether.
Median is therefore a better metric in our analysis.

19



domestic transactions and a 5% transaction fee for international transactions.19 In
contrast, the percentage transaction fee for small amount transactions using DeFi
is too high and volatile for inclusive finance.20 Meanwhile, there is no upper
bound for transaction fee and percentage transaction fee when using DeFi, which
is opposite to existing payment systems that normally have a cap on the transac-
tion fee. For example, PayPal set a cap of $4.99 of transaction fee for international
personal transactions.

Network Congestion and Gas Price. As Figure OA.8 shows, transaction delays
are negatively correlated with gas prices, consistent with previous studies on Bit-
coin (Easley et al., 2019; Ilk et al., 2021). Using recommended gas prices, we
show that users are willing to pay higher gas prices for quicker transactions in re-
sponse to network congestion. We also investigate the relationships between gas
prices and delay times and between gas prices and network utilization, to better
understand the effects of congestion.

Because the delay time we obtained is fixed class data and ordered, we adopt
an ordinal logistic model to study the relationship between gas price and delay
time:

y∗i = β1RecommendedGasPricei +µi. (12)

y∗i is the latent variable, and µi is the error term, which follows a logistic distribu-
tion.

DelayTimei =


0.5 y∗i ≤ α1
2 α1 < y∗i ≤ α2
5 α2 < y∗i ≤ α3
30 α3 < y∗i

(13)

Table OA.4a shows that there is a significant negative relationship between gas
price and delay time, which is consistent with the perception that users pay high
gas prices for fast transactions. The three cutoff points α1, α2, α3 are −2.40,
−1.20,−0.02 respectively in Equation (13). Table OA.4b shows that for each unit
increase in the gas price paid by users, the probabilities of completing a transac-
tion at the fastest rate (DelayTime = 0.5) and fast rate (DelayTime = 2) are in-
creased by 1.48% and 0.52%, respectively, while the probability of completing a

19https://www.paypal.com/us/webapps/mpp/paypal-feesSendAndReceiveMoney
20Note that the percentage transaction fees for large-value transactions (more than one dollar)

are relatively low: A median of 0.16%, 0.33%, 0.18%, 0.29%, 0.30% percentage transaction fee
are, respectively, for transactions with EOA, transactions with contract account, transactions using
Ether, transaction using tokens on Ethereum and transactions with DApps, respectively.
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transaction at a low rate (DelayTime = 5) and the lowest rate (DelayTime = 30)
decreased by 0.46% and 1.50%, respectively. Overall, increasing gas price tends
to speed up the transaction. We also report in OA.4 results using Probit and OLS
models, and find them consistent with the logistic model.

Next, we run both the transaction-level and day-level regressions:

ln(GasPriceit) = β0 +β1 ln(NetworkUtilizationt−1)+ γCit−1 + εit , (14)

where the subscription i and t denote the ith trade in day t. The control vector,
Cit−1, includes the daily block rewards, Ethereum popularity and the return of
ETH exchange rate in t−1.

Table OA.5 reports the transaction-level regression results for different types
of activities. The first column shows that the utilization of the network has a
significantly positive correlation with the gas price; particularly, a 1% increase in
network utilization results in an additional 3.43% gas price for all transactions.
This is consistent with our conjecture and evidence from the Bitcoin blockchain
(Easley et al., 2019; Ilk et al., 2021). For control variables, the return of ETH
exchange rate has a significant positive correlation with gas price; a 1% increase
in the return of Ether results in users being willing to pay an additional 0.52%
gas price. Moreover, block rewards and Ethereum popularity have negative and
positive impacts on gas price, respectively.

The results of token-related activities, transactions with users and transactions
with contracts are reported in the second, third, and fourth columns, respectively.
The degree of network utilization has a significant association with gas prices for
all three categories. Chow test shows that the impact for the token-related group
is larger than transactions with users (p < 0.001), which is likely to be caused by
a large price fluctuation of the tokens, i.e., users want to make the transaction go
through quickly instead of taking the risk of price fluctuation. Therefore, token-
related activities are likely to crowd out others in a congested network. That is,
users willing to pay a higher gas price for token-related transactions get processed
first, while other types of transactions queue up for execution.

Transaction Fee and Extra Gas Fee Reserved. We first discuss the distribution of
transaction fees among stakeholders on Ethereum. As illustrated in Figure OA.9,
similar to the distribution of transaction volume among Ethereum’s stakeholders,
transaction fees have gradually shifted from peer-to-peer transactions to transac-
tions between users and DApps. Specifically, about 80% of transaction fees in
2020 and early 2021 was contributed by user-DApps interactions, of which DeFi
applications and exchanges accounted for about 40%, whereas, DApps accounted
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for less than 20% of transaction fees in 2017. However, this trend has weakened
in 2022. Next, Table OA.6a reports the statistics of ExtraGasFee and the real gas
fee used as a comparison. Surprisingly, the ExtraGasFee is quite large with a
magnitude around 5.46 dollars on average, which is larger than the gas fee actu-
ally used. Therefore, the gas-limit policy is not inclusive because people need to
reserve a significant amount of extra money for their payments. In the following,
we examine the drivers for the extra gas reserved and report the findings in Table
OA.6b.

ExtraGasReservedit = β0+β1 ln(NetworkUtilizationt−1)+β2 (EthReturnit−1) +γCit−1+εit .
(15)

The network utilization and median gas price have a significantly positive im-
pact on the variable ExtraGasReserved. When the network is congested, users
want to complete the transaction once, but not repeatedly, so they tend to reserve
more gas in this case. However, ETH returns, block rewards, and the popularity
of Ehtereum are negatively correlated with ExtraGasReserved. As ETH rises in
value, users are more likely to transact using it rather than saving it in their wallets
in the form of transaction fees.

Recall that gas prices increase in network congestion and dollar value of Ether,
this section shows that on top of gas price increases, positive ETH return and
network congestion tend to increase extra gas reserved, incurring additional costs
to users.

Transaction Failures. If a transaction cannot be fulfilled due to some reason, the
transaction “fails” and yet the gas fee is non-refundable because the computa-
tional power is used during the process. The main reasons for transaction failures
include: (i) “Out of Gas”—the gas limit set by the user is lower than the amount
needed. (ii) “Reverted”—backoff mechanisms written in the smart contract are
triggered to stop the transaction. (iii) “Bad Instruction” which entails problems in
the operation logic of transaction execution. For example, in crowdfunding, the
transaction for the excess amount raised fails when the amount raised has reached
the funding target. (iv) “Bad Jump Destination” which is caused by errors in smart
contract codes.

The average daily failure rate, as Table 1c and Figure OA.10 show, is 2.03%.
As shown in Table 1, during the sample period there are 8,135,712 transactions
with contracts unrelated to tokens failed (2.71% of such type of transactions), with
a total gas fee of 57,171,289 dollars. And 14,633,202 token-related transactions
failed (5.56% of such types of transactions), with a total gas fee of 31,367,076
dollars.
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In addition, Table 1e reports the statistics of the number of non-zero-value
transaction failures due to different non-mutually-exclusive reasons. The most
common cause of failure is reverted, resulting in a total of 65,355,497 dollars
in gas fee loss, accounting for 76.72% of all failures. The second reason for
transaction failure is out of gas, resulting in a total of 18,660,388 dollars gas fee
loss, accounting for 21.47% of fall failures. The remaining two causes of failure
(i.e., bad instruction and bad jump destination) account for about 10% of the total
number of failures.21

As mentioned above, an insufficient gas limit and gas price may lead to trans-
action failures or longer delays that indirectly cause failures. We formally test
these by first running a linear-probability regression at the transaction level:

Failureit = β0 +β1GasExtrait +β2 ln(GasPriceit)+ γCt−1 +µit , (16)

where the subscription i and t denote the ith trade in day t. GasExtrait is a dummy
variable that is set to 1 when transaction i reserves additional gas, and 0 otherwise.
C is the vector of control variables including daily median gas price, ETH return,
network utilization, block rewards and Ethereum popularity.

Table OA.7 shows that in general if the user reserves extra gas when initiating
a transaction, the probability of a failing transaction drops by 0.67%.22 If the gas
price set by the user increased by 1%, the probability of the failed transaction
drops by 0.25%.

Turning to control variables, block rewards and the popularity of Ethereum
have positive correlations with transaction failures. The increasing popularity of
Ethereum accompanies the increasing number of new users. These users who are
new to the fee mechanism are more likely to fail due to the improperly setting of
parameters. In addition, median gas price, ETH return, and network utilization
show negative correlation with transaction failures.

Token Exchange Rate Risk. As shown in Table OA.1 and Figure OA.11, the high
price volatility of ETH (about 163% for 3 years) and ERC-20 tokens exclude users

21Note that the sum of the percentage of failures of four failure causes is larger than 1. This is
because some complicate transactions (including internal transactions) may fail due to more than
one reason.

22On Ethereum, if a token-related transaction fails, the transaction value is not recorded (i.e.,
the transaction value is 0). Therefore, we include these transactions in our sample when analyzing
the factors influencing failure. In addition, transactions with users will not fail, so transactions
with users are excluded from our sample.

23



with low risk tolerance and creating other frictions for adoption (Harvey et al.,
2020). Moreover, the high volatility leads to high uncertainty of transaction fees
in DeFi applications, which harms the sustainability of financial services provided
by DeFi. Liu et al. (2022) find that when Ether’s price is more volatile, the waiting
time is longer.

Our data allow a further investigation into the drivers of the high exchange-rate
volatilities of ETH and ERC-20 tokens. Table OA.9 reports the findings. Higher
network utilization, block rewards, and Ethereum popularity positively correlates
with comtemporaneous ETH exchange rate volatility and predicts higher future
volatility, while higher failure rate, median gas price have negative contempo-
raneous correlation and prediction. For token exchange rate, median gas price
and Ethereum popularity are positively correlated with and predict exchange rate
volatility of other ERC-20 tokens, while block reward and network utilization ex-
hibit weakly negative correlation with token exchange rate volatility.

In addition, we also study the link between ETH returns with relative returns
of ERC-20 tokens. It is easy to understand that as tokens built on Ethereum,
their values should highly depend on the price of Ether. Thus, the tokens on
Ethereum should have a positive return correlation with Ethereum. However, since
the transaction fees of these tokens is in ETH, the high ETH exchange rate tends
to increase the transaction cost of these tokens, and hence decrease their prices.
Therefore, the correlation between other ERC-20 tokens and ETH is weakened by
high ETH price. Formally, we perform the following regression:

TokenReturnit = β0 +β1EthReturnt +β2EthReturn2
t + εit (17)

We include the square of EthReturn to the model to study the influence of
ether returns on the correlation between Tokens on Ethereum and the Ether prices.
Token fixed effects are employed in the above panel regression. The regression
results are reported in Table OA.8. Ether returns indeed have a negative effect (β2)
on the Ether-token correlations.

5. Redistributive Effect of the EIP-1559 Fee Mechanism

We now examine a major fee mechanism change in the ecosystem and how
it has, intentionally or unintentionally, created redistribution across various par-
ticipants in the ecosystem. While there are many other changes in the system
that could have affected transactions and income distribution in the ecosystem,
the EIP-1559 fee change is arguably the largest major change before Ethereum’s
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switch to Proof-of-Stake, and is one that is not designed to mitigate the inclusion
problem, thus serving as a perfect exogenous shock.

5.1. Background: EIP-1559
On August 5, 2021, Ethereum adopted the new EIP-1559 policy, a major tech-

nical upgrade also dubbed as “London Hardfork on Ethereum.” It was an over-
haul of the original transaction fee mechanism to address the problems of high fee
volatility, network congestion, and overpayments due to fee unpredictability.23

Figure OA.12 illustrates the primary adjustments of the EIP-1559 fee mechanism.
One of the critical changes is the new “base fee burning” scheme. Base fee is
the minimum gas price that a transaction needs to pay to enter the block, which
follows a pre-specified formula:

BaseFeeh+1 = BaseFeeh×
(

1+
1
8
× GasUsedh−GasTarget

GasTarget

)
. (18)

The gas target is constant at 15 million. As part of transaction fee, the base fee
is no longer awarded to miners but is removed from ETH circulation forever, i.e.,
burned by sending to invalid wallet addresses. The second adjustment in EIP-
1559 is the way users bid. Users can bid on two fee-related parameters named
“max priority fee per gas” and “max fee per gas” under the EIP-1559 policy. Max
priority fee per gas is the tip that users are willing to pay the miners. Whereas the
max fee per gas is the maximum gas price users are willing to bear. The final gas
price paid by the user is as follows:

GasPrice = min{BaseFee+MaxPriorityFee,MaxFee}. (19)

Finally, the block gas limit is adjusted from around 15 million to around 30 million
under the EIP-1559. The gas target is set at 15 million.

Figure OA.13 describes the adoption rate, daily average base fee, priority fee
per gas, max fee per gas, and gas price after the launch of EIP-1559. Figure
OA.13a shows that nearly half of all transactions on Ethereum have adopted EIP-
1559, while the rest follows the previous mechanism conditional on those trans-
actions having reached the base fee requirement.24

23Roughgarden (2020) models transaction fees under EIP-1559 and indicates two potential ben-
efits of EIP-1559: EIP-1559 can reduce the transaction fee variance and improve user experience
by providing simpler fee estimations.

24The lack of immediate full adoption is likely due to that most users use metamask wallets,
some of which do not imeediately support the EIP-1559 protocol. Note that EIP-1559 is retained
even after Ethereum’s switch to PoS.
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5.2. Empirical Strategy
We study the implications of the EIP-1559 fee mechanism on the distribution

of mining rewards among individual miners and transaction volume among indi-
vidual users. We first estimate the overall effects of EIP-1559 on all individual
miners and users using a sharp regression discontinuity (RD) design with August
5, 2021 as the threshold. Then, we extend the specification to consider the hetero-
geneity of miners and users using a difference-in-difference approach.

Our dataset includes all active miners’ and users’ on-chain transaction behav-
ior six months before and after the launch of the EIP-1559 fee mechanism, i.e.,
from Feb 5, 2021 to Feb 5, 2022. We identify active miners and users using labeled
mining pools information of each block and the flow of mining rewards, as was
done for Bitcoin in Makarov and Schoar (2022). Data on Ethereum only records
the addresses of mining pools where blocks are mined, and there is no information
about individual miners. Therefore, we use transaction data on Ethereum to relate
miners to different pools.

First, we consider the addresses of mining pools having had transactions with
exchanges, contract addresses, and individual miners. A total of 2,763,430 sepa-
rate individual miner addresses have received block rewards since the release of
Ethereum. Second, we specialize to miners who have received mining rewards be-
fore February 05, 2021, and have at least received a mining reward after February
05, 2021. Third, we exclude miners who belong to multiple mining pools because
for them PercentBlock is not well-defined.25 These filters leave us 135,414 miner
addresses associated with 102 separate mining pools. Table OA.11a provides sum-
mary statistics on these miners’ received rewards and transaction activities before
and after the launch of EIP-1559.

We define active users as those who made transactions before February 05,
2021, and have at least one transaction after February 05, 2021. A total of 12,614,467
distinct addresses have been identified. Since the existing econometric analysis
software cannot process the entire data, we construct user samples in two ways.
The first sample is constructed with 252,290 randomly selected user addresses
(about 2% of the total addresses). The second sample is constructed based on
Sokolov (2021)’s method of grouping Bitcoin users. In particular, we divide
users into three groups based on their transactions between February to August
05, 2021. Group 1 consists of 239,294 addresses representing highly active users,

25In additional tests not included here, we find that the results are robust when we use the largest
and the average values for these miners.
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defined as those who have transactions on Ethereum for at least 20 days over a
six-month period. Group 2 represents active users, defined as those who have
transactions on Ethereum for at least two days but less than 19 days over a six-
month period. For computational efficiency, we merge the transactions from these
addresses and average weekly transactions for every 10 addresses (sorted by the
number of transactions), i.e., we consider addresses with ranks 239,295-239,304
as one address, and so on. After processing, Group 2 consists of 258,897 ad-
dresses. Group 3 represents inactive users, defined as those who have transactions
on Ethereum for at most one day over six months. Similar to Group 2, we merge
the transactions from addresses in Group 3 and average weekly transactions for
every 50 addresses. Group 3 consists of 195,725 addresses. Table OA.11b pro-
vides the summary statistics on users’ transaction activities before and after the
launch of EIP-1559.26

To estimate the overall effects of EIP-1559 on miners’ mining rewards and
users’ transaction activities, we estimate the following regression:

yit = α +βBurningit + γ f (dateit)+δXit + εit . (20)

For miners, yit refers to the mining rewards received by miner i in week t; for
users, yit refers to the transaction volume and number of DApps used by user i
on week t. Burningit is a binary variable taking a value of 1 when EIP-1559 is in
effect and 0 otherwise, and dateit is the day number centered on August 5, 2021.
The RD is a sharp RD in that dateit completely determines Burningit . Function
f (dateit) captures the potential endogenous relationship between εit and the date.
Xit denotes a set of additional control variables described in Table OA.10.

Burning base fees resembles consumption taxation. It effectively redistributes
wealth from the most active players to all token holders. We use the follow-
ing difference-in-difference specifications to test the heterogeneous effects for-
mally:27

ymt = β ln(PercentBlockm)×Burningt +ωXmt +λm + γt + εmt , (21)
ymt = β ln(Be f oreRewardsm)×Burningt +ωXmt +λm + γt + εmt , (22)

26Table OA.13a and OA.13b in the online appendix contain the analyses using the second user
sample for robustness check.

27The results remain robust when we run a difference-indifferences regression utilizing the pre-
vious year’s statistics as a control sample (assuming parallel trends). This additional analysis con-
trols for potential seasonality (see Kaiser, 2019), though empirically the cryptocurrency market is
still in transition and has not exhibited clear seasonal patterns.
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yit = β ln(Be f oreTransactionsi)×Burningt +ωXit +λi + γt + εit , (23)
yit = β ln(Be f oreBalancei)×Burningt +ωXit +λi + γt + εit . (24)

Equations (21) and (22) test the influence of pool size and miners’ computing
power on the redistribution effect for miners. PercentBlockm is the percentage of
blocks mined by the mining pool to which the miner m belongs between Febru-
ary 5, 2021, and August 5, 2021. Be f oreRewardsm is the total mining rewards
received by miner m between February 5, 2021, and August 5, 2021.

Equations (23) and (24) test the effects of transaction frequency and wealth
on the redistribution effect for users. Be f oreTransactionsi is the total number of
user transactions between February 5, 2021, and August 5, 2021. Be f oreBalancei
is the average daily number of Ether held by users between February 5, 2021, and
August 5, 2021.

5.3. Empirical Results
We start with mining. Figure OA.14a plots the average log of weekly mining

rewards received by miners for a 20-week window straddling the introduction of
EIP-1559. The log of weekly mining rewards averages around 0.05 ahead of the
launch but drops discontinuously to 0.04 after the launch. Table 4a shows an over-
all negative effect of the EIP-1559 fee mechanism on miners’ mining rewards.28

This finding suggests that the new fee policy “burned” part of the transaction fee
that was originally awarded to miners. The individual weekly mining rewards
drop approximately 0.7%.

Table 5 reports the results of the heterogeneous effect of EIP-1559 on miners.
Columns 1 and 3 in Table 5 indicate that miners belonging to larger mining pools
experienced a smaller decrease in weekly mining rewards following the launch of
EIP-1559. Moreover, Columns 2 and 4 in Table 5 indicate that miners with higher
computation power experienced a larger decrease in weekly mining rewards fol-
lowing the launch of EIP-1559. These findings reveal that EIP-1559 potentially
reduces the income gap among individual miners.

Moving to network usage, Table 4 shows an overall positive effect of the EIP-
1559 fee mechanism on users’ transaction volume and the number of used DApps.
Figures OA.14b and OA.14c plot the average log of users’ transaction volume and

28Though unreported here, we find using synthetic control (Abadie and Gardeazabal, 2003;
Abadie et al., 2010, see Section VI.B for details) that EIP-1559 has insignificant effect on ETH
exchange rate with dollars, so the numbers in USD would be just a noiser version due to the
unpredictable Ether exchange rate fluctuations.
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the number of used DApps per week for a 20-week window containing the intro-
duction of EIP-1559 seperately. The log of weekly transaction volume and the
number of used DApps increase discontinuously after the launch of EIP-1559,
and then followed by a decrease. Tables 6 and OA.12 contain the results of het-
erogeneous effects of EIP-1559 on users. In particular, the significant negative
coefficients of the interaction terms indicate that users with a lower frequency of
transactions or ETH balance benefit more from EIP-1559.

Our results demonstrate that the EIP-1559 fee mechanism reform significantly
impacts both mining and transactions on Ethereum. Through the “deflationary”
fee-burning, this policy effectively taxes agents with more and larger transactions
to redistribute wealth. Consequently, it encourages participation of small, new,
and inactive users in the network. Due to many subsequent changes in the ecosys-
tem and the limited time-series data, we cannot draw a conclusion about the long-
run effects given the confounding factors.

6. Inclusion and Democracy Through Airdropping

Airdrops are often considered marketing strategies for expanding userbase
(Froewis et al., 2021; Li et al., 2021a). However, airdrops can also have some
adverse effects. First, airdropping governance tokens may inadvertently distribute
governance rights to speculators seeking only short-term profits (Froewis et al.,
2021). Second, airdropping high-quality tokens can be value-destroying for na-
tive cryptocurrency due to substitution of usage (Liebi, 2021; Zhao et al., 2022).
In addition, if some tokens are distributed to inactive users, they become illiquid
or permanently lost.

The extant literature mainly focuses on the effects of airdropping for the dis-
tributors or platform founders. However, as a common strategy for distributing
tokens in blockchain, it is important to explore its impact on the whole network,
especially on the distribution of transactions. To this end, we use the large-scale
airdrop of OmiseGo as an external shock to study the impact of airdropping on
financial inclusion.29 Arguably, many other airdrop programs can be similarly
studied. Our main contribution is to conceptually clarify how airdrops constitute
redistributive monetary policy and to illustrate their impact on financial inclusion
and democratization.

29Since airdrops typically target EOA accounts and are not related to mining, we focus on their
impacts on transactions and the valuation of native tokens, i.e., Ether.
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6.1. Background: OmiseGo Airdropping
OmiseGo is a wallet and payment network that allows people to send and

transfer money to other accounts without a bank. It implemented the first airdrop
on Ethereum, which remains as one of the most prominent airdrops to date. The
airdrop dispenses OmiseGo tokens (known as OMG) at a ratio of 0.075 to ad-
dresses with an Ether balance over 0.1 ETH at block height 3,988,888.30 For ex-
ample, an address with the account balance of 1 ETH would receive 0.075 OMG.

The announcement date of OmiseGo airdrop was August 17, 2017, while the
snapshot date was July 7, 2017. This snapshot date, which is earlier than the
announcement date, makes it impossible for users to intentionally change their
account balance in advance in order to obtain the airdropped tokens, making this
airdrop a completely exogenous shock. OmiseGo airdrop lasted for 11 days from
September 13, 2017 to September 23, 2017. During this period, the daily ex-
change rate of OMG was around 10 dollars.

6.2. Empirical Strategy
We first adopt the identification strategy of difference-in-difference with the

RD sample to examine the effect of airdropping on users’ financial activities on
Ethereum (Jo et al., 2020). Addresses that received OMG airdrop with a balance
over 0.1 ether are considered the treatment group, while addresses that do not
receive OMG airdrop with a balance under 0.1 ether are considered the control
group. We perform weighted local linear regression on the RD sample within the
bandwidth, with a simple weighting scheme:

yit = β (A f terit×Airdropi)+ωXit +λi + γt + εit ; (25)

weighti=1-
∣∣∣balancei−0.1

bandwidth

∣∣∣ , (26)
where Airdropi represents whether the user belongs to the treatment group or

control group, A f terit represents whether period i is before or after the airdrop.
Xit represents a set of control variables (Table OA.10), λi, user fixed effect, and
γt , time fixed effect. weighti represents the weight assigned to user i, balancei
denotes the account balance of user i, and bandwidth corresponds to the utilized
bandwidth.

30The block height 3,988,888 corresponds to July 7th,2017,04 : 36 : 56.
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In addition, we use synthetic control (SCM, e.g., Abadie and Gardeazabal,
2003; Abadie et al., 2010) to verify the impact of airdropping on the return of
relevant native cryptocurrency. Since a perfect control blockchain of Ethereum
cannot be found, we constructed a “synthetic ETH” by linearly combining 14
blockchains with cryptocurrency exchange rates over 1 dollar in the same period.
None of these 14 potential blockchains in the control group had a hard fork or
airdrop during our analysis period from September 6, 2017 to September 26, 2017
(Liebi, 2021). This “synthetic ETH” reflects the value of the predictors of Ether
price before the OmiseGo airdrop. We estimate the impact of the airdropping
on the exchange rate of the parent cryptocurrency by calculating the difference
between the exchange rate of ETH and its synthetic version within 14 days after
the airdrop. We further confirm this effect with some placebo tests.

The predictors used to construct the “synthetic ETH” include the log of trans-
action volume of native cryptocurrency in dollars (LnVolume), market capital-
ization (LnMarketCap), daily exchange rate volatility (LnVolatility), whether the
blockchain uses proof-of-work consensus or others, and the returns of native cryp-
tocurrencies on September 6 (return8), September 9 (return11), and September
12 (return14), respectively.

6.3. Empirical Results
Impact of airdropping on users’ transaction volume. Figure 6 provides a vi-
sual image showing the parallel trends and post-treatment dynamics, and Table
7 presents the regression results. The airdrop has a significantly positive influ-
ence on users’ transaction volume. These results illustrate that airdrop improves
the transaction volume of those who received airdropped tokens, even among less
wealthy users with an account balance of around 0.1 ETH.31

Impact of airdropping on native cryptocurrency exchange rate. The issuers
of airdrops typically understand the direct cost of giving tokens away. But they do
not fully internalize the externality of airdrops on the usage and valuation of the
native token ETH. In fact, Liebi (2021) points out that native token returns may
decrease following an airdrop for the simple reason that introducing a new token
crowds out the usage of the base layer token.

The weight of each blockchain in the control group is illustrated in Table 8a.
Before the launch of OmiseGo airdrop, the trend of Ether return is best represented

31For discussions of the long-term effects of airdrops, see, e.g., Zhang and Zhang (2023) and
Zhang et al. (2023).
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by the combination of Bitcoin, Ethereum Classic, Litecoin, Peercoin and Waves,
in which Bitcoin occupies the highest weight. Table 8b further shows a similar
trend of mean values of predictors between ETH and synthetic ETH.

The estimated effects are shown in Figure 7 and Table 8c. Different from
(Liebi, 2021), we do not find an immediate negative effect of the start of OmiseGo
airdropping on its native token return using SCM. Instead, we find that the end of
the airdropping has an immediate and significant positive effect on native token
return. This is in favor of the concept that by enabling other blockchain projects,
Ethereum as an infrastructure also becomes more valuable, over the alternative
that OMG and ETH are strong substitutes as payment tokens.

7. Conclusion

Web3 and DeFi are widely advocated as innovations for greater financial in-
clusion and democratization (e.g., Tapscott and Tapscott, 2017). We conduct an
initial investigation using data from the Ethereum network. We provide detailed
description of the ecosystem including its network structure and distributions of
transactions, mining, and ownership. Mining and ownership are concentrated in
exchanges and a small set of individuals, with on-chain income and wealth in-
equalities no better than those in economies such as the United States. For trans-
actions and usage, we observe a shift from peer-to-peer interactions to user inter-
actions with DApps and DeFi protocols, and significantly more network activities
by large players. More importantly, under the current gas fee mechanisms, high
transaction-fee rates for small and new players, significant congestion-induced
fluctuation of gas prices, and large return volatility of tokens hinder financial de-
mocratization and inclusion. These issues, coupled with users’ suboptimal gas
parameter setting and the opportunity costs of additional gas limit reservations,
cause high rates of failures. Financial inclusivity and democratization ought be
taken seriously in the next iterations of Web3/DeFi systems.

Proposals (e.g., Buterin et al., 2019) are introduced to ease the congestion of
the Ethereum network and the problem of high transaction fees. In particular, EIP-
1559 alleviates congestion through an adjustable block gas limit, and dynamically
adjusts and burns base fee based on supply and demand. While transaction fees
are still disproportionally high for small players, the burning of base fees has a
perhaps unanticipated benefit of transferring wealth from large players to small
and new agents, which facilitates financial inclusion. Combining our data and
data from OmiseGo, we demonstrate airdrops are also redistributive policies that
potentially improve financial inclusion. Given that protocol updates and token
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distribution for user acquisition likely remain in the long run, the causal evidence
we provide has general validity and implications.

The full potential of DeFi and Web3 may be realized only after a long, iterative
process. Our paper is an initial attempt to understand the landscape, mechanisms,
and limitations of the current design, so as to inform future research and design.
The data platform developed for our study also allows other researchers public ac-
cess to blockchain and DeFi big data. Note that the switch to PoS (the Merge) can
alter the Ethereum ecosystem dramatically.32 Nevertheless, the issues we docu-
ment remain because the Merge does not reduce transaction fees directly, although
it opens up the possibility for further reforms, including sharding and third-party
and Layer-2 roll-ups. Overall, our findings can serve as a useful benchmark to
evaluate the future evolution of Web3 and DeFi.
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Roşu, I., Saleh, F., 2021. Evolution of shares in a proof-of-stake cryptocurrency.
Management Science 67, 661–672.

Roughgarden, T., 2020. Transaction fee mechanism design for the
ethereum blockchain: An economic analysis of eip-1559. arXiv preprint
arXiv:2012.00854 .

39

http://dx.doi.org/10.2139/ssrn.3949206


Saez, E., Zucman, G., 2016. Wealth inequality in the united states since 1913: Ev-
idence from capitalized income tax data. The Quarterly Journal of Economics
131, 519–578.

Saez, E., Zucman, G., 2020. The rise of income and wealth inequality in america:
evidence from distributional macroeconomic accounts. Journal of Economic
Perspectives 34, 3–26.

Schär, F., 2021. Decentralized Finance: On Blockchain- and Smart Contract-
based Financial Markets. Federal Reserve Bank of St. Louis REVIEW , 153–
174doi:10.2139/ssrn.3571335.

Sokolov, K., 2021. Ransomware activity and blockchain congestion. Journal of
Financial Economics 141, 771–782. URL: https://doi.org/10.1016/j.
jfineco.2021.04.015, doi:10.1016/j.jfineco.2021.04.015.

Szabo, N., et al., 1994. Smart contracts. URL: http://www.fon.hum.

5uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/

LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html.

Tapscott, A., Tapscott, D., 2017. How Blockchain is Changing Finance. Harvard
Business Review 1, 2–5. doi:10.1093/itnow/bwy090.

Ventura, L., 2021. Poorest Countries in the World 2021.
URL: https://www.gfmag.com/global-data/economic-data/

the-poorest-countries-in-the-world.

Wood, G., Savers, N., Community, 2018. Ethereum: A Secure Decentralised
Generalised Transaction Ledger-Byzantium Version. URL: https://github.
com/ethereum/yellowpaper/tree/byzantium.

World Bank Group, 2016. World development report 2016: Digital dividends.
World Bank Publications.

Yeo, A., Tadem, T.S.E., Weiss, M.L., Ng, K.H., Son, B., 2022. Democracy and
inequality .

Zarir, A.A., Oliva, G.A., Jiang, Z.M., Hassan, A.E., 2021. Developing Cost-
Effective Blockchain-Powered Applications: A Case Study of the Gas Usage
of Smart Contract Transactions in the Ethereum Blockchain Platform. ACM
Transactions on Software Engineering and Methodology 30. doi:10.1145/
3431726.

40

http://dx.doi.org/10.2139/ssrn.3571335
https://doi.org/10.1016/j.jfineco.2021.04.015
https://doi.org/10.1016/j.jfineco.2021.04.015
http://dx.doi.org/10.1016/j.jfineco.2021.04.015
http://www.fon.hum.5uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.5uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.5uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://dx.doi.org/10.1093/itnow/bwy090
https://www.gfmag.com/global-data/economic-data/the-poorest-countries-in-the-world
https://www.gfmag.com/global-data/economic-data/the-poorest-countries-in-the-world
https://github.com/ethereum/yellowpaper/tree/byzantium.
https://github.com/ethereum/yellowpaper/tree/byzantium.
http://dx.doi.org/10.1145/3431726
http://dx.doi.org/10.1145/3431726


Zhang, L., Ma, X., Liu, Y., 2022. Sok: Blockchain decentralization. arXiv preprint
arXiv:2205.04256 .

Zhang, L., Zhang, F., 2023. Understand waiting time in transaction fee mecha-
nism: An interdisciplinary perspective. arXiv preprint arXiv:2305.02552 .

Zhang, Y., Chen, Z., Sun, Y., Liu, Y., Zhang, L., 2023. Blockchain network anal-
ysis: A comparative study of decentralized banks, in: Science and Information
Conference, Springer. pp. 1022–1042.

Zhao, X., Ai, P., Lai, F., Luo, X., Benitez, J., 2022. Task management in de-
centralized autonomous organization. Journal of Operations Management 68,
649–674.

Zhongming, Z., Linong, L., Xiaona, Y., Wangqiang, Z., Wei, L., et al., 2021.
Don’t let the digital divide become ‘the new face of inequality’: Un deputy
chief .

Tables and Figures

41



Table 1: Summary Statistics

This table shows summary statistics of the variables used in this paper.
Panel A describes gas-related variables (i.e., GasPrice, GasUsed, GasLimit,
ExtraGasReserved, GasFee, and Value). Panel B describes network de-
pendent variables (i.e., NetworkUtilization, #Transaction, BlockRewards, and
EthPopularity). Panel C reports the daily failure rate and failure number. Panel D
summarizes the total gas fee incurred by each type of failed transaction, the num-
ber of failed transactions, and their proportion to each type of transaction. Panel
E summarizes the gas fee incurred due to different failed reasons. The sample
period of panel A-E is from October 2017 to August 2021, spanning a total num-
ber of 1,389 days and covering 748,738,026 unique transactions. Panel F lists the
summary statistics of gas price at the four levels of delay time. The sample period
is from February 2021 to May 2021.

(a) Gas-related Variables

mean median 25% 75% standard deviation

GasPrice (Gwei) 61.183 30.810 10.000 77.027 27063.140
GasUsed 47853.727 21000.000 21000.000 41000.000 95534.784
GasLimit 114896.217 51000.000 21000.000 116000.000 257359.441

ExtraGasReserved 67042.491 29000.000 0.000 69000.000 220877.892
GasFee (ET H) 0.003 0.000 0.000 0.002 0.568
GasFee (dollar) 4.075 0.434 0.068 2.703 135.545
Value (dollar) 1.05*1049 72 9 577 2.26*1053

Note: The average value is very high because the values of some spe-
cific token-related transactions are very high; for example, a transaction on
SmartMesh token consists of more than 1056 dollars (transaction hash on Ethereum:
0x1abab4c8db9a30e703114528e31dee129a3a758f7f8abc3b6494aad3d304e43f). Ex-
cluding token-related transactions, the average value is 3423.71 dollar.

(b) Network-dependent Variables

mean median 25% 75% standard deviation

NetworkUtilization (%) 86.742 89.680 79.070 96.680 10.802
#Transaction 839601.885 757712.000 611188.000 1096582.000 279352.418

BlockRewards 2.571 2.115 2.089 3.309 0.636
EthPopularity 14.089 6.000 4.000 14.000 17.936
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Table 1: Summary Statistics (continued)

(c) Failure-related Variables

mean median 25% 75% standard deviation Obs

Failure 0.071 0.000 0.000 0.000 0.257 319,679,841
FailureRate 2.034% 1.674% 1.368% 2.091% 1.846% 1,389

#Failure 16392.307 13531.000 9781.000 19308.000 11434.661 1,389

(d) Gas Fee Incurred with Different Transaction Type Due to Failure

Transaction type Total gas fee ($) Avg gas fee ($) Failed transactions
Percentage of failures in
each type of transaction

Transactions with SC 57,171,289 7.027 8,135,712 2.707%
Token-related transactions 31,367,076 2.144 14,633,202 5.557%

(e) Gas Fee Incurred Due to Different Failed Reasons (non-zero-value transactions)

Failed reason Total gas fee nFailed transactions Percentage of failures
Out of gas 18,660,388 dollars 4,746,143 21.47%
Reverted 65,355,497 dollars 16,960,457 76.72%
Bad instruction 11,699,221 dollars 1,630,477 7.38%
Bad jump destination 1,725,939 dollars 537,755 2.43%

(f) Gas Price and Delay Time

GasPrice
DelayTime
= 0.5min

DelayTime
= 2min

DelayTime
= 5min

delayt ime
= 30min

mean 16.85 15.71 12.28 11.27
median 15.50 15.60 11.70 10.90

25% 12.30 11.00 8.90 8.30
75% 20.40 19.30 15.00 13.90

standard deviation 0.073 0.068 0.051 0.050
Obs. 12,073 12,073 12,073 12,073
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Table 2: Percentage Transaction Fee

This table gives a detailed description of the percentage transaction fee variable,
which is measured by the gas fee of a transaction divided by the transaction value.
It shows the overall statistics of percentage transaction fees for six specific cate-
gories, i.e., transactions with EOAs and with contract accounts, transactions us-
ing Ether and using tokens on Ethereum, transactions with DApps and others.
Table OA.2a (EOAs and contract accounts), Table OA.2b (Ether and token on
Ethereum) and Table OA.2c (DApps and others) list the summary statistics of six
categories of percentage transaction fees at different transaction value levels sep-
arately, which are reported in the online appendix. The sample period is from
October 2017 to August 2021.

mean
(%)

median
(%)

25%
(%)

75%
(%)

standard
deviation

Obs.

EOA 1.026∗1014 0.247 0.035 4.200 2.239∗1014 448,145,174
Contract Account 4.560∗1020 0.367 0.050 2.562 6.245∗1022 300,592,852

Ether 1.056∗1014 0.290 0.038 4.441 3.026∗1014 500,060,320
Token 5.513∗1020 0.316 0.044 2.088 6.866∗1022 248,677,706
DApps 5.464∗1020 0.320 0.048 2.133 7.129∗1022 230,497,041
Others 2.148∗1019 0.289 0.037 4.295 1.212∗1021 518,240,985

All 1.831∗1020 0.301 0.040 3.341 3.957∗1022 748,738,026
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Table 3: Key Variables and Correspondence with Sections and Formulas

This table delineates the correspondence between key variables and formulas
mentioned in Sections 2.3 and 4, and provides data sources for variable construc-
tions.

Variables Data Sources Corresponding Equation Corresponding Section

GasPrice On-chain data 1-2, 4, 11, 14, 16, 19, 2.3, 4
GasUsed On-chain data 1-4, 11 2.3, 4
GasLimit On-chain data 3-4 2.3
GasFee On-chain data 1-2 2.3
EtherPrice CoinMarketCap 2, 4, 5, 8 2.3
ExtraGasReserved On-chain data 3, 15 2.3, 4
ExtraGasFee On-chain data 4 2.3
EtherReturn CoinMarketCap 5, 17 2.3, 4
TokenReturn CoinMarketCap 6, 17 2.3, 4
ReturnVolatility CoinMarketCap 7 2.3
EtherVolatility CoinMarketCap 8 2.3
FailureRate On-chain data 9, 16 2.3, 4
NetworkUtilization On-chain data 10, 15 2.3
PercentageTransactionFee On-chain data, CoinMarketCap 11 4
Value On-chain data, CoinMarketCap 11 4
RecommendedGasPrice ETH Gas Station 12 4
DelayTime ETH Gas Station 13 4
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Table 4: The Overall Effects of EIP-1559 on Miners’ Mining Rewards and Users Trading Behavior

This table reports the estimated effect of the launch of EIP-1559 mechanism on
both miners’ mining rewards and users’ trading behavior. Panel A describes the
linear regression results with the log of weekly mining rewards (LnRewards) as
the dependent variable and indicator of EIP-1559 (Burning) as independent vari-
ables using different estimated time windows and excluding a number of periods
around the launch of EIP-1559. The time function f (week) used in the regres-
sion equals to week + week × burning. The first two columns use the whole 10
weeks and 20 weeks before and after the launch of EIP-1559. The third (fifth) and
forth (last) columns systematically exclude one (two) week(s) before and after the
launch of EIP-1559. All columns include miner fixed effect and a set of controls.
Panel B describes the linear regression results with the log of weekly transaction
volume (LnVolume) as dependent variable. Standard errors are reported in paren-
theses. The sample period is from February 2021 to February 2022 which covers
a total of 135,469 miner addresses and 252,112 user addresses.

(a) Weekly Mining Rewards

Main Exclude a week Exclude two weeks

(1) (2) (3) (4) (5) (6)
LnRewards 10 weeks 20 weeks 10 weeks 20 weeks 10 weeks 20 weeks

Burning -0.007*** -0.008*** -0.007*** -0.006*** -0.008*** -0.002***
(0.000) (0.000) (0.000) (0.000) (0.001) (0.000)

Observations 2,709,380 5,418,760 2,438,442 5,147,822 2,167,504 4,876,884
R-squared 0.020 0.058 0.022 0.060 0.019 0.062
Number of miners 135,469 135,469 135,469 135,469 135,469 135,469
Controls YES YES YES YES YES YES
Month FE NO NO NO NO NO NO

Robust standard errors in parentheses
*** p<0.001, ** p<0.01, * p<0.05
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Table 4: The Overall Effects of EIP-1559 on Miners’ Mining Rewards and Users Trading Behavior

(b) Weekly Transaction Volume

Main Exclude a week Exclude two weeks

(1) (2) (3) (4) (5) (6)
LnVolume 10 weeks 20 weeks 10 weeks 20 weeks 10 weeks 20 weeks

Burning 0.002*** 0.003*** 0.003*** 0.004*** 0.005*** 0.006***
(0.000) (0.000) (0.001) (0.000) (0.001) (0.001)

Observations 5,045,800 10,091,600 4,541,220 9,587,020 4,036,640 9,082,440
R-squared 0.000 0.002 0.000 0.002 0.000 0.002
Number of users 252,112 252,112 252,112 252,112 252,112 252,112
Controls YES YES YES YES YES YES
Month FE NO NO NO NO NO NO

Robust standard errors in parentheses
*** p<0.001, ** p<0.01, * p<0.05
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Table 5: DID—Heterogenous effect of EIP-1559 on miners’ week rewards

This table describes the heterogenous effects of EIP-1559 on miners’ weekly mining re-
wards using a DID approach with different estimated time windows. The dependent vari-
able is the log of weekly mining rewards (LnRewards), and the heterogeneous effects are
captured by the interaction term of the log of the percentage of blocks mined by the min-
ing pool to which the miner belongs and the indicator of EIP-1559 (LnPercentBlocks×
Burning), and the interaction term of the log of rewards received before the launch of EIP-
1559 and the indicator of EIP-1559 (LnBe f oreRewards×Burning). Miner fixed effects,
month fixed effects and a set of controls (i.e., the log of the total number of mining pools’
miners, the log of weekly median gas price, the log of a weekly deviant of gas price, the
log of the average weekly exchange rate of Ether, the log of weekly difficulty of mining
blocks, the log of the weekly average number of transactions) are included.The sample
period is from February 2021 to February 2022 which covers a total of 135,469 miner
addresses.

(1) (2) (3) (4)
VARIABLES 20 weeks 20 weeks 10 weeks 10 weeks

LnPercentBlocks*Burning 0.043*** 0.001
(0.003) (0.002)

LnBeforeRewards*Burning -0.055*** -0.022***
(0.001) (0.001)

LnMiners 0.010*** 0.009*** 0.018*** 0.016***
(0.001) (0.001) (0.001) (0.001)

LnGasprice 0.014*** 0.014*** -0.002*** -0.002***
(0.000) (0.000) (0.000) (0.000)

LnDeviantGasprice 0.000*** 0.000*** -0.000*** -0.000***
(0.000) (0.000) (0.000) (0.000)

EthReturn 0.024*** 0.028*** 0.041*** 0.054***
(0.003) (0.003) (0.010) (0.010)

LnDifficulty -0.078*** -0.080*** -0.019*** -0.02***
(0.002) (0.002) (0.002) (0.002)

LnTransactions 0.010*** 0.011*** 0.054*** 0.057***
(0.001) (0.001) (0.004) (0.004)

Observations 5,418,760 5,418,760 2,709,380 2,709,380
R-squared 0.060 0.145 0.021 0.045
Number of miners 135,469 135,469 135,469 135,469
Miners FE YES YES YES YES
Month FE YES YES YES YES

Robust standard errors in parentheses
*** p<0.001, ** p<0.01, * p<0.05 48



Table 6: DID—Heterogenous Effects of EIP-1559 on users’ Trading behavior

This table describes the heterogenous effects of EIP-1559 on users’ weekly trading activi-
ties using a DID approach with different estimated time windows. The dependent variable
is the log of weekly transaction volume (LnVolume) and the log of the number of weekly
used DApps, and the heterogenous effects are captured by the interaction term of the log
of transaction volume made before the launch of EIP-1559 and the indicator of EIP-1559
(Be f oreTransactions×Burning), and the interaction term of the log of balance held be-
fore the launch of EIP-1559 and the indicator of EIP-1559 (Be f oreBalance×Burning).
User fixed effects, month fixed effects and a set of controls (i.e., the log of weekly median
gas price, the log of weekly deviant of gas price, the log of average weekly exchange rate
of ether, the log of weekly difficulty of mining blocks, the log of weekly average number
of transactions) are included.The sample period is from February 2021 to February 2022
which covers a total of 252,112 user addresses.

(1) (2) (3) (4)
VARIABLES 20 weeks 20 weeks 10 weeks 10 weeks

LnBeforeTransactions*Burning -0.032*** -0.001
(0.001) (0.001)

LnBeforeBalance*Burning -0.037*** 0.001
(0.002) (0.002)

LnGasprice 0.004*** 0.004*** 0.002*** 0.002***
(0.000) (0.000) (0.000) (0.000)

LnDeviantGasprice -0.000 -0.000 -0.000*** -0.000***
(0.000) (0.000) (0.000) (0.000)

EthReturn 0.014*** 0.014*** 0.013* 0.013*
(0.004) (0.004) (0.006) (0.006)

LnDifficulty -0.002 -0.002*** 0.003* 0.003*
(0.001) (0.002) (0.002) (0.002)

LnTransactions 0.011*** 0.011*** 0.014** 0.014***
(0.002) (0.002) (0.005) (0.005)

Observations 10,091,600 10,091,600 5,045,800 5,045,800
R-squared 0.008 0.145 0.000 0.00
Number of users 252,290 252,290 252,290 252,290
Users FE YES YES YES YES
Month FE YES YES YES YES

Robust standard errors in parentheses
*** p<0.001, ** p<0.01, * p<0.05
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Table 7: The Effect of Airdrop on Users’ Weekly Transaction Volume

This table reports the linear regression results of the log of transaction volume
on the interaction term of indicator of airdrop and indicator of treatment group
(a f ter× airdrop) with different bandwidths. The first two columns use a band-
width of 0.015 to divide the RD sample, the third and fourth columns use a band-
width of 0.01 to divide the RD sample, and the last two columns use a bandwidth
of 0.015 to divide the RD sample. User fixed effects and a set of controls (i.e., the
log of weekly median gas price, the log of weekly average exchange rate of ether,
the log of weekly average exchange rate of OMG token, the log of weekly average
difficulty of mining blocks, the log of weekly average hash rate, the log of weekly
average number of transactions, the log of weekly average daily number of blocks
mined, etc.) are included. The sample period is from June 2017 to December
2017.

(1) (2) (3) (4) (5) (6)

VARIABLES bandwidth 0.015 bandwidth 0.01 bandwidth 0.005

after*airdrop 0.038*** 0.035*** 0.037*** 0.033*** 0.038*** 0.034***
(0.005) (0.005) (0.005) (0.005) (0.006) (0.006)

after -0.101*** -0.102*** -0.097***
(0.002) (0.002) (0.002)

Observations 880,771 880,771 760,608 760,608 585,100 585,100
R-squared 0.010 0.013 0.011 0.013 0.011 0.013
Number of users 36,700 36,700 31,693 31,693 24,380 24,380
Controls NO YES NO YES NO YES
Weighted YES YES YES YES YES YES
Users FE YES YES YES YES YES YES
Month FE NO YES NO YES NO YES

Robust standard errors in parentheses
*** p<0.001, ** p<0.01, * p<0.05
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Table 8: The Effect of OMG Airdrop on Native Token (ETH) Returns

This table reports the impacts of airdrop on native token return using SCM. Panel
A describes the weights of each blockchain that constitutes “synthetic ETH”.
Panel B describes the means of native token return predictors of ETH and ”syn-
thetic ETHs”. Panel C describes the daily return difference between ETH and
”synthetic ETH” (i.e., the average treatment effect), as well as the placebo test
results (in the third column).

(a) Blockchain Weights in the Synthetic Ethereum

Blockchain Weight Blockchain Weight

Bitcoin 0.713 Neo 0
Bitcoin Cash 0 Peercoin 0.116
Binance Smart Chain 0 SpreadCoin 0
Dash 0 Steem 0
Ethereum Classic 0.032 Waves 0.04
Litecoin 0.099 Monero 0
Zclassic 0 Zcash 0

(b) Native Token Returns Predictor Means

Variables Real Ethereum Synthetic Ethereum

LnVolume 20.484 19.989
LnMarketCap 24.085 23.502
LnVolatility 1.603 2.501
PoW 1 0.96
Return8 0.101 0.100
Return11 -0.064 -0.064
Return14 0.021 0.020

(c) Post-Treatment Effects with Placebo Test

Post Day Estimates Pvals-std Post Day Estimates Pvals-std

c1 -0.007 0.429 c8 0.011 0.429
c2 0.005 0.643 c9 0.008 0.286
c3 0.012 0.429 c10 (end day) -0.004 0.714
c4 -0.013 0.286 c11 0.021 0.000
c5 0.005 0.357 c12 0.044 0.000
c6 0.052 0.000 c13 -0.017 0.214
c7 -0.009 0.500 c14 -0.024 0.000
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(a) Network Utilization (b) Daily Active DeFi Applications
This figure depicts the development of the Ethereum ecosystem. Panel A shows
the daily network utilization of Ethereum from August 2015 to October 2022.
Network utilization is measured as the total gas used divided by the total gas limit
of the Ethereum network. The dash line perpendicular to the X-axis represents
the launch date of EIP-1559 (August 5, 2022). Panel B shows the evolvement of
daily active DeFi applications and other DApps, with the y-axis representing the
number of active DApps.

Figure 1: Ethereum Ecosystem

52



(a) Network (b) Enginevector Centrality of DApps

This figure depicts the flow of ETH among DApps and exchanges on Ethereum
from 2015 to 2022. Panel B reports the the enginevector centrality and total
received Ether of each DApps. The primary y-axis represents the centrality,
the secondary y-axis represents DApps’ total received Ether, and the x-axis
represents DApps.

Figure 2: Ether Network among Exchanges and DApps
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(a) Mining Rewards Received by Mining Pools

(b) Traced Mining Rewards for Miners

This figure shows the concentration of mining capacity on Ethereum. Panel A
depicts the distribution of block rewards for mining pools and daily total block
rewards. The primary y-axis represents the percentage of block rewards, the
secondary y-axis represents daily total block rewards. Each blue line repre-
sents a different group of miners, and the orange line represents total block
rewards. Panel B depicts the traced mining rewards for individual miners.
The y-axis represents the percentage of total mining rewards, and the x-axis
represents the date. Each line represents a different percentage of miners.

Figure 3: The Concentration of Mining Capacity
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(a) Distribution of Ether between Users and Other
Stakeholders

(b) Herfindahl–Hirschman Index

(c) The Concentration of All Addresses (d) The Concentration of EOAs

Ownership distribution of Ether. Panel A illustrates the ownership of Ether be-
tween EOAs, DApps and other smart contract, the y-axis represents percent-
age of Ether. Panel B depicts the Herfindahl–Hirschman Index (HHI) of the
distribution of ether tokens among all addresses and EOAs. Panel C illustrates
the distribution of Ether among all addresses. The y-axis represents percent-
age of Ether, and the x-axis represents date. Each line represents a different
group of addresses (i.e., top x% addresses sorted by balance). Panel D illus-
trates the distribution of Ether among EOAs (non-DApps and non-exchange
related EOAs), denoted using the percentage share of all ETH held by these
EOAs.

Figure 4: Ownership of Ether
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(a) Ether and token (b) Ether and token

(c) DApps, EOAs and SCs (d) DApps, EOAs and SCs

This figure depicts the daily transaction volume on Ethereum and its composi-
tion. The two pictures at the top illustrate the transaction volume using Ether
and transaction volume using ERC-20 tokens on Ethereum. The two pictures
at the bottom illustrate the transaction volume of 9 categories of DApps, users
and other contracts. Transaction volume is calculated in dollars. For the vis-
ibility of figure, we exclude data on 2017.11.03 and 2018.04.24 due to two
extremely high transaction values of token-related transactions.

Figure 5: Decomposition of Transaction Volume
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This figure reports the parallel trends of the treatment group and control group
with a 90% confidence interval bar. The y-axis is the log of Ether transaction
volume.

Figure 6: Visual Checks of Parallel Trends

This figure depicts the return dynamics of Ether and “synthetic Ether.” The
vertical axis represents the returns, and the horizontal axis represents the date.
Day 15 is the start of the OmiseGo airdrop and day 25 is the end.

Figure 7: Trends in Native Cryptocurrency Return: Ethereum vs. Synthetic Ethereum
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Online Appendix

Table OA.1: Annualized Volatility of Ether and 157 ERC-20 Tokens (Dec 2017 - Dec 2020)

Token
Symbol

Volatility
2018

Volatility
2019

Volatility
2020

Volatility
3 years

Average Rolling
volatility

ETH 107% 79% 93% 163% 91%
STX 174% 150% 292% 372% 180%
KCS 195% 101% 72% 231% 101%

CAPP 208% 130% 179% 303% 152%
DLT 193% 178% 113% 286% 153%
EDG 136% 136% 183% 265% 140%
DCN 272% 249% 338% 500% 255%
TNT 201% 159% 170% 308% 166%
DNT 189% 102% 238% 321% 139%
PLBT 198% 276% 230% 410% 230%
DATA 154% 137% 379% 431% 210%
BAT 151% 95% 101% 205% 111%
AVT 202% 269% 262% 427% 245%
POE 183% 106% 217% 303% 140%

MANA 179% 100% 124% 239% 126%
GVT 184% 95% 138% 249% 126%
NMR 191% 127% 287% 368% 196%
CDT 181% 128% 146% 266% 144%
REP 131% 102% 133% 213% 118%

BCDN 263% 344% 131% 453% 246%
BNT 110% 82% 160% 212% 109%
PRO 217% 108% 226% 332% 171%
RDN 158% 109% 159% 249% 139%
PKT 238% 233% 269% 428% 220%

WABI 191% 143% 132% 272% 149%
SKIN 172% 306% 211% 409% 237%
OST 198% 106% 240% 329% 149%
VIB 175% 111% 119% 238% 129%

DICE 179% 136% 296% 372% 165%
REV 170% 109% 86% 219% 112%

MORE 188% 144% 205% 313% 174%
EVR 263% 713% 622% 984% 548%
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VEE 184% 6718% 170% 6722% 2024%
DENT 241% 125% 124% 299% 155%
PRIX 301% 296% 391% 575% 307%
RVT 199% 437% 252% 543% 297%
MGO 182% 219% 274% 395% 221%
SALT 158% 150% 233% 320% 164%
DRGN 175% 124% 163% 269% 145%
FUN 159% 99% 119% 223% 118%
CVC 144% 97% 204% 268% 129%
MNE 302% 458% 626% 833% 460%

SPANK 345% 173% 769% 861% 359%
OPT 866% 472% 243% 1017% 550%

ELTCOIN 361% 671% 350% 838% 475%
TIME 214% 147% 227% 345% 191%
XAUR 142% 138% 161% 255% 140%
LINK 163% 133% 125% 244% 132%
MDA 188% 137% 124% 264% 144%
BLUE 274% 602% 1455% 1604% 734%
SMT 198% 97% 151% 267% 133%

POWR 147% 90% 133% 218% 118%
VGX 190% 125% 177% 289% 160%
PST 242% 197% 183% 361% 205%
B2B 328% 163% 234% 434% 209%
MYB 287% 307% 484% 641% 311%
LOC 198% 99% 129% 256% 129%
ITC 235% 166% 322% 432% 215%
RLC 181% 124% 152% 267% 139%

QASH 138% 97% 124% 209% 112%
GAME 140% 207% 128% 281% 155%
MDS 194% 132% 139% 273% 142%

WINGS 150% 146% 215% 300% 169%
GNO 133% 95% 119% 203% 105%
DPY 177% 198% 166% 313% 181%
GNX 154% 156% 204% 299% 163%
OAX 173% 224% 184% 338% 181%
WRC 244% 548% 769% 976% 515%
NGC 142% 167% 185% 287% 160%
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SNT 166% 82% 139% 232% 111%
ERO 215% 530% 342% 667% 387%
IFT 264% 443% 194% 552% 321%
ATL 227% 314% 388% 548% 276%
ZSC 155% 119% 193% 275% 146%
SAN 168% 121% 131% 245% 135%
CAG 186% 125% 297% 372% 186%
GNT 158% 82% 143% 229% 119%
DAT 188% 223% 134% 321% 183%

VOISE 256% 587% 5711% 5761% 971%
IETH 468% 324% 247% 620% 308%
JET 605% 290% 447% 806% 391%

UQC 276% 209% 226% 414% 243%
PRE 227% 259% 217% 406% 209%

PTOY 145% 135% 187% 273% 149%
AMM 254% 293% 213% 442% 253%
SUB 170% 213% 144% 308% 168%
FYP 341% 304% 344% 572% 322%
VERI 178% 184% 234% 347% 193%
REQ 160% 110% 155% 249% 133%
PRA 171% 347% 562% 684% 363%

REAL 343% 490% 306% 672% 361%
SNM 162% 146% 159% 269% 149%
QSP 161% 103% 142% 238% 128%
DRT 197% 296% 415% 547% 277%

DBET 243% 294% 762% 855% 444%
MKR 130% 87% 117% 195% 106%
ANT 143% 109% 151% 235% 126%
TFL 171% 188% 203% 325% 176%

INXT 543% 243% 336% 683% 351%
TKN 177% 189% 135% 291% 167%
DOV 260% 207% 258% 421% 229%
ADX 187% 167% 160% 298% 169%

SNGLS 177% 112% 187% 281% 134%
1ST 173% 210% 218% 349% 183%

MTH 194% 155% 134% 282% 155%
COB 253% 292% 299% 488% 267%
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EVC 441% 294% 285% 602% 333%
MCO 154% 90% 156% 237% 113%

STORJ 139% 178% 155% 274% 147%
WTC 174% 106% 132% 243% 127%
PAY 156% 123% 122% 233% 134%
SWT 165% 304% 327% 476% 250%
HGT 433% 396% 201% 620% 336%
LRC 175% 113% 141% 252% 130%

STMX 264% 87% 135% 309% 136%
ELF 175% 95% 194% 278% 136%
HVN 180% 186% 261% 368% 202%
KICK 188% 143% 287% 372% 202%
XUC 90% 90% 195% 233% 113%
NIOX 306% 457% 2483% 2549% 814%

ORMEUS 188% 1041% 188% 1074% 451%
TRST 147% 178% 212% 314% 170%
HMQ 142% 134% 165% 256% 143%
BON 219% 302% 252% 450% 250%
ADT 309% 423% 932% 1074% 427%
DTR 162% 173% 87% 253% 127%
ONG 351% 335% 373% 612% 324%
CND 204% 106% 118% 258% 126%
PPT 159% 116% 148% 247% 127%
SCL 321% 2807% 364% 2849% 1060%

USDT 10% 8% 11% 17% 9%
KNC 151% 117% 126% 229% 127%
BMC 149% 142% 474% 517% 242%
DGD 163% 120% 98% 226% 119%
SUR 184% 241% 942% 990% 367%
PLR 192% 178% 153% 302% 169%
ZRX 163% 86% 119% 220% 116%
LA 166% 151% 190% 294% 149%

DAY 329% 225% 246% 468% 249%
VIBE 472% 125% 134% 506% 159%
UFR 245% 304% 388% 550% 308%
TIX 173% 354% 625% 740% 347%

FUEL 168% 136% 337% 401% 182%
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EBTC 273% 336% 1306% 1379% 557%
MLN 168% 123% 171% 270% 149%

FLIXX 251% 176% 302% 430% 220%
ENG 170% 123% 168% 269% 142%
EVX 171% 201% 120% 290% 153%
SNC 188% 187% 152% 306% 164%
MTL 154% 116% 115% 225% 127%
ENJ 173% 195% 116% 285% 152%
TNB 168% 113% 125% 238% 128%
DAM 171% 399% 721% 842% 424%
IND 118% 1215% 493% 1319% 636%
RCN 162% 151% 119% 252% 145%
LUN 193% 110% 164% 276% 136%
IXT 210% 395% 701% 834% 405%
ART 536% 328% 802% 1019% 444%
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Table OA.4: The Effect of Gas Price on Delay Time

This table gives regression results of the delay time on gas price. Panel A lists or-
dered logistic regression results in Regression 1, ordered probit regression results
in Regression 2, and OLS regression results in Regression 3. Panel B shows the
marginal effect of gas price on four levels of delay time. The sample period is from
February 2021 to May 2021. There are 48,292 observations in each regression.

(a) Main Effect

DelayTime Ologit (1) Oprobit (2) OLS (3)

GasPrice -0.0861** -0.0508** -0.48**
(-64.17) (-64.99) (-74.66)

Cut point 1 -2.40 -1.43
Cut point 2 -1.20 -0.71
Cut point 3 -0.02 0.01

Log likelihood -64402.247 -64464.91
Pseudo R2 3.8% 3.7% 7.3% (R2)

(b) The Average Marginal Effect of Gas Price
on Delay Time

Ologit (1)
dy/dx

Oprobit (2)
dy/dx

DelayTime
(=0.5 min)

0.0148
(69.28)

0.0150
(70.24)

DelayTime
(=2 min)

0.0052
(49.89)

0.0041
(47.17)

DelayTime
(=5 min)

-0.0046
(-51.02)

-0.0038
(-49.16)

DelayTime
(=30 min)

-0.0150
(-65.00)

-0.0153
(-66.96)
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Table OA.5: The Effect of Congestion on Gas Price

This table reports OLS regression results of the log of gas price ln(GasPrice) on both
the log of network utilization with a lag of one day L.ln(NetworkUtilization) and the log
of network utilization ln(NetworkUtilization) at transaction-level. We employ a gener-
alized linear regression model in Spark Machine Learning (ML) library to estimate the
transaction-level regression which involves all 748,738,026 transactions. The sample pe-
riod is October 2017-August 2021. There are 748,738,026, 248,677,706, 448,145,174 and
51,915,146 observations in Regression 1-4 for all transactions and three types of transac-
tions separately.

(a) One Day Lag Prediction

Ln(GasPrice) All (1) Token (2) EOA (3) SC (4)

L.Ln(NetworkUtilization) 3.429*** 4.316*** 2.809*** 3.087***
(0.000) (0.001) (0.001) (0.001)

L.EthReturn 0.523*** 0.474*** 0.553*** 0.377***
(0.001) (0.001) (0.001) (0.003)

L.ln(BlockRewards) -1.561*** -1.841*** -1.145*** -1.363***
(0.000) (0.001) (0.000) (0.001)

L.ln(EthPopularity) 0.349*** 0.234*** 0.391*** 0.404***
(0.000) (0.000) (0.000) (0.00)

Obs. 748,738,026 248,677,706 448,145,174 51,915,146
AIC 2.614*109 7.241*108 1.644*109 1.716*108

Null Deviance 1.935*109 3.908*108 1.290*109 1.178*108

(b) Contemporaneous Regression

Ln(GasPrice) All (1) Token (2) EOA (3) SC (4)

Ln(NetworkUtilization) 7.835*** 9.693*** 6.432*** 7.195***
(0.001) (0.002) (0.001) (0.003)

EthReturn -0.033*** -0.138*** 0.027*** -0.095***
(0.001) (0.001) (0.001) (0.003)

ln(BlockRewards) -1.481*** -1.768*** -1.074*** -1.293***
(0.000) (0.001) (0.000) (0.001)

ln(EthPopularity) 0.356*** 0.241*** 0.400*** 0.409***
(0.000) (0.000) (0.000) (0.00)

Obs. 748,738,026 248,677,706 448,145,174 51,915,146
AIC 2.602*109 7.188*108 1.638*109 1.704*108

Null Deviance 1.935*109 3.908*108 1.290*109 1.178*108
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Table OA.6: Extra Gas Fee Reserved

This table reports extra gas reserved due to the gas limit policy. Panel A illustrates
how much users need to preserve in their wallets compared with the actual paid
gas fee. Panel B gives the OLS regression prediction of extra gas reserved using
the lag of network utilization, the return of Ether exchange rate, median gas price,
block rewards and the popularity of Ethereum as predictors. We employ gener-
alized linear regression model in Spark ML library to estimate transaction-level
regression, and set the series parameters including Family, Link, MaxIter.

(a) How Much Users Need to Reserve in the Wallets

mean median 25% 75%
standard
deviation

Obs.

ExtraGasFee ($) 5.455 0.077 0.00 1.559 37.049 748,738,026
GasFee ($) 4.075 0.434 0.068 2.701 135.535 748,738,026

(b) The Determinants of Extra Gas Reserved

Ln(ExtraGasReserved) Lag (1) Contemporaneous (2)

L.ln(NetworkUtilization) 0.409***
0.002

L.EthReturn -0.695***
0.003

L.ln(MedianGasPrice) 0.048***
0.000

L.ln(BlockRewards) -0.990***
0.001

L.ln(EthPopularity) -0.076***
0.000

ln(NetworkUtilization) 1.095***
0.005

EthReturn -0.358***
0.003

ln(MedianGasPrice) 0.060***
0.000

ln(BlockRewards) -0.954***
0.001

ln(EthPopularity) -0.096***
0.004

Obs. 748,738,026 748,738,026
AIC 4.622*109 4.622*109

Null Deviance 2.043*1010 2.043*1010
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Table OA.7: Factors Influencing Failure

This table gives transaction-level logistic regression prediction of Failure using
whether there is extra gas set for the transaction (GasExtra), the log of gas price
ln(GasPrice), and the lag of median gas price, the return of Ether exchange rate,
network utilization, block rewards and the popularity of Ethereum. We employ a
generalized linear regression model in Spark ML library to estimate transaction-
level regression, and set the series parameters including Family, Link, MaxIter
and RegParam as “binomial”, “logit”, 10, and 0.3 respectively.

Lag Contemporaneous

Failure All (1) Token (2) All (3) Token (4)

GasExtra -0.670*** -0.877*** -0.670*** -0.877***
(0.000) (0.000) (0.000) (0.000)

Ln(GasPrice) -0.247*** -0.421*** -0.250*** -0.418
(0.000) (0.000) (0.000) (0.000)

L.ln(MedianGasPrice) -0.120*** -0.311***
(0.000) (0.000)

L.EthReturn -0.002*** -0.004***
(0.000) (0.001)

L.ln(NetworkUtilization) -0.073*** -0.103***
(0.000) (0.001)

L.ln(BlockRewards) 0.200*** 0.302***
(0.000) (0.001)

L.ln(EthPopularity) 0.087*** 0.023***
(0.003) (0.003)

ln(MedianGasPrice) -0.114*** -0.310***
(0.000) (0.000)

EthReturn -0.007*** -0.008***
(0.000) (0.001)

ln(NetworkUtilization) -0.033*** -0.005***
(0.000) (0.001)

ln(BlockRewards) 0.201*** 0.301***
(0.000) (0.000)

ln(EthPopularity) 0.079*** 0.012***
(0.002) (0.003)

Obs. 319,679,841 267,764,695 319,679,841 267,764,695
AIC 1.484*108 8.842*107 1.485*108 8.856*107

Null Deviance 1.614*108 1.104*108 1.614*108 1.104*108
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Table OA.8: Relative Token Returns

This table reports the coefficient and R square of Ethereum-related token returns
on Ether return and the square of Ether return. The results of the fixed individual
(regard each token as an individual) effect regression are listed in the first column,
and the results of OLS regression with the average token return as the dependent
variable are listed in the second column. The sample period is December 2017 to
December 2020. There are 157 tokens in the regressions.

(1) (2)
TokenReturn Fixed Effect OLS

EthReturn 0.777*** 0.776***
(0.016) (0.024)

EthReturn2 -0.826*** -0.802***
(0.052) (0.278)

Observations 171,758 1,094
R-squared 2.1% 64.6%
Number of tokens 157

Robust standard errors in parentheses
*** p<0.001, ** p<0.01, * p<0.05
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Table OA.9: The Determinants of Token Exchange Rate Volatility

This table reports the determinants of Ether exchange rate and Ether-related ERC-20
token exchange rate. The first two columns report the OLS regression results of the
log of daily Ether exchange rate volatility on the lag of average Ether exchange rate
(L.lnAvgEtherPirce), the log of failure rate (LnFailureRate), the log of a number of trans-
actions (LnTransaction), the log of daily median gas price (LnGasPrice), the log of block
rewards (LnBlockRewards) and the log of Ethereum popularity (LnPopularity), while the
last two columns report the regression results of the log of daily Token Exchange Rate
Volatility with token fixed effect. The sample period is October 2017 to August 2021.

Ether Exchange Rate Volatility Token Exchange Rate Volatility

Lag Contemporaneous Lag Contemporaneous

L.ln(NetworkUtilization) 1.724*** 0.018
(0.190) (0.030)

L.ln(FailureRate) -2.564* 0.397***
(1.339) (0.091)

L.ln(MedianGasPrice) -0.103*** 0.044***
(0.026) (0.003)

L.ln(BlockRewards) 0.571*** -0.129***
(0.128) (0.034)

L.ln(Popularity) 1.237*** 0.132***
(0.028) (0.011)

L.EthReturn -0.495 -0.008
(0.337) (0.006)

ln(NetworkUtilization) 4.145*** -0.053
0.421 0.064

ln(FailureRate) -3.976** 0.017
1.236 (0.089)

ln(MedianGasPrice) -0.109*** 0.046***
0.025 (0.003)

ln(BlockRewards) 0.747*** -0.093**
0.124 (0.034)

ln(Popularity) 1.237*** 0.131***
0.027 (0.011)

EthReturn -0.769 -0.193***
(0.469) 0.011

Observations 1,388 1,388 782,974 782,974
R-squared 0.711 0.731 0.081 0.082
Number of Tokens 1 1 1,297 1,297
Tokens FE NO NO YES YES
Month and Year FE NO NO YES YES

Robust standard errors in parentheses
*** p<0.001, ** p<0.01, * p<0.05
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Table OA.10: Variables Description in the Analysis of EIP-1559 and OmiseGo Airdrop

Variables Description

Dependent Variables
LnRewards The log of weekly mining rewards received by miners (in ether)
LnVolume The log of weekly transaction volume in ether made by miners/users
LnTransactions The log of weekly number of transactions made by miners/users
LnDApps The log of weekly number of used DApps by miners/users

Independent Variables

Burning
A dummy variable indicating the event of EIP-1559. Burning equals to one after 2021.08.05,
and 0 otherwise.

LnPercentBlocks
The log of the percentage of blocks mined by the mining pool to which the miner belongs between
February 5, 2021 and August 5, 2021 in the total number of blocks.

LnBeforeRewards The log of total mining rewards received by miners between February 5, 2021 and August 5, 2021.
LnBeforeTransactions The log of total number of transactions made by users between February 5, 2021 and August 5, 2021.
LnBeforeBalance The log of average balance of users between February 5, 2021 and August 5, 2021.

Airdrop
A dummy variable indicating the event of OmiseGo Airdrop. Airdrop equals to one if
he/she received the airdrop, and 0 otherwise.

After
A dummy variable indicating the time before or after OmiseGo airdrop. After equals to
one after he/she received the airdrop, and 0 otherwise.

After*Airdrop The interaction term of variable After and variable Airdrop.

Control Variables
LnGasPrice The log of weekly median gas price.
LnDeviantGasPrice The log of weekly deviant of gas price.
EthReturn The average daily return of Ether exchange rate.
LnDifficulty The log of weekly difficulty of mining blocks.
LnTransactions The log of weekly average number of transactions.
LnMiners The log of total number of miners who have received mining rewards from the mining pool. LnHashRate
The log of weekly average hash rate.
LnBlocks The log of weekly average daily number of blocks mined.

Byzantium
A dummy variable indicating the event of Byzantium hard fork.
Byzantium equals to one after Byzantium hard fork, and 0 otherwise.

OMG
A dummy variable indicating the issuance of tokens.
OMG equals to one after the first day of the token issuance, and 0 otherwise.

Announcement
A dummy variable indicating the date on which OmiseGo airdrop announcement published.
Announcement equals to one after the day of the announcement, and 0 otherwise.
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Table OA.11: Transaction-level Summary Statistics on EIP-1559 Analyses Sample

This table reports summary statistics of key transaction-level variables used in the
analyses of EIP-1559. Panel A describes weekly block rewards, number of trans-
actions, transaction volume and number of used DApps of miners before and after
the launch of EIP-1559. Panel B describes the weekly number of transactions,
transaction volume and number of used DApps of the three group of users before
and after the launch of EIP-1559. The sample period is from February 2021 to
February 2022.

(a) Summary Statistics of Miners

Before EIP-1559 After EIP-1559

mean Standard error Mean Standard error

Rewards 0.207 21.747 0.065 8.243
nTrans 0.502 15.706 0.225 8.451
Volume 1.340 441.432 0.456 136.134
nDApps 0.033 0.432 0.022 0.339

(b) Summary Statistics for Users

Before EIP-1559 After EIP-1559
Original Merged

nTrans Volume nDApps nTrans Volume nDApps

Group1
11.776 53.810 1.645 5.745 24.559 0.993

236,636 236,636
(168.514) (2048.037) (2.907) 132.336 (1212.136) (2.411)

Group2
1.493 4.016 0.772 1.111 2.706 0.501

2,588,965 258,401
(16.865) (195.298) (1.355) (25.213) (249.256) (1.303)

Group3
0.716 1.323 0.152 0.638 1.374 0.237

9,786,208 195,659
(1.154) (188.411) (0.633) (5.846) (167.762) (0.866)

All
4.796 20.313 0.896 2.565 9.816 0.594

12,614,467 693,916
(99.304) (1209.112) (2.013) (79.075) (731.239) (1.713)
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Table OA.12: DID—Heterogenous Effects of EIP-1559 on Users’ Number of DApps Used Per
Week

(1) (2) (3) (4)
VARIABLES 20 weeks 20 weeks 10 weeks 10 weeks

LnBeforeTransactions*Burning -0.029*** -0.009***
(0.001) (0.001)

LnBeforeBalance*Burning -0.006*** 0.002
(0.001) (0.001)

LnGasprice -0.001*** -0.001*** -0.001* -0.001*
(0.000) (0.000) (0.000) (0.000)

LnDeviantGasprice -0.001*** 0.001*** -0.000*** -0.000***
(0.000) (0.000) (0.000) (0.000)

EthReturn -0.003 -0.003 -0.013* -0.013*
(0.003) (0.001) (0.005) (0.005)

LnDifficulty 0.009*** 0.009*** 0.012*** 0.012***
(0.001) (0.001) (0.001) (0.001)

LnTransactions 0.003* 0.003* 0.023*** 0.023***
(0.001) (0.001) (0.005) (0.005)

Observations 10,091,600 10,091,600 5,045,800 5,045,800
R-squared 0.010 0.002 0.001 0.045
Number of users 252,290 252,290 252,290 252,290
Users FE YES YES YES YES
Month FE YES YES YES YES

Robust standard errors in parentheses
*** p<0.001, ** p<0.01, * p<0.05
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Figure OA.1: User Network among Exchanges and DApps

(a) Overall network (b) Uniswap as an example

This figure shows various types of activities on Ethereum, i.e., Ether transfer,
ERC-20 token holding, and interaction with smart contracts. In panel A, each
cluster of the sphere represents a DApp and its users. The center of the cluster
is the DApp, and the surrounding points are its users. The color of the sphere
represents its category. Lines in different colors represent different Ethereum-
related activities. The blue line represents trading activities using Ether. The
yellow line represents the holdings of ERC-20 tokens. And the green line rep-
resents the interaction between users and DApps. Panel B further shows these
Ethereum-related activities associated with Uniswap as an example. This vi-
sualization is produced using the Inddigo platform (http://inddigo.io).

Figure OA.2: Ethereum-related activities network
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(a) Shannon Entropy for Mining Pools

(b) Gini for Mining Pools

This figure shows the concentration of mining capacity on Ethereum. Panel
A and B the daily Gini coefficients and Shannon entropy coefficients at the
mining pool’s level respectively.

Figure OA.3: The Concentration of Mining Capacity (Continued)
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This figure visualizes the tracing process of mining rewards and contains a net-
work of four layers. The lower three layers are miners, miners’ primary trad-
ing network, and secondary trading network. The dark blue points represent
EOA accounts, and the light blue points represent exchanges. The light blue
line is the ether flow with EOA accounts, and the dark blue line is the ether
flow with exchanges. For better rendering, all nodes of the second and third
layer within the top 10,000 (sorted by mining rewards mined) are retained in
the visualization, while every 100 EOAs after the top 10,000 are consolidated
into a single point. This visualization is produced using the Inddigo platform
(http://inddigo.io).

Figure OA.4: The Tracing Process of Mining Rewards
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This figure illustrates the evolution of Ether ownership of Users from 2015 to
2022, which includes top 50 users and others ranking by balance.

Figure OA.5: The Evolution of Ownership Concentration of Users
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(a) EOA and SC: Value<1 (b) EOA and SC: Value>1

(c) Ether and Token: Value<1 (d) Ether and Token: Value>1

(e) DApp and Others: Value<1 (f) DApp and Others: Value>1

This figure depicts the daily median percentage transaction fee of six types
of transactions with different transaction values, with the y-axis representing
median transaction rate, and the x-axis representing date.

Figure OA.6: Median Percentage Transaction Fee
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(a) Number of Transactions-EOA (b) Number of Transactions-SC

(c) Number of Transactions-Ether (d) Number of Transactions-Token

(e) Number of Transactions-DApp (f) Number of Transactions-Other

This figure depicts the distribution of different types of transactions by value.
Panel A-F illustrate the daily number of transactions of different types and
value, with the y-axis representing the number of transactions, and the x-
axis representing date. Likewise, Panel G-L illustrates the daily proportion
of transactions of different types and value.

Figure OA.7: Distribution of Transactions by ValueOA-24



(g) Percentage of Transactions-EOA (h) Percentage of Transactions-SC

(i) Percentage of Transactions-Ether (j) Percentage of Transactions-Token

(k) Percentage of Transactions-DApp (l) Percentage of Transactions-Other

Figure OA.7: Distribution of Transactions by Value (Continued)
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This figure shows the relationship between gas price and delay time. The
y-axis represents gas price (gwei), and the x-axis represents date. Each line
represents the minimum gas price that one must set in order to successfully
complete a transaction within a specified amount of time (0.5, 2, 5, and 30
minutes).

Figure OA.8: Gas Price and Delay Time
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(a) Transaction Fee in USD Dollar (b) Percentage of Transaction Fee

This figure depicts the daily transaction fee on Ethereum and its composition.
Each color represents one of the nine categories of DApps, or users and con-
tracts. Transaction fee is calculated in dollars.

Figure OA.9: Distribution of Transaction Fee
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(a) Daily Failure Rate (b) Ratio of different reasons for transaction fail-
ure

This figure shows the daily failure rate with its reason for failure. Panel
A illustrates daily failed transaction amounts and the failures from October
2017 to August 2021. The primary y-axis represents daily failed transaction
amounts, the secondary y-axis represents daily failure rate, and the x-axis rep-
resents date. Panel B illustrates the number of failed transactions per day for
different reasons. The y-axis represents the number of transactions, and the
x-axis represents date. Different colors represent the different failed reasons,
i.e., out of gas, reverted, bad jump destination and bad instruction.

Figure OA.10: Daily Failure Rate
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(a) Daily Price of Ether

(b) Rolling Volatility of Ether

This figure depicts the daily price and rolling volatility of ether. Panel A de-
picts the daily ether price from August 2015 to December 2020, with the y-
axis representing the daily Ether to US dollar exchange rate. Panel B depicts
annualized volatility of ether from December 2017 to December 2020, us-
ing a rolling window of 183 days (half a year). The y-axis represents rolling
volatility.

Figure OA.11: Daily Price and Rolling Volatility of Ether
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This figure compares the transaction fee mechanism in the form of the first
price auction before the launch of EIP-1559 with the transaction fee mecha-
nism under EIP-1559.

Figure OA.12: Comparison between EIP-1559 and First Price Auction
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(a) The Adoption of EIP-1559

(b) Gas-related Variables under EIP-1559

Panel A depicts the adoption of EIP-1559 from August 2021 to October 2021,
with the y-axis representing the number of transactions, and the x-axis rep-
resenting date. The blue bar indicates the number of transactions using EIP-
1559, and the orange bar indicates the number of transactions not using EIP-
1559. Panel B depicts gas-related variables under EIP-1559, with the y-axis
representing price (in gwei), and the x-axis representing date. Four different
colored lines represent base fee, priority fee, max fee and gas price separately.

Figure OA.13: EIP-1559 Adoption and Gas-related Variables under EIP-1559
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(a) The Log of Weekly Mining Rewards

(b) The Log of Weekly Transaction Volume (c) The Log of Number of Weekly used DApps

Panel A, B, and C depict the average log of miners’ weekly mining rewards,
users’ weekly transaction volume, and the number of DApps users used per
week, respectively.

Figure OA.14: Discontinuity in Mining and Trading Around EIP1559
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