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Abstract

Venture capitalists have been criticized for underinvesting in basic science. Yet, the
public good nature of basic research necessitates public funding. We study whether
public funding of academic research can foster VC investments in basic science. Exploit-
ing the BRAIN Initiative, a government program for boosting neuroscience research,
we find an increase in venture capital investments in neurotech startups accompanied
by higher valuations and more successful VC exits. Three channels drive these results:
1) a higher supply of skilled labor as observed through more academic human capital
as founders or inventors; 2) more innovation, as measured by the quantity and quality
of patents, including breakthrough patents; and 3) more integration of neuroscience
with other technologies, especially AI and machine learning. Our results indicate that
by de-risking early-stage basic research, public funding crowds in private investments
in emerging technologies.

∗We would like to thank Ashish Arora, Michael Ewens, Daniel Gross, Leo Liu, Gordon Phillips, Ron
Masulis, David Robinson, Jason Zein, and WEFI Fellows for helpful comments and suggestions.

†UNSW Business School, University of New South Wales. Email: r.rezaei@unsw.edu.au
‡UNSW Business School, University of New South Wales. Email: yufeng.yao1@unsw.edu.au



1. Introduction

“That’s how it has worked in America. Government has supplied the initial
flicker–and individuals and companies have provided the creativity and innovation
that kindled that spark into a blaze of progress and productivity that’s the envy of
the world.” Al Gore (1996)

Technological innovations are based on basic science. The transformation of scientific dis-

coveries to technological innovation is a process that requires funding. Similar to Nelson

(1959), Arrow (1962) argues that private markets may underinvest in basic science “because

it is risky, because the product can be appropriated only to a limited extent, and because

of increasing returns in use”. This perspective underpins a paradigm in research policy

that government agencies or not-for-profit organizations should finance basic research. The

resulting knowledge and human capital should be left as a public good for the market to

commercialize. Examples such as the rise of information and communications sector in the

US as a result of World War II R&D efforts (Gross and Sampat, 2023) or the contribution

of federal dollars to the growth of the biotech sector (Zucker, Darby, and Brewer, 1998)

fall under this narrative.1 In line with this view, we provide evidence that public funding

of basic research can foster private financing in emerging areas, particularly by supplying

skilled labor.

Figure 1 illustrates this model, where government agencies fund basic science research,

taking place primarily in academic settings.2 The basic research spills over to applied science,

reflected in ideas or scientists with commercialization potential. A common path from here is

spin-offs from academic research labs into entrepreneurial ventures. With the backing of pri-

vate market financing, especially venture capital, these startups strive to commercialize their

innovations. The ecosystem encompassing public funding, universities, knowledge spillovers,

1More specific technologies rooted in coordinated mission-oriented government R&D programs include
nuclear energy, antibiotics, satellite navigation, mRNA vaccines, genomics, or microwave radar (Agarwal,
Kim, and Moeen, 2021)

2Our starting point is basic research in universities and not government subsidies to any private R&D.
Akcigit, Hanley, and Serrano-Velarde (2020) argue that government’s subsidies to the former are more welfare
enhancing, given the spillovers, while private markets would independently invest in the latter.
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high-tech entrepreneurship, and technology emergence has been well-documented.3 How-

ever, the effect of public funding on the investment behavior of venture capitalists (VCs)

in basic science remains unclear. On the one hand, public funding could be allocated in-

efficiently, with no real positive impact on the underlying science (Lerner, 2009). Public

funding could also crowd out private investments by subsidizing R&D for entrepreneurs,

thus reducing their need for costly dilutive VC financing. On the other hand, public funds

can crowd in private investments either by de-risking early-stage R&D or supplying basic

science as a non-excludable, non-rivalrous public good. In light of these opposing views, we

empirically address the following questions: does public funding render basic science research

more investable for VC investments? Second, through what channels can public funding spur

venture capital?

We focus on venture capital given its disproportionate role in financing innovation (How-

ell, Lerner, Nanda, and Townsend, 2020). Yet, there are concerns over the VC funds’ in-

creasing focus on the service-oriented IT sector to the detriment of startups based on basic

science.4 However, the early stages of the IT sector itself could exemplify the complemen-

tarity between VC and public investments. It is well known that the internet, the cause of

the IT revolution, was a Pentagon project. Mallaby (2022) discusses the development of web

browsers as another example. Mosaic, one of the earliest web browsers, was instrumental

in popularizing the internet by integrating multimedia such as text and graphics (Britan-

nica, 2020). Marc Andreessen developed Mosaic at the National Center for Supercomputing

Applications, an NSF-funded lab at the University of Illinois at Urbana–Champaign begin-

ning in late 1992. The funding was legislated under the High-Performance Computing Act

of 1991. After the popularity of Mosaic, the university offered Andreessen a permanent

contract on the condition of leaving Mosaic management to NSF. Andressen responded by

3e.g., (Jaffe, 1989; Audretsch and Feldman, 1996; Jensen and Thursby, 2001; Babina, He, Howell, Perlman,
and Staudt, 2023)

4Figure 2 suggests this trend with the increase in the proportion of startups classified as software compared
to a decline in the share of startups having a patent prior to their first VC financing. We recognize that
having a patent per se or being classified as a software startup are crude indicators of reliance on basic
science.
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quitting his university job and founding Mosaic Communications to work on building a ri-

val product to Mosaic. With the backing of venture capital firm Kleiner Perkins, Mosaic

Communications developed Netscape Navigator. In 1999, Netscape was acquired by AOL

for $4.3 billion.5 Andreessen later remarked that “if it had been left to private industry, it

wouldn’t have happened ... at least, not until years later.”6

The web browser example suggests that public funding could elevate university research

to a level that meets VC investment criteria. The VC model, characterized by funds with

a finite lifespan of 10-12 years, necessitates investments in projects that allow for rapid

learning and quick returns (Lerner and Nanda, 2020). The software model fits VC criteria

given the decline in the cost of experimentation in the IT sector (Ewens, Nanda, and Rhodes-

Kropf, 2018). However, science-based innovations often require more time to mature and are

fraught with higher uncertainty. Additionally, scientific discoveries are usually unpatentable,

making it difficult to protect intellectual property. This situation echoes the concerns raised

by Nelson (1959) and Arrow (1972) regarding the underinvestment of private markets in

basic research. Thus, to the extent that public funding lowers the R&D risk and supplies

basic science as a public good, we expect it to foster VC investments.

To study the causal relationship between public funding and VC investments, a quasi-

natural experiment is needed. Ideally, the experiment would exogenously shock the public

financing of basic science in one area, making it attractive for VC investment while keeping

funding of other areas unchanged. Importantly, the shock should not be driven by demand,

which is common for public funding programs that emerge in response to the market’s or

government’s demand for certain technologies.7 Such demand could drive both public and

private funding towards an area, which means VCs would have funded the area anyway. The

shock should also elevate the commercialization potential of an area while many government

5Marc Andreessen later founded Andreessen-Horowitz, one of the top VC firms globally.
6Perine (2000)
7For example, the US government has specific plans to increase spending on cybersecurity research for

national security reasons or semiconductors and artificial intelligence (AI) research for the promise of the
underlying technology.
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expenditure schemes do not meet their goals.8 We believe the Brain Research Through

Advancing Innovative Neurotechnologies (BRAIN) Initiative, a government program aimed

at revolutionizing our understanding of the human brain, possesses these characteristics. BI

is a multidisciplinary program where multiple agencies—such as NIH, NSF, FDA, IARPA,

and DARPA—fund their focus areas within the overarching goals. By 2022, NIH alone had

invested over $2.5B in BI projects, expected to rise to $5.2B by 2026, the ending year of the

program (Kaiser, 2022).

In 2013, President Obama designated brain and neuroscience research as a Grand Chal-

lenge. Grand Challenges are focused programs for expanding foundational knowledge (The

White House, 2012). Another example of a Grand Challenge is the Human Genome Project

(HGP), which for every federal dollar invested has contributed to generating $141 in the

economy (Battelle Institute, 2011). HGP has been a role model for the BRAIN Initiative

(BI), and its success has heavily influenced its design. Despite the selection of BI as a Grand

Challenge from a diverse menu of 12 other scientific projects (Sejnowski, 2014), highlighting

a degree of randomization, it could be argued that the underlying promise of neuroscience

attracted both government and private investments. In contrast, several news pieces and

the neuroscience literature report that major pharmaceutical companies were cutting their

neuroscience R&D expenses in the years leading to BI, given the high risk and failure rates

of the area.9 Also, as Figure 3 illustrates, a pre-trend in VC activity in neuro space before

2013 does not seem to exist.

To study the effect of BI, we construct a comprehensive dataset with information on

startup financing, innovation, and employees. We compile a sample of US VC-backed star-

tups between 2000-2019 using Pitchbook. We link this to LinkedIn data to get a com-

prehensive picture of startup employees and their employment history. We are specifically

interested in the academics who founded or worked for these startups. We also find in-

8An example could be supersonic aviation, where the UK, US, and France made heavy investments
without much fruition.

9See for example: (Miller, 2010; Nutt, 2011; Insel and Landis, 2013; Choi, Armitage, Brady, Coetzee,
Fisher, Hyman, Pande, Paul, Potter, Roin, and Sherer, 2014)
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formation on startup innovation activity by identifying patent portfolios of startups from

USPTO’s PatentsView, augmented with Founding Patents data of Ewens and Marx (2023).

We identify a startup as a Neuro startup if it has at least one patent related to neuro-

science in its patent portfolio. To examine the direct impact of the BI, we collect data on

grants, including the dollar amount, output publications, grant type, organizations involved,

and principal investigators from the websites of funding agencies. Subsequently, we extract

detailed information on these publications, such as titles, publication years, citations, and

co-authors, from Scopus.

We find that Neuro startups receive larger investments from the VCs post-BI compared

to various startup control groups. Such investments are also made at higher company val-

uations. These results suggest that the BI made neurotechnology investable10 for VCs. If

public funding reduces the R&D risk of startups in the funded area, we would expect this

to be most clearly reflected in the initial VC funding round. In the first VC round, the

risk is more skewed towards scientific and technological feasibility rather than product per-

formance or market validation. We find our results to be consistent across the first rounds

of VC financing, indicating more investability from the early stage. We also find that VCs

are more likely to achieve successful exits11 on Neuro startup, illustrating that acquirers and

the broader market also recognize the value of these firms. Our control groups include all

VC-backed startups, startups that successfully file for a patent from the founding year to

the year of VC exit,12 startups receiving financing three years before and after the shock,

and startups in the healthcare sector. We obtain consistent results across all these control

groups.

We propose three non-mutually exclusive channels to explain the more favorable VC

financing and outcomes for Neuro startups : 1) more scientific human capital reflected in

10By investable and investability, we mean more attractive investment opportunities.
11Following Ewens and Rhodes-Kropf (2015), a successful exit is when the startup has either IPOed or

been acquired with a reported exit value greater than two times capital invested.
12Given that these are only around 15% of VC-backed startups, we believe this represents a sample of

more science-based startups.
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the presence of academics either as founders or inventors, 2) increased innovation, and 3)

enhanced adaptability of neurotechnologies to other complementary technologies. The focus

on human capital is motivated by Bernstein, Korteweg, and Laws (2017), who find that

investors place primary emphasis on the startup’s human capital when making investment

decisions on funding early-stage ventures. We focus on academics because academia is the

main supplier of skilled labor in scientific ventures. We find that Neuro startups that receive

their first VC financing between two to four years after the shock are 7 to 13% more likely

to be founded by an academic scientist. We also observe the presence of academics in Neuro

startups as inventors. In a panel of startup-year observations, we observe a higher likelihood

of inventors in Neuro startups coming from academic backgrounds, after the BI.13 Neuralink,

a prominent Neuro startup founded in 2017, is an example of a startup that benefited from

the human capital funded by BI. Not only is Neuralink one of the top three employers of

scientists who have published under the BI funding, but its founding team also includes one

of such scientists, Philip Sabes, a professor of neuroscience at UCSF.14

Moreover, we note that Neuro startups file for more patents compared to other patenting

startups, suggesting more successful R&D outcomes and enriching the firm’s IP-based assets.

While we do not find that the average patent of Neuro startups receives more citations, we

find evidence of more breakthrough patents by these firms. These breakthrough patents are

highly attractive to VCs as they increase the prospects for strategic partnerships, acquisi-

tions, or even IPOs. Lastly, we provide evidence that post-BI, neurotechnologies became

more interdisciplinary and adaptable to other technologies, particularly AI and big data.

This reallocation to a more interdisciplinary approach could be attributed to the goals of

BI. BI’s chief objective is mapping the human brain by producing real-time pictures of neural

circuits and their interaction to understand how the nervous system functions in health and

disease (NIH, 2014). The human brain has 86 billion neurons, forming over 100 trillion con-

13These findings are consistent with those of Babina et al. (2023), who demonstrate that in the opposite
scenario, i.e., for an academic facing a cut in her public funding, the rate of academic entrepreneurship drops.

14Elon Musk is another co-founder of this company, along with six others.
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nections (Nature, 2021). Deciphering this network requires enormous computerization, which

is a focus of the program. BI has strengthened the interface between neuroscience and data

science by requiring data sharing, providing informatics infrastructure, and directly funding

AI-related research (Zador, Escola, Richards, et al., 2023). We find that NIH’s BI grants

are three times more likely to fund data science-related areas compared to conventional NIH

neuroscience grants. An editorial article in Nature (2021) notes that by the time BI ends

“it will have created a gold mine for clinical researchers working on psychiatric, neurodegen-

erative and neurodevelopmental disorders.” Furthermore, BI emphasizes interdisciplinary

research between neuroscientists, engineers, statisticians, chemists, and data scientists. A

comparison of the underlying technological areas that neuroscience companies are active in

shows that after the BI, the area becomes broader than life sciences and encompasses areas

such as AI and machine learning, big data, wearable, and quantified self.15 This is also

reflected in acquisition patterns in the neuro market. Post-BI, the number of acquisitions

of Neuro startups sharply increases. The acquirers themselves belong to a broader range of

sectors; while before the BI, the acquirers were almost entirely in the healthcare sector, after

the BI, there are acquirers in other industries such as IT, B2B, and B2C.

The adaptability of neuroscience to AI raises an omitted variable concern, whereby VCs

finance Neuro startups more favorably not because of the positive effects of BI but because

neuroscience is a fertile ground for the application of AI. While our results are robust to the

exclusion of Neuro startups that employ AI and Big Data technologies, we further provide

direct evidence on the treatment effects of BI. Arora, Belenzon, Cioaca, Sheer, and Zhang

(2023) argue that university innovation, embodied in human capital trained in universities,

is an efficient approach to fostering corporate innovation. Inspired by this, we focus on the

human capital that benefits from the BI grants, as observed through publications funded

by the BI. We collect data on these publications through separate queries from the NIH

15e.g., smartwatches, smart glasses, or other devices worn on the body to track and collect data related to
health and fitness.
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and NSF websites.16 We link these publications to Scopus and identify the co-authors of

these papers, whom we call BI scientists. The underlying assumption is that the knowledge

generated by BI is reflected in the co-authors of these papers. For every Neuro startup, we

identify the first financing round a BI scientist is hired. This round is classified as the point

when a startup is considered treated. Compared to other non-treated Neuro startups, we

find that BI-employers raise more money from VCs, highlighting the value VCs place on

scientists with exposure to BI.

Our work contributes to a large body of literature studying the role of public funding

in spurring private investments in entrepreneurship and innovation. Colonnelli, Li, and Liu

(2024) run a field experiment on VC and PE funds in China and find that fund managers

dislike investing with the government as a partner. Bai, Bernstein, Dev, and Lerner (2021)

show that government and private market co-investments can be more effective when the

rule of law is greater, and the government invests in earlier-stage projects. Closely related

is Howell (2017), who shows government grants in the form of Small Business Innovation

Research (SBIR) to startups positively impact their innovative, financial, and commercial

success only in initial Phase I. However, the Phase II SBIR grants, which constitute 80%

of the total SBIR funding, do not lead to a positive impact. This highlights that not all

public funding is equal, and both the design of the program and the focus of the funding are

crucial. For example, Akcigit et al. (2020) finds that the government’s funding targeted at

basic research is welfare-improving, whereas subsidizing applied research, which the private

sector could otherwise finance, is less effective. This insight informs our distinction from

Howell (2017), who studies direct R&D subsidies to businesses, while our work focuses on

public funding for academic research. Such research creates a public good that has yet to

spill over into the commercialization and entrepreneurial processes.

We also contribute to the literature on the economics of academic innovation. In recent

work, Lerner, Manley, Stein, and Williams (2024) highlights the role of place-specific factors

16These two are by far the largest funders of BI. Moreover, through their API, we could identify BI-funded
publications.
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in commercializing academic innovation. Lach and Schankerman (2008) and Hvide and Jones

(2018) underscore the importance of faculty incentives as a driver in fostering academic

commercialization. Fleming, Greene, Li, Marx, and Yao (2019) show that US corporations

and startups have been increasingly relying on government-backed innovation. Myers and

Lanahan (2022) document that publicly funded R&D generates significant spillovers, even

in distant technological areas. Babina et al. (2023) is another close study. They find that

private financing substitutes for public funding when federal funding for academia is cut,

and the rate of academic entrepreneurship drops. In robustness tests, they find positive

shocks to public funding reduce academic entrepreneurship. Our results, however, suggest

public funding of basic research can spur private investments and high-tech entrepreneurship,

indicating a complementary effect. This could be due to the different settings of these two

studies. We examine a large, long-standing positive shock that revolutionizes the underlying

science, whereas they focus on smaller-scale temporary negative shocks. Additionally, their

focus is on the impact of public funding on the transition of academics into entrepreneurship,

while our investigation centers on the response of VCs and the broader market. Our work

emphasizes the crucial role of public funding in facilitating private market engagement by

advancing basic science, which is reflected in the human capital of scientists.

2. Institutional Settings: BRAIN Initiative

A year before President Obama’s announcement on brain research, leading researchers

in the field published an article in Neuron, the premier journal of neuroscience, proposing

a global initiative to map the human brain (Alivisatos, Chun, Church, Greenspan, Roukes,

and Yuste, 2012).17 Up to that point, to understand neural activity, neuroscientists were

using electrodes that sparsely sample brain activity, typically capturing signals from one to

17An earlier draft of this paper had been circulated in 2012, acknowledging the initiative’s roots in Op-
portunities at the Interface of Neuroscience and Nanoscience, a workshop organized in 2011 by the Allen,
Gatsby, Kavli institutes. These institutions are major philanthropic foundations funding cutting-edge basic
science research. The initiative’s emergence from such institutions highlights the role of other not-for-profit
institutions in promoting basic science.
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a few neurons in a specific region. However, the article argues that since neural circuits may

consist of millions of neurons, it is likely that the functioning of neuronal ensembles occurs

at a multi-neuronal level, which cannot be observed through single-neuron recordings – akin

to trying to understand an HDTV program by focusing on just one or a few pixels on the

screen. The article suggests a large-scale effort to map neural circuits as follows:

“Emergent-level problems are not unique to neuroscience. Breakthroughs in un-
derstanding complex systems in other fields have come from shifting the focus
to the emergent level. Examples include statistical mechanics, nonequilibrium
thermodynamics, and many-body and quantum physics. Emergent-level analysis
has led to rich branches of science describing novel states of matter involving
correlated particles, such as magnetism, superconductivity, superfluidity, quan-
tum Hall effects, and macroscopic quantum coherence. In biological sciences, the
sequencing of genomes and the ability to simultaneously measure genome-wide
expression patterns have enabled emergent models of gene regulation, develop-
mental control, and disease states with enhanced predictive accuracy. We believe
similar emergent-level richness is in store for circuit neuroscience. An emergent
level of analysis appears to us crucial for understanding brain circuits. Likewise,
the pathophysiology of mental illnesses like schizophrenia and autism, which have
been resistant to traditional, single-cell level analyses, could potentially be trans-
formed by their consideration as emergent-level pathologies.” (p.973)

These ideas were formally consolidated into an action-based proposal, published in Sci-

ence18 by the same team, which laid the groundwork for the BRAIN Initiative, unveiled

in April 2013 by President Obama. Interestingly, five months later, the European Union

launched a brain research development program known as the Human Brain Project (HBP).

Despite their similar focus, the two projects exhibit distinct characteristics. Theil (2015) and

Modic and Feldman (2017) provide a detailed comparison of their backgrounds and differ-

ences. The overarching goal of the BI is to map the human brain, while HBP’s goal was far

more ambitious to simulate the human brain, which many found unrealistic. BI was rooted in

the interactions and consensus of a wider neuroscience community, while HBP was an initia-

tive led by a few neuroscientists. Additionally, the process leading to the BRAIN Initiative’s

designation as a Grand Challenge in the US was more transparent than its European coun-

18Alivisatos, Chun, Church, Deisseroth, Donoghue, Greenspan, McEuen, Roukes, Sejnowski, Weiss, and
Yuste (2013)
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terpart. BI’s organizational structure was notably more decentralized, involving multiple

agencies such as the NIH, NSF, DARPA, IARPA, and FDA, each supporting their specific

projects of interest, whereas a single central selection committee guided the HBP. Conse-

quently, the BRAIN Initiative quickly gained popularity within the US neuroscience research

community, while the HBP faced considerable controversy in the EU. In 2014, 750 European

researchers signed an open letter to the European Commission criticizing the HBP’s overly

narrow focus and threatening to boycott the project (Guardian, 2014). Although the HBP

continued until 2023, it appears to have had minimal impact on the European neuroscience

community (Atlantic, 2019), whereas the BRAIN Initiative, which is set to end in 2026, has

already been applauded by the neuroscience community (Nature, 2021).

Given these distinct features, we focus on the BI. By 2022, NIH alone had invested over

$2.5B in BI projects, expected to rise to $5.2B by 2026 (Kaiser, 2022). It is worth noting that

public funding of neuroscience was available before the BRAIN Initiative, too. However, BI

stands out for its distinctive and influential features. In Section 3.4, we compare NIH’s non-

BI grants in neuroscience with BI grants. BI grants receive 16% more citations, indicating

higher scientific influence. For example, one of the BRAIN Initiative sub-projects is the

Cell Census Network, which aims to identify and catalog the diverse cell types in human,

monkey, and mouse brains. The editorial article in Nature (2021) marks this project as an

advance in our understanding of structure–function relationships in the mammalian brain,

which should drive innovation in future studies across all areas of neuroscience.

Furthermore, the BI has significantly strengthened the interface between neuroscience

and data science, particularly by facilitating data sharing and directly funding AI-related

research. The foundational proposal published in Science acknowledges that achieving the

goal of mapping the brain “...require developing methods for storing, managing, and sharing

large-scale imaging and physiology data, as well as developing methods for analyzing data

and modeling underlying neuronal circuits, leading to emergent principles of brain function.

It will be carried out by providing access to all investigators, including cellular, systems, and
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computational neuroscientists, to the methods and data needed for developing, testing, and

verifying theories of how the brain operates.” This is manifested in the BI’s open-source data-

sharing policy, which mandates awardees to disseminate their data on designated BI data

archives, thereby reducing research barriers and promoting knowledge spillover (National

Institutes of Health (NIH), 2019) within the neuroscience community and outside.

While the data-sharing requirements of BI also made neuroscience research a fertile

ground for applying AI and machine learning techniques, we find that BI funds are also

tilted towards data-intensive projects. In Section 3.4, we find that compared to non-BI

grants in neuroscience, BI grants are three times more likely to focus on AI and data-related

areas. Lastly, the BI encourages collaborations between neurobiologists and scientists from

statistics, physics, chemistry, mathematics, engineering, and computer and information sci-

ences, facilitating knowledge spillover in neuroscience and outside the field.

3. Sample and Data

Our dataset encompasses VC investments, VC-backed startups, their patent portfolios

and employees, research grants from NIH and NSF, publications generated by these grants,

and co-authors of these publications. Initially, We begin with the universe of VC deals in

PitchBook and identify startups backed by VC (Section 3.1). We collect information on the

patent portfolios and employees of these startups from PatentsView (Section 3.2) and the

LinkedIn dataset (Section 3.5), respectively. We also incorporate research grant data from

NIH and NSF (Section 3.4). Moreover, we identify Neuro startups by examining the patent

portfolios of startups (Section 3.3).

3.1. VC-backed startups

Our study examines startups headquartered in the US from PitchBook, with a VC fund-

ing event from 2000 to 2019. We follow the VC exits on these investments until 2022. To be

considered, a financing round must (1) consist of new equity issuance, excluding rounds fo-
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cused solely on debt or secondary sales, and (2) be categorized as a ”Venture Capital” round

in the PitchBook dataset19. Our final dataset encompasses 50,601 distinct startups, with the

founded years ranging from 1990 to 2019. VC-backed startups span 40 unique primary in-

dustry groups, with 65.02% of these startups concentrated in just five industry groups. The

leading industry groups are Software, Commercial Services, Pharmaceuticals and Biotech-

nology, Healthcare Devices and Supplies, and Media, representing 37.22%, 10.35%, 7.65%,

5.74%, and 4.05% of the total number of VC-backed startups, respectively.

We are also interested in assessing whether the VC investment in the startup is successful.

As with many VC studies, we cannot observe the exact amount returned to the VC to

compare it to the amount invested. Nevertheless, we follow Ewens and Rhodes-Kropf (2015)

and define a Successful Exit as one where the startup has either IPOed or acquired with

a reported exit value greater than two times capital invested and zero for smaller. Ewens,

Nanda, and Stanton (2023) identify a startup as a failure when it has not raised capital

three years after its financing round. Our Successful Exit dummy also takes the value of zero

for these startups. For this group, we follow Ewens and Sosyura (2023) and use the beta

distribution to assign a failure date between 2 and 5 years after the last financing event.

The dataset contains 94,565 unique financing deals with non-missing values in round sizes.

Table 1 provides summary statistics of the variables in our analysis. The first financing round

has an average round size of 4.57 at a pre-money valuation of 12.78. When considering all

financing rounds, the average round size goes up to 9.93, alongside a pre-money valuation

of 80.51, indicating that subsequent VC rounds generally have larger round sizes and higher

pre-money valuations than the first round. The distribution of these variables is highly

right-skewed. The number of VCs per deal averages 1.77 in the first round, rising to 2.17

in later rounds. Additionally, these startups hold an average of 2.85 patents, and 12% have

founders with academic backgrounds.

19For example, we exclude rounds primarily financed by angels, incubators, crowdfunding investors, cor-
porate investors, and grants
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3.2. Innovation

We construct the startups’ patent portfolios by connecting them to the PatentsView and

augment them with the patent dataset from Ewens and Marx (2023). PatentsView pro-

vides extensive information on US patents granted between 1976 and 2023, including patent

number, application and grant year, citations, Cooperative Patent Classification (CPC), as-

signees, and inventors for each patent.20 To link PatentsView with startups, we employ a

two-stage process. The initial phase involves matching the legal names of startups with the

assignee names listed on patents, given that legal names represent the formal identification

of startups and patent assignees denote the owners. We utilize the name-matching algorithm

described in Tumarkin (2020) to pinpoint the closest matches between startups’ legal and as-

signee names. Recognizing the potential for closely similar names among different startups,

the subsequent step involves comparing the location of the patent assignee with the startup

headquarters. A patent is considered associated with a startup when there is a match in

both name and location, ensuring an accurate linkage between patents and the correspond-

ing startups. To further refine our dataset, we combine our startup’s patent dataset with a

comprehensive patent dataset from Ewens and Marx (2023), which details the founding years

for 85% of US-based assignees in PatentsView and links them to PitchBook startups. Our

final sample has 9,790 startups with patents and an average of 12.91 patents per startup.

3.3. Neuro Startups

We define a startup as a Neuro startups when it has at least one patent in a neuro-related

technology group. Neuro-related technology groups are those where the title of the CPC

technology group contains one of our Neuro keywords : {neuro, nerve, brain, optogenetic,

Parkinson, Alzheimer, and dementia}. We obtain these keywords through the following

procedure. Pitchbook offers a keyword column for every startup. We compile all of a

startup’s keywords as long as one of them contains neuro or brain. This results in a vector

20Our study specifically focuses on utility patents as per the March 2023 version of the PatentsView
dataset.
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of 500 keywords .21 Next, we feed these keywords into ChatGPT and ask it to sort them

based on neuroscience relevance. We subsequently manually check these and filter out those

that introduce noise.22 In total, we find 220 Neuro-related CPC technology groups.

We identified 836 Neuro startups, with 87% in the healthcare sector and 8.01% in the

IT sector. Our sample features well-known Neuro startups like Neuralink, Lumos Labs,

and Neurotrack Technologies, which have gained significant media attention. Additionally,

Neuro startups tend to hire authors associated with BI grant publications. The top three

Neuro startups employing the highest number of such authors are Inscopix Inc., Moderna,

and Neuralink.

As an alternative definition, we also consider relying directly on Pitchbook’s business

descriptions or keywords provided by PitchBook. While the direction of findings is largely

consistent using this definition instead of our patent-based definition, we prefer the patent

portfolio approach for two reasons. First, business description keywords are subject to Pitch-

book’s information, which itself relies on how the startup promotes itself. Our comparison

of different versions of Pitchbook reveals that a startup’s description can vary from time

to time. This could be problematic if startups self-select into describing themselves with

fashionable words. We do not face this problem with patents, as the underlying claims

have been professionally examined and are legally binding and time-invariant. Moreover,

PitchBook’s descriptions are typically captured at a startup’s inception, potentially missing

significant shifts in its business focus. In contrast, patent portfolios offer dynamic insights

into a startup’s ongoing innovation activities.

3.4. Research grants

We collect detailed information on BI grants from NIH and NSF websites, as detailed in

Appendix B. Although the NIH has contributed slightly more funding than the NSF, both

21These are not just one word and could be n-grams. For example: Alzheimer testing, brainwave technology,
neuromuscular disorder, vascularized tissue perfusion, or insurance automation

22For example, the word neural could also pick up the AI related term neural networks. Therefore, we
exclude the term neural.
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have significantly supported the initiative. Collectively, NIH and NSF have funded 2,428

research projects, allocating a total of $2.71 billion since 2014. For publications resulting

from these grants, 82% of projects funded by NIH have produced publications totaling 7,448

unique publications. Meanwhile, NSF’s 694 BI grants have resulted in 6,138 publications.

Besides, We collect additional details such as titles, citation counts, publication years, au-

thors’ names, and affiliations from Scopus (Rose and Kitchin, 2019), enhancing our dataset

with this comprehensive information.

Although BI has made substantial investments in neuroscience research, its impact on

scientific advancement and practical application remains unclear. To assess the impact

of BI grants, we compare BI grants to non-BI neuroscience grants within the universe of

NIH grants, focusing on citation counts of resulting publications and the nature of the

research supported. We focus on the NIH grants because the NIH concentrates on medical

research, allowing us to compare grants within the same research fields and mitigate the

heterogeneity effects across different research fields. For instance, publications in medical

research typically attract more citations than publications in other areas. Additionally, we

identify non-BI neuroscience grants funded during the same period as BI, characterized by

our Neuro keywords.

First, we proxy the scientific influence of research grants using the count of citations

received by output publications that result from the grants. The citation count is a popular

measurement as influential publications are cited more frequently by the following publica-

tions. BI-funded publications average 37.33 citations, while those from non-BI neuroscience

grants average 31.79 citations. The 16% higher citation of BI publications is statistically

significant at the 1% level, suggesting that research grants under BI have indeed made a

positive contribution to advancing basic science, in accordance with the in Nature (2021)

editorial article.

Besides directly funding impactful research, BI has also facilitated the interaction of data

science and neuroscience, as references in Section 2 suggest. We also find evidence for this by
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comparing the focus of grants under NIH non-BI neuroscience research with that of the BI.

We define grants with a data focus as grants contain the following keywords: {data science,

machine learning, artificial intelligence, data set, data sharing, large datasets, large scale

data, deep learning, software, algorithm, open source, and Python} in project terms. We find

that BI-funded grants are three times more likely to address data challenges in neuroscience

compared to non-BI: 46.19% of grants in BI compared to 15.01% in non-BI. This significant

discrepancy highlights BI’s role in boosting neuroscience’s practical application.

3.5. Employee of startups

We collect the employee information of startups from the Dec 2022 version of LinkedIn.

The LinkedIn dataset covers 80% and 86.48% of all startups and Neuro startups in our

samples. This enables us to learn about the startup’s employees and their CVs.

Our aim is to identify the employment history of startup’s inventors, founders, and au-

thors under publications of BI grants. Thus, we integrate LinkedIn, PatentsView, and Scopus

data on an individual level. Specifically, we aim to accurately pair individuals from two dis-

tinct groups: one comprising all startup employees listed in the LinkedIn dataset and the

other encompassing all inventors of startup patents from PatentsView, alongside authors of

BI-funded publications recorded in Scopus. To ensure precise matches between these groups,

we initiate the process by comparing their names, followed by their employment histories. A

match is confirmed when two individuals share similar names and their employment histo-

ries overlap. For example, suppose inventor A shares a similar name with employee A, and

inventor A has a patent with company ABC, while employee A works for company ABC.

In that case, We establish a match between inventor A and employee A due to their similar

names and shared employment history.

We first pair individuals by assessing the similarity of their names through fuzzy match-

ing, with the methodology detailed in Appendix A. Subsequently, we compare the employ-

ment histories of startup employees, inventors of startups, and authors of BI-funded publi-

cations. For inventors, we consider the names of patent assignees as their employment, as a
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patent assignee is typically the owner of the patent and employer of the inventor. Similarly,

for BI publication authors, we utilize their listed affiliations in the publications to repre-

sent their employment history. We identify 60,371 startup employees as inventors and 2,983

employees as co-authors of BI grant-derived publications.

3.5.1. Academic experience of employee

To assess skilled labor, we pinpoint inventors and founders with prior academic experi-

ence, considering academia as the primary source of labor specialized in scientific research.

In assessing academic experience, we consider three distinct types: 1) pursuing a doctoral

degree, 2) holding a postdoctoral position, and 3) having work experience at universities and

research institutes. For types 1 and 2, we exclude the areas of social science as unrelated

to basic science. Additionally, we identify employment at universities and research insti-

tutes by evaluating whether employer names include keywords like “university”, “institute

of technology,” and “college,” as well as specific abbreviations and names such as “UCLA,”

“MIT,” and “Caltech,” and terms such as “Lab,” “Research,” and “Mayo Clinic.”

We consider two types of founders as academic founders: first, those who found a startup

within five years after concluding their academic role or completing their doctoral degree,

and second, those who hold concurrent academic employment when founding a startup. We

set a five-year limit between the end of the academic position and the startup’s founding

year to ensure that these founders are transitioning to a new career path from academic

careers and leveraging scientific knowledge gained during their academic tenure. The second

type of founder is included because scientists may initiate a startup while continuing their

academic research.23

We categorize academic inventors as inventors who begin working in startups following

their academic roles or upon finishing their doctoral degrees. Unlike academic founders,

where we apply a time restriction between academic roles and startups to capture a career

transition, we impose no such limit for inventors. This is because choosing to become an

23For example, Robert Langer, the founder of Moderna, remained a professor at MIT
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inventor reflects a distinct career path, and previous academic job experiences indicate their

capacity to integrate basic science into the innovation process. While we acknowledge that

inventors can simultaneously engage in academic and startup ventures, we observe that most

inventors tend to leave their academic positions before joining startups.

4. Empirical Analysis

In a difference-in-differences (DiD) setting, our empirical analysis compares the treatment

effects of an exogenous increase in the public funding of the treated with control groups. The

exogenous shock we study is the BRAIN Initiative, whereby basic neuroscience was desig-

nated as a Grand Challenge, and significant funds were allocated to academic neuroscience

research. The outcome variables we study relate to private financing, labor, and innovation

outcomes of the Neuro startups with non-Neuro startups.

As with any DiD estimation strategy, our key identifying assumption is parallel trends,

which is the “untreated” industry-segments provide an appropriate counterfactual for what

would have happened to the treated firms had they not benefited from the introduction of

BI. While the parallel trends assumption, by definition, cannot be proven, we aim to validate

it in several ways.

First, as a visual inspection, Figure 3 shows the time series of VC financing for both

Neuro and non-Neuro startups. For the assumption of parallel trends to hold, the paths of

the Neuro and non-Neuro groups should not display systematic differences before the policy

change. In the graph, the two lines representing Neuro and non-Neuro startups appear to

move similarly before the vertical line denoting the BI in 2013, suggesting that before the

BI, the financing size and valuation were trending similarly for both groups. After the BI,

however, there is a strong divergence, with Neuro startups receiving larger financing and at

higher valuations than non-neuro startups. This divergence after the BI is consistent with

the treatment effect we aim to measure.

An omitted variable that might drive both public and private investments could be market
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demand. Indeed, neural and brain-related conditions represent a substantial global health

burden and economic cost. According to Collins, Patel, Joestl, et al. (2011), Schizophrenia,

depression, epilepsy, dementia, alcohol dependence, and other mental, neurological, and

substance-use disorders constitute 13% of the global burden of disease, surpassing both

cardiovascular disease and cancer. Dementia alone cost the world up to US$609 billion in

2009. Nonetheless, while this existing demand might incentivize investments in neuroscience,

it is unlikely that such demand would have changed abruptly around the time of the BI’s

announcement to explain the initiative’s timing and focus. In essence, while the market

demand for neuroscience-based products was undoubtedly strong, the BI’s designation as a

Grand Challenge was a policy-driven priority shift, not a response to any sudden market

demand change.

Still, it could be argued that the market had anticipated such a policy due to the neuro-

science community’s activities, as detailed in Section 2. While the neuroscience community

was actively developing the proposal that eventually became the BI, other scientific com-

munities were engaged in similar endeavors. Such endeavors resulted in 12 distinct scientific

projects, of which the BI was one of them. The top-down designation of BI, thus, presents

an element of unpredictability and randomness, further supporting the shock’s exogeneity.

Yet, it is possible that in the months leading to the designation, some VCs have obtained

information on the decision outcome. To address this, in our specification, we exclude deals

occurring in the year of the event to ensure that the results are not driven by superior in-

formation that some VCs might have had. This choice is further motivated by the fact that

the announcement occurred in April, almost in the middle of the year. Therefore, excluding

financing events in 2013 ensures that the pre-and post-designations are correct; we exclude

2013 deals.

The selection of control variables in a DiD study is crucial to isolating the treatment effect

from other confounding influences. In our study, the baseline control group comprises all

non-Neuro startups, providing a broad comparison across diverse sectors to distinguish the
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overarching patterns that differentiate Neuro startups. This broad control group is essential

for establishing a baseline against which the specific impact of the BI on Neuro startups can

be measured. Nevertheless, given that our definition of a Neuro startup is contingent upon

the presence of patents with neuroscience keywords, and considering that only about 15%

of startups hold patents while receiving VC investment, it is crucial to refine our control

group to achieve a more precise comparison. Startups that possess at least one patent

during the VC investment period represent a more similar cohort to Neuro startups because

patenting behavior indicates engagement in innovative activities, which are central to the

value proposition of startups in the eyes of investors.

To further enhance the comparability, we refine our control group to include startups

within the Healthcare sector that hold a patent as classified by Pitchbook. The Healthcare

sector is inherently research-intensive and, like the neuro segment, relies heavily on scientific

breakthroughs and developments. Hence, startups in this sector can serve as a more relevant

benchmark when assessing the unique impact of public funding on Neuro startups. Moreover,

the time frame surrounding the BI provides a proximate economic context and, therefore,

must be carefully selected. By choosing a window of three years before and after the policy

implementation—excluding the actual year of the BI (2013)—we capture a temporal envi-

ronment closely aligned with the period of interest. This approach delineates 2010, 2011,

and 2012 as the pre-treatment years and 2014, 2015, and 2016 as the post-treatment years,

denoted as [2010, 2016]. This time bracket ensures that we are considering the immediate

impacts of the BI while allowing for a lag in the manifestation of these effects, which may

not be instantaneous.

5. Results

5.1. VC Investments: Financing and Valuation

We start with the VC financing outcomes of Neuro startups as the first-order effect we

are examining. We test the hypothesis that the public funding that BI provides increases the
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investability of Neuro startups for the VCs compared to the control group. The measures

of investability, we study are the amount that VCs invest in the startup and the valuation

of the startup at the financing. For this test, we estimate the following equation at the

financing round level:

Yit = β1Neuroi × Postt + β2Xit + γt + ρj + υijt, (1)

where Xit are entrepreneurial firm characteristics at the time of the investment, including

industry code fixed effects, geographic fixed effects, and an indicator for whether the firm

was a Neuro startup (i.e., treated), γt are year fixed effects corresponding to the year of the

investment. The main coefficient of interest (β1) is the interaction between Neuro and Post.

In our selection of industry classifications provided by Pitchbook, which range from broad

sectors to specific codes, we opt for the middle level of granularity: the Industry Group.

While our results are robust to the choice of industry level, this level balances the need for

specificity without excessively absorbing the variation we aim to capture, which might occur

with the most granular Industry Code classification. Employing Industry Group fixed effects,

which consist of 40 different categories, allows us to control for industry-specific trends and

characteristics without overshadowing the treatment effect of interest. On the other hand,

the broadest classification level, the Industry Sector, divides firms into only seven categories,

including Healthcare.24

The first Yit we study is the amount the VC invests at a financing round, i.e., round size.

We first exclusively focus on the first financing round and then include all other rounds.

This breakdown is essential for several reasons. First, the first financing round is often seen

as a market signal of the quality and potential of a startup. It is typically based on the

initial promise of the startup’s technology and business model, before any major market

validation. The risk profile of a startup changes as it progresses. Initially, the risk is highly

24Other sectors include Information Technology, Healthcare, B2B, B2C, Energy, Financial Services, Ma-
terials, and Resources.
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skewed towards scientific and technological feasibility, which may be directly mitigated by

public funding such as the BI. By examining the first rounds separately, we can isolate the

effect of the BI on this early stage, which might be more influenced by the perceived scientific

strength boosted by public funding. If public funding increases the perceived legitimacy or

reduces the R&D risk of startups in the funded area, we would expect this to be most clearly

reflected in the first round of funding. Nonetheless, subsequent rounds are also important

as they will tell us if this initial boost translates into an ability to attract further capital

over time, which can signal sustained investor confidence and the potential for scale. By

distinguishing between the first and later rounds, we can observe whether the influence of

public funding like the BI extends beyond the initial endorsement of the startup’s scientific

foundation to its ongoing development and market validation.

In Table 2, we report the results of the OLS regression of Equation 1. The outcome

variable, round size, is log transformed to account for the skewness of this variable. We

include year, state, and industry group fixed effects. Panel A focuses exclusively on first-

round financing, while Panel B includes all rounds. In our specifications, we also control for

the number of VCs that are active in the funding to control for the fact that a larger syndicate

can provide larger funding amounts. In panel A, the Neuro× Post interaction term, which

captures the incremental effect on Neuro startups post-BI, is significantly positive across all

specifications. Specifically, the coefficient ranges from 0.624 in the overall sample to 0.263

in the healthcare sector. These coefficients suggest that ceteris paribus, Neuro startups have

seen an increase in the amount of first-round financing by approximately 26.3% compared to

other patenting startups in the healthcare—which offer the closest control group to Neuro

startups— to 62.4%compared to all other startups, after the commencement of the BI. This

result is statistically significant at the 1% to 5% levels.

In Panel B, we include all financing rounds. To control for the startup’s lifecycle and the

increase in round size with the startup’s progression, we control for the round number (i.e.,

1st round, 2nd round...) through fixed effects. Similar to the first round, the Neuro× Post
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coefficient remains positive and significant, though with smaller magnitudes than in the

first rounds. The increases range from 16.8% to 39.3%, demonstrating a sustained effect

across multiple financing rounds, which suggests the ongoing impact of the BI on investor

behavior beyond the first round. Notably, the coefficient for the Neuro variable alone also

shows significance, particularly in healthcare-focused rounds, suggesting that even outside

the post-BI context, neuro startups tend to attract more financing compared to other sectors.

While these results show that VCs make larger investments in Neuro startups, it does not

necessarily mean the underlying science is of more value in the eye of the markets. It could be

that due to technological changes, Neuro startups have larger capital requirements to finance

their operations. As such, we next turn to valuations, which also reflect the risk associated

with neurotechnologies. In Table 3, we report the results from OLS regressions, paralleling

the structure used for analyzing financing size, but this time focusing on the pre-money

valuations of VC financing events. This figure shows the startup’s valuation at the financing

event net of the VC’s investment amount. Again, we employ log transformation to mitigate

the impact of skewness in the valuation data, including year, state, and industry group fixed

effects to account for external influences that could affect valuation independently of the BI.

In both Panel A and Panel B of the valuation analysis, the Neuro × Post interaction

term is significantly positive, indicating a robust post-BI increase in the valuations of Neuro

startups across the first and subsequent financing rounds. Specifically, Panel A shows that

first-round financing post-BI sees valuation increases between 27.4% in the healthcare sector

and 37.3% across the overall sample. This significant uplift, noted at the 1% to 5% levels,

highlights the BI’s strong influence on enhancing the perceived value of Neuro startups. Panel

B extends this analysis to all financing rounds, incorporating controls for the progression in

funding stages, where the valuation increases range from 16.0% to 32.2%. This consistent

positive impact across multiple rounds demonstrates the BI’s enduring effect on Neuro star-

tups valuations, with a notable inherent valuation premium observed for Neuro startups in

healthcare-focused rounds, emphasizing their increased attractiveness and reduced perceived
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risk to investors following the BI.

These valuation increases post-BI for Neuro startups are pivotal as they not only indicate

an augmented investment scale but also reflect market sentiment regarding the potential and

reduced risk associated with these startups. A higher valuation typically denotes greater

market confidence, likely stemming from advancements in basic science funded by initiatives

like the BI. This enhanced confidence could be due to the BI’s role in de-risking the R&D

process, offering more robust scientific foundations for Neuro startups, and increasing the

attractiveness of these ventures to VCs. Furthermore, the persistent valuation premium

across funding rounds may also indicate that the BI’s impact is not limited to an initial surge

in investor interest but extends to influence the sustained growth trajectory and perceived

market potential of Neuro startups.

An alternative story for the more favorable VC financing could be because Neuro startups

are operationally more established at the time VCs finance them. Under this scenario, the

lower operational risk, a signal for quality, is the reason for larger round sizes, rather than

R&D risk. We examine this possibility by checking the business status of the startup at

the time of financing. We construct a dummy called Generating Revenue, which is equal to

one if the startup has revenue at the round. PitchBook designates the startup’s business

status as either “Generating Revenue” or “Profitable” at a given round. The other categories

mostly include cases where a startup’s business status is designated as “Startup”, “Product

Development”, “Product in Beta Test” or “Clinical Trial”. 25 We examine whether the

startup is generating revenue at the round. The results are reported in the Appendix Table

A2. Contrary to the story above, we find that Neuro startups are less likely to be generating

revenue at the time of financing. This suggests that after the BI, VCs are more comfortable

with funding Neuro startups, which are operationally less developed but perhaps have a lower

R&D risk.

25We verify that this categorization reflects a startup’s degree of development by examining the mean
revenue of startups in each category. The “Generating Revenue” and “Profitable” categories are indeed
associated with an average revenue level that is several orders of magnitude larger than the other categories.
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5.2. VC Exits

While the results above indicate a surge in VC interest in Neuro startups post-BI, it

is important to see if the broader market also recognizes this interest. VC funds typically

exit their investment through an IPO, M&A, or write-off after a few years and return the

proceeds to the fund investors. To the extent that BI makes neurotechnology more investable,

this investability should also be reflected in the startup financial outcomes beyond venture

capital. As such, we next study whether VCs exit their neuro investments more successfully

after the BI.

Given that sell-outs are the primary type of exit in the last decade, we first examine

whether BI affects the timing of sell-outs. Figure 4 illustrates the acquisition trends of

Neuro startups in comparison to other healthcare startups over the sample period. Pre-

BI, there were 32 acquisitions in the neuro space over a 13-year span, a figure that rose 5

times to 159 in the 7 years post-BI. In contrast, the broader healthcare sector experienced

840 acquisitions pre-BI and saw an increase to 990 post-BI. This trend indicates that the

BI has likely heightened the appeal of neurotechnology to larger acquirers, who are now

increasingly integrating these startups into their portfolios, suggesting a recognition of the

commercial viability and promise of neurotechnology advancements. While acquisitions in

other healthcare sectors also grow, the more pronounced and immediate increase in Neuro

startup acquisitions post-BI underscores the initiative’s impact in making neurotechnology a

standout area for investment, demonstrating that both venture capitalists and larger market

players acknowledge the potential fostered by the BI’s focus on neuroscience.

Nevertheless, an acquisition does not necessarily indicate a successful exit for the VC as

acquisitions with a low premium could disguise failure (Puri and Zarutskie, 2012). Thus,

to measure success more carefully, we follow the definition of Successful Exit outlined in 3.

For every startup, we OLS estimate this variable following Equation 1, where the year fixed

effect reflects the first year the startup receives VC financing. We also add the year of exit

to control for the endogenous timing of the exits. In our specifications, we also control the
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amount the startup has raised prior to exit. This control helps adjust for the size and scale of

the startups at the time of exit, ensuring that the Neuro×Post coefficient does not merely

reflect differences in fundraising.

Table 4 reports the results of this specification. The Neuro × Post interaction term is

central to the analysis, as it measures the differential impact of the BI on the probability of

a successful exit for Neuro startups. We progressively limit the control firms from Columns

(1) to (4), the positive and significant coefficients across the board from 0.166 in the overall

sample to a higher 0.214 in the healthcare sector, indicating that post-BI Neuro startups have

a significantly higher probability of achieving successful exits compared to pre-BI, reinforcing

the hypothesis that BI has enhanced the investability of Neuro startups. The coefficients

signify that the odds of a successful exit increase by 16.6% to 21.4% for Neuro startups post-

BI, highlighting the positive impact of the BI on these firms’ exit outcomes. These results

support the findings of increased VC investments in Neuro startups post-BI and extend the

narrative to the broader market’s recognition of these startups’ value, as evidenced by their

exit outcomes. The significant Neuro×Post coefficients across various specifications suggest

that the BI’s influence goes beyond attracting initial VC interest, translating into tangible,

successful financial outcomes for Neuro startups.

5.3. Mechanisms

We have established that the BI enhances the attractiveness of Neuro startups for VC,

evidenced by increased financing sizes, pre-money valuations, and success of the exits. To

understand the mechanisms that elevate the investability of neuro startups, we examine

the underlying characteristics of startups, particularly characteristics that can be impacted

by basic science breakthroughs. Our analysis centers on two key aspects reflective of the

startup’s underlying scientific foundation: (1) the human capital represented by academic

scientists employed by the startup and (2) the innovation embodied within the startup’s

patent portfolio.
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5.3.1. Academic Founders

Our emphasis on human capital is inspired by the findings of Bernstein et al. (2017),

which revealed that VCs consider information about a startup’s human capital to be a

significant indicator of the startup’s quality at an early stage. If BI has made the field of basic

neuroscience more investable to VCs, this effect is expected to be reflected in the composition

of the founding teams of Neuro startups. Founder teams are likely to have a larger number of

academic founders who possess more investable scientific knowledge or innovations emerging

directly from their research labs, thereby enhancing the startups’ attractiveness to VCs. For

example, Neuralink was founded after BI by the well-known neuroscientist Philip Sabes,

who had already been a professor at UCSF for over 17 years at the time Neuralink was

founded. As such, following the methodology in Section 3.5.1, we defined an academic

founder as a scientist who either found a startup within five years of departing academia

or who simultaneously engages in academic work while establishing startups. We expect

a greater presence of academics in the founding teams of Neuro startups relative to other

startups following the initiation of the BI.

The univariate analysis shown in Figure 5 reinforces the notion that the BI has played

a significant role in attracting academic founders to Neuro startups. Prior to the BI, Neuro

startups already displayed a greater propensity to involve academics in their founding teams

compared to non-neuro startups, as evidenced by a higher ratio of academic founders per

startup. This gap widens post-BI, with the ratio for Neuro startups peaking at 0.65 in 2017,

four years after the initiative’s launch, before slightly retracting to 0.37 in the following years.

This trend suggests a lagged effect of the BI, which is plausible given that the decision to

establish a startup often follows a substantial gestation period during which academics may

transition from research to entrepreneurship.

We also study this relationship more formally by estimating Equation 1, where the out-

come variable, Academic Founder is one if the startup has at least one academic founder on

the founding team. The results are reported in Table 5. Given the lag between the BI and

28



the founding outcomes observed, here we run a dynamic specification, where the assignment

of Post variable is based on first VC year=t ≥ T where T ranges from 2011 to 2019, in

increments of one.26 Similar to the trend in Figure 5, we do not see a statistically significant

coefficient right after the shock. However, there is a discernible trend that post-BI, the likeli-

hood of Neuro startups having academic founders increases, particularly from the year 2015

onwards. This trend peaks notably in 2017, with a coefficient of 0.136, which is significant

at the 5% level, indicating a substantial increase in the propensity for Neuro startups to be

founded by academics post-BI compared to the pre-BI period.

The trend’s peaking in 2017 and its subsequent decline by 2019 (with coefficients drop-

ping from 0.136 to 0.012) could be attributed to various factors, such as the absorption of

academics with the intent of commercializing their knowledge by the markets, increasing

competition in the market with Neuro startups, changes in BI funding allocations, or shifts

in academic interest towards founding new ventures. This decline suggests that while the BI

had a significant impact in the years following its launch, its influence on the composition

of founding teams may wane over time or become integrated into the standard practice of

venture creation in the neuro space.

5.3.2. Innovation and Academic Inventors

The BI significantly enhances the attractiveness of Neuro startups to VCs by stream-

lining the innovation process in neuroscience. Research outputs funded by BI are notably

more influential, evidenced by the higher citation of BI-related publications than those from

non-BI neuroscience grants, as detailed in Section 3.4. Additionally, BI plays a crucial role

in making neuroscience more practicable. A substantial fraction of BI grants are dedicated

to overcoming the existing data management challenges within the field by fostering data

sharing and enhancing data analysis techniques. This improved approach to data manage-

ment effectively reduces the hurdles to conducting advanced neuroscience research, thereby

facilitating the integration of cutting-edge technologies such as AI and machine learning into

26The inclusion of T ≤ 2011 does not affect the results.
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the analysis of neuroscience data. Given the BI’s role in advancing neuroscience research, it

is reasonable to anticipate an increase in innovation activities among Neuro startups post-BI

compared to other startups. We use multiple outcome variables to measure the innovation

of startups, including startups’ number of patents, breakthrough patents, and the average

adjusted citations per patent at year t. The breakthrough patents are patents that received

more citations than the citations at the 90th percentile value within the same technology

class and grant year. The adjusted cites are the number of cites over the average cites of

patents in the same technology field and granted year.

BI also simplifies innovations by increasing the skilled labor supply. BI impacts directly,

with 10% of NIH’s BI grants dedicated to training promising postdoctoral researchers, and

indirectly by infusing significant funds into the field, allowing researchers to train more PhD

candidates. To quantify the skilled labor supply, we count the number of academic inventors

newly hired by startups in a given year. The academic inventors are inventors with prior

academic experience, as detailed in 3.5.

We construct a panel of firm-year observations between the founding year of the startup

to the year of VC exit, where we estimate:

Yit = β1Neuroi × Postt + β2Xit + λi + θt + ϵit (2)

where for startup i in year t, Yit includes the number of patents, breakthrough patents,

the average adjusted citations of patents, and the number of academic inventors employed.

Yit following a Poisson distribution as a count variable with many zeros. The main coefficient

of interest (β1) is the interaction between Neuro and Post. λi and θt are firm and year-fixed

effects. We also control for the log of the total amount of financing the startups have raised

up to year t. This is to address that the larger funds Neuro startups raise post-BI may affect

their innovation output.

Table 6 reports the results of this estimation. We find that Neuro startups produce more

patents and breakthrough patents and hire more academic inventors compared to similar
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startups after the BI. Column 1 presents the Poisson regression of the number of patents on

the interaction between Neuro and Post with startup and year-fixed effect. The coefficient of

the interaction in column 1 is 0.45 and statistically significant at 1%, suggesting that Neuro

startups produce 1.57 (e0.45) times more patents than other non-Neuro startups after BI.

Although Neuro startups produce a larger number of breakthrough patents, we are not sure

about the quality of the patents. We further evaluate the quality of patents by counting the

number of breakthrough patents that are the most valuable patents among patents for a given

technology class and grant year. Column 5 investigates the role of BI on the breakthrough

patents of Neuro startups. The coefficient of column 5 is 0.509 and statistically significant

at 1% level, suggesting that Neuro startups produce 1.66 (e0.509) times more breakthrough

patents after the BI. Additionally, column 7 investigates whether the patent quality of Neuro

startups is higher on average after the BI using the average adjusted citations per patent.

The coefficient of column 7 is -0.209 and statistically insignificant, suggesting that not all

patents of Neuro startups are of higher quality than other startups after BI. The possible

explanation for the results in column 7 is Neuro startups could build a non-scientifically

valuable but strategically valuable patent fence to protect their key breakthrough patents as

there are a larger number of breakthrough patents for Neuro startups after BI. We further

find similar results in Columns 2, 6, and 8 that estimate the coefficient using a sample period

from 2010 to 2016. Therefore, we find Neuro startups produce more breakthrough patents

after BI and build a patent fence to protect their key breakthrough patents. To further refine

our analysis, the untabulated table finds that neuroscience-related patents receive a larger

adjusted citation and are more likely to be breakthrough patents after BI, suggesting that

the neuroscience space benefits from BI and produces better technology.

Post-BI, Neuro startups might experience an increase in the availability of academic

inventors due to BI’s direct and indirect influences on university funding and the expansion

of the academic researcher pool. Neuro startups may find it easier to find academic inventors

after BI as the BI, directly and indirectly, provides more university funding and results in
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more academic inventors. We measure the supply of skilled labor using the number of

newly hired academic inventors. Columns 3 and 4 of Table 6 report the results of Poisson

regression of the number of newly hired academic inventors on the interaction of Neuro and

Post. The coefficient in column 3 is 0.726, significant at the 1% level, indicating that post-

BI, Neuro startups hire over two times more academic inventors than other startups. This

trend remains consistent when examining data from 2010 to 2016 in column 4. Babina et al.

(2023) find that when a researcher’s federal budgets are cut, her chances of stepping into an

entrepreneurial setting decline. They, however, do not differentiate between the founders and

scientists who work for the startup. We analyze academic founders in Table 5 and academic

inventors in Table 6 separately and find similar results.

5.3.3. Adaptability of Neuroscience

As we outlined in Section 3.4, BI grants were more focused on data-intensive research. As

such, we examine whether such emphasis is also reflected in the evolution of neurotechnology

post-BI. We provide evidence that post-BI, neurotechnologies became more interdisciplinary

and adaptable to other technologies, particularly AI and big data. Figure 6 illustrates the top

10 verticals in neurotechnology before and after the BI, highlighting a shift in the landscape

of neurotech industries. Pre-BI, the neurotech field was concentrated mainly in traditional

life sciences areas, with a modest representation in data-centric domains. However, post-

BI, there is a discernible broadening of focus, with significant growth in AI and Machine

Learning, Big Data, Wearables, and Quantified Self verticals. This expansion reflects the BI’s

influence in fostering a data-driven approach within neuroscience, aligning with its mission to

advance our understanding of the brain through data-intensive research and interdisciplinary

collaboration.

This shift is also mirrored in the acquisition patterns observed post-BI. Figure 4 shows

the surge in the acquisition of Neuro startups. In Appendix Table A3, we examine the

distribution of sectors to which these acquirers belong. We find a substantial increase in

Neuro startups acquisitions—from 32 in the pre-BI period to 159 post-BI. While healthcare
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remains the dominant acquirer sector, there is a post-BI emergence of acquirers from diverse

sectors such as IT, B2B, and B2C, reflecting an acknowledgment of the broader applications

of neurotech innovations.

The enhanced focus on data-centric research and applications within the neurotech do-

main post-BI likely translates to startups with a higher potential for scalability. The ex-

pansion in the acquirer base reflects the expansion of neurotechnology beyond its healthcare

origins. This broadened market appeal can enhance the perceived potential for returns on

investment, thereby increasing the investability of Neuro startups.

However, the adaptability of neuroscience to AI and ML raises an omitted variable con-

cern. While our sample period does not cover the post-ChatGPT AI boom, advances in AI

and ML have attracted much attention from VCs in the last decade. As such, an alternative

explanation for our results could be that VCs finance neuro startups more favorably not

because of the BI but because neuroscience is a fertile ground for the application of AI.

Under this scenario, our results should be driven by startups that apply AI and Big Data

technology in neuroscience. To test this, we examine whether our results are robust to the

exclusion of this startusp. In Appendix Tables A4 and A5, we repeat the exercise in Table

2 and 3, respectively. Our results are robust even if we exclude such startups.

We recognize that, historically, the knowledge spillover between AI and neuroscience

has significantly contributed to the advancement of both fields (Hassabis, Kumaran, Sum-

merfield, and Botvinick, 2017)27 and ignoring the impact of AI on neurotechnology would

oversimplify the dynamics at play. Nevertheless, the neuroscience community acknowledges

the role of BI as a catalyst for the application of AI in neuroscience (Zador et al., 2023). AI

and ML require large amounts of data for algorithm training. The substantial data gener-

ated under the BI and shared via the informatics infrastructure and requirements of BI has

facilitated the application of AI and ML.

27The contribution is two-sided. The development of artificial neural networks (ANNs) has been substan-
tially influenced by the structure and function of biological neural networks.
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5.4. Startups with BI scientists

Thus far, our results show that post-BI Neuro startups became more attractive for VC

investments. Here, we provide a more direct link between the BI as a boost to the startup’s

human capital and VC financing. We exploit the heterogeneity of Neuro startups in their ex-

posure to BI, by identifying those that employ BI scientists. We call this group BI Employer

and hypothesize that BI Employer benefitted directly from the BI by employing human

capital that embodies the knowledge produced under the BI. Hence, we expect BI employers

to be more attractive to VC than other similar Neuro startups without BI scientists. To test

this hypothesis, we estimate the following equation for the financing round and pre-money

valuation level:

Yit = β1BI Employeri × Postt + β2XBI Employer+ β3Xit + Fixed effects + υijt, (3)

where BI Employer is defined as an indicator variable that equals one for Neuro startups

employing BI scientists, and zero for those that do not. More specifically, the BI Employer

can vary at the firm level as BI˙Employer becomes 1 from the year Neuro startups employ BI-

funded research authors onwards. The key independent variable is the BI Employer×Post,

which captures the incremental effect on BI Employer post-BI. Xit is the number of VCs in

the round.

The results of this estimation are reported in Table 7. In Columns (1-3), we include

industry, year, state, and round fixed effects, and we add firm fixed effects, in Columns

(4-6). Panel A shows that BI Employers receive larger round sizes compared to other Neuro

startups after BI. The coefficient of 0.538 in Column (1) suggests that BI Employers receive

rounds that are 53.8% larger compared to similar deals in the same round, year, and industry

by non-BI employers. Furthermore, We restrict our sample to all Neuro startups within the

healthcare industry in column 2 and further restrict this to deals between 2010 and 2016 and
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find similar results. In Columns 4 to 6, we introduce firm and year-fixed effects. The firm and

year-fixed effects allow us to compare the change in deal size before and after employing BI

scientists within the firm and mitigate the concerns that BI Employer has better quality than

other Neuro startups. We obtain similar results under these specifications. These findings

suggest that VCs provide more financing when the startup has acquired human capital that

has presumably become more investable after the BI.

In Panel B, we repeat the same exercise for round valuation as the outcome variable. We

observe a similar pattern here, too: VCs value BI Employer more than other similar Neuro

startups without BI scientists after the BI. In Column (1), the coefficient of BI Employer×

Post is 0.545 and statistically significant at 10%, suggesting that BI Employer has a larger

pre-money valuation compared to other Neuro startups in the same industry and state. We

compare BI Employer to Neuro startups in the healthcare industry in column 2 and find

similar results in terms of economic magnitude. Specifically, BI Employer has a 55% larger

valuation than other healthcare Neuro startups in the same industry. Column 3 reports the

regression result estimated using samples from 2010 and 2016. The coefficient of column 3 is

1.072 and statistically significant at 1%. We include firm and year-fixed effects in Columns

(4-6). While the coefficients are positive, they are not statistically significant.

6. Conclusion

This study examines two questions: 1) Does public funding render basic science research

more investable for venture capital investments? 2) Through what channels can public fund-

ing affect investability for the VCs? To answer these questions, we employ the BRAIN Ini-

tiative(BI) as a quasi-natural experiment, whereby through the designation of neuroscience

as a Grand Challenge, the US government made significant investments in the field. BI is

applicable to our setting for two reasons: first, it exogenously increased the public funding to

one area of basic science research; second, the research outputs of BI are not only influential

but also enhance the practical applicability of neuroscience research.
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To address the first question regarding the investability of Neuro startups, we analyze

VC financing and valuation of these startups. We find that Neuro Startups attract larger

investments and are valued at higher valuations in their initial and subsequent financing

rounds from VCs post-BI.

Additionally, we document three non-mutually exclusive channels that can explain these

results. First, we find that Neuro Startups are more likely to be founded by academics or

employ them, suggesting a larger flow of skilled labor from academia into entrepreneurship.

Second, Neuro Startups demonstrate greater innovation, as evidenced by a larger and higher

quality patent portfolio. Third, we find evidence of enhanced interdisciplinarity of neuro-

science and its integration with other technologies, especially AI and big data, after the

BI.

Finally, we compare Neuro startups that directly benefit from the BI with other Neuro

startups. The startups directly benefiting from the BI are those that employ BI scientists.

We find that Neuro startups employing BI scientists secure more VC financing and achieve

higher valuations compared to other Neuro startups after the introduction of the BI.

Our results indicate that public funding can influence the direction of private investments

in entrepreneurship by supplying skilled academic labor. Furthermore, public funding, when

aimed at developing research infrastructure, can facilitate knowledge spillovers between dif-

ferent scientific areas. Overall, these results suggest that public funding can play a crucial

role in driving the direction of innovation.
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Figure 1. Public Funding, Basic Research and Technology Emergence

Figure 2. VC Investments in Software vs. Patent-holding Startups

This figure plots the percentage of startups holding patents against those identified within the
software industry sector over time, based on the year they received their initial venture capital
funding. The solid line represents startups with patents, while the dashed line indicates
software-focused startups, as classified by Pitchbook industry groups.

41



Figure 3. Financing and Valuation of Neuro-Startups

The figure above shows the log of the average amount of VC financing rounds for neuro
startups (solid line) and all other startups (dashed line). The figure below shows these
values for the average amount of Pre-Money valuation. The red line is on 2013, the year of
the BRAIN Initiative.
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Figure 4. Acquisitions of Neuro and other healthcare startups

This figure plots a histogram of the year of acquisitions of neuro startups (left) compared to
other startups in the healthcare sector (right).

Figure 5. Number of Academic Founders in Neuro startups vs other patenting
startups

43



Figure 6. Industry Verticals of Neuro Startups before and after the BI
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Table 1: Summary Statistics of Startups. This table shows summary statistics for
50,601 unique startups receiving VC financing between 2000 and 2019. Panel A presents
financing information for all rounds where round size is not missing, while Panel B focuses
on the financing information of the first round of finance with round size available. Panel C
presents data at the startup level, including the number of patents, total financing rounds,
and the number of founders with academic experience. Panel D offers summary statistics
for the number of patents and the number of hired academic inventors, based on a startup
and year panel dataset.

N Mean St. Dev. 10% 50% 90%

Panel A: All Rounds

Round Size 94,565 9.93 59.18 0.28 3.00 20.50
Pre-Money Valuation 51,157 80.51 953.54 2.75 12.60 100.00
Deal Year 94,565 2012.93 4.87 2006.00 2014.00 2019.00
Generating Revenue 94,544 0.56 0.50 0.00 0.00 1.00
#VCs 94,565 2.14 2.01 1.00 1.00 5.00
Round Number 94,565 2.22 1.63 1.00 2.00 4.00
Neuro Round==1 2,880 - - - - -

Panel B: 1st Round

Round Size 42,520 4.57 18.40 0.15 1.60 9.55
Pre-Money Valuation 19,661 12.78 125.71 1.62 6.00 20.00
Generating Revenue 42,515 0.43 0.49 0.00 0.00 1.00
Deal Year 42,520 2012.64 5.05 2005.00 2014.00 2018.00
#VCs 42,520 1.77 1.65 1.00 1.00 4.00

Panel C: Startups Level

Successful Exit 29,003 0.12 0.33 0.00 0.00 1.00
Exit Year 29,003 2016.24 4.16 2011 2017 2021
#Patents 44,417 2.85 27.58 0.00 0.00 4.00
#Academic Founders 44,417 0.16 0.50 0.00 0.00 1.00
Neuro Startup 836 - - - - -

Panel D: Startups-Year Level for startups with at least one patents

#Academic Inventors 104,069 0.22 1.69 0.00 0.00 0.00
#Patents 104,069 0.91 3.48 0.00 0.00 2.00
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Table 2: Funding Size. This table reports results from OLS regressions estimating Equa-
tion 1, where the dependent variable is the log of VC investment amount. A unit of obser-
vation is an entrepreneurial firm VC financing event. In Panel A, only the first rounds are
included, and in Panel B, all rounds are included. Neuro is a dummy variable for startups
with at least one patent with a neuroscience keyword. Post equals one for any year after the
BRAIN Initiative (2013), where the year of event itself has been excluded. # VCs counts the
number of VCs in the round. Year FE indicate dummies for financing year, Industry FE are
dummies for Pitchbook’s 41 industry groups. State FE are dummies for entrepreneurial firm
headquarters state. VC Round FE are dummies for the sequence of financing rounds. The
t-statistics (in parentheses) are based on heteroskedasticity-robust standard errors in Panel
A, and clustered at the startup level in Panel B, with ***, ** and * representing significance
at the 1%, 5%, and 10% levels, respectively.

Panel A: 1st Rounds Ln(round size $)

All Patenting Startups

Any [2010-2016] Healthcare

(1) (2) (3) (4)

Neuro×Post 0.624 0.392 0.307 0.263
(5.973)*** (3.633)*** (1.944)* (2.068)**

Neuro 0.037 -0.029 0.079 0.037
(0.526) (-0.395) (0.627) (0.465)

Ln(# VCs) 0.739 0.720 0.575 0.864
(67.197)*** (30.752)*** (15.959)*** (20.351)***

Observations 39,142 8,675 3,687 3,226
Adj R-squared 0.195 0.185 0.156 0.211
Industry FE Y Y Y Y
Year FE Y Y Y Y
State FE Y Y Y Y

Panel B: All Rounds Ln(round size $)

All Patenting Startups

Any [2010-2016] Healthcare

(1) (2) (3) (4)

Neuro×Post 0.393 0.232 0.210 0.168
(5.206)*** (3.058)*** (2.098)** (2.490)**

Neuro 0.110 0.109 0.134 0.184
(2.052)** (2.009)** (1.706)* (4.135)***

Ln(# VCs) 0.848 0.861 0.845 1.022
(107.326)*** (62.886)*** (42.895)*** (52.796)***

Observations 87,499 26,903 11,916 9,918
Adj R-squared 0.337 0.344 0.350 0.282
Industry FE Y Y Y Y
Year FE Y Y Y Y
State FE Y Y Y Y
VC Round FE Y Y Y Y
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Table 3: Valuation. This table reports results from OLS regressions estimating Equation
1, where the dependent variable is the log of VC Pre-Money Valuation. A unit of observation
is an entrepreneurial firm VC financing event. In Panel A, only the first rounds are included,
and in Panel B, all rounds are included. Neuro is a dummy variable for startups with at
least one patent with a neuroscience keyword. Post equals one for any year after the BRAIN
Initiative (2013), where the year of event itself has been excluded. # VCs counts the
number of VCs in the round. Year FE indicate dummies for financing year, Industry FE are
dummies for Pitchbook’s 41 industry groups. State FE are dummies for entrepreneurial firm
headquarters state. VC Round FE are dummies for the sequence of financing rounds. The
t-statistics (in parentheses) are based on heteroskedasticity-robust standard errors in Panel
A, and clustered at the startup level in Panel B, with ***, ** and * representing significance
at the 1%, 5%, and 10% levels, respectively.

Panel A: 1st Rounds Ln(Pre-Money Valuation $)

All Patenting Startups

Any [2010-2016] Healthcare

(1) (2) (3) (4)

Neuro×Post 0.373 0.222 0.352 0.274
(3.650)*** (2.070)** (2.201)** (2.189)**

Neuro -0.010 0.020 -0.009 0.003
(-0.153) (0.291) (-0.081) (0.042)

Ln(# VCs) 0.297 0.261 0.237 0.297
(26.768)*** (11.499)*** (7.052)*** (7.795)***

Observations 18,344 4,976 2,176 1,834
Adj R-squared 0.088 0.080 0.076 0.093
Industry FE Y Y Y Y
Year FE Y Y Y Y
State FE Y Y Y Y

Panel B: All Rounds Ln(Pre-Money Valuation $)

All Patenting Startups

Any [2010-2016] Healthcare

(1) (2) (3) (4)

Neuro×Post 0.322 0.170 0.160 0.271
(3.598)*** (1.872)* (1.441) (3.355)***

Neuro 0.154 0.207 0.287 0.222
(2.576)** (3.377)*** (3.507)*** (4.104)***

Ln(# VCs) 0.394 0.401 0.397 0.488
(42.196)*** (24.679)*** (17.545)*** (21.039)***

Observations 47,619 17,078 7,794 6,048
Adj R-squared 0.443 0.462 0.464 0.157
Industry FE Y Y Y Y
Year FE Y Y Y Y
State FE Y Y Y Y
VC Round FE Y Y Y Y
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Table 4: Success of the Exits. This table reports results from OLS regressions estimating
Equation 1, where the dependent variable is an indicator variable for successful exits. A unit
of observation is an entrepreneurial firm. Successful Exit is defined as an IPO or a M&A
at a reported value at least twice the total capital invested. Neuro is a dummy variable
for startups with at least one patent with a neuroscience keyword. Post equals one for
startups receiving the first VC financing event after the BRAIN Initiative (2013), where
the year of the event itself has been excluded. First VC Financing Year FE (Exit Year)
indicate dummies for financing (exit) year, Industry FE are dummies for Pitchbook’s 41
industry groups. State FE are dummies for entrepreneurial firm headquarters state. The
t-statistics (in parentheses) are based on heteroskedasticity-robust standard errors ***, **

and * representing significance at the 1%, 5% and 10% levels, respectively.

Successful Exit

All Patenting

[2010,2016]

Healthcare

(1) (2) (3) (4)

Neuro×Post 0.166 0.078 0.142 0.214
(4.187)*** (1.752)* (1.999)** (2.646)***

Neuro 0.077 0.033 -0.050 -0.100
(2.916)*** (1.148) (-0.839) (-1.547)

Ln(Raised before exit) 0.096 0.123 0.124 0.132
(57.422)*** (29.554)*** (19.692)*** (11.731)***

Observations 11,074 2,498 925 430
R-squared 0.344 0.362 0.416 0.417
Industry FE Y Y Y Y
First VC Year FE Y Y Y Y
Exit Year FE Y Y Y Y
State FE Y Y Y Y
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Table 7: Financing of Neuro Startups as BI Employers. This table reports results of
comparing round characteristics of Neuro Startups, if the startup has employed a BI scientist
at the time of the round. The sample in limited only to Neuro startups. The dependent
variable is the log of VC financing amount in Panel A, and log of Pre-Money Valuation in
Panel B. A unit of observation is an entrepreneurial firm VC financing event. BI˙Employer
is a dummy variable for rounds, where the startup has employed at least one BI scientist by
the year of the round. Post equals one for any year after the BRAIN Initiative (2013), where
the year of event itself has been excluded. # VCs counts the number of VCs in the round.
Year FE indicate dummies for financing year, Industry FE are dummies for Pitchbook’s
41 industry groups. State FE are dummies for entrepreneurial firm headquarters state. VC
Round FE are dummies for the sequence of financing rounds. The t-statistics (in parentheses)
are clustered at the startup level, with *** , ** and * representing significance at the 1%, 5%
and 10% levels, respectively.

Panel A: Ln(round size $)

All Healthcare All Healthcare

[2010-2016] [2010-2016]

(1) (2) (3) (4) (5) (6)

BI Employer×Post 0.538 0.530 0.525 0.497 0.525 0.606
(2.505)** (2.739)*** (1.890)* (2.020)** (2.101)** (1.674)*

BI Employer 0.263 0.229 0.098 0.158 -0.022 0.226
(1.859)* (1.781)* (0.572) (0.660) (-0.085) (0.250)

Ln(# VCs) 0.920 0.945 0.904 0.754 0.768 0.587
(22.172)*** (20.723)*** (12.832)*** (16.071)*** (15.163)*** (6.786)***

Observations 2,657 2,316 994 2,498 2,175 767
R-squared 0.390 0.360 0.344 0.712 0.694 0.714
Industry FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
VC Round FE Y Y Y Y Y Y
State FE Y Y Y Y Y Y
Firm FE N N N Y Y Y

Panel B: Ln(Valuation $)

All Healthcare All Healthcare

[2010-2016] [2010-2016]

(1) (2) (3) (4) (5) (6)

BI Employer×Post 0.545 0.550 1.072 0.436 0.380 0.636
(1.769)* (2.264)** (2.743)*** (1.269) (1.125) (1.386)

BI Employer 0.162 0.128 -0.111 0.329 0.105 -0.056
(0.683) (0.629) (-0.463) (1.076) (0.320) (-0.099)

Ln(# VCs) 0.492 0.491 0.309 0.585 0.633 0.559
(47.905)*** (21.358)*** (9.267)*** (77.840)*** (46.965)*** (28.732)***

Observations 1,748 1,480 643 1,592 1,339 468
R-squared 0.534 0.463 0.490 0.857 0.828 0.902
Industry FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
VC Round FE Y Y Y Y Y Y
State FE Y Y Y Y Y Y
Firm FE N N N Y Y Y
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Appendix A. Name-matching

In the person name-matching process, we first map the surnames between individuals using

fuzzy matching and require the first three letters of surnames to be the same and allow for

just one permissible spelling error because there are fewer variations in surnames.

Subsequently, for each matched surname, we compare their first and middle names. For this

purpose, we employ a fuzzy matching algorithm that is designed to recognize variables in

first and middle names. The following variations of names are identified as the same names:

• “First name” + “middle name” matches to “First name” + “middle name initial”

e.g., “Robert James” matches to “Robert J”

• “First name” + “two middle names” matches to “First name” + “middle name and

middle name initial” e.g., “Robert James Waller” matches to “Robert James W” and

“Robert JW”

• “First name” matches to known “Nicknames” associated with this given name, e.g.,

“Robert” matches to “Rob”

Appendix B. NIH vs NSF

We find 1,331 unique BI grants on the NIH site as of May 2023. We gathered detailed

information on titles, keywords, start dates, end dates, Principal Investigators (PI), and

amounts of BI grants for 1,195 grants using NIH RePORTER API, noting that 136 grants

were unavailable. For these 1,195 BI grants, NIH provided 1.37 billion US dollars from

2014 to 2022, an average of 1.15 million per grant, and was awarded to 909 unique PIs

across 218 unique institutions primarily located in the US. NIH BI grants mainly focus on

research in neuroscience, biology, and medical science projects, as the majority amount was

awarded to prestigious medical institutions and medical schools or universities. For

example, the institutions that receive the largest and third largest amount of money are

the Allen Institute and Salk Institute for Biological Studies, with $105,473,299 and

$54,675,613, respectively. Both the Allen Institute and Salk Institute for Biological Studies
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are leading research institutes in neuroscience. Regarding the PIs of these grants, the top

five PIs who receive the largest grants are biologists and neuroscientists.

Additionally, NSF matches the NIH in its financial contributions to research, having

allocated $1.34 billion across 1,097 projects since 2014, with an average grant size of $1.22

million. NSF’s funding spans a broader range of research disciplines. Notably, the top

three PIs receiving the most funding are working in the different research disciplines. For

example, Gregory Boebinger, a leader of the MagLab, received most NSF funds under BI.

The MagLab is the premier global facility for magnet research, serving over 1,700 scientists

yearly across various fields such as physics and bioengineering. Tomaso Poggio received the

second-largest amount of money under BI from NSF. He is a computational neuroscience

pioneer who conducts interdisciplinary research that connects brain sciences and computer

science. The person ranked third is Arjun Yodh from the University of Pennsylvania’s

Department of Physics and Astronomy, who works across physics, medical physics,

biophysics, and optical sciences. While NSF’s funding amount is comparable to NIH’s, it

emphasizes a wider range of research disciplines. Thus, analyzing BI grants from both NIH

and NSF offers a holistic view of the BI’s funding landscape. Together, NIH and NSF have

supported 2,428 research projects with a total expenditure of $2.71 billion since 2014,

underscoring the comprehensive scope of BI funding.
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Appendix C. An Example of an Academic Founder

Figure A.1. An Example of an Academic Co-founder

This Figure shows a Tweet by Philip Sabes, one of the co-founders of Neuralink, a professor
at UCSF, and a co-author under the BRAIN Initiative
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Table A1: Variables Definitions

Variable name Definitions Tables

Independent variables

Neuro The indicator variable equals one if the startup is a Nuero Startup; zero otherwise. Neuro Startup is
identified as startups granted at least one patent within neuroscience-related technology groups, as
detailed in Section 3.3.

Table 2, 3,4,5, 6,A2, A4,A5

Post The indicator variable equals one for the years following the inception of the BRAIN Initiative; zero
otherwise.

Table 2, 3,4,5, 6,A2, A4,A5

BI˙Employer The indicator variable equals one if a Neuro Startup employs at least one BI scientist; zero otherwise.
A BI scientist is an author of publications resulting from BI grants.

Table 7

Ln (# VCs) The natural logarithm of the number of VCs in the round. Sources: PitchBook Table 2,3, 7,A2,A4,A5

Ln(Raised before exit) The natural logarithm of the total amount of financing that the startup has raised before the exit of
VC. Sources: PitchBook

Table 4

Ln(Total $ Raised) The natural logarithm of the total amount of financing that the startup has raised up to the year.
Sources: PitchBook. Sources: PitchBook

Table 6

Dependent Variables

Ln(round size$) The natural logarithm of VC financing amount. Sources: PitchBook Table 2,7, A4

Ln(Pre-Money Valuation$) The natural logarithm of VC Pre-Money Valuation. Sources: PitchBook Table 3, 7,A5

Successful Exit The indicator variable equals one for startups’ successful exit. A successful exit is an IPO or a M&A
at a reported value at least twice the total capital invested. Sources: PitchBook

Table 4

Academic Founder Dummy The indicator variable equals one for startups founded by at least one Academic Founder; zero
otherwise. An Academic Founder is defined as a scientist who either launches a startup within five
years of departing academia or who simultaneously engages in academic work while establishing
startups.

Table 5

#Patents Startup i’s the total number of patents filed (and eventually granted) in year t Table 6
#Breakthrough Patents Startup i’s the number of breakthrough patents filed (and eventually granted) for the next n years.

The breakthrough patents at the 90 percentile are patents that received more citations than the
citations at the 90 percentile within the same technology class and year.

Table 6

Avg. Adjusted Cites Startup i’s the average adjusted cites of patents filed (and eventually granted) in year t. The adjusted
cites are the number of cites over the average cites of patents in the same technology field and granted
year.

Table 6

#Academic inventors hired The number of Academic inventors hired by the startup at year t. Academic inventors are inventors
who begin working in startups following their academic roles or upon finishing their doctoral degrees.

Table 6

Generating Revenue
Dummy

The indicator variable equals one for startup is generating revenue; zero otherwise. Table A2
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Table A2: Startups’ Revenue Status. This table reports results from OLS regressions
estimating Equation 1, where the dependent variable is a dummy variable for whether the
startup is generating revenue. A unit of observation is an entrepreneurial firm VC financing
event. In Panel A, only the first rounds are included, and in Panel B, all rounds are in-
cluded. Neuro is a dummy variable for startups with at least one patent with a neuroscience
keyword. Post equals one for any year after the BRAIN Initiative (2013), where the year of
event itself has been excluded. # VCs counts the number of VCs in the round. Year FE
indicate dummies for financing year, Industry FE are dummies for Pitchbook’s 41 indus-
try groups. State FE are dummies for entrepreneurial firm headquarters state. VC Round
FE are dummies for the sequence of financing rounds. The t-statistics (in parentheses) are
based on heteroskedasticity-robust standard errors in Panel A, and clustered at the startup
level in Panel B, with ***, ** and * representing significance at the 1%, 5%, and 10% levels,
respectively.

Panel A: 1st Rounds Generating Revenue Dummy

All Patenting Startups

Any [2010-2016] Healthcare

(1) (2) (3) (4)

Neuro×Post -0.164 -0.148 -0.109 -0.098
(-4.628)*** (-4.015)*** (-2.040)** (-2.318)**

Neuro 0.076 0.033 0.005 -0.002
(3.742)*** (1.533) (0.134) (-0.080)

Ln(# VCs) 0.022 -0.013 -0.030 -0.012
(5.520)*** (-1.534) (-2.248)** (-0.784)

Observations 42,488 9,363 4,378 3,453
Adj R-squared 0.134 0.104 0.037 0.069
Industry FE Y Y Y Y
Year FE Y Y Y Y
State FE Y Y Y Y

Panel B: All Rounds Generating Revenue Dummy

All Patenting Startups

Any [2010-2016] Healthcare

(1) (2) (3) (4)

Neuro×Post -0.168 -0.138 -0.100 -0.081
(-6.818)*** (-5.441)*** (-3.367)*** (-2.747)***

Neuro 0.054 0.033 0.021 -0.008
(2.782)*** (1.581) (0.767) (-0.360)

Ln(# VCs) 0.011 -0.009 -0.029 -0.000
(4.087)*** (-1.830)* (-3.995)*** (-0.021)

Observations 94,506 29,039 14,060 10,666
Adj R-squared 0.179 0.174 0.126 0.138
Industry FE Y Y Y Y
Year FE Y Y Y Y
State FE Y Y Y Y
VC Round FE Y Y Y Y
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Table A3: Sector Distribution of Acquirers in Healthcare Startups. This table
categorizes acquirers into sectors, comparing their engagement with neuro and other health-
care startups, pre- and post-BI.

Neuro Other Healthcare

Pre-BI Post-BI Pre-BI Post-BI

# % # % # % # %

Healthcare 30 93.75% 142 89.31% 740 87.89% 861 86.97%
IT 2 6.25% 7 4.40% 47 5.58% 55 5.56%
B2B 6 3.77% 25 2.97% 31 3.13%
B2C 4 2.52% 12 1.43% 28 2.83%
Finance 11 1.31% 10 1.01%
Materials 5 0.59% 5 0.51%
Energy 2 0.24%

Total 32 159 840 990
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Table A4: Funding Size without AI and Big Data Startups. This table repeats
the exercise in Table 2, while excluding startups in AI or Big Data verticals. A unit of
observation is an entrepreneurial firm VC financing event. In Panel A, only first rounds are
included and in Panel B all rounds are included. Neuro is a dummy variable for startups
with at least one patent with a neuroscience keyword. Post equals one for any year after the
BRAIN Initiative (2013), where the year of event itself has been excluded. # VCs counts the
number of VCs in the round. Year FE indicate dummies for financing year, Industry FE are
dummies for Pitchbook’s 41 industry groups. State FE are dummies for entrepreneurial firm
headquarters state. VC Round FE are dummies for the sequence of financing rounds. The
t-statistics (in parentheses) are based on heteroskedasticity-robust standard errors in Panel
A, and clustered at the startup level in Panel B, with *** , ** and * representing significance
at the 1%, 5% and 10% levels, respectively.

Panel A: 1st Rounds Ln(round size $)

All Patenting Startups

Any [2010-2016] Healthcare

(1) (2) (3) (4)

Neuro×Post 0.647 0.421 0.387 0.253
(6.006)*** (3.783)*** (2.390)** (1.986)**

Neuro 0.042 -0.017 0.047 0.042
(0.614) (-0.242) (0.363) (0.534)

Ln(# VCs) 0.754 0.755 0.589 0.882
(62.653)*** (29.070)*** (14.625)*** (20.269)***

Observations 34,790 7,720 3,190 3,076
Adj R-squared 0.202 0.192 0.161 0.221
Industry FE Y Y Y Y
Year FE Y Y Y Y
State FE Y Y Y Y

Panel B: All Rounds Ln(round size $)

All Patenting Startups

Any [2010-2016] Healthcare

(1) (2) (3) (4)

Neuro×Post 0.344 0.185 0.212 0.125
(4.534)*** (2.430)** (2.130)** (1.834)*

Neuro 0.092 0.093 0.088 0.178
(1.694)* (1.680)* (1.102) (4.003)***

Ln(# VCs) 0.855 0.878 0.861 1.031
(100.001)*** (59.320)*** (40.618)*** (52.306)***

Observations 77,687 23,990 10,575 9,488
Adj R-squared 0.334 0.338 0.343 0.286
Industry FE Y Y Y Y
Year FE Y Y Y Y
State FE Y Y Y Y
VC Round FE Y Y Y Y
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Table A5: Valuations without AI and Big Data Startups. This table repeats the
exercise in Table 3, while excluding startups in AI or Big Data verticals. A unit of observation
is an entrepreneurial firm VC financing event. In Panel A, only first rounds are included and
in Panel B all rounds are included. Neuro is a dummy variable for startups with at least one
patent with a neuroscience keyword. Post equals one for any year after the BRAIN Initiative
(2013), where the year of event itself has been excluded. # VCs counts the number of VCs
in the round. Year FE indicate dummies for financing year, Industry FE are dummies for
Pitchbook’s 41 industry groups. State FE are dummies for entrepreneurial firm headquarters
state. VC Round FE are dummies for the sequence of financing rounds. The t-statistics (in
parentheses) are based on heteroskedasticity-robust standard errors in Panel A, and clustered
at the startup level in Panel B, with *** , ** and * representing significance at the 1%, 5%
and 10% levels, respectively.

Panel A: 1st Rounds Ln(Pre-Money Valuation $)

All Patenting Startups

Any [2010-2016] Healthcare

(1) (2) (3) (4)

Neuro×Post 0.375 0.219 0.377 0.231
(3.514)*** (1.953)* (2.270)** (1.840)*

Neuro -0.031 0.007 -0.073 -0.003
(-0.467) (0.098) (-0.604) (-0.035)

Ln(# VCs) 0.299 0.259 0.255 0.309
(24.295)*** (10.097)*** (6.684)*** (7.874)***

Observations 15,752 4,283 1,821 1,724
Adj R-squared 0.089 0.079 0.072 0.103
Industry FE Y Y Y Y
Year FE Y Y Y Y
State FE Y Y Y Y

Panel B: All Rounds Ln(Pre-Money Valuation $)

All Patenting Startups

Any [2010-2016] Healthcare

(1) (2) (3) (4)

Neuro×Post 0.216 0.065 0.103 0.220
(2.601)*** (0.772) (1.040) (2.697)***

Neuro 0.123 0.184 0.209 0.215
(2.070)** (2.979)*** (2.657)*** (3.955)***

Ln(# VCs) 0.391 0.399 0.398 0.487
(38.282)*** (22.506)*** (16.333)*** (20.568)***

Observations 41,127 14,821 6,761 5,725
Adj R-squared 0.438 0.454 0.455 0.158
Industry FE Y Y Y Y
Year FE Y Y Y Y
State FE Y Y Y Y
VC Round FE Y Y Y Y
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