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Abstract

Science-based R&D can deter venture capitalists due to high technical uncertainty.
We study whether mission-oriented public funding, which supplies basic science as
a public good, fosters VC investments. Our quasi-natural experiment is the BRAIN
Initiative (BI), a government-funded program with the goal of mapping the human
brain. Using a large language model, we first show the large spillover effects of BI in
neurotech. In a difference-in-differences analysis, we find an increase in VC invest-
ments in neurotech startups accompanied by higher valuations and more successful
VC exits following the BI. The channels driving these results suggest reduced techni-
cal uncertainty: 1) increased supply of high-skilled academic labor; 2) more innova-
tion, including breakthrough patents; 3) enhanced integration with complementary
technologies, especially AI and big data, which aligns with the BI’s data-driven mis-
sion. Our results suggest the supply of government-backed science and scientists can
spur follow-on private investments in emerging technologies.
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1. Introduction

Technical innovation necessitates investment in the underlying basic science. Seminal
works such as Nelson (1959) and Arrow (1962) argue that private markets may lack in-
centives for investment in basic science: “because it is risky, because the product can be appro-
priated only to a limited extent, and because of increasing returns in use.” The scientific process
is characterized by asymmetric information, long timelines, and thus high uncertainty.
The inability to appropriate returns and increasing returns in use stem from the non-
excludable nature of scientific knowledge. Basic science generates spillovers that benefit
society at large but cannot be fully captured by the original investor.1 These features im-
pair the decentralized market’s coordination through the price mechanism.2 Thus, Nel-
son (1959) and Arrow (1962) propose that the government should bridge the funding gap
in basic science. The resulting knowledge and human capital are supplied as public goods
for the market to commercialize.

Venture capital (VC) investments seem to reflect these ideas. Although VC is a ma-
jor market mechanism in financing innovation (Howell, Lerner, Nanda, and Townsend,
2020), there are concerns about the increasing focus of VC funds on the IT sector to the
detriment of nascent technologies built on new science. These technologies are crucial for
addressing significant societal challenges, such as climate change and Alzheimer’s dis-
ease. Consequently, underinvestment in them leads to substantial welfare loss.3 Lerner
and Nanda (2020) argue that the typical VC model—characterized by small funds with a
finite life of 10-12 years—has limitations in addressing the technical uncertainty in new
science. Commercializing emerging science requires longer timelines and often high up-
front R&D costs, not amenable to how VCs address the Knightian uncertainty—i.e., un-
known variance—of the entrepreneurial process.4 Kerr, Nanda, and Rhodes-Kropf (2014)
argue that VCs finance startups in stages, with each stage serving as an experiment that
reveals information about the project’s viability and reduces uncertainty. The IT sector
aligns with the VC criteria because technological advances such as cloud computing have
lowered the cost of early-stage experimentation in software (Ewens, Nanda, and Rhodes-
Kropf, 2018). In contrast, reducing uncertainty in new sciences requires large-scale in-
vestment beyond the scale of most VC funds. Such uncertainty also deters potential

1The difficulty arises from the unpatentable, sequential and cumulative nature of science—that is, each
successive invention builds on the preceding one.

2See e.g., Scotchmer (1991); Bresnahan and Trajtenberg (1995); Green and Scotchmer (1995)
3Figure 1 shows an increase in the proportion of startups classified as software compared to a decline in

startups holding patents before their first VC financing.
4Knight (1921) argues that the entrepreneur faces uncertainty, fundamentally different from risk. Under

risk, success probabilities and expected values are known, but under uncertainty they are unknown.
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entrepreneurs—typically academic scientists with secure, salaried positions—from enter-
ing entrepreneurship due to the high opportunity costs (Hall and Woodward, 2010). Kerr
et al. (2014) thus suggest that institutions such as government and academia are essential
in enabling experimentation in new science.

Interestingly, the early stage of the IT sector, the realm of venture capital, highlights
the role of government in reducing technical uncertainty. The internet and many related
VC-backed technologies, such as Cisco’s routers and Google’s search algorithms, all orig-
inated from Pentagon-funded research (Lerner, 2012). Mallaby (2022) discusses the devel-
opment of web browsers as another example. Mosaic, one of the earliest web browsers,
was instrumental in popularizing the internet by integrating multimedia such as text and
graphics (Britannica, 2020). Marc Andreessen developed Mosaic at the National Center
for Supercomputing Applications, an NSF-funded lab at the University of Illinois at Ur-
bana–Champaign in late 1992. The funding was legislated under the High-Performance
Computing Act of 1991. After the popularity of Mosaic, the university offered Andreessen
a permanent contract on the condition of leaving the management of Mosaic to NSF. An-
dreessen responded by quitting his university job and founding Mosaic Communications
to work on building a rival product. With the backing of VC firm Kleiner Perkins, Mosaic
Communications developed the Netscape Navigator. In 1999, Netscape was acquired by
AOL for $4.3 billion.5 Andreessen later remarked that “if it had been left to private industry,
it wouldn’t have happened ... at least, not until years later.”6

Nonetheless, the effect of public funding for basic science on the investment behavior
of venture capitalists (VCs) is far from clear. Public funding mechanisms vary signifi-
cantly, and their efficacy depends crucially on their design (Howell, 2017, 2024). Public
funds may be allocated to projects with limited technological applications (e.g., cosmol-
ogy or fusion energy). They may also be driven by the political agendas of the govern-
ment bureaucrats (Lerner, 2009). Furthermore, public funding could potentially crowd
out private investment by subsidizing entrepreneurial R&D, thereby reducing the need
for dilutive VC financing. Conversely, anecdotal evidence suggests that large-scale, co-
ordinated science programs can successfully crowd in private investment (Mazzucato,
2021).7 These programs, also known as “moonshot”,8 are becoming increasingly popu-
lar worldwide. In this paper, we study whether and how mission-oriented government

5Marc Andreessen later founded Andreessen-Horowitz, one of the top VC firms globally.
6Perine (2000)
7The innovation literature underscores the role of such programs in catalyzing technology and industry

incubation (Arora, Belenzon, Patacconi, and Suh, 2020; Agarwal, Kim, and Moeen, 2021; Gross and Roche,
2023; Gross and Sampat, 2023). Several pivotal technologies, such as nuclear energy, antibiotics, satellite
navigation, mRNA vaccines, and microwave radar, can be traced back to such focused public investments.

8Inspired by NASA’s Apollo program to land a man on the moon.
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programs foster VC investments.
Studying this question requires a mission-oriented program orthogonal to the scien-

tific advances or market dynamics. We believe that the BRAIN Initiative possesses such
features. Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) is
a government program aimed at revolutionizing our understanding of the human brain.
In 2013, President Obama designated brain research as a Grand Challenge, a term used
for mission-oriented programs for expanding foundational knowledge. Another exam-
ple of a Grand Challenge is the Human Genome Project (HGP), which aimed to sequence
DNA bases in the human genome. The HGP spurred the emergence of the market for
genetic therapy. Battelle Institute (2011) estimates that for every federal dollar invested
in the HGP, $141 was generated in the economy. The HGP served as a role model for the
BRAIN Initiative (BI), and its success has significantly influenced BI’s design.

Similar to HGP, BI has a mission: mapping the human brain. This mission, pro-
posed by the leading neuroscientists through two influential papers,9 seeks to advance
understanding of macro-level neural circuit activity. This foundational knowledge has
implications not only for neurological disorder treatment (e.g., Alzheimer’s, Parkinson’s,
epilepsy) but also directly contributes to wider technological areas—e.g., medical devices,
prosthetics with sensory feedback, brain-computer interfaces, and cognitive computing
(The White House, 2013; NIH, 2014a). Six government agencies supported the BI,10 show-
ing its wide contributions. However, the National Institute of Health (NIH) was the lead-
ing agency that coordinated the program. We estimate that the US government has spent
over $5B in funding BI between 2014 and 2022 and the program is set to run until 2026.

A potential endogeneity concern is that the inherent promise of neurotechnologies
might have attracted VC investment independent of the BI. However, several factors mit-
igate this concern. First, the scale of the BI, with over $5 billion in government funding,
dwarfs the typical investment capacity of individual VC funds, which average $145 mil-
lion per fund.11 Second, VC funds are unlikely to coordinate investments to produce a
non-excludable good like a comprehensive brain map. Third, leading up to the BI, even
pharmaceutical companies, traditionally major investors in neuroscience R&D, were cut-
ting their expenditures in the field due to high uncertainty and failure rates.12 While it
remains possible that unobservable advances in neuroscience could have coincided with

9See (Alivisatos, Chun, Church, Greenspan, Roukes, and Yuste, 2012; Alivisatos, Chun, Church, Deis-
seroth, Donoghue, Greenspan, McEuen, Roukes, Sejnowski, Weiss, and Yuste, 2013)

10NSF (science), FDA (food and drugs), IARPA (intelligence), DARPA (defence), and DoE (energy)
11This is based on all PitchBook’s US VC funds.
12See for example: (Miller, 2010; Nutt, 2011; Insel and Landis, 2013; Choi, Armitage, Brady, Coetzee,

Fisher, Hyman, Pande, Paul, Potter, Roin, and Sherer, 2014)
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the BI, our dynamic estimations show no evidence of a pre-trend or elevated VC activity
in the neurotechnology space prior to 2013. Furthermore, BI was designated as a Grand
Challenge from a diverse menu of 12 other scientific projects (Sejnowski, 2014), highlight-
ing a degree of randomness. This mitigates the concern that the markets broadly antici-
pated the shock.

For BI to be a relevant shock, it must be effective in producing influential science with
high commercial potential. We use three separate measures of commercial viability to
validate that BI is a relevant shock. Marx and Fuegi (2020, 2022) provide data on re-
alized citations to academic articles in the patent text. Using this data, we find that BI-
funded research is more likely to be cited in patents than similar publications from non-BI
grants in neuroscience. We obtain similar results using data from Masclans, Hasan, and
Cohen (2024), which predict the commercial potential of a publication—i.e., the ex-ante
likelihood that an academic publication receives patent citations. Nonetheless, patent-to-
publication citations likely underestimate the effect of BI due to its basic science nature.
This aligns with Nelson and Arrow’s argument that the outcomes of basic science R&D
cannot be fully appropriated. Scientific discoveries, such as the fundamental principles
of how the brain works, are not directly patentable. Also, patents tend to cite prior art
immediately related to the invention, suggesting that the broader scientific foundation
upon which an invention is based is less frequently cited.13 Another issue arises from the
truncation issue in patent citations. This is specifically relevant in our setting, given that
the BI occurs in the second half of our sample.

Lerner and Seru (2021) suggest that machine learning models can overcome some of
these limitations.14 Inspired by the methodologies used in Masclans et al. (2024) and
Giczy, Pairolero, and Toole (2022), we employ a Large Language Model (LLM) to identify
patents influenced by BI research output. We fine-tune a SciBERT model15 using a labeled
dataset that includes positive cases—the titles and abstracts of research papers resulting
from BI research outputs16—and negative cases, consisting of neuroscience publications
before the BI. The model estimates that BI knowledge has influenced at least 66% of all
neuroscience-related patents.

To study the economic impacts of BI, we construct a comprehensive dataset with in-
formation on startup financing, innovation, and employees. We compile a sample of

13For example, while the BI-funded Cell Census Network (BICCN) helps identify cells that stop function-
ing in Parkinson’s disease, the statistical models that BICCN is based on may be too abstract for citation in
Parkinson-related patents.

14A similar suggestion is echoed by USPTO’s chief economist (Toole, Pairolero, Forman, and Giczy, 2020)
15BERT is a foundational model released by Google AI in 2018 (Devlin, Chang, Lee, and Toutanova, 2018).

SciBERT is a version of BERT pre-trained on a large corpus of scientific text (1.14M scientific articles).
16The majority of patents citing BI research are associated with academic institutions.
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US VC-backed startups receiving their first VC funding round between 2000-2019 using
PitchBook and follow their outcomes until 2022. We link this to LinkedIn data to gain in-
sights about the startup employees and their employment history. We specifically identify
the academics who have founded or worked for these startups. We also find information
on startup innovation activity by identifying patent portfolios of startups from USPTO’s
PatentsView, augmented with Founding Patents data of Ewens and Marx (2023). We iden-
tify a startup as a Neuro startup if it has at least one patent related to neuroscience based
on textual analysis of the patent’s technology classes.17 To examine the direct impact of
the BI, we collect data on grants, including the dollar amount, output publications, grant
type, organizations involved, and principal investigators from the websites of funding
agencies. Subsequently, we extract detailed information on the publications enabled by
these grants, including publication years, citations, and co-authors, from Scopus.

We find that Neuro startups receive between 31% and 50% larger investments from
the VCs post-BI compared to various startup control groups. Such investments are also
made at valuations that are 23% to 41% higher. These results suggest that the BI made
neurotechnology more investable18 for VCs. If public funding reduces the technical un-
certainty of Neuro startups, this effect is likely reflected when VCs invest in the company
for the first time. In the first VC round, the uncertainty is skewed toward technological
feasibility rather than product performance or market validation. We find our results to
be consistent across the first rounds. The reduced technical uncertainty is also reflected
in VCs’ successful exits from their neuro investments through IPOs or acquisitions;19

this demonstrates that the broader market also recognizes the value of these firms. We
also find that VC’s exit their neurotech investments faster, indicating shorter R&D time-
lines, enabled by the BI. Our control groups include all VC-backed startups, those with
a patent,20 financing rounds within five years before and after the shock and startups in
the healthcare sector. We obtain consistent results across all these control groups.

We propose three non-mutually exclusive channels to explain the more favorable VC
financing and outcomes for Neuro startups: 1) higher supply of skilled labor reflected in
the presence of STEM academics either as early senior employees or inventors, 2) in-
creased innovation, and 3) enhanced adaptability of neurotechnologies to other comple-
mentary technologies. The focus on human capital is motivated by Bernstein, Korteweg,

17Our results are robust when we identify Neuro startups by analyzing the startup’s business descriptions.
18By investable and investability, we mean more attractive investment opportunities throughout the paper.
19Following Ewens and Rhodes-Kropf (2015), a successful acquisition is an exit value greater than twice

capital invested.
20Given that these are only around 15% of VC-backed startups, we believe this represents a sample of

more science-based startups.
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and Laws (2017), who find that investors place primary emphasis on the startup’s human
capital when deciding on funding early-stage ventures. We focus on academics because
BI funding was predominantly allocated to academic research. We find that Neuro startups
are 10% more likely to have STEM academics in senior positions in the first three years
after being founded, post-BI. In a panel of startup-year observations, we observe a higher
likelihood of inventor-employees in Neuro startups coming from academic backgrounds
after the BI. 21 Neuralink, a prominent Neuro startup founded in 2017, is an example of a
startup that benefited from the human capital funded by the BI. Not only is Neuralink one
of the top three employers of scientists who have published with the BI funding, but its
founding team also includes one such scientist, Philip Sabes, a professor of neuroscience
at UCSF.

Moreover, we note that Neuro startups file for more patents compared to other patent-
ing startups, suggesting more successful R&D outcomes. While we do not find that the
average patent of Neuro startups receives more citations, we do find evidence of more
breakthrough patents by these firms. The larger number of patents, including break-
through patents, represents a richer portfolio of tangible IP-based assets, which is attrac-
tive to VCs as it increases the prospects for strategic partnerships, acquisitions, or even
IPOs (Caskurlu, 2019; Farre-Mensa, Hedge, and Ljungqvist, 2020; Bowen, Frésard, and
Hoberg, 2023). Lastly, we use USPTO’s AI Patent Dataset to identify inventions that have
used AI in the innovation process. We find that post-BI Neuro startups’ patents are twice
as likely to employ AI-enabled patents compared to other patenting startups, in line with
more integration of data science into neuroscience-related technologies.

This reallocation to a more interdisciplinary approach could be attributed to the goals
of BI. The human brain comprises 86 billion neurons, forming over 100 trillion connec-
tions (Nature, 2021). To Decode this complex network, BI funded significant open-access
datasets22 and computational infrastructure for analyzing these gigantic datasets (Zador,
Escola, Richards, et al., 2023). We find that NIH’s BI grants are three times more likely to
fund data science-related areas than conventional NIH neuroscience grants. Furthermore,
BI emphasizes interdisciplinary research between neuroscientists, engineers, statisticians,
chemists, and data scientists. A comparison of the underlying technological areas that
neurotech companies are active in shows that after the BI, neurotech becomes broader
than life sciences and encompasses areas such as AI and machine learning, big data, and

21These findings are consistent with those of Babina, He, Howell, Perlman, and Staudt (2023), who
demonstrate that in the opposite scenario, i.e., for an academic facing a cut in her public funding, the
rate of entrepreneurship drops.

22An editorial article in Nature (2021) notes that by the time BI ends “it will have created a gold mine for
clinical researchers working on psychiatric, neurodegenerative and neurodevelopmental disorders.”
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brain-computer interfaces. This is also reflected in acquisition patterns in the neuro mar-
ket. Post-BI, the number of acquisitions of Neuro startups sharply increases. Before the
BI, acquirers were almost exclusively from the healthcare sector. However, after the BI,
acquirers are from a diversified range of sectors, including IT, B2B, and B2C.

The potential synergy between neuroscience and AI raises an omitted variable bias
concern. VCs might invest more in Neuro startups startups not due to the BI, but because
neuroscience is fertile ground for AI applications. While our results are robust to the
exclusion of startups explicitly employing AI and big data technologies, we further pro-
vide direct evidence on the treatment effects of BI. Following Arora, Belenzon, Cioaca,
Sheer, and Zhang (2023), who highlight the role of university-trained labor in driving
corporate innovation, we focus on researchers directly involved in BI-funded projects, as
observed through publications funded by the BI. We collect data on these publications
through queries from the NIH and NSF websites, which provide public data on grants
and output publications. These publications are linked to Scopus to identify co-authors.
The underlying assumption is that these scientists embody the knowledge and expertise
generated by the BRAIN Initiative. For each Neuro startup, we identify the first financing
round after hiring a BRAIN scientist, classifying this as the treatment point. We find that
compared to non-treated neurotechnology startups, those employing BI scientists raise
larger VC funding. This finding provides direct evidence that VCs value the skilled labor
developed through the BI.

Contribution to the Literature

Our work contributes to a large body of literature studying the role of public funding
in spurring private investments in entrepreneurship and innovation. Fleming, Greene, Li,
Marx, and Yao (2019) show US corporations and startups increasingly rely on government-
backed innovation. Bai, Bernstein, Dev, and Lerner (2021) propose that public-private
co-investments are more effective when the rule of law is greater, and the government
invests in earlier-stage projects. Lerner, Manley, Stein, and Williams (2024) highlight the
role of place-specific factors–i.e., institution effects vis-à-vis researcher effects–in commer-
cializing academic innovation.

Closely related are Lerner (1999) and Howell (2017), who study the real and financial
impacts of government grants in the form of Small Business Innovation Research (SBIR)
on startups. Lerner (1999) argues SBIR funding plays a certification role by conveying in-
formation about a startup’s quality to VCs. Howell (2017), on the other hand, finds initial
Phase I SBIR funding enables startups to prove the viability of their project to VCs. In
contrast, the Phase II grants, which constitute 80% of the total SBIR funding, do not have

7



an impact. The inefficiency of Phase II SBIR grants highlights that not all public funding
is equal, and the focus and design of the funding matter. For example, Akcigit, Han-
ley, and Serrano-Velarde (2020) propose that the government’s funding targeted at basic
research is welfare-improving, whereas subsidizing applied research, which the private
sector could otherwise finance, is less effective. This insight informs our distinction be-
tween Lerner (1999) and Howell (2017), who study direct R&D subsidies to businesses,
while our work focuses on public funding targeted at basic science. Such funding creates
a public good that has yet to spill over into the commercialization and entrepreneurial
processes. These externalities are crucial as Myers and Lanahan (2022) document that
publicly funded R&D generates significant spillovers, even in distant technological areas.

Babina et al. (2023) is another related study. They find that private financing substitutes
for public funding and the rate of academic entrepreneurship drops when federal funding
for academic research is cut.23 Our results, however, suggest public funding can spur
private investments and high-tech entrepreneurship, indicating a complementary effect.
This could be due to the different settings of these two studies. We examine a large,
long-standing positive shock aimed at resolving a major scientific bottleneck, whereas
they focus on smaller-scale temporary negative shocks. Additionally, their focus is on the
impact of public funding on the transition of academics into entrepreneurship, while our
investigation centers on the response of VCs and the broader market.

2. Institutional Settings: BRAIN Initiative

A year before President Obama’s announcement on brain research, leading researchers
in the field published an article in Neuron, the premier journal of neuroscience, propos-
ing a global initiative to map the human brain (Alivisatos et al., 2012).24 Up to that point,
to understand neural activity, neuroscientists were using electrodes that sparsely sam-
pled brain activity, typically capturing signals from one to a few neurons in a specific
region. The article argues that understanding neural circuits, which can involve millions
of neurons, requires observation at a multi-neuronal level, as single-neuron recordings are
insufficient—akin to trying to understand an HDTV program by focusing on just one or
a few pixels on the screen. The article suggests a large-scale effort to map neural circuits

23In supplementary tests, they examine the effect of temporary positive federal funding shocks on aca-
demic entrepreneurship but do not find significant results.

24An earlier draft of this paper had been circulated in 2012, acknowledging the initiative’s roots in Oppor-
tunities at the Interface of Neuroscience and Nanoscience, a workshop organized in 2011 by the Allen, Gatsby
and Kavli institutes. These institutions are major philanthropic foundations funding cutting-edge basic
science research. The initiative’s emergence from such institutions highlights the role of other non-profit
institutions in promoting basic science.
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could lead to a major scientific breakthroughs:

“Emergent-level problems are not unique to neuroscience. Breakthroughs in under-
standing complex systems in other fields have come from shifting the focus to the
emergent level. Examples include statistical mechanics, nonequilibrium thermody-
namics, and many-body and quantum physics. Emergent-level analysis has led to
rich branches of science describing novel states of matter involving correlated parti-
cles, such as magnetism, superconductivity, superfluidity, quantum Hall effects, and
macroscopic quantum coherence. In biological sciences, the sequencing of genomes
and the ability to simultaneously measure genome-wide expression patterns have en-
abled emergent models of gene regulation, developmental control, and disease states
with enhanced predictive accuracy. We believe similar emergent-level richness is in
store for circuit neuroscience. An emergent level of analysis appears to us crucial for
understanding brain circuits. Likewise, the pathophysiology of mental illnesses like
schizophrenia and autism, which have been resistant to traditional, single-cell level
analyses, could potentially be transformed by their consideration as emergent-level
pathologies.” (p.973)

These ideas were formally consolidated into an action-based proposal, published in
Science25 by the same team, which laid the groundwork for the BRAIN Initiative, un-
veiled in April 2013 by President Obama. Interestingly, five months later, the Euro-
pean Union launched a brain research development program known as the Human Brain
Project (HBP). Despite their similar focus, the two projects exhibit distinct characteristics.
Theil (2015) and Modic and Feldman (2017) provide a detailed comparison of their back-
grounds and differences. The overarching goal of the BI is to map the human brain, while
HBP’s goal was far more ambitious to simulate the human brain, which many found un-
realistic. BI was rooted in the interactions and consensus of a wider neuroscience commu-
nity, while HBP was an initiative led by a few neuroscientists. This highlights the impor-
tance of consensus decision-making in setting the mission for such programs. Addition-
ally, the process leading to the BRAIN Initiative’s designation as a Grand Challenge in the
US was more transparent than its European counterpart. Consequently, the BRAIN Initia-
tive quickly gained popularity within the US neuroscience research community, while the
HBP faced considerable controversy in the EU. In 2014, 750 European researchers signed
an open letter to the European Commission criticizing the HBP’s overly narrow focus
and threatening to boycott the project (Guardian, 2014). Although the HBP continued un-
til 2023, it appears to have had minimal impact on the European neuroscience community
(Atlantic, 2019), whereas the BI, which is set to end in 2026, has already been applauded
by the neuroscience community (Nature, 2021).

25Alivisatos et al. (2013)
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Initially, the funding level for the BI was announced at $4.5 billion over a period of
12 years (NIH, 2014b). Based on agency budget reports, grant data, and BI fact sheets,
we estimate that the US government has invested over $5 billion in basic neuroscience
research between 2014 and 2022. While multiple government agencies, including NSF,
DARPA, IARPA, FDA and Department of Energy were involved in the initiative, not all of
them were active funders.26 Details on annual funding levels by the agency are provided
in Appendix A. NIH is the leading and central agency with 62% of the total funding with
a working group that actively coordinates and evaluates the program.

Although the BI represents approximately 10% of the NIH’s overall neuroscience ex-
penditure, its significance extends beyond its relative size. Referred to as the “moonshot
between our ears,” the BI focuses on the critical and underexplored area of mapping brain
activity (Mott, Gordon, and Koroshetz, 2018). In Section 3.4, we compare NIH-funded
publications in neuroscience outside the BI to BI-funded publications and find that BI-
funded publications have higher impact. As one example, BI’s Cell Census Network
identifies the diverse cell types in human, monkey, and mouse brains. An editorial in
Nature (2021) highlights this project as a significant advance in understanding structure-
function relationships in the mammalian brain, poised to drive innovation in future neu-
roscience studies across various domains. Another distinction of BI from previous grants
is the wide range of science it funds, encompassing fields from neurobiology to statistics,
physics, chemistry, mathematics, engineering, and computer and information sciences.
These distinct features set the program apart from previous neuroscience grants.

Beyond its direct scientific contributions, the BI has spurred the development of criti-
cal research infrastructure and resources. The foundational proposal published in Science
acknowledges that achieving the goal of mapping the brain “...require developing methods
for storing, managing, and sharing large-scale imaging and physiology data, as well as developing
methods for analyzing data and modeling underlying neuronal circuits, leading to emergent prin-
ciples of brain function. It will be carried out by providing access to all investigators, including
cellular, systems, and computational neuroscientists, to the methods and data needed for develop-
ing, testing, and verifying theories of how the brain operates.” In line with this direction, BI has
contributed the development of new tools for capturing brain activity data and platforms
for openly disseminating this data. For instance, Google Research has collaborated closely
with BI scientists to develop computational tools for managing one of the BI datasets,
sized at 25K terabytes (Januszewski, 2023). Also, BI’s open-source data-sharing policy
mandates awardees to disseminate their data on designated BI data archives, promoting

26For example FDA supports the initiative by enhancing the transparency and predictability of the regu-
latory landscape for neurological devices and assisting developers and innovators of medical.
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knowledge spillover (NIH, 2019) within the neuroscience community and outside.

3. Sample and Data

Our dataset encompasses VC investments, VC-backed startups, their patent portfo-
lios and employees, research grants from NIH and NSF, publications generated by these
grants, and co-authors of these publications. We begin with the universe of VC deals in
PitchBook and identify startups backed by VC (Section 3.1). We collect information on
the patent portfolios and employees of these startups from PatentsView (Section 3.2) and
the LinkedIn dataset (Section 3.5), respectively. We also incorporate research grant data
from NIH and NSF (Section 3.4). Moreover, we identify Neuro startups by examining the
patent portfolios of startups (Section 3.3).

3.1. VC-backed startups

Our study examines startups headquartered in the US from PitchBook. We include all
companies with the first VC funding event from 2000 to 2019. The starting point is gov-
erned by PitchBook’s reliable data. The ending point is chosen as the last year before the
COVID-19 pandemic. Post-2019, the focus of public and private funding shifted towards
funding COVID-19 treatment and vaccine R&D; this could potentially confound our anal-
ysis. We follow the VC exits on these investments until 2022. To be considered, a financing
round must (1) consist of new equity issuance, excluding rounds focused solely on debt
or secondary sales, and (2) be categorized as a ”Venture Capital” round in the PitchBook
dataset.27 Our final dataset encompasses 50,601 distinct startups, with the founding years
ranging from 1990 to 2019. VC-backed startups span 40 unique primary industry groups,
with 65.02% of these startups concentrated in just five industry groups. The leading in-
dustry groups are Software, Commercial Services, Pharmaceuticals and Biotechnology,
Healthcare Devices and Supplies, and Media, representing 37.22%, 10.35%, 7.65%, 5.74%,
and 4.05% of the total number of VC-backed startups, respectively.

We are also interested in assessing whether the VC investment in the startup is suc-
cessful. As with many VC studies, we cannot observe the exact amount returned to the
VC to compare it to the amount invested. Nevertheless, we follow Ewens and Rhodes-
Kropf (2015) and define a Successful Exit as one where the startup has either IPOed or
been acquired with a reported exit value greater than two times capital invested and zero
for smaller. Ewens, Nanda, and Stanton (2023) identify a startup as a failure when it has
not raised capital three years after its financing round. Our Successful Exit dummy also

27For example, we exclude rounds primarily financed by angels, incubators, crowdfunding investors,
corporate investors, and grants.
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takes the value of zero for these startups. For this group, we follow Ewens and Sosyura
(2023) and use the beta distribution to assign a failure/exit date between 2 and 5 years
after the last financing event.

The dataset contains 94,565 unique financing deals with non-missing values in round
sizes. Table 1 provides summary statistics of the variables in our analysis. The first fi-
nancing round has an average round size of $4.57m at a pre-money valuation of $12.78m.
Unsurprisingly, when considering all financing rounds, the average round size goes up
to $9.93m, alongside a pre-money valuation of $80.51m, indicating that subsequent VC
rounds generally have larger round sizes and higher pre-money valuations than the first
round. The distribution of these variables is highly right-skewed. The number of VCs per
deal averages 1.77 in the first round, rising to 2.17 in later rounds.

3.2. Innovation

We construct the startups’ patent portfolios by connecting them to the PatentsView
and augment them with the patent dataset from Ewens and Marx (2023). PatentsView
provides extensive information on US patents granted between 1976 and 2023, including
patent number, application and grant year, citations, Cooperative Patent Classification
(CPC), assignees, and inventors for each patent.28 To link PatentsView with startups,
we employ a two-stage process. The initial phase involves matching the legal names of
startups with the assignee names listed on patents, given that legal names represent the
formal identification of startups and patent assignees denote the owners. We utilize the
name-matching algorithm described in Tumarkin (2020) to pinpoint the closest matches
between startups’ legal and assignee names. Recognizing the potential for closely similar
names among different startups, the subsequent step involves comparing the location of
the patent assignee with the startup headquarters. A patent is considered associated with
a startup when there is a match in both name and location, ensuring an accurate link-
age between patents and the corresponding startups. To further refine our dataset, we
combine our startup’s patent dataset with a comprehensive patent dataset from Ewens
and Marx (2023), which details the founding years for 85% of US-based assignees in
PatentsView and links them to PitchBook startups. Our final sample of patenting star-
tups includes 9,790 startups with an average of 12.91 patents per company.

Furthermore, our study utilizes the Artificial Intelligence Patent Dataset (AIPD) con-
structed by Giczy et al. (2022), identifying patents that have utilized AI in their innovation
process. AIPD uses machine learning to analyze all US patents from 1976 to 2020 and pre-

28Our study specifically focuses on utility patents as per the March 2023 version of the PatentsView
dataset.
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grant publications (PGPubs) up to 2020. A unique advantage of AIPD is that it assesses
the AI components in patents not just through abstracts and citations but also by consid-
ering the patent claims. The patent claim is important to consider as claims define the
legal scope of the invention (Giczy et al., 2022).

3.3. Neuro Startups

There is no specific industry classification in PitchBook that allows us identify star-
tups in the neuro space.29 For this purpose, we primarily rely on startup patents. Star-
tups usually have a narrow technological focus and one product. Therefore, it is fair to
assume that a startup with a neuro patent is in this space. We define a startup as a Neuro
startup when it has at least one patent in a neuro-related technology group. Neuro-related
technology groups are those where the title of the CPC technology group30 contains one
of our Neuro keywords: {neuro, nerve, brain, optogenetic, Parkinson, Alzheimer, and dementia}.
We obtain these keywords through the following procedure. PitchBook offers a keyword
column for every startup. We compile all the keywords of a startup as long as one of them
contains neuro or brain. This results in a vector of 500 keywords .31 Next, we feed these
keywords into ChatGPT and ask it to sort them based on neuroscience relevance. We
subsequently manually check these and filter out those that introduce noise.32 In total,
we find 220 neuro-related CPC technology groups. These help us classify 1841 startup
patents in neuro space, which relate to 755 startups that we call Neuro Startups and form
our treated group. Of these startups, 88% are in the healthcare sector and 8% in the IT
sector. Our sample features well-known Neuro startups like Neuralink, Lumos Labs, and
Neurotrack Technologies, which have gained significant media attention.

To exclude large companies with patents in many areas, we do not count companies
that obtained their first Neuro patent after VC exit. Our results are robust to a more rigor-
ous definition of Neuro startups that captures patent timing. Under this definition, a Neuro
startup must file for a patent in a five-year window after the first VC round. The limitation
of this method is that we might lose startups whose R&D have longer timelines or those
that choose to reveal their IP through patents later in their life cycle.

As an alternative classification of Neuro startups, we also consider relying directly on

29Due to the rise of neuro space, later versions of PitchBook, which we do not have access to, have added
neurotechnology as an emerging space.

30One advantage of using CPC instead of directly analyzing the patent’s text is that CPC standardizes
the text and therefore we can identify the neuro space in a consistent way across all patents.

31These are not just one word and could be ngrams. For example: Alzheimer testing, brainwave technology,
neuromuscular disorder, vascularized tissue perfusion, or insurance automation

32For example, the word neural could also pick up the AI related term neural networks. Therefore, we
exclude the term neural.
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PitchBook’s business descriptions or keywords provided by PitchBook. While the find-
ings using the classification are consistent with the patent-based definition, we prefer
the patent portfolio approach because the business description keywords are subject to
PitchBook’s information, the source of which is unknown to us. Our comparison of dif-
ferent versions of PitchBook reveals that a startup’s description slightly varies over time.
This could be problematic if startups self-select to describe themselves with fashionable
words. We do not face this problem with patents, as the underlying claims have been
professionally examined and are legally binding and time-invariant.

3.4. Research grants

We gather detailed information on NIH and NSF BI grants, as well as non-BI neuro-
science grants from NIH. This process is detailed in Appendix A.1 and A.2. Other agen-
cies that support the program do not provide grant-level information. These two agencies
have provided the lion’s share of funding, with NIH providing significantly more. Collec-
tively, NIH and NSF allocated $4.3 billion and an average of $1.1 million per project from
2014 to 2022. For publications resulting from these grants, 82% of projects funded by NIH
have produced publications totaling 7,448 unique publications. Meanwhile, NSF’s 694
BI grants have resulted in 6,138 publications. Besides, We collect additional details such
as titles, citation counts, publication years, authors’ names, and affiliations from Scopus
(Rose and Kitchin, 2019), enhancing our dataset with this comprehensive information.

Besides directly funding impactful research, BI has also facilitated the interaction of
data science and neuroscience, as references in Section 2 suggest. We also find evidence
for this by comparing the focus of grants under NIH non-BI neuroscience research with
that of the BI. We define grants with a data focus as grants that contain the following
keywords: {data science, machine learning, artificial intelligence, data set, data sharing, large
datasets, large scale data, deep learning, software, algorithm, open source, and Python} in project
terms. We find that BI-funded grants are three times more likely to address data chal-
lenges in neuroscience compared to non-BI: 46.19% of grants in BI compared to 15.01% in
non-BI. This significant discrepancy highlights BI’s role in boosting neuroscience’s prac-
tical application.

3.5. Employee of startups

Our primary source of data for startup employees is Revelio Labs, which has collected
and augmented LinkedIn data. We can link 80% of all startups and 86.48% of all Neuro
startups in our sample to Revelio Labs data. This enables us to learn about the startup’s
employees and their CVs.
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We aim to identify the employment history of startup’s inventors, founders, and au-
thors under publications of BI grants. Thus, we integrate PatentsView and Scopus data
on an individual level with Revelio Labs. Specifically, we aim to accurately pair individu-
als from two distinct groups: one comprising all startup employees listed in the LinkedIn
dataset and the other encompassing all inventors of startup patents from PatentsView,
alongside authors of BI-funded publications recorded in Scopus. To ensure precise matches
between these groups, we begin the process by comparing their names and employment
histories. A match is confirmed when two individuals share similar names and their em-
ployment histories overlap. For example, suppose inventor A shares a similar name with
employee A, and inventor A has a patent with company ABC, while employee A works
for company ABC. In that case, we establish a match between inventor A and employee
A due to their similar names and shared employment history.

We first pair individuals by assessing the similarity of their names through fuzzy
matching, with the methodology detailed in Appendix 6. Subsequently, we compare
the employment histories of startup employees, inventors of startups, and authors of
BI-funded publications. For inventors, we consider the names of patent assignees as their
employment, as a patent assignee is typically the patent owner and the inventor’s em-
ployer. Similarly, we use the listed affiliations of BI publication authors to represent their
employment history. We identify 60,371 startup employees as inventors and 2,983 em-
ployees as co-authors of BI grant-derived publications.

3.5.1. Academic Startups and Inventors

We identify a startup as an Academic Startup if it has an academic employee in the
first three years after being founded in a senior position. We define a senior position
based on Revelio’s seniority level, categorizing positions with a seniority level above 5,
where maximum is 7, as senior roles. An academic employee is one who 1) holds a PhD
in STEM degree and 2) has worked at a university under job titles such as {professor,
graduate, lecturer, academic, researcher, faculty, dean, instructor, scholar, scientist, postdoc, PhD,
doctor, researcher, fellow, educator}. Additionally, we identify employment at universities
and research institutes by evaluating whether employer names include keywords like
“university”, “institute of technology,” and “college,” as well as specific abbreviations
and names such as “UCLA,” “MIT,” and “Caltech,” and terms such as “Lab,” “Research,”
and “Mayo Clinic.” Besides, We also identify the inventors of every startup’s patents from
USPTO. After linking these inventors to Revelio Labs, based on the same filters as above,
we identify academic inventors.

15



4. Commercial Potential of BI Through Machine Learning

We start our analysis by understanding the commercial impact of BI-funded research.
The first measure we use counts the number of patents citing an academic article. This
data is provided by Marx and Fuegi (2020, 2022). The second measure is developed by
Masclans et al. (2024) which predicts the ex ante commercial potential of an academic
paper. We then compare these impact measures with that of other publications in neuro-
science that are funded by NIH but are not part of the BI.33 We refer to the latter group
as non-BI neuroscience. This data serves as a reference point and helps us control for
unique features of the field. For example, medical research publications generally re-
ceive more citations than those in other disciplines. Or, the availability of funding across
different fields can affect their commercialization. By focusing on NIH grants in the neu-
roscience field, we can compare the outcomes of publications by the main agency behind
the BI within the same research domain more accurately. In Appendix C, we validate
BI’s commercial and scientific relevance, using the above two measures. We find that
BI-funded publications on average receive four times more citations compared to non-BI
neuroscience and have higher commercial potential as predicted by the Masclans et al.
(2024) measure.

We next examine whether startups effectively utilize the knowledge from BI publica-
tions. Given the fundamental nature of BI research, using the patent citation of BI research
could be overly conservative and underestimate the broader impact of BI research. Lerner
and Seru (2021) show that patents typically cite prior art directly related to the invention.
This implies that the broader scientific foundation underlying the invention is less often
cited. To overcome the limitation of patent citations, USPTO’s chief economist argue that
machine learning is a superior method for identifying patents in specific areas (Toole et al.,
2020). Therefore, we develop a large language model (LLM), with the aim of identifying
Neuro patents that are influenced by the BI publications. The LLM we use is SciBERT, a
BERT model trained on 1.14M scientific articles (Devlin et al., 2018). Given its capacity to
understand technology-related text, the SciBERT model is superior to the original BERT
model. We further fine-tune the SciBERT model to calculate a score between 0 and 1 for
the influences of BI on a patent. To avoid this look-ahead bias, we develop a separate
model for every year from 2015 to 2020, such that the patents are only influenced by the
knowledge generated up to that point. For example, a patent in 2017 cannot be influenced
by the knowledge generated in 2018.

Supervised machine learning models typically require a balanced labeled dataset for

33See Section 3.4 and Appendix A for more detail
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effective training (Lemaitre, Nogueira, and Aridas, 2017; He and Garcia, 2009). In our
study, the positive cases are BI-funded papers, constituting a relatively small fraction
of the overall publication pool. We randomly select papers from non-BI neuroscience
grants to address the potential sample imbalance that would arise from including all other
publications as negative cases. Publications from non-BI neuroscience grants are a strong
baseline for distinguishing between the influence of BI and other grant-funded research
(Masclans et al., 2024; Giczy et al., 2022). All the negative cases are papers published
between 2009 and 2013, which proxy for the pre-existing neuroscience. Our results are
robust when using alternative randomly selected negative cases.

We further divide our labeled sample into three sets: 80% for training, 10% for testing,
and 10% for validation. We report the model performance in Table A4. All other mod-
els achieve a weighted average F1-Score above 0.9, which shows high accuracy for the
model’s predictions. In addition to conventional machine learning performance metrics,
we also validate the performance of our model using patent citations. Patents that di-
rectly cite BI publications are highly likely to be influenced by BI research. Consequently,
we tested whether our model could accurately predict patents that directly cite BI publi-
cations as patents influenced by BI research. Our model correctly predicts that 87.54% of
these patents are influenced by BI research. Using our trained model, we find that 66% of
neuroscience-related patents of startups are influenced by BI research.

5. Empirical Analysis and Results

In a difference-in-differences (DiD) setting, our empirical analysis compares the treat-
ment effects of an exogenous increase in public funding of the treated with control groups.
The exogenous shock we study is the BRAIN Initiative, a mission-oriented government
program that aims to map the human brain. The outcome variables we study relate to pri-
vate financing, labor, and innovation outcomes of the Neuro startups with control groups.
The selection of control group in a DiD study is crucial to isolating the treatment effect
from other confounding influences. In our study, the baseline control group comprises all
non-Neuro VC-backed startups. VC backing is a proxy for the startup’s growth potential
as a small fraction of young companies manage to receive venture capital. This group
also provides a broad comparison across diverse sectors to distinguish the overarching
patterns that differentiate Neuro startups. To further enhance the comparability, we refine
this control group in three ways. First, we only include startups within the Healthcare
sector. This sector, primarily composed of life science companies, is inherently research-
intensive and, like the neuro segment, relies heavily on scientific breakthroughs and de-
velopments. Hence, startups in this sector can serve as a more relevant benchmark when
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assessing the unique impact of public funding on Neuro startups.
Second, the time frame surrounding the BI provides a proximate economic context

and, therefore, must be carefully selected. By choosing a window of five years before
and after the policy implementation, we capture a temporal environment closely aligned
with the period of interest. Third, given that our definition of a Neuro startup depends
on the presence of patents with Neuro keywords, and considering that only about 15%
of startups hold patents while receiving VC investment, we refine our baseline control
group for a more precise comparison. Startups that possess at least one patent during the
VC investment period represent a more similar cohort to Neuro startups because patenting
indicates engaging in certain type of innovation, where the IP protection is central to the
value proposition of startups in the eyes of investors.

5.1. VC Investments: Financing and Valuation

We start with the VC financing outcomes of Neuro startups as the first-order effect we
are examining. We test the hypothesis that the public funding that BI provides increases
the investability of Neuro startups for the VCs compared to the control group. The mea-
sures of investability, we study are the amount that VCs invest in the startup and the
valuation of the startup at the financing. For this test, we estimate the following equation
at the financing round level:

Yit = β1Neuroi × Postt + β2Xit + γt + ρj + υijt, (1)

where Xit are entrepreneurial firm characteristics at the time of the investment, includ-
ing industry code fixed effects, geographic fixed effects, and an indicator for whether the
firm was a Neuro startup (i.e., treated), γt are year fixed effects corresponding to the year
of the investment. The main coefficient of interest (β1) is the interaction between Neuro
and Post. It is worth noting that Pitchbook offers three levels of industry classification,
with the broadest being the industry sector (akin to SIC2), followed by an industry group
(akin to SIC3) and an industry code (akin to SIC4). Healthcare is one of seven industry
sectors and is the second largest in terms of number of VC-backed companies after IT.34

Our industry fixed effects are at the more granular level of industry groups.35

34Other sectors include Information Technology, Healthcare, B2B, B2C, Energy, Financial Services, Mate-
rials, and Resources.

35While our results are robust to the choice of industry level, this level balances the need for specificity
without excessively absorbing the variation we aim to capture, which might occur with the most gran-
ular Industry Code classification. Employing Industry Group fixed effects, which consist of 40 different
categories, allows us to control for industry-specific trends and characteristics without overshadowing the
treatment effect of interest.
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The first Yit we study is the amount the VC invests at a financing round, i.e., round
size. We focus on the first financing round for several reasons. First, the investor un-
certainty is highest prior to the first investment. Given the active involvement of VCs
in their investments, after the first investment, the VC acquires information about the
startup’s quality. Also, the first investment is more likely to be based on the promise of
the startup’s technology and less on market validation. Initially, the uncertainty is highly
skewed towards scientific and technological feasibility, which is where BI is most rele-
vant. If BI has reduced the technical uncertainty of startups in the funded area, we would
expect this to lead to larger investment amounts in the first round.

In Panel A of Table 2, we report the results of the OLS regression of Equation 1. The
outcome variable, first round size, is log transformed to account for its skewness. We
include year, state, and industry group fixed effects. In our specifications, we also control
for the number of VCs that are active in the funding to control for the fact that a larger
syndicate can provide larger funding amounts. In Column (1), we include all VC-backed
startups in the sample. In Column (2), we limit the sample to startups in the healthcare
sector, which offers a closer control group. In Column (3), we only include five years
before and after the shock in the healthcare sector for a balanced sample. VC-backed
startups are predominantly in the IT sector, where patenting is rare. Therefore, in Column
(4), we require the control group to have at least one patent. These Patenting startups are
also a reasonable control group that is more likely to rely on basic science.

The Neuro× Post interaction term, which captures the incremental effect on Neuro star-
tups post-BI, is significantly positive across all specifications. Specifically, the coefficient
ranges from 0.495 in the overall sample to 0.392 in the healthcare sector. These coeffi-
cients suggest that ceteris paribus, Neuro startups have seen an increase in the amount of
first-round financing by approximately 39.2% compared to other patenting startups in the
healthcare—which offer the closest control group to Neuro startups— to 49.5% compared
to all other startups, post-BI. This result is statistically significant at the 1% to 5% levels.

While these results show that VCs make larger investments in Neuro startups, it does
not necessarily mean the underlying science is of more value in the eye of the markets.
It could be that due to changes in R&D costs, Neuro startups have larger capital require-
ments to finance their operations. As such, we next turn to valuations, which also reflect
the uncertainty associated with neurotechnologies. In Panel B of Table 2, we report the
results from OLS regressions, paralleling the structure used for analyzing financing size,
but this time focusing on the pre-money valuations; i.e., valuation at the financing event
net of the VC’s investment amount. Again, we employ log transformation to mitigate the
impact of skewness. The Neuro × Post interaction term is significantly positive, indicat-
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ing a robust post-BI increase in the valuations of Neuro startups across the first financing
rounds. Specifically, Panel A shows that first-round financing post-BI sees valuation in-
creases between 41% in the healthcare sector and 35.8% across the overall sample. This
significant uplift, noted at the 1% to 5% levels, highlights the BI’s strong influence on
enhancing the perceived value of Neuro startups. These valuation increases post-BI for
Neuro startups are pivotal as they not only indicate an augmented investment scale but
also reflect market sentiment regarding the potential and reduced technology uncertainty
associated with these startups. A higher valuation typically denotes greater market confi-
dence, likely stemming from advancements in basic science funded by initiatives like the
BI. This enhanced confidence could be due to the BI’s role in reducing the R&D uncer-
tainty, offering more robust scientific foundations for Neuro startups, and increasing the
attractiveness of these ventures to VCs.

Nonetheless, subsequent rounds are also important to see if this initial boost trans-
lates into an ability to attract further capital over time. This can signal sustained investor
confidence and the potential for scale. Appendix Table A6 presents a robustness check by
extending the analysis to all financing rounds. To control for the startup’s life cycle and
the increase in round size with the startup’s progression, we control for the round num-
ber (i.e., 1st round, 2nd round...) through fixed effects. Panel A of Appendix Table A6
shows similar results to the first round; the Neuro × Post coefficient remains positive and
significant. Also, Panel B extends the valuation analysis to all rounds and finds valuation
increases range from 10.6% to 24.1%.

5.1.1. Parallel trend Assumption of BI

As with any DiD estimation strategy, our key identifying assumption is parallel trends,
which is the “untreated” industry-segments provide an appropriate counterfactual for
what would have happened to the treated firms had they not benefited from the intro-
duction of BI. While the parallel trends assumption, by definition, cannot be proven, we
aim to validate it in several ways.

First, a condition for the validity of the parallel trend assumption is that without the
treatment, the outcome of the treated and control units would have changed by the same
amount if the outcome had not changed differently before the treatment between the
treated and control units. Figure 2 shows the time series of VC financing for both Neuro
and non-Neuro startups. For the assumption of parallel trends to hold, the paths of the
Neuro and non-Neuro groups should not display systematic differences before the shock.
In the graph, the two lines representing Neuro and non-Neuro startups appear to move
similarly before the vertical line denoting the BI in 2013, suggesting that before the BI,
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the financing size and valuation were trending similarly for both groups. After the BI,
however, there is a strong divergence, with Neuro startups receiving larger financing and
at higher valuations than non-neuro startups. This divergence after the BI is consistent
with the treatment effect we aim to measure.

We also estimate the dynamic version of Equation 1, replacing Post with year dum-
mies. Figure 3 shows the coefficients where the control group is all other startups in the
healthcare sector.36 We keep a balanced sample seven years before and after the shock.
The patterns in the figure show that there is no pre-trend and that the timing of the in-
crease in financing amounts and valuation is consistent with the announcement of the
BRAIN Initiative. There is indeed a significant spike in financing outcomes in 2013, while
BI has not yet had any immediate scientific outputs. This surge can be explained by the
elevated perceived upside potential of these firms. The BI likely acted as a strong signal
of government commitment and potential future breakthroughs. VCs, who invest based
on the future option value of their investments, could anticipate significant scientific ad-
vancements and commercial opportunities stemming from increased funding, regulatory
support, and collaboration between academia, industry, and government.

An omitted variable that might drive both public and private investments could be
market demand. Indeed, neural and brain-related conditions represent a substantial
global health burden and economic cost. According to Collins, Patel, Joestl, et al. (2011),
Schizophrenia, depression, epilepsy, dementia, alcohol dependence, and other mental,
neurological, and substance-use disorders constitute 13% of the global burden of disease,
surpassing both cardiovascular disease and cancer. Dementia alone cost the world up
to $609 billion in 2009. Nonetheless, while this existing demand might incentivize in-
vestments in neuroscience, it is unlikely that such demand would have changed abruptly
around the time of the BI’s announcement to explain the initiative’s timing and focus.
In essence, while the market demand for neuroscience-based products was undoubtedly
strong, the BI’s designation as a Grand Challenge was a policy-driven priority shift, not a
response to any sudden market demand change. Still, it could be argued that the market
had anticipated such a policy due to the neuroscience community’s activities, as detailed
in Section 2. While the neuroscience community was actively developing the proposal
that eventually became the BI, other scientific communities were engaged in similar en-
deavors. Such endeavors resulted in 12 distinct scientific projects, one of which was the
BI. The top-down designation of BI, thus, presents an element of unpredictability and
randomness, further supporting the shock’s exogeneity.

36We repeat this excerise for all rounds and plot the estimates in Figure A.1.
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5.1.2. Alternative Classification of Neuro startups

Relying solely on patents may cause us to overlook Neuro startups that never file for a
patent. To address this issue, we use Pitchbook’s descriptions to identify Neuro startups
based on the same set of keywords. The classification process is detailed in Section 3.3.
In the Appendix Table A8, we replicate the analysis from Table 2, and our results remain
consistent. This approach also alleviates concerns about look-ahead bias.

This bias may arise because by using patent data for classification, we might label a
startup as Neuro startups too early before it actually begins working on neuro-technology.
In such cases, changes in VC financing might be unrelated to shocks in the neuroscience
space. However, two assumptions underlying the look-ahead bias seem unlikely. First,
unlike large firms, startups lack the resources to quickly switch between technological
areas; they typically focus on innovating within a narrow technology and a few products.
Second, patents are the outcomes of R&D processes that take a long time. VC are usually
well-informed about a firm’s focus and are aware of its pipeline before investing. There-
fore, our baseline approach of classifying startups with a neuro patent before the VC’s
exit seems reasonable.

Nevertheless, in Appendix Table A7, we revisit the results from Table 2 by defining
a Neuro startups as a firm that files for a neuro patent within the first five years after its
founding. Our results still hold for this sample. The advantage of our baseline classifi-
cation is that, by not narrowing the classification timeline, we avoid excluding startups
whose R&D takes longer to reach the patenting stage. Moreover, using patents over Pitch-
book’s descriptions has the benefit of relying on legal documents that have been verified
by examiners. While Pitchbook descriptions are generally informative, we believe patents
are superior in our context.

5.1.3. Robustness Tests

An alternative story for the more favorable VC financing could be because Neuro star-
tups are operationally more established at the time VCs finance them. Under this sce-
nario, the lower operational risk, a signal for quality, is the reason for larger round sizes,
rather than R&D risk. We examine this possibility by checking the business status of the
startup at the time of financing. We construct a dummy called Generating Revenue, which
is equal to one if the startup has revenue at the round. PitchBook designates the startup’s
business status as either “Generating Revenue” or “Profitable” at a given round. The
other categories mostly include cases where a startup’s business status is designated as
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“Startup”, “Product Development”, “Product in Beta Test” or “Clinical Trial”.37 We ex-
amine whether the startup is generating revenue at the round. The results are reported
in the Appendix Table A9. Contrary to the story above, we find that Neuro startups are
less likely to be generating revenue at the time of financing. This suggests that after the
BI, VCs are more comfortable with funding Neuro startups, which are operationally less
developed but perhaps have a lower R&D risk.

5.1.4. Startups with BI scientists

Thus far, our results show that post-BI Neuro startups became more attractive for VC
investments. Here, we provide a more direct link between the BI as a boost to the startup’s
human capital and VC financing. We exploit the heterogeneity of Neuro startups in their
exposure to BI, by identifying those that employ BI scientists. We call this group BI Em-
ployer and hypothesize that BI Employer benefitted directly from the BI by employing hu-
man capital that embodies the knowledge produced under the BI. Hence, we expect BI
employers to be more attractive to VC than other similar Neuro startups without BI scien-
tists. To test this hypothesis, we estimate the following equation for the financing round
and pre-money valuation level:

Yit = β1BI Employeri × Postt + β2XBI Employer + β3Xit + Fixed effects + υijt, (2)

where BI Employer is defined as an indicator variable that equals one for Neuro startups
employing BI scientists, and zero for those that do not. More specifically, the BI Employer
can vary at the firm level as BI˙Employer becomes 1 from the year Neuro startups employ
BI-funded research authors onwards. The key independent variable is the BI Employer×
Post, which captures the incremental effect on BI Employer post-BI. Xit is the number of
VCs in the round.

The results of this estimation are reported in Table 3. In Columns (1-3), we include
industry, year, state, and round fixed effects, and we add firm fixed effects, in Columns
(4-6). Panel A shows that BI Employers receive larger round sizes compared to other Neuro
startups after BI. The coefficient of 0.538 in Column (1) suggests that BI Employers receive
rounds that are 53.8% larger compared to similar deals in the same round, year, and in-
dustry by non-BI employers. Furthermore, We restrict our sample to all Neuro startups
within the healthcare industry in column 2 and further restrict this to deals between 2008

37We verify that this categorization reflects a startup’s degree of development by examining the mean
revenue of startups in each category. The “Generating Revenue” and “Profitable” categories are indeed
associated with an average revenue level that is several orders of magnitude larger than the other categories.
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and 2017 and find similar results. In Columns 4 to 6, we introduce firm and year-fixed
effects. The firm and year-fixed effects allow us to compare the change in deal size before
and after employing BI scientists within the firm and mitigate the concerns that BI Em-
ployer has better quality than other Neuro startups. We obtain similar results under these
specifications. These findings suggest that VCs provide more financing when the startup
has acquired human capital that has presumably become more investable after the BI.

In Panel B, we repeat the same exercise for round valuation as the outcome vari-
able. We observe a similar pattern here, too: VCs value BI Employer more than other
similar Neuro startups without BI scientists after the BI. In Column (1), the coefficient of
BI Employer × Post is 0.545 and statistically significant at 10%, suggesting that BI Em-
ployer has a larger pre-money valuation compared to other Neuro startups in the same
industry and state. We compare BI Employer to Neuro startups in the healthcare indus-
try in column 2 and find similar results in terms of economic magnitude. Specifically,
BI Employer has a 55% larger valuation than other healthcare Neuro startups in the same
industry. Column 3 reports the regression result estimated using samples from 2008 and
2017. The coefficient of column 3 is 1.072 and statistically significant at 1%. We include
firm and year-fixed effects in Columns (4-6). While the coefficients are positive, they are
not statistically significant.

5.2. VC Exits

While the results above indicate a surge in VC interest in Neuro startups post-BI, it is
important to see if the broader market also recognizes this interest. VC funds typically
exit their investment through an IPO, M&A, or write-off after a few years and return
the proceeds to the fund investors. To the extent that BI makes neurotechnology more
investable, this investability should also be reflected in the startup financial outcomes
beyond venture capital. As such, we next study whether VCs exit their neuro investments
more successfully after the BI.

Given that sell-outs are the primary type of exit in the last decade, we first examine
whether BI affects the timing of sell-outs. Figure 5 illustrates the acquisition trends of
Neuro startups in comparison to other healthcare startups over the sample period. Pre-BI,
there were 32 acquisitions in the neuro space over a 13-year span, a figure that rose 5
times to 159 in the 7 years post-BI. In contrast, the broader healthcare sector experienced
840 acquisitions pre-BI and saw an increase to 990 post-BI. This trend indicates that the
BI has likely heightened the appeal of neurotechnology to larger acquirers, who are now
increasingly integrating these startups into their portfolios, suggesting a recognition of
the commercial viability and promise of neurotechnology advancements. While acquisi-
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tions in other healthcare sectors also grow, the more pronounced and immediate increase
in Neuro startup acquisitions post-BI underscores the initiative’s impact in making neu-
rotechnology a standout area for investment, demonstrating that both venture capitalists
and larger market players acknowledge the potential fostered by the BI’s focus on neuro-
science.

Nevertheless, an acquisition does not necessarily indicate a successful exit for the VC
as acquisitions with a low premium could disguise failure (Puri and Zarutskie, 2012).
Thus, to measure success more carefully, we follow the definition of Successful Exit out-
lined in 3. Besides, the time to exit is an alternative measure of VC investment success,
calculated as the log of the number of days between the first VC investment and the exit
date. For every startup, we run OLS regression of these variables following Equation 1,
where the year fixed effect reflects the first year the startup receives VC financing. We also
add the year of exit to control for the endogenous timing of the exits. In our specifications,
we also control the amount the startup has raised prior to exit. This control helps adjust
for the size and scale of the startups at the time of exit, ensuring that the Neuro × Post
coefficient does not merely reflect differences in fundraising.

Table 4 reports the results of this specification. The Neuro × Post interaction term is
central to the analysis, as it measures the differential impact of the BI on the probabil-
ity of a successful exit for Neuro startups. We progressively limit the control firms from
Columns (1) to (4), the positive and significant coefficients across the board from 0.087 in
the healthcare sector to 0.128 in the overall sample, indicating that post-BI Neuro startups
have a significantly higher probability of achieving successful exits compared to pre-BI,
reinforcing the hypothesis that BI has enhanced the investability of Neuro startups. The
coefficients signify that the odds of a successful exit increase by 8.7% to 12.8% for Neuro
startups post-BI, highlighting the positive impact of the BI on these firms’ exit outcomes.
These results support the findings of increased VC investments in Neuro startups post-BI
and extend the narrative to the broader market’s recognition of these startups’ value, as
evidenced by their exit outcomes. The significant Neuro × Post coefficients across various
specifications suggest that the BI’s influence goes beyond attracting initial VC interest,
translating into tangible, successful financial outcomes for Neuro startups.

Columns (5) to (8) of Table 4 analyze the impact on time to exit. The coefficients of
the Neuro × Post interaction term are negative and statistically significant, indicating a
reduction in exit time ranging from 11.6% for patenting startups to 25.6% for the overall
sample. These findings suggest that Neuro startups have a shorter time to exit after the
BI. This shorter exit time aligns more closely with the finite investment horizons of VC,
thereby enhancing the attractiveness of Neuro startups to VC investors.
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5.3. Mechanisms

We have established that the BI enhances the attractiveness of Neuro startups for VC,
evidenced by increased financing sizes, pre-money valuations, and success of the exits.
To understand the mechanisms that elevate the investability of Neuro startups, we exam-
ine their characteristics, particularly characteristic that can be impacted by basic science
breakthroughs. Our analysis centers on two key aspects reflective of the startup’s un-
derlying scientific foundation: (1) the human capital represented by academic scientists
employed by the startup and (2) the innovation as shown by the startup’s patent portfolio.

5.3.1. Academic Startups

The BRAIN Initiative primarily funds academic research. If BI has enhanced the com-
mercializability of neuroscience, then academics – who are crucial for commercialization
– are more likely to join startups. The presence of academics in startups not only brings
specialized expertise but also serves as a strong signal of team quality to investors. This is
important in light of the findings by Bernstein et al. (2017), who document that investors
perceive a startup’s human capital as a key early-stage indicator of quality. These argu-
ments suggest that having academics as employees improves startups’ attractiveness to
VCs. Hence, we hypothesize that VC-backed Neuro Startups are more likely to have aca-
demics as employees especially in their early years. As outlined in Section 3.5.1, we define
an Academic Startups as one with an academic in a senior position within three years of its
founding. We broaden our focus beyond founders because senior academic researchers
frequently join startups as advisors or occupy other senior roles.

In Table 5 we examine if post-BI Neuro Startups are more likely to be Academic Startups.
Our focus here is capturing the engagement of academics with startups in the earliest
stage of development, where uncertainty is high. Therefore, our Post variable is one if the
founding year is 2013 or after, as opposed to the year of financing event. The results in
Column (1) and (2) of Table 5 show that relative to all other VC-backed startups, post-BI
Neuro startups are about 10% more likely to be an Academic Startup. However, despite
the positive coefficient, in Columns (3) and (4), we do not find statistically significant
results when we compare Neuro Startups to other healthcare or patenting startups. Fig-
ure 4, which plots the dynamic DiD estimates for the Column (3) specification, shows an
upward trend in the likelihood of Neuro Startups becoming Academic Startups over time.
A plausible explanation for the insignificant results driven by the earlier period could
be that the effect of the BI for newly founded companies becomes more pronounced to-
wards the end of the sample. This suggests that as BI produced more knowledge and
advancements from this knowledge began to emerge, academics engaged more in Neuro
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startups.

5.3.2. Innovation and Academic Inventors

As another labor channel, we also examine the background of inventors, who work for
Neuro Startups. We hypothesize that BI has increased the supply of skilled labor for Neuro
startups. 10% of NIH’s BI funds were explicitly allocated toward training skilled labor
such as postdoctoral researchers. This number is likely an underestimate, as BI grants
indirectly enabled principal investigators to hire PhD students. We proxy the supply
of skilled labor using the number of newly hired academic inventors. To identify these
inventors, we link USPTO’s inventor data to Revelio Labs to track inventors with prior
academic experience, as detailed in 3.5.

Beyond labor supply, we examine whether BI has directly enhanced the attractiveness
of Neuro startups to the VCs by expanding their innovation portfolio. As we showed in
Section 3.4, BI-funded research has successfully advanced the frontiers of neuroscience.
To examine whether this scientific progress has translated into technological innovation,
we study the patent outcomes of Neuro startups. The outcome variables we study include
startups’ number of patents and breakthrough patents. The breakthrough patents are
those that receive more citations than the citations at the 90th percentile value within the
same technology class and grant year. Furthermore, the BI’s overarching goal – mapping
the brain, a complex network – requires significant interaction between data science and
neuroscience. We expect this interdisciplinary collaboration to have spillover effects such
as the adoption of AI in the innovation processes of Neuro Startups. To proxy for the adop-
tion, we rely on a measure developed by USPTO’s economists: Giczy et al. (2022) have
developed a machine learning method that determines whether the underlying technol-
ogy in a patent has adopted artificial intelligence.

To test the hypotheses above we construct a panel of firm-year observations between
the founding year of the startup to the year of VC exit, for all startups with at least one
patent. We estimate:

Yit = β1Neuroi × Postt + β2Xit + λi + θt + ϵit (3)

where for startup i in year t, Yit includes the number of patents, breakthrough patents,
and the number of academic inventors employed. Yit following a Poisson distribution as
a count variable with many zeros (Cohn, Liu, and Wardlaw, 2022). The main coefficient
of interest (β1) is the interaction between Neuro and Post. λi and θt are firm and year-fixed
effects.

Table 6 reports the results of this estimation. Columns 1, 3, 5, and 7 restrict the panel to
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the window between the founding year and the year of the first VC investment. The goal
is to understand the characteristics of startups before the VCs invest. This controls for
the additional capital and resources that the company would have after receiving venture
capital. In Columns 2, 4, 6 and 8, we keep all the years from the founding year to the year
of VC exit.

We find that Neuro startups produce more patents, breakthrough patents, and AI patents
and hire more academic inventors compared to other patenting startups after the BI.
Columns 1 and 2 presents the Poisson regression of the number of patents on the in-
teraction between Neuro and Post with startup and year fixed effect. The coefficient of the
interaction in column 2 is 0.51 and statistically significant at 1%, suggesting that Neuro
startups produce 1.67 (e0.51) times more patents than other non-Neuro startups after the BI.
Although Neuro startups produce a larger number of patents, this does not necessarily
translate into higher quality patents. Therefore, we further evaluate the quality of patents
by counting the number of breakthrough patents. These are the most influential patents
for a given technology class and grant year. Columns 3 and 4 investigate the role of BI on
the breakthrough patents of Neuro startups. The coefficient of column 4 is 0.661 and sta-
tistically significant at 1% level, suggesting that Neuro startups produce 1.94 (e0.661) times
more breakthrough patents after the BI.

Columns 5 and 6 report the results of regressing the number of academic inventors
hired on the interaction of Neuro and Post. The coefficient in column 6 is 0.726, significant
at the 1% level, indicating that post-BI, Neuro startups hire over two times more academic
inventors than other startups. In Columns 7 and 8, we find Neuro startups produce more
AI-driven patents than other comparable startups. More specifically, the coefficient in
Column 8 is 0.824 and statistically significant at the 1% level, indicating that Neuro startups
generate approximately 2.28 (e0.824) times more AI patents as many AI patents as similar
startups.

5.3.3. Adaptability of Neuroscience

As we outlined in Section 3.4, BI grants were more focused on data-intensive research.
As such, we examine whether such emphasis is also reflected in the evolution of neu-
rotechnology post-BI. We provide evidence that post-BI, neurotechnologies became more
interdisciplinary and adaptable to other technologies, particularly AI and big data. Fig-
ure 6 illustrates the top 10 verticals in neurotechnology before and after the BI, high-
lighting a shift in the landscape of neurotech industries. Pre-BI, the neurotech field was
concentrated mainly in traditional life sciences areas, with a modest representation in
data-centric domains. However, post-BI, there is a discernible broadening of focus, with
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significant growth in AI and Machine Learning, Big Data, Wearables, and Quantified Self
verticals. This expansion reflects the BI’s influence in fostering a data-driven approach
within neuroscience, aligning with its mission to advance our understanding of the brain
through data-intensive research and interdisciplinary collaboration.

This shift is also mirrored in the acquisition patterns observed post-BI. Figure 5 shows
the surge in the acquisition of Neuro startups. In Appendix Table A10, we examine the
distribution of sectors to which these acquirers belong. We find a substantial increase
in Neuro startups acquisitions—from 32 in the pre-BI period to 159 post-BI. While health-
care remains the dominant acquirer sector, there is a post-BI emergence of acquirers from
diverse sectors such as IT, B2B, and B2C, reflecting an acknowledgment of the broader
applications of neurotech innovations.

The enhanced focus on data-centric research and applications within the neurotech
domain post-BI likely translates to startups with a higher potential for scalability. The ex-
pansion in the acquirer base reflects the expansion of neurotechnology beyond its health-
care origins. This broadened market appeal can enhance the perceived potential for re-
turns on investment, thereby increasing the investability of Neuro startups.

However, the adaptability of neuroscience to AI and ML raises an omitted variable
concern. While our sample period does not cover the post-ChatGPT AI boom, advances
in AI and ML have attracted much attention from VCs in the last decade. As such, an
alternative explanation for our results could be that VCs finance neuro startups more
favorably not because of the BI but because neuroscience is a fertile ground for the appli-
cation of AI. Under this scenario, our results should be driven by startups that apply AI
and Big Data technology in neuroscience. To test this, we examine whether our results are
robust to the exclusion of this startusp. In Appendix Tables A11 and A12, we repeat the
exercise in Table 2, respectively. Our results are robust even if we exclude such startups.

We recognize that, historically, the knowledge spillover between AI and neuroscience
has significantly contributed to the advancement of both fields (Hassabis, Kumaran, Sum-
merfield, and Botvinick, 2017)38 and ignoring the impact of AI on neurotechnology would
oversimplify the dynamics at play. Nevertheless, the neuroscience community acknowl-
edges the role of BI as a catalyst for the application of AI in neuroscience (Zador et al.,
2023). AI and ML require large amounts of data for algorithm training. The substantial
data generated under the BI and shared via the informatics infrastructure and require-
ments of BI has facilitated the application of AI and ML.

38The contribution is two-sided. The development of artificial neural networks (ANNs) has been sub-
stantially influenced by the structure and function of biological neural networks.
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6. Conclusion

This study examines how strategic government investments can de-risk nascent tech-
nologies and stimulate private investment. In a difference-in-differences setting, we ex-
amine the Brain Research Through Advancing Innovative Neurotechnologies (BRAIN)
Initiative, a government program with the goal of mapping the human brain. We find
that VCs invest in neurotechnology startups with higher amounts and valuations post-
BRAIN Initiative. VCs experience faster and more profitable exits from these investments,
validating the promise of these investments beyond venture capital. The positive im-
pact of government intervention explains these trends. Investors place a premium on
the skilled labor unlocked via the program, particularly these academics transitioning
into entrepreneurship. Neuro startup also produces more and better innovation outputs,
which are more integrated with AI technologies.

These findings substantiate the importance of the government’s role in providing ba-
sic science as a public good. Specifically, our causal evidence highlights mission-oriented
programs as an effective mechanism for delivering public funds. Public funding for neu-
roscience research was available even before the BRAIN Initiative. In fact, the initiative
itself comprises only about ten percent of the total neuroscience public funding. Nonethe-
less, the efficacy of BI suggests that coordinated, targeted programs – where a consensus
in the scientific community sets the target – can resolve coordination failure that precludes
private investments. Furthermore, BI generates technological spillovers beyond the spe-
cific goal of the program, highlighting the social benefits from the serendipitous nature of
basic science research.

Our focus on the BRAIN Initiative leaves open the question of how similar initiatives
perform in other emerging technological fields, especially those with greater demand un-
certainty. Future research could compare the optimal design of such interventions across
domains that vary in demand uncertainty (e.g.,quantum computing or synthetic biology).
Such studies could inform policies aimed at bridging the gap between basic science and
commercialization, ultimately maximizing the economic and societal impact of public in-
vestment in innovation.
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Figure 1. VC Investments in Software vs. Patent-holding Startups

This figure plots the percentage of US startups holding patents against those identified
within the software industry sector over time, based on the year they received their initial
venture capital funding. The solid line represents startups with patents, while the dashed
line indicates software-focused startups, as classified by PitchBook industry groups.
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Figure 2. Financing and Valuation of Neuro-Startups

The figure above shows the log of the average amount of VC financing rounds for neuro
startups (solid line) and all other startups (dashed line). The figure below shows these
values for the average amount of Pre-Money valuation. The red line is on 2013, the an-
nouncement year of the BRAIN Initiative.
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Figure 3. Difference-in-difference estimates for financing and valuation: Neuro vs
Other Healthcare

The figure plots the coefficients for the estimation of dynamic version of Equation 1, with
interaction terms of each financing year and the Neuro dummy where the dependent vari-
ables are the log of the financing amount and the log of the pre-money valuation. The
figures only include the first rounds. The unit of observation is an entrepreneurial firm’s
first financing event. The 2012, i.e. t=(-1), interaction term is the excluded category, re-
ported as zero in the figure. The vertical lines represent the 95% confidence interval for
the coefficient estimates with robust standard errors.
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Figure 4. Difference-in-difference estimates for Academic Startups: Neuro vs Other
Healthcare

The figure plots the coefficients for the estimation of dynamic version of Equation 1, with
interaction terms of each founding year and the Neuro dummy where the dependent vari-
able is an indicator variable for Academic Startup: startups who have a STEM academic in
senior positions in the first three years after being founded. The unit of observation is
an entrepreneurial firm. The 2012, i.e. t=(-1), interaction term is the excluded category,
reported as zero in the figure. The vertical lines represent the 95% confidence interval for
the coefficient estimates with robust standard errors.
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Figure 5. Acquisitions of Neuro and other healthcare startups

This figure plots a histogram of the year of acquisitions of neuro startups (left) compared
to other startups in the healthcare sector (right).

Figure 6. Industry Verticals of Neuro Startups before and after the BI
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Table 1: Summary Statistics of Startups. This table shows summary statistics for 50,601
unique startups receiving VC financing between 2000 and 2019. Panel A presents financ-
ing information for all rounds where round size is not missing, while Panel B focuses on
the financing information of the first round of finance with round size available. Panel C
presents data at the startup level, including the number of patents, total financing rounds,
and the number of founders with academic experience. Panel D offers summary statistics
for the number of patents and the number of hired academic inventors, based on a startup
and year panel dataset.

N Mean St. Dev. 10% 50% 90%

Panel A: All Rounds

Round Size 94,565 9.93 59.18 0.28 3.00 20.50
Pre-Money Valuation 51,157 80.51 953.54 2.75 12.60 100.00
Deal Year 94,565 2012.93 4.87 2006.00 2014.00 2019.00
Generating Revenue 94,544 0.56 0.50 0.00 0.00 1.00
#VCs 94,565 2.14 2.01 1.00 1.00 5.00
Round Number 94,565 2.22 1.63 1.00 2.00 4.00
Neuro Round==1 2,880 - - - - -

Panel B: 1st Round

Round Size 42,520 4.57 18.40 0.15 1.60 9.55
Pre-Money Valuation 19,661 12.78 125.71 1.62 6.00 20.00
Generating Revenue 42,515 0.43 0.49 0.00 0.00 1.00
Deal Year 42,520 2012.64 5.05 2005.00 2014.00 2018.00
#VCs 42,520 1.77 1.65 1.00 1.00 4.00

Panel C: Startup Level

Successful Exit 29,003 0.12 0.33 0.00 0.00 1.00
Exit Year 29,003 2016.24 4.16 2011 2017 2021
#Patents 44,417 2.85 27.58 0.00 0.00 4.00
#Academic Founders 44,417 0.16 0.50 0.00 0.00 1.00
Neuro Startup 836 - - - - -

Panel D: Startups-Year Level for startups with at least one patents

#Academic Inventors 104,069 0.22 1.69 0.00 0.00 0.00
#Patents 104,069 0.91 3.48 0.00 0.00 2.00
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Table 2: Funding Size. This table presents the results of OLS regressions estimating Equa-
tion 1. The dependent variable is the log of first round VC investment amount in Panel
A and the log of pre-money valuation in Panel B for the first VC investment. The unit of
observation is the first VC financing event of an entrepreneurial firm. The variable Neuro
is a dummy variable for startups with at least one patent with a neuroscience keyword.
Post equals one for any year after the BRAIN Initiative (2013), where the year of event
itself has been excluded. # Investors counts the number of investors in the round. Year
FE indicate dummies for financing year, Industry FE are dummies for Pitchbook’s 41 in-
dustry groups. State FE are dummies for entrepreneurial firm headquarters state. Tables
A6, A7, and A8 provide results for the sample including all financing rounds and explore
alternative classifications of Neuro as robustness checks. The t-statistics (in parentheses)
are based on heteroskedasticity-robust standard errors in Panel A, and clustered at the
startup level in Panel B, with ***, ** and * representing significance at the 1%, 5%, and 10%
levels, respectively.

Panel A: Ln(1st Investment Size $)

All Healthcare Patenting

[08-17]

(1) (2) (3) (4)

Neuro×Post 0.495*** 0.392*** 0.309** 0.318***
(5.07) (3.58) (2.14) (3.17)

Neuro 0.079 0.119* 0.350*** 0.029
(1.26) (1.80) (3.40) (0.44)

Ln(# Investors) 0.370*** 0.545*** 0.449*** 0.433***
(49.38) (25.65) (15.55) (24.81)

Observations 39586 7995 4873 8564
Mean Outcome 0.579 0.858 0.727 0.937
Adj R-squared 0.173 0.203 0.140 0.175
Industry FE Yes Yes Yes Yes
Year FE Y Y Y Y
State FE Y Y Y Y

Panel B: Ln(Pre-Money Valuation $ in 1st Round)

All Healthcare Patenting

[08-17]

(1) (2) (3) (4)

Neuro×Post 0.358*** 0.410*** 0.397** 0.228**
(3.48) (3.47) (2.57) (2.11)

Neuro -0.006 -0.033 0.028 0.024
(-0.09) (-0.44) (0.25) (0.34)

Ln(# Investors) 0.187*** 0.231*** 0.206*** 0.174***
(21.97) (11.27) (7.65) (9.48)

Observations 19599 4206 2506 5127
Mean Outcome 1.778 1.863 1.778 1.938
Adj R-squared 0.084 0.109 0.090 0.093
Industry FE Yes Yes Yes Yes
Year FE Y Y Y Y
State FE Y Y Y Y
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Table 3: Financing of Neuro Startups as BI Employers. This table reports results of com-
paring round characteristics of Neuro Startups, if the startup has employed a BI scientist
at the time of the round. The sample in limited only to Neuro startups. The dependent
variable is the log of VC financing amount in Panel A, and log of Pre-Money Valuation in
Panel B. A unit of observation is an entrepreneurial firm VC financing event. BI˙Employer
is a dummy variable for rounds, where the startup has employed at least one BI scientist
by the year of the round. Post equals one for any year after the BRAIN Initiative (2013),
where the year of event itself has been excluded. # VCs counts the number of VCs in the
round. Year FE indicate dummies for financing year, Industry FE are dummies for Pitch-
book’s 41 industry groups. State FE are dummies for entrepreneurial firm headquarters
state. VC Round FE are dummies for the sequence of financing rounds. The t-statistics (in
parentheses) are clustered at the startup level, with *** , ** and * representing significance
at the 1%, 5% and 10% levels, respectively.

Panel A: Ln(round size $)

All Healthcare All Healthcare

[08-17] [08-17]

(1) (2) (3) (4) (5) (6)

BI Employer×Post 0.538 0.530 0.525 0.497 0.525 0.606
(2.505)** (2.739)*** (1.890)* (2.020)** (2.101)** (1.674)*

BI Employer 0.263 0.229 0.098 0.158 -0.022 0.226
(1.859)* (1.781)* (0.572) (0.660) (-0.085) (0.250)

Ln(# Investors) 0.920 0.945 0.904 0.754 0.768 0.587
(22.172)*** (20.723)*** (12.832)*** (16.071)*** (15.163)*** (6.786)***

Observations 2,657 2,316 994 2,498 2,175 767
R-squared 0.390 0.360 0.344 0.712 0.694 0.714
Industry FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
VC Round FE Y Y Y Y Y Y
State FE Y Y Y Y Y Y
Firm FE N N N Y Y Y

Panel B: Ln(Valuation $)

All Healthcare All Healthcare

[08-17] [08-17]

(1) (2) (3) (4) (5) (6)

BI Employer×Post 0.545 0.550 1.072 0.436 0.380 0.636
(1.769)* (2.264)** (2.743)*** (1.269) (1.125) (1.386)

BI Employer 0.162 0.128 -0.111 0.329 0.105 -0.056
(0.683) (0.629) (-0.463) (1.076) (0.320) (-0.099)

Ln(# VCs) 0.492 0.491 0.309 0.585 0.633 0.559
(47.905)*** (21.358)*** (9.267)*** (77.840)*** (46.965)*** (28.732)***

Observations 1,748 1,480 643 1,592 1,339 468
R-squared 0.534 0.463 0.490 0.857 0.828 0.902
Industry FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
VC Round FE Y Y Y Y Y Y
State FE Y Y Y Y Y Y
Firm FE N N N Y Y Y
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Table 5: Academic Startup. This table reports results from OLS regressions estimating
Equation 1, where the dependent variable is an indicator variable for Academic Startup.
Academic Startup are startups with at least one academic holding a senior position within
the startup; see Section 3.5.1 for more details. A unit of observation is an entrepreneurial
firm. Neuro is a dummy variable for startups with at least one patent with a neuroscience
keyword. Post equals one for startups receiving the first VC financing event after the
BRAIN Initiative (2013), where the year of the event itself has been excluded. Indus-
try FE are dummies for Pitchbook’s 41 industry groups. State FE are dummies for en-
trepreneurial firm headquarters state. Year FE indicate dummies for financing year. The
t-statistics (in parentheses) are based on heteroskedasticity-robust standard errors ***, **

and * representing significance at the 1%, 5% and 10% levels, respectively.

Acadedmic Startup Indicator

All [08-17] Healthcare Patenting

(1) (2) (3) (4)

Neuro×Post 0.103 0.094 0.038 0.047
(2.759)*** (2.141)** (0.931) (1.230)

Neuro 0.043 0.028 0.047 0.032
(2.399)** (0.951) (2.597)*** (1.665)*

Observations 48,573 34,367 9,338 9,455
R-squared 0.074 0.080 0.069 0.070
Industry FE Y Y Y Y
Year FE Y Y Y Y
State FE Y Y Y Y
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Appendix A: BRAIN Initiative Funding and Grants

In this section, we provide more details on the BRAIN Initiative’s funding levels and
organizational structure. The funding level for BRAIN was initially announced at $4.5
billion over a period of 12 years (NIH, 2014b). However, the exact funding levels and
budget were updated annually. Six federal agencies were involved in the Initiative: NIH,
NSF, DARPA, IARPA, FDA, and DoE. Although the FDA does not provide monetary
funding, it supports the Initiative by enhancing the transparency and predictability of the
regulatory landscape for neurological devices and assisting developers and innovators
of medical devices. Given the variety of agencies funding the program, there is no sin-
gle source reporting the overall funding amount. Therefore, we collect this information
from three sources: 1) BI fact sheets, 2) agency budget reports, and 3) the sum of individ-
ual grants publicly available. The information from the last source is only available on
the NIH and NSF websites; other agencies do not publicly report their funded projects
and amounts. In cases of conflicting information from these three sources, we report the
highest amount.

Figure A.2 presents the funding levels for NIH, NSF, DARPA, and other organizations.
The Other category includes IARPA, DoE, and other non-profit organizations such as uni-
versities and private research institutes. The 2015 reported value for this category was
budgeted to be spent over the following four years. Overall, NIH provides the largest
amount of funding, with an investment of $3.1 billion. In the first four years of the pro-
gram, DARPA is the second-largest funding agency. In 2018, five years after its announce-
ment, the program underwent a review, leading to BRAIN 2.0, which included a revised
version and updated scientific priorities. After 2018, there are no reports of DARPA and
IARPA’s involvement in the initiative, while NSF’s funding level increased.

A.1. BI vs non-BI Grants in Neuroscience

In Table A2 Column (1), we provide total annual levels of funding for both BI and NIH
non-BI Grants. To identify comparable Non-BI grants within the NIH, we applied three
criteria: (1) the grants must contain neuro keywords in their project terms, (2) we exclude
SBIR and STTR grants, and (3) they must be managed by the same NIH institutes and
Centers that also are managing BI grants. These NIH institutes and Centers are NCCIH,
NEI, NIA, NIAAA, NIBIB, NICHD, NIDA, NIDCD, NIMH, and NINDS. Before BI, there
was previously funding available for neuroscience. From 2014 to 2022, NIH non-BI allo-
cated $64 billion to neuroscience. On average, these non-BI grants received $0.47 million
per project. For comparison, we obtained BI funding information from the BI website.
The primary funding institutes of BI are NIH, NSF, and DARPA. NIH and NSF disclose
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their annual funding on their websites, while DARPA provided funding details only from
2014 to 2017. Therefore, the reported annual BI funding is based solely on available pub-
lic information and may underestimate the actual figures. NIH typically contributed the
most funding each year. BI grants are more competitive due to the significantly fewer BI
projects. From 2014 to 2022, BI contributed an additional $5 billion, which represents 8%
of the NIH non-BI grants. These BI grants, on average, received $1.10 million per project,
which is more than double that of non-BI grants. Although BI grants do not significantly
increase the total federal funding in neuroscience, they are highly competitive and offer
larger average amounts per project. The significance of BI lies not in increasing fund-
ing but in its mission, such as mapping brain activity and integrating data science with
neuroscience.

A.2. NIH vs NSF

We find 1,331 unique BI grants on the NIH site as of May 2023. We gathered de-
tailed information on titles, keywords, start dates, end dates, Principal Investigators (PI),
and amounts of BI grants for 1,195 grants using NIH RePORTER API, noting that 136
grants were unavailable. For these 1,195 BI grants, NIH provided 1.37 billion US dollars
from 2014 to 2022, an average of 1.15 million per grant, and was awarded to 909 unique
PIs across 218 unique institutions primarily located in the US. NIH BI grants mainly fo-
cus on research in neuroscience, biology, and medical science projects, as the majority
amount was awarded to prestigious medical institutions and medical schools or univer-
sities. For example, the institutions that receive the largest and third largest amount of
money are the Allen Institute and Salk Institute for Biological Studies, with $105,473,299
and $54,675,613, respectively. Both the Allen Institute and Salk Institute for Biological
Studies are leading research institutes in neuroscience. Regarding the PIs of these grants,
the top five PIs who receive the largest grants are biologists and neuroscientists.

Additionally, NSF matches the NIH in its financial contributions to research, having
allocated $3.15 billion since 2014. NSF’s funding spans a broader range of research dis-
ciplines. Notably, the top three PIs receiving the most funding are working in the dif-
ferent research disciplines. For example, Gregory Boebinger, a leader of the MagLab,
received most NSF funds under BI. The MagLab is the premier global facility for mag-
net research, serving over 1,700 scientists yearly across various fields such as physics and
bioengineering. Tomaso Poggio received the second-largest amount of money under BI
from NSF. He is a computational neuroscience pioneer who conducts interdisciplinary
research that connects brain sciences and computer science. The person ranked third is
Arjun Yodh from the University of Pennsylvania’s Department of Physics and Astron-
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omy, who works across physics, medical physics, biophysics, and optical sciences. While
NSF’s funding amount is comparable to NIH’s, it emphasizes a wider range of research
disciplines. Thus, analyzing BI grants from both NIH and NSF offers a holistic view of the
BI’s funding landscape. Together, NIH and NSF have supported 2,428 research projects
with a total expenditure of $4.38 billion since 2014, underscoring the comprehensive scope
of BI funding.

Appendix B: Name-matching

In the person name-matching process, we first map the surnames between individuals
using fuzzy matching and require the first three letters of surnames to be the same and al-
low for just one permissible spelling error because there are fewer variations in surnames.
Subsequently, for each matched surname, we compare their first and middle names. For
this purpose, we employ a fuzzy matching algorithm that is designed to recognize vari-
ables in first and middle names. The following variations of names are identified as the
same names:

• “First name” + “middle name” matches to “First name” + “middle name initial”
e.g., “Robert James” matches to “Robert J”

• “First name” + “two middle names” matches to “First name” + “middle name and
middle name initial” e.g., “Robert James Waller” matches to “Robert James W” and
“Robert JW”

• “First name” matches to known “Nicknames” associated with this given name, e.g.,
“Robert” matches to “Rob”

Appendix C: Analyzing the commercial and scientific impact of BI

The first two measures for commercial impact are constructed by Masclans et al. (2024)
and Marx and Fuegi (2020, 2022). Their premise is that an academic output is more com-
mercializable when it receives patent citations, indicating that the cited publication served
as prior art for the patent. Marx and Fuegi (2020, 2022) provide data on such citations.
For every publication, we count the number of patents that cite it. On average, BI pub-
lications receive 0.44 patent citations, compared to only 0.12 for other publications, with
this difference being statistically significant at the 99% level.

We further test the difference in the number of citations for BI patents via a regression
model in the Panel A of Table A3. Because most publications never receive a patent cita-
tion, we use a Poisson model to accommodate for an outcome variable with many zero
values (Cohn et al., 2022). In Column (1), we regress the number of citations on a dummy
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variable for BI patents and include year fixed effects to capture time trends in citations. In
Column (2), we repeat this exercise for a sub-sample of non-BI NIH-backed neuroscience
papers. Across both specifications, we find a positive coefficient indicating the higher
citations received by BI publications. Masclans et al. (2024) argue that patent citations
reflect the ex post commercialization of an academic article but not its ex ante potential.
They, therefore, develop a large language model (LLM) trained on a dataset of renewed
patents— such patents are presumably more commercialized. This trained model is then
used to generate two scores for each publications: commercial and scientific potential.
We link these scores to the academic articles in our sample. In Column 3, we add the
commercial and scientific potential scores as control variables. The coefficient on BI is
still statistically significant, and indicates that BI publications are four times more likely
to receive a citation from a patent compare to non-BI neuroscience. In Panel B, we directly
compare the summary statistics on these scores across BI and non-BI neuroscience pub-
lications. The average commercial potential of non-BI grants after 2014 is 0.69, which is
smaller than the commercial potential of BI publications at 0.78. The difference between
the commercial potential of BI grants and non-BI grants is statistically significant at the
99% level, suggesting that research under BI grants is more commercializable than similar
research grants in the sample period. .39

Table A3 Panel B shows basic summary statistics for the commercial potential of pub-
lications from BI grants with similar publications. Specifically, in Panel A of Table A3,
we compare the commercial potential of BI output with the output of NIH-funded non-
BI grants in neuroscience (Non-BI grants). We first investigate whether BI grants have
a larger commercial potential than publications of Non-BI grants after 2014. Panel A of
Table A3 shows that

For scientific impact, we rely on the number of citations an academic article receives
from other articles. We find that BI-funded publications on average receive 16% higher ci-
tation from other academic articles compared to non-BI neuroscience, with the difference
being statistically significant at the 1% level. In line with the Nature (2021) editorial arti-
cle, this suggests that research grants under BI have indeed advanced basic neuroscience.

39We cannot perform a DiD analysis here because BI grants did not exist before 2014.

50



Appendix Figures and Tables

Figure A.1. Difference-in-difference estimates for financing and valuation: Neuro vs
Other Healthcare

The figure plots the coefficients for the estimation of dynamic version of Equation 1, with
interaction terms of each financing year and the Neuro dummy where the dependent vari-
ables are the log of the financing amount and the log of the pre-money valuation. These
two figures include all rounds. The unit of observation is an entrepreneurial firm’s first
financing event. The 2012, i.e. t=(-1), interaction term is the excluded category, reported
as zero in the figure. The vertical lines represent the 95% confidence interval for the coef-
ficient estimates with robust standard errors.
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Figure A.2. Total BRAIN Initiative Funding per Agency

This Figure shows the total funding of the BRAIN Initiative (BI) by the funding organiza-
tion. Except for NSF, 2014-2018 figures are collected from the BI factsheets and 2019-2022
from the NIH BI website. All NSF values report the total amount of the NSF BI grants.
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Figure A.3. An Example of an Academic Co-founder

This Figure shows a Tweet by Philip Sabes, one of the co-founders of Neuralink, a profes-
sor at UCSF, and a co-author under the BRAIN Initiative
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Table A1: Variables Definitions

Variable name Definitions Tables

Independent variables

Neuro The indicator variable equals one if the startup is a Nuero Startup; zero otherwise. Neuro Startup is
identified as startups granted at least one patent within neuroscience-related technology groups,
as detailed in Section 3.3.

Table 2, 4, 5, 6,A9, A11,A12

Post The indicator variable equals one for the years following the inception of the BRAIN Initiative
(excluding 2013 as the year of the event); zero otherwise.

Table 2, 4,5, 6,A9, A11,A12

BI˙Employer The indicator variable equals one if a Neuro Startup employs at least one BI scientist; zero other-
wise. A BI scientist is an author of publications resulting from BI grants.

Table 3

Ln (# VCs) The natural logarithm of the number of VCs in the round. Sources: PitchBook Table 2, 3,A9,A11,A12

Ln(Raised before exit) The natural logarithm of the total amount of financing that the startup has raised before the exit
of VC. Sources: PitchBook

Table 4

Ln(Total $ Raised) The natural logarithm of the total amount of financing that the startup has raised up to the year.
Sources: PitchBook. Sources: PitchBook

Table 6

Dependent Variables

Ln(round size$) The natural logarithm of VC financing amount. Sources: PitchBook Table 2,3, A11

Ln(Pre-Money Valuation$) The natural logarithm of VC Pre-Money Valuation. Sources: PitchBook Table 3,A12

Successful Exit The indicator variable equals one for startups’ successful exit. A successful exit is an IPO or a
M&A at a reported value at least twice the total capital invested. Sources: PitchBook

Table 4

Academic Founder
Dummy

The indicator variable equals one for startups founded by at least one Academic Founder; zero
otherwise. An Academic Founder is defined as a scientist who either launches a startup within
five years of departing academia or who simultaneously engages in academic work while estab-
lishing startups.

Table 5

#Patents Startup i’s the total number of patents filed (and eventually granted) in year t Table 6
#Breakthrough Patents Startup i’s the number of breakthrough patents filed (and eventually granted) for the next n years.

The breakthrough patents at the 90 percentile are patents that received more citations than the
citations at the 90 percentile within the same technology class and year.

Table 6

Avg. Adjusted Cites Startup i’s the average adjusted cites of patents filed (and eventually granted) in year t. The
adjusted cites are the number of cites over the average cites of patents in the same technology
field and granted year.

Table 6

#Academic inventors hired The number of Academic inventors hired by the startup at year t. Academic inventors are inven-
tors who begin working in startups following their academic roles or upon finishing their doctoral
degrees.

Table 6

Generating Revenue
Dummy

The indicator variable equals one for startup is generating revenue; zero otherwise. Table A9
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Table A3: Commercial Potential of BI research This table compares the commercial po-
tential of BI research against research from non-BI neuroscience grants. Panel A presents
the results of the Poisson publication of the #Patent Citations received by publications
on the BI grant indicator. A unit of observation is a publication. The key dependent
variable, #Patent Citations, represents the number of patent citations each publication re-
ceives. The BI indicator variable equals one for publications resulting from BI grants
and zero otherwise. Control variables include Non-BI Neuro, an indicator for publications
from NIH-funded non-BI neuroscience grants, as well as measures of commercial and
scientific potential. All regressions include year-fixed effects. Columns 1 and 3 report
regression results for the full sample, while Column 2 focuses specifically on publications
from NIH-funded grants in neuroscience. Panel B utilizes the predicted ex-ante commer-
cial potential of publications from Masclans et al. (2024). Group A in Panel B comprises
publications from BI grants, whereas Group B includes all publications from non-BI neu-
roscience grants after 2014. Column 3 presents the difference between Groups A and B
and reports the statistical significance of the t-test for mean differences and the Wilcoxon
rank-sum test for median differences.

Panel A: Patent Citations of Publications

(1) (2) (3)
Neuroscience Pubs

#Patent Citations #Patent Citations #Patent Citations

BI 2.022 1.192 1.485
(0.301)*** (0.307)*** (0.301)***

Non-BI Neuro 0.428
(0.056)***

Commercial Potential 4.361
(0.065)***

Scientific Potential 0.383
(0.052)***

Constant -1.761 -1.203 -5.047
(0.009)*** (0.053)*** (0.061)***

Observations 2,274,602 83,838 2,274,602
Year FE Y Y Y

Panel B: Predicted Commercial Potential of Publications

BI (A) Non-BI Neuroscience
post 2014 (B)

(A-B)

Mean 0.78 0.69 0.09***
Median 0.84 0.78 0.06***
SD 0.17 0.26
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Table A4: Model performance This table presents the performance metrics from 2015 to
2020 for models we trained. These performance matrices are generated using the testing
dataset not used in the training process. We present each model’s recession, recall, and
F1-score for each class, and the aggregated measure across classes contains the macro
average and weighted average. Macro average calculates the metric independently for
each class and then takes the average. Weighted average calculates the metric for each
class and weights it by the number of observations in that class.

2015 2018

Precision Recall F1-Score Support Precision Recall F1-Score Support
0 0.90 0.96 0.93 28 0 0.96 0.90 0.93 268
1 0.97 0.90 0.93 31 1 0.89 0.95 0.92 241

Maro avg 0.93 0.93 0.93 59 Maro avg 0.93 0.93 0.93 509
Weighted avg 0.93 0.93 0.93 59 Weighted avg 0.93 0.93 0.93 509

2016 2019

Precision Recall F1-Score Support Precision Recall F1-Score Support
0 0.92 0.90 0.91 81 0 0.90 0.92 0.91 373
1 0.89 0.92 0.91 74 1 0.93 0.91 0.92 409

Maro avg 0.91 0.91 0.91 155 Maro avg 0.92 0.92 0.92 782
Weighted avg 0.91 0.91 0.91 155 Weighted avg 0.92 0.92 0.92 782

2017 2020

Precision Recall F1-Score Support Precision Recall F1-Score Support
0 0.92 0.91 0.92 166 0 0.92 0.96 0.94 559
1 0.89 0.90 0.89 130 1 0.95 0.92 0.94 551

Maro avg 0.90 0.90 0.90 296 Maro avg 0.94 0.94 0.94 1110
Weighted avg 0.91 0.91 0.91 296 Weighted avg 0.94 0.94 0.94 1110
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Table A6: Funding Size. This table presents the results of OLS regressions estimating
Equation 1. The dependent variable is the log of VC investment amount in Panel A and
the log of pre-money valuation in Panel B. A unit of observation is an entrepreneurial firm
VC financing event. Neuro is a dummy variable for startups with at least one patent with
a neuroscience keyword. Post equals one for any year after the BRAIN Initiative (2013),
where the year of event itself has been excluded. # VCs counts the number of VCs in the
round. Year FE indicate dummies for financing year, Industry FE are dummies for Pitch-
book’s 41 industry groups. State FE are dummies for entrepreneurial firm headquarters
state. VC Round FE are dummies for the sequence of financing rounds. The t-statistics
(in parentheses) are based on heteroskedasticity-robust standard errors in Panel A, and
clustered at the startup level in Panel B, with ***, ** and * representing significance at the
1%, 5%, and 10% levels, respectively.

Panel A: Ln(Round Size $ for All Rounds)

All Healthcare Patenting

[08-17]

(1) (2) (3) (4)

Neuro×Post 0.287*** 0.221*** 0.225*** 0.147**
(4.29) (3.28) (2.97) (2.22)

Neuro 0.101** 0.113** 0.168*** 0.107**
(1.97) (2.15) (2.61) (2.09)

Ln(# Investors) 0.613*** 0.763*** 0.683*** 0.711***
(107.18) (60.01) (39.69) (67.16)

Observations 106576 23737 12567 31194
Mean Outcome 1.285 1.491 1.255 1.725
Adj R-squared 0.365 0.371 0.330 0.384
Industry FE Yes Yes Yes Yes
Year FE Y Y Y Y
State FE Y Y Y Y
VC Round FE Y Y Y Y

Panel B: Ln(Pre-Money Valuation $ for All Rounds)

All Healthcare Patenting

[08-17]

(5) (6) (7) (8)

Neuro×Post 0.241*** 0.239*** 0.202** 0.106
(2.74) (2.76) (2.29) (1.21)

Neuro 0.132** 0.052 0.126 0.193***
(2.06) (0.79) (1.62) (3.00)

Ln(# Investors) 0.340*** 0.306*** 0.235*** 0.382***
(46.81) (21.10) (12.14) (28.11)

Observations 60739 13612 7126 20218
Mean Outcome 2.918 2.957 2.718 3.265
Adj R-squared 0.491 0.462 0.432 0.500
Industry FE Yes Yes Yes Yes
Year FE Y Y Y Y
State FE Y Y Y Y
VC Round FE Y Y Y Y
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Table A7: Funding Size. This table presents the results of OLS regressions estimating
Equation 1. The dependent variable is the log of VC investment amount in Panel A and
the log of pre-money valuation in Panel B. The unit of observation is the first VC financing
event of an entrepreneurial firm, and only the first rounds are included in this table. The
variable Neuro (Def 2) is a dummy variable for a neurotech startup; a neurotech startup is
a firm that files for a neuro patent within the first five years after its founding. Post equals
one for any year after the BRAIN Initiative (2013), where the year of event itself has been
excluded. # VCs counts the number of VCs in the round. Year FE indicate dummies for
financing year, Industry FE are dummies for Pitchbook’s 41 industry groups. State FE
are dummies for entrepreneurial firm headquarters state. The t-statistics (in parentheses)
are based on heteroskedasticity-robust standard errors in Panel A, and clustered at the
startup level in Panel B, with ***, ** and * representing significance at the 1%, 5%, and 10%
levels, respectively.

Panel A: Ln(1st Round Size $)

All Healthcare Patenting

[08-17]

(1) (2) (3) (4)

Neuro(Def 2)×Post 0.426*** 0.311** 0.350** 0.243**
(3.85) (2.54) (2.23) (2.14)

Neuro(Def 2) 0.138* 0.147* 0.131 0.076
(1.82) (1.87) (1.11) (0.97)

Ln(# Investors) 0.369*** 0.544*** 0.456*** 0.432***
(49.33) (25.57) (16.39) (24.73)

Observations 39586 7995 4872 8564
Mean Outcome 0.579 0.858 0.727 0.937
Adj R-squared 0.173 0.202 0.177 0.175
Industry FE Yes Yes Yes Yes
Year FE Y Y Y Y
State FE Y Y Y Y

Panel B: Ln(Pre-Money Valuation $ in 1st Round)

All Healthcare Patenting

[08-17]

(1) (2) (3) (4)

Neuro(Def 2)×Post 0.361*** 0.378*** 0.500*** 0.210*
(3.40) (3.21) (3.42) (1.89)

Neuro(Def 2) -0.058 -0.081 -0.186* -0.021
(-0.76) (-1.01) (-1.70) (-0.27)

Ln(# Investors) 0.187*** 0.232*** 0.200*** 0.174***
(21.97) (11.26) (7.58) (9.47)

Observations 19599 4206 2505 5127
Mean Outcome 1.778 1.863 1.778 1.938
Adj R-squared 0.083 0.107 0.114 0.092
Industry FE Yes Yes Yes Yes
Year FE Y Y Y Y
State FE Y Y Y Y60



Table A8: Funding Size. This table presents the results of OLS regressions estimating
Equation 1. The dependent variable is the log of VC investment amount in Panel A and
the log of pre-money valuation in Panel B. The unit of observation is the first VC financ-
ing event of an entrepreneurial firm, and only the first rounds are included in this table.
The variable Neuro (Def 3) is a dummy variable for a neurotech startup; the neurotech
startup is defined as a startup’s business description contains one of our Neuro keywords:
{neuro, nerve, brain, optogenetic, Parkinson, Alzheimer, and dementia}. Post equals one for any
year after the BRAIN Initiative (2013), where the year of event itself has been excluded.
# VCs counts the number of VCs in the round. Year FE indicate dummies for financing
year, Industry FE are dummies for Pitchbook’s 41 industry groups. State FE are dummies
for entrepreneurial firm headquarters state. The t-statistics (in parentheses) are based on
heteroskedasticity-robust standard errors in Panel A, and clustered at the startup level in
Panel B, with ***, ** and * representing significance at the 1%, 5%, and 10% levels, respec-
tively.

Panel A: Ln(1st Round Size $)

All Healthcare Patenting

[08-17]

(1) (2) (3) (4)

Neuro(Def 3)×Post 0.253*** 0.211** -0.009 0.273**
(2.82) (2.16) (-0.07) (2.21)

Neuro(Def 3) -0.155** -0.106 0.022 -0.226***
(-2.22) (-1.46) (0.21) (-2.61)

Ln(# Investors) 0.370*** 0.548*** 0.460*** 0.433***
(49.45) (25.77) (16.51) (24.82)

Observations 39586 7995 4872 8564
Mean Outcome 0.579 0.858 0.727 0.937
Adj R-squared 0.172 0.200 0.173 0.174
Industry FE Yes Yes Yes Yes
Year FE Y Y Y Y
State FE Y Y Y Y

Panel B: Ln(Pre-Money Valuation $ in 1st Round)

All Healthcare Patenting

[08-17]

(1) (2) (3) (4)

Neuro(Def 3)×Post 0.233** 0.236** 0.301** 0.349**
(2.27) (2.09) (1.99) (2.42)

Neuro(Def 3) -0.091 -0.078 -0.169 -0.151
(-1.11) (-0.90) (-1.41) (-1.44)

Ln(# Investors) 0.188*** 0.232*** 0.200*** 0.174***
(21.99) (11.29) (7.55) (9.49)

Observations 19599 4206 2505 5127
Mean Outcome 1.778 1.863 1.778 1.938
Adj R-squared 0.083 0.106 0.111 0.093
Industry FE Yes Yes Yes Yes
Year FE Y Y Y Y
State FE Y Y Y Y
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Table A9: Startups’ Revenue Status. This table reports results from OLS regressions es-
timating Equation 1, where the dependent variable is a dummy variable for whether the
startup is generating revenue. A unit of observation is an entrepreneurial firm VC financ-
ing event. In Panel A, only the first rounds are included, and in Panel B, all rounds are
included. Neuro is a dummy variable for startups with at least one patent with a neuro-
science keyword. Post equals one for any year after the BRAIN Initiative (2013), where
the year of event itself has been excluded. # VCs counts the number of VCs in the round.
Year FE indicate dummies for financing year, Industry FE are dummies for Pitchbook’s 41
industry groups. State FE are dummies for entrepreneurial firm headquarters state. VC
Round FE are dummies for the sequence of financing rounds. The t-statistics (in parenthe-
ses) are based on heteroskedasticity-robust standard errors in Panel A, and clustered at
the startup level in Panel B, with ***, ** and * representing significance at the 1%, 5%, and
10% levels, respectively.

Panel A: 1st Rounds Generating Revenue Dummy

All Patenting Startups

Any [2010-2016] Healthcare

(1) (2) (3) (4)

Neuro×Post -0.164 -0.148 -0.109 -0.098
(-4.628)*** (-4.015)*** (-2.040)** (-2.318)**

Neuro 0.076 0.033 0.005 -0.002
(3.742)*** (1.533) (0.134) (-0.080)

Ln(# VCs) 0.022 -0.013 -0.030 -0.012
(5.520)*** (-1.534) (-2.248)** (-0.784)

Observations 42,488 9,363 4,378 3,453
Adj R-squared 0.134 0.104 0.037 0.069
Industry FE Y Y Y Y
Year FE Y Y Y Y
State FE Y Y Y Y

Panel B: All Rounds Generating Revenue Dummy

All Patenting Startups

Any [2010-2016] Healthcare

(1) (2) (3) (4)

Neuro×Post -0.168 -0.138 -0.100 -0.081
(-6.818)*** (-5.441)*** (-3.367)*** (-2.747)***

Neuro 0.054 0.033 0.021 -0.008
(2.782)*** (1.581) (0.767) (-0.360)

Ln(# VCs) 0.011 -0.009 -0.029 -0.000
(4.087)*** (-1.830)* (-3.995)*** (-0.021)

Observations 94,506 29,039 14,060 10,666
Adj R-squared 0.179 0.174 0.126 0.138
Industry FE Y Y Y Y
Year FE Y Y Y Y
State FE Y Y Y Y
VC Round FE Y Y Y Y
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Table A10: Sector Distribution of Acquirers in Healthcare Startups. This table catego-
rizes acquirers into sectors, comparing their engagement with neuro and other healthcare
startups, pre- and post-BI.

Neuro Other Healthcare

Pre-BI Post-BI Pre-BI Post-BI

# % # % # % # %

Healthcare 30 93.75% 142 89.31% 740 87.89% 861 86.97%
IT 2 6.25% 7 4.40% 47 5.58% 55 5.56%
B2B 6 3.77% 25 2.97% 31 3.13%
B2C 4 2.52% 12 1.43% 28 2.83%
Finance 11 1.31% 10 1.01%
Materials 5 0.59% 5 0.51%
Energy 2 0.24%

Total 32 159 840 990
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Table A11: Funding Size without AI and Big Data Startups. This table repeats the exer-
cise in Table 2, while excluding startups in AI or Big Data verticals. A unit of observation
is an entrepreneurial firm VC financing event. In Panel A, only first rounds are included
and in Panel B all rounds are included. Neuro is a dummy variable for startups with
at least one patent with a neuroscience keyword. Post equals one for any year after the
BRAIN Initiative (2013), where the year of event itself has been excluded. # VCs counts the
number of VCs in the round. Year FE indicate dummies for financing year, Industry FE are
dummies for Pitchbook’s 41 industry groups. State FE are dummies for entrepreneurial
firm headquarters state. VC Round FE are dummies for the sequence of financing rounds.
The t-statistics (in parentheses) are based on heteroskedasticity-robust standard errors in
Panel A, and clustered at the startup level in Panel B, with *** , ** and * representing sig-
nificance at the 1%, 5% and 10% levels, respectively.

Panel A: 1st Rounds Ln(round size $)

All Patenting Startups

Any [2010-2016] Healthcare

(1) (2) (3) (4)

Neuro×Post 0.647 0.421 0.387 0.253
(6.006)*** (3.783)*** (2.390)** (1.986)**

Neuro 0.042 -0.017 0.047 0.042
(0.614) (-0.242) (0.363) (0.534)

Ln(# VCs) 0.754 0.755 0.589 0.882
(62.653)*** (29.070)*** (14.625)*** (20.269)***

Observations 34,790 7,720 3,190 3,076
Adj R-squared 0.202 0.192 0.161 0.221
Industry FE Y Y Y Y
Year FE Y Y Y Y
State FE Y Y Y Y

Panel B: All Rounds Ln(round size $)

All Patenting Startups

Any [2010-2016] Healthcare

(1) (2) (3) (4)

Neuro×Post 0.344 0.185 0.212 0.125
(4.534)*** (2.430)** (2.130)** (1.834)*

Neuro 0.092 0.093 0.088 0.178
(1.694)* (1.680)* (1.102) (4.003)***

Ln(# VCs) 0.855 0.878 0.861 1.031
(100.001)*** (59.320)*** (40.618)*** (52.306)***

Observations 77,687 23,990 10,575 9,488
Adj R-squared 0.334 0.338 0.343 0.286
Industry FE Y Y Y Y
Year FE Y Y Y Y
State FE Y Y Y Y
VC Round FE Y Y Y Y
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Table A12: Valuations without AI and Big Data Startups. This table repeats the exercise
in Table 2, while excluding startups in AI or Big Data verticals. A unit of observation is
an entrepreneurial firm VC financing event. In Panel A, only first rounds are included
and in Panel B all rounds are included. Neuro is a dummy variable for startups with
at least one patent with a neuroscience keyword. Post equals one for any year after the
BRAIN Initiative (2013), where the year of event itself has been excluded. # VCs counts the
number of VCs in the round. Year FE indicate dummies for financing year, Industry FE are
dummies for Pitchbook’s 41 industry groups. State FE are dummies for entrepreneurial
firm headquarters state. VC Round FE are dummies for the sequence of financing rounds.
The t-statistics (in parentheses) are based on heteroskedasticity-robust standard errors
in Panel A, and clustered at the startup level in Panel B, with *** , ** and * representing
significance at the 1%, 5% and 10% levels, respectively.

Panel A: 1st Rounds Ln(Pre-Money Valuation $)

All Patenting Startups

Any [2010-2016] Healthcare

(1) (2) (3) (4)

Neuro×Post 0.375 0.219 0.377 0.231
(3.514)*** (1.953)* (2.270)** (1.840)*

Neuro -0.031 0.007 -0.073 -0.003
(-0.467) (0.098) (-0.604) (-0.035)

Ln(# VCs) 0.299 0.259 0.255 0.309
(24.295)*** (10.097)*** (6.684)*** (7.874)***

Observations 15,752 4,283 1,821 1,724
Adj R-squared 0.089 0.079 0.072 0.103
Industry FE Y Y Y Y
Year FE Y Y Y Y
State FE Y Y Y Y

Panel B: All Rounds Ln(Pre-Money Valuation $)

All Patenting Startups

Any [2010-2016] Healthcare

(1) (2) (3) (4)

Neuro×Post 0.216 0.065 0.103 0.220
(2.601)*** (0.772) (1.040) (2.697)***

Neuro 0.123 0.184 0.209 0.215
(2.070)** (2.979)*** (2.657)*** (3.955)***

Ln(# VCs) 0.391 0.399 0.398 0.487
(38.282)*** (22.506)*** (16.333)*** (20.568)***

Observations 41,127 14,821 6,761 5,725
Adj R-squared 0.438 0.454 0.455 0.158
Industry FE Y Y Y Y
Year FE Y Y Y Y
State FE Y Y Y Y
VC Round FE Y Y Y Y
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