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Abstract

We develop a model to compare the governance of traditional shareholder-owned plat-

forms to that of platforms that issue tokens. A traditional shareholder governance struc-

ture leads a platform to extract rents from its users. A platform that issues tokens for

its services can mitigate this rent extraction, as rent extraction lowers the platform own-

ers’ token seigniorage revenues. However, this mitigation from issuing “service tokens”

is effective only if the platform can commit itself not to dilute the “service token” sub-

sequently. Issuing “hybrid tokens” that bundle claims on the platform’s services and its

profits enhances efficiency even absent ex-ante commitment power. Finally, giving users

the right to vote on platform policies, by contrast, redistributes surplus but does not

necessarily enhance efficiency.
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1 Introduction

The emergence of platforms that issue their own digital currencies or credits to users

– called tokens – has offered an alternative to traditional platforms’ model of financing and

governance. Traditional platforms are owned and governed by shareholders (i.e., residual cash

flow claimants). A platform’s users, by contrast, do not necessarily play a role in financing or

decision-making. Shareholders may not govern a traditional platform in users’ best interests:

they can exercise the platform’s market power to extract rents from users. Proponents of

cryptocurrency and decentralized finance (DeFi) argue that by giving users a stake in the

system, token-financed platforms are more likely to be governed in accordance with users’

preferences.

Tokens can offer users several types of claims or rights. Some platforms issue tokens that

offer transaction services while retaining the traditional shareholder governance model. For

example, the (centralized) Binance cryptocurrency exchange issues a token (BNB) that users

can redeem to receive a discount on trading fees. Blockchain-based platforms often issue

“utility tokens” that can be used to purchase a digital service: e.g., the Golem platform’s

tokens (GLM) can be used to rent out computational resources, and Chainlink’s token (LINK)

is used to pay network operators to retrieve data for smart contracts. Other tokens function

essentially like shares of a traditional platform, granting cash flow claims and voting rights.

The Kyber decentralized cryptocurrency exchange, for instance, issues a token (KNC) that

can be “staked” to receive a share of the platform’s revenues and to participate in governance.

Still other tokens bundle transaction services with cash flow claims and/or voting rights. The

archetypal example is a proof-of-stake cryptocurrency with “on-chain” governance, like Tezos

or Algorand. On these blockchains, tokens play a dual role: users can hold them to transact

with others, and “validators” can set tokens aside as collateral (called “staking”) to verify

blockchain transactions, earn monetary rewards, and vote on policies.

The advent of token-financed platforms raises key economic questions. Can token-financed

platforms succeed in mitigating rent extraction and aligning policies with users’ interests?

How should tokens be designed to promote efficient platform governance? Should tokens

grant transaction services, cash flows claims, voting rights, or some combination of features?

To answer these questions, we develop a unified model of a platform economy that is

general enough to encompass traditional platforms as well as platforms that issue tokens

with various features. The model is set in continuous time and has two groups of agents:

users, who enjoy the platform’s transaction services, and investors, who hold cash flow claims

on the platform but do not engage in transactions.

In our benchmark model, the platform’s policy consists of a transaction fee charged to
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users and (possibly) a rate of token seigniorage, when we consider a platform that issues

tokens. These policies dictate the split of surplus between users and investors, since fees and

seigniorage both represent transfers from users to investors, as well as total surplus, since

the costs users face to use the platform determine their demand for its transaction services.

Governance decisions (i.e., opportunities to vote on the platform’s policies) occur periodically

over time. Hence, there is limited commitment in governance: instead of committing to a full

sequence of policies at t = 0, the platform can rewrite its policies in each governance decision.

The platform’s market power generates scope for inefficiencies. The platform faces no

competition, so it can set fees higher than the marginal cost of processing transactions without

losing its user base. Importantly, fees are distortionary because the platform cannot fully

extract surplus from users: higher fees lead to lower transaction volumes and deadweight

losses.

For each of the platform designs we consider, there are two types of assets. There is a

transaction asset that users must hold to receive the platform’s transaction services: users’

flow payoffs depend on their real balances of transaction assets, as in many models of platforms

that issue tokens (Cong, Li, and Wang, 2021; Gryglewicz, Mayer, and Morellec, 2021). There

is also a cash flow asset held by investors that grants claims on the platform’s profits. Either

type of asset can have voting rights, depending on the setting. We consider three different

platform designs in this general environment.

� Traditional platform: Users transact with an asset that originates outside the plat-

form, such as cash, deposits, or other liquid assets. The platform issues shares to

investors that confer cash flow and governance rights (so shares are the cash flow as-

set). Investors choose the platform’s policies to maximize its equity value.

� Service tokens: Users transact with tokens that are issued by the platform (so tokens

are the transaction asset). Investors hold shares (the cash flow asset) that grant claims

on profits. At first, we assume the platform maintains the shareholder governance

model, but we later extend the model to permit token-holding users to vote as well.

� Hybrid tokens: The platform does not issue shares – it issues a token that serves as

both a transaction asset and a cash flow asset. Users hold tokens in order to transact

on the platform, whereas investors “stake” tokens to receive a claim on the platform’s

profits. Again, we begin by assuming that only the holders of staked tokens (investors)

can vote, and then extend the model to permit users to vote as well.

We study the efficiency of each platform design in terms of total surplus vis-à-vis the first-best

allocation.
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Traditional platform: The shareholders of a traditional platform simply set fees to

maximize the present value of profits without regard for user surplus. Consequently, as is

typical of models with imperfect competition, the platform’s fees are set higher than the

marginal cost of processing transactions. Transaction volumes are therefore inefficiently low

from a social perspective.

Service tokens: When the platform issues service tokens, investors choose both fees and

the rate of seigniorage. They have a reason to internalize user surplus: the equilibrium price

of tokens, and therefore the platform’s seigniorage revenues from its initial token issuance,

depends on the service flow that users expect to receive from tokens in the future (i.e., the

marginal benefit of holding a token). Policies that enhance users’ welfare (e.g., a promise of

lower fees or less future seigniorage) increase service flows and thus token prices. If investors’

ability to commit to future policies is strong enough, then the prospect of greater initial

seigniorage revenues will incentivize them to choose policies that are more beneficial to users.

Therefore, under commitment, investors will set lower fees than a traditional platform, leading

to greater transaction demand. The equilibrium outcome is unambiguously more efficient

than in the traditional case.

However, if investors’ ability to commit to future policies is weak, then this logic breaks

down. Investors no longer have as strong an incentive to pass policies that benefit users: they

can frequently rewrite policies and do not internalize any reduction in value of tokens issued

in the past. Instead, users bear those costs. Investors are tempted to set fees too high and

over-issue tokens to boost seigniorage revenues. This temptation is so severe that in the limit

of no commitment, there does not exist an equilibrium in which tokens are valued: realizing

that investors will attempt to extract high rents in the future, users are unwilling to purchase

tokens in the first place. Commitment is thus crucial for service tokens to enhance efficiency

on their own. Of course, there are several mechanisms that could enhance platform owners’

commitment to policies that benefit users, such as token retention or smart contracts that

pre-program a specified sequence of policies. We show, however, that so long as investors

have limited commitment power, a hybrid token that bundles transaction services with cash

flow claims can serve as an effective substitute for commitment.

Hybrid tokens: A hybrid token is held by users for its transaction services and staked

by investors for its cash flows. Equilibrium token prices reflect both their service value (the

present value of service flows, which is users’ valuation) and their cash flow value (the present

value of dividends, which is investors’ valuation). Even when investors govern the platform

without strong commitment to future policies, equilibrium outcomes are unambiguously more

efficient than in the traditional platform case. In fact, equilibrium governance decisions are

precisely the same as in the case of a platform that issues service tokens with full commitment.
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Why does a hybrid token overcome the time-inconsistency problem? The key intuition is that

investors hold an asset whose value reflects users’ future service flows, so investors bear part

of the costs if they pass policies that harm users. When a platform issues service tokens to

users without commitment, by contrast, investors may seek to pass policies that increase the

value of their equity while reducing token prices.

Extensions: We then extend the model to accommodate token-issuing platforms that

permit users to vote, rather than just investors. We consider both a platform that issues

service tokens and one that issues hybrid tokens. When users can participate in governance,

they receive a greater share of total surplus, but equilibrium outcomes are not necessarily more

efficient. If users acquire a majority share of voting power, they pass policies that increase

their surplus at the expense of lower profits – transaction quantities may be inefficiently

high. Intuitively, simply reallocating voting power does not cause users to internalize investor

welfare. By contrast, bundling cash flow claims with transaction services causes investors to

internalize user surplus, unlike the owners of a traditional platform.

We also consider an extension in which we add investment to the model: the platform

can expend resources to improve the quality of its transaction technology, increasing users’

marginal utility of transacting. In this setting, a traditional platform under-invests. Since the

platform cannot fully extract user surplus, investors forgo some socially efficient investments

that would benefit users at the expense of lower platform profits. Token issuance alleviates

the under-investment problem because investors internalize some of the benefits of investment

that accrue to users. Importantly, the ability to finance investments by issuing tokens is non-

neutral: token issuance is not a re-tranching of the platform’s cash flows, so the Modigliani-

Miller theorem does not apply. Unlike share issuance, token issuance can finance investments

that benefit users while reducing the platform’s future profits. Hence, our model’s insights

about the benefits of token issuance extend beyond our benchmark environment, in which

the platform’s policies mainly concern the pricing of its services.

Organization. In the remainder of this section, we give a review of the related literature.

Section 2 gives a brief overview of the types of tokens issued by platforms in practice. Section

3 introduces the economic environment and other preliminary elements of the benchmark

model. Section 4 studies the governance of a traditional platform as a benchmark. Section

5 introduces service tokens and outlines how token issuance affects equilibrium governance

decisions. The hybrid token scheme is analyzed in Section 6. Sections 7 and 8 lay out

extensions with user voting and investment, respectively. Section 9 discusses the model’s

main assumptions. Section 10 concludes. All proofs are in the Appendix.

Related literature. Our paper is most closely related to the emerging literature that

studies the role of tokens in DeFi platforms’ governance. In the context of a platform with
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network externalities, Sockin and Xiong (2023) study the introduction of a token that grants

platform membership and permits users to vote on platform policies, preventing the platform

from exploiting their data. However, users are not able to share the costs of investments in the

platform and therefore cannot subsidize the admission of new users to the platform. Bakos

and Halaburda (2023) study a platform that issues tokens that offer cash flow claims and

voting rights. They highlight conditions under which token holdings become concentrated

among non-users, leading to rent extraction. Similarly, Han, Lee, and Li (2023) develop

and empirically test a model in which concentrated token holdings by a large investor can

undermine efficient governance. Relatedly, Bena and Zhang (2023) and Gan, Tsoukalas and

Netessine (2023) compare the inefficiencies in governance of a platform that issues service

tokens to those of a traditional platform. While our analysis shares some of these themes,

it is complementary: we characterize the separate roles of tokens’ transaction services, cash

flow claims, and voting rights, providing novel insights into the optimal design of tokens.

The broader literature on financing through token sales and ICOs is also related to our

work. Closest to our paper, Goldstein, Gupta, and Sverchkov (2022) show that by issuing

utility tokens, a platform can commit to charge lower prices to users, as in our model. Their

mechanism, however, is related to the Coase (1972) conjecture and is quite distinct from ours.

Gryglewicz, Mayer, and Morellec (2021) and Cong, Li, and Wang (2022) study the optimal

issuance of tokens by a financially-constrained platform, demonstrating how seigniorage poli-

cies can be used to reward platform owners for investments. Li and Mann (2018), Chod

and Lyandres (2021), and Lee and Parlour (2021) study other reasons why firms might fi-

nance themselves through the issuance of utility tokens. Li and Mayer (2022) and d’Avernas,

Maurin, and Vandeweyer (2022) present models to study the optimal issuance of stablecoins.

Similarly, You and Rogoff (2023) study how the tradability of a platform’s utility tokens

affects the revenue raised by a token offering. Relative to this literature, our paper differs in

that it considers the role of tokens exclusively for governance – there are no financial frictions

that motivate token issuance.

Of course, our paper connects to the corporate governance literature. There is an extensive

body of work on control rights, ownership structure, and the theory of the firm stemming

from the work of Coase (1937), Williamson (1979), and Grossman and Hart (1986). Our

paper contributes to this literature by characterizing the specific governance consequences

brought about by different token designs – we show that despite the fact that users can

potentially be exploited by the platform, it is not always most efficient to give them control

rights (Hansmann, 1988). Our work is complementary to the literature that studies how

different control structures aggregate information in governance decisions (see Aghion and

Tirole, 1997, among many others). Recent work has extended this literature to the study of
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Figure 1: A taxonomy of the types of tokens issued by platforms in practice. Tokens are
categorized by whether they confer ownership in the platform (cash flow claims and/or voting
rights) and whether they offer transaction services. We also indicate how we refer to each
type of token in the model.

DeFi platforms (Tsoukalas and Falk, 2020; Benhaim, Falk, and Tsoukalas, 2023).

2 An Overview of Tokens

Before introducing the model, we briefly outline the different claims or rights that tokens

may confer and examples of tokens that are issued in practice. Tokens typically grant at least

one of (1) claims on a platform’s transaction services, (2) claims on cash flows, or (3) voting

rights. Figure 1 provides a taxonomy of tokens based on whether they provide transaction

services and whether they confer platform ownership (cash flow claims and/or voting rights).

This section discusses each class of tokens in this taxonomy as well as how the different types

of tokens used in practice relate to the assets in the model.

Transaction services only: Tokens that grant only claims on transaction services are

typically referred to as utility tokens. Examples are the Binance token (BNB) or the Golem

token (GLM) discussed in the Introduction, which users can redeem for specific services

or perks. However, tokens can facilitate transactions on a platform even if they are not

redeemable for any particular service. In the context of our model, a pure cryptocurrency

that has no intrinsic value but is used for transactions among a platform’s users could also

be viewed as a token that offers an implicit claim on the platform’s transaction processing

services. Even outside of DeFi, some platforms have begun to issue, or have considered
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issuing, their own currencies (e.g., Alibaba’s “Alipay” or Facebook’s now-defunct Libra/Diem

project).1

Ownership features only: Other tokens grant claims on the platform’s cash flows

(e.g., transaction fees or seigniorage revenues).2 Usually, such tokens have voting rights in

governance decisions as well. The (previously discussed) KNC token issued by the Kyber de-

centralized exchange (DEX) is a leading example. Kyber provides automated cryptocurrency

market-making services and collects transaction fees from traders. Token holders can “stake”

their tokens in order to receive a share of these fees. They may also participate in on-chain

governance: the community regularly votes on referenda that determine the platform’s poli-

cies, including fees and software upgrades, and voting power is allocated proportionally to

token holdings. Most of the assets that users transact on the platforms are cryptocurrencies

that originate elsewhere.3 In the context of our model, a token that offers only cash flow

claims and voting rights is equivalent to a share of a traditional platform. So, in the case of

Kyber, the “investors” would be KNC token holders and “users” would be those who trade

various other cryptocurrencies on the platform.

Pure governance tokens offer only voting rights. For example, the Uniswap DEX issues

the UNI token, which entitles holders to vote on changes to the market-making protocol.

UNI does not currently pay its holders any dividends, but in principle, token holders could

vote to pay themselves a dividend at some point in the future.4 The COMP token issued by

the popular Compound lending platform carries similar voting rights. Tokens that have only

voting rights are beyond the scope of our model.

Transaction services and ownership features: Finally, we turn to platforms that

issue native tokens that bundle transaction services with ownership features. We have already

given the example of proof-of-stake cryptocurrency blockchains with on-chain governance, like

Algorand or Tezos. On these platforms, tokens are held by users who wish to transact with

others. They are staked by “validators” (the analogue of investors in the model) who run the

computational hardware needed to verify transactions and collect monetary rewards, which

could take the form of transaction fees or newly minted tokens. Some blockchain platforms

permit any token holder to stake and vote on proposed policies (e.g., Algorand), whereas

others allow users to delegate their votes to validators who they trust to act on their behalf

1A key difference, however, is that tokens issued by non-DeFi platforms are typically backed at least
partially by existing fiat currencies.

2These are distinct from security tokens, which usually represent a claim on another firm’s profits or a
claim on a financial asset that exists outside of the blockchain.

3Kyber users, for example, may access a “liquidity pool” that permits them to trade Ether for the Tether
stablecoin.

4See https://protos.com/to-fee-or-not-to-fee-that-is-the-question-does-uniswap-have-an-answer/.
Whether UNI will eventually pay dividends has been a topic of intense speculation in the community.
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(e.g., Tezos). Typical policies adjust the blockchain’s transaction fees or upgrade transaction

verification protocols.

This setup is not restricted to proof-of-stake cryptocurrencies, however. Some DeFi plat-

forms issue tokens that bundle voting rights, cash flow claims, and direct claims on the

platform’s services. The Aave lending platform issues a token (AAVE) with voting rights

that (1) borrowers can post as collateral to receive discounted interest rates and (2) investors

can stake to provide a liquidity backstop and receive a share of Aave’s profits. Similarly,

some platforms that enable interoperability across DeFi applications, such as the Cosmos

and Polkadot networks, issue tokens with voting rights that users hold to pay network fees

and validators stake to provide transaction security.

3 Model

Environment: We consider a continuous-time, infinite-horizon economy in which agents

interact on a platform. There are two commodities: a numeraire good (referred to as a

“dollar”) and transaction services (henceforth “transactions”) produced by the platform at

a marginal cost c > 0. The economy is populated by a unit mass of two types of agents:

users i ∈ [0, 1] and investors j ∈ [0, 1]. Users enjoy the platform’s transaction services: a

user i who consumes a quantity xit of transactions at time t receives utility
x1−γ
it
1−γ , where

γ ∈ (0, 1).5 Investors, on the other hand, hold cash flow claims on the platform but do not

enjoy its transaction services. All agents are risk-neutral over consumption of dollars and

share a common discount rate r > 0.6

Assets: In this economy, assets can play two roles. First, there is a transaction asset

(with endogenous price QT
t and supply AT

t ) that can be held by users to receive the plat-

form’s transaction services: a user i enjoys transaction services equal to her real balance of

transaction assets, as is typical in the literature on tokens (as well as models with money in

the utility function, e.g., Sidrauski, 1967; Feenstra, 1986).7 So a user i who holds a quantity

of transaction assets ait at time t receives transaction services

xit = QT
t ait. (1)

Second, there is a cash flow asset (with price QC
t and supply AC

t ) that is held by investors8

5We assume γ < 1 to ensure users’ transaction demand is sufficiently elastic that a profit-maximizing policy
for the platform exists.

6Throughout, we make the additional parametric assumption γ
1−γ

c > r to streamline the presentation of
results. However, the main results remain unchanged if we drop this assumption.

7Biais et al. (2023) micro-found a similar utility function in an overlapping-generations model.
8Section 9 discusses the assumption that users do not hold cash flow assets.
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and provides a pro-rata claim on the platform’s profits: a cash flow asset pays a dividend

dDt =
dΠt

AC
t

at time t, where dΠt denotes the platform’s profits.

We consider three schemes for the design of assets in this economy: a traditional plat-

form, a platform that issues service tokens, and a platform that issues hybrid tokens. The

Introduction specifies what plays the role of the cash flow asset and the transaction asset

under each scheme. We will mostly study the case in which only cash flow assets have voting

rights (so investors govern the platform), but Section 7 extends the model to allow users to

vote as well.

Platform governance: The platform’s policy at time t consists of a transaction fee

ft+s ≥ 0 and (possibly) a token seigniorage policy at all future dates t+ s.9 The platform’s

policies are determined in governance decisions at times {τ0 = 0, τ1, τ2, . . . } that arrive

according to a Poisson process at rate λ. In a governance decision at time τk, any previous

policy commitments are torn up, and new policies (for all future dates τk + s) are chosen

by a vote among the agents who govern the platform. Hence, the parameter λ indexes the

degree of commitment to future policies: in the limit λ→ 0, the platform’s policies are fully

determined at t = 0 (as with an immutable smart contract), whereas in the limit λ → ∞, a

new policy is chosen at each instant. Agents are infinitesimal, so no individual agent’s vote

is ever pivotal. Therefore, all agents take policies as given.

Payoffs: A user i who engages in xit transactions at time t pays a fee ft per transaction,

so the user receives a total flow payoff from transactions

Uitdt =
( x1−γ

it

1− γ
− ftxit

)
dt.

The platform receives the transaction fees paid by users and incurs a marginal cost c

per transaction. When we consider token-issuing platforms, the platform will also receive

(endogenous) seigniorage revenues from token issuance, which we denote by dSt for now.

Thus, letting Xt =
1∫
0

xitdi denote the aggregate quantity of transactions, the platform’s flow

profits at t are

dΠt = (ft − c)Xtdt+ dSt.

In the remainder of this section, we describe the elements of our model that are held

constant across the different settings considered. In subsequent sections, we analyze each

platform design individually.

9The assumption that ft ≥ 0 (i.e., that the platform cannot subsidize transactions) has similar implications
to an assumption of limited liability: if the platform were to commit to subsidizing transactions, it would have
a negative equity value. This formulation just simplifies the exposition.
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Remark. We illustrate the logic of our main results in a benchmark model that makes several

specific assumptions. However, we will extend the model to more general settings to show that

the main results continue to hold:

� Section 8 considers a platform that must make governance decisions about investment

as well as fees and seigniorage;

� Appendix G.1 considers a platform in which users’ utility exhibits network effects;10

� Appendix G.2 considers a setting with monopolistic competition across platforms, rather

than a single monopolistic platform.11

� Appendix G.3 considers a setting in which the platform permits users to redeem trans-

action assets in exchange for a service (instead of the money-in-the-utility assumption

used in the benchmark model);

3.1 Individual optimization problems

We first lay out agents’ individual portfolio optimization problems. Users choose their

transaction asset holdings to maximize their expected lifetime utility subject to a standard

budget constraint, taking the price of transaction assets QT
t and fees ft as given. In Appendix

A.1, we show that this problem reduces to a static one:

max
xit,ait

( x1−γ
it

1− γ
− ftxit

)
dt+ (Et[dQ

T
t ]− rQT

t dt)ait s.t. (1).

The first term in parentheses is the flow utility of transactions xit, whereas the second term

represents the expected return on transaction assets net of holding costs rQT
t ait. All users i

optimally choose the same transaction quantity xit. Users’ optimality condition can be used

to show that aggregate transaction demand Xt obeys

X−γ
t dt = ftdt+

(
rdt− Et

[dQT
t

QT
t

])
. (2)

Transaction demand is decreasing in the net marginal cost of transacting, which consists of

two components: the transaction fee ft and the opportunity cost r − 1
dt Et

[dQT
t

QT
t

]
of hold-

ing transaction assets. Of course, the aggregate demand for transaction assets is equal to

10We assume that a user’s utility depends on their own transactions xit as well as other users’ aggregate

transaction activity Xt via
(Xν

t x1−ν
it )1−γ

1−γ
with ν ∈ (0, 1); i.e., ν captures the strength of network effects.

11We assume a continuum of platforms k that produce differentiated transaction services. A user’s total

transaction services xit are a CES aggregate of transactions xikt on each platform k, xit = (
1∫
0

x
η−1
η

ikt dk)
η

η−1 .
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aggregate transaction demand,

Xt = QT
t A

T
t . (3)

Similarly, investors choose their holdings of cash flow assets to maximize lifetime utility

subject to a standard budget constraint. Investors’ problem is formally stated in Appendix

A.1. Their first-order condition implies that cash flow assets are priced according to the

present value of dividends:

rQC
t dt = dDt + Et[dQ

C
t ] where dDt =

dΠt

AC
t

. (4)

Equations (3) and (4) summarize the demand for transaction assets and cash flow assets,

respectively. The supply of each asset is determined in a different way for each of the platform

designs we consider.

3.2 Governance decisions

The platform’s status quo policy at time t consists of a transaction fee and (possibly) a

seigniorage rate at all future dates, {ft+s, dSt+s}s≥0. In a governance decision at time τk, the

platform’s status quo policy can be revised. Each agent who has the right to do so votes for

a new policy. If some policy attains a majority, then the status quo is abandoned and the

new policy is implemented. Otherwise, the status quo is maintained.

In principle, this voting game could be quite complicated since there are infinitely many

potential policies. However, our environment offers a useful simplification: within each con-

stituency (investors or users), agents have identical policy preferences. We assume that agents

in each constituency vote unanimously for their most-preferred policy.12 Throughout most

of the analysis, we will focus on the case in which only cash flow assets confer the right to

vote. In this case, investors will hold all of the voting power, so they will implement their

most-preferred policy. However, we will later extend the model to allow users the opportunity

to vote as well.

Each constituency’s preferences over policies is determined by the lifetime utility its mem-

bers expect to obtain after a new policy is passed.13 Investors’ expected lifetime utility V I
t is

equal to the market value of their cash flow assets, whereas users’ expected lifetime utility V U
t

12Hence, we ignore self-fulfilling equilibria in which agents do not vote for their most-preferred policy (as
is typical in the corporate governance literature, see Levit, Malenko, and Maug, 2024). For instance, if all
agents vote for a random policy, then no policy will ever attain a majority, so it is in fact individually rational
for each agent to vote randomly.

13Given an expected path of policies, there may be multiple equilibrium paths of transaction quantities {Xt}
consistent with those policies. Following convention in the literature, we select the “best-case” equilibrium
that generates the greatest total surplus.
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is equal to the market value of their transaction assets plus the present value of infra-marginal

rents Rt that they earn from transactions, defined below.

Proposition 1. Following the announcement of a new policy at time τ , investors’ expected

lifetime utility is

V I
τ = QC

τ A
C
τ− , (5)

where AC
τ− denotes investors’ cash flow asset holdings before the new policy announcement,

and users’ expected lifetime utility is

V U
τ = QT

τ A
T
τ− +Rτ , where Rτ ≡ Eτ

[ ∞∫
0

e−rs γ

1− γ
X1−γ

τ+s ds

]
. (6)

3.3 Notation

Throughout the analysis, we will focus on Markov equilibria. Suppose that the most

recent governance decision occurred at time τ . Then, the only relevant state variable for

outcomes at time t is the time s = t− τ that has elapsed since the most recent decision.

As is typical in models of policy-making with limited commitment, both current policies

and anticipated future policies influence agents’ behavior in equilibrium. It is therefore neces-

sary to distinguish between actual policies chosen at τ and the policies that were anticipated

before the governance decision at τ , since, at least in principle, the constituency that governs

the platform can deviate from the anticipated policy. We index actual policies and outcomes

simply by the subscript s: for example, fs denotes the chosen level of fees at time τ + s, Xs

denotes actual aggregate transaction quantities at that time, and so on. We denote antici-

pated policies and outcomes with a hat as functions of s: so f̂s denotes the level of fees at

time τ + s that was anticipated before the decision at τ , X̂s denotes anticipated transaction

quantities, etc. Of course, in equilibrium, actual outcomes must coincide with anticipated

outcomes.

We focus on equilibria in which jumps in variables may occur at the time of a governance

decision, but variables evolve smoothly between governance decisions. The drift of a variable

is denoted with a dot, so, for example, dXs = Ẋsds.

3.4 The first-best

Before examining specific platform designs, we derive the properties of optimal allocations

in this environment. This analysis will facilitate a comparison of the inefficiencies that arise

under each platform design studied in subsequent sections.
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There is transferable utility in this environment, so an allocation is efficient if and only

if it maximizes utilitarian social welfare (i.e., the sum of agents’ payoffs). Note that fees will

be irrelevant for total welfare, since they are just a transfer from users to investors.

An allocation is therefore summarized simply by a sequence of aggregate transaction

quantities Xt.
14 Total surplus at time t is just X1−γ

t /(1− γ)− cXt. To maintain symmetry

with our model of governance, we assume a social planner with limited commitment: at the

time of a governance decision, the planner chooses an allocation {Xs}s≥0 that is maintained

until the next governance decision at time τ (which arrives at rate λ).

Proposition 2. A first-best allocation solves

V̂ P
0 = max

Xs

E0

[ ∞∫
0

e−rs

(
X1−γ

s

1− γ
− cXs

)
ds+ e−rτ V̂ P

0

]
, (7)

where V̂ P
s is the planner’s value function. An allocation is first-best if and only if

Xs = XFB ≡ c
− 1

γ ∀ s. (8)

The first-best level of transactions, XFB
s , is set so that the marginal utility of an additional

transaction, X−γ
s , is equal to the marginal cost c of processing that transaction. Thus, the

optimal level of aggregate transactions is constant over time and decreasing in transaction

processing costs c.

4 Traditional platform

In this section, we study the case of a traditional platform as a simple benchmark. We

demonstrate that as in most models with a monopolistic firm, a traditional platform charges

inefficiently high fees, distorting transaction volumes downwards.

4.1 Setup

In the case of a traditional platform, there are two distinct assets: shares that are issued

by the platform and transaction assets that originate outside the platform (such as cash,

stablecoins, or another cryptocurrency). Users hold transaction assets for their transaction

services but cannot vote in governance decisions. We assume transaction assets are supplied

14Users have identical concave utility functions. Without loss of generality, then, we can restrict attention
to allocations in which each user transacts the same amount, xit = Xt for all i.
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elastically at a price QT
t = 1.15 Shares serve as the economy’s cash flow asset and grant

investors the right to vote on the platform’s policies. The supply of shares is normalized to

AC
t = 1 – we assume, without loss of generality, that the platform does not issue new shares

or buy them back from investors.16

Since the platform does not issue tokens in this environment, it receives no seigniorage

revenues. Therefore, it derives profits only from processing transactions:

dΠt = (ft − c)Xtdt. (9)

4.2 Equilibrium

We look for a Markov equilibrium in one state variable: the time s elapsed since the most

recent governance decision. We begin by solving for users’ transaction demand. The price

of transaction assets is constant, so (2) implies that users’ transaction demand is downward-

sloping in the level of fees:

Xs =
(
fs + r

)− 1
γ . (10)

Equations (4) and (5) imply that investors’ expected lifetime utility is equal to the present

value of profits E0[
∞∫
0

e−rtdΠt]. In a governance decision, investors unanimously vote in favor

of the policy {fs}s≥0 that maximizes the present value of profits. Investors’ governance

problem can then be written as

V̂ I
0 = max

fs,Xs

E0

[ τ∫
0

e−rs(fs − c)Xsds+ e−rτ V̂ I
0

]
s.t. (10), fs ≥ 0. (11)

where τ denotes the (random) time interval from s = 0 until the next governance decision

and V̂ I
s denotes investors’ value function at time s since the most recent governance decision.

A Markov equilibrium consists of a value function V̂ I
s for investors and outcomes {f̂s, X̂s}

that solve (11).

4.3 Welfare and efficiency under the traditional scheme

Under the traditional governance scheme, the platform is just a monopolistic firm that

maximizes the present value of its profits. Investors do not internalize how changes in the

15What matters is not that the price of transaction assets is constant, but rather that (1) their price is
exogenous to the platform’s policies, and (2) their rate of return is below the discount rate r (that is, there is
a liquidity premium on transaction assets, as with cash, Treasury bills, or deposits).

16There are no financial frictions, so the Modigliani-Miller theorem applies in the setting of a traditional
platform. The platform’s share issuance policy is irrelevant.
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platform’s policies affect user surplus. As a result, equilibrium policies are inefficient: they

maximize investor surplus at the expense of total surplus.

Proposition 3. Under the traditional scheme, the equilibrium sequence of policies {ft} max-

imizes expected investor surplus (but not total surplus) over all feasible sequences of policies.

That is, regardless of the degree of commitment λ, equilibrium policies solve

max
ft,Xt

∞∫
0

e−rt(ft − c)Xtdt s.t. Xt =
(
ft + r

)− 1
γ . (12)

Under the equilibrium policy, fees are

ft =
1

1− γ
c+

γ

1− γ
r (13)

and transaction quantities are inefficiently low:

Xt = Xtrad ≡
(
c+ r

1− γ

)− 1
γ

< XFB. (14)

Note, moreover, that a traditional platform’s equilibrium policy is time-consistent, so limited

commitment to future policies (parameterized by the frequency λ of governance decisions)

is irrelevant. Intuitively, this is the case because time-t transaction demand depends only

on time-t policies. When we study a token-issuing platform, this will no longer be true:

future token issuance policies will affect the current return on tokens and therefore current

transaction demand.

Equilibrium transaction quantities Xt are inefficiently low because users’ marginal cost of

transacting, fees ft plus the opportunity cost r of holding transaction assets, is greater than

the social marginal cost c of processing transactions. By (13),

ft + r =
c+ r

1− γ
> c.

This equation for the effective transaction cost faced by users reveals two distortions, each

corresponding to a distinct source of user surplus that investors neglect. First, the discount

rate r appears in the numerator on the right-hand side. This distortion arises because in-

vestors do not take into account the aggregate service flows

SFt ≡ X1−γ
t − ftXt = rXt, (15)

that users earn on their transaction asset holdings, defined as users’ marginal utility per
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transaction times the aggregate quantity of transactions.17

Second, an additional factor 1 − γ appears in the denominator on the right-hand side.

This is because investors do not internalize the inframarginal rents

IRt ≡
(X1−γ

t

1− γ
− ftXt

)
− SFt =

γ

1− γ
X1−γ

t (16)

that users receive from infra-marginal transactions: since users’ utility is concave in transac-

tions, user surplus is greater than their marginal valuation of transaction assets’ services.18

When we analyze a platform that issues tokens for transactions, we will demonstrate that,

by contrast, investors take users’ service flows into account. Hence, the first distortion will

vanish, while the second will remain. Figure 2 illustrates how these distortions cause investors

to set fees too high and destroy surplus.

There are three necessary ingredients for the inefficiency in this model. First, the platform

has market power, so shareholder value maximization is not equivalent to maximization of

social surplus. Put differently, the platform’s market power creates a conflict of interest be-

tween the two constituencies. Second, the platform’s owners can extract rents from users only

by charging distortionary fees that cause deadweight losses: it is not possible for the platform

to use a more complex pricing scheme (like a two-part tariff) that fully extracts user surplus.

However, the Coase Theorem implies that absent restrictions on contracting, investors and

users would nevertheless contract around these inefficiencies and arrive at an efficient out-

come. The third necessary ingredient for inefficiency, therefore, is limited contracting : users

cannot sign a contract in which they commit to compensate investors for choosing a more

socially beneficial policy. These limits to contracting could be micro-founded, for instance,

by assuming that users are unable to commit to a sequence of payments in response to the

policies chosen by investors.

How can agents overcome the problem of limited contracting? In the next section, we out-

line conditions under which token issuance can partially substitute for the missing contracts

between users and investors.

5 Service tokens

In this section we consider a platform that issues tokens that provide transaction services

only. The platform continues to be governed by shareholders (investors) who hold all cash flow

17That is, SFt is defined as Xt × ∂
∂Xt

(
X

1−γ
t
1−γ

− ftXt). Service flows are equal to rXt in equilibrium by (10).
18Note that the discounted inframarginal rents that enter users’ lifetime utility in (6) are just Rt =

Et[
∞∫
0

e−rsIRt+sds].
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X

MU = X−γ

c

f − c

r

Profits

Service flows

Rents

DWL

Xtrad XFB

Figure 2: An illustration of the sources of neglected surplus in the case of a traditional
platform. Aggregate transaction quantities X are on the horizontal axis. The downwards-
sloping curve represents users’ marginal utility of transacting (as a function of X). The
horizontal line corresponds to the marginal cost c of processing a transaction. The profit-
maximizing transaction quantity is Xtrad, which is below the first-best XFB.

X

MU = X−γ

c

f − c

r

Profits

Service flows

Rents

DWL

Xtoken XFB

Figure 3: Illustration of the sources of surplus in the case of a platform that issues service
tokens. Unlike in the case of a traditional platform (Figure 2), investors internalize users’
service flows. Profits are maximized by setting lower fees than in the traditional case, raising
transaction quantities to Xtoken (which remains below the first-best XFB).
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claims and voting rights. In contrast to the traditional setting, investors’ ability to commit

to future policies is key. We show that service tokens can substitute for missing contracts

between users and investors (and therefore increase welfare) only if investors’ commitment

power is strong enough. When commitment power is weak, they are tempted to inflate

away the value of tokens, depressing transaction quantities and resulting in a less efficient

equilibrium.

5.1 Setup

Consider an environment in which the two assets are shares held by investors, which

serve as the cash flow asset, and tokens that the platform issues to users, which serve as the

transaction asset. Since the transaction asset is issued by the platform rather than supplied

elastically, in this case its price QT
t evolves endogenously. We maintain the assumptions that

(1) all voting rights are allocated to shareholders, and (2) the platform neither issues nor

buys back shares, so the supply of shares is normalized to AC
t = 1. The platform in this

setting can be thought of as the issuer of a “utility token” or as a tech platform that issues

its own currency.19

Unlike a traditional platform, a token-issuing platform can earn seigniorage revenues by

minting new tokens. We denote the growth rate of the token stock by

dµt =
dAT

t

AT
t

≥ 0.

To ensure that an optimal policy exists, we assume that the rate of token issuance is bounded

above by some large positive constant,
AT

t −AT
t−

AT
t−

≤ ∆, which implies dµt ≤ ∆
1+∆ .20 The token

issuance rate dµt is a policy determined in governance decisions. seigniorage revenues are

equal to the current token price times the quantity of tokens issued at time t, dSt = QT
t dA

T
t =

Xtdµt. The platform’s profits at time t are then

dΠt = (ft − c)Xtdt+Xtdµt.

5.2 Equilibrium

We again consider a Markov equilibrium in which all outcomes depend only on the time

s since the most recent governance decision. We look for an equilibrium in which variables

19In our benchmark model, tokens have no intrinsic value (agents enjoy transaction services only if the price
of tokens is positive). Appendix G.3 outlines an extension in which tokens have intrinsic value: they can be
redeemed for a service at a fixed exchange rate, as is common for utility tokens.

20All of our substantive results continue to hold in the limit of unrestricted token issuance, ∆ → ∞.
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may jump at the time of a governance decision (s = 0) but evolve smoothly thereafter.

In particular, the platform may issue a discrete quantity of tokens when a new policy is

implemented, dµ0 > 0, but afterwards, the supply of tokens evolves smoothly, dµs = µ̇sds for

s > 0.

When the platform issues service tokens, users’ transaction demand is no longer statically

pinned down by fees as in (10). Transaction demand also depends on expected changes in

token prices: all else equal, higher expected returns on tokens will increase demand. The

following lemma characterizes the returns on tokens in this setting.

Lemma 1. When the platform issues service tokens, the expected return on tokens satisfies

1

ds
Es

[
dQT

QT

]
=
Ẋs

Xs
− µ̇s + λ

(
(1− d̂µ0)

X̂0

Xs
− 1

)
.

The first two terms represent returns in the absence of a new policy, while the third

term represents returns conditional on a new policy (Recall that d̂µ0 denotes anticipated

token issuance at the time of the next governance decision, and X̂0 is anticipated transaction

demand at that time.) Simply put, this lemma implies that the expected return on tokens is

equal to the expected growth rate of transaction quantities minus the expected growth rate

of the token stock. If the token stock grows without a commensurate increase in transaction

demand, there will be inflation (a decrease in the price of tokens and a low return).

Lemma 1 allows us to characterize transaction demand in this setting – (2) implies

(r + λ)Xs = X1−γ
s − (fs + µ̇s)Xs + Ẋs︸ ︷︷ ︸

current policy

+ λ
(
1− d̂µ0

)
X̂0︸ ︷︷ ︸

exp. future policy

. (17)

Users’ transaction demand is equal to the present value of service flows net of the costs

of dilution from additional token issuance – new seigniorage reduces the price of tokens,

representing an implicit transfer from token holders to investors. This transaction demand

condition illustrates why lack of commitment matters. Transaction demand depends not only

on current policy, but also on anticipated policy after the next governance decision, which

arrives at rate λ. If users expect that investors will be tempted to issue a large quantity of

tokens in the next governance decision (d̂µ0 > 0), then they expect a reduction in the value

of their tokens, lowering transaction demand.

As before, (4) and (5) imply that investors choose fees fs and a token issuance policy
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(dµ0, {µ̇s}s>0) to maximize the present value of profits:

V̂ I
0 = max

fs,dµ0,µ̇s,Xs

E0

[
X0dµ0 +

τ∫
0

e−rs(fs + µ̇s − c)Xsds+ e−rτ V̂ I
0

]

s.t. (17), fs, µ̇s ≥ 0, dµ0 ∈ [0,
∆

1 +∆
], (18)

where τ denotes the time of the next governance decision. We search for a Markov equilibrium

consisting of a value function V̂ I
s for investors and outcomes {f̂s, d̂µ0, ˆ̇µs, X̂s} that solve (18).

We begin our analysis of equilibrium with some simplifying observations. Note that at

the time when the governance decision takes place (s = 0), investors can issue tokens without

affecting transaction demand for s ≥ 0. Transactions instead depend on future token issuance

(µ̇s for s > 0 and d̂µ0 in the next governance decision), since that is what determines expected

returns on tokens by Lemma 1. Therefore, at the time of a governance decision, investors

issue a large quantity of new tokens and inflate away the value of existing tokens.

Lemma 2. When the platform issues service tokens, investors issue the maximum allowable

quantity of tokens at the time of a governance decision (dµ0 =
∆

1+∆).

In our benchmark model, this is the source of time-inconsistency – ex ante, investors would

like to commit not to inflate away the value of tokens, but ex post (at the time of a governance

decision), it is optimal to do so.

Lemma (2) can be used to write the platform’s expected profits in a simple form. The

platform’s expected profits are equal to users’ discounted service flows SFs (given in (15)),

plus discounted future profits from transaction processing, (fs − c)Xs, plus a term that

depends on anticipated future policies.

Proposition 4. When the platform issues service tokens, the expected value of platform

profits on [0, τ) is

E0

[ τ∫
0

e−rsdΠs

]
= E0

[ τ∫
0

e−rs

(
X1−γ

s − fsXs︸ ︷︷ ︸
service flow SFs

+(fs − c)Xs︸ ︷︷ ︸
profits

)
ds+ e−rτ 1

1 + ∆
X̂0︸ ︷︷ ︸

future policy

]
. (19)

The intuition behind this result is straightforward. The platform makes profits in two ways:

by charging transaction fees and by issuing new tokens. Users value tokens according to

the present value of their service flows. Hence, when the platform issues new tokens at

s = 0, it receives revenues equal to the present value of service flows. Thereafter, it earns the

transaction processing fees that make up the remainder of its profits.
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Unlike in the case of a traditional platform, then, investors take users’ service flows into

account when choosing policies. By passing policies that raise users’ anticipated service

flows, they increase token prices and therefore seigniorage revenues. Hence, investors’ policy

preferences will be more aligned with users’ when the platform can issue tokens. Nevertheless,

welfare will still fall short of the first-best: despite the fact that investors take users’ service

flows into account, they still fail to internalize how their policies affect users’ inframarginal

rents.

Investors’ ability to commit will be key in determining equilibrium outcomes. Commit-

ment power is parameterized by the rate λ at which governance decisions take place– the more

often investors get to rewrite the platform’s policies, the weaker their commitment power.

We will distinguish between two regimes in what follows: the strong commitment regime (λ

small enough) and the weak commitment regime (λ large enough). Equilibrium outcomes will

differ sharply across these two regimes. We analyze each in turn.

5.3 The strong commitment regime

We begin by analyzing the strong commitment regime. We show that when investors’

commitment power is strong enough, their governance problem is time-consistent – that is,

they choose the same policies that they would have chosen if they could commit to a full

sequence of policies at t = 0. In this regime, equilibrium policies maximize the present value

of service flows plus platform profits.

Proposition 5. There exists λ∗ such that if λ ≤ λ∗, investors’ governance problem (18) is

time-consistent. Equilibrium policies solve

max
ft,µ̇t,Xt

∞∫
0

e−rt

(
X1−γ

t − cXt

)
dt s.t. ft, µ̇t ≥ 0,

rXt = X1−γ
t − (ft + µ̇t)Xt + Ẋt. (20)

Under the equilibrium policy, transaction quantities satisfy

Xt = Xtoken =

(
c

1− γ

)− 1
γ

. (21)

The quantity of transactions Xt and welfare are both higher than in the case of a traditional

platform (but below their first-best levels).

In the Appendix, we take a Lagrangian approach to solve for equilibrium policies and

transaction quantities, but we summarize the main results here. Transfers from users to
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investors (fees plus seigniorage revenues) are set statically to maximize service flows plus

transaction processing profits,

X1−γ
t − cXt = X1−γ

t − ftXt︸ ︷︷ ︸
service flows SFt

+(ft − c)Xt︸ ︷︷ ︸
profits

.

The equilibrium level of transactions is given in (21). Equilibrium transaction quantities are

greater than in the case of a traditional platform (see (14)) but nevertheless remain below

the first-best level (8).

When commitment to future policies is strong enough, then, token issuance enhances

efficiency. The key idea is that since investors care about maintaining a high token price to

maximize their seigniorage revenues at s = 0, they are reluctant to set fees too high. High

fees imply low service flows for users, reducing the token price and the platform’s seigniorage

revenues. Hence, investors commit to lower fees than in the traditional setting. However,

investors still fail to internalize how the platform’s policies affect inframarginal rents, so

transaction quantities remain distorted downwards (hence the additional factor of 1 − γ in

the denominator of (21) relative to the first-best level (8)). Figure 3 illustrates this point.

Why is the degree of commitment (i.e., the precise value of λ) irrelevant in this setting?

The answer lies in how investors choose to raise revenues from users. Conceptually, there are

two ways the platform can raise revenues: by charging transaction fees or by issuing additional

tokens. Recall that when a governance decision takes place, investors decide to issue a large

quantity of tokens that inflates away a fraction ∆
1+∆ of the value of existing tokens. These

events occur at rate λ. Then, between governance decisions, users pay investors transaction

fees ftXtdt as well as seigniorage revenues µ̇tXtdt. The transaction demand condition (17)

then implies that if ft + µ̇t is constant, transaction demand satisfies

Xt =

(
r + ft + µ̇t + λ

∆

1 +∆

)− 1
γ

=

(
c

1− γ

)− 1
γ

,

where the second equality follows from (21). When λ is higher (i.e., commitment power is

weaker) then investors know that in the future, they will be more tempted to raise revenues

by issuing tokens. Then, they choose to charge lower fees and issue fewer tokens in the

present to boost transaction demand and keep total transfers from users (f + µ̇ + λ ∆
1+∆)Xt

constant. The platform’s fee policy and its seigniorage policy are therefore substitutes: what

matters for the platform’s profits and transaction demand is the sum ft + µ̇t + λ ∆
1+∆ , not

how revenues are split between fees, current seigniorage, and anticipated future seigniorage.

Proposition 6. Under the optimal policy with commitment, the level of fees ft and the growth
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rate of the token stock µ̇t are indeterminate. Their sum, ft + µ̇t, is uniquely determined in

equilibrium:

ft + µ̇t =
c

1− γ
− (r + λ

∆

1 +∆
). (22)

5.4 The weak commitment regime

We now turn to the case in which investors’ commitment power is weak. In this regime,

investors’ temptation to inflate away the value of tokens is strong enough that it impairs

transaction demand. In the limit of no commitment, expected inflation is so high that

transaction quantities go to zero. The following proposition summarizes these results.

Proposition 7. When λ > λ∗ (defined in Proposition 5), investors’ policy problem is no

longer time-consistent. Equilibrium transaction quantities are

Xt =
(
r + λ

∆

1 +∆

)− 1
γ < Xtoken. (23)

In the no-commitment limit (λ→ ∞), transaction quantities Xt → 0.

When investors lack commitment power, their temptation to issue tokens creates infla-

tion and undermines transaction demand. Specifically, Lemma 2 implies that in governance

decisions (which occur at rate λ), investors choose to issue a large quantity of new tokens

and inflate away the value of existing tokens. Recall that effective fees paid by users to in-

vestors are fees ft plus current seigniorage µ̇t plus λ
∆

1+∆ , which determines anticipated future

seigniorage. Previously, we argued that the optimal transfer from users to investors satisfies

(22). When anticipated future seigniorage is greater (higher λ), investors either cut fees ft

or current seigniorage µ̇t. Suppose that λ > λ∗ ≡ 1+∆
∆

(
c

1−γ − r
)
. Then, even if investors

cut fees and seigniorage to zero, users still face such a high cost λ ∆
1+∆ from expected future

inflation that the total transfer to investors is greater than its optimal level,

λ
∆

1 +∆
>

c

1− γ
− r.

Then, users’ transaction demand falls below investors’ desired level Xtoken (given in (21)).

These results demonstrate that when the commitment problem is severe enough, transac-

tion quantities and welfare may even fall below the levels attained by a traditional platform.

Put differently, the introduction of service tokens is socially beneficial only if a platform has

sufficient mechanisms to commit to future policies – otherwise, the introduction of tokens

reduces welfare.
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Proposition 7 is reminiscent of results in financing problems without commitment (Ad-

mati et al., 2018; DeMarzo and He, 2021). Typically, an issuer that cannot commit to future

issuance effectively competes with its future self: it does not internalize the price impact

of current issuance decisions and therefore over-issues relative to the commitment outcome.

Goldstein, Gupta, and Sverchkov (2022) demonstrate that if a monopolistic platform can

commit to a token’s redemption value but not an issuance policy, then token issuance miti-

gates the platform’s tendency to under-supply its services.

Our result is similar in spirit to those in the previous literature, but it is distinct. While

it is true that the platform’s investors are tempted to extract rents from users by over-issuing

new tokens, outcomes with weak commitment would exhibit similar inefficiencies even if new

seigniorage were prohibited after t = 0. Investors have another tool – fees – that they can

use to extract rents in the absence of new token issuance. Instead of issuing new tokens at

the time of a governance decision, investors would choose to charge very high transaction fees

immediately following the implementation of a new policy. Anticipating this rent extraction,

users would not place a high value on tokens and would be reluctant to transact on the

platform.

A severe enough lack of commitment power is detrimental to the platform’s profits, so

investors may therefore seek mechanisms that permit them to commit. Of course, in reality, a

platform’s founders and investors can use smart contracts to commit to future token issuance,

or they could use token retention schemes to incentivize them to pass policies that benefit

users. To the extent that such mechanisms are imperfect, though, the next section argues

that bundling transaction services with cash flow claims can provide an effective substitute

for missing commitment mechanisms.

6 Hybrid tokens

We now consider a platform that issues a single hybrid token that bundles transaction

services with cash flow claims. Users hold the token for transaction services, whereas investors

“stake” the token for cash flows. In this setting, we assume tokens must be staked in order

to participate in governance – as a result, only investors vote in governance decisions. This

assumption is close to the reality for several DeFi platforms: for example, many proof-of-stake

cryptocurrency blockchains (like Algorand) allow only validators who stake their tokens to

vote on policy changes. Our main result is that by issuing a hybrid token, a platform governed

by investors can achieve the full-commitment outcome of Section 5.3 even if investors lack

commitment power.
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6.1 Setup

In this economy, there is a single asset called a token. Tokens serve as both the economy’s

transaction asset and as its cash flow asset: users can hold tokens for their transaction

services, whereas investors can hold tokens to receive dividends. Given that there is only one

asset, we let Qt denote the price of tokens (dispensing with our previous notation QC
t , Q

T
t ).

Furthermore, we denote the total supply of tokens at t by At = AC
t + AT

t , where A
C
t (resp.

AT
t ) denotes the quantity of tokens held by investors (users) at t. Henceforth, let Mt = QtAt

denote the total market capitalization of tokens, and let ζt =
AC

t

AC
t +AT

t
denote the fraction of

tokens that are held by investors (“staked”).

As before, user i’s transaction services are equal to her real balance of token holdings,

xit = Qta
T
it, where a

T
it is the quantity of tokens held by i. Aggregate transaction demand is

equal to the real value of tokens held by users, so

Xt = QtA
T
t = (1− ζt)Mt.

The platform can earn revenues both by charging fees and by issuing tokens. Again, dµt

will denote the rate of seigniorage,

dµt =
dAt

At
∈ [0,

∆

1 +∆
],

so the platform’s seigniorage revenues are dSt =Mtdµt, and total profits are

dΠt = (ft − c)Xtdt+Mtdµt.

Dividends are distributed pro rata to the holders of staked tokens, so each staked token

pays a dividend dDt =
dΠt
ζtAt

. When a greater fraction ζt of tokens are staked, the per-token

dividend is lower, all else equal. When investors stake tokens, they compete over a fixed pool

of dividends, as is common in practice.21 The fraction of staked tokens is a key equilibrium

variable: it adjusts until users and investors place an equal valuation on tokens.

For now, we assume that staking is required to vote, so only investors participate in

governance decisions. In Section 7, though, we extend the model to the case in which users

may vote on policies as well.

21For example, in proof-of-stake blockchains, the rate at which new blocks are produced (and therefore the
rate at which block rewards are issued) typically does not scale linearly with the quantity of staked tokens.
When an additional token is staked, then the chance that any other staked token is selected to propose a new
block is reduced. Several papers in the literature, such as John, Rivera, and Saleh (2022) and Jermann (2023),
make a similar assumption.
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6.2 Equilibrium

We look for a Markov equilibrium in the time s since the most recent policy change in

which variables can jump at the time of a governance decision and evolve smoothly thereafter,

as in previous sections. The expected return on tokens is equal to the expected growth rate

in the market capitalization of tokens net of the issuance rate, analogously to the return on

tokens in Lemma 1 in the previous section.

Lemma 3. When the platform issues hybrid tokens, their expected return satisfies

1

ds
Es

[dQ
Q

]
=
Ṁs

Ms
− µ̇s + λ

(
M̂0

Ms
(1− d̂µ0)− 1

)
for s > 0, (24)

Recall that in (24), d̂µ0 denotes the anticipated jump in the token stock at the time of the

next governance decision, whereas M̂0 is the anticipated market capitalization of tokens at

that time.

When the platform issues a hybrid token, then both constituencies must be willing to

hold tokens at the same price. That is, both users and investors are marginal in the market

for tokens. This is the key difference between a hybrid token platform and a platform that

issues tokens that offer only transaction services. When investors pass policies, they have an

additional incentive to consider how those policies affect users: a policy that is detrimental to

users will decrease users’ token valuation, reducing the price of the tokens held by investors.

We therefore begin by studying how each constituency values tokens.

Users price tokens according to their service value (i.e., the present value of tokens’ service

flows). The transaction demand condition (2) can be combined with (24) for s > 0 to obtain

(r + λ)Ms =
X1−γ

s − fsXs

1− ζs
+ Ṁs − µ̇sMs + λ(1− d̂µ0)M̂0 (25)

The way to understand this equation is that users earn aggregate service flows X1−γ
s − fsXs

while holding a stock of tokens worth (1− ζs)Ms (hence the first term). The remaining terms

represent the expected return on tokens.

By contrast, investors value tokens for their dividends when staked. Their optimality

condition (4) requires that the token price be equal to tokens’ cash flow value (i.e., the

present value of dividends), which can be written for s > 0 as

(r + λ)Ms =
(fs − c)Xs + µ̇sMs

ζs
+ Ṁs − µ̇sMs + λ(1− d̂µ0)M̂0. (26)

The pricing conditions (25)-(26) then imply a relationship between tokens’ service flows
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and their dividend yields that must hold so that tokens’ service value is equal to their cash

flow value:
(fs − c)Xs + µ̇sMs

ζs︸ ︷︷ ︸
dividend yield

=
X1−γ

s − fsXs

1− ζs︸ ︷︷ ︸
service flow

. (27)

How are users’ and investors’ token valuations kept in line with one another? The fraction

of staked tokens ζs adjusts in equilibrium. Off-equilibrium, if the dividend yield were higher

than the service flow, then tokens would be more attractive for their cash flows than for

their transaction services. Investors would therefore purchase and stake additional tokens,

increasing ζs and driving down the per-token dividend dDs =
dΠs
ζsAs

.

Under the hybrid token scheme, then, token prices reflect both their usefulness in trans-

actions and staking dividends. In fact, the market capitalization of tokens is equal to the

present value of transaction processing profits plus service flows.

Lemma 4. Under the hybrid token system, for s > 0 the market capitalization of tokens

satisfies

Ms = Es

[ τ∫
s

e−r(u−s)

(
X1−γ

u − cXu

)
du+ e−r(τ−s)M̂0(1− d̂µ0)

]
. (28)

where τ is the time of the next governance decision.

This equation conveys a key intuition: when investors pass a policy, they succeed in

increasing the cash flows from their staked tokens only if that policy increases current service

flows plus profits. This result may seem counter-intuitive: why is it that they cannot always

increase cash flows by raising fees, as in the case of a platform that issues a service token?

Indeed, raising fees may increase the platform’s profits while decreasing the per-token dividend

yield. If a policy increases the platform’s profits at the expense of a larger decrease in tokens’

service flows, then users will sell tokens to investors, causing investors to stake more tokens

(increasing ζs) and decreasing the dividend yield below its initial level.

Of course, despite the fact that fees and the seigniorage rate do not appear in the valuation

equation (28), they are not irrelevant in equilibrium. Fees and the seigniorage rate matter

because they determine transaction demand through (25). All else equal, higher fees or

seigniorage increase users’ costs of transacting on the platform. Nevertheless, the pricing

equation (28) does imply an important monetary neutrality result.

Lemma 5 (Monetary neutrality). For a given path {Xs}, the token market capitalization

{Ms} is independent of {µ̇s} for s > 0, and

M0(1− dµ0) =M0+ , (29)
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where M0+ denotes the market capitalization of tokens immediately after the governance

decision at s = 0.

Holding transaction quantities fixed, the path of seigniorage is irrelevant for the total market

capitalization of tokens. If investors immediately choose to issue a large quantity of tokens

dµ0 when they make a governance decision, (29) implies that this issuance is immediately

offset by a drop in the token price, so that the market capitalization of tokens before the

issuance, M0(1 − dµ0), is equal to the market capitalization after, M0+ . That is, when the

platform issues a hybrid token, seigniorage imposes a capital loss on investors. This is the

main difference from the setting with service tokens: in that setting, the value of investors’

assets (shares) would not drop upon the issuance of new tokens.

In governance decisions, only investors are permitted to vote on the level of fees fs and the

seigniorage rate dµs. Per (5), investors choose policies to maximize the value of their tokens.

The value of tokens outstanding at the time of the governance decision is M0(1 − dµ0),

with investors holding some fraction of those. Therefore, investors’ governance problem is

equivalent to maximizing the market capitalizationM0(1−dµ0) of tokens outstanding, which
by Lemmas 4-5 satisfies

M̂0(1− d̂µ0) = max
fs,dµ0,µ̇s,
Xs,Ms,ζs

E0

[ τ∫
0

e−rs
(
X1−γ

s − cXs)ds+ e−rτM̂0(1− d̂µ0)

]

s.t. (25), (28), 1− ζs =
Xs

Ms
, fs, µ̇s ≥ 0, dµ0 ∈ [0,

∆

1 +∆
]. (30)

6.3 Attaining the full-commitment outcome

We now prove our main result: equilibrium allocations are identical to those attained

under the full-commitment outcome in Section 5.3. The logic underlying this result has two

steps. First, as is plain from (30), the value of investors’ staked tokens is proportional to future

aggregate service flows plus platform profits. Second, investors’ problem is time-consistent :

the degree of commitment is irrelevant to equilibrium policies.

Proposition 8. When the platform issues a hybrid token, investors’ governance problem (30)

is time-consistent: optimal policies and equilibrium allocations are invariant to the frequency

λ of governance decisions.

Time-consistency implies that no matter how strong investors’ commitment power, they will

choose policies to maximize the present value of service flows plus profits.

How, exactly, does a hybrid token overcome the time-inconsistency problem? After all,

even in the case where the platform issues a token for transactions only, investors’ profits
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depend on users’ anticipated service flows. This logic is deceptive, though. When the platform

issues a service token, share prices reflect the present value of profits and token prices reflect

anticipated future service flows net of inflation. Investors can capture future service flows by

issuing new tokens, diluting the value of existing tokens held by users. This is precisely the

source of time-inconsistency: investors are tempted to issue a large quantity of new tokens

after each governance decision. However, this token issuance is socially detrimental: it causes

inflation, raising the cost of transacting on the platform and reducing transaction demand.

Investors inefficiently choose to issue tokens and boost share prices at the cost of lowering

the value of users’ tokens.

When the platform issues a hybrid token, on the other hand, there is a single asset (tokens)

held by both constituencies whose value reflects the present value of future profits plus service

flows. Regardless of whether investors vote to issue new tokens, the value of their assets will

depend on users’ future service flows, so they have an incentive to keep service flows high.

Indeed, the monetary neutrality result demonstrates that investors cannot benefit from issuing

new tokens: any seigniorage revenues are offset by a decrease in the value of their tokens. The

fact that investors’ tokens lose value when they vote to issue new tokens (dµ0 > 0) eliminates

the time-inconsistency problem. Formally, one can see this fact from (30): seigniorage at

s = 0 does not enter investors’ objective function (unlike investors’ problem (18) in the case

of a platform that issues service tokens). Intuitively, under the hybrid token system, users

are protected from devaluation because they hold the same asset as the investors who govern

the platform. With service tokens, by contrast, seigniorage reduces the price of users’ tokens

rather than investors’ shares.

Since investors pass policies to maximize the present value of service flows plus profits,

the equilibrium allocation is precisely the same as the full-commitment outcome of Section

5.3.

Proposition 9. When governed by investors, a platform with a hybrid token achieves the

full-commitment outcome of Section 5.3. Equilibrium policies solve

max
ft,µ̇t,Xt,
Mt,ζt

∞∫
0

e−rt

(
X1−γ

t − cXt

)
dt s.t. ft, µ̇t ≥ 0, (31)

rXt = X1−γ
t − (ft + µ̇t)Xt + (1− ζt)Ṁt,

rMt = X1−γ
t − cXt + Ṁt, 1− ζt =

Xt

Mt
.

Equilibrium transaction quantities are Xt = Xtoken, defined in (21).

The equilibrium is unambiguously more efficient than the equilibrium with a traditional
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platform but less efficient than the first-best.

We should note that in this benchmark model a hybrid token can enhance efficiency by

alleviating time-inconsistency in seigniorage policies. However, the benefits of hybrid tokens

are actually more general. Section 8 will study an extension with investment in which a

hybrid token can resolve time-inconsistency in investment policies as well as seigniorage.

7 Giving users the right to vote

Up until this point, we have assumed that the platform is governed by investors. Our

main results demonstrated how various token designs can align investors’ policy preferences

with users’ (or not). An important feature of the DeFi landscape, however, is the prevalence

of platforms that give users the power to vote on policies directly. In this section, we discuss

the consequences of giving token-holding users the right to vote in our model.

The model’s basic ingredients are unchanged. Governance decisions arrive at a Poisson

rate λ. Now, at the time τ of a governance decision, a new policy is chosen by whichever

constituency (users or investors) has a voting majority at that time. If investors control the

platform, as before, they choose policies that maximize the value of their assets. However,

if users control the platform, then they choose a sequence of policies that maximizes the

combined value of their tokens plus their expected future infra-marginal rents Rτ ,

QT
τ A

T
τ− +Rτ where Rτ = Eτ

[ ∞∫
0

e−rs γ

1− γ
X1−γ

τ+s ds

]
,

as shown by Proposition 1. We analyze both types of platforms that issue tokens in our

model:

� Service token platform: Users are allocated voting power in proportion to their

token holdings. Without loss of generality, we assume that users hold a majority of

voting power22 and choose a fee policy and a seigniorage policy {fs, dµ0, µ̇s} at the

time of each governance decision.

� Hybrid token platform: All agents, both users and investors, are allocated voting

power proportional to their token holdings. In reality, this setup is akin to a DeFi

22Consider a platform that issues service tokens and allocates some voting power to users in proportion
to their token holdings, with the remaining votes being allocated to shareholders. Each constituency always
votes unanimously, so all that matters is whether token holders are allocated a minority or a majority of
votes in the aggregate. When token holders have a minority of voting power, we are back in the case of an
investor-controlled platform analyzed in Section 5.
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platform that does not limit voting power to those who stake their tokens. At the time

of a governance decision, users get to choose fee and seigniorage policies {fs, dµ0, µ̇s} if

they hold a majority of the token stock, whereas investors choose the policy otherwise,

as in Section 6. (Control may pass from one constituency to the other over time as

their token holdings change.)

In both cases, we look for a Markov equilibrium as before. The analysis leads to optimization

problems quite similar to (18) or (30), so we present the main results here but defer the

formal analysis to Appendix E.

The main difference is that users seek to pass policies that maximize the value of their

transaction assets plus future infra-marginal rents, which is different from investors’ objective

of maximizing the value of cash flow assets. At the time τ of a governance decision, the value

of users’ tokens satisfies

QT
τ A

T
τ− =


Eτ

[ ∞∫
0

e−rs
(
X1−γ

τ+s − (fτ+s + µ̇t+s)Xτ+s

)
ds

]
Service token

Eτ

[ ∞∫
0

e−rs
(
X1−γ

τ+s − cXτ+s

)
ds

]
Hybrid token

The value of a service token is equal to the present value of service flows net of future token

dilution, whereas the value of a hybrid token is equal to the present value of service flows

plus profits.

Our main result is that giving users the right to vote redistributes economic rents away

from investors, but it does not necessarily enhance efficiency.

Proposition 10. Giving users the right to vote can increase user surplus, but it does not

necessarily increase total surplus. Moreover, when users control the platform, transaction

quantities may be above the first-best level XFB. Specifically,

1. When the platform issues service tokens, users vote to set fees and seigniorage equal to

zero (ft = µ̇t = 0), and transaction quantities satisfy

Xt = Xuser ≡ r
− 1

γ ∀ t. (32)

2. When the platform issues a hybrid token, if users have a voting majority in the long

run (t→ ∞), then there exists ζ∗ ∈ (0, 12 ] such that

Xt → min

{(
1− ζ∗

(1− γ)(1− ζ∗) + γ
c

)− 1
γ

, Xuser

}
as t→ ∞

where 1− ζ∗ is the fraction of tokens held by users as t→ ∞.
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Figure 4: A comparison of total welfare (for a platform that issues service tokens) under
governance by each constituency. The figure is plotted with parameters c = 0.06, r = 0.035.
The blue curve plots total surplus as a function of transaction demand X. Transaction
demand under investor governance is Xtoken, whereas transactions under user governance are
Xuser. The red lines mark the level of surplus in each case.

Figure 4 shows that a service token-issuing platform may indeed achieve lower surplus when

governed by users rather than investors.

Proponents of DeFi sometimes claim that enfranchising users is key to mitigating ineffi-

ciencies. This argument contains a kernel of truth, but it is incomplete. When users are given

the right to vote, the platform is more likely to be run in accordance with their interests, so

there is less rent extraction. Users unambiguously benefit from the right to vote. However,

users have incentives to run the platform in their own favor, to investors’ detriment. In

particular, users do not bear the platform’s costs of operation – those are instead borne by

investors. Users are therefore willing to pass policies that increase their inframarginal rents

at the expense of the platform’s profits. This desire to increase their own rents is why users

pass policies that lead to inefficiently high transaction quantities. A redistribution of voting

power can increase welfare only to the extent that it brings the median voter’s preferences
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closer in line with maximizing total surplus (Hart and Moore, 1998). Just as there is no rea-

son to presume that consumer cooperatives are more efficient than stockholder corporations,

then, there is no reason to presume that a user-governed platform is more efficient than an

investor-governed platform.

Note, however, that the policies preferred by users depend on whether the platform issues

a service token or a hybrid token. In particular, users vote for policies that result in (weakly)

lower transaction quantities under the hybrid token scheme – that is, they vote for higher fees

and platform profits. Why would users vote to give some profits to investors? In this case,

the value of users’ tokens depends not only on their own service flows but also on the expected

dividends that will be paid out to investors, as explained in Section 6. Consequently, users

do not want to reduce the platform’s profits too much.

The key to the hybrid token scheme is that it introduces an asset whose value is determined

by the welfare of both constituencies. The fact that the value of investors’ token holdings

depends on users’ welfare moderates their desire to extract rents from users. Similarly, if

users govern the platform, their desired policies are moderated by the fact that they hold

tokens whose value depends on the platform’s profits. It is this alignment of preferences, not

a redistribution of voting rights, that mitigates inefficiencies in platform policies.

8 Adding investment to the model

In our benchmark model, we showed that by issuing tokens, a platform’s owners may

be able to commit to future favorable pricing and enhance welfare by promoting greater

transaction demand. It is natural to ask whether this conclusion is specific to pricing policies

or whether token issuance can promote efficient policies in general. To answer this question,

we extend the model to incorporate investment as well and show that indeed, token issuance

incentivizes a platform’s owners to implement better investment policies (from a welfare

perspective). This conclusion is relevant to DeFi, since platforms often issue tokens to finance

upgrades to platform functionality and transaction protocols.

In this extension, the platform can invest to upgrade its transaction technology whose

quality is summarized by a state variable Zt ∈ R+. A higher value of Zt corresponds to a

superior technology (e.g. lower transaction latency, a better transaction-matching algorithm,

or greater transaction functionality). We assume a constant-returns-to-scale investment tech-

nology: an investment of Itdt dollars at time t increases productivity by Φ( It
Zt
)Ztdt, where Φ

in an increasing, concave, and differentiable function.23 Then, denoting the investment rate

23This type of investment technology is typical in macroeconomic models in which new capital produced
is a constant-returns-to-scale function of investment and the quantity of existing capital (Hayashi, 1982). To
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by ιt ≡ It
Zt
, productivity evolves according to

dZt = Φ(ιt)Ztdt. (33)

The platform’s productivity determines users’ utility of transacting on the platform. We

assume that the payoff of a user i who consumes xit transaction services at time t is

Uitdt =
(Zγ

t x
1−γ
it

1− γ
− ftxit

)
dt.

Users’ transaction payoff is Cobb-Douglas in the platform’s productivity Zt and the quantity

of transactions xit, so that a higher productivity increases the marginal utility of transacting

on the platform.24Investment is financed out of the platform’s earnings,25 so the platform’s

profits are

dΠt =
(
(ft − c)Xt − ιtZt

)
dt+ dSt.

Now, in addition to fees and seigniorage policies, the platform’s governance determines

the investment policy {ιs}s≥0 as well. We consider the same three platform designs as in

the benchmark model: a traditional platform, a platform that issues service tokens, and a

platform that issues a hybrid token (assuming, for simplicity, that the platform is governed

by investors). Investors still vote for policies that maximize the value of their cash flow assets

as in (5). Again, we obtain optimization problems nearly identical to those in the benchmark

model, so we postpone most of the formal analysis to Appendix F. The main difference from

the benchmark model is that users’ marginal utility of transacting depends on the platform’s

productivity Zt: instead of (2), users’ transaction demand condition is

X−γ
t dt = Z−γ

t ×
(
ftdt+

(
rdt− Et

[dQT
t

QT
t

]))
. (34)

Just as in the benchmark model, token issuance can incentivize investors to choose invest-

ment policies that are more aligned with users’ interests. The intuition is exactly the same.

The value of a service token captures the present value of service flows. Hence, investors

internalize users’ service flows, which depend on the platform’s productivity (since higher

productivity increases the marginal utility of transactions). Therefore, if investors are able

ensure that optimization problems have unique solutions, we also impose the technical assumption that Φ′(ι)
r−Φ(ι)

is a decreasing function of ι (i.e., Φ(·) is sufficiently concave).
24The Cobb-Douglas form of the utility function is analytically convenient but is not economically essential.

What matter is that (1) users’ utility is concave in transactions xit, and (2) a higher productivity increases
the marginal utility of transactions.

25This assumption is without loss of generality, since there are no financial frictions in this model.
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to commit to future policies, the platform will invest more when it issues service tokens than

when it does not.

Proposition 11. In the model with investment, the following hold.

1. The first-best allocation has a constant investment rate ιt = ιFB, and transactions scale

linearly with Zt, Xt = X̃FBZt, where

1

Φ′(ιFB)
=

γ
1−γ c

1− 1
γ − ιFB

r − Φ(ιFB)
and X̃FB = c

− 1
γ .

2. A traditional platform invests less than the first-best, ιt = ιtrad < ιFB, and has lower

transaction quantities, Xt = X̃tradZt with X̃
trad < X̃FB

3. A platform that issues a service token with sufficient commitment power (λ small

enough) invests more than a traditional platform and has higher transaction quanti-

ties. That is, ιt = ιtoken, Xt = X̃tokenZt, with

ιtrad < ιtoken < ιFB and X̃trad < X̃token < X̃FB.

Despite the fact that there are no financial frictions in the model, the mix of assets

used to finance the platform is non-neutral. Specifically, the investment policies chosen by

a token-financed platform are different from those chosen by a platform that is financed by

shareholders only. This result stands in stark contrast to frictionless models of corporate

finance in which the Modigliani-Miller theorem holds: the types of securities issued by a firm

are irrelevant for investment. When token issuance is possible and investors have sufficient

commitment power, they undertake investments that benefit users but decrease platform

value ex post because doing so increases their initial seigniorage revenues.

Hence, the introduction of tokens may permit the financing of socially beneficial platform

upgrades that would not have otherwise been in investors’ interest. Conceptually, the reason

for the non-neutrality of token issuance is that tokens are effectively a claim on future user

surplus rather than cash flows: the precise manner in which investors tranche claims on cash

flows is irrelevant in this model, but the introduction of long-lived claims on user surplus

introduces new possibilities for profitable investments. The motive to issue tokens at a high

price permits investors to partially internalize how policies change future user surplus as well

as profits.

Hybrid tokens serve precisely the same role as in the benchmark model. When investors

govern the platform, the introduction of a hybrid token overcomes the time-consistency prob-

lem, eliminating the need for commitment. Here, there is time-inconsistency not only in
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seigniorage policies but also in investment. Investors face a “token overhang” problem: some

benefits of investment accrue to users because greater productivity increases the price of to-

kens issued in the past. A hybrid token permits investors to internalize a greater share of

these benefits, resolving the token overhang.

Proposition 12. In the model with investment, the following hold.

1. When commitment power is sufficiently weak (λ large enough), a platform that issues

service tokens invests at a constant rate that is lower than ιtoken in the commitment

outcome of Proposition 11. The investment rate is decreasing in λ.

2. An investor-governed platform that issues a hybrid token achieves the commitment out-

come (ιt = ιtoken, Xt = X̃tokenZt) in Proposition (11).

9 Discussion of assumptions

Here we comment on the model’s main assumptions. The model has three key features

that shape the results. First, there are distinct groups of agents who interact on the platform,

generating scope for conflicts of interest. Second, the agents who run the platform lack the

ability to commit to a sequence of policies. Third, we limit the types of contracts that can

be written between users and investors.

Conflicts of interest: In our model, there are two distinct groups of agents: users who

enjoy the platform’s services and investors who hold all cash flow claims on the platform.

This separation of users and investors may seem unnatural, since the users of a platform’s

service are typically not prevented from holding the platform’s equity.

We make two comments on this issue. First, while this stark assumption helps to illustrate

the logic of our model, it could be substantially relaxed without significantly altering the

main results. What really matters for our results is that there must be some heterogeneity

in preferences: there must be some agents who are more interested in the platform’s services

and others who are more natural investors (even if investors also enjoy the platform’s services

to some extent). For instance, investors could be interpreted as individuals who are more

patient or who have deeper pockets. In the context of DeFi, those who stake tokens and

earn cash flows often need some technical aptitude or computational resources – for example,

blockchain “validators” typically use powerful hardware to certify transactions. As long as

there is some heterogeneity in preferences, there will be conflicts of interest: natural users will

prefer low fees and greater investment in the platform’s technology, whereas natural investors

will prefer to maximize profits at users’ expense (see Hart and Moore, 1998; or Bakos and

Halaburda, 2023; who emphasize a similar theme).
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Second, even within the context of our model, our main results would mostly go through

if we were to permit users to hold cash flow claims on the platform as well. In this case, there

would be a continuum of equilibria. There would still be an equilibrium in which investors

hold all of the cash flow claims on the platform. However, for each k ∈ (0, 1], there would

also be an equilibrium in which users hold a fraction k of all cash flow claims, with investors

holding the remaining fraction 1− k. The inefficiencies that we highlight would continue to

arise in this setting: investors would vote for policies that maximize profits at users’ expense,

whereas users would try to maximize their rents at investors’ expense. The only efficient

equilibrium would be the case in which users hold all cash flow claims on the platform

(k = 1) – when investors sit out entirely, then conflicts of interest become irrelevant. By

focusing on the case in which investors hold all cash flow claims and voting rights, our model

addresses concerns about the possible “centralization” of DeFi platforms via a concentration

of token holdings among non-users.

Lack of commitment: While a lack of commitment is of course central to our main

results, we consider it natural to assume that investors cannot make a fully binding commit-

ment to a sequence of policies. In reality, it is quite common for digital platforms to change

their terms of service and fees. Even in the context of DeFi, despite the fact that some poli-

cies can be hard-coded at the time a platform is founded, it is possible for the rules of almost

any platform to be amended in some way. While some blockchains require a “hard fork” (i.e.,

a split in the blockchain) to re-write the initially set rules, other platforms allow for rules

to be updated in arbitrary ways by a simple vote among stakers. For example, the DeFi

platforms MakerDAO, Curve, and Uniswap operate in this way. The possibility of amending

the rules, moreover, is typically considered to be a desirable feature rather than a detriment

to the platform’s viability. However, our main results of course also encapsulate the case of

full commitment as λ → 0 (which could be achieved, e.g., if the platform is governed by a

smart contract whose rules can never be superseded).

Limited contracting: The last key assumption in our model is limited contracting

between users and investors. For one, we assume away the Coase-style solution in which

users and investors collectively agree on a contract that rewards investors for passing a socially

beneficial sequence of policies. We view this as a reasonable restriction for several reasons.

It may be costly for users to coordinate and collectively bargain with investors. Moreover, if

a contract that anticipates all possible future contingencies were feasible, then it would not

even be necessary to have platform governance in the first place – all decisions could simply

be encoded in the initial contract. We take the view of Grossman and Hart (1986): if the

platform’s ownership structure is to play an essential role, contracts must be incomplete to

some extent.
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10 Conclusion

We develop a general model of platform governance that is flexible enough to capture

both traditional platforms as well as platforms that issue tokens with some combination of

transaction services, cash flow claims, and voting rights.

A traditional platform extracts rents from its users by setting fees above its marginal

costs. This discourages users from transacting and distorts volumes downwards, below the

first-best level.

The issuance of service tokens can partially align shareholders’ policy preferences with

those of users, as long as shareholders are able to commit to future policies ex ante. If

the platform passes policies that benefit users, they will be willing to pay a greater price

to purchase tokens. Hence, if investors commit to pass such policies, they can reap large

seigniorage revenues. However, if investors lack the ability to commit, this mechanism no

longer aligns preferences: after selling tokens to users, investors will again be tempted to

extract rents from them by inflating away tokens’ value.

The platform can overcome the commitment problem by issuing a hybrid token that

bundles transaction services with cash flow claims. The key idea is that by issuing a single

asset whose value reflects both constituencies’ welfare, investors can be disincentivized from

extracting rents. If they pass policies that are detrimental to users, the token price will fall,

hurting investors as well.

Giving users the right to vote, on the other hand, redistributes economic rents to users

but does not necessarily enhance welfare. Just like investors, users are self-interested and

pass policies that increase their rents at investors’ expense.
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A Model

A.1 Agents’ optimization problems

Users: Users’ optimization problem is

Ui = max
xit,ait,cit

E0

[ ∞∫
0

e−rt

(
(
x1−γ
it

1− γ
− ftxit)dt+ dcit

)]
s.t. QT

t dait + dcit = 0, xit ≤ QT
t ait, ai0 given,

The only individual state variable for user i is her asset holdings ait.

Using integration by parts, it is possible to rearrange an agent’s lifetime utility from

consumption of dollars:

∞∫
0

e−rtdct = −
∞∫
0

e−rtQT
t dait

= −e−rtQT
t ait

∣∣∣∣∞
0

+

∞∫
0

e−rt
(
aitdQ

T
t − raitQ

T
t dt

)

= QT
0 ai0 +

∞∫
0

e−rtait
(
dQT

t − rQT
t dt

)
.

Using this equation, agent i’s optimization problem can be reformulated as

Ui = max
xit,ait

QT
0 ai0 +

∞∫
0

e−rt

(( x1−γ
it

1− γ
− ftxit

)
dt− ait(rQ

T
t dt− Et[dQ

T
t ])

)
(35)

s.t. xit ≤ QT
t ait, ai0 given.

Users’ problem then reduces to a sequence of static optimizations over (xit, ait).

The optimal xit solves

max
xit,ait

x1−γ
it

1− γ
− ftxit −

(
rQT

t dt− Et

[
dQT

t

])
ait s.t. xit ≤ QT

t ait,

so

x−γ
it dt = ftdt+

(
rdt− Et

[
dQT

t

QT
t

])
, (36)

as claimed in (2).
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We also derive users’ value functions, since those will be important in determining users’

preferences over sequences of policies. Users’ first-order condition (2) implies that the flow

utility they receive at time t is(
X1−γ

t

1− γ
− ftXt

)
dt−Xt

(
rdt− Et

[
dQT

t

QT
t

])
=

γ

1− γ
X1−γ

t dt.

Then, plugging this expression into the right-hand side of (35),

Ui = QT
0A

T
0− +R0, where R0 ≡ E0

[ ∞∫
0

e−rt γ

1− γ
X1−γ

t dt

]
, (37)

as claimed in Proposition 1.

Investors’ lifetime utility can be derived with analogous calculations. Investor j’s problem

is

Uj = max
ajt,cjt

E0

[ ∞∫
0

e−rtdcjt

]
s.t. QC

t (dajt − ajtdDt) + dcjt = 0, aj0 given.

Integration by parts yields

Uj = max
ajt

QC
0 aj0 + E0

[ ∞∫
0

e−rtajt

(
dDt + dQC

t − rQC
t dt

)]
s.t. aj0 given.

The first-order condition implies that at an optimum (4) holds, and

Uj = QC
0 A

C
0− . (38)

Proof of Proposition 1. The result is immediate from (37) and (38).

A.2 The first-best

In this section, we formally lay out and solve the planner’s problem:

V̂ P
0 = max

Xs

E0

[ τ∫
0

e−rs

(
X1−γ

s

1− γ
− cXs

)
ds+ e−rτ V̂ P

0

]
. (39)

We now prove Proposition (2), which characterizes the first-best allocation.

43



Proof of Proposition 2. First, note that the planner’s problem is time-consistent by standard

arguments (see Lucas and Stokey, 1986): it is a standard dynamic programming problem with

control Xs and no state variables. Therefore, the optimal policy solves the corresponding

sequence problem. The sequence problem is

max
Xt

∞∫
0

e−rt

(
X1−γ

t

1− γ
− cXt

)
dt (40)

with first-order condition

X−γ
t = c,

which immediately implies (8).

B Traditional platform

In this section, we prove our main results about the traditional scheme in Proposition 3.

Proof of Proposition 3. Standard arguments (Lucas and Stokey, 1986) imply that investors’

governance problem (11) is time-consistent: it is a standard dynamic programming problem

with control fs and no state variables. Therefore, investors’ problem can be written as the

sequence problem (12). We substitute the transaction demand constraint (10) into investors’

profits to obtain

(ft − c)Xt = X1−γ
t − (c+ r)Xt

and use this result to write the sequence problem as.

max
Xt

∞∫
0

e−rt

(
X1−γ

t − (c+ r)Xt

)
dt.

The first-order condition is

(1− γ)X−γ
t = c+ r.

Therefore, the optimal transaction quantity is Xtrad given by (14), which is clearly less than

XFB in (8). Since XFB is the first-best quantity of transactions, it is immediate that welfare

is lower than the first-best with a traditional platform.
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C Service tokens

In this section, we prove the results in Section 5.

Proof of Lemma 1. In equilibrium, conditional on no governance decision, transactions and

the stock of tokens grow at rates Ẋs
Xs

and µ̇s, respectively. When a governance decision takes

place, transactions jump to X̂0 and the stock of tokens immediately grows by d̂µ0. Then,

using the fact that QT
t = Xt

AT
t
, we have

dQT
t

QT
t

=

(
Ẋs

Xs
− µ̇s

)
ds+

(
X̂0

Xs
(1− d̂µ0)− 1

)
dJs.

where dJs denotes a Poisson process that arrives at rate λ (representing the next governance

decision). Taking expectations of both sides, we obtain the equation in Lemma 1.

Proof of Lemma 2. This result is immediate from investors’ governance problem (18). The

rate of seigniorage dµ0 at s = 0 can be increased up to the maximum limit dµ0 = 1 without

affecting profits or the constraint (17) at any future date.

Proof of Proposition 4. Using the result of Lemma 2, we have

E0

[ τ∫
0

e−rsdΠs

]
= E0

[
X0 +

τ∫
0

e−rs(fs + µ̇s − c)Xsds

]

= X0 + E0

[ τ∫
0

e−rs

(
X1−γ

s − (c+ r + λ)Xs + Ẋs + λX̂0(1−
∆

1 +∆
)

)
ds

]

= X0 +

∞∫
0

λe−λτ

τ∫
0

e−rs

(
X1−γ

s − (c+ r + λ)Xs + Ẋs + λ
1

1 + ∆
X̂0

)
dsdτ

= X0 +

∞∫
0

e−(r+λ)s

(
X1−γ

s − (c+ r + λ)Xs + Ẋs + λ
1

1 + ∆
X̂0

)
ds

= X0 +

∞∫
0

e−(r+λ)s

(
X1−γ

s − (c+ r + λ)Xs + λ
1

1 + ∆
X̂0

)
ds

+ e−(r+λ)sXs

∣∣∣∣∞
0

+

∞∫
0

e−rs(r + λ)Xsds

=

∞∫
0

e−(r+λ)s

(
X1−γ

s − cXs + λ
1

1 + ∆
X̂0)

)
ds,
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as desired. The second equality uses (17). The fifth equality integrates
∞∫
0

e−(r+λ)sẊsds by

parts.

Proof of Propositions 5 - 7. We characterize the properties of equilibrium in both the strong

commitment and weak commitment regime. We begin by taking a Lagrangian approach to

investors’ governance problem. Following Proposition (4), investors’ problem can be written

as

V̂ I
0 = max

fs,µ̇s,Xs

∞∫
0

e−(r+λ)s

(
X1−γ

s − cXs + λ(
1

1 + ∆
X̂0 + V̂ I

0 )

− ψs

(
(r + λ)Xs −X1−γ

s + (fs + µ̇s)Xs − Ẋs

)
− χf

sfs − χµ
s µ̇s

)
ds

The Euler-Lagrange conditions are

(fs) : 0 = ψsXs + χf
s ;

(µ̇s) : 0 = ψsXs + χµ
s ;

(Xs) : ψ̇s = (1 + ψs)(1− γ)X−γ
s − c− ψs(fs + µ̇s)

We will conjecture an equilibrium in which fees fs = f , seigniorage µ̇s = µ̇, transaction

quantities Xs = X, and the Lagrange multipliers are constant as well. Define λ∗ as

λ∗ =
1 +∆

∆

(
c

1− γ
− r

)
.

We proceed by analyzing two distinct cases.

Case 1: Strong commitment (λ ≤ λ∗). We conjecture that in this case, the La-

grange multiplier ψ is equal to zero. The Euler-Lagrange condition for Xs then implies that

transaction quantities must satisfy

(1− γ)X−γ
s = c ⇒ Xs =

(
c

1− γ

)− 1
γ

.

This quantity of transactions is greater than Xtrad but below the first-best XFB.

To confirm that this is indeed an equilibrium allocation, we must show that there exist

non-negative levels of fees f and seigniorage µ̇ that support it. The transaction demand
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condition (i.e., the condition corresponding to the multiplier ψs) yields

f + µ̇ =
c

1− γ
− (r + λ∆). (41)

Then it is possible that f, µ̇ ≥ 0 only if λ ≤ λ∗. Our conjectured equilibrium is indeed an

equilibrium, then, if and only if λ ≤ λ∗.

Note, moreover, that this argument proves Proposition 6. Any combination (f, µ̇) satis-

fying (41) implements the same equilibrium.

Case 2: Weak commitment (λ > λ∗). In this case, we conjecture and verify that fees

and seigniorage are equal to zero, f = µ̇ = 0. With a constant Lagrange multiplier ψ, we

have

(1 + ψ)(1− γ)X−γ = c ⇒ X =

(
c

(1 + ψ)(1− γ)

)− 1
γ

.

The transaction demand condition pins down x̃:

X =

(
r + λ ∆

1+∆

1− γ

)− 1
γ

.

When λ > λ∗, clearly, the Lagrange multiplier ψ is indeed non-zero, justifying the fact

that both fees and seigniorage are at their constraints.

D Hybrid tokens

D.1 Equilibrium

In this section, we prove general results about the equilibrium with a hybrid token.

Proof of Lemma 4. Multiply (25) by 1 − ζs, multiply (26) by ζs, and add the two resulting

equations together to obtain

(r + λ)Ms = X1−γ
s − cXs + Ṁs + λM̂0(1− d̂µ0).

Imposing the transversality condition lim
s→∞

e−(r+λ)sMs = 0, this differential equation can be

solved forward to obtain

Ms =

∞∫
0

e−(r+λ)u

(
X1−γ

s+u − cXs+u + λM̂0(1− d̂µ0)

)
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= Es

[ τ∫
0

e−r(u−s)

(
X1−γ

u − cXu

)
+ e−r(τ−s)M̂0(1− d̂µ0)

]
,

as desired.

Proof of Lemma 5. That {Ms} is independent of µ̇s for s > 0 is immediate from Lemma 4.

It remains to prove that M0(1− dµ0) = M0+. First, note that if dµ0 > 0, then (27) implies

ζ0 = 1. Then investors’ pricing equation for tokens yields

0 = dS0 + E0[dM0]

=M0dµ0 +M0+ −M0

⇒M0(1− dµ0) =M0+ .

D.2 Attaining the commitment outcome

Next, we prove our main results about the hybrid token system with investor governance.

Proof of Proposition 8. Problem (30) is time-consistent by standard arguments. When writ-

ten in Lagrangian form, it can be viewed as a typical Bellman equation with controls

(fs, µ̇s, Xs,Ms, ζs). Therefore, optimal policies are independent of the times at which gover-

nance decisions took place: the policy chosen at time τ for s ≥ τ is precisely the same as

the policy chosen for s ≥ τ at t = 0. Hence, optimal policies and equilibrium allocations are

independent of the frequency λ of governance decisions.

Proof of Proposition 9. Given that Problem (30) is time-consistent, the optimal policy must

solve (31). Note that this is precisely the same problem as (20), so all of the results carry

over. Equilibrium transaction quantities are precisely the same as in Proposition 5, and just

as in that proposition, the equilibrium allocation is more efficient than that with a traditional

platform but less efficient than the first-best.

E Giving users the right to vote

In this section, we prove the results in Proposition 10. The Proposition deals with two

cases – a setting with a platform that issues service tokens and one with a platform that

issues hybrid tokens. The following two subsections address each in turn.
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E.1 A service token platform

As discussed in Section 7, when the platform permits service token holders to vote, we

can restrict attention to the case in which users control a majority of voting power for all t.

Hence, users choose their most-preferred policy in each governance decision.

We look for a recursive equilibrium in which quantities may jump at the time of a gover-

nance decision but evolve smoothly thereafter, with the same notation as in the benchmark

model. Users maximize their lifetime utility, which per (6) is equal to the value of their tokens

plus the present value of their inframarginal rents, which will be denoted by

R̂0 = E0

[ ∞∫
0

e−rs γ

1− γ
X1−γ

s ds+ e−rτ R̂0

]
.

The value of users’ tokens at the time s = 0 of a governance decision satisfies

QT
0A

T
0− = X0(1− dµ0),

since users’ initial token holdings are only a fraction 1− dµ0 of the initial token stock if new

token issuance at s = 0 is dµ0. Then, users’ governance problem can be written recursively

in Lagrangian form as

(1− d̂µ0)X̂0 + R̂0 = max
fs,µ̇s,dµ0,Xs

∞∫
0

e−(r+λ)s

(
(1− dµ0)

(
X1−γ

s − (fs + µ̇s)Xs

)
+

γ

1− γ
X1−γ

s

+ λ
(
(1− d̂µ0)X̂0 + R̂0

)
+ χf

sfs + χµ
s µ̇s + ψs

(
(r + λ)Xs

−X1−γ
s + (fs + µ̇s)Xs − Ẋs − λ(1− d̂µ0)X̂0

))
ds., (42)

subject to the additional constraint dµ0 ∈ [0, ∆
1+∆ ].

Users will always choose to set initial seigniorage dµ0 to zero – unanticipated seigniorage

is just a transfer to investors. The Euler-Lagrange conditions are

(fs) : (ψs − 1)Xs = χf
s ;

(µ̇s) : (ψs − 1)Xs = χµ
s ;

(Xs) : (r + λ)ψs = X−γ
s − (fs + µ̇s) + ψs((r + λ)− (1− γ)X−γ

s + fs + µ̇s) + ψ̇s.

It is simple to see from this problem that users’ utility is strictly increasing in transaction

quantities Xs and decreasing in fees and seigniorage. Hence, there is no advantage to users
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of setting fees or seigniorage above their minimum allowable levels. Users thus set fees fs = 0

for all s and choose zero seigniorage, µ̇s = 0 for all s and dµ0 = 0. By setting fs = µ̇s = 0

and conjecturing a constant multiplier ψs = ψ, we obtain

0 = (1− (1− γ)ψ)X−γ
s ⇒ ψ=

1

1− γ
.

From there, one can find suitable values for the Lagrange multipliers χf
s , χ

µ
s using the Euler-

Lagrange conditions above. Transaction quantities satisfy (17), so

X1−γ
s = rXs ⇒ Xs = Xuser ≡ r

− 1
γ ,

as desired.

E.2 A hybrid token platform

Before proving the specific results in this section, we characterize equilibrium in a slightly

more general setting and then show how to derive the results from this general characteriza-

tion.

We consider an equilibrium in which token quantities never jump. Lemma 5 guarantees

that this is without loss of generality. The equilibrium quantities are then {fs, µ̇s, Xs,Ms, ζs, Rs}.
As in the main body of the paper, several conditions must be satisfied in equilibrium. There

is the token demand condition

(r + λ)Xs = X1−γ
s − (fs + µ̇s)Xs +

Xs

Ms

(
Ṁs + λM̂0(ζs)

)
, (43)

the token pricing condition (28), the condition determining ζs,

ζs =
Xs

Ms
, (44)

and the Bellman equation determining the present value of inframarginal rents,

R̂0(ζ) = E0

[ τ∫
0

γ

1− γ
X1−γ

s ds+ e−rτ R̂0(ζτ )

]
. (45)

We consider a decision-maker who, starting in state ζ, chooses policies to maximize

max
fs,µ̇s

Xs,Ms,ζs

E0

[ τ∫
0

(
(1 + b(ζ))X1−γ

s − cXs

)
ds+ e−rτ

(
M̂0(ζτ ) + b(ζ)R̂0(ζτ )

)]
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s.t. (28), (43), (44), (46)

where the function b is decreasing, continuous, and differentiable (except for perhaps at

ζ = 1
2).

We write the optimization problem in Lagrangian form:

L = max
fs,µ̇s

Xs,Ms,ζs

∞∫
0

e−(r+λ)s

(
(1 + b(ζ))X1−γ

s − cXs + λM̂0(ζs) + λb(ζ)R̂0(ζs)

− ϕs
(
(r + λ)Ms −X1−γ

s + cXs − Ṁs − λM̂0(ζs)
)

− ψs

(
(r + λ)Xs −X1−γ

s + (fs + µ̇s)Xs − ζs(Ṁs + λM̂0(ζs))
)
− χs(ζs −

Xs

Ms
)

)
ds

The Euler-Lagrange conditions are

(fs) : ψsXs = 0;

(µ̇s) : ψsXs = 0;

(ζs) : λ((1 + ϕs)M̂
′
0(ζs) + b(ζ)R̂′

0(ζs)) = χs;

(Xs) : (1 + ϕs)(1− γ)(1 + b(ζ))X−γ
s = (1 + ϕs)c−

χs

Ms
;

(Ms) : ϕ̇s − (r + λ)ϕs = −(r + λ)ϕs − χs
Xs

M2
s

;

We look for an equilibrium in which Xs = X, Ms =M , and ζs = ζ ′ are constant.

Case 1: ζ ′ ̸= 1
2 . Note that if ζs is constant, then χs = 0 for all s (unless ζ = 1

2 , a case to

which we return later). The first-order condition for Ms then also implies ϕs = 0 for all s.

The first-order condition for Xs then yields

X =

(
c

(1− γ)(1 + b(ζ))

)− 1
γ

. (47)

Case 2: ζ ′ = 1
2 . The optimal level of X in this case can be found by solving the

constrained optimization problem

max
X

(1 + b(ζ))X1−γ − cX +K(ζ)

r + λ
s.t. X =

1

2

(1− γ)X1−γ − cX +K(ζ)

r + λ
.

where K(ζ) ≡ λ(M̂0(
1
2) + b(ζ)R̂0(

1
2)).
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The first-order condition is

(X) : (1− γ)
(
1 +

b(ζ)

1 + 1
2χ

)
X−γ = c− (r + λ)

χ

1 + 1
2χ

;

where χ denotes the Lagrange multiplier on the constraint. This condition, along with the

constraint

X =
1

2

X1−γ − cX +K(ζ)

r + λ
,

pin down the two unknowns (X,χ).

So we have derived an equilibrium in which, starting from a governance decision in state

ζ, ζs stays constant at a level ζ ′ = G(ζ) until the next governance decision. We want to

demonstrate that starting from any state ζ0, the sequence ζk = G(ζk−1) converges to a

(possibly non-unique) steady state ζ∗ with ζ∗ = G(ζ∗).

We begin by proving that G is monotonically increasing.

Lemma 6. The function G(ζ) is weakly increasing in ζ: if ζ ′ ≥ ζ, then G(ζ ′) ≥ G(ζ).

Proof. Notice that the policy problem faced by the decision-maker can be written as

max
fs,µ̇s

M0 + b(ζ)R0,

where b(ζ) is a decreasing function of ζ and

M0 =

∞∫
0

e−(r+λ)s

(
X1−γ

s − cXs + λM̂0(ζs)

)
ds,

R0 =

∞∫
0

e−(r+λ)s

(
γ

1− γ
X1−γ

s + λR̂0(ζs)

)
ds.

Clearly, then, higher ζ implies that at an optimum, M0 will be larger and R0 will be

smaller. The first-order condition (47) also implies that X0 will be smaller for higher ζ.

Thus,

G(ζ) =
X0

M0

is decreasing in ζ.

With this lemma, we can prove the convergence of equilibrium to a steady state.

Proposition 13. A solution to (46) converges to an equilibrium with constant ζ.
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Proof. We have demonstrated the existence of an equilibrium in which, starting from a gov-

ernance decision in state ζ, ζs is constant at ζ ′ = G(ζ) until the next governance decision.

Let ζ0 denote the initial value of ζ and let ζk = G(ζk−1) denote its value in the interval after

the k-th governance decision. We show that the sequence ζk must converge.

Convergence follows from the fact that G is a monotonically increasing function that is

continuous on the intervals [0, 12 ] and (12 , 1]. There are two cases to consider.

Case 1: G(12) ≤ 1
2 . If ζ0 ∈ [0, 12 ], Brouwer’s fixed point theorem immediately implies

that the sequence ζk converges, since the interval [0, 12 ] is mapped to itself. If ζ0 >
1
2 , then

there are again two cases: either lim
ζ→+ 1

2

G(ζ) > 1
2 or lim

ζ→+ 1
2

G(ζ) < 1
2 . In the first case, G maps

some interval [12 + ϵ, 12 ] to itself, so ζk converges somewhere in that interval. In the second

case, if ζk does not converge to a steady state in (12 , 1], then it eventually enters the interval

[0, 12 ], after which point it converges in that interval.

Case 2: G(12) >
1
2 . The proof in this case is analogous.

Note that the setting in our paper is simply the case in which

b(ζ) =

{
1

1−ζ ζ ≤ 1
2

0 ζ > 1
2

This is because users attach a weight 1− ζ to the value of tokens (since that is the fraction

of the token stock that they hold) and a weight of one to their inframarginal rents, and they

control the platform whenever ζ ≤ 1
2 . Investors attach a weight ζ to the value of tokens and

zero to inframarginal rents, and they control the platform whenever ζ > 1
2 .

Now we characterize the outcome in a steady state as t → ∞. If the fraction of staked

tokens converges to ζ∗ > 1
2 , then investors control the platform in the steady state, and we

are back in the setting of Section 6. We will then consider only the outcome when ζ∗ ≤ 1
2 .

In the steady state, users’ optimal policy solves the static problem

max
f,µ̇

(
1− ζ∗ +

γ

1− γ

)
X1−γ − (1− ζ∗)cX

s.t. X = (r + f + µ̇)
− 1

γ , f, µ̇ ≥ 0.

That is, users maximize a linear combination of 1−ζ times the token price plus inframarginal

rents. When ζ is large enough, we obtain the unconstrained solution

X =

(
1− ζ

(1− ζ)(1− γ) + γ
c

)− 1
γ

> c
− 1

γ = XFB.
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Otherwise, the optimum is to set f = µ̇ = 0, in which case

X = Xuser = r
− 1

γ ,

as claimed in Proposition 10.

F Adding investment to the model

In this section, we characterize the equilibrium of the model with investment. We begin

with the first-best before moving to the case of an investor-governed platform. Investors’

objective remains the same: they choose policies to maximize the value of their assets. The

only difference from the benchmark is that in addition to choosing fees and a seigniorage

policy, in this setting investors choose an investment policy ιt as well.

The first-best: The planner’s problem is to choose an allocation that maximizes the

discounted value of total surplus,
Zγ
t X

1−γ
t

1− γ
− ιtZt.

The planner’s problem is time-consistent, since it is just a standard optimal control problem

with controls (Xt, ιt) and state Zt. It can be written in Lagrangian form as

L = max
Xt,ιt,Zt

∞∫
0

e−rt

(
Zγ
t X

1−γ
t

1− γ
− cXt − ιtZt − ξt

(
Żt − ιtZt)

)
dt.

The Euler-Lagrange conditions are

(Xt) : Z
γ
t X

−γ
t = c;

(ιt) : ξtΦ
′(ιt) = 1;

(Zt) :
γ

1− γ
Zγ−1
t X1−γ

t − ιt +Φ(ιt)ξt = rξt − ξ̇t.

The optimality condition for Xt yields

XFB
t = c

− 1
γZt.

Then, looking for a solution with constant ξt and ιt, we combine the optimality conditions

for ιt and Zt to obtain

1

Φ′(ιFB)
=

γ
1−γ c

1− 1
γ − ιFB

r − Φ(ιFB)
.

54



Traditional platform: Users’ transaction demand in this case implies

Zγ
t X

1−γ
t = (ft + r)Xt ⇒ (ft − c)Xt = Zγ

t X
1−γ
t − (c+ r)Xt. (48)

Investors’ problem is again time-consistent. In this case, using the above result, the

problem of maximizing the platform’s share value can be written in Lagrangian form as

L = max
ft,ιt,Xt,Zt

∞∫
0

e−rt

(
Zγ
t X

1−γ
t − (c+ r)Xt − ιtZt − ξt(Żt − Φ(ιt)Zt)

)
dt. (49)

The Euler-Lagrange conditions are

(Xt) : (1− γ)Zγ
t X

−γ
t = c+ r;

(ιt) : ξtΦ
′(ιt) = 1;

(Zt) : γZ
γ−1
t X1−γ

t − ιt +Φ(ιt)ξt = rξt − ξ̇t.

Therefore, the optimal transaction quantity is given by (14). We conjecture an equilibrium

with a constant rate of investment ιtrad and Lagrange multiplier ξt = ξ. Plugging the optimal

transaction quantity into the Euler-Lagrange condition for Zt, we have

γZγ−1
t X1−γ

t = γ
( c+ r

1− γ

)1− 1
γ ,

so

ξ =
1

Φ′(ιtrad)
=
γ
(
c+r
1−γ

)1− 1
γ − ιtrad

r − Φ(ιtrad)
.

To see that investment is inefficiently low in the case of a traditional platform, note that

for any constant K, there exists a unique solution ι(K) to

1

K − ι(K)
=

Φ′(ι(K))

r − Φ(ι(K))
. (50)

This is because we have assumed Φ′(ι)
r−Φ(ι) is a decreasing function of ι and Φ′(·) satisfies Inada

conditions. Hence, the right-hand side of (50) is decreasing and approaches infinity as ι→ 0,

whereas the right-hand side is increasing and approaches infinity as ι→ K. Furthermore, the

solution ι(K) must be increasing in K, since all else equal, higher K increases the left-hand

side while keeping the right-hand side unchanged.

We have that ιFB > ιtrad because ιFB = ι(K) for K = γ
1−γ c

1− 1
γ and ιtrad = ι(K) for

K = γ
(
c+r
1−γ

)1− 1
γ .
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Service tokens: Now, investors’ problem can be written in Lagrangian form as

V̂ I
0 (Z) = max

fs,ιs,µ̇s,Xs,Zs

− 1

1 + ∆
X0 +

∞∫
0

e−(r+λ)s

(
Zγ
sX

1−γ
s − cXs − ιsZs + λ(V̂ I

0 (Zs) +
1

1 +∆
X̂0(Zs)

− ψs

(
(r + λ)Xs − Zγ

sX
1−γ
s + (fs + µ̇s)Xs − Ẋs

)
− ξs(Żs − Φ(ιs)Zs)− χf

sfs − χµ
s µ̇s

)
ds

The Euler-Lagrange conditions are

(fs) : 0 = ψsXs + χf
s ;

(µ̇s) : 0 = ψsXs + χµ
s ;

(ιs) : 1 = ξsΦ
′(ιs);

(Xs) : ψ̇s = (1 + ψs)(1− γ)Zγ
sX

−γ
s − c− ψs(fs + µ̇s)

(Zs) : (r + λ− Φ(ιs))ξs = γ(1 + ψs)Z
γ−1
s X1−γ

s − ιs + λ(V̂ I′
0 (Zs) +

1

1 +∆
X̂ ′

0(Zs)) + ξ̇s

We will conjecture an equilibrium in which the value function is linear in Z, V̂ I
0 (Z) = vZ

for some constant v. Fees fs = f , seigniorage µ̇s = µ̇, the investment rate ιs = ι, and

the Lagrange multipliers ψs = ψ, ξs = ξ are constant as well. Transactions are a constant

multiple of productivity, Xs = x̃Zs for some constant x̃. Under this conjecture, we have

Zs = exp(ιs)Z and

vZ = − 1

1 + ∆
x̃Z +

∞∫
0

e−(r+λ−Φ(ι))

(
x̃1−γ − cx̃− ι+ λ(v +

1

1 +∆
x̃)

)
Zds

=

(
x̃1−γ − cx̃− ι

r + λ− Φ(ι)
− r − Φ(ι)

r + λ− Φ(ι)

1

1 + ∆
x̃

)
Z +

λ

r + λ− Φ(ι)
vZ

This implies

v +
1

1 +∆
x̃ =

x̃1−γ − cx̃− ι

r − Φ(ι)
. (51)

We proceed by analyzing two distinct cases.

Case 1: Strong commitment (λ ≤ λ∗). We conjecture that in this case, the Lagrange mul-

tiplier ψ is equal to zero. The Euler-Lagrange condition for Xs then implies that transaction
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quantities must satisfy

(1− γ)Zγ
sX

−γ
s = c ⇒ x̃ =

(
c

1− γ

)− 1
γ

.

Note that

x̃1−γ − cx̃ = x̃× x̃−γ − cx̃

=
c

1− γ
x̃− cx̃

=
γ

1− γ
cx̃

= γx̃1−γ .

Then the optimality condition for Zs immediately implies ξ = v + 1
1+∆ , so the optimality

condition for investment yields ι = ιtoken, where

1

Φ′(ιtoken)
= v +

1

1 +∆
=
γ
(

c
1−γ

)1− 1
γ − ιtoken

r − Φ(ιtoken)
.

An argument similar to the one given in the case of a traditional platform implies that

ιtoken ∈ (ιtrad, ιFB).

To confirm that this is indeed an equilibrium allocation, we must show that there exist

non-negative levels of fees f and seigniorage µ̇ that support it. The transaction demand

condition (i.e., the condition corresponding to the multiplier ψs) yields

f + µ̇ =
c

1− γ
− (r + λ

∆

1 +∆
) + Φ(ιtoken). (52)

Define λ∗ as

λ∗ =
1 +∆

∆

(
c

1− γ
− r +Φ(ιtoken)

)
.

Then it is possible that f, µ̇ ≥ 0 only if λ ≤ λ∗. Our conjectured equilibrium is indeed an

equilibrium, then, if and only if λ ≤ λ∗.

Note, moreover, that this argument proves Proposition 6. Any combination (f, µ̇) satis-

fying (41) implements the same equilibrium.

Case 2: Weak commitment (λ > λ∗). In this case, we conjecture and verify that fees and

seigniorage are equal to zero, f = µ̇ = 0. With a constant Lagrange multiplier ψ, we have

(1 + ψ)(1− γ)x̃−γ = c ⇒ x̃ =

(
c

(1 + ψ)(1− γ)

)− 1
γ

.
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The transaction demand condition pins down x̃:

x̃ =

(
r + λ

∆

1 +∆
− Φ(ιnc)

)− 1
γ

,

where ιnc denotes the constant investment rate.

Using the same argument as in the previous case, we again find that γ(1 + ψ)x̃1−γ =

x̃1−γ−cx̃. Therefore, the optimality condition for Z again yields ξ = v+ 1
1+∆ x̃. The optimality

condition for investment then implies

1

Φ′(ιnc)
=
γ
(
r + λ ∆

1+∆ − Φ(ι)nc
)1− 1

γ − ιnc

r − Φ(ιnc)
,

as desired. Note that, as claimed, the investment rate ιnc is decreasing in λ.

When λ > λ∗, clearly, the Lagrange multiplier ψ is indeed non-zero, justifying the fact

that both fees and seigniorage are at their constraints.

Hybrid tokens: When the platform issues a hybrid token, equilibrium policies solve the

analogue of (30):

M̂0(Z)(1− d̂µ0(Z)) = max
fs,ιs,µ̇s,

Xs,Ms,ζs,Zs

E0

[ τ∫
0

e−rs
(
Zγ
sX

1−γ
s − cXs − ιsZs)ds+ e−rτM̂0(Zτ )(1− d̂µ0(Zτ ))

]

s.t. (r + λ)Ms =
Zγ
sX

1−γ
s − fsXs

1− ζs
+ Ṁs − µ̇sMs + λ(1− d̂µ0(Zs))M̂0(Zs),

Ms = Es

[ τ∫
s

e−r(u−s)

(
Zγ
uX

1−γ
u − cXu

)
du+ e−r(τ−s)M̂0(Zs)(1− d̂µ0(Zs))

]
,

(33), 1− ζs =
Xs

Ms
, fs ≥ c, µ̇s ≥ 0, Z0 given. (53)

This problem is time-consistent by standard arguments. When written in Lagrangian

form, it can be viewed as a typical Bellman equation in Z with value function Ṽ (Z) =

M̂0(Z)(1− d̂µ0(Z)), controls (fs, µ̇s, ιs, Xs,Ms, ζs), and state Zs. Therefore, optimal policies

are independent of the times at which governance decisions took place: the policy chosen

at time τ for s ≥ τ is precisely the same as the policy chosen for s ≥ τ at t = 0. Hence,

optimal policies and equilibrium allocations are independent of the frequency λ of governance

decisions.
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G Extensions

Up until this point, we have used a simple and specific model of a platform to illustrate how

token issuance can affect governance decisions and welfare. In this section, we describe several

extensions of the model to demonstrate that our results apply in more general environments.

Specifically, we consider (1) a model with network effects, (2) a model in which there is

competition across platforms, and (3) a model in which the platform issues a token with

intrinsic value that can be redeemed for a service.

G.1 A model with network effects

In the benchmark model, we assumed that a user’s utility depended only on her own

quantity of transactions. In reality, though, platforms often exhibit network effects: a user’s

enjoyment of the platform’s service depends to some extent on how much others use the

platform. For example, for a DeFi lending platform to function well, it must be used by both

borrowers and lenders.

We capture these considerations in our model by assuming that a user i’s utility depends

both on that user’s individual transactions xit and aggregate transactions on the platform

Xt ≡
1∫
0

xi′tdi
′. Specifically, user i’s flow payoff takes the form

Uit =
(Xν

t x
1−ν
it )1−γ

1− γ︸ ︷︷ ︸
transaction payoff

− ftxit︸︷︷︸
fees

,

where ν ∈ (0, 1). Agents have concave utility over a Cobb-Douglas aggregate of individual

transactions (with weight 1− ν) and aggregate transactions (with weight ν). The parameter

ν captures the strength of network effects: the larger ν, the more users care about how much

others use the platform. Of course, in equilibrium, all users continue to choose the same

quantity of transactions, xit = Xt. Note, furthermore, that for a given aggregate quantity of

transactions Xt, users’ aggregate transaction utility is
X1−γ

t
1−γ , just as in the benchmark model.

The key departure from the benchmark model is in users’ optimality condition: when

there are network effects, aggregate transaction demand satisfies

(1− ν)X−γ
t dt = ftdt+

(
rdt− Et

[dQT
t

QT
t

])
(54)

Comparing to aggregate transaction demand (2) in the benchmark model, the only difference

is that users’ marginal utility of transactions is (1−ν)X−γ
t rather than X−γ

t . Since this is the
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only modification to the model, all of the main results continue to go through: a traditional

platform features inefficiently low transaction quantities, a platform that issues service tokens

can improve on a traditional one only if investors have sufficient commitment power, and a

hybrid token system overcomes the commitment problem.

Using analogous proofs to those in the main body of the paper, it is possible to show that

the first-best quantity of transactions XFB
t , the quantity Xtrad

t under the traditional system,

and the quantity Xtoken
t under the commitment outcome satisfy

XFB
t = c

− 1
γ , Xtrad

t =

(
c+ r

(1− γ)(1− ν)

)− 1
γ

, Xtoken
t =

(
c

(1− γ)(1− ν)

)− 1
γ

. (55)

If users’ transaction demand takes a similar form regardless of the value of ν, then what

is economically different when we introduce network effects? Strong network effects imply

that users get less utility from increasing their own transaction quantity and enjoy greater

externalities from others’ transactions. Therefore, when network effects are stronger, users’

service flows from transaction assets account for a smaller share of utility and inframarginal

rents account for a larger share,

SFt = (1− ν)X1−γ
t − ftXt, and IRt =

1− (1− γ)(1− ν)

1− γ
X1−γ

t .

A token-issuing platform governed by investors improves upon a traditional platform by

accounting for users’ service flows. When network effects are strong, service flows are small,

so the allocation with a token-issuing platform is further away from the first-best. On the

other hand, user governance becomes relatively more efficient, since users guide policy to

maximize their rents. This logic is summarized by the following proposition.

Proposition 14. There exists ν∗ < 1 such that whenever ν ≥ ν∗, then welfare under a

service token or hybrid token system in which users can vote is at least as high as welfare

when only investors can vote.

Proof. For ν close enough to 1, welfare when only investors can vote is arbitrarily close to

zero (say ϵ). By contrast, when users govern the platform, they maximize a weighted average

of their rents and the value of tokens. The value of tokens cannot go negative, so

∞∫
0

e−rs
(
(1− ν)X1−γ

s − cXs

)
ds > 0.

Users’ rents are bounded away from zero for any positive value of Xs. Hence, total welfare

is bounded away from zero if users control the platform in the long run. On the other hand,
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if investors control the platform, total welfare is of course unchanged and is equal to ϵ in the

long run.

G.2 A model of platform competition

Our benchmark model focuses on the case of a monopolistic platform for simplicity. To

show that limited market power is what is truly essential to our results, in this section we

extend the model to a a setting with monopolistically competitive platforms.

There is a continuum of platforms indexed by k ∈ [0, 1]. Some are traditional platforms,

some issue service tokens, and some issue hybrid tokens. Platforms share the same marginal

cost c of transaction processing, but they may set different transaction fees fkt and seigniorage

policies dSkt. For brevity, in this section we take the degree of commitment to infinity (λ→ 0),

but our main results would continue to go through for finite λ. Users enjoy the differentiated

transaction services provided by all platforms. A user who transacts xkt on each platform k

receives payoff

Ut =
X1−γ

t

1− γ
−

1∫
0

fktxktdk where Xt =

( 1∫
0

x
η−1
η

kt dk

) η
η−1

.

That is, the total transaction services Xt consumed by a user is a CES aggregate of the trans-

action services xkt consumed on each platform, where η > 1 is the elasticity of substitution.

Utility is concave in total transaction services Xt. A higher value of η corresponds to greater

substitutability and therefore more intense cross-platform competition. For simplicity, we

assume that each platform is governed by its own set of investors, who choose fees fkt and

the seigniorage policy in governance decisions that arrive at rate λ.26

Users’ aggregate transaction demand xkt on platform k satisfies

X
1
η
−γ

t x
− 1

η

kt dt = fktdt+

(
rdt− Et

[dQT
kt

QT
kt

])
, (56)

where QT
kt denotes the price of platform k’s transaction asset. The main difference from the

benchmark model, then, is that demand for transactions on platform k depends not only on

its productivity and fees, but also on aggregate consumption of transaction services Xt across

all platforms. That is, there is some substitutability between consumption of different plat-

forms’ transaction services. Importantly, since each platform is infinitesimal, each platform’s

26For simplicity, we do not consider platforms governed by users in this extension. Cross-ownership by users
introduces additional challenges because users would have incentives to pass policies on all platforms in order
to manipulate aggregate transaction quantities Xt.
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investors take Xt as exogenous when making governance decisions, which considerably sim-

plifies the equilibrium analysis. Notice, furthermore, that transaction demand on platform k

becomes perfectly elastic in the limit of perfect competition, η → ∞.

Platform k’s investors choose policies to maximize the value of their cash flow assets. In

the case of a traditional platform, this is equivalent to maximizing the present value of profits,

whereas in the case of a token-issuing platform, this is equivalent to maximizing the present

value of profits plus service flows (as shown in the main text). We will look for a steady-state

equilibrium in which all platforms choose constant policies, and the quantity of transactions

produced by each platform does not change over time. An important simplification is that

since each platform is infinitesimal, platform k’s investors do not internalize how their policies

affect Xt.

Below, we look for a Markov equilibrium in which each platform’s transaction quantities

and policies are constant through time.

Traditional platform: We begin by analyzing the governance problem faced by the

investors of a traditional platform k. The platform’s profits can be written as

(ft − c)Xkt = X
1
η
−γ

t X
1− 1

η

kt − (c+ r)xkt.

Therefore, investors’ problem is equivalent to maximizing

max
fkt,Xkt

∞∫
0

e−rt
(
X

1
η
−γ

t X
1− 1

η

kt − (c+ r)Xkt

)
dt s.t. (56), fkt ≥ 0.

Optimal fees and transaction quantities are

fk =
η

η − 1
c+

1

η − 1
r, Xk = Xγη−1

(
c+ r

1− 1
η

)−η

. (57)

Token-issuing platforms: Just as in the main text, it is possible to show that since

λ→ 0, then regardless of whether k issues service tokens or hybrid tokens, investors’ problem

is equivalent to solving the Lagrangian

L = max
Xkt,fkt,µ̇kt

∞∫
0

e−rt

(
X

1
η
−γ

t X
1− 1

η

kt − cXkt − χf
ktfkt − χµ

ktµ̇kt

+ ψkt

(
rXkt −X

1
η
−γ

t X
− 1

η

kt + (fkt + µ̇kt)Xkt − Ẋkt

))
dt,
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The Euler-Lagrange conditions are

(fkt) : ψktXkt = χf
kt;

(µ̇kt) : ψktXkt = χµ
kt;

(Xkt) : X
1
η
−γ

t X
− 1

η

kt =
c̃k

1− 1
η

;

From these first-order conditions, we can conclude that there are two regimes: one in

which the constraints on fees and seigniorage do not bind (for small enough η) and one in

which they may (for large η). We obtain

fk = max

{
η

η − 1
c− r, 0

}
, Xk = Xγη−1

(
max

{
η

η − 1
c, r

})− 1
η

. (58)

Suppose that k is a token-issuing platform and k′ is a traditional platform. We can then

again plug in the first-order condition for Xkt to obtain

Xkt

Xk′t
=

(max

{
η

η−1c, r

}
η

η−1(c+ r)

)− 1
η

. (59)

Token-issuing platforms still acquire a larger market share and process more transactions

than traditional platforms. Hence, what matters for our results is not that the platform is

a complete monopolist – even when there are outside options, platforms still benefit from

issuing tokens.

It is particularly interesting to consider the case in which c < r. Then, the effects of com-

petition on platforms’ relative market shares are non-monotone in η. For small η, an increase

in competition decreases the market share of traditional platforms. Both traditional plat-

forms and token-issuing platforms cut their fees by the same proportion, and the increase in

substitutability tilts users’ demand towards the lower-cost token-issuing platforms. However,

for large η, this relationship is flipped. Token-issuing platforms cannot cut their fees any-

more as η increases further, but competitive pressures continue to drive down the fees charged

by traditional platforms, reducing the gap in market shares. That is, when competition is

very intense, traditional platforms are no longer at such a significant disadvantage. Token

issuance should be viewed as a substitute for the incentives for socially beneficial policies that

are naturally provided by market competition.
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G.3 A platform with a redeemable token

We now briefly outline a model in which the platform either operates as a traditional

platform or issues a redeemable token that users can directly exchange for the platform’s

services. In this setup, the platform is more similar to the issuer of a “utility token” with

intrinsic value, as discussed in Section 2.

Environment: The platform sells a service to users at a price pt = QT
t kt ≥ c (in dollars)

and incurs a constant marginal cost c per unit produced. User i gets an opportunity to buy

the service according to an (independent) Poisson process with arrival rate ρ > 0. If user i

holds aTit transaction assets, she can purchase at most xit ≤ QT
t ait
pt

units of the service. Hence,

user i’s problem is

max
xit,ait

ρ

(
x1−γ
it

1− γ
− ptxit

)
−
(
rQT

t − 1

dt
Et

[
dQT

t

])
aTit s.t. ptxit ≤ QT

t ait.

We impose that in equilibrium, all users choose the same quantity of transactions, Xt = xit.

Clearly,

ptXt = QT
t A

T
t

at an optimum. The first-order condition is

ρX1−γ
t = ptXt

(
ρ+ r − 1

dt
Et

[dQT
t

QT
t

])
. (60)

Investors’ optimization problem remains unchanged, so cash flow assets are still priced

according to the present value of dividends.

The first-best allocation solves

max
Xt

∞∫
0

e−rtρ
(X1−γ

t

1− γ
− cXt

)
dt. (61)

The optimality conditions is analogous to those derived earlier:

Xt = c
− 1

γ , (62)

Traditional platform: We begin with the traditional platform. The platform’s profits

are simply

dΠt = ρ(pt − c)Xtdt.
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Users’ demand for the service is

Xt =

(
ρ+ r

ρ
pt

)− 1
γ

. (63)

Investors’ governance problem is again time-consistent. They choose the price of the service

pt to maximize the present value of profits:

max
pt

∞∫
0

e−rt(pt − c)Xtdt s.t. (63), pt ≥ c. (64)

From users’ first-order condition (63), we can rewrite

ptXt =
ρ

ρ+ r
X1−γ

t ,

so investors’ problem can be written as

max
Xt

∞∫
0

e−rtρ

(
ρ

ρ+ r
X1−γ

t − cXt

)
dt s.t..

From our previous analysis, we can immediately conclude that Xt is constant:

Xt =

(
c(ρ+ r)

ρ(1− γ)

)− 1
γ

. (65)

Service tokens: We now solve for the equilibrium when the platform issues service

tokens. The platform sets a price kt of the service in terms of tokens, so that the real price

of the service is pt = QT
t kt. At each instant, if users purchase a quantity ρXtdt of the service,

the platform redeems ρXtkt tokens and receives revenues ρXtQ
T
t kt. Since users hold only as

many tokens as they need to purchase Xt units of the service, we have

QT
t A

T
t = ptXt and AT

t = ktXt.

Hence, a fraction ρdt of the token stock AT
t is redeemed at each instant. We continue to

impose the constraint that pt ≥ c, which in this setting is equivalent to Ms ≥ cXs.

If we continue to let dµt denote the platform’s seigniorage policy, the token stock evolves

according to
dAT

t

AT
t

= dµt ∈ [0,∆].
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The platform’s profits are then

dΠt = ρ(QT
t kt − c)Xt + dSt where dSt = QT

t A
T
t dµt.

We again look for a Markov equilibrium in s which quantities may jump only at the time

of a governance decision. We first find a convenient representation of equilibrium quantities

in this environment. Let

Mt ≡ QT
t A

T
t

denote the market capitalization of tokens. The return on tokens can be written as

1

ds
Es

[
dQs

Qs

]
=
Ṁs

Ms
− µ̇s + λ

(
(1− d̂µ0)

X̂0

Xs
− 1

)
.

Users’ transaction demand (60) can be written as

(r + λ)Ms = ρX1−γ
s − (ρ+ µ̇s)Ms + Ṁs + λ(1− d̂µ0)M̂0, (66)

and the platform’s profits are

dΠs =Ms(dµs + ρ)− cXs.

Combining these two results, we have

E0

[ τ∫
0

e−rτdΠs] = E0

[ τ∫
0

e−rs

(
(ρ+ µ̇s)Ms − ρcXs

)]

=

∞∫
0

e−(r+λ)s

(
ρX1−γ

s + Ṁs − (r + λ)Ms − ρcXs + λ(1− d̂µ0)M̂0

)
ds

= −M0 +

∞∫
0

e−(r+λ)s

(
ρX1−γ

s − ρcXs + λ(1− d̂µ0)M̂0

)
ds.

Investors’ governance problem can then be written as

V̂ I
0 = max

dµ0,µ̇s,Xs,Ms

M0(dµ0 − 1) +

∞∫
0

e−rs

(
ρX1−γ

s − ρcXs + λ(V̂ I
0 + (1− d̂µ0)M̂0)

)
ds

s.t. (66), Ms ≥ cXs, µ̇s ≥ 0, dµ0 ∈ [0,
∆

1 +∆
]. (67)
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We can apply the same Lagrangian methods as we did in previous sections to show that

there are again two regimes: a strong commitment regime and a weak commitment regime,

based on whether λ is above some threshold λ∗. In the strong commitment regime,

Xs =

(
c

1− γ

)− 1
γ

, (68)

This equilibrium is feasible as long as Ms ≥ cXs. The market capitalization of tokens Ms is

maximized when µ̇s = 0 for all s, in which case

Ms =
ρ

ρ+ r + λ ∆
1+∆

X1−γ
s ,

so
ρ

ρ+ r + λ∗ ∆
1+∆

(
c

1− γ

)1− 1
γ

= c.

For λ > λ∗, we must have Ms = cXs for all s. The quantity of transactions Xs must

adjust to ensure this is the case. Then,

ρ

ρ+ r + λ ∆
1+∆

X1−γ
s = c, (69)

Hybrid tokens: Finally, we turn to the case in which the platform issues hybrid tokens.

We use the same notation as we did for a platform that issues service tokens. As in the main

body of the paper, in this case we will not have to consider the possibility that the token

stock jumps, so we denote the seigniorage policy simply by µ̇s. The platform’s profits are as

in the previous section.

Users hold a fraction 1 − ζs of the token stock. Given that their token holdings must

equal the value of the services they purchase,

psXs = (1− ζs)Ms.

Then, (2) implies

(r + λ)Ms =
ρX1−γ

s

1− ζs
− µ̇s + Ṁs + λM̂0.

Investors’ pricing equation for tokens is

(r + λ)Ms =
µ̇sMs − ρcXs

ζs
− µ̇s + Ṁs + λM̂0.
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Combining these two conditions, we obtain

(r + λ)Ms = ρ
(
X1−γ

s − cXs

)
+ Ṁs + λM̂0. (70)

Investors’ problem is again to maximize the value of the token stock. We conjecture an

equilibrium in which the value of the token stock is linear in Z, M̂0(Z) = mZ:

M̂0 = max
µ̇s,Xs,Ms

∞∫
0

e−(r+λ)s

(
ρ
(
X1−γ

s − cXs) + λM̂0

)
s.t. (70), Ms ≥ cXs, µ̇s ≥ 0. (71)

The optimality conditions yield

Xs =

(
c

1− γ

)− 1
γ

, (72)

which is exactly the same as the full-commitment outcome in the case of a platform that

issues service tokens.
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