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Abstract
The large reactions of long-term government bond yields to monetary policy shocks

occur during periods of higher market liquidity, and there is very little reaction during
periods of lower liquidity. This newly documented liquidity state-dependence persis-
tently affects real yields, term premia as well as long-term mortgage rates. Condition-
ing on market liquidity yields stronger state-dependence than simply conditioning on
macroeconomic indicators. Balance sheet constraints on both hedge funds and dealers
contribute to the liquidity state-dependence. In addition to using publicly observable
time-series data, we also exploit a unique, granular dataset which covers virtually all
secondary-market trades of US Treasuries executed in London, and contains detailed
information on each transaction including the identities of both counterparties. Con-
sistent with our baseline results, we find that arbitrage activity is significantly higher
when FOMC meetings occur during periods of higher market liquidity. Overall, our
results underscore the importance of market functioning, and the financial health of
key intermediaries that support it, for implementing stabilisation policies.
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1 Introduction
How does liquidity in government bond markets affect the monetary policy transmission? The
importance of this question is underscored by recent liquidity problems observed even in the most
developed government bond markets, coinciding with substantial challenges faced by monetary
policy in achieving inflation targets. While government bond markets are the backbone of the
financial system and vital for the implementation of monetary policy, the role played by these
markets’ liquidity conditions in shaping the efficacy of monetary policy remains incompletely
understood.

Our paper fills this gap by estimating the role of bond market liquidity in the transmission of
monetary policy shocks to government bond yields. Using various standard measures of monetary
policy shocks and market liquidity for the US, our empirical analysis yields five main results. First,
monetary policy shocks have larger effects on bond yields when market liquidity is higher. We refer
to this interaction between market liquidity and monetary policy as the liquidity state-dependence
of the monetary policy transmission. We find that the amplified response of bond yields persists to
longer maturities and is almost entirely driven by the real component. Second, the liquidity state-
dependence is driven by the real term premium component, and not by changing expectations
about future short-term interest rates. Third, we analyse the mechanism underlying the liquidity
state-dependence and find that the balance sheet constraints both on hedge funds and dealers
independently contribute to our baseline results, but hedge fund constraints are more influential
in driving effects on long-maturities. Fourth, conditioning on market liquidity yields stronger state-
dependence than simply conditioning on macroeconomic conditions. Importantly, liquidity state-
dependence is particularly strong during economic downturns, underscoring the importance of
market functioning for implementing stabilisation policies. Fifth, our baseline results are similar for
the UK, highlighting the significance and generalisability of liquidity state-dependence in shaping
the monetary policy transmission.

To arrive at these results, we employ a two-pronged approach using standard time-series re-
gressions (as used in the macro-finance literature) as well as a granular, transaction-level dataset
(as used in the market micro-structure literature). The first approach uses time-series regressions
to estimate the impact of monetary policy shocks on daily changes in bond yields. As standard
in the literature, we calculate these shocks using high-frequency interest rate changes surround-
ing FOMC announcements (Nakamura and Steinsson, 2018; Swanson, 2021; Bauer and Swanson,
2023b). We use daily changes in 1-year instantaneous forward rates up to 20 years, examining
nominal yields, real yields, and inflation compensation components, thus providing a comprehen-
sive view of yield curve dynamics. As our baseline measure bond market liquidity, we utilise the
yield curve fitting error series, referred to as yield curve ’noise’, proposed by Hu, Pan, and Wang
(2013). By partitioning the data into high and low noise days, we effectively distinguish between
periods of low and high market liquidity, enabling a detailed assessment of yield curve reactions
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to monetary policy shocks. High (low) yield curve noise indicates low (high) market liquidity, as
there are large (small) discrepancies between the price of bonds with similar maturities that are
otherwise close to perfect substitutes. The second empirical approach uses a unique, transaction-
level dataset on the US Treasury market which allows us to investigate in detail how different
market participants (such as hedge funds, pension funds, foreign entities, dealers etc.) actually
trade around FOMC meetings. We find that arbitrage activity is significantly larger when FOMC
meetings occur during periods of higher market liquidity, consistent with our time-series evidence
on the liquidity state-dependence.

Our results suggest that the puzzling degree of non-neutrality of monetary policy, reflected
in significant changes in real yields far into the future, is stronger than previously documented
when we focus on liquid markets. For example, a shock that increases the 1-year nominal yield
by 100 bps, increases the 10-year nominal yield by 38 bps in the baseline sample (Nakamura and
Steinsson, 2018). We show that this effect is increased to 124 bps (driven entirely by the real
interest rate components) when the shock hits during periods of higher market liquidity, and the
effect is virtually zero during periods of lower market liquidity. Moreover, the liquidity state-
dependence is driven by variations in term premia, supporting the growing focus on risk premium
effects of monetary policy (Bauer, Bernanke, and Milstein, 2023; Kashyap and Stein, 2023).

There are at least two contrasting hypotheses regarding how market liquidity might shape the
monetary policy transmission, which depend on the nature or underlying driver of liquidity. First,
one could think of liquidity in the classical market microstructure sense where illiquid markets
are characterised by larger price impact because of asymmetric information and adverse selection
(Kyle, 1985). Given that asymmetric information tends to increase around macroeconomic an-
nouncements (Green, 2004), the impact of (monetary policy) shocks could be higher when markets
are less liquid. Second, one could think of liquidity through the lens of intermediary asset pricing
and limits to arbitrage models and expect the impact to be less significant in less liquid markets
because price discovery is impaired due to constraints on arbitrageurs (Vayanos and Vila, 2021;
Kekre, Lenel, and Mainardi, 2022) or dealers (Adrian, Etula, and Muir, 2014; He, Kelly, and
Manela, 2017).1 Our empirical results provide ample support for the second hypothesis.

We directly investigate the mechanism underlying the liquidity state-dependence, we find evi-
dence in support of the predictions of the intermediary asset pricing and limits to arbitrage models,
where dealers’ and arbitrageurs’ balance sheets are a key determinant of risk premia and market
conditions. To show that, we proceed in two steps. First, we establish the empirical link be-

1Most relevant to our empirical framework is the seminal model of Vayanos and Vila (2021), and the recent
generalization of Kekre, Lenel, and Mainardi (2022), who offer a rationalisation of the role of arbitrage capital for
yield curve noise and liquidity state-dependence, as well as the existence of a term premium effect. In Vayanos and
Vila (2021), when arbitrageurs’ capital is sufficiently high, they transmit shocks to short-term interest rates along
the yield curve, ensuring a smooth curve. We interpret the low noise periods as periods in which arbitrageurs’
wealth is high, and hence their role in transmitting short-rate shocks to longer bond yields and smoothing the yield
curve is not impaired.
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tween these two factors and our baseline yield curve noise measure, by regressing monthly changes
in noise on measures of intermediary capital (He, Kelly, and Manela, 2017) and past returns of
fixed-income arbitrage hedge funds (Siriwardane, Sunderam, and Wallen, 2022).2 Past hedge fund
returns appear to be the single most important determinant of noise (with an adjusted R2 of
35-37% from univariate regressions) whereas the effect of intermediary capital is also significant
(with an adjusted R2 of 16-18% from univariate regressions).3 Second, we consider the impact
of both of these two conditioning variables on the monetary policy transmission, and find that
both measures make independent and statistically significant contributions to the state-dependent
effects of monetary policy.

Our empirical findings have important policy implications. The liquidity state-dependence
(which appears to be quantitatively stronger than simply conditioning on macroeconomic indica-
tors) speaks to the coordination between monetary policy and financial policy which has received
increasing attention in the policy debate. It is well known that a liquid and well-functioning
government bond market hugely benefits society by facilitating government financing, providing
safe assets and determining the risk-free benchmark for all other borrowing rates in the economy.
However, more recent arguments point to a more nuanced interaction whereby market functioning
itself can shape macroeconomic stabilisation policies (Duffie and Keane 2023). Our paper provides
evidence related to this interaction: while we have mixed results regarding the role of market liq-
uidity in affecting the efficacy of monetary policy in favourable economic environments, liquidity
is a robust and crucial determinant of the monetary policy transmission in depressed economic
conditions.

Related Literature Our paper is closely related to a large literature quantifying the effects of
monetary policy on asset prices. Most related to our paper are Cochrane and Piazzesi (2002),
Gürkaynak, Sack, and Swanson (2005b), Hanson and Stein (2015) and Nakamura and Steinsson
(2018), who focus on the response of government bond yield curve to monetary policy shocks.4

Cochrane and Piazzesi (2002) first documented the surprisingly large response of long term bond
yields to monetary policy shocks identified with high-frequency data. Hanson and Stein (2015)
and Nakamura and Steinsson (2018) further document a large response in real yields that slowly
decays with maturity, implying a significant amount of non-neutrality that is at odds with textbook
macroeconomic models.5 Our contribution to this literature is to show that the response of long

2We also consider other determinants of the noise measure during this exercise.
3To our knowledge, the empirical result pertaining to the quantitatively important role of past hedge fund

returns in explaining the noise measure of Hu, Pan, and Wang (2013) is also novel in the literature.
4This literature builds on earlier work of Kuttner (2001) using high-frequency responses of interest rates to

identify monetary policy shocks, which was also used to study the reaction of equities in Bernanke and Kuttner
(2005).

5Hanson and Stein (2015) emphasise the role of key financial intermediaries in affecting the risk premium
component of yields, while Nakamura and Steinsson (2018) emphasise a Fed information effect that works through
the expectation components of yields.
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term bond yields mainly depends on market liquidity, driven primarily by arbitrageurs’ balance
sheet health.

Our evidence pertaining to a strong term premium component in the liquidity state-dependence
of monetary policy transmission is related to the growing literature on the term premium effects of
monetary policy (Abrahams, Adrian, Crump, Moench, and Yu, 2016; Kekre, Lenel, and Mainardi,
2022; Hanson, Lucca, and Wright, 2021; Bauer, Bernanke, and Milstein, 2023). Our results also
reveal a significant expectation component at long horizons, also consistent with learning (Hil-
lenbrand, 2020) or an information effect (Nakamura and Steinsson, 2018). The presence of both
effects is consistent with models featuring limits to arbitrage and segmentation such as Vayanos
and Vila (2021); Kekre, Lenel, and Mainardi (2022). Our results picture a nuanced view on the
role of term premium and expectation components: the term premium response can be large (as
argued by Hanson and Stein (2015)), but these responses manifest exclusively during periods of
higher market liquidity.

More generally, our paper is connected with the expanding literature on intermediary as-
set pricing (He and Krishnamurthy, 2013; Brunnermeier and Sannikov, 2014; Du, Tepper, and
Verdelhan, 2018; Andersen, Duffie, and Song, 2019; Fleckenstein, Longstaff, and Van Nieuwer-
burgh, 2020; Cenedese, Corte, and Wang, 2021; Infante, Favara, and Rezende, 2020; Du, Hebert,
and Huber, 2022). Our contribution to this literature is to provide a detailed empirical analysis on
how constraints on financial intermediation affect the monetary policy transmission to the yield
curve.

Our results also relate to the macroeconomic literature on the state-dependence of monetary
policy, showing that monetary policy has a weaker effect during recessions than in expansions
(Tenreyro and Thwaites, 2016; Jorda, Schularick, and Taylor, 2020; Alpanda, Granziera, and
Zubairy, 2021; Eichenbaum, Rebelo, and Wong, 2022; Li, 2022). While macroeconomic conditions
are correlated with measures of market liquidity, we show that market liquidity carries independent
information that is not captured by business cycle conditions.

The remainder of the paper is organized as follows. Section 2 describes the data used in
this paper; Section 3 presents the main results documenting state-dependence in the monetary
policy transmission to bond yields; Section 4 tries to disentangle the economic factors that explain
the state-dependence; Section 5 provides extensions to our baseline empirical design; Section 6
presents various robustness checks; Section 7 provide evidence from transaction-level data from
the US treasury market; Section 8 concludes.

2 Data
Our baseline analysis uses publicly available aggregate time-series for the US, summarised as
follows.
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Bond Yields We use daily nominal yields from Gurkaynak, Sack, and Wright (2007), and real
and inflation compensation components from Gurkaynak, Sack, and Wright (2010) available from
the Federal Reserve Board.6 Availability of real yields is the main constraint on the starting date,
which is why all of our analysis is from 2000 onwards. We use 1-year instantaneous forward rates
spanning the first 20 years of maturities.

Monetary Policy Shocks We use the high-frequency measure of monetary policy surprises of
Nakamura and Steinsson (2018), which uses the first principal component of the unanticipated
change over the 30-minute window around scheduled FOMC announcements in various interest
rates.7 We extend this shock series (originally covering the period from 1/1/2000 to 3/19/2014) to
cover the more recent period, using the data provided by Acosta (2022) who extends the sample
to 2019.

In addition, we consider three alternative monetary policy shock series as robustness checks.
First, we employ the series proposed by Jarocinski and Karadi (2020) (also used subsequently
by Kekre, Lenel, and Mainardi (2022)), which uses a structural vector autoregression model to
disentangle variation in monetary policy shocks caused by policy changes from that caused by
central bank information. Second, we use the monetary policy surprise measure of Bauer and
Swanson (2023b), which substantially expands the set of monetary policy announcement events
(to include press conferences, speeches etc.) and removes the component of the monetary policy
surprises that is correlated with economic and financial data. Third, we also consider the shocks
computed by Swanson (2021) that uses principal component analysis to decompose monetary
policy surprises into a short factor, a path factor and a long-term factor.

Market Liquidity Proxies We consider the yield curve noise measure of Hu, Pan, and Wang
(2013) as our baseline proxy for liquidity conditions in the US Treasury market.8 This is motivated
by the fact that this series is one of the most frequently used measures of treasury market liquidity
in the recent literature.9

[Figure 1]

6The data can be downloaded from the Federal Reserve website. We use the original dataset of Nakamura
and Steinsson (2018) (available in their replication package on this website) in our baseline analysis to increase
comparability with their results. In the different extensions we subsequently consider, we extend their original
dataset with more recent data. However, this approach has the drawback that the data vintage for real interest
rates used in Nakamura and Steinsson (2018) differs from the most recent vintage available on the website of the
Federal Reserve Board due to subsequent revisions to the underlying methodology. We assess the robustness of our
results to the choice of different data vintages in Appendix A.1.

7Specifically, Nakamura and Steinsson (2018) uses the following five interest rates: the Fed funds rate immedi-
ately following the FOMC meeting, the expected Fed funds rate immediately following the next FOMC meeting,
and expected three-month eurodollar interest rates at horizons of two, three, and four quarters.

8Fontaine and Garcia (2012) also study yield curve noise as a proxy for liquidity supply.
9See Vogt, Fleming, Shachar, and Adrian (2017); Foucault, Kozhan, and Tham (2017); Duffie (2020); Goldberg

(2020); Goldberg and Nozawa (2021); Boyarchenko, Crump, Kovner, and Shachar (2021) among many others.
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As shown in Figure 1, the noise measure spiked during the 2008-2009 financial crisis. We follow
Nakamura and Steinsson (2018) and drop the period spanning the height of the financial crisis
in the second half of 2008 and the first half of 2009. Given the visible trend in the noise series,
we also check in Appendix A.1 that our results are robust to detrending the series. To proxy
the mechanisms underlying the noise measure, we use the intermediary leverage measure of He,
Kelly, and Manela (2017) and past returns of fixed-income arbitrage hedge funds as in Siriwardane,
Sunderam, and Wallen (2022).

As robustness, we also experiment with alternative measures of liquidity, including the VIX
index (Adrian and Shin, 2010; Nagel, 2012; Goldberg, 2020; Goldberg and Nozawa, 2021) as well
as the T-Bill Eurodollar (TED) spread (Garleanu and Pedersen, 2011; Friewald and Nagler, 2019;
Goldberg and Nozawa, 2021) that have been widely used as proxies for market liquidity conditions.

3 Empirical Analysis
To measure the transmission of monetary policy, we start with the following baseline regression
specification:

Δf i
t,τ = α + γi

all,τ Δmpst + εt, (1)

where t is the date of scheduled FOMC announcements, Δf i
t,τ is the daily change in the forward

rate of denomination i ∈ {n, r, π} (for nominal, real and inflation, respectively) and maturity τ ,
and Δmpst is the high-frequency monetary policy surprise identified in a narrow window around
the FOMC announcements. For example, the parameters γn

all,τ for τ ∈ (2, 20) trace out the
estimated impact of the monetary policy shocks Δmpst on the nominal forward yield curve from
the 2-year to 20-year horizon. We follow Nakamura and Steinsson (2018) and scale Δmpst such
that the effect on the 1-year nominal Treasury yield is 100 bps (γn

1,1 = 1).
Our goal is to assess whether market liquidity conditions around announcements systemati-

cally impact the transmission of monetary policy shocks to nominal yield curve, and its real and
inflation components, at different maturities. To capture liquidity state-dependence we interact
the monetary policy surprise with indicator functions capturing whether our proxy for market
liquidity is above (HighLiqt−1) or below its median value (LowLiqt−1) prior to a given FOMC
announcement. This yields the regression:

Δf i
t,τ = α + γi

hl,τ · [Δmpst × HighLiqt−1] + γi
ll,τ · [Δmpst × LowLiqt−1] + εt, (2)

Our parameters of interest, γi
hl,τ and γi

ll,τ , are therefore estimated on the same number of announce-
ments. Each coefficient measures the degree of monetary policy transmission to bond yields under
different market liquidity conditions. This setting nests the baseline specification (1) in which
the impact of monetary policy shocks is assumed constant over the entire estimation sample,
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corresponding to the coefficient restriction γi
hl,τ = γi

ll,τ .
To quantify the economic and statistical significance of the state-dependence (the difference in

estimates in days of high vs. lower liquidity) we also estimate the related specification:

Δf i
t,τ = α + γi

ll,τ Δmpst + γi
h−l,τ · [Δmpst × HighLiqt−1] + εt, (3)

where γi
h−l,τ captures the incremental reaction of bond yields to monetary policy shocks on days

of higher liquidity on forward i of maturity τ . Section 6.4 will provide a detailed analysis on
the statistical significance of the state-dependence using our baseline liquidity measure as well as
alternative measures of liquidity and monetary policy shock series.

3.1 Baseline Results

As our baseline specification we replicate Nakamura and Steinsson (2018), using their measure of
monetary policy shocks and their sample choice. We estimate regressions (1) and (2) by OLS for
each forward maturity separately. We follow their convention of restricting the sample to exclude
all announcements taking place between July 2008 and June 2009 to ensure that our results are
not driven by anomalous liquidity conditions in the Treasury market during the height of the
Global Financial Crisis.

Liquidity State-Dependence in Nakamura and Steinsson (2018) As a starting point, we
reproduce Table 1 of Nakamura and Steinsson (2018) so that we can transparently demonstrate
how the baseline coefficients change as we split the sample into low-noise and high-noise days
(equation 2). Table 1 summarises the results.

[Table 1]

The policy news shock is scaled such that the effect on the one-year Treasury yield is 100 bps.
Looking across different maturities, the average effect of the shock is somewhat smaller for shorter
maturities, peaks at 110 bps for the 2-year nominal yield and then declines monotonically to 38 bps
for the 10-year nominal yield. When looking across the columns, we find that the effect on 10-year
yields is 124 bps (driven entirely by the real component) when the shock hits during periods of
higher market liquidity, and the effect is virtually zero during periods of lower market liquidity.
We find strong liquidity state-dependence of the real rate when we consider forward rates as well.
For example, Nakamura and Steinsson (2018) finds that the average effect on the 10-year forward
is insignificant (-0.08), but we find that the effect turns significantly positive (0.58) during periods
of higher liquidity.

The Effects on Longer Maturity Forwards In what follows, we only depart from Nakamura
and Steinsson (2018) by focusing on forward rates and extending the maturity breakdown of
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bond yields by including all the 1-year instantaneous forwards from the 2-year forward up to 20
years.10 Figure 2 presents the results for the sample from January 2000 to March 2014 used in
Nakamura and Steinsson (2018). The first column shows the estimates of γi

all,τ from specification
(1) for forward rates with maturities τ ∈ (2, 20). The state-dependent parameters estimated
using regression (2) shown in columns two (γi

hl,τ , corresponding to FOMC announcements on
higher liquidity/low noise days) and three (γi

ll,τ , corresponding to FOMC announcements on lower
liquidity/high noise days), for i ∈ {n, r, π}. We estimate the regressions by OLS for each forward
maturity τ separately.

[Figure 2]

The first row of Figure 2 plots the estimates of regressions (1) and (2) for nominal forward
rates (γn

j,τ ), while the second row and third row display the corresponding estimates for the real
(γr

j,τ ) and inflation (γπ
j,τ ) forwards, respectively, for j ∈ {all, hl, ll}. In all charts in Figure 2, 90%

confidence bands based on robust standard errors are shown around the point estimates for each
maturity.

Estimates replicating the results in Nakamura and Steinsson (2018) using our finer forward
maturity breakdown are shown in the first column of Figure 2, labeled ‘Baseline’. The point
estimates of the response of nominal forward yields to monetary policy shocks (γn

all,τ ) are shown
in the top left chart. They are decreasing in maturity from the 2-year forward onwards, with only
estimates for very short maturity forwards (2 and 3 years) statistically significantly different from
zero. This highlights the benefit of using forwards instead of spot yields, as it clearly shows that
the statistically significant response of 10-year spot yields is entirely driven by the reaction of very
short-term forwards.11

The dominant role of real rates in explaining the positive response of the nominal bond yield
curve to monetary policy shocks, which had been highlighted earlier (see Hanson and Stein (2015),
Nakamura and Steinsson (2018) and Kekre, Lenel, and Mainardi (2022)), can be seen from the
charts on the second and third row of the first column. The real forward curve reaction is positive
for all maturities (though significant only through medium maturities), while the inflation forward
curve reaction is negative (and statistically significant) except for very short-term maturities.
Before considering the state-dependence, which is the focus here, we note that in the baseline
specification of Nakamura and Steinsson (2018) the results are less significant for longer maturities
than found in Hanson and Stein (2015).12

10This is the most complete breakdown possible in our dataset. Focusing on forwards on such an extended
maturity spectrum provides a comprehensive account of yield curve dynamics, and allows greater comparability of
our results with Hanson and Stein (2015) and Kekre, Lenel, and Mainardi (2022) as well.

11The spot yield in a N-year zero-coupon bond is simply the average of all 1-year forward yields from year 1 to
N. As shown in Table 1, though the response of the 10-year spot yield to monetary policy shocks is positive and
significant, the 10-year forward yield point estimate is actually negative, though statistically insignificant.

12We also find no U-shaped pattern in the coefficients, which is the focus of Kekre, Lenel, and Mainardi (2022).
We return to these differences when considering alternative samples and different measures of monetary policy
shocks.
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The essence of our key results – the state-dependence in the response of the yield curve to
monetary policy shocks – is illustrated by the second and third column of Figure 2. We find a larger
nominal response to monetary policy shocks (first row, second column) in higher liquidity (low
yield curve noise) days, and the state-dependence is almost entirely driven by the real component
(second row, second column). The response of nominal forwards in higher liquidity days is even
larger than the baseline estimates, and statistically significant through all forward maturities
considered (first row, second column). The larger response of nominal yields in liquid markets is
entirely driven by the larger and more significant real components (second row, second column),
with an insignificant response of inflation forwards of all maturities (third row, second column).
When we condition on lower liquidity (high yield curve noise) days, the response of nominal
yields (first row, third column) is not statistically different from zero for short to medium forward
maturities, and is even negative and statistically significant for forward maturities above 10 years,
This is the result of an insignificant response of the real forward curve (second row, third column),
combined with the increasingly negative response of the inflation component at longer horizons
(third row, third column).

Our baseline results survive an extensive list of robustness checks – including different sample
periods and different definitions and/or measurements for market liquidity and monetary policy
shocks – which are summarized in Section 6. The main takeaway from these robustness exercises
is that our key result on the liquidity state-dependence of monetary policy transmission is not
driven by the data and sample period used in Nakamura and Steinsson (2018), by our choice of
measure for market liquidity conditions, or by unconventional monetary policy operations carried
out since the GFC.13

Role of Risk Premium vs Expectations We now turn to model decompositions of for-
wards into term premium and expectation components to determine what accounts for the state-
dependence shown above. As our baseline, we employ the decomposition of Abrahams, Adrian,
Crump, Moench, and Yu (2016), and we consider alternative decompositions (Kim and Wright,
2005; D’Amico, Kim, and Wei, 2018) in robustness Section 6.5.14

The state-dependence of the components of real forwards are shown in Figure 3, using the
estimates of Abrahams, Adrian, Crump, Moench, and Yu (2016). The corresponding results for
expectations and risk premia components of the nominal forwards are shown in Figure 89 of the
appendix, and confirm that the state-dependence is driven by the real component.

[Figure 3]
13Most notably, our main result remains valid when considering an extended sample covering the period from

2000 to 2019 – particularly once the long-term downward trend in the noise measure is properly taken into account.
See Section 6.1 and Appendix A.1 for further details.

14We thank Min Wei for sharing with us a finer 1-year instantaneous forward maturity decomposition than is
available online, to allow us to match our regression design and compare with Abrahams, Adrian, Crump, Moench,
and Yu (2016).
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This clear role for the risk premium component is in line with the earlier results of Hanson and
Stein (2015), and the interpretation of Kekre, Lenel, and Mainardi (2022),15 but at odds with the
results of Nakamura and Steinsson (2018). Here we show that there is a term premium effect using
the high-frequency surprise measure of Nakamura and Steinsson (2018), but this is present only
in higher liquidity states. Given the large response in nominal yields is predominantly driven by
the real response in high-liquidity states, our results suggest the ‘information effect’ emphasized
by Nakamura and Steinsson (2018) cannot be the only, or even main, mechanism at work. Kekre,
Lenel, and Mainardi (2022) emphasises the effects on arbitrageur wealth in driving the positive
effect of monetary policy surprises on real term premium – we explore this explanation in the
following section.

4 Inspecting the Mechanism
In this section, we explore potential mechanisms which could rationalise our evidence on the link
between poor liquidity conditions in the Treasury market and impaired transmission of monetary
policy shocks. We build on the expanding literature highlighting the role played by primary dealers
and hedge fund arbitrageurs (e.g. Barth and Kahn, 2021; Kruttli, Monin, Petrasek, and Watugala,
2023 and references above).

4.1 What Explains the Noise Measure?

To estimate the determinants of our main state variable, we regress monthly changes in the
noise measure over the sample period from 2000 to March 2014 on the other widely used proxies
for liquidity conditions introduced in Section 2.16 We additionally consider the role of financial
intermediaries’ leverage (using the measure of He, Kelly, and Manela, 2017) as well as arbitrageurs’
balance sheet health as proxied by Siriwardane, Sunderam, and Wallen (2022).17

[Table 2]

As shown by Table 2, all the variables used in the regression have a statistically significant
relation with the noise measure when considered individually (columns 1 to 5). Higher volatility
and increased cost of funding, respectively proxied by the VIX index and the TED spread, are

15Kekre, Lenel, and Mainardi (2022) do not directly test the role of term premium using real term premium
estimates, instead they infer it must be driven by risk premium from the U-shaped response they find. We do
not find evidence of U-shaped response, but find a direct term premium effect which is mainly present in higher
liquidity states.

16See also Section 6.3 for evidence that our main result on the liquidity state-dependence of monetary policy
transmission is robust to the use of these alternative liquidity measures.

17The measure of Siriwardane, Sunderam, and Wallen (2022) uses Barclay’s hedge fund return indices. The
rationale is that past negative returns would be associated with tighter balance sheet constraints on these investors.
See also Greenwood and Vayanos (2014).
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both positively associated with higher noise and a worsening in liquidity conditions in the Trea-
sury market. Financial intermediaries’ balance sheet constraints, captured by the leverage ratio
measure, also have a positive relation with the noise measure. Likewise, lower hedge fund returns,
which proxy for tighter balance sheet constraints for arbitrageurs, are associated with rising illiq-
uidity in the Treasury market. Particularly, returns for fixed-income arbitrage (FIA) funds active
in this market can explain the changes in the noise measure with an adjusted R2 of 36.68%.

[Table 3]

The important role played by financial intermediaries and arbitrageurs is confirmed by the
results of the multivariate regressions (columns 6 to 10). Intermediary leverage and FIA returns
jointly explain 40% of the monthly variations in the noise measure. Other liquidity proxies such as
the VIX and TED spread are no longer significant in regressions including proxies for balance sheet
constraints of financial intermediaries and arbitrageurs. Moreover, their incremental contribution
to the adjusted R2 is negligible. Our results are confirmed in the extended sample ending in
December 2019, although the share of monthly variations in the noise measure explained by the
regressors decreases slightly (see Table 3).

In light of the importance of hedge fund returns in explaining yield curve noise, we revisit our
baseline results on liquidity state-dependence by estimating a variant of regression (3) with FIA
hedge fund returns used to sort our sample into higher and lower liquidity periods.

[Figure 4]

As shown by Figure 4, the majority of the monetary policy transmission to the long-term
real forward rates is concentrated in periods with looser balance sheet constraints on hedge funds
(middle column).

4.2 Conditioning on Primary Dealers and Hedge Fund Proxies

We now turn to disentangling the relative contributions of primary dealers and hedge funds to
the transmission of monetary policy shocks. To that end, we first condition on the state of fixed-
income arbitrage (FIA) returns (i.e. by taking the subset of FOMC announcements where FIA
hedge funds have been experiencing below/above median returns), and consider the marginal
impact of primary dealers’ leverage on MP transmission.

Empirically, this amounts to applying a double sorting approach on the set of FOMC announce-
ment dates whereby announcements are first sorted into two buckets depending on whether the
FIA hedge fund returns are below/above median and, then, further dividing each bucket into two
subgroups depending on whether the intermediary leverage measure of He, Kelly, and Manela
(2017) is below/above median. We estimate an extended version of regression (2) on the four sub-
sets of FOMC announcements, respectively, corresponding to “Low FIA returns/Low leverage”,
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“Low FIA returns/High leverage”, “High FIA returns/Low leverage”, and “High FIA returns/High
leverage”. We consider the extended sample period from 01/2000 to 12/2019 in this part of the
analysis to increase the number of observations in each subset of FOMC announcements.

[Figures 5–6]

Figure 5 focuses on FOMC announcements around which FIA hedge funds have been experi-
encing above-median returns and are thus less likely to be balance-sheet constrained. The first
column reproduces the estimates of γi

hl,τ in regression (2) for the subset of scheduled FOMC an-
nouncements for which the FIA hedge fund return index is above its median level (see also the
second column of Figure 4).

The second and third columns respectively report the estimates for the “High FIA returns/Low
leverage” and “High FIA returns/High leverage”. We observe that once conditioning on hedge
funds being unconstrained in their risk-bearing capacity, the incremental impact on monetary
policy transmission of dealers’ balance sheet being unconstrained becomes negligible. However,
there are strong signs of asymmetries in the interactions between hedge funds’ and primary dealers’
balance-sheet constraints. The third column of Figure 5 shows that unconstrained hedge funds
might amplify monetary policy transmission far out in the yield curve (at maturities of 10-12 years)
for both nominal and real forward rates when primary dealers are balance-sheet constrained. This
result is suggestive of a beneficial role of liquidity provision played by hedge funds active in the
Treasury market which supports monetary policy transmission when primary dealers have limited
risk-bearing capacity.

Figure 6 shows the corresponding results for FOMC announcements around which FIA hedge
funds have been experiencing below-median returns and are thus more likely to be balance-sheet
constrained. While the second column indicates some mild attenuation of the impaired transmis-
sion of shocks when dealers’ balance sheet is unconstrained, the third columns points to a sharp
worsening of monetary policy transmission when dealers’ balance-sheet constraints reinforce hedge
funds’ impaired risk-bearing capacity. We even record significant decreases in nominal and real
forward rates at longer maturities (above 5 years) following a monetary policy tightening.

[Figures 7–8]

Figures 7 and 8 present the results respectively for the cases where primary dealers’ are less
(resp. more) likely to be balance-sheet constrained. The third column of Figure 7 shows that hedge
funds being unconstrained has a negligible incremental impact on monetary policy transmission
when conditioning on primary dealers being unconstrained (in line with the results above).

The results in the case where hedge funds’ risk-bearing capacity is likely to be constrained
(second column) are informative about the role played by each group of financial intermediaries in
the transmission of shocks across the yield curve. While transmission in the short end of the yield
curve (maturities below 5 years) is broadly unaffected by hedge funds’ balance-sheet constraints
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for both nominal and real forward rates – albeit with more uncertainty around the estimates
indicated by wider confidence bands – the transmission to longer-maturity real forward rates
becomes ineffective (with corresponding impact on nominal rates). These results are indicative of
a more important role played by primary dealers’ risk-bearing capacity in shock transmission to
short maturities and hedge funds playing a more important role in transmitting monetary policy
shocks across the yield curve.

Figure 8 presents the results when dealers are constrained. The second column confirms our
result of a worsening in monetary policy transmission when both dealers and hedge funds have
impaired risk-bearing capacity. The third column confirms the beneficial role of liquidity provision
played by hedge funds when dealers are balance-sheet constrained.

5 Extensions
In this section, we extend our baseline analysis to address a number of possible issues around our
empirical design.

5.1 Does Liquidity State-Dependence Capture Recession State-Dependence?

Periods of low (high) market liquidity tend to coincide with macroeconomic recessions (expan-
sions). Given that the macroeconomics literature has shown that monetary policy has a weaker
effect during recessions than in expansions (Tenreyro and Thwaites, 2016; Jorda, Schularick, and
Taylor, 2020; Alpanda, Granziera, and Zubairy, 2021; Eichenbaum, Rebelo, and Wong, 2022),
a natural question is whether liquidity state-dependence is simply picking up recession state-
dependence.

To address this issue, we estimate a variant of our baseline regression (2) whereby we replace
the yield curve noise measure with the ISM manufacturing Purchasing Managers Index (PMI) –
a timely indicator of US business cycle activity closely monitored by market participants (Berge
and Jorda, 2011; Andreasen, Engsted, Moller, and Sander, 2021).18

[Figures 9–10]

Results in Figures 9 and 10 support the previous literature pointing to a less powerful trans-
mission of monetary policy when economic conditions are depressed, which corresponds in our
case to the PMI being below its median level (third column). We note that the results for nominal

18Berge and Jorda (2011) document that indices of economic activity such as the Chicago Fed National Activity
Index (CFNAI) or the Philadelphia Fed ADS index (Aruoba, Diebold, and Scotti, 2009) have a higher accuracy
than the PMI at classifying US economic activity into expansions and recessions. However, the CFNAI and ADS
index provide model-based measures of economic activity subject to ex-post revisions. We therefore opt for the
PMI as it is more likely to accurately reflect the information available to market participants about the state of
the economy around FOMC announcements.
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forward rates in the baseline sample indicate a less strong transmission of monetary policy shocks
to longer maturities (above 5 years) in favourable economic conditions compared to our baseline
results for low noise announcements dates.

[Figures 11]

To test whether the monetary policy transmission is significantly different during high and low
PMI periods and whether this difference is larger compared to using our baseline noise measure
as conditioning variable, Figure 11 presents the estimates of γi

h−l,τ in regression (3) for nominal
and real forward rates in the baseline sample. For the PMI, the evidence of statistically significant
state dependence in real rates in the baseline sample are concentrated in short and medium-term
maturities (below 8 years) with a magnitude comparable to the results for the noise measure.
However, the differences between high and low PMI periods are visibly weaker in long maturities,
where our baseline liquidity measure continues to yield significant heterogeneity.

To disentangle the relative contributions of market liquidity and economic conditions to mon-
etary policy transmission, we follow the same methodology as in the previous section and adopt
a double sorting strategy.19 Figures 12 and 13 highlight another source of asymmetry arising
from the interactions between economic conditions and market liquidity. While market liquidity
plays a minor role in favourable economic environments (Figure 12), we observe in column 2 of
Figure 13 that higher liquidity in the market can support monetary policy transmission across
the yield curve for both nominal and real rates in depressed economic conditions. We document
in Appendix A.1 that the downward trend in the noise measure over the sample can bias the re-
sults of our double sorting analysis. Once corrected, we observe that market liquidity plays a key
role in monetary policy transmission over the business cycle. The transmission of policy shocks
can become muted during favourable economic conditions if market liquidity is poor, and higher
liquidity in the market can support monetary policy transmission during periods of depressed
economic activity.

[Figures 12–13]

Figures 14 and 15 provide complementary evidence on the role of market liquidity for monetary
policy transmission over the business cycle. First, the marginal impact of economic conditions
on monetary policy transmission becomes negligible once we condition on the subset of FOMC
announcements associated with high market liquidity (Figure 14). Again there is some degree of
asymmetry in these results, as the third column of Figure 15 indicates that low market liquidity is
less detrimental to monetary policy transmission in favourable economic environments. However,
the asymmetry in the results is driven by the trend in the noise measure. We show in Appendix
A.1 that market liquidity plays a key role in monetary policy transmission as we do not observe a

19As in the previous section, we consider the extended sample period from 01/2000 to 12/2019 in this part of
the analysis to increase the number of observations in each subset of FOMC annoucements.
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significant impact of (un)favourable economic conditions once we condition on liquidity conditions
in the market being good or bad.

[Figures 14–15]

5.2 Possible Correlations between Market Liquidity and Monetary Policy

A potential concern about our empirical design is related to the possible correlations between
market liquidity and monetary policy. For example, it might be that market liquidity may be
systematically different during monetary policy announcements, leading to endogeneity problems
in our empirical analysis. Alternatively, the size of monetary policy shocks itself could depend on
market liquidity, which could affect the interpretation of our results. To address these concerns,
we first check how the average values of the noise measure are distributed across the week days
with and without FOMC announcements. As shown by Appendix Table 10, the noise measure
is relatively stable across the different days of the week, although it tends to be higher on Fri-
days. We do not see a statistically significant difference in the mean noise during FOMC weeks,
which indicates that this measure is a good candidate for our approach conditioning on liquidity
conditions prior to the arrival of the shock.

Moreover, we estimate the relation between the size of monetary policy shocks and market
liquidity by regressing the absolute value of the realised surprises on the previous day’s noise
measure. As shown by Appendix Table 11, there is some evidence that higher noise days are
followed by larger surprises (column 1).20 Given that the variance of the monetary policy surprises
could differ across higher/lower liquidity announcement dates, we standardize the shocks in each
subgroup to have unit variance. This allows us to isolate the state-dependence in the covariance
between interest rates and monetary policy surprises independently of differences in the magnitude
of the response driven by conditional heteroskedasticity across liquidity states. Note that for
comparability, we also standardize the shocks in the baseline results to have unit variance.

[Figure 16]

Figure 16 presents the results for the baseline. The results confirm that the state-dependence of
monetary policy transmission with respect to liquidity conditions is not driven by the conditional
heteroskedasticity of the shocks across liquidity states.

20Though the effect is weaker and statistically insignificant once we remove trends from the noise measure
(column 2-3).
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5.3 Dynamic Effects over Longer Horizon

We assess the impact of market liquidity on the transmission of monetary policy shocks over a
horizon of 60 trading days. To this end, we extend the specification in Equations (1)–(2) as follows:

f i
t+h−1,τ − f i

t−1,τ = αh + γi,h
all,τ Δmpst + εt+h−1, (4)

f i
t+h−1,τ − f i

t−1,τ = αh + γi,h
hl,τ · [Δmpst × HighLiqt−1] + γi,h

ll,τ · [Δmpst × LowLiqt−1] + εt+h−1, (5)

where the left-hand side variable measures the cumulative change over an horizon of h days after
the announcement. Figure 17 presents the results for real forward rates in the baseline sample,
supporting the thesis of a state-dependent transmission of monetary policy shocks. The initial
increase in real forwards on higher liquidity announcement days has prolonged effects up to 3
months after the initial shock. The estimated effects are strongly significant over the first month
for intermediate maturities of 5 and 10 years, and the overall increase after 3 months is significant
for the 5 and 20-year forwards. These results contrast starkly with the muted response of real
forwards on lower liquidity announcement days. The majority of the estimates are not significantly
statistically different from zero and we even observe a significant cumulative decrease 3 months
after the initial shock for 5 and 10-year forwards.

[Figure 17]

Note that the lack of clear state-dependence in the results for the 2-year forward rate might
be explained by the shorter sample used for the estimation (starting in 2004). While the results
for the extended sample (Figure 57 in the Appendix) might lend support to this hypothesis, they
are actually driven by the downward trend in the noise measure. Once corrected, the results in
the extended sample using the detrended noise measure are in line with our baseline analysis (see
Figure 60 and Section A.1 in the Appendix).

We can gain further insights on the differences between the results for the baseline and extended
sample by examining how nominal and inflation forward rates react to the monetary policy shock
at longer horizons. Figure 55 shows that nominal forward rates also exhibit signs of a persistent
impact of the state-dependent transmission of monetary policy shocks in the baseline sample which
parallels the results documented for real forwards. This is associated with moderate signs of state-
dependence for inflation forwards, with estimates which are not statistically significant (Figure
56). These results are confirmed by our analysis for the extended sample using the detrended
noise measure. See Figures 61–62, as well as Section A.1 in the Appendix for further details.
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5.4 Macroeconomic Implications: The Response of Mortgage Rates

As the results in Section 5.3 are suggestive of a persistent dynamic impact of liquidity conditions
on the transmission of monetary policy, a natural question to ask is whether there are potential
implications for the real economy. As an application, we consider the effects on mortgage rates
given the importance of the monetary policy transmission to the housing market (Iacoviello 2005;
Davis and Van Nieuwerburgh 2015).

[Figure 18]

Figure 18 provides the results for US fixed mortgage rates in the baseline sample and Figure 63
in the appendix covers the extended sample. In line with our main results, we find a strong degree
of state-dependence in monetary policy transmission, with a large and statistically significant
cumulative increase in mortgage rates over an horizon of 3 months when the shock occurs on a
higher liquidity day.21 Conversely, a significant cumulative decrease follows shocks occurring on
lower liquidity announcement days. The magnitude of these estimated effects is somewhat lower in
the extended sample but we still find a strong and significant persistence of monetary transmission
over the first two months following a monetary policy tightening on higher liquidity announcement
days. As in previous sections, the somewhat weaker liquidity state-dependence of monetary policy
transmission in the extended sample is resulting from the downward trend in the noise measure
which needs to be properly taken into account in the analysis. We document in Appendix A.1 that
the results based on the detrended noise measure confirm our baseline analysis. Figure 64 shows
that the estimates for the higher liquidity days are more precisely estimated and the cumulative
increase in mortgage rates is significantly statistically different from zero at all horizons up to 3
months after the initial shock.

5.5 Evidence from the UK

We now turn to the results using UK data. The measure of monetary policy shocks is the first
principal component extracted from the high-frequency surprises in the the first four quarterly
Short Sterling Futures contracts. As such, the monetary policy shock incorporates information
about the short-term target rate and the expected path of interest rates over the next few months,
similar to the measures proposed by Nakamura and Steinsson (2018) and Bauer and Swanson
(2023b) for the US which were used in the previous sections.

[Figure 19]

Figure 19 shows the results using all Bank of England MPC announcements for the sample
2000-2019. We find a similar pattern of state-dependence for the real forward curve as found for the

21Such quick propagation of the monetary policy shock to mortgage rates is consistent with recent evidence,
showing that the monetary policy transmission to the mortgage market may be quicker than the previous literature
had suggested (Gorea, Kryvtsov, and Kudlyak 2022).
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US in a similar sample. The only difference is that the inflation forwards is also state-dependent,
with a more negative response to policy shocks in higher liquidity states. This state-dependent
reaction of inflation forwards offsets the larger impact on real forwards, leaving the nominal forward
reaction similar across liquidity states, though the pattern in each of its components is clearly
state-dependent.

6 Additional Results and Robustness Checks
In this section we demonstrate the robustness of our baseline results. We first show they hold
when using a number of different measures of the monetary policy shocks proposed by the recent
literature, and using different sample choices (Section 6.1). We also consider whether a predictable
component in these shocks might affect our results – an issue that has been shown to plague many
of these measures (Section 6.2).22

We show in Section 6.3 that our main result on the liquidity state-dependence of monetary
policy transmission is robust to the use of alternative liquidity measures. Section 6.4 provides an
in-depth assessment of the economic and statistical significance of our state-dependence results.
Finally, we show in Section 6.5 that our results on risk premia are robust to alternative methods
of decomposing yields and forward rates.

In addition, Appendix A.1 provides further results on the potential impact of our choice of
timing to measure market liquidity conditions around FOMC announcements; the potential role
played by long-term trends in market liquidity; and the implications for our results of using
different data vintages for interest rates.

6.1 Alternative Measures of Monetary Policy Shocks and Sample Choice

One of the key differences among previous studies on the response of bond yields to monetary
policy shocks is how these shocks are measured. Hanson and Stein (2015) use the daily change in
2-year yields on FOMC announcement days, while Nakamura and Steinsson (2018) use changes
over 30-min windows around the announcement, and argue that their identification accounts for
the difference in the results relative to Hanson and Stein (2015). The literature in monetary
policy identification has increasingly focused on high-frequency measures similar to Nakamura
and Steinsson (2018) because of the additional background noise in daily changes. Refinements
include the exclusion of days when changes in equity prices suggest the presence of an information
effect (Jarocinski and Karadi, 2020), and decomposing shocks into federal funds rate, forward

22See Miranda-Agrippino (2016); Miranda-Agrippino and Ricco (2021); Karnaukh and Vokata (2022); Bauer
and Swanson (2023a,b) among others.
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guidance and LSAP shocks (Swanson, 2021).23

[Figure 20]

The robustness results are summarized in Figure 20, showing the estimates of the additional
impact on real forward yields at times of higher liquidity (γr

h−l,τ , for τ ∈ (2, 20), from Equation
(3)) for different samples and monetary policy shock measures.

We start by changing the samples, while keeping the same monetary policy shock measure.
The first row shows the baseline Nakamura and Steinsson (2018) results discussed in the previous
section, and two alternative samples: an extended sample through 2019 (using the series provided
by Acosta, 2022) and the extended sample with all unconventional monetary policy announce-
ments identified by Cieslak and Schrimpf (2019) removed. Figures 72 and 73 in the appendix
report the complete set of results for these two cases and Figure 74 covers the case where all the
announcements in the 2008-2009 period are also included in the analysis. The same pattern of
higher estimates in liquid markets, with statistically significant estimates for many maturities,
remain, though the statistical significance of the state-dependence is not as uniform across the
curve as in the baseline case. We show in Appendix A.1 that the apparent weaker liquidity state-
dependence of monetary policy transmission in the extended sample is likely due to the downward
trend in the noise measure which is unrelated to shorter-term market liquidity conditions around
FOMC announcements.24 We find very similar estimates compared to our baseline results once
the long-term trend in the noise measure is properly taken into account.

We next consider two recent alternative monetary policy surprise measures, by Jarocinski and
Karadi (2020) and Bauer and Swanson (2023b). These are shown in the second row of Figure 20.
The results with the Jarocinski and Karadi (2020) shocks, which are the shocks used in Kekre,
Lenel, and Mainardi (2022), confirm the results using the shocks from Nakamura and Steinsson
(2018), with similar magnitude in the extended sample and even stronger state-dependence for
the original sample.25

When using the individual shocks from Swanson (2021) shown in the third row of Figure
20, only the forward guidance shock has any statistically significant state-dependence. There is

23These are how Swanson (2021) refers to them. The LSAP shocks, however, are nearly identical before and
after 2009 except for 3 dates (March 2009, and two Taper Tantrum dates), which suggests that literally assigning
them to LSAP shocks may be misleading. The first two shocks correspond to what others (Gürkaynak, Sack, and
Swanson, 2005a) have referred to as short-rate and path shocks. We instead refer to the LSAP shock as a curve
twist shock (with opposite loading on short-term and long-term yields, and higher loadings on long-term yields).

24Adrian, Fleming, and Vogt (2023) document a downward trend in their liquidity index for the US Treasury
market over the same period. They also note an upward trend in trading activity during this period linked to the
progressive adoption of fully automated electronic trading platforms.

25Figure 75 in the appendix reports the same set of results using the monetary policy shock of Jarocinski and
Karadi (2020) and their original sample, as used in Kekre, Lenel, and Mainardi (2022). Figure 76 considers the
extended sample ending in June 2019. We note that we find almost no sign of a U-shape pattern in the estimates,
particularly for the whole sample. Furthermore, just as with the Nakamura and Steinsson (2018) shocks, the
whole sample response of bond yields to monetary policy shocks is only statistically different from zero for short
maturities.
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no evidence of state-dependence in the LSAP shock, with point estimates for most maturities
close to zero. The full estimates for each of the shocks from Swanson (2021), shown in Figures
78-80 of the appendix, reveal an even greater role for forward guidance shocks. All estimates
(across maturities, type of forward and for full sample and each liquidity state) are insignificant
for the Federal Funds rate shock, while all point estimates for LSAP shocks are very similar
across liquidity states. In contrast, the marginal significance of the incremental reaction in higher
liquidity states to the forward guidance shock is purely an issue of statistical precision. The
results for the LSAP shocks, together with the evidence for state-dependence discussed above for
Nakamura and Steinsson (2018) shocks when we exclude all of the unconventional monetary policy
announcements identified by Cieslak and Schrimpf (2019), suggest our results are not influenced
by QE/LSAP operations since the global financial crisis.

6.2 Information Effect and Response to News

Bauer and Swanson (2023a) show that the Fed information effect can be explained by the Fed’s
response to publicly available news in financial and macroeconomic variables. This introduces a
predictable component in high-frequency monetary policy surprises which needs to be purged out
to satisfy the exogeneity assumption of the instrument. Though they emphasize this is not an
issue for event study regressions with asset prices as we do here, we nevertheless check whether this
affects our state-dependence results. To that end, we orthogonalize the monetary policy shocks
of Nakamura and Steinsson (2018) and Bauer and Swanson (2023b) and repeat our analysis with
the orthogonalized shocks. Appendix A.2 details how the monetary policy shocks are regressed on
the set of macroeconomic and financial predictors proposed in Bauer and Swanson (2023b). Table
4 presents the results for each monetary policy shock series and different samples. Figures 21 and
22 compare the original shock series with the orthogonalized ones for the baseline and extended
samples.26

[Figures 21–22]

The robustness of state-dependence to orthogonalized monetary policy shocks in the case of
real forward rates is shown in Figure 23 for both the Nakamura and Steinsson (2018) and Bauer
and Swanson (2023b) shocks. Figures 81 and 82 of the appendix report the same results for
nominal and inflation forward rates and the complete set of results can be found in Figures 83-86.
For our baseline sample the results are unaffected, while they lose statistical significance for the
extended sample. A closer inspection of Figures 21 and 22 indicates that this is likely due to the
fact that orthogonalized shocks are much smaller in the more recent sample, making inference
more noisy.

26The orthogonalized shock series correspond to the residuals from the regression results reported in columns
(4)-(5) of Table 4 for the baseline sample and columns (8)-(9) for the extended sample.
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[Figure 23]

We also consider the alternative shock series proposed by Karnaukh and Vokata (2022). They
remove the component in the Nakamura and Steinsson (2018) shock and the Gürkaynak, Sack, and
Swanson (2005a) path shock that can be forecast using the revision in private sector forecasts of
growth from Blue Chip Surveys. Figure 24 shows the results using the path shock, which confirms
the importance of the similar ‘forward guidance’ shock from Swanson (2021), and is robust to
orthoganalizing the series to private sector updates of growth expectations.

[Figure 24]

6.3 Alternative Measures of Market Liquidity

Our baseline measure of liquidity is correlated with other popular measures that proxy liquidity
conditions. For example, variations in the VIX index can reflect changes in financial intermediaries
balance sheet constraints (Adrian and Shin, 2010; Nagel, 2012), and can also proxy broader market
conditions (Goldberg, 2020; Goldberg and Nozawa, 2021). In addition, the T-Bill Eurodollar
(TED) spread is often used to proxy variations in funding conditions (Garleanu and Pedersen,
2011) and dealers’ funding costs (Friewald and Nagler (2019); Goldberg and Nozawa (2021)).

We find some evidence of state dependence using either measure, as shown in Figures 25 and
26; and the results for the extended sample are displayed in Figures 87 and 88 of the appendix.

[Figures 25–26]

For the TED spread, we see a stronger reaction in the short-end of the yield curve on high
liquidity days compared to the results with the noise measure as state variable. This might
be indicative of funding liquidity/constraints playing a more important role for monetary policy
transmission in this part of the curve, particularly for the results in the extended sample (Figure
88). One caveat is that we use a proxy for unsecured funding while the main source of funding
would be through secured repo funding. Results for the VIX are broadly comparable to the ones
with the noise measure.

6.4 Statistical Significance of the State Dependence for the Different Condition-
ing Variables

We next turn to the economic and statistical significance of the state-dependence in the response
of bond yields to monetary policy shocks. Since we have shown the state-dependence is driven by
the real component of nominal yields (Section 3.1), we here focus on estimates of the differential
impact of monetary policy shocks on real forwards (γr

h−l,τ ) from Equation (3).27 The top left
27Figures 70 and 71 in the appendix present the corresponding results for the nominal and inflation forward

rates.

22



chart in Figure 20 shows the point estimates for γr
h−l,τ in the baseline specification (regression

(3) with same monetary policy shocks and sample choice of Nakamura and Steinsson (2018))
for real forward rates. The difference in the coefficient estimates for low minus high noise days
are positive and statistically significant at the 5% for all maturities, and at the 1% level for real
forwards between 4 and 16 years. The point estimates for the incremental response of real forwards
in liquid markets first increases from the 2-year forward (1.21) up to the 4 year forward (1.42),
before monotonically decreasing to 0.52 at the 20 year horizon.

[Figure 20]

In addition, we illustrate whether the monetary policy transmission is significantly different
during periods of high and low values of VIX index and TED spread. This is shown in Figure 27,
which presents the estimates of γr

h−l,τ in regression (3) respectively for nominal and real forward
rates in the baseline sample. The corresponding results for the extended sample are reported in
Figure 28.

[Figures 27–28]

In line with our main results (top-left panel of Figure 20), the differences in the coefficient
estimates for low and high noise announcement dates are both economically and statistically
significant at all maturities in the baseline sample. However, the differences in coefficient estimates
are no longer statistically significant for maturities above 5-8 years (for nominal and real resp.)
when results in the extended sample are considered. The pattern of the results for the VIX
is broadly comparable, with the exception of the baseline sample for which the differences in
coefficient estimates are not statistically significant for medium and long-term maturities. For the
TED spread, the results in the baseline sample are broadly comparable to the ones for the noise
measure, although with slightly larger estimated differences in the short end of the yield curve
(below 5 years). The results in the extended sample are not weaker in the case of the TED spread
and we even observe a stronger state-dependence at longer maturities for nominal forward rates.

For dealers’ leverage, the difference in coefficient estimates in the baseline sample is slightly
less pronounced at short and medium maturities but we observe a pick up at longer maturities
– particularly for nominal forward rates with maturities larger than 15 years. We still observe
a statistically significant state-dependence for medium and long-term maturities in the extended
sample, whose magnitude is comparable to the results for the TED spread.

[Figures 29–30]

The results for FIA hedge fund returns are comparable to the ones for dealers’ leverage: the
evidence supporting a statistically significant state-dependence are weaker in the baseline sample
compared to other conditioning variables but we find strong supporting evidence in the extended
sample for both nominal and real forward rates.

23



6.5 Alternative Risk Premium Estimates

In this section, we check whether our results on risk premia are robust to alternative methods of
decomposing yields and forward rates. The importance of the term premium in accounting for the
state-dependence of nominal forward rates is confirmed by using the decomposition of nominal
forwards based on the approach introduced in Kim and Wright (2005). Figures 90–91 confirm
that our baseline results are robust to using this decomposition. Using the joint decomposition of
D’Amico, Kim, and Wei (2018), shown in Figures 92–95 of the appendix, confirms the role of real
term premium, though it also suggests a role for the inflation risk premium.28

7 Evidence from Transaction-Level Data
In this section, we complement the previous sections (using aggregate time-series data) by employ-
ing a granular, transaction-level dataset on the US treasury market. Our sample covers virtually
all secondary-market trades of US Treasuries executed in London, and contains detailed informa-
tion on each transaction. This unique dataset helps further analyse the mechanisms underlying the
liquidity-state dependence, because it helps understand how different market participants actually
trade around FOMC meetings.

Our dataset has three crucial advantages compared to the existing literature. First, it is high
frequency, observing minute-by-minute trades. Second, we observe unique client and counterparty
identifiers. Third, its coverage is much larger than other micro-level dataset in terms of both
sectors and maturities covered. The data covers a bit less than 15% of volume of the entire US
treasury volume and is representative of the wider market as we explain below.

7.1 Data and Measurement

7.1.1 Data Sources

To study the trading activity in US Treasuries, we use the MIFID II database. This is a confi-
dential transaction-level dataset, maintained by the Financial Conduct Authority, which provides
information for almost all secondary market transactions on execution time, transaction price and
quantity, as well as the International Securities Identification Number (ISIN), the Legal Entity
Identifier (LEI) of both counterparties, and buyer-seller flags among others.29 The dataset covers
virtually all transactions where one side of the trade involved a UK-based institution between 2018
and 2022. since most US Treasury trades are dealer-intermediated and some of those dealers are
European entities, this means we observe a substantial fraction of US Treasury trading.

28The method of D’Amico, Kim, and Wei (2018) addresses concerns with the liquidity or mispricing of real
bonds (see also Fleckenstein, Longstaff, and Lustig, 2014; Barria and Pinter, 2023).

29Further information on the MIFID II dataset can be found in the Reporting Guidelines: ESMA 2016. Recent
applications of the datasets can be found in Pinter, Wang, and Zou (2021) among others.
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The identities of the participants involved in trades are denoted by the LEIs, which allows us to
classify clients into different sectors. We focus our analysis on banks, asset managers, hedge funds,
foreign official (central banks and sovereign wealth funds) and insurance companies and pension
funds (ICPFs). We develop a sectoral classification based on a text-based algorithm which we
complement with the Bank of England’s internal classification system. Insurance companies in
our sample include liability-driven investors (LDI) which are usually managed by asset managers.
Our definition of hedge funds includes both discretionary and systematic funds featuring both
macro and relative value strategies. Our definition of asset managers include both wealth and
asset managers as well as other mutual funds. Foreign officials include foreign central banks,
sovereign wealth funds and any state-owned entity operating in this market.

We complement the trade-level data with the Daily CRSP US Treasury Dataset. We collect
information on duration, coupon rate, end-of-day price, and amount outstanding for all the bonds
in our dataset. We restrict our analysis to coupon bonds with at least 1 year left to maturity.
We do so because inflation-protected securities and floating-rate notes are distinct assets with a
distinct clientele of investor.

7.1.2 Representativeness of the Sample

We first document that US Treasuries trading in London makes up a fraction that is substantially
higher than previously documented. Based on GovPX data, Fleming (1997) reports that US
Treasury trading in London accounted for less than 5% of volume in 1997. In contrast, we find
that between 2018 and 2021,30 London accounts between 10 − 15% of the average daily traded
volume, see Figure 32. Besides the different sample period, the discrepancy between Fleming
(1997) and our figure is because Fleming (1997) accounts for London trading by the hour of the
day, so that even trades that executed in London but during hours when New York is open are
counted as US trading. We find instead the even when New York opens, a large fraction of US
Treasury trading continues to be routed via London.

Also Fleming (1997) reports that the maturity composition of US Treasuries traded in London
is systematically skewed towards certain maturities. We argue instead that our sample is repre-
sentative in terms of maturity distribution. In Figure 33 we compare the distribution of maturities
traded between our data and that reported by Securities and Industry Financial Market Associ-
ation (SIFMA). We find that the distribution of maturities is relatively similar, with our data is
slightly lighter on shorter maturities (0 − 2y) and slightly heavier on intermediate ones (3 − 7y).

[Figures 8]

30The last year for which we have official SIFMA data.
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7.2 Client Trading Around FOMC Meetings

7.2.1 Stylised Facts

To empirically characterise the trading behaviour of clients, we provide summary statistics on
average daily volume, trade size and daily number of transactions in the dealer-to-client (D2C)
segment of our data.

Panel A in Table 5 reports aggregate statistics. On the average day, we observe volume of $10
billions, 586 transactions and an average trade size of $17 millions. Our data covers 3000 unique
clients trading in US Treasuries.

Panel B shows the same statistics broken down by maturity. There is substantial trading across
all maturities, with a slight tilt toward the 3 − 7y bucket. There are larger transactions on the
short end of the curve and roughly the same number of players are active across maturities. Trade
size is decreasing in maturity.

Panel C shows the sectoral composition of the market. Banks and hedge funds represent more
than 60% of the volume in this market, followed by asset managers and foreign officials. Banks and
asset managers trade more frequently but in smaller ticket size ($13 and $8 millions respectively).
Hedge funds and Foreign Officials trade in substantially larger ticket sizes.

[Table 5]

Since our focus is on FOMC events, Panel A in Table 6 provides descriptive statistics around
those events. Given the time-zone difference between the US and UK, the FOMC decision is
usually released at 19.00pm UK time, which we take to be close to market close in London.31 For
this reason, we call the FOMC day, Pre-FOMC and the day after Post-FOMC, and we will have
no FOMC day separately. On average, activity increases around FOMC events with both higher
volumes as well more transactions. It is worth noting that not everyone trades those events: of
the 3000 unique identifiers, only half are active around FOMC events.

The main finding of our paper is that Treasury market reaction to monetary policy surprises
is significantly different depending on market liquidity conditions. To stay close in spirit to our
evidences in Section 3, we define the same measure in our sample. Specifically, we update the noise
measure of Hu, Pan, and Wang (2013) up to 2022 and we compute its median the day before the
FOMC from 2018-2022. We define High Noise FOMC meetings as those above the median, and
Low Noise meeings those below the median. Panel B shows descriptive statistics split between
High and Low noise FOMCs. On average, volume is slightly higher pre-FOMC when noise is
low, while not substantially different post-FOMC. However, we do see more transactions in low
liquidity post-FOMC. Table 6 reports the p-values of the t-test for the difference in average volume
across different days. The main take-away is that the test rejects equality of means for the volume
between high and low noise FOMC periods.

31Even though this is mostly a OTC market.
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[Table 6]

7.2.2 Identifying Arbitrageurs

Recent theories of the term structure (Vayanos and Vila, 2021) place a central role on arbitrage
activity in transmitting shocks to the entire curve. It is therefore essential to identify who carries
out such an activity. Previous studies have assumed that certain sectors carried out such activity:
for example hedge funds and trading desks of large broker-dealers. We adopt a different approach
and develop a new methodology to classify individual institutions into arbitrageurs and non-
arbitrageurs. Our paper is to our knowledge the first to attempt such an exercise using trade-level
data directly. We can do so because of the frequency and granularity of our dataset, which provides
a considerable advantage relative to the existing literature.

Our baseline measure classifies a client as an arbitrageurs if two criteria are satisfied. First,
we must observe trading across multiple maturities. In reality and in our models, fixed-income
arbitrage exploits price discrepancies across the curve. Such an activity incorporates information
at both maturities, imparting a specific shape to the yield curve. We operationalise this criteria
by computing the standard deviation of the maturities traded (weighted by trade size). We denote
the standard deviations of maturities traded by trader i over period t by σi,t. Second, we require
that the combined exposure of all the trades is market neutral. The arbitrageur is interested in
exploiting the price discrepancy between two different maturities without necessarily a view on
the level of interest rates. We implement this measure by computing the net duration exposure
of the combined trades. We denote the net duration exposure of trader i over period t as di,t.
Since we are not interested in the direction of the exposure, e.g. whether it is a net long or net
short, we take the absolute value. We also multiply by −1 so that an increase in duration will be
penalized by our composite score. An important consideration is the time horizon (t) over which
we compute the two measures. We experiment with different horizons (daily, weekly, monthly)
and we report the main results with a monthly window32

Each period, we rank traders across each of the two measures and combine them into a single
composite index:33

Ii,t = Rσ
i,t ∗ Rd

i,t, (6)

where RM
i,t ∈ [0, 1] is the (standardized) ranking of trader i at time t on metric M = {σ, d}. We

take the average of index value over the entire sample and end up with a single score for each
trader:

32Section A.3 in the Appendix shows the results using the index at different time horizons.
33We standardize the ranking of each measure between zero and one.
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Ii = 1
Ni

Ni�

t=1
Ii,t. (7)

We then define arbitrageurs as those that score above the third tercile on the combined metric
over the entire sample. According to our measure, the majority of arbitrageurs are from the hedge
fund sector (Figure 34), accounting for about 60% of total arbitrage volume. The remaining 40%
is accounted by banks and asset managers, which gives us confidence that our measure is picking
up sophisticated institutional investors. The non-arbitrageurs in our sample are a mix of sectors,
with a bit over 40% of volume generated by commercial banks. Note also that, according to our
ranking, not all the hedge funds in our sample engage in fixed-income arbitrage.

[Figure 34]

We start by looking at the evidence in Panel A of Table 7. On a given day, our measure finds
the arbitrageurs (RV) account for a smaller volume, but with a substantially larger trade size.
We find a total of 699 clients that resembles arbitrageurs. We describe trading behaviour by the
arbitrageurs in the next section.

[Table 7]

7.2.3 Arbitrage Activity During Liquid vs Illiquid Periods

We revisit our finding that the Treasury market reacts more to monetary policy when it is more
liquid through the prism of our micro-data. Guided by the liquidity measure, we expect low
noise days to be associated with more intense arbitrage activity. In particular, we hope to see
arbitrageurs, as identified in the previous section, to be increasingly more active when noise is
low, and more so than non-arbitraguers. Panel B of Table 7 shows that irrespective of liquidity
conditions, on FOMC days volume increases for both arbitrageurs (RV) and non-arbitrageurs
(non RV). Interestingly, and consistent with our hypothesis, a difference emerges when we sort
FOMC days by liquidity in Panel C. Arbitrageurs increase their volume both Pre-FOMC as well
as post-FOMC. In contrast, non-arbitrageurs increase volume when the noise is high but decrease
when noise is low. This is our first key finding using the micro-data. This point is made more
evident by Figure 35, where we compute the percentage change in volume across high and low
noise periods. Arbitrageurs increase their pre-FOMC volume by 32% in Low noise compared
to High noise environment, whereas non-arbitrageurs increase by 17%. More importantly, post-
FOMC non-arbitrageurs cut down their volume by 6% whereas arbitrageurs increase it by 17%
when noise is lower.

[Figure 35]
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Our finding was that monetary policy transmits more strongly to longer maturities when
liquidity is high. This finding implies that if arbitrageurs are responsible for transmitting monetary
policy shocks to longer maturities, we should see them more active at those maturities. We repeat
the same exercise as above, this time splitting by maturity, in Figure 36. We can see the pattern
between high- and low-noise FOMC days even more clearly over the curve. Arbitrageurs are
substantially more active than non-arbitrageurs, increasing volume (almost) monotonically over
the entire term structure. Indeed, volume is 50% higher at longer maturities pre-FOMC (Figure
37) and by more than 30% post-FOMC (Figure 38) in a low noise relative to high noise. In
contrast non-arbitrageurs increase volume by about 10% and uniformly over all maturities pre-
FOMC, while cutting down post-FOMC across all maturities when noise is low. We take those
patterns as highly suggestive that it is specialized arbitrage capital behind the liquidity-state
dependence of monetary policy.

[Figures 36–38]

7.3 Intermediation Around FOMC Meetings

While we have provided evidence that the demand of arbitrageurs vs non-arbitrageurs exhibit
substantially different behaviour in high vs low liquidity environment, one plausible concern is
that the change in market liquidity and monetary transmission is due to their counterparties, the
primary dealers, affecting the supply. In this section we explore the connection between dealers’
constraints and trading activity.

The recent OTC literature argues that interdealer trading activity strongly correlates with
constraints on the intermediation capacity of primary dealers. Specifically, the dispersion of
transaction prices in the interdealer sector is a strong predictor of measures of liquidity (Eis-
feldt, Herskovic, and Liu, 2022).34 Building on their analysis of corporate bond markets, our
measure of interdealer price dispersion, DT , is as follows:

DT =

���� 1
N

N�

v

�
ln (P �

v ) − ln
�
P

��2
, (8)

where P �
v is the transaction price corresponding to trade v in the interdealer market, and P is

the average hourly interdealer price in a given bond. Figure 39 shows the time series of the
dispersion measure. The measure picks up the repo spike in 2019, the illiquidity during Covid-19
and the steady deterioration of liquidity since 2021 consistent with Duffie, Fleming, Keane, Nelson,
Shachar, and Van Tassel (2023).

[Figure 39]
34Since Jankowitsch, Nashikkar, and Subrahmanyam (2011), aggregate price dispersion has often been used as

an alternative measure of market liquidity (see Friewald, Jankowitsch, and Subrahmanyam (2012); Uslu (2019);
Uslu and Velioglu (2019) among many others).
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We test whether inter-dealer price dispersion is significantly different in high- versus low-noise
FOMC periods. Importantly, as shown by Table 8, we find that price dispersion decreases when
noise is low. This result is consistent with dealers constraints playing a significant role in the
liquidity-state-dependence of Section 3.

[Table 8]

8 Conclusion
A rapidly expanding literature in macroeconomics has studied the identification of monetary policy
surprises, their impact on asset prices and the role of financial intermediaries in amplifying and
propagating shocks through the economy. In this paper we have used the intuition and results
from all three strands to zoom in on the role of market liquidity in shaping the transmission of
monetary policy shocks to the yield curve.

We have found robust evidence of a liquidity state-dependence in the impact of monetary policy
on yields that is both economically and statistically significant. These results have important
policy implications as they point to the need to coordinate financial policy with monetary and
stabilisation policies.
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Figures and Tables

Figure 1: Noise measure for the US nominal Treasury yield curve (in basis points)
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Note: This figure plots the time series evolution of the noise measure of Hu, Pan, and Wang (2013) for
the US nominal Treasury yield curve (in basis points). The period covered is from 2000/01 to 2019/12.
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Figure 2: Impact of yield curve noise on the transmission of MP shocks to US forward rates
-1

0
1

2
3

5 10 15 20
MATURITY

Nominal: Baseline

-1
0

1
2

3

5 10 15 20
MATURITY

Nominal: Low noise

-1
0

1
2

3

5 10 15 20
MATURITY

Nominal: High noise

-1
0

1
2

3

5 10 15 20
MATURITY

Real: Baseline
-1

0
1

2
3

5 10 15 20
MATURITY

Real: Low noise

-1
0

1
2

3

5 10 15 20
MATURITY

Real: High noise

-1
-.

5
0

.5
1

5 10 15 20
MATURITY

Inflation: Baseline

-1
-.

5
0

.5
1

5 10 15 20
MATURITY

Inflation: Low noise

-1
-.

5
0

.5
1

5 10 15 20
MATURITY

Inflation: High noise

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements

for which the yield curve noise measure is below (resp. above) its median level. The sample includes
all regularly scheduled FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place
between July 2008 and June 2009. This corresponds to a sample size of 106 observations on which the
policy news shock is computed and each regression is estimated. Regression results for the 2, 3 and 4-year
forward rates are based on a sample size of 74 observations (starting in 2004).
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Figure 3: Decomposition of US real forward rates into expected and risk premia components
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Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for the expected average future

real forward rate (first row) and real risk premium (second row) at maturities τ ∈ (2, 10), together with
90% confidence intervals based on robust standard errors. The measures are based on the decomposition
introduced in Abrahams, Adrian, Crump, Moench, and Yu (2016) and we follow Nakamura and Steinsson
(2018) by grouping the term premium, liquidity premium and model error into a single risk premium
component. The second (Low noise) and third (High noise) columns respectively present parameter esti-
mates for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements

for which the noise measure is below (resp. above) its median level. The sample includes all regularly
scheduled FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place between July
2008 and June 2009. This corresponds to a sample size of 106 observations on which the policy news
shock is computed and each regression is estimated. Regression results for the 2, 3 and 4-year forward
rates are based on a sample size of 74 observations (starting in 2004).
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Figure 4: Impact of FIA hedge fund returns on the transmission of MP shocks to US forward rates
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Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈

n, r, π (in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust
standard errors. The second (High FIA returns) and third (High FIA returns) columns respectively
present parameter estimates for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled

FOMC announcements for which the hedge fund return index is above (resp. below) its median level. The
index measures the average return of the fixed-income arbitrage hedge funds in the Barclays database.
The sample includes all regularly scheduled FOMC meetings from 01/01/2000 to 19/03/2014, excluding
those taking place between July 2008 and June 2009. This corresponds to a sample size of 106 observations
on which the policy news shock is computed and each regression is estimated. Regression results for the
2, 3 and 4-year forward rates are based on a sample size of 74 observations (starting in 2004).
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Figure 5: Impact of dealers’ leverage on monetary policy transmission when hedge funds are
unconstrained

Note: The first column (High FIA returns) plots estimates of γ i
hl,τ in regression (2) for each forward rate

i ∈ n, r, π (in each row) with maturity τ ∈ (2, 20) for the subset of scheduled FOMC announcements
for which the hedge fund return index is above its median level. The index measures the average return
of the fixed-income arbitrage hedge funds in the Barclays database. 90% confidence intervals based on
robust standard errors are provided around the estimates. The second (High FIA returns/Low leverage)
and third (High FIA returns/High leverage) columns respectively present parameter estimates for the
two subgroups obtained by further dividing the “High FIA returns” announcements into two subgroups
depending on whether the intermediary leverage measure of He, Kelly, and Manela (2017) is below/above
median. The sample includes all regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding
those taking place between July 2008 and June 2009. This corresponds to a sample size of 76 observations
(out of 152) for the “High FIA returns” results and 38 observations for the “High FIA returns/Low
leverage” and “High FIA returns/High leverage” subgroups. Regression results for the 2, 3 and 4-year
forward rates are based on a sample starting in 2004.
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Figure 6: Impact of dealers’ leverage on monetary policy transmission when hedge funds are
constrained

Note: The first column (Low FIA returns) plots estimates of γ i
ll,τ in regression (2) for each forward rate

i ∈ n, r, π (in each row) with maturity τ ∈ (2, 20) for the subset of scheduled FOMC announcements
for which the hedge fund return index is below its median level. The index measures the average return
of the fixed-income arbitrage hedge funds in the Barclays database. 90% confidence intervals based on
robust standard errors are provided around the estimates. The second (Low FIA returns/Low leverage)
and third (Low FIA returns/High leverage) columns respectively present parameter estimates for the two
subgroups obtained by further dividing the “Low FIA returns” announcements into two buckets depending
on whether the intermediary leverage measure of He, Kelly, and Manela (2017) is below/above median.
The sample includes all regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding those
taking place between July 2008 and June 2009. This corresponds to a sample size of 76 observations (out
of 152) for the “High FIA returns” results and 38 observations for the “High FIA returns/Low leverage”
and “High FIA returns/High leverage” subgroups. Regression results for the 2, 3 and 4-year forward
rates are based on a sample starting in 2004.
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Figure 7: Impact of hedge funds’ returns on monetary policy transmission when dealers are un-
constrained

Note: The first column (Low leverage) plots estimates of γi
hl,τ in regression (2) for each forward rate

i ∈ n, r, π (in each row) with maturity τ ∈ (2, 20) for the subset of scheduled FOMC announcements
for which the intermediary leverage measure of He, Kelly, and Manela (2017) is below its median level.
90% confidence intervals based on robust standard errors are provided around the estimates. The second
(Low leverage/Low FIA returns) and third (Low leverage/High FIA returns) columns respectively present
parameter estimates for the two subgroups obtained by further dividing the “Low leverage” announce-
ments into two buckets depending on whether the FIA hedge fund return index is below/above median.
The sample includes all regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding those
taking place between July 2008 and June 2009. This corresponds to a sample size of 76 observations (out
of 152) for the “Low leverage” results and 38 observations for the “Low leverage/Low FIA returns” and
“Low leverage/High FIA returns” subgroups. Regression results for the 2, 3 and 4-year forward rates are
based on a sample starting in 2004.
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Figure 8: Impact of hedge funds’ returns on monetary policy transmission when dealers are con-
strained

Note: The first column (High leverage) plots estimates of γ i
ll,τ in regression (2) for each forward rate

i ∈ n, r, π (in each row) with maturity τ ∈ (2, 20) for the subset of scheduled FOMC announcements for
which the intermediary leverage measure of He, Kelly, and Manela (2017) is above its median level. 90%
confidence intervals based on robust standard errors are provided around the estimates. The second (High
leverage/Low FIA returns) and third (High leverage/High FIA returns) columns respectively present para-
meter estimates for the two subgroups obtained by further dividing the “High leverage” announcements
into two buckets depending on whether the FIA hedge fund return index is below/above median. The
sample includes all regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding those taking
place between July 2008 and June 2009. This corresponds to a sample size of 76 observations (out of
152) for the “High leverage” results and 38 observations for the “High leverage/Low FIA returns” and
“High leverage/High FIA returns” subgroups. Regression results for the 2, 3 and 4-year forward rates
are based on a sample starting in 2004.
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Figure 9: Impact of economic conditions on the transmission of MP shocks to US forward rates

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (High PMI) and third (Low PMI) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the ISM manufacturing Purchasing Managers Index (PMI) is above (resp. below) its median level.
The sample includes all regularly scheduled FOMC meetings from 01/01/2000 to 19/03/2014, excluding
those taking place between July 2008 and June 2009. This corresponds to a sample size of 106 observations
on which the policy news shock is computed and each regression is estimated. Regression results for the
2, 3 and 4-year forward rates are based on a sample size of 74 observations (starting in 2004).
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Figure 10: Impact of economic conditions on the transmission of MP shocks to US forward rates:
extended sample

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (High PMI) and third (Low PMI) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the ISM manufacturing Purchasing Managers Index (PMI) is above (resp. below) its median level.
The sample includes all regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding those
taking place between July 2008 and June 2009. This corresponds to a sample size of 152 observations on
which each regression is estimated. Regression results for the 2, 3 and 4-year forward rates are based on
a sample size of 120 observations (starting in 2004).
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Figure 11: Statistical significance of the state dependence: yield curve noise and PMI

Note: The charts plot the estimates of γi
h−l,τ in regression (3) for each nominal (first row) and real

forward rate (second row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on
robust standard errors. The first column presents the results for the yield curve noise and the second
column for the ISM manufacturing Purchasing Managers Index (PMI). The sample includes all regularly
scheduled FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place between July
2008 and June 2009. This corresponds to a sample size of 106 observations on which the policy news
shock is computed and each regression is estimated. Regression results for the 2, 3 and 4-year forward
rates are based on a sample size of 74 observations (starting in 2004).
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Figure 12: Impact of yield curve noise on monetary policy transmission when economic conditions
are favourable

Note: The first column (High PMI) plots estimates of γi
hl,τ in regression (2) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20) for the subset of scheduled FOMC announcements for which the
manufacturing PMI is above its median level. 90% confidence intervals based on robust standard errors
are provided around the estimates. The second (High PMI/Low noise) and third (High PMI/High noise)
columns respectively present parameter estimates for the two subgroups obtained by further dividing the
“High PMI” announcements into two subgroups depending on whether the yield curve noise measure
is below/above median. The sample includes all regularly scheduled FOMC meetings from 01/2000 to
12/2019, excluding those taking place between July 2008 and June 2009. This corresponds to a sample
size of 76 observations (out of 152) for the “High PMI” results and 38 observations for the “High PMI/Low
noise” and “High PMI/High noise” subgroups. Regression results for the 2, 3 and 4-year forward rates
are based on a sample starting in 2004.
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Figure 13: Impact of yield curve noise on monetary policy transmission when economic conditions
are depressed

Note: The first column (Low PMI) plots estimates of γi
hl,τ in regression (2) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20) for the subset of scheduled FOMC announcements for which the
manufacturing PMI is below its median level. 90% confidence intervals based on robust standard errors
are provided around the estimates. The second (Low PMI/Low noise) and third (Low PMI/High noise)
columns respectively present parameter estimates for the two subgroups obtained by further dividing
the “Low PMI” announcements into two subgroups depending on whether the yield curve noise measure
is below/above median. The sample includes all regularly scheduled FOMC meetings from 01/2000 to
12/2019, excluding those taking place between July 2008 and June 2009. This corresponds to a sample
size of 76 observations (out of 152) for the “Low PMI” results and 38 observations for the “Low PMI/Low
noise” and “Low PMI/High noise” subgroups. Regression results for the 2, 3 and 4-year forward rates
are based on a sample starting in 2004.
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Figure 14: Impact of economic conditions on monetary policy transmission when yield curve noise
is low

Note: The first column (Low noise) plots estimates of γi
hl,τ in regression (2) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20) for the subset of scheduled FOMC announcements for which the
yield curve noise measure is below its median level. 90% confidence intervals based on robust standard
errors are provided around the estimates. The second (Low noise/Low PMI) and third (Low noise/High
PMI) columns respectively present parameter estimates for the two subgroups obtained by further di-
viding the “Low noise” announcements into two buckets depending on whether the manufacturing PMI
is below/above median. The sample includes all regularly scheduled FOMC meetings from 01/2000 to
12/2019, excluding those taking place between July 2008 and June 2009. This corresponds to a sample
size of 76 observations (out of 152) for the “Low noise” results and 38 observations for the “Low noise/Low
PMI” and “Low noise/High PMI” subgroups. Regression results for the 2, 3 and 4-year forward rates are
based on a sample starting in 2004.
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Figure 15: Impact of economic conditions on monetary policy transmission when yield curve noise
is high

Note: The first column (High noise) plots estimates of γi
hl,τ in regression (2) for each forward rate

i ∈ n, r, π (in each row) with maturity τ ∈ (2, 20) for the subset of scheduled FOMC announcements
for which the yield curve noise measure is above its median level. 90% confidence intervals based on
robust standard errors are provided around the estimates. The second (High noise/Low PMI) and
third (High noise/High PMI) columns respectively present parameter estimates for the two subgroups
obtained by further dividing the “High noise” announcements into two buckets depending on whether
the manufacturing PMI is below/above median. The sample includes all regularly scheduled FOMC
meetings from 01/2000 to 12/2019, excluding those taking place between July 2008 and June 2009.
This corresponds to a sample size of 76 observations (out of 152) for the “High noise” results and 38
observations for the “High noise/Low PMI” and “High noise/High PMI” subgroups. Regression results
for the 2, 3 and 4-year forward rates are based on a sample starting in 2004.
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Figure 16: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
standardized shocks

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements

for which the yield curve noise measure is below (resp. above) its median level. The sample includes
all regularly scheduled FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place
between July 2008 and June 2009. This corresponds to a sample size of 106 observations on which the
policy news shock is computed and each regression is estimated. Regression results for the 2, 3 and
4-year forward rates are based on a sample size of 74 observations (starting in 2004). Note that the shock
series in each estimation are standardized such that the coefficient estimates represent the impact of a
one-standard-deviation shock respectively for the full sample (first column) and in the low/high noise
buckets (resp. second and third columns).
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Figure 17: Impact of yield curve noise on the transmission of MP shocks to US real forward rates
at longer horizons

Note: The first column (Baseline) plots estimates of γr,h
all,τ in regression (4) for real forward rates with

maturities of 2, 5, 10, and 20 years (in each row) and at horizons ranging from 1 to 60 trading days after
the announcement, together with 90% confidence intervals based on robust standard errors. The second
(Low noise) and third (High noise) columns respectively present parameter estimates for γr,h

hl,τ and γr,h
ll,τ

in regression (5), corresponding to the subset of scheduled FOMC announcements for which the yield
curve noise measure is below (resp. above) its median level. The sample includes all regularly scheduled
FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place between July 2008 and
June 2009. This corresponds to a sample size of 106 observations on which the policy news shock is
computed and each regression is estimated. Regression results for the 2-year forward rate are based on a
sample size of 74 observations (starting in 2004).
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Figure 18: Impact of yield curve noise on the transmission of MP shocks to US fixed mortgage
rates

Note: The first column (Baseline) plots estimates of γh
all,τ in regression (4) for US fixed mortgage rates

with maturities of 15 and 30 years (in each row) and at horizons ranging from 1 to 15 weeks after the
announcement, together with 90% confidence intervals based on robust standard errors. The second
(Low noise) and third (High noise) columns respectively present parameter estimates for γh

hl,τ and γr,h
ll,τ

in regression (5), corresponding to the subset of scheduled FOMC announcements for which the yield
curve noise measure is below (resp. above) its median level. The sample includes all regularly scheduled
FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place between July 2008 and
June 2009. This corresponds to a sample size of 106 observations on which the policy news shock is
computed and each regression is estimated.

53



Figure 19: Impact of yield curve noise on the transmission of MP shocks to UK forward rates: all
MPC announcements
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Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (3, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled MPC announcements for

which the UK yield curve noise measure is below (resp. above) its median level. The sample includes all
regularly scheduled MPC meetings from 01/2000 to 12/2019. This corresponds to a sample size of 226
observations on which the policy news shock—obtained as the first principal component extracted from
the high-frequency surprises in the first four quarterly Short Sterling Futures contracts—is computed and
each regression is estimated.
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Figure 20: Robustness of state-dependence for real forward rates to different samples and monetary
policy shocks

Note: The charts plot the estimates of γr
h−l,τ in regression (3) for each real forward rate with maturity

τ ∈ (2, 20), together with 90% confidence intervals based on robust standard errors. The first row reports
the results for the monetary policy shock of Nakamura and Steinsson (2018) respectively using their
baseline sample from 2000/01 to 2014/03 (first column); an extended sample from 2000/01 to 2019/12
with the updated data provided in Acosta (2022) (second column); and the extended sample excluding
unconventional monetary policy announcements identified in Table 5 of Cieslak and Schrimpf (2019)
(third column). The first two columns of the second row report results for the MP shock of Jarocinski
and Karadi (2020) using their orginal sample 2000/01-2016/12 and an extended sample from 2000/01 to
2019/06. The third column of the second row reports the results for the MP shock of Bauer and Swanson
(2023b) for the sample from 2000/01 to 2019/12. The last row reports the results for the Federal Funds
Rate (FFR), Forward Guidance (FG), and Large Scale Asset Purchase shocks of Swanson (2021) using a
sample from 2000/01 to 2019/06. We exclude FOMC meetings taking place between July 2008 and June
2009 from the estimation except in the results based on the MP shock of Jarocinski and Karadi (2020)
which only considers the subset of policy announcements for which the high-frequency changes in the
S&P 500 and interest rates have opposite signs. Regression results for the 2, 3 and 4-year forward rates
are based on samples starting in 2004/01.
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Figure 21: Comparison of monetary policy shocks with their orthogonalized version: baseline
sample

Note: The first column presents the monetary policy shock series of Nakamura and Steinsson (2018) and
Bauer and Swanson (2023b), respectively denoted by NS and BS, in the baseline sample from 2000/01
to 2014/03 (excluding FOMC meetings between 2008/07 and 2009/06). The second column displays the
corresponding orthogonalized shock series obtained using the approach introduced in Bauer and Swanson
(2023b). See Appendix A.2 for additional details. Note that the orthogonalized shock series correspond
to the residuals from the regression results reported in columns (4)-(5) of Table 4.

56



Figure 22: Comparison of monetary policy shocks with their orthogonalized version: extended
sample

Note: The first column presents the monetary policy shock series of Nakamura and Steinsson (2018) and
Bauer and Swanson (2023b), respectively denoted by NS and BS, in the baseline sample from 2000/01
to 2019/12 (excluding FOMC meetings between 2008/07 and 2009/06). The second column displays the
corresponding orthogonalized shock series obtained using the approach introduced in Bauer and Swanson
(2023b). See Appendix A.2 for additional details. Note that the orthogonalized shock series correspond
to the residuals from the regression results reported in columns (8)-(9) of Table 4.
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Figure 23: Robustness of state-dependence for real forward rates to orthogonalized monetary
policy shocks

Note: The charts plot the estimates of γr
h−l,τ in regression (3) for each real forward rate with maturity

τ ∈ (2, 20), together with 90% confidence intervals based on robust standard errors. The first row reports
the results for the orthogonalized shocks of Nakamura and Steinsson (2018) and Bauer and Swanson
(2023b), respectively denoted by NS and BS, in the baseline sample from 2000/01 to 2014/03. The
second row reports the same results for the extended sample from 2000/01 to 2019/12. We exclude
FOMC meetings taking place between July 2008 and June 2009 from the estimation. Regression results
for the 2, 3 and 4-year forward rates are based on samples starting in 2004/01. Details on the approach
used to obtain the orthogonalized shock series can be found in Appendix A.2.
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Figure 24: Impact of yield curve noise on the transmission of MP shocks to US forward rates using
the orthogonalized Gürkaynak, Sack, and Swanson (2005a) path shock

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements

for which the yield curve noise measure is below (resp. above) its median level. The sample includes
all regularly scheduled FOMC meetings from 01/01/2000 to 28/10/2015, excluding those taking place
between July 2008 and June 2009. This corresponds to a sample size of 119 observations on which each
regression is estimated. Regression results for the 2, 3 and 4-year forward rates are based on a sample size
of 87 observations (starting in 2004). The monetary policy path shock of Gürkaynak, Sack, and Swanson
(2005a) is orthogonalized with respect to private sector growth forecasts obtained from the Blue Chip
Surveys following the approach proposed by Karnaukh and Vokata (2022).
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Figure 25: Impact of volatility (VIX) on the transmission of MP shocks to US forward rates

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low VIX) and third (High VIX) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the CBOE VIX index is below (resp. above) its median level. The sample includes all regularly
scheduled FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place between July
2008 and June 2009. This corresponds to a sample size of 106 observations on which the policy news
shock is computed and each regression is estimated. Regression results for the 2, 3 and 4-year forward
rates are based on a sample size of 74 observations (starting in 2004).

60



Figure 26: Impact of the TED spread on the transmission of MP shocks to US forward rates

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low TED Spread) and third (High TED Spread) columns respectively present
parameter estimates for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC

announcements for which the T-Bill Eurodollar (TED) spread is below (resp. above) its median level. The
sample includes all regularly scheduled FOMC meetings from 01/01/2000 to 19/03/2014, excluding those
taking place between July 2008 and June 2009. This corresponds to a sample size of 106 observations on
which the policy news shock is computed and each regression is estimated. Regression results for the 2,
3 and 4-year forward rates are based on a sample size of 74 observations (starting in 2004).
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Figure 27: Statistical significance of the state dependence: yield curve noise, VIX and TED spread

Note: The charts plot the estimates of γi
h−l,τ in regression (3) for each nominal (first row) and real

forward rate (second row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on
robust standard errors. The first column presents the results for the yield curve noise, the second column
for the CBOE VIX index, and the third one for T-Bill Eurodollar (TED) spread. The sample includes
all regularly scheduled FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place
between July 2008 and June 2009. This corresponds to a sample size of 106 observations on which the
policy news shock is computed and each regression is estimated. Regression results for the 2, 3 and 4-year
forward rates are based on a sample size of 74 observations (starting in 2004).
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Figure 28: Statistical significance of the state dependence: yield curve noise, VIX and TED spread
in the extended sample

Note: The charts plot the estimates of γi
h−l,τ in regression (3) for each nominal (first row) and real

forward rate (second row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on
robust standard errors. The first column presents the results for the yield curve noise, the second column
for the CBOE VIX index, and the third one for T-Bill Eurodollar (TED) spread. The sample includes
all regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding those taking place between
July 2008 and June 2009. This corresponds to a sample size of 152 observations on which each regression
is estimated. Regression results for the 2, 3 and 4-year forward rates are based on a sample size of 120
observations (starting in 2004).
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Figure 29: Statistical significance of the state dependence: yield curve noise, dealers’ leverage and
FIA returns

Note: The charts plot the estimates of γi
h−l,τ in regression (3) for each nominal (first row) and real

forward rate (second row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on
robust standard errors. The first column presents the results for the yield curve noise, the second column
for the intermediary leverage measure of He, Kelly, and Manela (2017), and the third one for the Barclays
return index for fixed-income arbitrage (FIA) hedge funds. The sample includes all regularly scheduled
FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place between July 2008 and
June 2009. This corresponds to a sample size of 106 observations on which the policy news shock is
computed and each regression is estimated. Regression results for the 2, 3 and 4-year forward rates are
based on a sample size of 74 observations (starting in 2004).
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Figure 30: Statistical significance of the state dependence: yield curve noise, dealers’ leverage and
FIA returns in the extended sample

Note: The charts plot the estimates of γi
h−l,τ in regression (3) for each nominal (first row) and real

forward rate (second row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on
robust standard errors. The first column presents the results for the yield curve noise, the second column
for the intermediary leverage measure of He, Kelly, and Manela (2017), and the third one for the Barclays
return index for fixed-income arbitrage (FIA) hedge funds. The sample includes all regularly scheduled
FOMC meetings from 01/2000 to 12/2019, excluding those taking place between July 2008 and June 2009.
This corresponds to a sample size of 152 observations on which each regression is estimated. Regression
results for the 2, 3 and 4-year forward rates are based on a sample size of 120 observations (starting in
2004).
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Figure 31: Representativeness of our Sample of US Treasury Transactions

Figure 32: Volume (% SIFMA)

Figure 33: Composition
Notes: Panel (a) reports the average daily trading volume by maturity bucket as a percentage of total trading
volume as reported by SIFMA using the Primary Dealer Statistics of Federal Reserve of New York. Panel (b)

reports the composition by maturity (volume in % of total). The figures are based on the average over 2018-2021.
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Figure 34: Distribution of Volume by By Sectors

Notes: The figure shows the percentage of volume within each category (RV/non-RV) attributed to different sectors.

Figure 35: Arbitrageurs vs non-Arbitrageurs in High vs Low Liquidity

Notes: The figure shows the average volume traded by RV and non-RV in Low liquidity (L) relative to High liquidity
(H) FOMC events. A number greater than 1 indicates that volume is higher in L events than in H events.
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Figure 36: Volume Traded by Maturity

Figure 37: Pre-FOMC

Figure 38: Post-FOMC

Notes: The figure shows the average volume traded by RV and non-RV in Low liquidity (L) relative to High
liquidity (H) FOMC events, split by maturity. A number greater than 1 indicates that volume is higher in L

events than in H events.
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Figure 39: Interdealer Price Dispersion

Notes: The figure shows the 5-day moving average of the interdealer price dispersion measure, DT .
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Table 1: Impact of noise in the nominal Treasury yield curve on the response of US interest rates and inflation to MP shocks
Baseline Low noise High noise P-values

Nom. Real Inf. Nom. Real Inf. Nom. Real Inf. Nom. Real Inf.
3M Treasury yield 0.67∗∗∗ 0.61∗∗∗ 0.69∗∗∗ 0.766

(0.14) (0.16) (0.19)
6M Treasury yield 0.85∗∗∗ 0.74∗∗∗ 0.90∗∗∗ 0.475

(0.11) (0.16) (0.14)
1Y Treasury yield 1.00∗∗∗ 1.48∗∗∗ 0.81∗∗∗ 0.007

(0.14) (0.12) (0.18)
2Y Treasury yield 1.10∗∗∗ 1.06∗∗∗ 0.04 1.83∗∗∗ 1.69∗∗∗ 0.14 0.69∗ 0.70∗∗ -0.01 0.034 0.034 0.715

(0.33) (0.24) (0.18) (0.23) (0.32) (0.33) (0.41) (0.29) (0.20)
3Y Treasury yield 1.06∗∗∗ 1.02∗∗∗ 0.04 1.92∗∗∗ 1.72∗∗∗ 0.20 0.57 0.62∗∗ -0.05 0.018 0.021 0.482

(0.36) (0.25) (0.17) (0.27) (0.33) (0.28) (0.43) (0.29) (0.20)
5Y Treasury yield 0.73∗∗∗ 0.64∗∗∗ 0.09 1.68∗∗∗ 1.58∗∗∗ 0.10 0.34 0.26∗ 0.08 0.000 0.000 0.925

(0.20) (0.15) (0.11) (0.24) (0.20) (0.18) (0.21) (0.14) (0.14)
10Y Treasury yield 0.38∗∗ 0.44∗∗∗ -0.06 1.24∗∗∗ 1.24∗∗∗ 0.00 0.03 0.11 -0.08 0.000 0.000 0.656

(0.17) (0.13) (0.08) (0.20) (0.16) (0.12) (0.17) (0.12) (0.11)
2Y Treasury inst. forward rate 1.14∗∗ 0.99∗∗∗ 0.15 2.25∗∗∗ 1.76∗∗∗ 0.49∗ 0.50 0.55∗ -0.05 0.011 0.027 0.182

(0.46) (0.29) (0.23) (0.35) (0.38) (0.29) (0.51) (0.33) (0.25)
3Y Treasury inst. forward rate 0.82∗ 0.88∗∗∗ -0.06 1.96∗∗∗ 1.77∗∗∗ 0.18 0.17 0.38 -0.21 0.009 0.012 0.193

(0.43) (0.32) (0.15) (0.45) (0.42) (0.20) (0.44) (0.31) (0.19)
5Y Treasury inst. forward rate 0.26 0.47∗∗∗ -0.21∗∗ 1.17∗∗∗ 1.26∗∗∗ -0.09 -0.12 0.15 -0.26∗∗ 0.001 0.001 0.353

(0.19) (0.17) (0.08) (0.30) (0.25) (0.13) (0.19) (0.17) (0.11)
10Y Treasury inst. forward rate -0.08 0.12 -0.20∗∗ 0.58∗∗∗ 0.68∗∗∗ -0.10 -0.34∗ -0.10 -0.24∗ 0.002 0.000 0.490

(0.18) (0.12) (0.09) (0.18) (0.12) (0.13) (0.20) (0.13) (0.13)

Notes: The first panel (Baseline) reports estimates of γ in regression (1). The second (Low noise) and third (High noise) panels
respectively present parameter estimates for γ1 and γ2 in regression (2), corresponding to the subset of scheduled FOMC announcements
for which the yield curve noise measure is below (resp. above) its median level. The last panel reports the p-values of the tests of
equality between the coefficients estimates for low- and high-noise FOMC announcements. The dependent variable in each regression
is the one-day change in the variable stated in the left-most column. The sample includes all regularly scheduled FOMC meetings
from 01/01/2000 to 19/03/2014, excluding those taking place between July 2008 and June 2009. This corresponds to a sample size of
106 observations on which the policy news shock is computed and each regression is estimated. Regression results for the 2- and 3-year
yields and forward rates are based on a sample size of 74 observations (starting in 2004). Robust standard errors are in parentheses.
Asterisks denote significance levels (∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01).
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Table 2: Yield curve noise and other financial variables: Baseline sample
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

ΔVIX 0.09∗∗∗ 0.04 0.02 0.02
(0.03) (0.03) (0.03) (0.02)

ΔTED Spread 1.07∗ 0.69 0.25 0.25
(0.59) (0.66) (0.78) (0.78)

ΔIntermed. Lev. 0.19∗∗∗ 0.10∗ 0.09∗ 0.13∗∗ 0.09∗ 0.09∗

(0.07) (0.06) (0.05) (0.06) (0.05) (0.05)
HF Ret. -0.20∗∗∗ -0.15∗∗ -0.05 -0.01

(0.07) (0.06) (0.03) (0.03)
FIA Ret. -0.32∗∗∗ -0.28∗∗∗ -0.22∗∗ -0.22∗∗

(0.05) (0.05) (0.10) (0.10)
Adj. R2 (%) 23.13 8.12 18.06 22.49 36.68 26.08 40.03 32.38 40.90 40.55
# months 171 171 171 171 171 171 171 171 171 171

Notes: The dependent variable is the monthly change in the noise measure, obtained by averaging daily
observations over a given month. VIX is the volatility index from CBOE. TED spread is the T-Bill
Eurodollar spread. Intermediary leverage is the measure of He, Kelly, and Manela (2017). HF return is
a measure of the average return of all hedge funds in the Barclays database. FIA return is a measure of
the average return of the fixed-income arbitrage hedge funds in the Barclays database. The period is from
01/2000 to 03/2014, corresponding to a sample size of 171 observations. Newey-West standard errors with
4 lags are in parentheses. Asterisks denote significance levels (∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01).

Table 3: Yield curve noise and other financial variables: Extended sample
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

ΔVIX 0.08∗∗∗ 0.03 0.01 0.01
(0.03) (0.02) (0.02) (0.02)

ΔTED Spread 1.04∗ 0.80 0.29 0.29
(0.57) (0.56) (0.73) (0.72)

ΔIntermed. Lev. 0.18∗∗∗ 0.11∗ 0.09∗ 0.14∗∗ 0.09∗ 0.09∗

(0.06) (0.06) (0.05) (0.06) (0.05) (0.05)
HF Ret. -0.17∗∗∗ -0.12∗∗ -0.04 0.00

(0.06) (0.05) (0.03) (0.03)
FIA Ret. -0.32∗∗∗ -0.27∗∗∗ -0.23∗∗ -0.23∗∗

(0.05) (0.05) (0.09) (0.10)
Adj. R2 (%) 18.02 7.63 16.35 18.53 34.52 22.47 37.37 28.35 37.91 37.65
# months 240 240 240 240 240 240 240 240 240 240

Notes: The dependent variable is the monthly change in the noise measure, obtained by averaging daily
observations over a given month. VIX is the volatility index from CBOE. TED spread is the T-Bill
Eurodollar spread. Intermediary leverage is the measure of He, Kelly, and Manela (2017). HF return is
a measure of the average return of all hedge funds in the Barclays database. FIA return is a measure of
the average return of the fixed-income arbitrage hedge funds in the Barclays database. The period is from
01/2000 to 12/2019, corresponding to a sample size of 240 observations. Newey-West standard errors with
4 lags are in parentheses. Asterisks denote significance levels (∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01).
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Table 4: Predictive Regressions Using Macroeconomic and Financial Data
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Nonfarm payrolls 0.094∗∗ 0.044 0.026 -0.014 -0.007 0.034 0.020 -0.007 -0.002
(0.039) (0.064) (0.039) (0.060) (0.038) (0.051) (0.032) (0.049) (0.031)

Employment growth (12m) 0.005∗∗ 0.006∗ 0.003∗ 0.007∗∗ 0.005∗∗ 0.006∗∗ 0.003∗∗ 0.008∗∗ 0.005∗∗∗

(0.002) (0.003) (0.002) (0.003) (0.002) (0.003) (0.002) (0.003) (0.002)
Δ log S&P500 (3m) 0.084 0.153 0.081 0.095 0.052 0.137∗ 0.081∗ 0.091 0.057

(0.059) (0.092) (0.055) (0.089) (0.055) (0.071) (0.042) (0.065) (0.041)
Δ Slope (3m) -0.010 -0.012 -0.008 -0.012 -0.008 -0.011 -0.008 -0.013 -0.008

(0.007) (0.009) (0.006) (0.009) (0.006) (0.008) (0.005) (0.008) (0.005)
Δ log Comm. price (3m) 0.119∗∗ 0.065 0.051 0.118 0.082∗ 0.072 0.049 0.093 0.062∗

(0.051) (0.089) (0.051) (0.079) (0.049) (0.068) (0.038) (0.057) (0.035)
Treasury skewness 0.032∗∗∗ 0.027 0.020 0.035 0.025 0.029∗∗ 0.018∗∗ 0.031∗∗ 0.019∗∗

(0.011) (0.026) (0.015) (0.027) (0.016) (0.013) (0.008) (0.013) (0.008)
R2 (%) 16.16 21.32 22.19 16.92 18.03 18.96 19.72 14.71 15.41
Adj. R2 (%) 14.56 16.90 17.82 11.88 13.07 15.78 16.58 11.18 11.91
Sample 88-19 00-14 00-14 00-14 00-14 00-19 00-19 00-19 00-19
GFC YES YES YES NO NO YES YES NO NO
N 322 114 114 106 106 160 160 152 152
Policy surprise BS BS NS BS NS BS NS BS NS

Notes: The table reports the coefficient estimates from Equation (9) for the set of macroeconomic and financial
predictors considered in Bauer and Swanson (2023b), which are observed prior to the FOMC announcements.
These include the surprise component of the most recent nonfarm payrolls release, employment growth over the
last year, the log change in the S&P500 from 3 months before to the day before the FOMC announcement, the
change in the yield curve slope over the same period, the log change in a commodity price index over the same
period, and the option-implied skewness of the 10-year Treasury yield from Bauer and Chernov (2021). The first
column present the results for the monetary policy surprise shock of Bauer and Swanson (2023b) with their set of
322 FOMC announcements over the period 1988/01-2019/12. The next 4 columns consider all scheduled FOMC
announcements taking place in the baseline sample (2000/01-2014/03) for the Bauer and Swanson (2023b) and
Nakamura and Steinsson (2018) shocks, respectively denoted by BS and NS. Columns (4)-(5) discard the 8
FOMC announcements taking place during the peak of the GFC between 2008/07 and 2009/06. The last 4
columns report the results for the extended sample (2000/01-2019/12), with columns (8)-(9) discarding FOMC
announcements taking place between 2008/07 and 2009/06. Robust standard errors are in parentheses. Asterisks
denote significance levels (∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01).
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Table 5: Summary Statistics
Volume No. Transactions Trade Size No. LEI

Panel A: Full Sample
9,887 586 16.9 3,020

Panel B: By Maturity
1-3y 2,676 (26.3%) 132 (22.0%) 20.2 2,146
3-7y 3,433 (33.8%) 153 (25.5%) 22.4 2,067
7-10y 2,831 (27.9%) 189 (31.5 %) 15.0 2,199
11-30y 1,218 (12.0%) 126 (21.0%) 9.7 1,806

Panel C: By Sector
Banks 3,829 (37.2%) 293 (48.5%) 13.0 524
AMs 1,329 (12.9%) 168 (27.8%) 7.9 1,365
HFs 3,160 (30.7%) 83 (13.7%) 38.1 596
Foreign Off. 1,654 (16.1%) 38 (6.3%) 43.5 126
ICPFs 308 (3.0%) 22 (3.6%) 14.1 409

]
Notes: The table shows daily averages for different splits of the sample. No. LEI is the total number of unique

LEI and not the daily average.

Table 6: Summary Statistics: FOMC Days
Volume No. Transactions Trade Size No. LEI

Panel A: FOMC
no FOMC 9,739 577 16.9 2,984
Pre-FOMC (t) 11,546 682 16.9 1,416
Post-FOMC (t+1) 13,700 806 17.0 1,401

Panel B: FOMC in High and Low Liquidity
H-Noise Pre-FOMC 10,561 586 18.0 925
H-Noise Post-FOMC 13,804 777 17.8 966
L-Noise Pre-FOMC 12,307 757 16.3 1,177
L-Noise Post-FOMC 13,620 828 16.5 1,155
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Table 7: Summary Statistics: RV vs non-RV on FOMC days
Volume No. Transactions Trade Size No. LEI

Panel A: Any Day
RV 2,372 103 23.0 699
non RV 7,610 488 15.6 2,321

Panel B: FOMC
RV no FOMC 2,342 101 23.1 699
RV Pre-FOMC (t) 2,716 127 21.4 459
RV Post-FOMC (t+1) 3,155 143 22.0 479
non RV no FOMC 7,498 482 15.6 2,285
non RV Pre-FOMC (t) 8,830 556 15.9 957
non RV Post-FOMC (t+1) 10,545 662 15.9 922

Panel C: High vs Low Liquidity FOMC
RV H-Noise Pre-FOMC 2,305 111 20.8 310
RV H-Noise Post-FOMC 2,873 137 21.0 329
RV L-Noise Pre-FOMC 3,034 139 21.8 375
RV L-Noise Post-FOMC 3,374 148 22.8 394
non RV H-Noise Pre-FOMC 8,255 475 17.4 615
non RV H-Noise Post-FOMC 10,931 640 17.1 637
non RV L-Noise Pre-FOMC 9,274 618 15.0 802
non RV L-Noise Post-FOMC 10,246 680 15.1 761

Table 8: Interdealer Price Dispersion in High and Low Liquidity
Unweighted Weighted Unweighted Weighted

Interdealer Price Dispersion DT (smoothed)
L-Noise Pre-FOMC -7.33*** -7.15***
L-Noise Post-FOMC -7.27*** -7.08***
Observations 39 39 39 39

Notes: The table reports the results of the regression log(Dt) = β�LowNoise where
i = {Pre − FOMC, Post − FOMC}.
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A Appendix

A.1 Different Timings for the Noise Measure, Slow-Moving Trend, and Different
Data Vintages

A.1.1 Different timings for the noise measure

We explore different definitions for the timing of the liquidity measure around FOMC announce-
ments. Figure 43 of the appendix presents the results using a 3-day average of the noise measure
before FOMC announcement (i.e. t − 3 to t − 1) and Figure 44 considers the same treatment
on the extended sample. Moreover, Figure 45 considers a 3-day window around announcements
(i.e. t − 1 to t + 1) and Figure 46 considers the same treatment on the extended sample. The
results are unaffected by the timing used to measure market liquidity conditions around FOMC
announcements.

A.1.2 Slow-Moving Trend in the noise measure

Another concern is that the declining trend in the noise measure over the sample period could be
driving our results. Figure 47 presents the results using a detrended version of the noise measure,
obtained by fitting a quadratic trend to the series. Figure 48 considers the same treatment on the
extended sample. We find very similar estimates compared to our baseline results presented in
Section 3.1.

We note that properly accounting for the downward long-term trend in the noise measure also
has implications for the extensions considered in Section 5, which we revisit below.

Does Liquidity State-Dependence Capture Recession State-Dependence? Section 5.1
highlights the implications for monetary policy transmission of the interactions between market
liquidity and economic conditions. We show in Figure 12 that market liquidity might play a minor
role for monetary policy transmission when economic conditions are favourable. However, Figure
49 indicates that the downward trend in the noise measure introduces a bias in our sorting of “High
PMI” FOMC announcement dates into high and low noise buckets. Once corrected, we observe
that market liquidity plays a key role in monetary policy transmission over the business cycle.
The transmission of policy shocks can become muted during favourable economic conditions if
market liquidity is poor (third column of Figure 49), and high liquidity in the market can support
monetary policy transmission during periods of depressed economic activity (second column of
Figure 50). The results in Figures 51 and 52 lend further support to the key role played by
market liquidity in monetary policy transmission as we do not observe a significant impact of
(un)favourable economic conditions once we condition on liquidity conditions in the market being
better (Figure 51) or worse (Figure 52).
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Possible Correlations between Market Liquidity and Monetary Policy Figure 53 presents
the results in the extended sample from the analysis developed in Section 5.2 to remove the poten-
tial counfounding effect of conditional heteroskedasticity in monetary policy shocks across higher
vs. lower liquidity states. These results would suggest that the weaker state-dependence in the ex-
tended sample is still present after standardizing the shocks and, therefore, cannot be completely
explained by the smaller variance of the monetary policy surprises in the more recent part of the
sample. However, Figure 54 shows that the results based on the detrended noise measure confirm
our baseline results in Section 5.2 that the state-dependence of monetary policy transmission with
respect to liquidity conditions is not driven by the conditional heteroskedasticity of the shocks
across liquidity states.

Dynamic Effects over Longer Horizon Figure 60 shows that the results in the extended
sample using the detrended noise measure are in line with our baseline results from Section 5.3.
The estimated effects for real forward rates on higher liquidity announcement days are strongly
significant over the first month for intermediate maturities of 5 and 10 years, and the overall
increase after 3 months is significant for the 5 and 20-year forwards. Monetary policy transmission
on lower liquidity announcement days is muted – except for short maturities – and long maturities
actually experience a statistically significant decrease over a horizon of 3 months. Nominal forward
rates show similar signs of a long-lasting impact of the liquidity state-dependence of monetary
policy transmission (Figure 61), leaving inflation forward rates broadly unaffected except for longer
maturities (Figure 62).

Macroeconomic Implications: The Response of Mortgage Rates Figure 64 reports the
results for the extended sample when we use the detrended noise measure to sort FOMC announce-
ments into high and low noise days. We find strong evidence of state dependence in monetary
policy transmission, which confirms the results obtained in Section 5.4 for the baseline sample.
The estimates for the higher liquidity days are more precisely estimated and the cumulative in-
crease in mortgage rates is statistically different from zero at all horizons up to 3 months after the
initial shock.

A.1.3 Impact of different data vintages

As highlighted in Section 2, the data vintage for real interest rates used in Nakamura and Steinsson
(2018) differs from the most recent vintage available on the website of the Federal Reserve Board
due to subsequent revisions to the underlying methodology. While we took the approach of
extending the initial dataset of Nakamura and Steinsson (2018) with more recent data to increase
comparability between our baseline analysis and their results, we would also like to ensure that our
main finding on the liquidity state-dependence of monetary policy transmission – which operates
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primarily through real interest rates – is not driven by our choice of data vintage. Figure 65 shows
that the baseline estimates for real forward rates (first column, second row) are qualitatively
comparable to our baseline results, with significant coefficient estimates for short and medium
maturities. We also observe a slightly more pronounced U-shaped pattern in the coefficients,
although differences in estimates are unlikely to be statistically significant, which helps reconciling
some of the differences between our results and the analysis in Kekre, Lenel, and Mainardi (2022).

As in our baseline results, we find larger responses in real forward rates on higher liquidity
days (second column, second row) and no statistically significant response on lower liquidity days
(third column, second row). We note however that the difference in coefficient estimates between
higher and lower liquidity days is somewhat less pronounced than in our baseline analysis, and
the transmission of shocks to longer real forward rates on higher liquidity days tapers off after the
10-year maturity.

Figure 66 presents the results for the extended sample using the detrended noise measure.
The results are in line with the ones for the baseline sample, with the exception of a statistically
significant response of short-term real forward rates (maturities below 5 years) on lower liquidity
days. The magnitude of the coefficient estimates for these maturities is comparable across liquidity
states, with noticeably wider confidence intervals around the estimates on lower liquidity days.
Taken together, these evidence suggest that our main results are robust to the choice of different
data vintages for real interest rates.

A.2 Information Effect and Response to News

We follow the approach proposed by Bauer and Swanson (2023b) to remove the predictable com-
ponent from the monetary policy surprises. We estimate the following regression:

Δmpst = β0 + β�
1 Xt− + vt , (9)

where Δmpst is a measure of monetary policy surprises, Xt− is a set of macroeconomic and
financial predictors known at the announcement time t, and vt is a regression residual term orthog-
onal to the predictors. We consider the predictors used in Bauer and Swanson (2023b)—namely,
the surprise in the latest nonfarm payrolls release, the 12-month log-change in nonfarm payroll
employment, the 3-month log change in the S&P500 stock price index prior to the FOMC an-
nouncement, the 3-month changes in the yield curve slope and in the Bloomberg Commodity Spot
Price index, and the average value of the Treasury skewness measure of Bauer and Chernov (2021)
over the previous month.

Table 4 reports the results for the monetary policy surprise shocks of Nakamura and Steinsson
(2018), denoted by NS, and Bauer and Swanson (2023b), denoted by BS. For comparison purpose,
the first column reproduces the results of Bauer and Swanson (2023b) based on their set of 322
FOMC announcements over the period 1988/01-2019/12. The rest of the columns report the

77



results for the set of all scheduled FOMC announcements taking place in the baseline (2000/01-
2014/03) and extended (2000/01-2019/12) samples. In both cases, we consider the implication of
dropping the 8 FOMC announcements taking place at the peak of the GFC between July 2008
and June 2009. The orthogonalized shocks v̂t used in the analysis of Section 6.2 correspond to
columns (4)-(5) for the baseline sample and (8)-(9) for the extended sample.

A.3 Robustness of the RV Measure

In this section we show the key trade-off in choosing the window over which to compute our two
metrics of arbitrage capital. We immediately rule out windows that are too long (e.g. quarterly,
annual, or over entire sample) since they would fail even to distinguish between preferred-habitat
investors and arbitrageurs. We test our measure with three windows: daily, weekly and monthly.
The trade off is the following: suppose on day t I see you trading only at the 2Y point; then next
period, t + 1, I see you trading the 7Y maturity. We would not be able to compute a standard
deviation here. If we extend our window to a two-day window (t to t + 1) we would say you have
σ > 0. This is the benefit of having a longer window.

However, as the window expands, I also capture behaviour that not necessarily implies arbitrage
across the curve. For example, suppose there is a preferred-habitat investor with a preference for
maturity 30Y . At time t we see him buying at the 30Y . One year later the bond has become a
29Y but the investor has a preference/mandate for 30Y so rebalancing is needed. I would observe
the preferred-habitat investor selling a 29Y and buying a 30Y thus implying a positive standard
deviation.

In other words, extending the window increase type I error: categorizing non-arbitrageurs as
arbitrageurs, while restricting the window causes type II error. Table 9 shows our measure at
different windows. The daily window captures more volume and more frequent trading. That is,
seems to be capturing traders hit by more frequent liquidity shocks that go in and out to manage
liquidity. When we move to weekly, Panel B, we capture less volume and less transaction but
they start increasing in size. Finally when we move to monthly, Panel C, we capture slightly less
volume and transactions but larger trade sizes.

Figure 40 shows the composition across the monthly and daily index. While picking up a
smaller volume, the composition becomes more tilted towards hedge funds and picks up fewer
banks, which could be trader hit by more frequent liquidity shock (i.e. deposit withdrawals).
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Figure 40: Distribution of Arbitrage Capital

Figure 41: Daily Index

Figure 42: Monthly Index
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Table 9: Summary Statistics at different windows
Volume No. Transactions Trade Size No. LEI

Panel A: Daily Measure
RV 4,408 247 17.9 617
non RV 5,573 345 16.2 2,403

Panel B:Weekly Measure
RV 2,972 144 20.6 655
non RV 6,992 446 15.7 2,365

Panel C: Monthly Measure
RV 2,372 103 23.0 699
non RV 7,610 488 15.6 2,321
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A.4 Additional Tables and Figures

A.4.1 Different Timings and Slow-Moving Trend in the Noise Measure

Figure 43: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
backward-looking window

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. We use a 3-day average of
the noise measure before the announcement (t − 3 to t − 1). The sample includes all regularly scheduled
FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place between July 2008 and
June 2009. This corresponds to a sample size of 106 observations on which the policy news shock is
computed and each regression is estimated. Regression results for the 2, 3 and 4-year forward rates are
based on a sample size of 74 observations (starting in 2004).
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Figure 44: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
backward-looking window in the extended sample

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. We use a 3-day average of
the noise measure before the announcement (t − 3 to t − 1). The sample includes all regularly scheduled
FOMC meetings from 01/2000 to 12/2019, excluding those taking place between July 2008 and June 2009.
This corresponds to a sample size of 152 observations on which each regression is estimated. Regression
results for the 2, 3 and 4-year forward rates are based on a sample size of 120 observations (starting in
2004).
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Figure 45: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
forward-looking window

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. We use a 3-day average of
the noise measure around the announcement (t − 1 to t + 1). The sample includes all regularly scheduled
FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place between July 2008 and
June 2009. This corresponds to a sample size of 106 observations on which the policy news shock is
computed and each regression is estimated. Regression results for the 2, 3 and 4-year forward rates are
based on a sample size of 74 observations (starting in 2004).
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Figure 46: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
forward-looking window in the extended sample

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. We use a 3-day average of
the noise measure around the announcement (t − 1 to t + 1). The sample includes all regularly scheduled
FOMC meetings from 01/2000 to 12/2019, excluding those taking place between July 2008 and June 2009.
This corresponds to a sample size of 152 observations on which each regression is estimated. Regression
results for the 2, 3 and 4-year forward rates are based on a sample size of 120 observations (starting in
2004).
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Figure 47: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
accounting for trends

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. We use a detrended version
of the noise measure, obtained by fitting a quadratic trend to the series. The sample includes all regularly
scheduled FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place between July
2008 and June 2009. This corresponds to a sample size of 106 observations on which the policy news
shock is computed and each regression is estimated. Regression results for the 2, 3 and 4-year forward
rates are based on a sample size of 74 observations (starting in 2004).
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Figure 48: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
accounting for trends in the extended sample

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. We use a detrended version
of the noise measure, obtained by fitting a quadratic trend to the series. The sample includes all regularly
scheduled FOMC meetings from 01/2000 to 12/2019, excluding those taking place between July 2008 and
June 2009. This corresponds to a sample size of 152 observations on which each regression is estimated.
Regression results for the 2, 3 and 4-year forward rates are based on a sample size of 120 observations
(starting in 2004).
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A.4.2 Does Liquidity State-Dependence Capture Recession State-Dependence?

Figure 49: Impact of yield curve noise on monetary policy transmission when economic conditions
are favourable: detrended noise

Note: The first column (High PMI) plots estimates of γi
hl,τ in regression (2) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20) for the subset of scheduled FOMC announcements for which the
manufacturing PMI is above its median level. 90% confidence intervals based on robust standard errors
are provided around the estimates. The second (High PMI/Low noise) and third (High PMI/High noise)
columns respectively present parameter estimates for the two subgroups obtained by further dividing the
“High PMI” announcements into two subgroups depending on whether the yield curve noise measure is
below/above median. We use a detrended version of the noise measure, obtained by fitting a quadratic
trend to the series. The sample includes all regularly scheduled FOMC meetings from 01/2000 to 12/2019,
excluding those taking place between July 2008 and June 2009. This corresponds to a sample size of 76
observations (out of 152) for the “High PMI” results and 38 observations for the “High PMI/Low noise”
and “High PMI/High noise” subgroups. Regression results for the 2, 3 and 4-year forward rates are based
on a sample starting in 2004.
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Figure 50: Impact of yield curve noise on monetary policy transmission when economic conditions
are depressed: detrended noise

Note: The first column (Low PMI) plots estimates of γi
hl,τ in regression (2) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20) for the subset of scheduled FOMC announcements for which the
manufacturing PMI is below its median level. 90% confidence intervals based on robust standard errors
are provided around the estimates. The second (Low PMI/Low noise) and third (Low PMI/High noise)
columns respectively present parameter estimates for the two subgroups obtained by further dividing the
“Low PMI” announcements into two subgroups depending on whether the yield curve noise measure is
below/above median. We use a detrended version of the noise measure, obtained by fitting a quadratic
trend to the series. The sample includes all regularly scheduled FOMC meetings from 01/2000 to 12/2019,
excluding those taking place between July 2008 and June 2009. This corresponds to a sample size of 76
observations (out of 152) for the “Low PMI” results and 38 observations for the “Low PMI/Low noise”
and “Low PMI/High noise” subgroups. Regression results for the 2, 3 and 4-year forward rates are based
on a sample starting in 2004.
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Figure 51: Impact of economic conditions on monetary policy transmission when yield curve noise
is low: detrended noise

Note: The first column (Low noise) plots estimates of γi
hl,τ in regression (2) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20) for the subset of scheduled FOMC announcements for which the
yield curve noise measure is below its median level. 90% confidence intervals based on robust standard
errors are provided around the estimates. The second (Low noise/Low PMI) and third (Low noise/High
PMI) columns respectively present parameter estimates for the two subgroups obtained by further divid-
ing the “Low noise” announcements into two buckets depending on whether the manufacturing PMI is
below/above median. We use a detrended version of the noise measure, obtained by fitting a quadratic
trend to the series. The sample includes all regularly scheduled FOMC meetings from 01/2000 to 12/2019,
excluding those taking place between July 2008 and June 2009. This corresponds to a sample size of 76
observations (out of 152) for the “Low noise” results and 38 observations for the “Low noise/Low PMI”
and “Low noise/High PMI” subgroups. Regression results for the 2, 3 and 4-year forward rates are based
on a sample starting in 2004.
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Figure 52: Impact of economic conditions on monetary policy transmission when yield curve noise
is high: detrended noise

Note: The first column (High noise) plots estimates of γi
hl,τ in regression (2) for each forward rate

i ∈ n, r, π (in each row) with maturity τ ∈ (2, 20) for the subset of scheduled FOMC announcements
for which the yield curve noise measure is above its median level. 90% confidence intervals based on
robust standard errors are provided around the estimates. The second (High noise/Low PMI) and
third (High noise/High PMI) columns respectively present parameter estimates for the two subgroups
obtained by further dividing the “High noise” announcements into two buckets depending on whether the
manufacturing PMI is below/above median. We use a detrended version of the noise measure, obtained by
fitting a quadratic trend to the series. The sample includes all regularly scheduled FOMC meetings from
01/2000 to 12/2019, excluding those taking place between July 2008 and June 2009. This corresponds
to a sample size of 76 observations (out of 152) for the “High noise” results and 38 observations for the
“High noise/Low PMI” and “High noise/High PMI” subgroups. Regression results for the 2, 3 and 4-year
forward rates are based on a sample starting in 2004.
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A.4.3 Possible Correlations between Market Liquidity and Monetary Policy

Table 10: Impact of FOMC meetings on US yield curve noise

Noise HP filter Quadratic trend
Panel A: mondays
FOMC week -0.02 -0.01 -0.01

(0.13) (0.11) (0.12)
Constant 2.56∗∗∗ -0.61∗∗∗ -0.34∗∗∗

(0.05) (0.05) (0.05)
N 603 603 603
Panel B: tuesdays
FOMC week 0.03 0.04 0.03

(0.13) (0.12) (0.12)
Constant 2.53∗∗∗ -0.63∗∗∗ -0.36∗∗∗

(0.05) (0.04) (0.05)
N 673 673 673
Panel C: wednesdays
FOMC week 0.04 0.05 0.04

(0.12) (0.11) (0.12)
Constant 2.53∗∗∗ -0.63∗∗∗ -0.36∗∗∗

(0.05) (0.04) (0.05)
N 675 675 675
Panel D: thursdays
FOMC week 0.06 0.05 0.06

(0.13) (0.12) (0.13)
Constant 2.56∗∗∗ -0.60∗∗∗ -0.32∗∗∗

(0.05) (0.04) (0.05)
N 667 667 667
Panel E: fridays
FOMC week 0.01 0.01 0.01

(0.13) (0.12) (0.11)
Constant 2.69∗∗∗ -0.47∗∗∗ -0.20∗∗∗

(0.05) (0.05) (0.05)
N 667 667 667

Notes: We report the results from a regression
of the yield curve noise measure on a constant
and a dummy variable indicating whether there
is an FOMC meeting on that week. Each panel
corresponds to the results for a given day of the
week. The first column presents the results for
the original noise measure. The second and third
columns present the results for a detrended ver-
sion of the noise measure, obtained respectively by
applying the Hodrick-Prescott filter to the original
series and by fitting a quadratic trend to the series.
The sample covers the period from 01/01/2000 to
19/03/2014, excluding the observations for the pe-
riod between July 2008 and June 2009. Standard
errors are in parentheses. Asterisks denote signifi-
cance levels (∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.0).
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Table 11: Regression of MP surprise in absolute value on lagged dummy for high US yield curve
noise

1[HighNoise]t−1 0.0116∗∗

(0.0048)
1[HighNoiseHP]t−1 0.0073

(0.0049)
1[HighNoiseQuad]t−1 0.0058

(0.0049)
Constant 0.0175∗∗∗ 0.0196∗∗∗ 0.0204∗∗∗

(0.0027) (0.0030) (0.0030)
N 106 106 106

Notes: We report the results from a regression of the
absolute value of the monetary policy shock on a con-
stant and a dummy variable indicating whether the
corresponding FOMC meeting is in the subset of an-
nouncements for which the yield curve noise measure
is above its median level. The first column presents
the results for the original noise measure. The second
and third columns present the results for a detrended
version of the noise measure, obtained respectively by
applying the Hodrick-Prescott filter to the original
series and by fitting a quadratic trend to the series.
The sample includes all regularly scheduled FOMC
meetings from 01/01/2000 to 19/03/2014, excluding
those taking place between July 2008 and June 2009.
This corresponds to a sample size of 106 observations
on which the policy news shock is computed and each
regression is estimated. Standard errors are in paren-
theses. Asterisks denote significance levels (∗ p<0.1,
∗∗ p<0.05, ∗∗∗ p<0.0).
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Figure 53: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
standardized shocks in the extended sample

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. The sample includes all
regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding those taking place between July
2008 and June 2009. This corresponds to a sample size of 152 observations on which each regression is
estimated. Regression results for the 2, 3 and 4-year forward rates are based on a sample size of 120
observations (starting in 2004). Note that the shock series in each estimation are standardized such that
the coefficient estimates represent the impact of a one-standard-deviation shock respectively for the full
sample (first column) and in the low/high noise buckets (resp. second and third columns).
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Figure 54: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
standardized shocks and detrended noise in the extended sample

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. We use a detrended version
of the noise measure, obtained by fitting a quadratic trend to the series. The sample includes all regularly
scheduled FOMC meetings from 01/2000 to 12/2019, excluding those taking place between July 2008 and
June 2009. This corresponds to a sample size of 152 observations on which each regression is estimated.
Regression results for the 2, 3 and 4-year forward rates are based on a sample size of 120 observations
(starting in 2004). Note that the shock series in each estimation are standardized such that the coefficient
estimates represent the impact of a one-standard-deviation shock respectively for the full sample (first
column) and in the low/high noise buckets (resp. second and third columns).

95



A.4.4 Dynamic Effects over Longer Horizon

Figure 55: Impact of yield curve noise on the transmission of MP shocks to US nominal forward
rates at longer horizons

Note: The first column (Baseline) plots estimates of γn,h
all,τ in regression (4) for nominal forward rates with

maturities of 2, 5, 10, and 20 years (in each row) and at horizons ranging from 1 to 60 trading days after
the announcement, together with 90% confidence intervals based on robust standard errors. The second
(Low noise) and third (High noise) columns respectively present parameter estimates for γn,h

hl,τ and γn,h
ll,τ

in regression (5), corresponding to the subset of scheduled FOMC announcements for which the yield
curve noise measure is below (resp. above) its median level. The sample includes all regularly scheduled
FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place between July 2008 and
June 2009. This corresponds to a sample size of 106 observations on which the policy news shock is
computed and each regression is estimated. Regression results for the 2-year forward rate are based on a
sample size of 74 observations (starting in 2004).
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Figure 56: Impact of yield curve noise on the transmission of MP shocks to US inflation forward
rates at longer horizons

Note: The first column (Baseline) plots estimates of γπ,h
all,τ in regression (4) for inflation forward rates with

maturities of 2, 5, 10, and 20 years (in each row) and at horizons ranging from 1 to 60 trading days after
the announcement, together with 90% confidence intervals based on robust standard errors. The second
(Low noise) and third (High noise) columns respectively present parameter estimates for γπ,h

hl,τ and γπ,h
ll,τ

in regression (5), corresponding to the subset of scheduled FOMC announcements for which the yield
curve noise measure is below (resp. above) its median level. The sample includes all regularly scheduled
FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place between July 2008 and
June 2009. This corresponds to a sample size of 106 observations on which the policy news shock is
computed and each regression is estimated. Regression results for the 2-year forward rate are based on a
sample size of 74 observations (starting in 2004).
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Figure 57: Impact of yield curve noise on the transmission of MP shocks to US real forward rates
at longer horizons: extended sample

Note: The first column (Baseline) plots estimates of γr,h
all,τ in regression (4) for real forward rates with

maturities of 2, 5, 10, and 20 years (in each row) and at horizons ranging from 1 to 60 trading days after
the announcement, together with 90% confidence intervals based on robust standard errors. The second
(Low noise) and third (High noise) columns respectively present parameter estimates for γr,h

hl,τ and γr,h
ll,τ in

regression (5), corresponding to the subset of scheduled FOMC announcements for which the yield curve
noise measure is below (resp. above) its median level. The sample includes all regularly scheduled FOMC
meetings from 01/2000 to 12/2019, excluding those taking place between July 2008 and June 2009. This
corresponds to a sample size of 152 observations on which each regression is estimated. Regression results
for the 2-year forward rate are based on a sample size of 120 observations (starting in 2004).
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Figure 58: Impact of yield curve noise on the transmission of MP shocks to US nominal forward
rates at longer horizons: extended sample

Note: The first column (Baseline) plots estimates of γn,h
all,τ in regression (4) for nominal forward rates with

maturities of 2, 5, 10, and 20 years (in each row) and at horizons ranging from 1 to 60 trading days after
the announcement, together with 90% confidence intervals based on robust standard errors. The second
(Low noise) and third (High noise) columns respectively present parameter estimates for γn,h

hl,τ and γn,h
ll,τ in

regression (5), corresponding to the subset of scheduled FOMC announcements for which the yield curve
noise measure is below (resp. above) its median level. The sample includes all regularly scheduled FOMC
meetings from 01/2000 to 12/2019, excluding those taking place between July 2008 and June 2009. This
corresponds to a sample size of 152 observations on which each regression is estimated. Regression results
for the 2-year forward rate are based on a sample size of 120 observations (starting in 2004).
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Figure 59: Impact of yield curve noise on the transmission of MP shocks to US inflation forward
rates at longer horizons: extended sample

Note: The first column (Baseline) plots estimates of γπ,h
all,τ in regression (4) for inflation forward rates with

maturities of 2, 5, 10, and 20 years (in each row) and at horizons ranging from 1 to 60 trading days after
the announcement, together with 90% confidence intervals based on robust standard errors. The second
(Low noise) and third (High noise) columns respectively present parameter estimates for γπ,h

hl,τ and γπ,h
ll,τ in

regression (5), corresponding to the subset of scheduled FOMC announcements for which the yield curve
noise measure is below (resp. above) its median level. The sample includes all regularly scheduled FOMC
meetings from 01/2000 to 12/2019, excluding those taking place between July 2008 and June 2009. This
corresponds to a sample size of 152 observations on which each regression is estimated. Regression results
for the 2-year forward rate are based on a sample size of 120 observations (starting in 2004).
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Figure 60: Impact of yield curve noise on the transmission of MP shocks to US real forward rates
at longer horizons: detrended noise in the extended sample

Note: The first column (Baseline) plots estimates of γr,h
all,τ in regression (4) for real forward rates with

maturities of 2, 5, 10, and 20 years (in each row) and at horizons ranging from 1 to 60 trading days after
the announcement, together with 90% confidence intervals based on robust standard errors. The second
(Low noise) and third (High noise) columns respectively present parameter estimates for γr,h

hl,τ and γr,h
ll,τ in

regression (5), corresponding to the subset of scheduled FOMC announcements for which the yield curve
noise measure is below (resp. above) its median level. We use a detrended version of the noise measure,
obtained by fitting a quadratic trend to the series. The sample includes all regularly scheduled FOMC
meetings from 01/2000 to 12/2019, excluding those taking place between July 2008 and June 2009. This
corresponds to a sample size of 152 observations on which each regression is estimated. Regression results
for the 2-year forward rate are based on a sample size of 120 observations (starting in 2004).
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Figure 61: Impact of yield curve noise on the transmission of MP shocks to US nominal forward
rates at longer horizons: detrended noise in the extended sample

Note: The first column (Baseline) plots estimates of γn,h
all,τ in regression (4) for nominal forward rates with

maturities of 2, 5, 10, and 20 years (in each row) and at horizons ranging from 1 to 60 trading days after
the announcement, together with 90% confidence intervals based on robust standard errors. The second
(Low noise) and third (High noise) columns respectively present parameter estimates for γn,h

hl,τ and γn,h
ll,τ in

regression (5), corresponding to the subset of scheduled FOMC announcements for which the yield curve
noise measure is below (resp. above) its median level. We use a detrended version of the noise measure,
obtained by fitting a quadratic trend to the series. The sample includes all regularly scheduled FOMC
meetings from 01/2000 to 12/2019, excluding those taking place between July 2008 and June 2009. This
corresponds to a sample size of 152 observations on which each regression is estimated. Regression results
for the 2-year forward rate are based on a sample size of 120 observations (starting in 2004).
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Figure 62: Impact of yield curve noise on the transmission of MP shocks to US inflation forward
rates at longer horizons: detrended noise in the extended sample

Note: The first column (Baseline) plots estimates of γπ,h
all,τ in regression (4) for inflation forward rates with

maturities of 2, 5, 10, and 20 years (in each row) and at horizons ranging from 1 to 60 trading days after
the announcement, together with 90% confidence intervals based on robust standard errors. The second
(Low noise) and third (High noise) columns respectively present parameter estimates for γπ,h

hl,τ and γπ,h
ll,τ in

regression (5), corresponding to the subset of scheduled FOMC announcements for which the yield curve
noise measure is below (resp. above) its median level. We use a detrended version of the noise measure,
obtained by fitting a quadratic trend to the series. The sample includes all regularly scheduled FOMC
meetings from 01/2000 to 12/2019, excluding those taking place between July 2008 and June 2009. This
corresponds to a sample size of 152 observations on which each regression is estimated. Regression results
for the 2-year forward rate are based on a sample size of 120 observations (starting in 2004).
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A.4.5 Macroeconomic Implications: The Response of Mortgage Rates

Figure 63: Impact of yield curve noise on the transmission of MP shocks to US fixed mortgage
rates: extended sample

Note: The first column (Baseline) plots estimates of γh
all,τ in regression (4) for US fixed mortgage rates

with maturities of 15 and 30 years (in each row) and at horizons ranging from 1 to 15 weeks after the
announcement, together with 90% confidence intervals based on robust standard errors. The second
(Low noise) and third (High noise) columns respectively present parameter estimates for γh

hl,τ and γr,h
ll,τ in

regression (5), corresponding to the subset of scheduled FOMC announcements for which the yield curve
noise measure is below (resp. above) its median level. The sample includes all regularly scheduled FOMC
meetings from 01/2000 to 12/2019, excluding those taking place between July 2008 and June 2009. This
corresponds to a sample size of 152 observations on which each regression is estimated.
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Figure 64: Impact of yield curve noise on the transmission of MP shocks to US fixed mortgage
rates: detrended noise in the extended sample

Note: The first column (Baseline) plots estimates of γh
all,τ in regression (4) for US fixed mortgage rates

with maturities of 15 and 30 years (in each row) and at horizons ranging from 1 to 15 weeks after the
announcement, together with 90% confidence intervals based on robust standard errors. The second
(Low noise) and third (High noise) columns respectively present parameter estimates for γh

hl,τ and γr,h
ll,τ in

regression (5), corresponding to the subset of scheduled FOMC announcements for which the yield curve
noise measure is below (resp. above) its median level. We use a detrended version of the noise measure,
obtained by fitting a quadratic trend to the series. The sample includes all regularly scheduled FOMC
meetings from 01/2000 to 12/2019, excluding those taking place between July 2008 and June 2009. This
corresponds to a sample size of 152 observations on which each regression is estimated.
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A.4.6 Impact of different data vintages

Figure 65: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
using most recent data vintage for real interest rates

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements

for which the yield curve noise measure is below (resp. above) its median level. The sample includes
all regularly scheduled FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place
between July 2008 and June 2009. This corresponds to a sample size of 106 observations on which the
policy news shock is computed and each regression is estimated. Regression results for the 2, 3 and 4-year
forward rates are based on a sample size of 74 observations (starting in 2004).
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Figure 66: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
using most recent data vintage for real interest rates in the extended sample

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. We use a detrended version
of the noise measure, obtained by fitting a quadratic trend to the series. The sample includes all regularly
scheduled FOMC meetings from 01/2000 to 12/2019, excluding those taking place between July 2008 and
June 2009. This corresponds to a sample size of 152 observations on which each regression is estimated.
Regression results for the 2, 3 and 4-year forward rates are based on a sample size of 120 observations
(starting in 2004).
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A.4.7 Conditioning on primary dealers and hedge fund proxies

Figure 67: Impact of FIA hedge fund returns on the transmission of MP shocks to US forward
rates: extended sample
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Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈

n, r, π (in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust
standard errors. The second (High FIA returns) and third (High FIA returns) columns respectively
present parameter estimates for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled

FOMC announcements for which the hedge fund return index is above (resp. below) its median level. The
index measures the average return of the fixed-income arbitrage hedge funds in the Barclays database.
The sample includes all regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding those
taking place between July 2008 and June 2009. This corresponds to a sample size of 152 observations on
which each regression is estimated. Regression results for the 2, 3 and 4-year forward rates are based on
a sample size of 120 observations (starting in 2004).

108



Figure 68: Impact of leverage on the transmission of MP shocks to US forward rates
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Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low leverage) and third (High leverage) columns respectively present parameter
estimates for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announce-

ments for which the intermediary leverage measure of He, Kelly, and Manela (2017) is below (resp.
above) its median level. The sample includes all regularly scheduled FOMC meetings from 01/01/2000 to
19/03/2014, excluding those taking place between July 2008 and June 2009. This corresponds to a sample
size of 106 observations on which the policy news shock is computed and each regression is estimated.
Regression results for the 2, 3 and 4-year forward rates are based on a sample size of 74 observations
(starting in 2004).
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Figure 69: Impact of leverage on the transmission of MP shocks to US forward rates: extended
sample
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Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈

n, r, π (in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust
standard errors. The second (Low leverage) and third (High leverage) columns respectively present
parameter estimates for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC

announcements for which the intermediary leverage measure of He, Kelly, and Manela (2017) is below
(resp. above) its median level. The sample includes all regularly scheduled FOMC meetings from 01/2000
to 12/2019, excluding those taking place between July 2008 and June 2009. This corresponds to a sample
size of 152 observations on which each regression is estimated. Regression results for the 2, 3 and 4-year
forward rates are based on a sample size of 120 observations (starting in 2004).
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A.4.8 Summary of robustness checks for alternative samples and monetary policy shocks

Figure 70: Robustness of state dependence for nominal forward rates to different samples and
monetary policy shocks

Note: The charts plot the estimates of γn
h−l,τ in regression (3) for each nominal forward rate with maturity

τ ∈ (2, 20), together with 90% confidence intervals based on robust standard errors. The first row reports
the results for the monetary policy shock of Nakamura and Steinsson (2018) respectively using their
baseline sample from 2000/01 to 2014/03 (first column); an extended sample from 2000/01 to 2019/12
with the updated data provided in Acosta (2022) (second column); and the extended sample excluding
unconventional monetary policy announcements identified in Table 5 of Cieslak and Schrimpf (2019)
(third column). The first two columns of the second row report results for the MP shock of Jarocinski
and Karadi (2020) using their orginal sample 2000/01-2016/12 and an extended sample from 2000/01 to
2019/06. The third column of the second row reports the results for the MP shock of Bauer and Swanson
(2023b) for the sample from 2000/01 to 2019/12. The last row reports the results for the Federal Funds
Rate (FFR), Forward Guidance (FG), and Large Scale Asset Purchase shocks of Swanson (2021) using a
sample from 2000/01 to 2019/06. We exclude FOMC meetings taking place between July 2008 and June
2009 from the estimation except in the results based on the MP shock of Jarocinski and Karadi (2020)
which only considers the subset of policy announcements for which the high-frequency changes in the
S&P 500 and interest rates have opposite signs. Regression results for the 2, 3 and 4-year forward rates
are based on samples starting in 2004/01.
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Figure 71: Robustness of state dependence for inflation forward rates to different samples and
monetary policy shocks

Note: The charts plot the estimates of γπ
h−l,τ in regression (3) for each inflation forward rate with maturity

τ ∈ (2, 20), together with 90% confidence intervals based on robust standard errors. The first row reports
the results for the monetary policy shock of Nakamura and Steinsson (2018) respectively using their
baseline sample from 2000/01 to 2014/03 (first column); an extended sample from 2000/01 to 2019/12
with the updated data provided in Acosta (2022) (second column); and the extended sample excluding
unconventional monetary policy announcements identified in Table 5 of Cieslak and Schrimpf (2019)
(third column). The first two columns of the second row report results for the MP shock of Jarocinski
and Karadi (2020) using their orginal sample 2000/01-2016/12 and an extended sample from 2000/01 to
2019/06. The third column of the second row reports the results for the MP shock of Bauer and Swanson
(2023b) for the sample from 2000/01 to 2019/12. The last row reports the results for the Federal Funds
Rate (FFR), Forward Guidance (FG), and Large Scale Asset Purchase shocks of Swanson (2021) using a
sample from 2000/01 to 2019/06. We exclude FOMC meetings taking place between July 2008 and June
2009 from the estimation except in the results based on the MP shock of Jarocinski and Karadi (2020)
which only considers the subset of policy announcements for which the high-frequency changes in the
S&P 500 and interest rates have opposite signs. Regression results for the 2, 3 and 4-year forward rates
are based on samples starting in 2004/01.
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A.4.9 Detailed results for alternative samples and monetary policy shocks

Figure 72: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
extended sample
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Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. The sample includes all
regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding those taking place between July
2008 and June 2009. This corresponds to a sample size of 152 observations on which each regression is
estimated. Regression results for the 2, 3 and 4-year forward rates are based on a sample size of 120
observations (starting in 2004).
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Figure 73: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
extended sample without UMP annoucements
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Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. The sample includes all
regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding those associated with periods
of Unconventional Monetary Policy (UMP) announcements as defined in Table 5 of Cieslak and Schrimpf
(2019) (except for events with forward guidance). This corresponds to a sample size of 122 observations
on which each regression is estimated. Regression results for the 2, 3 and 4-year forward rates are based
on a sample size of 90 observations (starting in 2004).
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Figure 74: Impact of yield curve noise on the transmission of MP shocks to US forward rates: all
FOMC announcements
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Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. The sample includes all
regularly scheduled FOMC meetings from 01/2000 to 12/2019, corresponding to a sample size of 160
observations on which each regression is estimated. Regression results for the 2, 3 and 4-year forward
rates are based on a sample size of 128 observations (starting in 2004).
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Figure 75: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
original sample for Jarocinski and Karadi (2020) shock

-2
0

2
4

6

5 10 15 20
MATURITY

Nominal: Baseline

-2
0

2
4

6

5 10 15 20
MATURITY

Nominal: Low noise

-2
0

2
4

6

5 10 15 20
MATURITY

Nominal: High noise

-2
0

2
4

6

5 10 15 20
MATURITY

Real: Baseline

-2
0

2
4

6

5 10 15 20
MATURITY

Real: Low noise

-2
0

2
4

6

5 10 15 20
MATURITY

Real: High noise

-2
-1

0
1

2

5 10 15 20
MATURITY

Inflation: Baseline

-2
-1

0
1

2

5 10 15 20
MATURITY

Inflation: Low noise

-2
-1

0
1

2

5 10 15 20
MATURITY

Inflation: High noise

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. The sample includes all
the FOMC announcements between 01/2000 and 12/2016 considered in Jarocinski and Karadi (2020) for
which the high-frequency changes in the S&P 500 and interest rates have opposite signs. This corresponds
to a sample size of 72 observations on which each regression is estimated. Regression results for the 2, 3
and 4-year forward rates are based on a sample size of 55 observations (starting in 2004).
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Figure 76: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
extended sample for Jarocinski and Karadi (2020) shock

-2
0

2
4

6

5 10 15 20
MATURITY

Nominal: Baseline

-2
0

2
4

6

5 10 15 20
MATURITY

Nominal: Low noise

-2
0

2
4

6

5 10 15 20
MATURITY

Nominal: High noise

-2
0

2
4

6

5 10 15 20
MATURITY

Real: Baseline

-2
0

2
4

6

5 10 15 20
MATURITY

Real: Low noise

-2
0

2
4

6

5 10 15 20
MATURITY

Real: High noise

-2
-1

0
1

2

5 10 15 20
MATURITY

Inflation: Baseline

-2
-1

0
1

2

5 10 15 20
MATURITY

Inflation: Low noise

-2
-1

0
1

2

5 10 15 20
MATURITY

Inflation: High noise

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. The sample includes all
the FOMC announcements between 01/2000 and 06/2019 considered in Jarocinski and Karadi (2020) for
which the high-frequency changes in the S&P 500 and interest rates have opposite signs. This corresponds
to a sample size of 108 observations on which each regression is estimated. Regression results for the 2,
3 and 4-year forward rates are based on a sample size of 90 observations (starting in 2004).
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Figure 77: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
extended sample for Bauer and Swanson (2023b) shock
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Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. The sample includes all
regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding those taking place between July
2008 and June 2009. This corresponds to a sample size of 152 observations on which each regression is
estimated. Regression results for the 2, 3 and 4-year forward rates are based on a sample size of 120
observations (starting in 2004).
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Figure 78: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
extended sample for Swanson (2021) FFR shock
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Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. The sample includes all
regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding those taking place between July
2008 and June 2009. This corresponds to a sample size of 148 observations on which each regression is
estimated. Regression results for the 2, 3 and 4-year forward rates are based on a sample size of 116
observations (starting in 2004).
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Figure 79: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
extended sample for Swanson (2021) FG shock
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Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. The sample includes all
regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding those taking place between July
2008 and June 2009. This corresponds to a sample size of 148 observations on which each regression is
estimated. Regression results for the 2, 3 and 4-year forward rates are based on a sample size of 116
observations (starting in 2004).
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Figure 80: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
extended sample for Swanson (2021) LSAP shock
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Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. The sample includes all
regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding those taking place between July
2008 and June 2009. This corresponds to a sample size of 148 observations on which each regression is
estimated. Regression results for the 2, 3 and 4-year forward rates are based on a sample size of 116
observations (starting in 2004).
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A.4.10 Summary of robustness checks for the information effect and response to news

Figure 81: Robustness of state-dependence for nominal forward rates to orthogonalized monetary
policy shocks

Note: The charts plot the estimates of γr
h−l,τ in regression (3) for each nominal forward rate with maturity

τ ∈ (2, 20), together with 90% confidence intervals based on robust standard errors. The first row reports
the results for the orthogonalized shocks of Nakamura and Steinsson (2018) and Bauer and Swanson
(2023b), respectively denoted by NS and BS, in the baseline sample from 2000/01 to 2014/03. The
second row reports the same results for the extended sample from 2000/01 to 2019/12. We exclude
FOMC meetings taking place between July 2008 and June 2009 from the estimation. Regression results
for the 2, 3 and 4-year forward rates are based on samples starting in 2004/01. Details on the approach
used to obtain the orthogonalized shock series can be found in Appendix A.2.
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Figure 82: Robustness of state-dependence for inflation forward rates to orthogonalized monetary
policy shocks

Note: The charts plot the estimates of γr
h−l,τ in regression (3) for each inflation forward rate with maturity

τ ∈ (2, 20), together with 90% confidence intervals based on robust standard errors. The first row reports
the results for the orthogonalized shocks of Nakamura and Steinsson (2018) and Bauer and Swanson
(2023b), respectively denoted by NS and BS, in the baseline sample from 2000/01 to 2014/03. The
second row reports the same results for the extended sample from 2000/01 to 2019/12. We exclude
FOMC meetings taking place between July 2008 and June 2009 from the estimation. Regression results
for the 2, 3 and 4-year forward rates are based on samples starting in 2004/01. Details on the approach
used to obtain the orthogonalized shock series can be found in Appendix A.2.
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A.4.11 Detailed results for the information effect and response to news

Figure 83: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
baseline sample for orthogonalized Nakamura and Steinsson (2018) shock

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements

for which the yield curve noise measure is below (resp. above) its median level. The sample includes
all regularly scheduled FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place
between July 2008 and June 2009. This corresponds to a sample size of 106 observations on which the
policy news shock is computed and each regression is estimated. Regression results for the 2, 3 and 4-year
forward rates are based on a sample size of 74 observations (starting in 2004). The procedure to obtain
the orthogonalized shocks follows Bauer and Swanson (2023b) and is outlined in Appendix A.2.
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Figure 84: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
baseline sample for orthogonalized Bauer and Swanson (2023b) shock

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements

for which the yield curve noise measure is below (resp. above) its median level. The sample includes
all regularly scheduled FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place
between July 2008 and June 2009. This corresponds to a sample size of 106 observations on which each
regression is estimated. Regression results for the 2, 3 and 4-year forward rates are based on a sample size
of 74 observations (starting in 2004). The procedure to obtain the orthogonalized shocks follows Bauer
and Swanson (2023b) and is outlined in Appendix A.2.
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Figure 85: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
extended sample for orthogonalized Nakamura and Steinsson (2018) shock

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. The sample includes all
regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding those taking place between July
2008 and June 2009. This corresponds to a sample size of 152 observations on which each regression is
estimated. Regression results for the 2, 3 and 4-year forward rates are based on a sample size of 120
observations (starting in 2004). The procedure to obtain the orthogonalized shocks follows Bauer and
Swanson (2023b) and is outlined in Appendix A.2.
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Figure 86: Impact of yield curve noise on the transmission of MP shocks to US forward rates:
extended sample for orthogonalized Bauer and Swanson (2023b) shock

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low noise) and third (High noise) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the yield curve noise measure is below (resp. above) its median level. The sample includes all
regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding those taking place between July
2008 and June 2009. This corresponds to a sample size of 152 observations on which each regression is
estimated. Regression results for the 2, 3 and 4-year forward rates are based on a sample size of 120
observations (starting in 2004). The procedure to obtain the orthogonalized shocks follows Bauer and
Swanson (2023b) and is outlined in Appendix A.2.
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A.4.12 Other measures of market stress

Figure 87: Impact of volatility on the transmission of MP shocks to US forward rates: extended
sample

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low VIX) and third (High VIX) columns respectively present parameter estimates
for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC announcements for

which the CBOE VIX index is below (resp. above) its median level. The sample includes all regularly
scheduled FOMC meetings from 01/2000 to 12/2019, excluding those taking place between July 2008 and
June 2009. This corresponds to a sample size of 152 observations on which each regression is estimated.
Regression results for the 2, 3 and 4-year forward rates are based on a sample size of 120 observations
(starting in 2004).
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Figure 88: Impact of the TED spread on the transmission of MP shocks to US forward rates:
extended sample

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for each forward rate i ∈ n, r, π

(in each row) with maturity τ ∈ (2, 20), together with 90% confidence intervals based on robust standard
errors. The second (Low TED Spread) and third (High TED Spread) columns respectively present
parameter estimates for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC

announcements for which the T-Bill Eurodollar (TED) spread is below (resp. above) its median level.
The sample includes all regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding those
taking place between July 2008 and June 2009. This corresponds to a sample size of 152 observations on
which each regression is estimated. Regression results for the 2, 3 and 4-year forward rates are based on
a sample size of 120 observations (starting in 2004).
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A.4.13 Role of Risk Premium vs Expectations

Figure 89: Decomposition of US nominal forward rates into expected and risk premia components
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Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for the expected average

future nominal forward rate (first row) and nominal risk premium (second row) at maturities τ ∈ (2, 10),
together with 90% confidence intervals based on robust standard errors. The measures are based on the
decomposition introduced in Abrahams, Adrian, Crump, Moench, and Yu (2016) and we follow Nakamura
and Steinsson (2018) by grouping the term premium, liquidity premium and model error into a single
risk premium component. The second (Low noise) and third (High noise) columns respectively present
parameter estimates for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of scheduled FOMC

announcements for which the noise measure is below (resp. above) its median level. The sample includes
all regularly scheduled FOMC meetings from 01/01/2000 to 19/03/2014, excluding those taking place
between July 2008 and June 2009. This corresponds to a sample size of 106 observations on which the
policy news shock is computed and each regression is estimated. Regression results for the 2, 3 and 4-year
forward rates are based on a sample size of 74 observations (starting in 2004).
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Figure 90: Decomposition of US nominal forward rates into expected and term premia components
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Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for the expected average

future nominal forward rate (first row) and nominal term premium (second row) at maturities τ ∈ (2, 10),
together with 90% confidence intervals based on robust standard errors. The measures are based on the
decomposition introduced in Kim and Wright (2005). The second (Low noise) and third (High noise)
columns respectively present parameter estimates for γ i

hl,τ and γi
ll,τ in regression (2), corresponding to the

subset of scheduled FOMC announcements for which the noise measure is below (resp. above) its median
level. The sample includes all regularly scheduled FOMC meetings from 01/01/2000 to 19/03/2014,
excluding those taking place between July 2008 and June 2009. This corresponds to a sample size of 106
observations on which the policy news shock is computed and each regression is estimated. Regression
results for the 2, 3 and 4-year forward rates are based on a sample size of 74 observations (starting in
2004).
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Figure 91: Decomposition of US nominal forward rates into expected and term premia components:
extended sample
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Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for the expected average

future nominal forward rate (first row) and nominal term premium (second row) at maturities τ ∈ (2, 10),
together with 90% confidence intervals based on robust standard errors. The measures are based on the
decomposition introduced in Kim and Wright (2005). The second (Low noise) and third (High noise)
columns respectively present parameter estimates for γ i

hl,τ and γi
ll,τ in regression (2), corresponding to

the subset of scheduled FOMC announcements for which the noise measure is below (resp. above) its
median level. The sample includes all regularly scheduled FOMC meetings from 01/2000 to 12/2019,
excluding those taking place between July 2008 and June 2009. This corresponds to a sample size of 152
observations on which each regression is estimated. Regression results for the 2, 3 and 4-year forward
rates are based on a sample size of 120 observations (starting in 2004).
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Figure 92: Decomposition of US forward rates into real expected and term premia components

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for the expected average future

real forward rate (first row) and real term premium (second row) at maturities τ ∈ (2, 10), together with
90% confidence intervals based on robust standard errors. The measures are based on the decomposition
introduced in D’Amico, Kim, and Wei (2018). The second (Low noise) and third (High noise) columns
respectively present parameter estimates for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset of

scheduled FOMC announcements for which the noise measure is below (resp. above) its median level. The
sample includes all regularly scheduled FOMC meetings from 01/01/2000 to 19/03/2014, excluding those
taking place between July 2008 and June 2009. This corresponds to a sample size of 106 observations on
which the policy news shock is computed and each regression is estimated. Regression results for the 2,
3 and 4-year forward rates are based on a sample size of 74 observations (starting in 2004).
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Figure 93: Decomposition of US forward rates into real expected and term premia components:
extended sample

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for the expected average future

real forward rate (first row) and real term premium (second row) at maturities τ ∈ (2, 10), together with
90% confidence intervals based on robust standard errors. The measures are based on the decomposition
introduced in D’Amico, Kim, and Wei (2018). The second (Low noise) and third (High noise) columns
respectively present parameter estimates for γi

hl,τ and γi
ll,τ in regression (2), corresponding to the subset

of scheduled FOMC announcements for which the noise measure is below (resp. above) its median level.
The sample includes all regularly scheduled FOMC meetings from 01/2000 to 12/2019, excluding those
taking place between July 2008 and June 2009. This corresponds to a sample size of 152 observations on
which each regression is estimated. Regression results for the 2, 3 and 4-year forward rates are based on
a sample size of 120 observations (starting in 2004).
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Figure 94: Decomposition of US forward rates into expected inflation and risk premia components

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for the expected average

future forward inflation (first row) and inflation risk premium (second row) at maturities τ ∈ (2, 10),
together with 90% confidence intervals based on robust standard errors. The measures are based on the
decomposition introduced in D’Amico, Kim, and Wei (2018). The second (Low noise) and third (High
noise) columns respectively present parameter estimates for γ i

hl,τ and γi
ll,τ in regression (2), corresponding

to the subset of scheduled FOMC announcements for which the noise measure is below (resp. above)
its median level. The sample includes all regularly scheduled FOMC meetings from 01/01/2000 to
19/03/2014, excluding those taking place between July 2008 and June 2009. This corresponds to a
sample size of 106 observations on which the policy news shock is computed and each regression is
estimated. Regression results for the 2, 3 and 4-year forward rates are based on a sample size of 74
observations (starting in 2004).
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Figure 95: Decomposition of US forward rates into expected inflation and risk premia components:
extended sample

Note: The first column (Baseline) plots estimates of γi
all,τ in regression (1) for the expected average

future forward inflation (first row) and inflation risk premium (second row) at maturities τ ∈ (2, 10),
together with 90% confidence intervals based on robust standard errors. The measures are based on the
decomposition introduced in D’Amico, Kim, and Wei (2018). The second (Low noise) and third (High
noise) columns respectively present parameter estimates for γ i

hl,τ and γi
ll,τ in regression (2), corresponding

to the subset of scheduled FOMC announcements for which the noise measure is below (resp. above)
its median level. The sample includes all regularly scheduled FOMC meetings from 01/2000 to 12/2019,
excluding those taking place between July 2008 and June 2009. This corresponds to a sample size of 152
observations on which each regression is estimated. Regression results for the 2, 3 and 4-year forward
rates are based on a sample size of 120 observations (starting in 2004).
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