
Growth and Differences of Log-Normals

Abstract

The growth of natural, social, and economic phenomena including firms, cities, and
pandemics is known to be heavy-tailed. Neither a simple explanation nor a well-
fitting distributional form for these heavy-tailed growth phenomena is known. Here I
show that an extension of the log-linear production function provides both a simple
explanation and a single well-fitting and theoretically motivated distributional form
for all of them. I discuss why these results arise as a consequence of the Central
Limit Theorem and sketch dynamic models using this production function for the
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(ii) providing a well-behaved distribution for equity returns; (iii) sketching a model
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rationalizing a variety of observed growth distributions.
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1 Introduction

Many phenomena arise as the difference between two forces. In the context of firms, con-

sider the fundamental sources and uses equation of the firm: income = sales - expenses. In the

context of cities, Duranton and Puga (2003) posit that “The trade-off between agglomeration

economies and urban costs [...] is widely accepted as the key explanation behind the existence

of cities and provides some important implications for their population growth.” And in

the context of population dynamics (and pandemics), the foundational model remains the

birth-death model of Malthus (1798), with population growth the difference between birth

and death (or infected and recovered).

A second observation, established since the empirical work of Gibrat (1931) and the

theoretical work of Roy (1950, 1951), is that each of the two correlated opposing forces is

itself likely a product of many latent random forces and hence approximately log-Normally

distributed. This is “Gibrat’s Law,” or the multiplicative Central Limit Theorem (CLT).

Combining these two observations yields surprising results. I show that it implies a sim-

ple production function to use when modelling such difference phenomena, which then: (i)

predicts an obscure yet simple and theoretically grounded statistical distribution for these

phenomena, confirmed by the data; and (ii) predicts that the heavy-tailed growth distribu-

tions of such phenomena should follow the same distribution, also confirmed by the data.

The implications for growth distributions are notable. That growth rates are heavy-

tailed is well-established in several domains, including firms: Ashton (1926), Fama (1965);

cities: Eeckhout (2004), Gabaix and Ioannides (2004); and the COVID-19 pandemic: Beare

and Toda (2020), Parag, Donnelly, and Zarebski (2022). It is also documented here for

various data series in Figures 1–3, discussed later. While recent works such as Guvenen,

McKay, and Ryan (2023) and Jaimovich, Terry, and Vincent (2023) aim to devise empirical

approximations for such fat-tailed growth phenomena, we lack a first-principles economic

explanation for their emergence or a clear statistical representation of said distributions.

Here I aim to fill this gap.
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The production function proposed here, the difference-of-log-linears, henceforth DLL,

is a straightforward extension of the log-linear production function, itself a workhorse of

neo-classical economics since at least the work of Cobb and Douglas (1928). The difference-

of-log-linears models (net) production as the difference between two log-linear functions, one

for each opposing force, such that

YDLL = Yp − Yn = exp (xxx · βββp)− exp (xxx · βββn)

with YDLL ∈ R the net output, xxx a vector of the (logged) factors of production, and βββp and

βββn two elasticity vectors. I also show an alternative equivalent representation is

YDLL = 2 · exp (λ) · sinh (τ)

λ = xxx · βp + βn

2
= log

(√
Yp · Yn

)
τ = xxx · βp − βn

2
= log

(√
Yp/Yn

)

which defines the scale λ ∈ R and the efficiency τ ∈ R of production, and considerably

simplifies the mathematical analysis of models based on this production function.

Furthermore, I show that under mild and widely-used assumptions on xxx, the DLL pro-

duction function implies that (net) production, as well as the growth rate of production,

distribute as the difference-of-log-Normals, henceforth DLN. This simple distribution, which

the Online Appendix fully characterizes for the first time, is almost completely unexplored.1

At the time of writing, I was unable to find instances of using it anywhere in the sciences, and

only two works tangentially considering it, Lo (2012) and Gulisashvili and Tankov (2016).

Both works consider some statistical tail properties of sums of log-Normals, but state their

results can apply to differences of log-Normals as well. Nevertheless, here I show the DLN

characterizes a plethora of disparate phenomena remarkably well and propose it as an indis-

pensable tool in the economist’s toolbox along with its progenitor, the DLL.

1The sum of log-Normal RVs has been used in several scientific and economic disciplines including telecom-
munication, actuary, insurance, and derivative valuation.
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Fig. 1. Firm growth distributions. Panel (a) presents the growth of capital (total assets) for
a set of 143K firm-year observations from 1970-2019. Panels (c) and (e) present the monthly
raw and daily excess equity returns for 2M and 5M observations, respectively. The panels
include MLE-fitted DLN distributions. Panels (b),(d),(f) present the respective q-q plots vs.
the DLN. Full data description is in Data Appendix A.
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Fig. 2. City distributions stylized facts. Panels (a),(c),(e) present the distributions of popu-
lation growth, GDP growth by county, and GDP growth by metropolitan area and industry,
respectively. Panels (b),(d),(f) present the respective q-q plots. Data for Panel (a) are from
Rozenfeld et al. (2011), and Data for panels (c),(e) are from the BEA. Full data description
is in Data Appendix A.
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Fig. 3. Covid distributions stylized facts. Panels (a),(c),(e) present the distributions of daily
new cases growth, new tests conducted growth, and new vaccinations growth, respectively,
per country. Panels (d)-(f) present the respective q-q plots. Data are from Our World In
Data Covid-19 depository. Full data description is in Data Appendix A.
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2 The rise of DLL and DLN in economic data

2.1 The DLL production function

The canonical neo-classical log-linear (LL) production function can be written in general

form as
YLL =

M∏
i=1

Xβi

i = exp (xxx · βββ) (1)

with YLL > 0 the output, Xi > 0 factors of production, βi ≥ 0 the corresponding elasticities,

xxx a vector of the logged factors, βββ a vector of the elasticities, and xxx · βββ their inner product.

For example, setting xxx = {log(A), log(L), log(K)} and βββ = {1, α, 1− α} will yield the well

known constant-returns-to-scale (CRS) Cobb-Douglas,

Y = exp(a+ α · l + (1− α) · k) = A · Lα ·K1−α (2)

in which A is TFP, L is labor, K is capital, α is the labor share, and lower case letters denote

logged values as usual.

The difference-of-log-linears (DLL) is defined, as the name implies, to be

YDLL = Yp − Yn = exp (xxx · βββp)− exp (xxx · βββn) (3)

with YDLL ∈ R the net output and βββp and βββn two elasticity (or weight) vectors. Note that

because elasticities may be 0, this form is general enough to allow different factors to affect

the positive and negative components. Further note that YDLL is not limited to be positive,

and a useful feature of the DLL production function is its ability to yield negative net output

values, e.g. firm losses.

A second useful feature of the DLL production function, making it amenable to math-

ematical manipulation, is that it can be factored into the multiplication of an exponent

function and a Hyperbolic Sine (sinh) function — the hyperbolic equivalent of moving from

Cartesian to Polar coordinates. We can hence alternatively write the DLL as

YDLL = 2 · exp (λ) · sinh (τ) (4)
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with

λ = xxx · βp + βn

2
= log

(√
Yp · Yn

)
τ = xxx · βp − βn

2
= log

(√
Yp/Yn

) (5)

which defines the scale λ ∈ R and the efficiency τ ∈ R of production. Both can be easily

calculated if one separately observes Yp and Yn, as in e.g. the case of firm sales and expenses.

Note that λ is the mid-point between log (Yp) and log (Yn), and τ is the (equal) distance from

λ to the logs of Yp and Yn, with the appropriate sign. The inverse mapping is hence

Yp = exp (λ+ τ)

Yn = exp (λ− τ)

(6)

Clearly, the sign of (net) production depends on the sign of τ and its magnitude primarily

depends on λ, with a smaller role for τ .

Section 4 below discusses the growth of YDLL, complicated by the fact it may take negative

values. It shows that a generalized measure of growth for YDLL can be written as:

dYt/dt

|Yt|
= sgn(τt) ·

[
dλt

dt
+

dτt
dt

· 1

tanh (τt)

]
≈ sgn(τt) ·

[
(λt+1 − λt) +

τt+1 − τt
τt

]
(7)

with sgn() the sign function. The approximation is due to two reasons: using the forward

discrete difference for the continuous time derivatives, and replacing tanh(τt) with τt, which

is a valid approximation when |τt| ≪ 1. The first term in the brackets is difference in

scales (i.e. a usual difference in logs measure) and the second term is percent difference in

efficiency. The second term then leads to the heavy tails of growth due to a “low base effect”

in efficiency, when |τt| is close to zero.

Finally, while the elasticity of factor of production i in the LL production function is

simply βi, and is fixed regardless of the values of xxx or of the other elasticities in βββ, the same
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is not true for the DLL. It is easy to see that

∂YDLL

∂Xi

/
YDLL

Xi

=
βp,i · Yp − βn,i · Yn

YDLL

=
βp,i · Yp − βn,i · Yn

Yp − Yn

(8)

with βp,i, βn,i the ith elements of βp, βn. Put differently, the DLL production function yields

elasticities that depend on the current levels of production and on their breakdown, with

important implication to e.g. returns-to-scale in capital at the firm level.

2.2 The DLN as a consequence of the CLT

The DLN arises due to a straightforward set of statistical facts: (i) both the sum and dif-

ference of two Normal RVs are Normal; (ii) the sum of two log-Normal RVs is approximately

log-Normal; but (iii) the difference of two log-Normal RVs is decidedly not log-Normal. For

one, the log-Normal is strictly positive while the DLN is supported on the entire real line

R. The DLN also exhibits exponential (i.e., heavy) tails in both the positive and negative

directions, inherited from the log-Normals composing it, quite different from the Normal

Gaussian.

The DLN is simple to describe. To define the DLN, consider an RV W such that

W = Yp − Yn = exp(Xp)− exp(Xn) with XXX = (Xp, Xn)
T ∼ N(µµµ,ΣΣΣ) (9)

in which XXX is a bi-variate Normal with parameters

µµµ =

µp

µn

 ΣΣΣ =

 σ2
p σp · σn · ρpn

σp · σn · ρpn σ2
n

 (10)

and hence YYY is a bi-variate log-Normal RV. We say that W follows the five-parameter DLN

distribution and denote W ∼ DLN(µp, σp, µn, σn, ρpn).
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Recall that the additive central limit theorems (CLTs) state that

Y + = lim
M→∞

1

M

M∑
i=1

X+
i ∼ N (11)

for X+
i ∼ Ω+

i under mild regularity conditions on the Ω+
i depending on the version of the

CLT used. Put differently, the additive CLTs state that a phenomenon in nature which is an

additive combination of many latent random forces will tend to distribute Normally. This

is specifically the case for AR(1) processes in levels, whose ergodic distribution is Normal,

under mild conditions, and is true regardless of the statistical distribution of the AR(1)

disturbances which are not required to be Normal — see e.g. Hamilton (1994) Ch. 7.

Consider next the multiplicative CLT, sometimes known as “Gibrat’s law” following

Gibrat (1931), which states that

Y ∗ = lim
M→∞

(
M∏
i=1

X∗
i

) 1
M

∼ log-N (12)

for X∗
i > 0 ∼ Ω∗

i under similarly mild regularity conditions. Put differently, the multiplica-

tive CLT states that a phenomenon in nature which is a product of many latent random forces

will tend to distribute log-Normally. An early discussion of the implications and reasoning for

assuming multiplicative impact is the seminal work of Roy (1950, 1951). This result specif-

ically holds for AR(1) processes in logs, whose ergodic distribution is log-Normal. Many

physical and economic non-negative quantities, such as mass, population count, epidemic

spread, interest rates, firm sales, firm value, and individual income have been modeled as

the products of latent random factors (e.g., random growth models) and are approximately

log-Normally distributed.

Finally, consider a natural phenomenon impacted by two main forces operating in oppo-

site directions, i.e., W = Yp − Yn. If the two main forces are additive combinations of many

latent random forces, then the natural phenomenon will tend to distribute Normally as well.
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In this case, the importance of modelling the forces separately is diminished because aggre-

gating them yields a model with similar distributional predictions. The same is not true,

however, if the two forces are multiplicative combinations. In this case, failing to explicitly

model both forces will yield markedly different predictions, because the difference between

two log-Normal RVs does not collapse to a log-Normal RV.

It is further easy to see that the DLN is closed under multiplication or division by a

log-Normal RV. This property is inherited from the closure of the Normal distribution to

addition and subtraction, which in turn guarantees the closure of the log-Normal distribution

to multiplication and division, and when combined with the distributive property yields the

closure of DLN. This is true even if the log-Normal RV in question is correlated with Yp, Yn.

Figure 4 presents several instances of the DLN distribution. Panel (a) presents and con-

trasts the standard Normal, standard DLN, and standard log-Normal. The standard DLN

is defined as DLN(0,1,0,1,0), i.e. the difference between two exponentiated uncorrelated

standard Normal RVs. Panel (b) shows the role of the correlation coefficient ρpn, control-

ling tail-weight vs. peakedness. Panel (c) repeats the analysis of Panel (b) for a different

parametrization common in practical applications, exhibiting the problem of dealing with

the DLN’s characteristic heavy tails in both the positive and negative directions. Panel (d)

then presents the data of panel (c) but the X-axis is transformed using the Inverse Hyper-

bolic Sine (asinh). While previous work (Bellemare and Wichman, 2020; Aihounton and

Henningsen, 2021; Mullahy and Norton, 2022) discusses the asinh transform as an ad-hoc

solution, its use here is theoretically motivated by Equation 4. It acts as a log transform in

both the positive and negative directions, and allows us to observe the characteristic “double

Normal” shape of the (asinh-transformed) DLN.

To clarify the use of the DLL production function and the DLN distribution arising from

it, the next section considers the DLL in the context of three examples, beginning with the

most straightforward one: firms.
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Fig. 4. DLN Examples. Panel (a) graphs the PDFs of the standard Normal, log-Normal, and
DLN. Panel (b) graphs the PDFs of standard DLN with different correlation coefficients ρpn.
Panel (c) presents the PDFs of a DLN with parameters (3, 2, 2, 2), common in practice, and
varying correlation coefficients ρpn. Panel (c) presents the PDF for the range ±10, which is
a significant truncation due to the long tails of this DLN. Panel (d) presents the same PDFs
as Panel (c), but the x-axis is asinh-transformed, such that it spans the range sinh(-10) ≈
-11,000 to sinh(10) ≈ 11,000.
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3 Examples of using the DLL and DLN

3.1 Example 1: Firms

What is the statistical distribution of firm income? Firm income, often called cashflows,

is of utmost importance in both major branches of financial economics research: corporate

finance and asset pricing. Cashflows are both the means to growth — providing money for

investments, and the ends of growth — providing money for dispensations (e.g., dividends).

It is hence quite surprising that the statistical distribution of income has seen such scant

interest in the finance literature, and is hitherto unspecified.

In typical neo-classical “q-theory” models income is modeled using an LL production

function:

YLL = Z ·Kθz = exp (z + θz · k) (13)

with Z = exp(z) > 0 firm productivity, K = exp(k) > 0 firm capital, and 0 < θz < 1

returns-to-scale coefficient. The q-theory models generally abstract from labor, assuming

it is elastically adjustable within period. Wages and other expenses are already accounted

for, as YLL directly models income, or sales minus expenses. It is also ubiquitously assumed

that firm (log) productivity zt follows an AR(1) process, i.e. that Zt follows an AR(1) in

logs. The main issue with this modeling choice is that it counter-factually yields firms with

strictly positive income, distributing log-Normally due to the AR(1) properties discussed

above. Furthermore, growth is counter-factually Normally distributed. The lack of negative

income in such models ignores a critical feature of the profit-and-loss mechanism of firm

dynamics — namely, losses.

If, instead of modeling income directly, we were to model sales and expenses separately,

and model income as their difference, the DLL production function naturally arises,

YDLL = exp (s+ θs · k)︸ ︷︷ ︸
Sales≡S

− exp (x+ θx · k)︸ ︷︷ ︸
Expenses≡X

= 2 · exp (λ) · sinh (τ) (14)
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with 0 < θx, θs < 1 returns to scale parameters in sales and expenses, respectively. In a

slight abuse of notation, firm sales are denoted S and firm expenses X. The production

function YDLL is now a function of three variables — the endogenous capital stock k and two

stochastic exogenous variables, s and x, controlling the dynamics of sales and expenses and

following a VAR(1) process. We can again represent the function in terms of firm income

scale and efficiency, λ and τ , both of which are strictly observable due to the observability

of sales and expenses, and are always defined, even if the firm suffers losses.

Before proceeding, it is worth contemplating the economic meaning of Z, S,X. What

determines the factor-productivity of the firm, Z (or its sales and expenses productivity,

S,X)? they are functions of the “skill, dexterity, and judgment with which labor is applied,”

as in Smith (1776), or of the firm’s production technology, cost structure, managerial talent,

market power, and a host of other components, including luck. In that sense, the stochastic

variables are partly endogenous. Of course, all firms would prefer to produce as much income

as possible from a given amount of capital K. Put differently, all firms would like to have

as high a Z as possible, or equivalently as high an S and as low an X as possible. Firms

hence optimize the components of Z, S,X under their control, and as a result, achieve (log)

productivity µZ (or µS, µX) on average. But firms differ in their abilities, and the differences

are persistent. Zt, St, Xt hence represent the current productivities of the representative

firm, given its optimizing behavior on their components. In this way, Z and S,X are the

usual measures of our ignorance regarding the firm, as in Abramovitz (1956).

Importantly, the simple choice of modelling sales and expenses explicitly, described in

Equation 14, predicts that firm income should distribute DLN. Figure 5 presents the relevant

data distributions. Panels (a) and (d) of Figure 5 present truncated views of firm cashflows

(the income of the firm) and firm dispensations (the income of firm owners, both equity

and bond holders), respectively. Negative cashflows are losses, and negative dispensations

are capital infusions from owners into the firm. Income clearly exhibits exponential tails in

both the positive and negative directions, explaining the need for truncation. To deal with
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the double-exponential nature of the tails, Panels (b) and (e) then present the same data,

untruncated but with the x-axis transformed to asinh scale. Panels (a), (b), (d), (e) are

overlaid with MLE-fitted DLN distributions, exhibiting excellent fit. The accompanying q-q

plots in Panels (c) and (f) confirm this observation.

These two income measures are tightly related via the other side of the sources and uses

equation of the firm, income = investment + dispensations, with firm investment itself an

object of intense interest in the finance literature. Panel (g) presents the distribution of firm

investment, defined as change in total capital net of depreciation between periods. The fit

to the DLN is again remarkable. While it is common in the relevant literature to consider

investment rates rather than magnitudes, dividing investment by total beginning-of-period

capital, the conclusions remain unchanged. This is because capital is approximately log-

Normally distributed, as Gibrat (1931) first showed, and the closure of the DLN to division

by a log-Normal discussed above. Similar reasoning implies that the average product of

capital (APK), defined as income divided by beginning-of-period capital, distributes DLN

as well. Both facts are visually confirmed in Panels (h),(i).

Table 1 present formal goodness-of-fit tests versus the DLN, Stable, and Laplace distri-

butions. The Stable and Laplace distributions both exhibit double-exponential tails and are

the main distributions previously considered in the relevant literature on heavy-tailed firm

growth.2 The three goodness-of-fit tests I use are the Kolmogorov-Smirnov (K-S), Chi-square

(C-2), and Anderson-Darling (A-D) tests, each of which being sensitive to different distribu-

tional deviations. Firm income, dispensations, investment, investment rate, and APK are all

rejected as Stable or Laplace, but not as DLN. The DLN is a 5-parameter distribution, while

the Stable and (asymmetric) Laplace have 4 and 3 parameters, respectively. I hence fur-

ther present log-likelihood-based “horse races” between the distributions using the Akaike

and Bayesian Information Criteria (AIC and BIC), which penalize for extra parameters.

Throughout, the DLN handily beats the other distributions.

2See e.g. Mandelbrot (1961), Fama (1963), Fama and Roll (1971), Stanley, Amaral, Buldyrev, Havlin,
Leschhorn, Maass, Salinger, and Stanley (1996), Bottazzi and Secchi (2003), Luttmer (2011).
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It immediately follows that if firm investment rates distribute DLN then firm capital

growth rates distribute DLN as well, as Panels (a),(b) of Figure 1 have already shown,

and the appropriate column of Table 1 confirms. The intuitive explanation is that a value

maximizing firm will increase its scale if its expected income efficiency is higher than its

user-cost of capital, and vice-versa. While this is by no means a rigorous argument, in a

companion paper Parham (2023) writes a standard q-theory model of firm dynamics, but

using a DLL production function to separately model sales and expenses. It shows that

in this case, firm income, income growth, capital growth, and value growth are all DLN-

distributed. The core effect at play in creating heavy-tailed capital and value growth is the

operational leverage of the firm, or the “low base effect” in τ discussed above, which can be

captured by the following example.

Consider a firm with $1B in sales and $950M in expenses during period t (these values

approximately correspond to the median firm in the data). If the firm increases both sales

and expenses by 10%, income will grow by 10% as well, from $50M to $55M . If, however,

the firm increases sales by 10% but decreases expenses by 10%, income will grow by 390% to

$245M . With income exhibiting heavy-tailed growth, we would expect firm value to exhibit

heavy-tailed growth as well, because firm value is simply the NPV of future income, and

rapid growth in income should propagate to rapid growth in value.

A corollary of the results above is that equity returns should distribute DLN as well.

Equity returns are merely another measure of firm growth, when one takes firm size to be

defined as market value of equity, and adjusts for dispensations to equity holders. Panels

(c)-(f) of Figure 1 present the fit to the DLN for two examples, monthly raw returns and

daily excess returns relative to the Fama-French 3-factor model, and the appropriate columns

of Table 1 confirm. In unreported results, the DLN is not rejected for yearly, monthly, or

daily returns, both raw and excess (relative to the 3,4,5-factor Fama-French models). The

fit of equity returns to the DLN is especially noteworthy given the voluminous literature on

the determinants, fat-tails, and statistical properties of returns.
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The importance of this result should be taken in context. The heavy tails of returns

were studied by Mandelbrot (1960, 1961) and Fama (1963, 1965) who propose the family of

Stable distributions (also known as Stable-Paretian or Pareto-Lévy) as a statistical model of

returns. The Stable distribution remains a workhorse of empirical asset pricing work, despite

a critical flaw — it lacks finite second (or higher order) moments — our ubiquitous measures

of risk — thus providing a precarious basis for Modern Portfolio Theory (MPT). The Stable

was later rejected by Officer (1972), who shows that the second moment of returns in the data

is well-behaved and concludes that “It may be that a class of fat-tailed distributions with

finite second moments will be found [...] but as yet this remains to be clearly demonstrated.”

The DLN has finite moments of all orders.
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Fig. 5. Income - Stylized facts. Panels (a),(d) present the truncated distributions of income
(cashflows, w/ negatives indicating losses) and dispensations (to equity and debt holders, w/
negatives indicating cash infusions). Panels (b),(e) present the untruncated distributions but
with asinh-scaled X-axis, and Panels (c),(f) present the respective q-q plots vs. the DLN.
Panels (g),(h),(i) present the distributions of: investment (increase in assets net of depreci-
ation, w/ negatives indicating asset decreases, in asinh-scale), investment rate (investment
divided by beginning-of-period capital), and APK (cashflows divided by beginning-of-period
capital), respectively. All panels except (c),(f) are overlaid with ML-fitted DLN distribu-
tions. Full data description is in the appendix.

18



Table 1
Distributional tests — Firms

This table presents the results of tests of distributional form for firm income (CF), dis-

pensations (DI), investment (IT), investment intensity (ĨT=IT/L.KT), APK (=CF/L.KT),
income growth (dCF), capital growth (dKT), yearly total value growth adjusted for
dispensations (dVL), monthly raw equity returns (dEQM), and daily excess equity returns
(dEQex

D ). K-S is a Kolmogorov–Smirnov test; C-2 is a binned χ2 test with 50 bins; A-D
is an Anderson-Darling test. Panels (a)-(c) report the test statistics and their p-values
rejecting the distribution for the Stable, Laplace, and DLN, respectively. Panel (d) re-
ports the relative likelihoods using the AIC and BIC. Full data description is in the appendix.

CF DI IT ĨT APK dCF dKT dVL dEQM dEQex
D

Panel (a): Stable

K-S 0.034 0.028 0.026 0.020 0.038 0.014 0.011 0.015 0.015 0.015
p-val 0.022 0.027 0.028 0.036 0.019 0.046 0.055 0.044 0.045 0.043
C-2 647 379 380 193 295 120 91 179 195 204
p-val 0.012 0.018 0.018 0.027 0.021 0.035 0.040 0.028 0.027 0.027
A-D 19.48 19.99 13.75 12.25 19.32 5.86 3.79 6.50 6.67 6.70
p-val 0.025 0.025 0.029 0.031 0.025 0.041 0.047 0.039 0.039 0.039

Panel (b): Laplace

K-S 0.364 0.288 0.279 0.079 0.098 0.073 0.027 0.017 0.026 0.027
p-val 0.000 0.000 0.000 0.004 0.000 0.006 0.027 0.041 0.028 0.027
C-2 >999 >999 >999 924 >999 >999 290 118 244 182
p-val 0.000 0.000 0.000 0.008 0.004 0.002 0.022 0.035 0.024 0.028
A-D >999 >999 >999 93.14 123 105.75 18.72 7.75 19.38 17.40
p-val 0.000 0.000 0.000 0.008 0.006 0.007 0.025 0.037 0.025 0.026

Panel (c): DLN

K-S 0.003 0.005 0.006 0.008 0.003 0.007 0.006 0.004 0.003 0.007
p-val 0.138 0.104 0.086 0.071 0.149 0.074 0.087 0.108 0.148 0.080
C-2 8 15 27 42 12 59 17 14 5 21
p-val 0.142 0.096 0.070 0.057 0.111 0.049 0.089 0.099 0.353 0.078
A-D 0.21 0.39 0.840 1.84 0.18 1.11 0.50 0.45 0.10 0.47
p-val 0.117 0.095 0.076 0.059 0.123 0.070 0.089 0.091 0.148 0.090

Panel (d): Relative likelihood tests

AIC R.L.:
Stable 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Laplace 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DLN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BIC R.L.:
Stable 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Laplace 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DLN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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3.2 Example 2: Cities

The size and growth distributions of cities is another field of intense economic study due

in part to the out-sized economic value created by cities. Modelling the city’s “production

function” (or data-generating process) goes at least as far back as Henderson (1974). Later,

Gabaix (1999b,a) discuss why the observed Zipf’s law for city sizes is a natural results of

Gibrat’s Law and propose a random growth model with a production function in which

amenity shocks increase the utility derived from consumption in a multiplicative way.

In an overview on the growth of cities, however, Duranton and Puga (2014) highlight the

role of the interaction between agglomeration benefits and congestion costs in determining

city growth. While Gabaix (1999b) accounts for congestion, he does so within the context of a

LL production function. This modelling choice then yields the conclusion that agglomeration

benefits must be asymptotically CRS (or else technological differences must be unbounded),

contrary to intuition and evidence that they are in fact IRS — see e.g. West (2017). This

section briefly sketches the structure of a DLL-based city model, in which amenities and

congestion interact to yield DLN-shaped city growth while also allowing for IRS behavior.

That city growth distributes DLN is evident in Figure 2. Panel (a) presents data on

population growth using the data on city populations from Rozenfeld et al. (2011), who use

a clustering algorithm to define the boundaries of cities. Panel (c) and (e) present data on

the growth of economic activity (i.e., local GDP) by county and by metropolitan area and

industry from the US Bureau of Economic Analysis. The DLN arises again, as can be seen

visually in the respective q-q plots in Panels (b),(d),(f). Formal tests vs. the Stable, Laplace,

and DLN are provided in the first three columns of Table 2. As in the firms case, the Stable

and Laplace are rejected. While the DLN is also rejected for the data in panels (e)+(f), it

nevertheless still handily beats the other distributions in AIC- and BIC-based “horse-races”

for all three data distributions.

This finding is a natural outcome of a simple model of city dynamics in which cities grow

subject to the interplay between agglomeration benefits and congestion costs, both of which
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exert exponential (i.e., multiplicative) influence on the flow of aggregate economic value

created by cities. The economic surplus is captured by city inhabitants, firms operating in

the city, the government, or in general the social planner. Both benefits and costs increase

with the number of inhabitants, just as both sales and expenses increase with firm capital.

But the interplay between them may give rise to positive surplus (i.e., YDLL > 0), leading

to immigration into the city, or to negative surplus (i.e., YDLL < 0) leading to emigration

out of the city, subject to adjustment costs. Importantly, this surplus is normalized to the

alternative available in other cities, as usual, which here is set to 0 for simplicity.

A city in this model is hence indexed by (log) population n, amenity index a, and con-

gestion index c. Both a and c are stochastic, i.e., exogenous to the model. Cities of course

influence a and c with their policies, and would prefer a to be as high as possible and c to

be as low as possible. They are however limited in their ability to do so, adjust both slowly

(thus making them persistent), and their moves to jointly optimize a, c given their budget

constraints are considered stochastic in the model, as is the case with the firm model. The

surplus created by the city can then be written using the DLL production function as

YDLL = exp (a+ θa · n)︸ ︷︷ ︸
Amenities≡A

− exp (c+ θc · n)︸ ︷︷ ︸
Congestion≡C

(15)

in which θa,θc are the returns to scale in amenities and congestion.

The economic surplus can then be used by the social planner to attract inhabitants

from other, less prosperous cities, which is captured by an adjustment cost to be paid when

increasing n, similar to the convex adjustment costs in the firm investment literature. Unlike

in the firm case, however, it is likely that for cities θa, θc > 1, i.e. cities face IRS in both

amenities and congestion: ceteris paribus, a doubling of the population will more than

double the total benefits, but will also more than double the total costs. The model can

accommodate this by requiring θc > θa to avoid the degenerate result of a single, infinitely

large city, hitherto preventing the writing of LL-based models with IRS.
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In this model, a shock to a, c can reshuffle the economic surplus in cities and lead to mass

migration. If all restaurants in NYC close down (decreasing its a) and the subway becomes

unsafe (increasing its c) due to a pandemic, the surplus of NYC decreases rapidly. This

will then lead to mass exodus. Conversely, the utility of the outdoors opportunities around

Charlottesville, VA is higher (increasing its a) without a corresponding increase in congestion

because public transit is not a common form of transportation (leaving c unchanged or only

increasing it mildly). This then leads to increased demand for housing in Charlottesville

(whose supply is quasi-fixed in the short term) and large property price increases.

3.3 Example 3: Populations and pandemics

Another way of illustrating the emergence of the DLN distribution is in the context of

the simple population dynamics (“birth-death”) model of Malthus (1798). The birth-death

model remains the foundational model of population dynamics and is also the basis for

more complex epidemiological models like the SIR (Susceptible-Infected-Removed) or SEIR

(Susceptible-Exposed-Infected-Removed) models of pandemics.3

Denote N(t) the size of the population in some closed natural habitat (with no immigra-

tion or emigration) at time t. The population dynamics of the system are described by the

ordinary differential equation:

dN (t)

dt
= b (t) ·N (t)− d (t) ·N (t) = [b (t)− d (t)] ·N (t) = r (t) ·N (t) (16)

in which b (t) ≥ 0 and d (t) ≥ 0 are the instantaneous birth and death rates at time t. Both

are stochastic and depend on underlying latent forces such as food availability, climate,

predation, etc.

The difference between the birth and death rates r (t) ∈ R is the instantaneous growth

rate of the population. Stochastic Malthusian models concentrate on this difference r (t),

3See e.g. Voigtländer and Voth (2013), Lindenstrand and Svensson (2013), Chladná, Kopfová, Rachinskii,
and Rouf (2020), Gatto and Schellhorn (2021), Fernández-Villaverde and Jones (2022).
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and are often described using the stochastic differential equation:

dr (t) = ϕr · (µr − r (t)) · dt+ σr · dWr (t) (17)

in which dWr (t) is a Wiener process, ϕr > 0 the mean-reversion parameter, µr ∈ R the long-

term mean, and σr ≥ 0 the volatility of the Wiener process. Put differently, the stochastic

Malthusian model implicitly assumes the population growth rate is Normally distributed.

One may however ask: what is the distribution of the birth and death rates? If both

distribute Normally, then their difference will distribute Normally as well and the stochas-

tic model assumption is vindicated. From an information-theoretic perspective, assuming

an RV is Normal is the least restrictive assumption because the Normal is the continuous

distribution with the maximum entropy for a given mean and variance — see e.g. Cover

and Thomas (2006). Nevertheless, because the birth and death rates are required to be non-

negative and the Normal is supported on all of R, this assumption is inadmissible. The next

least restrictive assumption (in the information theoretic sense) is then to assume that these

rates distribute log-Normally, because the log-Normal is the maximum entropy continuous

positive distribution for a given mean and variance.

Data on the COVID-19 pandemic supports this assumption. Panels (a) and (d) of Fig-

ure 6 present the daily infection rate and death rate per country, respectively, along with

ML-fitted log-Normal distributions. Panels (b),(e) present the logs of the rates, along with

ML-fitted skew-Normal distributions, and panels (c),(f) present the respective q-q plots vs.

the skew-Normal. In unreported results, the log rates are generally not rejected as skew-

Normal using the K-S, C-2, and A-D distributional tests, and their kurtosis are close to 3.

The skewness likely stems from under-reporting in some countries or from the “slow start”

of the pandemic, which is better captured by a more complex SIR/SEIR model.

If both birth and death rates are log-Normally distributed then their difference — the

growth rate of the population (or the spread of the pandemic) — should distribute as the
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difference-of-log-Normals, or DLN. To confirm, Figure 3 presents the daily growth rates,

per country, in the number of: new cases, tests given, and vaccinations given, along with

ML-fitted DLN distributions and the accompanying q-q plots. Formal tests vs. the Stable,

Laplace, and DLN are provided in the last three columns of Table 2. As in the firms and

cities cases, the Stable and Laplace are rejected, the DLN is generally not rejected, and it

handily beats the other distributions in AIC- and BIC-based “horse-races.”

The evidence presented here then proposes a simple adjustment to the stochastic Malthu-

sian model, in which the birth and death (log) rates are explicitly exponentiated, and follow

a joint Ornstein-Uhlenbeck process:

dN (t) =
[
exp

(
b̂ (t)

)
− exp

(
d̂ (t)

)]
·N (t) · dt

db̂ (t) = ϕb ·
(
µb − b̂ (t)

)
· dt+ σb · dWb

dd̂ (t) = ϕd ·
(
µd − d̂ (t)

)
· dt+ σd · dWd

E [dWb · dWd] = ρbd · dt

(18)

with ϕb, ϕd > 0 the mean-reversion parameters, µb, µd ∈ R the long-term means, σb, σd ≥ 0

the volatility of the Wiener processes, and ρbd ∈ [−1, 1] the correlation between them. This

model yields Normal distributions of the log-rates b̂ (t) , d̂ (t), log-Normal distributions of the

birth and death rates b (t) , d (t), and DLN distribution of population growth r (t).

Returning to the context of epidemiology, the value R0, which has gained notoriety during

the COVID-19 pandemic, represents the average number of new infections generated by one

infected individual in a completely susceptible population at the SIR/SEIR models. Linden-

strand and Svensson (2013) describe how the R0 value is related to the Malthusian model and

arises as a simple transform of r (t). The process described in Equation 18 above can hence

be useful in more accurately estimating R0 during early stages of pandemics by following

the method described by Lindenstrand and Svensson (2013) with slight adjustments.
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3.4 Other examples

Once one sees the DLN distribution in growth data, one may have difficulty un-seeing

it. This section presents, without exploring the economic or natural mechanism, three other

examples of DLN-distributed growth data encountered “in the wild.”

Panel (a) of Figure 7 presents a replication of Figure 1 from Guvenen, Karahan, Ozkan,

and Song (2021). The panel presents the 5-year wage income growth distribution, from 2010

to 2015, based on a 10% sample of the U.S. population from the Master Earnings File of

the US Social Security Administration. Income growth is DLN-distributed, as the q-q plot

in Panel (d) shows. The appropriate column of Table 2 provides the usual statistical tests

rejecting the Stable and Laplace but generally failing to reject the DLN, along with the

horse-race results strongly favoring the DLN.

Panel (b) of the same figure presents the growth in daily average temperatures for 321

cities worldwide, from Abidjan (Ivory Coast) to Zurich (Switzerland), for the period 1995-

2020. Panel (e) presents the q-q plot, and Table 2 provides the relevant statistical tests,

with the usual results. It seems remarkable that a natural physical phenomenon of unique

importance in the current discourse fits the DLN distribution as well as it does.

Finally, Panels (c),(f) of Figure 7 repeat the presentation for the growth in the yearly

number of scientific and technical journal articles published per year by country. The data

are again from Our World In Data, and span the period 2000-2018. Despite the sparsity

of the data (spanning only 3.5K observations), the statistical results in the last column of

Table 2 remain strong: this growth measure is rejected as Stable and Laplace but not as

DLN, and the DLN handily beats the others in the AIC- and BIC-based horse races.
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Table 2
Distributional tests — Cities, populations, pandemics, and other phenomena

This first three columns of this table present the results of tests of distributional form
for population growth (dPOP), GDP growth by county (dGDPc), and GDP growth by
metropolitan area and industry (dGDPm) for US locales. The next three columns present
results for daily new cases growth (dCASE), new tests conducted growth (dTEST), and
new vaccinations growth (dVACC) per country. The last three tests are for 5-year wage
growth (dWAGE), daily temperature growth per city (dTEMP), and growth in scientific
and technical journal articles per country (dJOUR). Tests are described in Table 1 and full
data description is in the appendix.

dPOP dGDPc dGDPm dCASE dTEST dVACC dWAGE dTEMP dJOUR

Panel (a): Stable

K-S 0.045 0.012 0.015 0.020 0.029 0.025 0.020 0.013 0.027
p-val 0.015 0.054 0.045 0.035 0.026 0.030 0.036 0.050 0.028
C-2 131 98 126 315 444 519 296 237 380
p-val 0.033 0.038 0.034 0.021 0.016 0.014 0.021 0.024 0.018
A-D 34.8 2.7 5.5 10.4 19.9 17.0 11.5 5.9 9.8
p-val 0.018 0.052 0.041 0.033 0.025 0.027 0.031 0.041 0.033

Panel (b): Laplace

K-S 0.027 0.026 0.040 0.033 0.054 0.081 0.065 0.063 0.081
p-val 0.027 0.029 0.018 0.022 0.011 0.004 0.008 0.008 0.004
C-2 252 258 406 347 686 2224 1173 1016 1892
p-val 0.023 0.023 0.017 0.019 0.011 0.000 0.006 0.007 0.001
A-D 13.1 12.2 31.3 23.0 46.2 114.4 65.1 87.9 102.3
p-val 0.030 0.031 0.020 0.023 0.015 0.007 0.012 0.009 0.008

Panel (c): DLN

K-S 0.006 0.007 0.007 0.007 0.009 0.016 0.009 0.009 0.010
p-val 0.087 0.077 0.075 0.077 0.063 0.042 0.063 0.064 0.060
C-2 25 61 42 33 70 174 75 44 167
p-val 0.072 0.048 0.057 0.064 0.045 0.029 0.044 0.056 0.030
A-D 0.835 0.773 1.214 0.951 1.714 5.345 2.794 0.433 1.349
p-val 0.076 0.077 0.068 0.073 0.061 0.042 0.052 0.092 0.065

Panel (d): Relative likelihood tests

AIC R.L.:
Stable 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Laplace 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DLN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BIC R.L.:
Stable 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Laplace 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DLN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Fig. 6. Birth and death rates — stylized facts. Panels (a),(d) present the distributions of new
daily COVID19 infections and deaths, respectively, per million people, along with ML-fitted
log-Normals. Panels (b),(e) repeat for the log-rates, along with ML-fitted skew-Normals.
Panels (c),(f) present the respective q-q plots vs. the skew-Normal. Data are from Our
World In Data Covid-19 depository. Full data description is in the appendix.
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Fig. 7. Other growth phenomena. Panel (a) presents the distribution of 5-year wage income
growth for US workers, adjusted for age and time fixed-effects. Panel (b) presents the growth
in daily average temperatures for 321 cities worldwide. Panel (c) presents the growth in the
yearly number of scientific and technical journal articles published per year by country. All
three panels are overlaid with ML-fitted DLN curves. Panels (d)-(f) present the respective
q-q plots. Full data description is in the appendix.
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4 Growth of DLN RVs

How can one measure growth in DLN-distributed RVs? A firm that had $100 of income

in year 1 and $120 of income in year 2 has certainly grown its income. One can argue whether

it is preferable to say the firm grew by 120/100− 1 = 0.2 = 20% or by log(120)− log(100) =

0.182 log-points, yet the question itself is well-formed. But what if the firm had −$100 of

income (i.e. $100 in losses) in year 1, and then $120 of income (i.e. profit) in year 2? What

was its growth?

To begin, we require a definition of growth. Barro and Sala-I-Martin (2003) define in-

stantaneous growth of a time-continuous and strictly positive RV Z(t) > 0, here denoted

Γ{Z(t)}, as

Γ{Z(t)} ≡ dZ(t)/dt

Z(t)
=

Z ′(t)

Z(t)
≈ Zt+1 − Zt

Zt

=
Zt+1

Zt

− 1 ≡ Γ%{Zt+1} (19)

with the approximation stemming from using the first-difference of discrete variables to

approximate the derivative Z ′(t). This yields the well-known formulation of percentage

growth in discrete variables, denoted Γ%{Zt+1}.

Before proceeding, it is instructive to place some structure on the problem and consider

the growth of a log-Normally distributed RV, as most measures of size are approximately

log-Normally distributed. To that end, consider the following setting:

Xt+1 = Xt + ϵXt ; ϵXt ∼ N(0, σ2
X) ; Yt = exp (Xt) (20)

In which Xt is a simple random walk and hence distributes Normally in the limit, and Yt > 0

is hence log-Normally distributed. What is the growth in Yt?

One can simply measure the growth in percentage terms and say that the growth is

Γ%{Yt+1} ≡ Yt+1

Yt

− 1 = exp(Xt+1 −Xt)− 1 = exp(ϵXt )− 1 (21)
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or one can apply the definition in Equation 19 above and say

Y ′(t)

Y (t)
=

Y (t) ·X ′(t)

Y (t)
= X ′(t) ≈ Xt+1 −Xt = log(Yt+1)− log(Yt) ≡ Γlog{Yt+1} = ϵXt (22)

which yields the well-known formulation of growth as a difference in logs between consec-

utive values, denoted Γlog{Yt+1}. The difference between the two statements stems from

whether one differentiates the function Y before applying the first-difference approximation.

Put differently, measuring growth in log-Normal RVs using percentage growth introduces a

“convexity bias”. Hence, the concept of growth used is closely related to the distribution

whose growth is being considered.

Consider next the following definition for generalized growth of Z(t) ∈ R\{0}, denoted

Γ̃{Z(t)},

Γ̃{Z(t)} ≡ dZ(t)/dt

|Z(t)|
=

Z ′(t)

|Z(t)|
≈ Zt+1 − Zt

|Zt|
≡ Γ̃%{Zt+1} (23)

in which we can again apply the discrete difference to get generalized (also known as “signed”)

percent growth, denoted Γ̃%{Zt+1}. This definition has several desirable properties. Clearly,

when Z(t) > 0 this definition coincides with Equation 19 and is hence a proper extension.

The absolute value further guarantees that dZ(t)/dt > 0 will yield positive growth, regardless

of the sign of Z(t). To test the intuition of the definition, consider several examples and

their respective generalized percent growths, denoted %̃.

Zt
\Zt+1 −150 −100 −50 0 50 100 150

−100 −50%̃ 0%̃ 50%̃ 100%̃ 150%̃ 200%̃ 250%̃

+100 −250%̃ −200%̃ −150%̃ −100%̃ −50%̃ 0%̃ +50%̃

With a generalized definition of growth in hand, consider the following setting:

Xp
t+1 = Xp

t + ϵpt ; Y p
t = exp (Xp

t )

Xn
t+1 = Xn

t + ϵnt ; Y n
t = exp (Xn

t )
(ϵpt , ϵ

n
t )

T ∼ N (000,ΣΣΣ) (24)
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in which Xp, Xn are Normally distributed and Y p, Y n are log-Normally distributed. Can we

characterize the growth of the DLN-distributed RV Wt = Y p
t −Y n

t ? Applying the generalized

growth definition of Equation 23, we have

Γ̃{W (t)} ≡ W ′(t)

|W (t)|
=

Y p(t) · dXp(t)/dt− Y n(t) · dXn(t)/dt

|W (t)|

≈
Y p
t · Γlog{Y p

t+1} − Y n
t · Γlog{Y n

t+1}
|Y p

t − Y n
t |

≡ Γ̃dln{Wt+1}
(25)

which implies the growth of a DLN RV can be defined as a function of the levels and log-point

growth rates of its two component log-Normal RVs, and denoted Γ̃dln{Wt+1}.

If we instead write W (t) = 2 · exp (λ(t)) · sinh (τ(t)) using the hyperbolic notation of the

DLL, we have

Γ̃{W (t)} ≡ W ′(t)

|W (t)|
=

2 · exp (λ(t)) ·
(

dλ(t)
dt

· sinh (τ(t)) + dτ(t)
dt

· cosh (τ(t))
)

2 · exp (λ(t)) · |sinh (τ(t))|

= sgn(τ(t)) ·
[
dλ(t)

dt
+

dτ(t)

dt
· 1

tanh (τ(t))

]
≈ sgn(τt) ·

[
(λt+1 − λt) +

τt+1 − τt
τt

] (26)

which yields Equation 7 from Section 2.1.

To conclude, the example firm from the beginning of this section can be said to have had

a growth rate of (120− (−100))/|−100| = 2.2 = 220%̃. To calculate its DLN-based growth

rate, however, we will need to know not just its income in each of the periods, but their

respective components, namely the sales and expenses it incurred in each period. Finally

note that if τt, τt+1 > 0, the dln growth measure of Equations 25 and 26 continues to hold

under the traditional growth definition of Barro and Sala-I-Martin (2003).
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5 Concluding remarks

A variety of phenomena in nature arise at the balance of two opposing forces. Exam-

ples explored here include sales and expenses, agglomeration and congestion, and birth and

death. I further show these forces are exponential, and hence approximately log-Normally

distributed, and how these two facts in turn lead to the rise of the difference-of-log-Normals

distribution from first principles by relying on the CLT.

I characterize the distribution, which to my knowledge has not been characterized or

used previously, and provide evidence that several important data series indeed distribute

as the difference-of-log-Normals. These include: firm cashflows, dispensations, investment,

investment intensity, average product of capital, capital growth, cashflow growth, and equity

returns at various intervals; population growth and economic output of US locales; the

growth in COVID-19 cases, tests conducted, and vaccinations given; and the growth of labor

wages, city temperatures, and journal publications.

I formalize the process giving rise to these phenomena into the difference-of-log-linears

production function. This production function endogenously proposes novel definitions for

production growth and efficiency, as well as yields novel implications about production

growth and returns-to-scale. It does so in a mathematically tractable manner, owing to

Hyperbolic Geometry. I further discuss how this production function can be used to model

firms, cities, populations, and pandemics.

Finally, and building on the difference-of-log-linears production function’s ability to

model negative income in a tractable manner, I propose an extension of growth measures

to sometimes-negative RVs. I show how, when an RV is distributed as a difference-of-log-

Normals and generated by a difference-of-log-linears process, a generalization of log-point

growth and of percent growth allows us to coherently discuss growth from negative values.

While simple, this line of inquiry appears quite useful. I show how it: predicts the

distribution of firm cashflows, a core object of interest in finance; provides a well-behaved

distribution for equity returns, thus mending a long-standing puzzle at the heart of Modern
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Portfolio Theory; allows writing models of increasing-returns-to-scale cities in which more

than one city can rationally exist; proposes an extension to the classical Malthusian “birth-

death” model; and rationalizing a variety of observed growth distributions.

There is a sense by which this work is simply an extension of “Gibrat’s Law” (Gibrat,

1931). Gibrat’s core insight was that growth is a proportional process, leading to the multi-

plicative CLT and a log-Normal limiting distribution of size. To support his theory, Gibrat

analyzed a broad range of data on incomes, firms, and industry sizes, and found a remarkable

fit to the log-Normal distribution. Gibrat’s goal was to “convince his readers that this was a

statistical regularity sufficiently sharp to provide a basis for serious mathematical modeling”

(Sutton, 1997).

Similarly, the core insight explored here is that growth phenomena are balanced between

opposing multiplicative forces, or that “every marginal benefit must have a marginal cost,”

a lá Newton’s third law. Due to the first-principles reliance on the CLT, it is likely that

difference-of-log-Normals growth would be observed in a variety of natural phenomena not

analyzed here. I hence posit that the difference-of-log-Normals is the general distribution

of growth phenomena — a hypothesis which certainly requires further investigation. This

in turn would mean the difference-of-log-Normals is a fundamental distribution in nature,

in the sense that it arises in disparate settings, similar to the repeated occurrence of its

better-known peers, the Normal and log-Normal distributions.
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A Data Appendix

A.1 Data

Firm data analyzed in Figures 1 and 5 and in Table 1 are from the Compustat/CRSP-

combined dataset, accessed via Wharton’s WRDS. The accounting-based data cover 164K

firm-year observations on 15,797 firms between 1970-2019. Year fixed-effects were taken

using the ratio of each year’s nominal GDP and the GDP in 2019, from the St. Louis Fed

(fred.stlouisfed.org). This means the secular growth trend of GDP was removed, and all

data are as a percentage of a fixed economy and in terms of 2019 dollars. Adjusting by the

standard GDP deflator does not change any of the conclusions and merely acts to move the

mean of the growth distributions slightly to the right. The equity return panels (c) and (e) of

Figure 1 use data on the entire universe of 2M monthly return observations and on a random

sample of 5M daily return observations from CRSP. Excess equity returns are relative to the

Fama-French 3-factor model, using factor loadings from Ken French’s data library. Exact

definitions of each data variables in Table 1 in terms of Compustat/CRSP mnemonics are

available in Table 1 of Parham (2023). Extensive stylized facts and descriptive statistics for

these data are available in Parham (2022).

City data presented in 2 and the first three columns of Table 2 are from three sources.

The data in Panel (a) are from Rozenfeld et al. (2011), and pertain to population growth

from 1991 to 2000 in 46K locales identified by the clustering algorithm of Rozenfeld et al.

(2011). The data in Panel (c) are from the US Bureau for Economic Analysis (Gross Domestic

Product by County, 2017-2020), and pertain to 9,333 county-year observations on the growth

of per-county GDP for 3,111 counties from 2017 to 2020. The data in Panel (e) are again

from the US BEA (Gross Domestic Product by Metropolitan Area and Industry, 2001-2017),

and pertain to 270K growth observations on 87 industries within 384 MAs over 17 years.

COVID-19 data analyzed in Figures 3 and 6, as well as the middle three columns of Ta-

ble 2, are from the Our World In Data COVID depository (ourworldindata.org/coronavirus),
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downloaded on 2/5/2022. I use daily worldwide data covering 143K observations for per-

country case growth, 71K observations for per-country tests growth, and 112K observations

for per-country vaccination growth. To avoid low base rate effects and stale data, I only use

growth observations when the base value is higher than 10 (e.g., more than 10 infections

per day or more than 10 vaccines given), and the growth rate is different from 0 (as growth

being exactly 0 usually indicates stale data).

Wage growth data in Panel (a) of Figure 7 is based on the distribution of wage income

growth, corrected for age and year fixed-effects. The distribution is provided by the Global

Repository of Income Dynamics (GRID, available at https://www.grid-database.org/) which

us led by Fatih Guvenen, Luigi Pistaferri and Gianluca Violante, based in part on the work

at Guvenen et al. (2021). Data on the US, which I use, are from a 10% panel sample of

the U.S. population from the Master Earnings File of the Social Security Administration,

concentrating on total annual labor earnings. The GRID project does not provide the data,

but rather the distribution itself (i.e., bin midpoints and bin weights). I use the most recent

5-year growth data (from 2015 to 2020), though I verify that pooling the data on 5-year

growth for all available US periods does not change the outcomes.

Temperature data in Panel (b) of Figure 7 is based on the average daily temperatures

for 321 cities worldwide, from the Weather Project at the University of Dayton, provided by

Kelly Kissock. The data were downloaded from Kaggle (https://www.kaggle.com/datasets/sudalairajkumar/daily-

temperature-of-major-cities) on 9/15/2023, and span 2.7M daily temperature growth obser-

vations between 1995-2020.

Journal publication data in Panel (c) of Figure 7 are from OurWorld in Data (https://ourworldindata.org/grapher/scientific-

and-technical-journal-articles) and are originally source from the National Science Founda-

tion via The World Bank. The data cover yearly journal publications from 197 countries

during the period 2000-2018, for a total of 3.5K growth observations.
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A.2 Analysis

For each growth measure, the data are first fit to the DLN distribution using the MLE

estimator described in the Online Appendix. The empirical distribution of the data, along

with the fitted DLN (in red) are presented as figures, along with a q-q plot of the empirical

CDF vs. the theoretical DLN CDF, also developed in the Online Appendix.

Three statistical goodness-of-fit tests are used to verify whether the empirical data indeed

stem from the DLN distribution. The three goodness-of-fit distributional tests I use are the

Kolmogorov-Smirnov (K-S), the Chi-square (C-2), and the Anderson-Darling (A-D) tests.

The three tests are sensitive to different distributional deviations — K-S has uniform power

throughout, C-2 is more powerful around the center-mass, and A-D is more powerful around

the tails — hence I report results for all three tests.

Because the alternative distributions I consider — the Laplace distribution (itself a dif-

ference of exponentially distributed variates) and the Lev́y-Stable (aka Pareto-Stable or

Power-Law) distribution — have different number of parameters, a simple likelihood ratio

test may tilt in favor of the DLN, which has more degrees of freedom (5 for the DLN, 4 for

the Stable, and 3 for the asymmetric Laplace). To account for the degrees of freedom, I use

the relative likelihood test, derived from the AIC statistic of Akaike (1973). The relative

likelihood is a non-nested version of the likelihood ratio test, accounting for the number of

parameters. I also report relative likelihood tests using the BIC statistic, which penalizes

extra degrees of freedom more heavily. For a review of the information-theoretic approach

to model selection see, e.g., Burnham and Anderson (2002).
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OA Online Appendix

Equations 9, 10 of the main text have defined the basic structure of a DLN RV,

W = Yp − Yn = exp(Xp)− exp(Xn) with XXX = (Xp, Xn)
T ∼ N(µµµ,ΣΣΣ)

and denoted W ∼ DLN(µp, σp, µn, σn, ρpn). The next section begins by characterizing its

PDF and CDF, as well as discussing the simplified case when ρpn = 0 and the PDF can be

derived as a simple convolution using a Fourier transform.

OA.1 PDF and CDF

The PDF for the bi-variate Normal (BVN) RV XXX is well-known to be

fBV N(xxx) =
|ΣΣΣ|− 1

2

2π
· exp

(
−1

2
(xxx− µµµ)TΣΣΣ−1(xxx− µµµ)

)
=

|ΣΣΣ|− 1
2

2π
· exp

(
−1

2
||xxx− µµµ||ΣΣΣ

)
(OA.1)

with |ΣΣΣ| the determinant of ΣΣΣ and ||xxx||ΣΣΣ the Euclidean norm of xxx under the Mahalanobis

distance induced by ΣΣΣ.

The PDF for the bi-variate log-Normal (BVLN) RV YYY = (Yp, Yn)
T can be obtained by

using the multivariate change of variables theorem. If YYY = g(XXX) then

fY (yyy) = fX(g
−1(yyy)) · ||Jg−1(yyy)|| (OA.2)

with Jg−1 the Jacobian matrix of g−1(·) and ||Jg−1|| the absolute value of its determi-

nant. Applying the theorem for YYY = g(XXX) = (exp(Xp), exp(Xn))
T we have g−1(yyy) =

(log(yp), log(yn))
T and ||Jg−1(yyy)|| = (yp · yn)−1. The PDF of a BVLN RV is then

fBV LN(yyy) =
|ΣΣΣ|− 1

2

2πypyn
exp

(
−1

2
||log(yyy)− µµµ||ΣΣΣ

)
(OA.3)

We can now define the cumulative distribution function (CDF) of the DLN distribution
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using the definition of the CDF of the difference of two RV

FDLN(w) = P [W ≤ w] = P [yp − yn ≤ w] = P [yp ≤ yn + w]

=

∫ ∞

−∞

∫ yn+w

−∞
fBV LN(yp, yn)dypdyn

(OA.4)

which can be differentiated w.r.t w to yield the PDF

fDLN(w) =

∫ ∞

−∞
fBV LN(y + w, y)dy =

∫ ∞

−∞
fBV LN(y, y − w)dy (OA.5)

but because fBV LN(yyy) is non-zero only for yyy > 0, we limit the integration range

fDLN(w) =

∫ ∞

max(0,w)

fBV LN(y, y − w)dy (OA.6)

which yields the PDF of the DLN distribution.

It is well-known, however, that the integral in equation OA.6 does not have a closed-

form solution. The accompanying code suite evaluates it numerically, and also numerically

evaluates the CDF using its definition

FDLN(w) =

∫ w

−∞
fDLN(y)dy (OA.7)

For the simpler case with difference of uncorrelated log-Normals, i.e. ρpn = 0, we can

derive the PDF of the DLN via a characteristic function (CF) approach as well. In this case,

we can write the CF of the DLN as φDLN(t) = φLN(t) · φLN(−t) with φLN(t) the CF of the

log-Normal. Next, we can apply a Fourier transform to obtain the PDF,

fDLN(w) =
1

2π

∫ ∞

−∞
e−i·t·w · φDLN(t)dt (OA.8)

Unfortunately, the log-Normal does not admit an analytical CF, and using Equation OA.8

requires a numerical approximation for φLN(t) as well. Gubner (2006) provides a fast and
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accurate approximation method for the CF of the log-Normal which I use in the calculation

of fDLN(w) when using this method.

OA.2 Moments

OA.2.1 MGF

The moment generating function (MGF) of the DLN can be written as

MW (t) = E
[
etW
]
=

∫ ∞

−∞

∫ ∞

−∞
etwfBV LN(y + w, y)dydw (OA.9)

but this formulation has limited usability due to the lack of closed-form solution for the

integrals. Instead, it is useful to characterize the moments directly, as we can obtain them

in closed-form.

OA.2.2 Mean and variance

Using the definitions of µµµ and ΣΣΣ in 10, define the mean and covariance of the BVLN RV,

µ̂̂µ̂µ and Σ̂̂Σ̂Σ (element-wise) as

µ̂̂µ̂µ(i) = exp

(
µµµ(i) +

1

2
ΣΣΣ(i,i)

)
Σ̂̂Σ̂Σ(i,j) = exp

(
µµµ(i) + µµµ(j) +

1

2

(
ΣΣΣ(i,i) +ΣΣΣ(j,j)

))
·
(
exp

(
ΣΣΣ(i,j)

)
− 1
) (OA.10)

Note that if ΣΣΣ is diagonal (i.e., Xp and Xn are uncorrelated) then Σ̂̂Σ̂Σ will be diagonal as

well. We are however interested in the general form of the DLN distribution. The identities

regarding the expectation and variance of a sum of RV yield

E [W ] = E [Yp]− E [Yn] = µ̂̂µ̂µ(1) − µ̂̂µ̂µ(2) = exp(µp +
σ2
p

2
)− exp(µn +

σ2
n

2
) (OA.11)
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and

Var [W ] = C [Yp, Yp] + C [Yn, Yn]− 2 · C [Yp, Yn] = Σ̂̂Σ̂Σ(1,1) + Σ̂̂Σ̂Σ(2,2) − 2 · Σ̂̂Σ̂Σ(1,2)

= exp
(
2µp + σ2

p

)
·
(
exp

(
σ2
p

)
− 1
)
+ exp

(
2µn + σ2

n

)
·
(
exp

(
σ2
n

)
− 1
)

− 2exp

(
µp + µn +

1

2
(σ2

p + σ2
n)

)
· (exp (σpσnρpn)− 1)

(OA.12)

with C the covariance operator of two general RV U1, U2

C [U1, U2] = E [(U1 − µ1)(U2 − µ2)] (OA.13)

OA.2.3 Skewness and kurtosis

Skewness and kurtosis of the DLN can similarly be established using coskewness and

cokurtosis — see e.g. Miller (2013) for an overview. Coskewness of three general RV

U1, U2, U3 is defined as

S [U1, U2, U3] =
E [(U1 − µ1)(U2 − µ2)(U3 − µ3)]

σ1σ2σ3

(OA.14)

and cokurtosis of four general RV U1, U2, U3, U4 is defined as

K [U1, U2, U3, U4] =
E [(U1 − µ1)(U2 − µ2)(U3 − µ3)(U4 − µ4)]

σ1σ2σ3σ4

(OA.15)

with the property that S [U,U, U ] = Skew [U ] and K [U,U, U, U ] = Kurt [U ]. More impor-

tantly, it is simple to show that

Skew [U − V ] =
σ3
US [U,U, U ]− 3σ2

UσV S [U,U, V ] + 3σUσ
2
V S [U, V, V ]− σ3

V S [V, V, V ]

σ3
U−V

(OA.16)
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and similarly

Kurt [U − V ] =
1

σ4
U−V

[σ4
UK [U,U, U, U ]− 4σ3

UσVK [U,U, U, V ]

+ 6σ2
Uσ

2
VK [U,U, V, V ]− 4σUσ

3
VK [U, V, V, V ] + σ4

VK [V, V, V, V ]]

(OA.17)

with σU−V = Var [U − V ]
1
2 calculated using Equation OA.12. Evaluating the operators S

and K for the case of DLN requires evaluating expressions of the general form E
[
Y i
pY

j
n

]
,

which can be done via the MGF of the BVN distribution

E
[
Y i
pY

j
n

]
= E

[
eiXpejXn

]
= MGFBV N

([
i
j

])
= E

[
Y i
p

]
E
[
Y j
n

]
eijΣΣΣ(1,2) (OA.18)

with E
[
Y i
p

]
= exp

(
iµp +

1
2
i2σ2

p

)
. This concludes the technical details of the derivation.

The method presented can be extended to higher central moments as well. The accom-

panying code suite includes functions that implement the equations above and use them to

calculate the first five moments of the DLN given the parameters (µp, σp, µn, σn, ρpn). The

appendix describes the results of Monte-Carlo experiments testing the empirical variance

and bias of the moments as functions of sample size.

OA.3 Estimation

Given dataDDD ∼ DLN(ΘΘΘ) with ΘΘΘ = (µp, σp, µn, σn, ρpn), we would like to find an estimate

Θ̂̂Θ̂Θ to the parameter vector ΘΘΘ. Experiments show that given an appropriate initial guess, the

MLE estimates of ΘΘΘ perform well in practice. The main parameter of difficulty is ρpn. This

parameter is akin to the shape parameter in the Stable distribution, which plays a similar

role and is similarly difficult to estimate, see e.g. Fama and Roll (1971). It hence requires

special care in the estimation.

The estimation code provided minimizes the negative log-likelihood of the data w.r.t the

DLN PDF using a multi-start algorithm. The starting values for the first four parameters

46



are fixed for all start points as:



µp

σp

µn

σn


=



Median [log (DDD)] for DDD > 0

IQR [log (DDD)] /1.35 for DDD > 0

Median [log (−DDD)] for DDD < 0

IQR [log (−DDD)] /1.35 for DDD < 0


(OA.19)

while the initial guesses for ρpn are (−0.8,−0.3, 0, 0.3, 0.8). The estimator Θ̂̂Θ̂Θ is then the value

which minimizes the negative log-likelihood in the multi-start algorithm. The estimator

inherits asymptotic normality, consistency, and efficiency properties from the general M-

estimator theory, as the dimension of Θ̂̂Θ̂Θ is fixed, the likelihood is smooth, and is supported

on R ∀Θ̂̂Θ̂Θ. A better estimation procedure for the parameters of the DLN might be merited,

but is left for future work.

OA.4 The elliptical multi-variate DLN

Practical applications of the DLN require the ability to work with multi-variate DLN

RVs. I hence present an extension of the DLN to the multi-variate case using elliptical

distribution theory, with the standard reference being Fang, Kotz, and Ng (1990).

The method of elliptical distributions requires a symmetric baseline distribution. We

will therefore focus our attention on the symmetric DLN case in which µp = µn ≡ µ

and σp = σn ≡ σ, yielding the three parameter uni-variate symmetric distribution

SymDLN(µ, σ, ρ) = DLN(µ, σ, µ, σ, ρ). I begin by defining a standardized N-dimensional

elliptical DLN RV using SymDLN and the spherical decomposition of Cambanis, Huang,

and Simons (1981), and later extend it to a location-scale family of distributions.

Let U be an N-dimensional RV distributed uniformly on the unit hyper-sphere in RN

and arranged as a column vector. Let R ≥ 0 be a univariate RV independent of U with

PDF fR (r) to be derived momentarily, and let Z = R ·U be a standardized N-dimensional

elliptical DLN RV. A common choice forU is Û/||Û||2 with Û ∼ MVN(0N ,1N). U captures
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a direction in RN , and we have
√
UT ·U = ||U||2 ≡ 1, which implies

√
ZT · Z = ||Z||2 = R.

We further know that the surface area of an N-sphere with radius R is given by

SN (R) =
2 · πN

2

Γ
(
N
2

) ·RN−1 (OA.20)

and can hence write the PDF of Z as

fZ (z) =
fR (||z||2)
SN (||z||2)

=
Γ
(
N
2

)
· fR (||z||2)

2 · πN
2 · ||z||N−1

2

(OA.21)

We require fR (r) and fZ (z) to be valid PDFs, which yields the conditions

fR (r) ≥ 0 ∀ r ∈ R

fZ (z) ≥ 0 ∀ z ∈ RN∫ ∞

−∞
fR (r) dr = 1∫ ∞

−∞
· · ·
∫ ∞

−∞
fZ (z) dz(N) · · · dz(1) = 1

(OA.22)

to those, we can add the condition that the properly normalized distribution of fR (r) will

be SymDLN,

fR (r) = M̃N (r) · fDLN(r) (OA.23)

with M̃N (r) chosen such that the conditions in Equation OA.22 hold. Solving for this set of

conditions yields

fR (r) =
rN−1∫∞

0
r̃N−1 · fDLN (r̃) dr̃

· fDLN (r) (OA.24)

and

fZ (z) =
Γ
(
N
2

)
2 · πN

2 ·
∫∞
0

r̃N−1 · fDLN (r̃) dr̃
· fDLN (||z||2) = MN · fDLN (||z||2) (OA.25)

with MN a normalization constant depending only on the dimension N and the parameters
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of the baseline SymDLN(µ, σ, ρ) being used. We can use Z’s CDF definition to write

FZ (z) =

∫ z(1)

−∞
· · ·
∫ z(N)

−∞
fZ (ẑ) dẑ(N) · · · dẑ(1)

=

∫ z(1)

−∞
· · ·
∫ z(N)

−∞
MN · fDLN (||z||2) dẑ(N) · · · dẑ(1)

(OA.26)

which concludes the characterization of the standardized N-dimensional elliptical DLN RV.

Extending the standardized N-dimensional DLN to a location-scale family of distributions

is now straightforward. Let µ̃µµ = (µ1, µ2, ..., µN)
T be a column vector of locations and let Σ̃ΣΣ

be a positive-semidefinite scaling matrix of rank N . Define

W = µ̃µµ+ Σ̃ΣΣ
1
2 · Z (OA.27)

with Σ̃ΣΣ
1
2 denoting the eigendecomposition of Σ̃ΣΣ. The PDF of W is then given by

fW (w) = |Σ̃ΣΣ|−
1
2 · fZ

(
Σ̃ΣΣ

− 1
2 · (w − µ̃µµ)

)
= |Σ̃ΣΣ|−

1
2 ·MN · fDLN

(√
(w − µ̃µµ)T · Σ̃ΣΣ

−1
· (w − µ̃µµ)

)
= |Σ̃ΣΣ|−

1
2 ·MN · fDLN

(
||w − µ̃µµ||Σ̃ΣΣ

)
(OA.28)

The CDF of W can similarly be written as

FW (w) = |Σ̃ΣΣ|−
1
2 ·MN ·

∫ w(1)

−∞
· · ·
∫ w(N)

−∞
fDLN

(
||w − µ̃µµ||Σ̃ΣΣ

)
dŵ(N) · · · dŵ(1) (OA.29)

which characterizes a general elliptical multi-variate DLN RV.

Finally, note that the scaling matrix Σ̃ΣΣ is not the covariance matrix of W due to the

heavy-tails of W, similar to other heavy-tailed elliptical distributions such as the multi-

variate Stable, t, or Laplace distributions. Further note that the normalization integral in

Equation OA.24 is numerically unstable for high values of N (e.g., N ≥ 5), and care should

be taken when deriving the PDF of high-dimensional DLN RVs in practice.
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