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Abstract

We provide an economic analysis of how the observation of data by mul-

tiple parties (redundancies) affect private and socially optimal investment

in data security. Our use case is the current banking system where pay-

ment transaction data is observed by at least the sending and the receiving

institution. Redundancies cause free-riding, and under investment rela-

tive to the social optimum which increases the chance of cyber attacks. We

show that an optimally protected third party, e.g. a regulator that observes

all payment data, can increase overall data security beyond the level pro-

vided by the social planner even though all private entities shirk upon its

entry. This holds because the information environment that results from

providing a third redundancy is inherently different than the information
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1 Introduction

Data is a valuable resource for financial institutions (FIs). It is essential for their
operations and FIs have legal and financial incentives to prevent data loss and
keep data private. Nevertheless, there is evidence that firms crucially underin-
vest in data security and neglect the costs to society. The Online Trust Alliance
claims that up to 65% of US banks are ‘extremely’ vulnerable to cyber attacks
(IBS Intelligence, 2017).

Data security investment may be suboptimal due to a free-rider problem.
When multiple parties have access to the same data, each party may rely on
the other to protect the data. In such circumstances, expenditures that achieve
a social optimum may require government action or policies by government
participants that reflect private incentives to free ride.

We refer to the way that data is stored and backed up across the financial
system as an information structure. We focus on information structures that are
exogenously generated by payment flows. Hence the data structure depends
on how banks interact in terms of payments and the system through which
payments are made. We consider information structures generated by the ex-
isting banking system and those associated with distributed ledger technology
(DLT) systems.

The existing banking system is composed of multiple (distinct) participants,
each of whom keeps a record of its own transactions. This means each par-
ticipant knows everything about the transactions they make and part of what
there is to know about transactions others make. Payments are made through
one of multiple financial market infrastructures (eg Fedwire, CHIPS or ACH)
and hence some aspects of payment data is obtained and stored by these enti-
ties.

We consider two cases that relate to the existing banking system. First we
assume the infrastructure provider keeps no records (or the data provided to
the infrastructure providers is not sufficiently detailed to provide a stand-alone
record). In this case, a complete record of all transactions may be obtained
by combining the records of any group that consists of all but one bank. This
follows from the fact that any individual bank’s records can be reconstructed
from the records of all the banks it transacts with. Individual banks may not
protect their data optimally, since private costs do not reflect the costs borne by
others. Specifically, we show that banks protect their data less than would be
optimal under a planner’s solution.
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Second we consider the case where a single entity (eg Fedwire) observes all
transactions. Now, there are two ways to recover all data; Fedwire’s records or
the collective individual records of any group that consists of all but one bank.
We assume Fedwire, as a public entity, seeks to maximise the social welfare of
the system, by optimally choosing its level of security while internalising the
impact its protection choices have on the actions of others.

Without Fedwire being present, all private banks under invest in data secu-
rity relative to the social optimum. One might therefore ask whether adding
an additional publically minded entity can improve overall security, and move
security closer to the social optimum. We show that when Fedwire sets positive
levels of data security it does in fact cause banks to further shirk by individu-
ally reducing their investment in data security, however the overall impact on
welfare (accounting for Fedwire’s security expenditures) is positive.

We also provide an impossibility result, namely that Fedwire cannot choose
a level of security that induces a response by the private banks that generates
the socially optimum level of security. Hence, some public intervention in the
form of regulation is required to obtain a social optimum.

1.1 Literature

This paper contributes to the literature on the value of information (Feltham,
1968; Hirshleifer, 1978; Morris and Shin, 2002; Angeletos and Pavan, 2007), the
economic literature on incentives involved with attacking blockchains (Biais,
Bisiere, Bouvard, and Casamatta, 2019; Ebrahimi, Routledge, and Zetlin-Jones;
Budish, 2018; Schilling, 2019; Huberman, Leshno, and Moallemi, 2021), the lit-
erature discussing the economic value of data as source of information (Be-
genau, Farboodi, and Veldkamp, 2018; Farboodi, Mihet, Philippon, and Veld-
kamp, 2019; Farboodi and Veldkamp, 2020, 2021; Farboodi, Singal, Veldkamp,
and Venkateswaran, 2022) and the computer science literature on backups and
redundancies (Ghaffarzadegan, 2008; Littlewood and Strigini, 2004; Jia, Xin,
Wang, Guo, and Wang, 2018; AlZain, Soh, and Pardede, 2012).

2 Model

Unless specified, we consider one-period games. Later when adding the gov-
ernment, we consider two-stage games.
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2.1 Entities and Information

Let I denote the set of all data. This can include payment information, such
as transaction amounts, names of transactors, time and date stamps and any
other customer information that might be recorded in the records of financial
institutions. N is the set of all entities in the economy that observe information.
In general these entities could include banks, central banks and, in the case
of DLT systems, miners or proof-of-stake validators. Let N = |N | denote the
number entities. A transaction requires a sender and a receiver where sending
and receiving happens in the same time period. All transactions are truthful via
electronic means. Therefore, every transaction is observed by at least one entity,
and is observed by two entities if the sender and the receiver are customers of
different entities.

Let Ii ⊆ I denote the information observed by entity i = 1, . . . N, i ∈ N .
Observed information Ii is exogenous to i, that is, there is no data acquisition.
A transaction τ is observed by bank i ∈ N if τ ∈ Ii.

2.2 Value of Information

Information Ii is valuable to every entity i ∈ N . Revenue R(|Ii|) is strictly
increasing in |Ii|, where |·| denotes the number of transactions in Ii. The value of
information is homogeneous in the sense that revenue R(|Ii|) only depends on
the quantity of information |Ii| and not on the content or quality of information
Ii. Further, we assume revenue is independent of the number of entites that
observe information Ii. An entity can earn revenue via information only if data
Ii is not compromised in the sense that either the data is not lost, or if it is
lost, there exists at least one backup of the data. A backup stores information
withour errors.

2.3 Attacks and Data Security

An attack on entity i occurs when a malicious actor hacks the data base of entity
i and destroys its data (think of malware that corrupts the data set). If the lost
data cannot be recovered from other entities in the system (see below), the firm
loses revenue R(|Ii|). Each entity chooses investment in data security to protect
its information Ii and therefore to reduce the chance of an attack. This gives
rise to an important spill-over effect: entity i knows about other entities that
can serve as a backup of its information Ii in case of an attack. Other entity’s
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investment in their data security has thus a positive spill-over effect on entity
i, reducing its probability of data loss, and vice versa. This positive spill-over
effect - on the other hand- will give rise to free-riding.

Let ci ≥ 0 denote entity i’s choice of investment in data security and let
f(|Ii|) denote the cost of one unit investment in data security. Investment in
data security reduces profits by−ci×f(|Ii|) and reduces the chance of an attack
on entity i.

A successful attack on entity i occurs with probability α(ci) ∈ [0, 1], where
α(·) is twice differentiable, strictly decreasing and strictly convex in i′s invest-
ment in data security ci. In addition, we make the following technical assump-
tions

Assumption 2.1. It holds
(i). limc→0 α(c) = 1 and limc→∞ α(c) = 0

(ii). −α′(0) = −α′(0)(4α(0)− 3α2(0)) > f(|Ii|)
R(|Ii|)

(iii). − limc→∞ α
′(c)(2α(c)− α2(c)) = 0 < f(|Ii|)

R(|Ii|) .

These assumptions can be relaxed but they lead to cases which are not em-
pirically interesting. That is, these assumptions ensure that the cost of security
is not so large that it never makes sense for banks to protect their data and no so
infinitesimally small that they would choose an infinite amount of protection.

2.4 Data Recovery and chance of data loss

If an entity is successfully attacked, privacy is always lost but its data is not
necessarily compromised.

Definition 2.1 (Covers: Creating redundancy via backups). Entities j = 1, . . .m ∈
N , form a cover of information Ii if their joint information sets include all the informa-
tion in Ii

Ii ⊆
m⋃
j=1

Ij, m < N, j 6= i (1)

We rule out "on-us" transactions so that every transaction is across entities.
Then a cover of Ii is generated by the union of all the entities it transacts with.
Likewise, there may be a third party, for instance, a payment infrastructure like
Fedwire, that sees all the transactions. Suppose that all entities transact with all
other entities. Then, in the case without Fedwire each data set Ii would have
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two covers: Ii and
⋃
j 6=i Ij and in the latter case with Fedwire it would have

three covers, where the third cover is the information set of the third party.
As an important property: If all transactions occur across entities, each trans-

action is observed by at least two parties. Therefore, the transaction matrix is
complete. Therefore, data Ii is non-recoverable only if all covers of Ii are jointly
successfully attacked. If at least one cover of Ii was not attacked, then we as-
sume that entity i can recover data Ii at zero costs via any one of its non-attacked
covers.1 The possibility of data recovery through third institutions creates an
additional dimension for how entity’s think about data. On the one hand, more
data is more valuable and therefore better, and worth protecting more. On the
other hand, data can be observed by multiple parties, and this redundancy low-
ers an institutions’ incentive to protect data.

We can write firm revenue as

Πi(Ii, ci, α(·), c1, . . . , cN) = (1− P(Ii compromised))R(|Ii|)− ci f(|Ii|) (2)

where the probability that i’s data is compromised equals the probability that
all covers of a (subset of) i’s data were successfully attacked, that is, i loses
access to some of its data.2 At this point we cannot pin down the probability of
data loss further since it varies depending on how much information an entity
observes and by how many parties that information is observed. We therefore
next proceed to considering concrete information systems.

3 Analysis: data protection in different information

systems

We consider two models that approximate the information structures of real
data systems. The first model assumes that every transaction is observed by ex-
actly two institutions. There is no third party payment infrastructure that might
additionally observe the data or the transaction data that is passed through the
third party payment infrastructure is not sufficiently detailed to act as a cover
for any entity, or imply a privacy breach. We call this the model with double
covers and information segmentation, since no single entity forms a full cover,

1This would have to be a legal requirement (e.g. data protection act in health care), otherwise
a hold-up problem would exist.

2Implicit is here the assumption that the reputational damage to losing access to a subset of
data is sufficient to force the entity into bankrupty.
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that is, observes all information. The second model introduces a third party in-
frastructure (“Fedwire”) that perfectly observes all transaction data. This entity,
which we denote by F , is run by the government and maximizes social welfare
when choosing its level of protection. We call this the model with double covers
and an optimally protected single-entity cover.

In our analysis, we focus on symmetric equilibria.

3.1 Double Covers with Information Segmentation

Assume there are exactly three entitiesN = {A,B,C} that observe information,
and that each transaction is observed by exactly two entities, the sender and
the receiver of a payment transaction. The results are generalised to any finite
number of entities in the Appendix. Assume that A,B, and C have equal market
share when it comes to transactions, that is, we assume symmetry |IA| = |IB| =
|IC |. The data structure is as depicted in Figure 1.

A,B

B,C

A,C

Figure 1: Each transaction in I is observed by exactly two entities, the sender
and the receiver.

3.1.1 Analysis of the private optimum

We focus on Bank A. Given our symmetric structure the same calculations can
be applied to banks B and C. There are three scenarios under which the data
of entity A is lost: A and B are attacked, A and C are attacked or all three
are attacked. Hence, the probability of a data loss for bank A is given as the
probability that either A and B are attacked or A and C are attacked, where the
event that all banks are attacked is included in the event that only two banks
are attacked. Thus, A’s probability of a data loss equals

α(cA)α(cB) + α(cA)α(cC)− α(cA)α(cB)α(cC). (3)
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Here, one can see very nicely the spill-over effect of investment in data security:
A’s probability of a data loss very much depends on B’s and C’s investment
in data security and vice versa since they mutually serve as backups. This is
somewhat related to public goods provision by private parties.

The expected profits of entity A given expenditure cA is

πA(cA) = (1− α(cA)α(cB)− α(cA)α(cC) + α(cA)α(cB)α(cC)) R(|IA|)− cAf(|IA|).
(4)

We abstract from limited liability. The first-order condition for an interior level
of data security that maximizes profits of entity A is

∂

∂cA
πA(cA) = −α′(cA)(α(cB) + α(cC)− α(cB)α(cC))R(|IA|)− f(|IA|) = 0. (5)

An interior private optimum for A requires

− α′(c∗A)(α(cB) + α(cC)− α(cB)α(cC))R(|IA|) = f(|IA|) (6)

By |IA| = |IB| = |IC |, any private equilibrium (c∗A, c
∗
B, c

∗
C) must satisfy

α′(c∗A) (α(c∗B) + α(c∗C)− α(c∗B)α(c∗C))

= α′(c∗B) (α(c∗A) + α(c∗C)− α(c∗A)α(c∗C))

= α′(c∗C) (α(c∗A) + α(c∗B)− α(c∗A)α(c∗B)) (7)

meaning that the FOC’s of all entities are symmetric.
We have the following result.

Proposition 3.1 (Double Covers - Private Equilibrium). Assume Assumptions 1-3
hold, and α(c) is strictly convex. Let |IA| = |IB| = |IC |.

(i) There exists a unique symmetric private equilibrium c∗A = c∗B = c∗C . The equi-
librium expenditure level c∗A is interior, and characterized as the solution to

− α′(c∗A)[2α(c∗A)− α(c∗A)2] =
f(|Ii|)
R(|Ii|)

. (8)

If assumption 2.1(ii) does not hold, then −α′(0) < f(|IA|)
R(|IA|)

, and “no investment” arises
as the unique private symmetric equilibrium, i.e., c∗i = 0 for all i.

(ii) If h(x) = α(c)/α′(x) is weakly decreasing, there exist no asymmetric interior
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equilibria, and the symmetric interior equilibrium characterized as the solution to (8)
is the only interior equilibrium.

(iii) If the attack probability satisfies −α′(0) > f/R, and

− α′(0)α(c)(2− α(c)) <
f

R
(9)

where c is the solution to −α′(c) = f
R

, there exists an asymmetric corner equilibrium
(0, c, c). In that equilibrium, one entity does not invest and the other entities invest
symmetrically, c > 0, providing cover for the shirking institution.

Proof (ii)
Consider the function

f(x, y, z) = −α′(x)(α(y) + α(z)− α(y)α(z)) = −α′(x) (α(y)(1− α(z)) + α(z))

(10)
that describes the FOC’s for entities A,B,C. Note that this function is symmetric
in its last two arguments f(x, y, z) = f(x, z, y), but is generically asymmetric
in the first and second, respectively, the first and third argument, f(x, y, z) 6=
f(y, x, z) and f(x, y, z) 6= f(z, y, x).

Assume there exists an asymmetric, interior equilibrium. That is, there ex-
ists x ≥ y ≥ z ≥ 0 (wlog) with

f(x, y, z) = f(y, x, z) = f(z, y, x) =
f(|Ii|)
R(|Ii|)

. (11)

This equation, in fact, contains three separate constraints. Let us consider the
first constraint first. It holds f(x, y, z) = f(y, x, z) if and only if

− α′(x) (α(y)(1− α(z)) + α(z)) = −α′(y) (α(x)(1− α(z)) + α(z)) (12)

This equation is equivalent to

(1− α(z))(α′(y)α(x)− α′(x)α(y)) + α(z)(α′(y)− α′(x)) = 0 (13)

It holds (1 − α(z)), α(z) ∈ [0, 1], and (α′(y) − α′(x)) ≤ 0 by y ≤ x and because
α(·) is convex. Moreover, α′(y)α(x)− α′(x)α(y) ≤ 0 if

α(x)

α′(x)
≤ α(y)

α′(y)
(14)
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If the function h(x) ≡ α(x)
α′(x)

is weakly decreasing, then (14) holds by x ≥ y. But
then (13) has only the trivial solution x = y. By the same argument, f(x, y, z) =

f(z, y, x) if and only if

(1− α(y))(α′(x)α(z)− α′(z)α(x)) + α(y)(α′(x)− α′(z)) = 0 (15)

where (α′(x)− α′(z)) ≥ 0 by x ≥ z and α′(x)α(z)− α′(z)α(x) ≥ 0 iff α(z)
α′(z)
≥ α(x)

α′(x)

which holds again if h(x) is weakly decreasing. Thus, (15) has only the triv-
ial solution x = z. (iii) Asymmetric corner equilibria: Consider the candidate
equilibrium c∗A = 0 and cB, cC > 0 interior. Given c∗A = 0, B and C optimally set
an interior level of data investment if their first order conditions hold. Because
α(c∗A) = α(0) = 1, B’s profit function changes to

ΠB(cB) = (1− α(cB))R− cBf (16)

Thus, B’s FOC equals

− α′(c∗B) =
f

R
(17)

Likewise, for C

− α′(c∗C) =
f

R
(18)

thus, c∗B = c∗C = c∗. If −α′(0) > f/R, then the interior c∗ exists, see proof above.
If −α′(0) ≤ f/R, c∗ = 0.

From here on, assume −α′(0) > f/R. Given these interior investments in
data security, A’s investment of zero, c∗A = 0 is optimal only if

− α′(cA)α(c)(2− α(c)) <
f

R
, for all cA > 0 (19)

Because α(·) is decreasing and convex, a sufficient condition for (19) is

− α′(0)α(c)(2− α(c)) <
f

R
(20)

Because −α′(0) > f/R, condition (20) can fail. Because α(c) ∈ (0, 1) and
(2 − α(c)) ∈ (1, 2), condition (20) might hold. Thus, the asymmetric corner
equilibrium (0, c, c) can but does not have to exist.
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3.1.2 Analysis of the social optimum

Now consider the social planner problem. The planner takes into account that
the expenditure on data protection by any entity impacts the likelihood that
another entity will suffer an unrecoverable data loss. In particular, the planner
jointly chooses cA, cB, and cC to maximize the sum of bank profits.3 The planner
maximizes

πP (cA, cB, cC) = πA + πB + πC (21)

The first-order condition for an interior maximizer with respect to cA is

∂

∂cA
πP (cA, cB, cC) =

∂

∂cA
πA(cA, cB, cC) +

∂

∂cA
πB(cA, cB, cC) +

∂

∂cA
πC(cA, cB, cC)

= −α′(cA)R(|IA|)(2α(cB) + 2α(cC)− 3α(cB)α(cC))− f(|IA|) = 0 (22)

where we have used the symmetry |IA| = |IB| = |IC |. We obtain similar expres-
sions for the first-order equations ∂

∂cB
πP (cA, cB, cC) = 0 and ∂

∂cC
πP (cA, cB, cC) =

0. Denote a solution of the system of first-order equations (ie a social optimum)
by (ĉA, ĉB, ĉC).

To characterize the social solution, note that the first-order conditions for the
social optimum imply

− α′(cA)(2α(cB) + 2α(cC)− 3α(cB)α(cC))

= −α′(cB)(2α(cA) + 2α(cC)− 3α(cA)α(cC))

= −α′(cC)(2α(cA) + 2α(cC)− 3α(cA)α(cC)) (23)

We then have the following result.

Proposition 3.2 (Double Covers: Social Optimum). Assume assumptions 2.1 holds,
and assume α(c) is strictly convex. There exist a symmetric social optimum ĉA = ĉB =

ĉC . This social optimum is interior, and characterized as the expenditure level that
solves

−α′(ĉA)(4α(ĉA)− 3α(ĉA)2) =
f(|IA|)
R(|IA|)

. (24)

If the function −g(c) ≡ −α′(c)α(c)(4 − 3α(c)) crosses f/R only once, the symmet-
ric social optimum is unique. If assumption 2.1(i) and (iii) hold but not (ii), that is,

3This calculation assumes that all consumer costs to data loss are reflected in bank profits.
This would be true, for example, if banks were required to pay restitution to consumers equal
to their damages.
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(−α′(0)) < f/R, then the symmetric social optimum is zero investment ĉi = 0, and
the social planner equilibrium is unique.

A sufficient condition for−g(c) crossing f/R only once is when g(c) is strictly
increasing. In the example of section 5, the function g(c) with α(c) = exp(−βc)
is not strictly increasing. But one can can show single-crossing.

An interesting observation is, that if the social planner lets one entity invest
much in data security, cC large, his investments via the remaining two institu-
tions become substitutes. A larger investment cA would be compensated for by
a reduction of cB.

∂

∂cB

∂

∂cA
πP (cA, cB, cC) = −α′(cA)R(|IA|)α′(cB) (2− 3α(cC)) < 0 (25)

for α(cC) < 2/3, i.e., for cC large. To see this substitutability, the social planner
only requires investment via two institutions to attain a full cover of I which
appears to make the third institution redundant. This suggests that setting cB =

0, and cA = cC > 0 might be socially optimal, giving rise to the possibility of an
asymmetric social planner equilibrium. Indeed, the planner’s marginal profit
due to increasing cB becomes negative when both cA and cC are large:

lim
cA,cC→∞

∂

∂cB
πP (cA, cB, cC) = −f(|IA|) < 0 (26)

It however turns out that, depending on the attack function α(c) such an aym-
metric equilibrium might not exist because A′s and C’s required investments
would need to be too large to compensate for the lack of B’s investment.4

We can now compare the solutions associated with the private equilibrium
and the social optimum.

Proposition 3.3 (Double Covers: Social versus Private Optimum). Assume as-
sumptions A1-A3 hold, and assume α(c) is strictly convex. In the symmetric private
equilibrium, there is strict under investment in data security relative to the symmetric
social optimum; c∗i < ĉi, for all i ∈ {A,B,C}.

4To check for this asymmetric equilibrium with cB = 0 and c = cC = cA > 0, the first order
condition of the social planner becomes, ∂

∂cA
πP (c, 0, c) = −α′(c)R(|IA|)(2−α(c))− f(|IA|) = 0.

The optimality of cB = 0 requires ∂
∂cB

πP (c, 0, c) = −α′(0)(2α(cA) + 2α(cC) − 3α(cA)α(cC)) <
f(|IA|)
R(|IA|) whereas optimality of cA = cC = c > 0 requires −α′(c)(2 − α(c)) = f(|IA|)

R(|IA|) . Jointly,
the condition −α′(0)α(c)(4 − 3α(c)) < −α′(c)(2 − α(c)) needs to be met for an asymmetric
equilibrium to exist. The latter inequality can however fail because 4 − 3α(c) > 2 − α(c) by
α(c) < 1. In our example of section 5, α′(0)α(c) = α′(c) which rules out the possibility of an
symmetric equilibrium with cB = 0 and cA = cC > 0.
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3.2 Fedwire: Double covers and an optimally protected single-

entity cover

In the section above, we have seen that all entities underinvest in data secu-
rity relative to the social optimum since they fail to internalize the impact of
their investment on the other institutions’ profits. Regulating investment in
data security is tricky because the firms could simply understate the value of
their data to the regulator. Therefore, we take a different approach. We are
instead interested in whether the provision of a government layer of security
improves overall data security. Or, can we increase overall data security in
an incentive-compatible way by changing the information environment? Will
Fedwire’s inception improve overall data security given the reaction of all other
private entities?

For that purpose, assume that each transaction is observed by the payor
and the payee and that every transaction is also observed by a third party (eg
Fedwire) F .

We consider a two-stage game: the third party (Fedwire) sets its security
first and perfectly observably to all entities. Then the banks follow by simul-
taneously choosing their security levels in stage two. We consider symmetric
subgame perfect equilibria where given the choice of Fedwire in stage 1, the
entities choose their privately optimal level of data security in stage 2. Antic-
ipating the private choices that follow in subgame cF , Fedwire then optimizes
welfare in stage 1.

A,B
F

F

F

A,C

C,B

Figure 2: Each transaction is observed by two entities and the Fed.
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3.2.1 Private security investment with Fedwire (Stage 2)

We begin by solving for the equilibrium of the subgame that is played by enti-
ties A,B and C taking as given the security choice by Fedwire, cF .

Profits of entity A change to

πA(cA) = (1−α(cA)α(cF )(α(cB)+α(cC)−α(cB)α(cC)))) R(|IA|)−cA f(|IA|) (27)

because Fedwire now additional provides one full cover. Importantly, Fedwire
can also be attacked. It’s probability of attack equals α(cF ). As an important
feature of this modified information system, we allow Fedwire to walk away
when it anticipates bad behavior that follows by private entities in stage 2: By
setting cF = 0, we nest the previous informan environment where Fedwire is
absent. This is because α(0) = 1. The first-order condition becomes

∂

∂cA
πA(cA) = −α′(cA)α(cF )(α(cB) + α(cC)− α(cB)α(cC)) R(|IA|)− f(|IA|) = 0

(28)
The FOCs for B and C are symmetric.

By the symmetry |IA| = |IB| = |IC |, and using the same argument as the
previous section, for every cF there exists a unique symmetric equilibrium of
the subgame following cF , c∗,FA = c∗,FB = c∗,FC on [0,∞) where all entities invest
the same amount in data security. The symmetric equilibrium can be located at
the boundary {0,∞}.

Proposition 3.4 (Private Optimum with Fedwire (stage 2)). Assume α(c) is stricty
convex and assumption 2.1 holds. For every choice of Fedwire’s data security cF ≥ 0,
there exist a unique private symmetric equilibrium c∗,FA = c∗,FB = c∗,FC in [0,∞).

(i) The unique symmetric private equilibrium following cF is interior and finite if

1. −α′(0) > 1
α(cF )

f(|Ii|)
R(|Ii|) and

2. − limc→∞ α
′(c)(2α(c)− α2(c)) < 1

α(cF )
f(|Ii|)
R(|Ii|) hold.

In that case, the unique symmetric private equilibrium c∗,FA in the subgame cF is char-
acterized as the solution to

− α′(c∗,FA )[2α(c∗,FA )− α(c∗,FA )2] =
1

α(cF )

f(|IA|)
R(|IA|)

(29)

(ii) If for given cF it holds −α′(0) ≤ 1
α(cF )

f(|IA|)
R(|IA|)

, then the unique symmetric private
equilibrium following cF is the “noinvestment” equilibrium where no bank invests,
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c∗ = 0.
(iii) By assumption 2.1 and given cF , the unique symmetric private equilibrium cannot
be at c∗ =∞.

From equation (29) it is apparent that whenever the symmetric equilibrium
is interior it varies substantially in Fedwire’s choice of data security cF . Via its
choice cF , Fedwire can therefore steer the symmetric equilibrium c∗ that follows
in the subgame.

Lemma 3.1. Assume α(c) is stricty convex and assumption 2.1 holds. Assume the
subgame cF gives rise to the interior symmetric equilibrium c∗,FA = c∗,FB = c∗,FC . Then
the change of the interior symmetric equilibrium due to a marginal change in the sub-
game cF is given as

∂cA
∂cF

=

α′(cF )
α2(cF )

α′′(cA)α(cA)[2− α(cA)] + 2[α′(cA)]2(1− α(cA))]

f(|IA|)
R(|IA|)

< 0, for all cf ∈ [0,∞)

(30)

Lemma 3.1 shows that the private institutions free-ride on Fedwire’s invest-
ment in data security, reducing their private investment as Fedwire scales up
the security of the third layer.

To see the result, consider the function

F (cA, cF ) =
1

α(cF )

f(|IA|)
R(|IA|)

+ α′(cA)[2α(cA)− α(cA)2] (31)

Consider condition (29) for an interior private equilibrum in the Fedwire case.
For every subgame cF , the zeros to the implicit function F (cA(cF ), cF ) = 0 de-
scribe the symmetric equilibrium. Via the implicit function theorem, the change
of the symmetric equilibrium due to a change in the subgame cF is given as
∂cA
∂cF

= −
∂F
∂cF
∂F
∂cA

yielding the result above.

Lemma 3.1 implies an important proposition.

Proposition 3.5 (Double Covers versus Fedwire: Free-riding on the Fed). When
adding Fedwire as an additional cover, in the unique symmetric private equilibrium
all banks shirk by reducing their investment in data security, c∗i ≥ c∗,Fi for all i ∈
{A,B,C}, whatever the choice of cF . Further, c∗i > c∗,Fi if the unique symmetric
private equilibrium with Double Covers is interior c∗i > 0 .

The proposition follows from the lemma because the privately optimal in-
vestment in data security without Fedwire corresponds to the privately optimal

14



A,B

B,C

A,C

(a) Double Covers

A,B
F

F

F

A,C

C,B

(b) with Fedwire

investment in data security with Fedwire, but where Fedwire decides not to in-
vest, c∗,priv,FedA (0) = c∗,privA . This is by design of our environment. Lemma 3.1
shows that c∗,priv,FedA (cF ) ≤ c∗,priv,FedA (0). When additionally considering the in-
sights of Proposition 3.3, we get the following ordering of optimal investments:

c∗,priv,FedA (cF ) ≤ c∗,priv,FedA (0) = c∗,privA < c∗,socA , for any cF > 0 (32)

The privately optimal investment in the Fedwire case is not only below the pri-
vately optimal investment without Fedwire but, in particular, below the socially
optimal investment in the Double Covers case without Fedwire.

3.2.2 The optimal security choice of Fedwire (Stage 1)

Next we solve the stage 1 game, where Fedwire seeks to maximise social wel-
fare by optimally choosing cF , taking as given the privately optimal security
choices that follow by the banks in stage 2. Fedwire chooses cF to maximize
joint profits accounting for its own data security costs:

πP (c∗,FA , c∗,FB , c∗,FC , cF )

= πA(c∗,FA , c∗,FB , c∗,FC , cF ) + πB(c∗,FA , c∗,FB , c∗,FC , cF ) + πC(c∗,FA , c∗,FB , c∗,FC , cF )− cF f(|I|)
(33)

In this section, we analyze to what extent Fedwire can impact the selection
of the private equilibrium that follows in the subgame. Fist, let us consider
corner equilibria:

Reconsider asummption 2.1. Consider the case where assumption 2.1(ii)
is violated. That is, −α′(0) < f(|Ii|)

R(|Ii|) . That means, a small investment in data
security reduces the attack probability only slowly.

Theorem 3.1 (Impossibility Theorem). Let assumption 2.1(i) and (iii) hold.
If −α′(0) < f(|IA|)

R(|IA|)
, then “no investment” is the unique symmetric private equilibrium

in both settings with and without Fedwire. Put differently, no Fedwire choice cF ∈

15



[0,∞] can deter the unique symmetric “ no investment” equilibrium at c∗ = 0.

This Theorem is the first indicator that adding Fedwire as a third cover is
not always a powerful tool to enhance overall investment in data security. The
condition −α′(0) < f(|IA|)

R(|IA|)
means that a small investment in data security close

to zero does not reduce that attack probability fast.
Theorem 3.1 (ii) says that if “no-investment” is the unique symmetric equi-

librium in the setting without Fedwire, then “no-investment“ remains the unique
symmetric equilibrium in the setting with Fedwire, whatever investment choice
cF . As a consequence, the presence of Fedwire can only improve the efficiency
of the outcome. The result depends on the assumption that α(0) = 1 and
limc→∞ α(c) = 0. If instead the cost function satisfied α(0) 6= 1, then the pres-
ence of Fedwire could potentially make outcomes worse than in the setting
where Fedwire is not present.

Theorem 3.2 (Socially optimal Fedwire provision). Assume the attack probability
α(c) is convex and assumption 2.1(i) and (iii) hold.
(i) Assume−α′(0) < f(|IA|)

R(|IA|)
so that c∗i = 0 is the unique symmetric private equilibrium

following all cF ≥ 0.
(ia) If (−α′(0)) ∈ (0, f(|I|)

3R(|IA|)
] it is socially optimal to not provide Fedwire, c∗F = 0.

(ib) If (−α′(0)) ∈ ( f(|I|)
3R(|IA|)

, f(|IA|)
R(|IA|)

], implementing Fedwire creates value c∗F > 0.
(ii) Assume −α′(0) > f(|IA|)

R(|IA|)
so that absent Fedwire the banks play an interior sym-

metric private equilibrium c∗i > 0. Then,

α′(0)

α′(c∗i )/α(c∗i )
− 1

3
> 0. (34)

is a necessary condition for Fedwire to optimally set c∗F > 0.

Important for understanding the Theorem is that Fedwire’s optimal choice
c∗F = 0 means the setting endogenously reduces to the case of Double Covers
analyzed in section 3.1. It means, the conditions of the information system and
its costs are such that Fedwire optimally walks away and does not provide the
third cover, implying the private entities are on their own when it comes to
protecting their data.

The intuition behind the Proposition is as follows. The private entities and
Fedwire adjust their optimal behavior depending on how fast the attack prob-
ability declines in investment in data security. On (i), if the attack probability
α(c) declines slowly for small levels of investment in data security all private
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entities decide to optimally not invest, independently of what Fedwire does.
Fedwire faces the same attack probability α(c) as the private entities. If the at-
tack probability declines particularly slow in the investment in data security,
(ia), then also Fedwire abstains from investment since the monetary costs of
investing do not justify the benefits. Recall that when Fedwire abstains, the
setting is equivalent to the Double Covers setting studied in section 3.1.

If the attack probability declines slightly faster in investment, the private
entities still do not invest but Fedwire does. In that case, the monetary costs
of investing exceed the benefits of providing the third cover, and thus more
security to all entities. Since the private entities do not invest they cannot react
to Fedwires’ investment by shirking. On (ii), if the attack probability declines
even faster the private entities do invest. As the appendix in the proof shows,
Fedwire’s marginal change in profit due to a marginal increase in data security
investment consists of three terms

∂

∂cF
πP (c

∗,F
A , cF )

= 3R(|IA|)
[ f(|I|)
R(|IA|)

(
α′(cF )/α(cF )

α′(cA)/α(cA)
− 1

3

)
+
∂cA
∂cF

α(cF ) (−α′(cA))2α(cA)(1− α(cA))
]

(35)

The first term in (45) involving the expression α′(cF )/α(cF )
α′(cA)/α(cA)

captures the in-
crease in expected profits to all three firms as Fedwire increases security by
providing the third layer. This term is always positive. The second term involv-
ing −1

3
is negative and captures the increase in monetary costs as investment in

data security goes up. The third term involving the expression ∂cA
∂cF

is negative
and captures that all private entites reduce their investment in data security due
to Fedwire’s increase in investment (free-riding), see Lemma 3.1. Fedwire’s in-
vestment in data security is optimal only if the monetary costs and the extent
of free-riding is not too intense relative to the benefit of increased security and
resulting higher profits. A necessary condition for that to hold is inequality (34)
which implies that the first and second term in the marginal profit function of
Fedwire are positive, that is, α

′(cF )/α(cF )
α′(cA)/α(cA)

− 1
3
> 0 for cF close to zero. As we show

in the proof, the inequality holds if c∗i is sufficiently small. Yet, this difference
between the first and second term still needs to be traded off against the third,
negative term.

Since the Fed’s goal is to maximize welfare and choosing cF = 0 is an option,
the follow corollary follows immediately.
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Corollary 3.1. In cases where Fedwire chooses c∗F > 0 their presence in the system is
welfare improving relative to the Double Cover case where Fedwire is absent.

4 Welfare compared across Information Systems I

What remains to be seen is whether Fedwire can achieve the social optimum
through its own choice of data security investment. In this section, we investi-
gate whether welfare in the constrained optimally protected Fedwire informa-
tion system can reach or even exceed welfare obtained in the solution to the
planners problem without Fedwire. The two underlying information systems
differ since in the Fedwire case each transaction is observed by three parties, if
Fedwire indeed invests, relative to the Double Cover case where every trans-
action is observed by two parties. We only consider symmetric equilibria as
before. Welfare in the Fedwire case exceeds welfare at the socially optimal in-
vestment in the Double Cover case (without Fedwire) if and only if

3 ΠA(c∗,socA , c∗,socB , c∗,socC ) ≤ 3 ΠA(c∗F , c
∗,F
A , c∗,FB , c∗,FC )− c∗Ff(|I|) (36)

Recall, every planner equilibrium is symmetric via c∗,socA = c∗,socC , c∗,socB = 0,
whereas we impose symmetry for the private Fedwire equilibrium, c∗,FA = c∗,FB =

c∗,FC . If (−α′(0)) > f/R, both equilibria are interior. Plugging into (??), (4), (27)
and (33) we can rewrite this inequality as

(3− 4α(cA) + α(cA)2)R− 2cAf︸ ︷︷ ︸
=ΠDC,Soc

P (c∗,soci )

(37)

≤ 3
[
(1− 2α2(cFA)α(cF ) + α3(cFA)α(cF ))R(|IA|)− cFAf(|IA|)

]
− cF f(|I|)︸ ︷︷ ︸

=ΠFed
P (c∗F ,c

∗,F
i )

(38)

We obtain

Theorem 4.1 (Socially optimal Double Cover versus Fedwire). Assume the attack
probability α(c) is convex and assumption 2.1(i) and (iii) hold.
(i) If (−α′(0)) ∈ (0, f(|I|)

3R(|IA|)
] welfare in the case with Fedwire and welfare in the social

optimum with Double Covers are both zero, and thus equal, ΠFed
P = 0 = ΠDC,Soc

P .
(ii) If (−α′(0)) ∈ ( f(|I|)

3R(|IA|)
, f(|IA|)
R(|IA|)

], then

ΠFed
P > ΠDC,Soc

P = 0 (39)
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(iii) Assume −α′(0) > f(|IA|)
R(|IA|)

, then either can dominate the other.

In the case (i), the attack probability declines so slowly with the investment
in data security that no party in either scenario—neither private entities, Fed-
wire, nor the social planner in the Double Cover case— invests in data security.
Thus, welfare is zero in both information systems and therefore equal.

In the case of (ii) the attack probability declines still slowly with a marginal
investment in data security. Therefore, the social planner in the Double Cover
case still does not invest, and welfare in that system is optimally zero. For
the Fedwire case, the private institutions optimally do not invest, but Fedwire
invests. Therefore, welfare in the optimally protected Fedwire case exceeds
welfare in the socially optimally protected Double Cover case. This might be
surprising at first. Note, however, that the Double Cover case and the Fedwire
case differ substantially since Fedwire provides an entire cover via its single
investment, whereas the social planner in the Double Cover case symmetrically
invests in three partially overlapping but incomplete5 information sets at the
same time.

In the case (iii), the attack probability declines rapidly such that the social
planner in the Double Cover case sets an interior investment in data security,
c∗,soci > 0. Likewise, the private instutions in the Fedwire case invest c∗,F edi > 0,
and Fedwire may or may not invest.

5 Example

Consider the attack probability function α(c) = e−βc. This function is positive,
decreasing, convex, with α(0) = 1, α(c) → 0 as c → ∞, and α(c) ∈ [0, 1] for
all c ≥ 0. It holds −α′(0) = β so that for different β ∈ (0,∞) we can scale the
speed at which the attack probability falls in the data security investment. We
set R = 1, f = 0.5.

5.1 Private and Social planner equilibrium Double Covers

The unique symmetric private equilibrium c∗A in the Double Covers case is
given by

• If (−α′(0)) = β > f/R, c∗A is given as the solution to (8), that is,

5Here incomplete means that no entity observes all transactions at the same time whereas
Fedwire observes everything.
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βe−2βc∗A [2− e−βc∗A ] =
f(|Ii|)
R(|Ii|)

. (40)

• If (−α′(0)) = β ≤ f/R, c∗A = 0.

The equilibrium condition for the social planner becomes

• Double Covers (No Fedwire): If (−α′(0)) = β > f/R, socially optimal
investment c∗A solves

β e−2βcA(4− 3e−βcA) =
f(|IA|)
R(|IA|)

(41)

The social planner equilibrium is unique in this example because the func-
tion −g(c) = −α′(c)α(c)(4 − 3α(c)) crosses the value f/R only once, see
Proposition 3.2.6

If (−α′(0)) = β < f/R, the social planner sets c∗A = 0.

5.2 Fedwire equilibrium

5.2.1 Case of interior private optimum

• Given Fedwire’s investment cF satisfies, −α′(0) = β > 1
α(cF )

f(|Ii|)
R(|Ii|) , the

privately optimal investment cFA is interior by Proposition 3.4, and given
as the solution to

β e−2βcFA(2− e−βcFA)e−βcF = f(|IA|)/R(|IA|) (42)

• Since at the given cF the private optimum is interior c∗A > 0, the equi-
librium change in the privately optimal investment cFA due to a marginal
change in cF is given by Lemma 3.1 as

∂cFA
∂cF

=
−eβ cF

β e−2β cFA(4− 3e−β c
F
A)

f

R
(43)

6To see this, note that g(c) = −βe−2βc(4 − 3e−βc). Thus g′(c) = β2e−2βc(8 − 9e−βc). The
factor β2e−2βc is always positive. The bracket is positive if and only if c > 1

β ln
(
9
8

)
. Thus,

−g(c) decreases if and only if c > 1
β ln

(
9
8

)
. Because −g(0) = α′(0) > f/R by assumption,

and because − limc→∞ g(c) = 0 < f/R, the function −g(c) starts at a value above f/R at
zero, increases strictly away from that value until it reaches its maximum at c = 1

β ln
(
9
8

)
, then

decreases strictly for all c > 1
β ln

(
9
8

)
, eventually crossing f/R once, and approaching zero as c

gets large.
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• Because at the given cF the private optimum is interior c∗A > 0, the first
order condition for the optimal Fedwire choice c∗F as a function of c∗A is
given by (174) and becomes

∂

∂cF
πP (c

∗,F
A , cF )

= 3R(|IA|)
f(|I|)
R(|IA|)

[2
3
+ 2
−eβ cF e−β cF

(4− 3e−β c
F
A)

(
e−2β cFA

e−2β cFA
)(1− e−β cFA)

]
(44)

= 6f(|I|)
[1
3
− (1− e−β cFA)

(4− 3e−β c
F
A)

]
(45)

since α′(c)/α(c) = −β, α′(cF )/α(cF )
α′(cA)/α(cA)

= 1. Note that this derivative is inde-
pendent of cF .

5.2.2 Case of private corner equilibrium

• If Fedwire’s investment cF satisfies−α′(0) = β < 1
α(cF )

f(|Ii|)
R(|Ii|) , the privately

optimal investment is at zero cFA = 0 by Proposition 3.4. This holds in
particular, if −α′(0) = β < f(|Ii|)

R(|Ii|) .

• If for given cF the private optimum is at zero c∗A = 0, the equilibrium
change in the privately optimal investment cFA due to a marginal change
in cF is also zero since all banks shirk and cannot invest less than zero.

∂cFA
∂cF

= 0 (46)

• Because the private optimum is at c∗A = 0, the first order condition for
the optimal Fedwire choice c∗F as a function of c∗A is given by (168) and
becomes

∂

∂cF
πP (c

∗,F
A , c∗,FB , c∗,FC , cF )

= −3α2(cA)α
′(cF ) R(|IA|)

(
2− α(cA)

)
− f(|I|) (47)

= −3α′(cF ) R(|IA|)− f(|I|) (48)

since ∂cFA
∂cF

= 0, and α(0) = 1. Note that this derivative now depends on cF .
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5.3 Solving the example for different attack probabilities beta

We now solve explicitly for the equilibria depending on the given attack prob-
ability function α(c) = e−βc, parametrized by beta.

Corollary 5.1 (Fedwire equilibria of the example). Consider the attack probability
function α(c) = e−βc.
(i) If β ∈

(
0, f(|Ii|)

3R(|Ii|)

]
, the private symmetric equilibrium equals c∗A = 0 and Fedwire

optimally sets c∗F = 0.
(ii) If β > f(|Ii|)

3R(|Ii|) , the private symmetric equilibrium equals c∗A = 0 and Fedwire opti-

mally sets c∗F =
(
− 1
β

)
ln
(

f
3Rβ

)
> 0.

We include the solution to the example, i.e., the proof of the Corollary in the
main text for expositional purpose.

Case 1: −α′(0) = β ∈ (0, f(|Ii|)
R(|Ii|) ].

In this case it follows that β ≤ 1
α(cF )

f(|Ii|)
R(|Ii|)) for all cF ≥ 0.

• Then by the instructions above, c∗A = 0, and ∂cFA
∂cF

= 0.

• Therefore, ∂
∂cF

πP (c∗,FA , c∗,FB , c∗,FC , cF ) = 3βe−βcF R(|IA|)− f(|I|).

It holds ∂
∂cF

πP (c∗,FA , c∗,FB , c∗,FC , cF ) > 0 if and only if cF <
(
− 1
β

)
ln
(

f
3Rβ

)
. If

β ∈ (0, f
3R

), then ln
(

f
3Rβ

)
> 0. Thus, there exists no positive cF with cF <(

− 1
β

)
ln
(

f
3Rβ

)
, implying ∂

∂cF
πP (c∗,FA , c∗,FB , c∗,FC , cF ) < 0 for all cF ≥ 0. Thus,

c∗F = 0. If β ∈ ( f
3R
, f
R

), then ln
(

f
3Rβ

)
< 0, and c∗F =

(
− 1
β

)
ln
(

f
3Rβ

)
> 0.

• To verify that we have indeed found an equilibrium, see that for the case
β ∈ (0, f

3R
) with c∗F = 0, respectively for the β ∈ ( f

3R
, f
R

) with c∗F =(
− 1
β

)
ln
(

f
3Rβ

)
it holds β < 1

α(cF ∗)
f(|Ii|)
R(|Ii|)), and thus c∗A = 0 is optimal in

either case. We conclude, if β ∈ (0, f
3R

), the equilibrium equals (c∗A, c
∗
F ) =

(0, 0) whereas in the case β ∈ ( f
3R
, f
R

) the equilibrium equals (c∗A, c
∗
F ) =

(0,
(
− 1
β

)
ln
(

f
3Rβ

)
).

Case 2: −α′(0) = β > f(|Ii|)
R(|Ii|) .
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In this case we can follow that there exists a cut-off c̄F such that

β =
1

α(c̄F )

f(|Ii|)
R(|Ii|)

) (49)

Therefore, β < 1
α(cF )

f(|Ii|)
R(|Ii|)) for cF > c̄F and β > 1

α(cF )
f(|Ii|)
R(|Ii|)) if cF < c̄F . Plugging

in the exponential function for α(c), it holds

c̄F =
1

β
ln

(
βR

f

)
(50)

Case 2a: Assume cF ≥ c̄F , and thus β ≤ 1
α(cF )

f(|Ii|)
R(|Ii|)).

• Then, c∗A = 0 and ∂cFA
∂cF

= 0.

• Therefore, as above, ∂
∂cF

πP (c∗,FA , c∗,FB , c∗,FC , cF ) = 3βe−βcF R(|IA|)− f(|I|).

• It holds ∂
∂cF

πP (c∗,FA , c∗,FB , c∗,FC , cF ) > 0 if and only if cF <
(
− 1
β

)
ln
(

f
3Rβ

)
.

Because β > f/R, it follows ln
(

f
3Rβ

)
< ln

(
1
3

)
< 0, and c∗F =

(
− 1
β

)
ln
(

f
3Rβ

)
>

0.

• To verify whether we have indeed found an equilibrium, we need to ver-
ify that c∗F =

(
− 1
β

)
ln
(

f
3Rβ

)
≥ c̄F . If that is the case, then indeed, c∗A = 0 is

optimal and (c∗A, c
∗
F ) = (0,

(
− 1
β

)
ln
(

f
3Rβ

)
) is an equilibrium for β > f/R.

It holds c∗F ≥ c̄F if and only if(
− 1

β

)
ln

(
f

3Rβ

)
≥ 1

β
ln

(
βR

f

)
(51)

which is equivalent to ln(3βR) ≥ ln(βR). But this is always true because
the logarithm is monotone increasing. Thus, (c∗A, c

∗
F ) = (0,

(
− 1
β

)
ln
(

f
3Rβ

)
)

is an equilibrium for β > f/R.

Case 2b (interior case): Fix any cF < c̄F , and thus β > 1
α(cF )

f(|Ii|)
R(|Ii|)).

• Then c∗A > 0 and is given as the solution to

β e−2βcFA(2− e−βcFA)e−βcF = f(|IA|)/R(|IA|) (52)

Note, the solution c∗A > 0 depends on the choice of cF .
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• Moreover, as Fedwire increases its investment the private entities shirk,
∂cFA
∂cF

< 0 where
∂cFA
∂cF

=
−eβ cF

β e−2β cFA(4− 3e−β c
F
A)

f

R
< 0 (53)

• Fedwire’s FOC changes to

∂

∂cF
πP (c

∗,F
A , cF )

= 3R(|IA|)
f(|I|)
R(|IA|)

[2
3
+ 2
−eβ cF e−β cF

(4− 3e−β c
F
A)

(
e−2β cFA

e−2β cFA
)(1− e−β cFA)

]
(54)

= 6f(|I|)
[1
3
− (1− e−β cFA)

(4− 3e−β c
F
A)

]
(55)

This equation only depends on cA and is strictly positive for any cA ≥ 0,
i.e. cannot become zero or negative. To see this, it holds

1

3
≥ (1− e−β cFA)

(4− 3e−β c
F
A)

(56)

if and only if
4− 3e−β c

F
A ≥ 3− 3e−β c

F
A (57)

iff 1 > 0.

• To calculate the equilibrium, we plug the private solution c∗A > 0 from (52)
into (55), and verify that ∂

∂cF
πP (c∗,FA , cF ) > 0. But this means that cF < c̄F is

not optimal. We need to marginally increase cF . As cF increases towards
c̄F , this will cause c∗A to decline by ∂cFA

∂cF
< 0. Eventually c∗A hits zero as

cF = c̄F . The decline in c∗A will not impact the sign of ∂
∂cF

πP (c∗,FA , cF ) > 0,
thus cF = c̄F is optimal. But cF = c̄F implies c∗A = 0. Thus, we are back to
the case 2a.

Overall, we have shown that there exists no equilibrium with cF < c̄F

when β > f/R. We have also shown that for any attack probability α(c) =

exp(−βc), β > 0 there exists no Fedwire equilibrium where the private entities
invest. There exists no interior private equilibrium with Fedwire because Fed-
wire always finds it beneficial to protect, ∂

∂cF
πP (c∗,FA , cF ) > 0, independently of

what the private entities do. The private entities respond by shirking down to
zero, see Figure 4. . This is related to the particular shape of our attack proba-
bility function. Note, however, that in the case β > f/R the private entities do
invest, c∗A > 0, if Fedwire is absent (Double Covers case), see Figure 4.
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5.4 Simulation and discussion

In Figure 4, the optimal investment in data security is depicted across varying
individual attack probabilities α(c) = e−βc. As β increases along the x-axis, the
rate at which the attack probability diminishes accelerates for marginal invest-
ments in data security. This means that as β attains larger values, investing in
data security yields increasingly high “security returns”.

Generically, private institutions that operate without the support of Fed-
wire (Double Covers) invest less compared to the socially optimal benchmark.
Furthermore, and as anticipated, the private institutions that operate next to
Fedwire invest less, effectively zero, relative to the case where Fedwire is ab-
sent. Recall that the setting with private institutions but without Fedwire can
be interpreted as the setting with private institutions and Fedwire but where
Fedwire commits to not invest, thus, abstaining from providing the third cover.
Consequently, Fedwire’s strategic decision to provide the third cover, triggers
a cascade effect leading all private institutions to curtail their investments to
zero.

Furthermore, the graph illustrates an intriguing observation: the social plan-
ner may allocate a greater investment in data security compared to Fedwire
when the parameter β is approximately f/R = 0.5. However, for β ≥ f/R, Fed-
wire’s investment surpasses that of the social planner. This phenomenon may
initially seem counterintuitive; however, it is important to recall that in the sym-
metric optimum, the social planner distributes data security investments across
all three institutions to provide two covers, incurring the cost function for secu-
rity investment threefold. In contrast, Fedwire provides an entire cover for all
data via one single investment, thus incurring the cost only once.

It is worth noting, as demonstrated earlier in the analysis of the Double
Covers case, that the social planner in this scenario optimally chooses to pro-
vide both covers. Hence, it is not socially optimal to set the investment of one
institution to zero and optimize welfare through the remaining two institutions,
thereby providing only one cover akin to Fedwire.

The relative investments of Fedwire versus the social planner hinges on the
attack probability, parameterized by β, in relation to the cost function of data
security, denoted by −c f . Depending on this relationship, either Fedwire or
the social planner may exhibit a greater willingness to invest.

Indeed, a larger investment by Fedwire relative to the social planner is fur-
ther justified by the fact that the entire system with Fedwire relies solely on a
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single cover—the Fedwire cover. This is due to the collective decision of all
private institutions to abstain from protection, thus leaving Fedwire to com-
pensate for the absence of two additional covers by fortifying the single cover
extensively. In contrast, the social planner, when investing in security via all
three institutions, provides two covers.

To enhance comparability between Fedwire’s investment and the social plan-
ner’s investment, Figure 5 plots the total investments per provided cover and
Figure 6 plots the total investment per institution. These are reasonable per-
formance comparisons because Fedwire invests only once, providing one cover
whereas the social planner invests via three institutions to provide two covers.
For Fedwire, the individual investment, total investment and investment per
cover, thus, coincides. But the total cost attributed to the social planner equal
3 × cA, where cA represents the individual investment whereas the planner’s
adjustment for investment per cover equals (3/2)× cA.

Figure 4: Optimal individual investments in data security by private entities
(banks), the social planner, private entities as Fedwire coexists and Fedwire.
Along the x-axis, we increase β of the attack probability α(c) = e−βc.

At f/R = 0.5, a significant shift in the behavior of all institutions is evident
in the plot. This transition arises due to the fact that for smaller values of β,
both private and socially optimal investments equal zero. This occurs because
a smaller β implies that the attack probability diminishes too slow relative to the
per-unit costs f associated with data investment and the revenue R generated
when data is secure.

Conversely, for β values above f/R, optimal investments in security become
strictly positive. As β surpasses the threshold of f/R, the cost-benefit trade-off
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Figure 5: Equilibrium investment per cover. The private institutions, respec-
tively the social planner invests symmetrically via 3 institutions to provide two
covers. Fedwire invests once to provide one cover.

Figure 6: Total Investment: The three private institutions jointly invest 3cA.
Likewise, the social planner invests via three institutions 3cA. Fedwire makes
only one large investment cF .

faced by all institutions undergoes alteration. Specifically, investment in data
security becomes increasingly effective in reducing individual attack proba-
bilities, while the cost function for data security remains unchanged. Conse-
quently, as β increasingly exceeds f/R, all institutions systematically reduce
their investments.

Figure 7 illustrates the endogenous levels of data security resulting from op-
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Figure 7: The probability of no data loss.

timal investment strategies. In the scenario involving only private institutions,
all entities collectively provide two covers, resulting in a level of security quan-
tified by (1 − α(c)α(c)(2 − α(c))). Similarly, the social planner adheres to the
same security function but evaluates it at a higher investment level c, thereby
enhancing overall security. As Fedwire enters the economy, the overall security
function changes to (1−α(c)α(cF )(2α(c)−α(c)2)), where cF represents Fedwire’s
investment, and c denotes investment via the remaining institutions. However,
due to the collective shirking of all institutions upon Fedwire’s entry, resulting
in their zero investment, the security function for Fedwire adapts endogenously
to (1− α(cF )) since α(0) = 1.

Figure 8: Total welfare in different information systems
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Welfare is depicted in Figure 8. Evidently, welfare achieves higher levels
when the planner invests in security compared to private institutions. When
comparing welfare with Fedwire relative to the social planner one needs to be
cautious because the welfare functions are different. As mentioned above, it
is essential to recognize that the planner invests in security through all three
institutions, incurring the cost function threefold. Through its investment strat-
egy, the planner establishes two covers of security. Conversely, Fedwire invests
solely once, incurring the cost function once, but provides only one cover. This
discrepancy stems from the fact that all private entities shirk, thereby abstaining
from providing the two additional covers that could be provided. Therefore,
while comparing welfare between Fedwire and the social planner, it is vital to
acknowledge the differing investment and security coverage constraints inher-
ent to their respective strategies.

6 General Case for N banks: Double Covers

In this section we develop a general model for the Double Covers and Fedwire
case with N banks.

Generically, we define the Double Covers case as a symmetric information
environment, where each transaction in the full data set I = dNi=1Ii is observed
by exactly two entites i, j and all entities in {1, . . . N} observes the same amount
of data |Ii|. As before, we exclude transactions within one bank. Each entity’s
transacts with every other bank. But transactions across two banks are not ob-
served by the remaining banks. Therefore, each transaction in i’ information
set Ii is observed by exactly one other entity j ∈ {1, . . . N}/{i}. Therefore, each
bank can entirely recover its data via the remaining entities, that is, there are
two covers of I .

How can we generalize the attack probability for the Double Covers case
with N banks?

Lemma 6.1. Let entities j = i1, . . . in ∈ N , n ≥ 1 form a cover of information set
Ii, Ii ⊆

⋃in
j=i1

Ij . Assume that no transaction in Ii is observed by more than one
entity j = i1, . . . in so that every entity j = i1, . . . in is necessary to form a cover of Ii,
Ii 6⊂

⋃
j∈{i1,...,in}/ik Ij, ik ∈ {i1, . . . , in}. Then the probability of a successful attack on

this cover of Ii equals
n∑
j=1

α(cij)

j−1∏
m=1

(1− α(cim)) (58)
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where we define
∏0

n=1 = 1

Corollary 6.1 (Attack probability for N banks). In the Double Covers case with N
entities, the chance that entity iN ’s data is compromised equals

α(ciN )×
N−1∑
j=1

α(cij)

j−1∏
m=1

(1− α(cim)) (59)

In the Double Covers case, each entity iN ’s probability of data loss equals
the probability that iN is successfully attacked and its cover is successfully at-
tacked. The entities i1, . . . , iN−1 jointly form a cover of IN . Lemma 6.1 states the
probability that i’s cover is successfully attacked, that is, the probability that at
least one entity i1, . . . , iN−1 is attacked, N−1 = n. Therefore, formula (58) states
the probability that iN ’s data is compromised, equalling the chance that iN and
at least one other instutution is attacked.

This general formula is elaborate and is derived via induction in the ap-
pendix. To gain some intuition for the formula, we include here the cases for
N = 4, 5 banks.

Case: N=4
Consider the symmetric entities {A,B,C,D}, I = IA ∪ IB ∪ IC ∪ ID. What is
the probability that A’s data is compromised? It equals the probability that A
is successfully attacked and either B,C or D is attacked, or two out of the three
or all three. Therefore, A’s data is compromised with probability α(cA)

[
α(cB) +

(1− α(cB))(α(cC) + (1− α(cC))α(cD))
]
.

Case: N=5
A’s probability of data loss equals the probability that A is successfully attacked
and either B,C,D or E is attacked, or two out of the four or three out of the four or
all four entities are attacked, α(cA)

[
α(cB)+(1−α(cB))(α(cC)+(1−α(cC))[α(cD)+

(1− α(cD))α(cE))
]
.
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6.1 Private Equilibrium

With N entities in total, entity iN ’s profit function is given by

ΠiN (ciN |ci1 , . . . , ciN−1
) =

(
1− α(ciN )×

N−1∑
j=1

α(cij)

j−1∏
m=1

(1− α(cim))

)
RiN−ciNf(IiN )

(60)
Entity iN ’s marginal profit equals

∂

∂ciN
ΠiN (ciN |ci1 , . . . , ciN−1

) = −α′(ciN )×
N−1∑
j=1

α(cij)

j−1∏
m=1

(1− α(cim))RiN − f(IiN )

(61)
Clearly, the profit function is concave, meaning a unique maximum exists,

∂2

∂c2
iN

ΠiN (ciN |ci1 , . . . , ciN−1
) = −α′′(ciN )×

N−1∑
j=1

α(cij)

j−1∏
m=1

(1−α(cim))RiN < 0 (62)

The first order condition for an interior private equilibrium equals

− α′(ciN )×
N−1∑
j=1

α(cij)

j−1∏
m=1

(1− α(cim)) =
f(IiN )

RiN

(63)

The first order condition for an interior symmetric private equilibrium equals

− α′(ciN )α(ciN )×
N−2∑
j=0

(1− α(ciN ))j =
f(IiN )

RiN

(64)

The latter can be rewritten via the geometric row7 as

− α′(ciN )×
(
1− (1− α(ciN ))N−1

)
=
f(IiN )

RiN

. (66)

Proposition 6.1 (Private Equilibrium: Double Covers with N entities). Assume
assumption 2.1 holds. Then there exists a unique, interior symmetric private equilib-

7
N−1∑
j=1

(1− α(ciN ))j−1 =

N−2∑
j=0

(1− α(ciN ))j =
1− (1− α(ciN ))N−1

α(ciN )
(65)
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rium which is characterized as the solution to

− α′(ciN )×
(
1− (1− α(ciN ))N−1

)
=
f(IiN )

RiN

. (67)

If −α′(0) ≤ f/R, there exists no interior symmetric equilibrium, and the symmetric
equilibrium is located at c = 0 instead.

Proof. [Proposition 6.1] The proof uses an induction argument. The Double
Covers cases for i = 1 and i = 2 are special. Therefore, we show that the for-
mula holds for all n = 1, 2, 3, and then proceed with n→ n+ 1 for n ≥ 3.

n=1: The case n = 1 is special. It means there are n + 1 = 2 banks in the
economy. The banks transact with one another, meaning they have the exact
same information sets I1 = I2 = I , observing all transactions in the economy.
Bank 1 alone forms a cover of bank 2 and vice versa, bank 2 alone forms a cover
of bank 1. But then the probability that bank 1’s cover is hacked just equals the
probability that bank 2 is hacked, α(c2), and vice versa.

n=2: In the case n = 2, there are 3 banks in the economy, our benchmark.
Two entities i1 and i2 form a cover of the third entitie’s information, I3, and none
of the entities form a cover of I3 on their own, I3 6⊂ Ii1 , I3 6⊂ Ii2 . If one of the two
entities or both are attacked, they no longer form a cover of Ii. Therefore, the
probability that the cover of I3 is successfully attacked equals the probability
that either i1 or i2 or both are attacked. Since we want to prove formula (58)
and give some intuition for the general formula, the attack probability on the
cover equals the probability that i1 is successfully attacked plus the probability
that i1 is not attacked but information I3 \ {Ii1} is attacked. The probability that
information Ii \ {Ii1} is attacked equals the probability that i2 is attacked. That
is, the cover of I3 is attacked with probability α(ci1) + (1− α(ci1))α(ci2), and the
formula holds for N = 2.

n=3: Assume the three entities i1, i2, i3 form a cover of I4. The probability
that the cover of I4 is successfully attacked equals the probability that i1 is suc-
cessfully attacked plus the probability that i1 is not attacked but information
I4 \ {Ii1} is successfully attacked. Entities i2, i3 form a cover of I4 \ {Ii1}. The
probability that their cover is attacked equals (case n=2) α(ci2)+(1−α(ci2))α(ci3).
The overall probability of an attack on the cover thus equals α(ci1) + (1 −
α(ci1))(α(ci2) + (1− α(ci2))α(ci3)).

n → n + 1: Assume the formula holds for n entities, forming a cover of en-
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tity i(n+1)’s information In+1. We want to show that the formular must therefore
also hold for n + 1 entities forming a cover of entity i(n+2)’s information In+2.
Assume the n+ 1 entities i1, i2, . . . , in, in+1 form a cover of In+2. The probability
that this cover of In+2 is successfully attacked equals the probability that in+1

is successfully attacked plus the probability that in+1 is not attacked but infor-
mation In+2 \ {Iin+1} is successfully attacked. But we know that the n entities
i1, i2, . . . , in form a cover of In+2 \ {Iin+1}, and formula (68) holds for informa-
tion covers with n entities. Thus, the probability that information In+2 \ {Iin+1}
is attacked equals (case n)

n∑
j=1

α(cij)

j−1∏
m=1

(1− α(cim)) =
n∑
j=1

α(cin−j+1
)

j−1∏
m=1

(1− α(cin−m+1)) (68)

where we have exchanged the ordering of the summation for convenience.
Consequentially, the overall probability that the cover of In+2 is attacked equals

α(cin+1) + (1− α(cin+1))×
n∑
j=1

α(cin−j+1
)

j−1∏
m=1

(1− α(cin−m+1)) (69)

=
n+1∑
j=1

α(ci(n+1)−j+1
)

j−1∏
m=1

(1− α(ci(n+1)−m+1
)) (70)

=
n+1∑
j=1

α(cij)

j−1∏
m=1

(1− α(cim)) (71)

6.2 Social Planner equilibrium

The social planner maximizes

πP (ci1 , ci2 , . . . ciN ) =
N∑
k=1

πik(ci1 , ci2 , . . . ciN ) (72)

=
N∑
k=1

1− α(cik)×
N∑
j=1,
j 6=k

α(cij)

j−1∏
m=1,
m6=k

(1− α(cim))

Rik − cikf(Iik)

(73)
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The first-order condition for the planner with regard to an interior maximizer
cik̂ , k̂ ∈ {1, . . . N} is

∂

∂cik̂
πP (ci1 , ci2 , . . . ciN ) (74)

=
N∑
k=1

∂

∂cik̂
πik(ci1 , ci2 , . . . ciN )

=
N∑
k=1

∂

∂cik̂


1− α(cik)×

N∑
j=1,
j 6=k

α(cij)

j−1∏
m=1,
m 6=k

(1− α(cim))

Rik − cikf(Iik)


= (−α′(cik̂))

[
Rik̂

N∑
j=1,

j 6=k̂

α(cij)

j−1∏
m=1,

m6=k̂

(1− α(cim))

︸ ︷︷ ︸
≡A

+
N∑
k=1,

k 6=k̂

α(cik) Rik

k̂−1∏
m=1,
m 6=k

(1− α(cim))

︸ ︷︷ ︸
≡B

(75)

−
N∑
k=1,

k 6=k̂

α(cik)Rik

N∑
j=k̂+1,
j 6=k

α(cij)

j−1∏
m=1,
m6=k,
m6=k̂

(1− α(cim))

︸ ︷︷ ︸
≡C

]
− f(Iik̂) (76)

Due to its complexity, we split the anlysis of the derivative in three parts. Term
A corresponds to the derivative of profit for k = k̂, term B corresponds for the
derivative of profit when k 6= k̂ and j = k̂, term C corresponds to the derivative
of profit when k 6= k̂ and m = k̂. In the symmetric case ci1 = . . . , ciN = cik . It
therefore holds

A =
N∑
j=1,

j 6=k̂

α(cij)

j−1∏
m=1,

m 6=k̂

(1− α(cim)) (77)

=
k̂−1∑
j=1

α(cij)

j−1∏
m=1,

m 6=k̂

(1− α(cim)) +
N∑

j=k̂+1

α(cij)

j−1∏
m=1,

m 6=k̂

(1− α(cim)) (78)

= α(cik)
k̂−1∑
j=1

(1− α(cik))j−1 + α(cik)
N∑

j=k̂+1

(1− α(cik))j−2 (79)

because by j > k̂, the product in the second term has only j− 2 factors whereas
the product in the first terms has j − 1 factors by j ≤ k̂ − 1. Also, we have set
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∑z
j=1 = 0, z < 1 and

∑N
j=N+1 = 0. It further holds

k̂−1∑
j=1

(1− α(cik))j−1 =
k̂−2∑
j=0

(1− α(cik))j =
1− (1− α(cik))k̂−1

α(cik)
(80)

N∑
j=k̂+1

(1− α(cik))j−2 =
N−2∑
j=k̂−1

(1− α(cik))j (81)

=
N−2∑
j=0

(1− α(cik))j −
k̂−2∑
j=0

(1− α(cik))j (82)

=
1− (1− α(cik))N−1

α(cik)
− 1− (1− α(cik))k̂−1

α(cik)
(83)

Jointly,

A = α(cik)

(
1− (1− α(cik))k̂−1

α(cik)
+

1− (1− α(cik))N−1

α(cik)
− 1− (1− α(cik))k̂−1

α(cik)

)
(84)

= α(cik)

(
1− (1− α(cik))N−1

α(cik)

)
(85)

= 1− (1− α(cik))N−1 (86)

Note, generically, the double covers case considers N ≥ 3. For the next term, in
the symmetric case ci1 = . . . , ciN = cik it holds

B =
N∑
k=1,

k 6=k̂

α(cik) Rik

k̂−1∏
m=1,
m 6=k

(1− α(cim)) (87)

=
k̂−1∑
k=1

α(cik) Rik

k̂−1∏
m=1,
m 6=k

(1− α(cim)) +
N∑

k=k̂+1

α(cik) Rik

k̂−1∏
m=1,
m6=k

(1− α(cim)) (88)

=
k̂−1∑
k=1

α(cik) Rik (1− α(cik))k̂−2 +
N∑

k=k̂+1

α(cik) Rik (1− α(cik))k̂−1 (89)

= α(cik) (1− α(cik))k̂−2 Rik

(
(k̂ − 1) + (N − k̂) (1− α(cik))

)
(90)
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where the products simplify because in the first term by k ≤ k̂ − 1 the product
has only k̂ − 2 factors whereas in the second term the product has k̂ − 1 factors
by k > k̂, moreover in the symmetric equilibrium all c′s are the same.

Last,

C =

N∑
k=1,

k 6=k̂

α(cik)Rik

N∑
j=k̂+1,
j 6=k

α(cij )

j−1∏
m=1,
m6=k,
m 6=k̂

(1− α(cim)) (91)

=

k̂−1∑
k=1

α(cik)Rik

N∑
j=k̂+1,
j 6=k

α(cij )

j−1∏
m=1,
m 6=k,
m 6=k̂

(1− α(cim)) +

N∑
k=k̂+1

α(cik)Rik

N∑
j=k̂+1,
j 6=k

α(cij )

j−1∏
m=1,
m6=k,
m 6=k̂

(1− α(cim))

=

k̂−1∑
k=1

α(cik)
2Rik

N∑
j=k̂+1,
j 6=k

j−1∏
m=1,
m 6=k,
m 6=k̂

(1− α(cim)) (92)

+

N∑
k=k̂+1

α(cik)
2Rik


k−1∑
j=k̂+1

j−1∏
m=1,
m 6=k,
m 6=k̂

(1− α(cim)) +

N∑
j=k+1

j−1∏
m=1,
m 6=k,
m 6=k̂

(1− α(cim))

 (93)

=

k̂−1∑
k=1

α(cik)
2Rik

N∑
j=k̂+1,
j 6=k

(1− α(cij ))j−3 (94)

+

N∑
k=k̂+1

α(cik)
2Rik

 k−1∑
j=k̂+1,
j 6=k

(1− α(cik))j−2 +
N∑

j=k+1,
j 6=k

(1− α(cik))j−3

 (95)

(96)

where the number of factors in the products differ across terms depending on
whether the k and k̂ are included in the product or not. The first product has
j−3 factors because k < k̂ ≤ j−1, the second product has j−2 factors because
j − 1 ≥ k̂ but j < k, thus j − 1 < k. The third product has j − 3 factors because
j > k, thus j − 1 ≥ k and j > k̂. We further simplify these terms using again
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the geometric row,

k̂−1∑
k=1

N∑
j=k̂+1,
j 6=k

(1− α(cij))
j−3 = (k̂ − 1)

N∑
j=k̂+1

(1− α(cij))
j−3 (97)

= (k̂ − 1)
N−3∑
j=k̂−2

(1− α(cij))
j (98)

= (k̂ − 1)

N−3∑
j=0

(1− α(cij))
j +

k̂−3∑
j=0

(1− α(cij))
j

 (99)

= (k̂ − 1)

(
1− (1− α(cik))N−2

α(cik)
− 1− (1− α(cik))k̂−2

α(cik)

)
(100)

= (k̂ − 1)

(
(1− α(cik))k̂−2 − (1− α(cik))N−2

α(cik)

)
(101)

= (k̂ − 1)
(1− α(cik))k̂−2

α(cik)

(
1− (1− α(cik))N−2−(k̂−2)

)
(102)

= (k̂ − 1)
(1− α(cik))k̂−2

α(cik)

(
1− (1− α(cik))N−k̂

)
(103)

(104)

where the constraint j 6= k drops since it always holds. For the second term of
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C,

N∑
k=k̂+1

 k−1∑
j=k̂+1

(1− α(cik))
j−2 +

N∑
j=k+1,
j 6=k

(1− α(cik))
j−3

 (105)

=
N∑

k=k̂+2

k−1∑
j=k̂+1,
j 6=k

(1− α(cik))
j−2 +

N∑
k=k̂+1

N−3∑
j=k−2

(1− α(cik))
j (106)

=

N∑
k=k̂+2

k−3∑
j=k̂−1

(1− α(cik))
j +

N∑
k=k̂+1

N−3∑
j=k−2

(1− α(cik))
j (107)

=
N∑

k=k̂+2

(1− α(cik))k̂−1 − (1− α(cik))k−2

α(cik)
+

N∑
k=k̂+1

(1− α(cik))k−2 − (1− α(cik))N−2

α(cik)

(108)

= (N − (k̂ + 1))
(1− α(cik))k̂−1

α(cik)
−
N−2∑
k=k̂

(1− α(cik))k

α(cik)
(109)

+

N−2∑
k=k̂−1

(1− α(cik))k

α(cik)
− (N − k̂)(1− α(cik))

N−2

α(cik)
(110)

= (N − (k̂ + 1))
(1− α(cik))k̂−1

α(cik)
−

(
(1− α(cik))k̂

α(cik)
2

− (1− α(cik))N−1

α(cik)
2

)
(111)

+
(1− α(cik))k̂−1

α(cik)
2

− (1− α(cik))N−1

α(cik)
2

− (N − k̂)(1− α(cik))
N−2

α(cik)
(112)

(113)

where at the first equality we have dropped the summand k = k̂ + 1 since that
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sum equals zero. Overall,

∂

∂cik̂
πP (ci1 , ci2 , . . . ciN ) (114)

= (−α′(cik̂))
[
Rik̂

(
1− (1− α(cik))N−1

)
(115)

+ α(cik) (1− α(cik))k̂−2 Rik
(
(k̂ − 1) + (N − k̂) (1− α(cik))

)
(116)

+ α(cik)
2Rik (k̂ − 1)

(1− α(cik))k̂−2

α(cik)

(
1− (1− α(cik))N−k̂

)
(117)

+ α(cik)
2Rik

(
(N − (k̂ + 1))

(1− α(cik))k̂−1

α(cik)
−

(
(1− α(cik))k̂

α(cik)
2

− (1− α(cik))N−1

α(cik)
2

))
(118)

+ α(cik)
2Rik

(
(1− α(cik))k̂−1

α(cik)
2

− (1− α(cik))N−1

α(cik)
2

− (N − k̂) (1− α(cik))
N−2

α(cik)

)]
− f(Iik̂)

(119)

= (−α′(cik̂))
[
Rik̂

(
1− (1− α(cik))N−1

)
(120)

+ α(cik) (1− α(cik))k̂−2 Rik
(
(k̂ − 1) + (N − k̂) (1− α(cik))

)
(121)

+ α(cik)Rik (k̂ − 1)(1− α(cik))k̂−2
(
1− (1− α(cik))N−k̂

)
(122)

+Rik

(
(N − (k̂ + 1))α(cik)(1− α(cik))k̂−1 −

(
(1− α(cik))k̂ − (1− α(cik))N−1

))
(123)

+Rik

(
(1− α(cik))k̂−1 − (1− α(cik))N−1 − (N − k̂)α(cik)(1− α(cik))N−2

) ]
− f(Iik̂)

(124)

(125)

6.3 Fedwire: Private Equilibrium stage 2

As before, Fedwire moves first in t = 1, setting cF , whereas private entities
move in t = 2 after observing cF . With Fedwire and N private entities in total,
entity iN ’s profit function given cF equals

ΠiN (ciN |ci1 , . . . , ciN−1
) =

(
1− α(ciN )α(cF )×

N−1∑
j=1

α(cij)

j−1∏
m=1

(1− α(cim))

)
RiN−ciNf(IiN )

(126)
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Entity iN ’s marginal profit equals

∂

∂ciN
ΠiN (ciN |ci1 , . . . , ciN−1

) = −α′(ciN )α(cF )×
N−1∑
j=1

α(cij)

j−1∏
m=1

(1−α(cim))RiN−f(IiN )

(127)
Clearly, the profit function is concave,

∂2

∂c2
iN

ΠiN (ciN |ci1 , . . . , ciN−1
) = −α′′(ciN )α(cF )×

N−1∑
j=1

α(cij)

j−1∏
m=1

(1− α(cim))RiN < 0

(128)
The first order condition for an interior private Fedwire equilibrium equals

− α′(ciN )×
N−1∑
j=1

α(cij)

j−1∏
m=1

(1− α(cim)) =
1

α(cF )

f(IiN )

RiN

(129)

The first order condition for an interior symmetric private equilibrium equals

− α′(ciN )α(ciN )×
N−2∑
j=0

(1− α(ciN ))j =
1

α(cF )

f(IiN )

RiN

(130)

The latter can be rewritten via the geometric row as

− α′(ciN )×
(
1− (1− α(ciN ))N−1

)
=

1

α(cF )

f(IiN )

RiN

. (131)

Proposition 6.2 (Private Fedwire Equilibrium N entities). Assume assumption
2.1 holds. Then there exists a unique, interior symmetric private equilibrium which is
characterized as the solution to

− α′(ciN )×
(
1− (1− α(ciN ))N−1

)
=

1

α(cF )

f(IiN )

RiN

. (132)

If −α′(0) ≤ f/R, there exists no interior symmetric equilibrium, and the symmetric
equilibrium is located at c = 0 instead.

6.4 Fedwire equilibrium stage 1

Fedwire moves first in t = 1, taking as given the collective behavior of the
private entities that follow in t = 2.
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Fedwire maximizes

πP (cF |cFi1(cF ), cFi2(cF ), . . . , cFiN (cF ))

=
N∑
k=1

πik(cFi1 , c
F
i2
, . . . , cFiN , cF )− cF f(|I|) (133)

=
N∑
k=1

1− α(cik)α(cF )×
∑

j∈{1,2,...,N}/k

α(cij)

j−1∏
m=1

(1− α(cim))

Rik − cikf(Iik)


(134)

− cF f(|I|) (135)

(136)

ΠiN (ciN |ci1 , . . . , ciN−1
) =

(
1− α(ciN )α(cF )×

N−1∑
j=1

α(cij)

j−1∏
m=1

(1− α(cim))

)
RiN−ciNf(IiN )

(137)

7 Conclusion

Existing payment and banking networks were established before the informa-
tion age. Their adaptation or restructuring in terms of the extent of information
centralization and complementarity of entities is costly and requires a thorough
analysis of possible subsequent equilibrium effects. The analysis in this paper
contributes to that debate by providing and economic model of data security
that features redundancies (backups) and data segmentation.

We observe that data redundancy generically causes free-riding and does
not necessarily increase security when all parties internalize the quantity of
backups. Information segmentation when keeping the backup quantity con-
stant can but does not have to improve security.

We can contrast these results to a distributed ledger system. In the system
we consider, all participants participate in the transaction validation process
(mining). Consequently there are as many copies of the data as there are par-
ticipants. In a DLT system recovery is easy so long as any one participant is
functioning. However individual incentives to protect data fall as the system
size grows.
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8 Appendix

8.1 Double Covers

Proof. [Proposition 3.1] From (5), the first order condition when searching for a
symmetric equilibrium, c∗A = c∗B = c∗C , is given as (8).

First note that Assumption 1 and Assumption 2 imply that−α′(0) = −α′(0)(4α(0)−
3α2(0)) = −α′(0)(2α(0)− α2(0)) > f(|Ii|)

R(|Ii|) . Hence by Assumptions 1,2 and 3, and
by continuity of the function −α′(c)[2α(c)−α(c)2] in c, there is at least one inte-
rior candidate for a symmetric private equilibrium, i.e., a solution to (8). More-
over, the function g(c) = α′(c)[2α(c) − α(c)2] is strictly increasing in c because
α(c) is strictly convex: The second derivative of the private profit function is
negative (the profit function is strictly concave)

∂2

∂c2
A

πA(cA) = −α′′(cA)(α(cB) + α(cC)− α(cB)α(cC))R(|IA|) < 0 (138)
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because α(c) is strictly convex. Therefore, the function −g(c) crosses the value
f(|IA|)/R(|IA|) exactly once, ruling out multiple symmetric equilibria.

The solution to (8) yields ∂
∂cA

πA(cA) = 0, for cA = cB = cC . To show that this
solution to (8) is indeed an equilibrium, we further need to show that

∂

∂cA
πA(cA, cB) < 0, for cA > cB = cC , (139)

∂

∂cA
πA(cAcB) > 0, for cA < cB = cC (140)

Assume cA > cB = cC , and assume that C and B play the solution to (8). Be-
cause α is convex, we can follow α′(cA) > α′(cB). Hence,

∂

∂cA
πA(cA, cB) = −α′(cA)α(cB)(2−α(cB))R−f < −α′(cB)α(cB)(2−α(cB))R−f = 0

(141)
Vice versa, for cA < cB = cC , it follows α′(cA) < α′(cB) and thus

∂

∂cA
πA(cA, cB) = −α′(cA)α(cB)(2−α(cB))R−f > −α′(cB)α(cB)(2−α(cB))R−f = 0

(142)
which proves that the symmetric solution to (8) is the unique symmetric interior
equilibrium.

A1-A3 ensure the existence of an interior equilibrium whereas strict convex-
ity of α(c) gives uniqueness of a symmetric equilibrium in [0,∞).

A1) If−g(c) ≤ f(|IA|)/R(|IA|) for all c ∈ [0,∞), then c∗i = 0 for all i = A,B,C

is the unique symmetric equilibrium: Given cB = cC = 0, and since α(0) = 1

A’s marginal profit function becomes

∂

∂cA
πA(cA, 0) = −α′(cA)R− f (143)

Then cA = 0 = cB is an equilibrium if −α′(cA)R − f < 0 for all cA ≥ 0. Because
−α′(cA) is a decreasing function, a sufficient condition for the symmetric zero
investment equilibrium, c∗i = 0, is −α′(0)R− f < 0. Assumption 1 and 2 jointly
exclude this corner result.

A2) If −g(c) ≥ f(|Ii|)
R(|Ii|) for all c ∈ [0,∞), then c∗i = ∞ for all i = A,B,C is the

unique symmetric equilibrium. A sufficient and necessary condition for c∗i =∞
is given by − limc→∞ g(c) ≥ f(|Ii|)

R(|Ii|) . This corner is excluded by Assumption 3.
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Proof. [Proposition 3.2] We follow the same reasoning as in the private case. An
interior symmetric social equilibrium has to satisfy (24).

First note that Assumption 3 ensures that − limc→∞ α
′(c)(4α(c) − 3α2(c)) <

− limc→∞ α
′(c)(4α(c) − 2α2(c)) < f(|Ii|)

R(|Ii|) . By Assumption 1 and 2, −α′(0) =

−α′(0)(4α(0) − 3α2(0)) > f(|Ii|)
R(|Ii|) . Hence Assumptions 1, 2 and 3 jointly with

continuity of the function g(c) = α′(c)(4α(c) − 3α(c)2) guarantee that at least
one candidate for a symmetric social equilibrium exists. Moreover, if the func-
tion g(c) = α′(c)(4α(c) − 3α(c)2) crosses zero only once, then because g(c) is
continuous the symmetric social equilibrium is unique. A sufficient condition
for this to hold is when g(c) is strictly increasing. Therefore, the function −g(c)

crosses the value f(|IA|)/R(|IA|) exactly once, ruling out multiple symmetric
equilibria. To show that the solution to (24) is indeed an equilibrium, we need
to show that when B and C both play the solution to (24), then

∂

∂cA
πP (cA, cB) < 0, for cA > cB = cC , (144)

∂

∂cA
πP (cA, cB) > 0, for cA < cB = cC (145)

But this follows, as in the privately optimal case, from the convexity of α(·).
If (−α′(0)) < f/R, then the function −g(c) does not cross the value f/R.

Hence, the social profit function is monotonically decreasing in c, and the unique
symmetric social optimum is zero investment ĉi = 0.

Proof. [Proposition 3.2] We follow the same reasoning as in the private case. An
interior symmetric social equilibrium has to satisfy (24).

First note that Assumption 3 ensures that − limc→∞ α
′(c)(4α(c) − 3α2(c)) <

− limc→∞ α
′(c)(4α(c) − 2α2(c)) < f(|Ii|)

R(|Ii|) . By Assumption 1 and 2, −α′(0) =

−α′(0)(4α(0) − 3α2(0)) > f(|Ii|)
R(|Ii|) . Hence Assumptions 1, 2 and 3 jointly with

continuity of the function g(c) = α′(c)(4α(c) − 3α(c)2) guarantee that at least
one candidate for a symmetric social equilibrium exists. Moreover, the func-
tion g(c) = α′(c)(4α(c) − 3α(c)2) is strictly increasing because α(c) is strictly
convex. Therefore, the function −g(c) crosses the value f(|IA|)/R(|IA|) exactly
once, ruling out multiple symmetric equilibria. To show that the solution to
(24) is indeed an equilibrium, we need to show that when B and C both play

45



the solution to (24), then

∂

∂cA
πP (cA, cB) < 0, for cA > cB = cC , (146)

∂

∂cA
πP (cA, cB) > 0, for cA < cB = cC (147)

But this follows, as in the privately optimal case, from the convexity of α(·).
If (−α′(0)) < f/R, then the function −g(c) does not cross the value f/R.

Hence, the social profit function is monotonically decreasing in c, and the unique
symmetric social optimum is zero investment ĉi = 0.

Proof. [Proposition 3.3] Fix some tuple of data investment choices (cA, cB, cC) .
Note that α′ < 0 and α(c) ∈ [0, 1] for every c. Therefore, the last two terms of the
planner’s marginal profit in (74) are positive. Hence, in every investment choice
point (cA, cB, cC) and for every entity i ∈ {A,B,C}, the planner’s marginal
profit exceeds the private marginal profit of that entity,

∂

∂ci
πP (cA, cB, cC) >

∂

∂ci
πi(cA, cB, cC). (148)

For comparing interior equilibria, we set the investment choices (cA, cB, cC)

equal to the symmetric social equilibrium ĉi. When evaluating each entity i’s
private profit function at the social optimum, the derivative must be negative,
and therefore, undercut the value the derivative of the private profit function
takes in the symmetric private solution,

∂

∂ci
πi(ĉi) <

∂

∂ci
πP (ĉi) = 0 =

∂

∂ci
πi(c

∗
i ) (149)

As the last step, recall that for an interior equilibrium, we require strict con-
vexity of α(c) which implies that all profit functions πi are strictly concave in
ci:

∂2

∂c2
i

πi(ci) = −α′′(ci)

 ∑
j∈{A,B,C}\{i}

α(cj)−
∏

j∈{A,B,C}\{i}

α(cj)

 R(|Ii|) < 0 (150)

But strict concavity of the profit function then implies c∗A < ĉA. Likewise for C
and B.
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8.2 Fedwire

Proof. [Proposition 3.4] First, see that in the subgame cF , A’s profit function is
strictly concave in cA

∂2

∂c2
A

πA(cA) = −α′′(cA)α(cF )(α(cB) + α(cC)− α(cB)α(cC)) R(|IA|) < 0 (151)

by convexity of α(c). Therefore, the maximizer cA is unique. In the symmetric
equilibrium c∗,FA = c∗,FB = c∗,FC , the first order derivative becomes

∂

∂cA
πA(cA) = −α′(cA)α(cF )(2α(cA)− α(cA)2) R(|IA|)− f(|IA| (152)

Recall that the function g(c) = α′(c)(2α(c) − α2(c)) is strictly increasing and
continuous. This implies that the symmetric private equilibrium is unique in
every subgame cF . Further, the function −g(c) takes its maximum in zero and
its minimum at infinity.

(ii) If cF is such that −α′(0)[2α(0) − α(0)2] = −α′(0) ≤ 1
α(cF )

f(|IA|)
R(|IA|)

, then
for all c ∈ [0,∞]: −α′(c)[2α(c) − α(c)2] ≤ 1

α(cF )
f(|IA|)
R(|IA|)

, meaning the symmetric
equilibrium is given as c∗i = 0.

(iii) If for given cF , it holds − limc→∞ α
′(c)[2α(c)− α(c)2] ≥ 1

α(cF )
f(|IA|)
R(|IA|)

, then
likewise, the symmetric equilibrium is given by c∗i = ∞. We however exclude
this possibility via assumption 2.1.

(i) An interior symmetric equilibrium requires that cA solves

− α′(cA)α(cF )(2α(cA)− α(cA)2) =
f(|IA|)
R(|IA|)

(153)

The symmetric equilibrium is interior if cF is such that−α′(0)[2α(0)−α(0)2] =

−α′(0) > 1
α(cF )

f(|IA|)
R(|IA|)

and − limc→∞ α
′(c)[2α(c) − α(c)2] = 0 < 1

α(cF )
f(|IA|)
R(|IA|)

hold.
The latter is always true by assumption 2.1.

Moreover the solution to (153) is indeed an equilibrium by the same reason-
ing as in the case without the Fed.

Proof. [Proposition 3.1]
Because α(c) is strictly decreasing, the function 1

α(cF )
f(|IA|)
R(|IA|)

is strictly increas-
ing, and continuous in cF for cF ≥ 0. Further, it holds

f(|IA|)
R(|IA|)

= lim
cF→0

1

α(cF )

f(|IA|)
R(|IA|)

≤ 1

α(cF )

f(|IA|)
R(|IA|)

≤ lim
cF→∞

1

α(cF )

f(|IA|)
R(|IA|)

=∞,

(154)
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or, 1
α(cF )

f(|IA|)
R(|IA|)

∈
[
f(|IA|)
R(|IA|)

,∞
)

. Recall the definition g(c) ≡ α′(c)[2α(c) − α(c)2]

from above, and that −g is continuous, positive, and strictly decreasing, taking
its maximum in zero.

If −α′(0)[2α(0) − α(0)2] = −α′(0) < f(|IA|)
R(|IA|)

, then by (154) there exists no cF
with −α′(0)[2α(0)− α(0)2] > 1

α(cF )
f(|IA|)
R(|IA|)

. Hence, no Fedwire choice cF ∈ [0,∞]

can prevent the symmetric “no investment” equilibrium c∗ = 0.
Recall that by Proposition 3.1, the condition−α′(0) = −α′(0)[2α(0)−α(0)2] <

f(|IA|)
R(|IA|)

implies that the unique symmetric private equilibrium in the Double
cover case is the no-investment equilibrium c∗ = 0.

8.3 Proof main Theorems

Proof. [Theorem 4.1] Consider the Fedwire objective function (33). When calcu-
lating the first-order derivative with respect to cF , we need to take into account
that a change in the subgame cF causes a change of behavior by A,B,C. In addi-
tion, we use the symmetry |IA| = |IB| = |IC | to calculate

∂

∂cF
πP (c

∗,F
A , c∗,FB , c∗,FC , cF )

= −α′(cF )
[
α(cA)(α(cB) + α(cC)− α(cB)α(cC))) R(|IA|) (155)

+ α(cB)(α(cA) + α(cC)− α(cA)α(cC))) R(|IB|) (156)

+ α(cC)(α(cA) + α(cB)− α(cA)α(cB))) R(|IC |)
]
− f(|I|) (157)

− α′(cA)
∂cA
∂cF

α(cF )(α(cB) + α(cC)− α(cB)α(cC))) R(|IA|)−
∂cA
∂cF

f(|IA|) (158)

− α′(cB)
∂cB
∂cF

α(cF )(α(cA) + α(cC)− α(cA)α(cC))) R(|IB|)−
∂cB
∂cF

f(|IB|) (159)

− α′(cC)
∂cC
∂cF

α(cF )(α(cA) + α(cB)− α(cA)α(cB))) R(|IC |)−
∂cC
∂cF

f(|IC |) (160)

− α(cA)α(cF )(α′(cB)
∂cB
∂cF

+ α′(cC)
∂cC
∂cF
− (α(cC)α

′(cB)
∂cB
∂cF

+ α′(cC)α(cB)
∂cC
∂cF

)) R(|IA|)

(161)

− α(cB)α(cF )(α′(cA)
∂cA
∂cF

+ α′(cC)
∂cC
∂cF
− (α(cC)α

′(cA)
∂cA
∂cF

+ α′(cC)α(cA)
∂cC
∂cF

)) R(|IB|)

(162)

− α(cC)α(cF )(α′(cA)
∂cA
∂cF

+ α′(cB)
∂cB
∂cF

− (α(cB)α
′(cA)

∂cA
∂cF

+ α′(cB)α(cA)
∂cB
∂cF

)) R(|IC |)

(163)

In the symmetric equilibrium, cA = cB = cC and ∂cA
∂cF

= ∂cB
∂cF

= ∂cC
∂cF

. Therefore,
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we can simplify

∂

∂cF
πP (c

∗,F
A , c∗,FB , c∗,FC , cF )

= −3α′(cF ) R(|IA|)
(
2α2(cA)− α3(cA)

)
− f(|I|) (164)

− 3α′(cA)α(cA)α(cF )
∂cA
∂cF

(2− α(cA)) R(|IA|)− 3
∂cA
∂cF

f(|IA|) (165)

− 6α′(cA)α(cA)α(cF )
∂cA
∂cF

(1− α(cA)) R(|IA|) (166)

= −3α2(cA)α
′(cF ) R(|IA|)

(
2− α(cA)

)
− f(|I|)− 3

∂cA
∂cF

f(|IA|) (167)

− 3α(cA)α
′(cA)

∂cA
∂cF

α(cF ) R(|IA|) (4− 3α(cA)) (168)

Case 1: Assume −α′(0) < f(|IA|)
R(|IA|)

. This implies that the attack probability is
rather inelastic, declining slowly for a small investment in data security. In this
case, Theorem 3.1 (ii) implies that the unique symmetric private equilibrium in
the case without Fedwire equals the no investment corner equilibrium c∗i = 0.
Moreover, adding Fedwire does not change the symmetric equilibrium, and
banks continue to play c∗A = 0 for every cF ≥ 0. That is, the marginal change in
the symmetric equilibrium due to a change in the subgame is zero, ∂cA

∂cF
= 0.

We would like to find out whether adding Fedwire, by setting cF > 0, never-
theless creates value. For that purpose, we evaluate the change in welfare due
to a change in cF in the symmetric equilibrium c∗i = 0 for all i ∈ {A,B,C} and
cF = 0. Recall that the choice cF = 0 indicates absence of Fedwire. With (168)
and α(0) = 1,

∂

∂cF
πP (0, 0, 0, 0) = 3R(|IA|)

(
(−α′(0))− f(|I|)

3R(|IA|)

)
(169)

There are two cases:
1a) If (−α′(0)) ∈ (0, f(|I|)

3R(|IA|)
], then ∂

∂cF
πP (0, 0, 0, 0) ≤ 0. Thus, Fedwire’s socially

optimal investment in data security is c∗F = 0. Fedwire should abstain from
providing an additional cover. In (−α′(0)) = f(|I|)

3R(|IA|)
the benefits of providing

Fedwire equal the costs. In that case, we break ties by letting Fedwire abstain.
1b) If (−α′(0)) ∈ ( f(|I|)

3R(|IA|)
, f(|IA|)
R(|IA|)

], then ∂
∂cF

πP (0, 0, 0, 0) > 0. Thus, the security
benefits of providing Fedwire outweight the costs, c∗F > 0.

Case 2: Assume −α′(0) > f(|IA|)
R(|IA|)

so that absent Fedwire the banks play the
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interior symmetric private equilibrium c∗i > 0, i = A,B,C. Akin to the case
above, we need to evaluate the change in welfare due to a change in cF in the
symmetric equilibrium c∗i > 0 for all i ∈ {A,B,C} and cF = 0. At an interior
equilibrium, we can use the FOC (29) evaluated in cF = 0 to further simplify
(168) to

∂

∂cF
πP (c

∗,F
A , cF )

= 3R(|IA|)
(
− α′(cF ) α2(cA)

(
2− α(cA)

)
− f(|I|)

3R(|IA|)
(170)

− ∂cA
∂cF

[
f

R
+ α(cA)α

′(cA)α(cF )(4− 3α(cA))

]
(171)

= 3R(|IA|)
(
− α′(cF ) α2(cA)

(
2− α(cA)

)
− f(|I|)

3R(|IA|)
(172)

− 2
∂cA
∂cF

α(cF ) α
′(cA)α(cA)(1− α(cA))

)
(173)

= 3R(|IA|)
[ f(|I|)
R(|IA|)

(
α′(cF )/α(cF )

α′(cA)/α(cA)
− 1

3

)
+ 2

∂cA
∂cF

α(cF ) (−α′(cA))α(cA)(1− α(cA))
]

(174)

where at the second equality sign we have rewritten the third term in (168),
replacing f/R, via the FOC (29). At the third equality sign we have rewritten
the first term in (168), replacing α(cA)(2− α(cA)) via the FOC (29).

First, see that the second term in the edgy bracket is always negative be-
cause ∂cA

∂cF
< 0. This term indicates that all firms shirk as Fedwire increases its

investment in data security, leading to a reduction in expected profits and thus
Fedwire’s objective. The first term can have either sign. In the first term, the
−1/3 represents that Fedwire’s investment in data security is costly. On the
other hand, the term α′(cF )/α(cF )

α′(cA)/α(cA)
represents that Fedwire’s investment increases

security to all institutions. The latter effect is the only positive effect of Fed-
wire’s investment.

The first term to be positive is a necessary condition for Fedwire’s invest-
ment to be optimal. To determine when the first term is positive, plug in cF = 0,
and use α(0) = 1. We see that the first term is positive if

α′(0)

α′(cA)/α(cA)
− 1

3
> 0. (175)

That is, (175) is a necessary condition for c∗F > 0.
Because c∗i > 0 is the unique interior symmetric equilibrium, we know
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−α′(0) > f(|IA|)
R(|IA|)

, and via the FOC, −α′(c∗A)α(c∗A)(2 − α(c∗A)) = f(|IA|)
R(|IA|)

. Plugging
this in yields

α′(0)

α′(cA)/α(cA)
=

−α′(0)

−α′(cA)/α(cA)
> −

f(|IA|)
R(|IA|)

α′(cA)/α(cA)
= α(c∗A)2(2− α(c∗A)) (176)

That is, for α(c∗A)2(2 − α(c∗A)) > 1
3
, the first term in the bracket is positive, and

this holds if α(c∗A) ∈ (0, 1) is sufficiently close to one, that is, for c∗A small and
close to zero. Overall, the first term needs to be traded off against the second
term.

8.3.1 Proof Theorem 2

Proof. [Theorem 4.1]
Case (i) Consider (−α′(0)) < (0, f(|I|)

3R(|IA|)
). Then by Theorem 4.1, cFA = 0,

cF = 0 and hence, ΠFed
P = 0. On the other hand, by Proposition 3.2, also

c∗,soci = 0, and thus ΠDC
P = 0. Thus, welfare in the Fedwire case and the so-

cial optimum with Double Covers coincide.

Case (ii) In the case (−α′(0)) ∈ ( f(|I|)
3R(|IA|)

, f(|I|)
R(|IA|)

), we know from Theorem 4.1
that the private entities still do not invest c∗,Fi = 0 but Fedwire does c∗F > 0.
Therefore, with α(0) = 1,

ΠFed
P = 3

[
(1− 2α2(cFA)α(cF ) + α3(cFA)α(cF ))R(|IA|)− cFAf(|IA|)

]
− cF f(|I|)

(177)

= 3 [(1− 2α(cF ) + α(cF ))R(|IA|)]− cF f(|I|) (178)

= 3(1− α(cF ))R(|IA|)− cF f(|I|) > 0 (179)

On the other hand, by Proposition 3.2, the social planner in the Double
Cover case still does not invest, c∗,soci = 0, implying ΠDC

P = 0. Thus welfare
in the Fedwire case exceeds welfare in the social optimum with Double Covers.

Case (iii) Assume assumption 2.1(ii) additionally holds, (−α′(0)) > f(|I|)
R(|IA|)

.
Then by Theorem 4.1 in the Fedwire case, the private instutions play the sym-
metric private interior equilibrium c∗,Fi > 0. This interior equilibrium is charac-
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terized as the solution to (29), repeated here as

− α′(c∗,FA )α(c∗,FA )[2− α(c∗,FA )] =
1

α(cF )

f(|IA|)
R(|IA|)

(180)

Fedwire, in return, may or may not invest c∗F ≥ 0 depending on the sign
in (174). For the Double Cover case, by Proposition 3.2 the social planner op-
timally sets an interior investment in security c∗,soci > 0. The interior socially
optimal investment is characterized as the solution to equation (24),

−α′(ĉA)(2− α(ĉA)) =
f(|IA|)
R(|IA|)

. (181)

A closed form solution to inequality (37) is not possible to compute and we
resort to numerical solutions.

8.4 Generalization with N entities

8.4.1 Private Equilibrium

Proof. [Proposition 6.1] To show existence of an interior symmetric private equi-
librium, see that for ciN → 0, by α(0) = 1, the left hand side of (64) goes to
−α′(0). For ciN → ∞, the left hand side goes to zero by α(c) → 0 and since
α(c) is decreasing and convex. If −α′(0) > f/R, the left hand side of (64) as a
function of c crosses f/R at least once, guaranteeing existence of a candidate
for an interior symmetric private equilibrium c = ci1 = · · · = ciN at which the
FOC holds.

The candidate is indeed an equilibrium: Assume that ciN < c = ci1 = · · · =

ciN−1
. Then, by convexity of α(c),

∂

∂ciN
ΠiN (ciN |ci1 , . . . , ciN−1

= c) = −α′(ciN )×
N−1∑
j=1

α(c)

j−1∏
m=1

(1− α(c))RiN − f(IiN )

(182)

> −α′(c)×
N−1∑
j=1

α(c)

j−1∏
m=1

(1− α(c))RiN − f(IiN ) = 0

Thus, ciN < c is not optimal. By the same argument, ciN > c is not optimal
because ∂

∂ciN
ΠiN (ciN |ci1 , . . . , ciN−1

= c) < 0, showing that c = ci1 = · · · = ciN is
an equilibrium.
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To show uniqueness, we require single-crossing. Consider the function g(c) =

α′(c)×
[
1− (1− α(c))N−1

]
. This function is strictly increasing because

[
1− (1− α(c))N−1

]
>

0, and thus, g′(c) = α′′(c)
[
1− (1− α(c))N−1

]
+(N−1)α′(c)2 (1−α(c))N−2 > 0, by

convexity of α(c). Therefore, the function −g(c) crosses f/R only once, if at all.
Therefore, if−α′(0) > f/R, there exists a unique symmetric private equilibrium
which is interior, characterized by (66). Assumption 2.1 covers −α′(0) ≤ f/R.
If −α′(0) ≤ f/R, then there exists no crossing of f/R, the interior symmetric
equilibrium does not exist, and the symmetric equilibrium is at c = 0 instead.

8.4.2 Private Fedwire Equilibrium: stage 2

Proof. [Proposition 6.2]
To show existence of an interior symmetric private Fedwire equilibrium, see

that for ciN → 0, by α(0) = 1, the left hand side of (64) goes to −α′(0). For ciN →
∞, the left hand side goes to zero by α(c)→ 0 and since α(c) is decreasing and
convex. If−α′(0) > f/R, the left hand side of (64) as a function of c crosses f/R
at least once, guaranteeing existence of a candidate for an interior symmetric
private equilibrium c = ci1 = · · · = ciN at which the FOC holds.

The candidate is indeed an equilibrium: Assume that ciN < c = ci1 = · · · =

ciN−1
. Then, by convexity of α(c),

∂

∂ciN
ΠiN (ciN |ci1 , . . . , ciN−1

= c) = −α′(ciN )×
N−1∑
j=1

α(c)

j−1∏
m=1

(1− α(c))RiN − f(IiN )

(183)

> −α′(c)×
N−1∑
j=1

α(c)

j−1∏
m=1

(1− α(c))RiN − f(IiN ) = 0

Thus, ciN < c is not optimal. By the same argument, ciN > c is not optimal
because ∂

∂ciN
ΠiN (ciN |ci1 , . . . , ciN−1

= c) < 0, showing that c = ci1 = · · · = ciN is
an equilibrium.

To show uniqueness, we require single-crossing. Consider the function g(c) =

α′(c)×
[
1− (1− α(c))N−1

]
. This function is strictly increasing because

[
1− (1− α(c))N−1

]
>

0, and thus, g′(c) = α′′(c)
[
1− (1− α(c))N−1

]
+(N−1)α′(c)2 (1−α(c))N−2 > 0, by

convexity of α(c). Therefore, the function −g(c) crosses f/R only once, if at all.
Therefore, if−α′(0) > f/R, there exists a unique symmetric private equilibrium
which is interior, characterized by (66). Assumption 2.1 covers −α′(0) ≤ f/R.
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If −α′(0) ≤ f/R, then there exists no crossing of f/R, the interior symmetric
equilibrium does not exist, and the symmetric equilibrium is at c = 0 instead.
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