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1 Introduction

Canonical estimates of the expected return on the market inferred from asset prices suggest

that the expected return on the market rises significantly during crises periods and is highly

volatile. Estimates of expected returns from survey data, however, are less volatile and can be

pro-, a-, or counter-cyclical depending on investor type, see, e.g., Greenwood and Shleifer

[2014], Nagel and Xu [2023], and Dahlquist and Ibert [2023], respectively. Price-based measures

of expected returns are estimated assuming that the representative agent is unconstrained

and ignore information on investors’ portfolio holdings. Recent empirical evidence, however,

posits that holdings data should be informative about investors’ risk perceptions, see, e.g.,

Giglio et al. [2021].

In this paper, we propose a theoretical framework for recovering beliefs/expected returns

from prices and holdings data for heterogeneous investors under the weak assumption of

no-arbitrage. More specifically, we theoretically show that investors’ subjective expected

return can be directly inferred from their holdings and the corresponding option prices in real-

time. We empirically document substantial heterogeneity in expected return estimates across

investor types. Most importantly, we find that expected returns recovered from holdings

data can deviate in interesting ways from price-based measures. Using transaction-level

data on buy and sell order on S&P500 index options, we show that the expected return of

financial intermediaries mirrors measures of expected returns recovered from asset returns

alone: it is very volatile and rises in times of distress when intermediaries’ constraints bind.

Public investors (retail and institutional) who trade against financial intermediaries are net

demanders of deep-out-of-the-money puts (insurance) in normal times, see, e.g., Gârleanu,

Pedersen, and Poteshman [2008] and Chen, Joslin, and Ni [2019]. Contrary to intermediaries,

we find that their expected returns are less volatile and drop during financial crises when they

become net suppliers of puts. In line with a large literature that studies measures of expected

returns inferred from survey data, we conclude that the dynamics of subjective measures of

expected returns vary greatly across investors.

In arbitrage-free markets, prices are the expected value of future payoffs discounted by

some stochastic discount factor (SDF) M . The expectation is computed under the probability

measure P supported by M . While P encodes the investor’s subjective belief, the SDF encodes

her risk preferences. Standard methods extract agents’ beliefs from asset prices under some

assumptions for M . These methods, however, ignore information about quantities (such as

portfolio holdings, trading flows, open interest, etc.) which, different from prices, are available

on a granular level, that is, for each investor.

Our “demand-based” belief recovery extracts P without the need to specify a specific

asset pricing model by leveraging investor-level data on holdings together with option prices.
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More specifically, we assume that investors with potentially heterogeneous beliefs can hold

wealth shares in the market index and a family of options written on the market index. Our

main theoretical result posits that subjective expected returns under P are only a function

of investors’ holdings and option prices. As is well-known, a sufficiently large arbitrage-free

cross-section of options implicitly founds a pricing measure Q, which can be fully determined

by observed option prices (Breeden and Litzenberger [1978]). Since holdings are observable

on an investor basis and any payoff under Q can be recovered from option prices directly, we

obtain a measure of subjective expected returns in real-time.

With this methodology, we obtain SDF projections that are functions of the index and

the options returns. Therefore, the ensuing expected market returns may be very volatile,

with sign and cyclicality properties that depends on the contingent state of the economy.

The shapes of the SDF projections also span a large variety of functional forms. For instance,

we can recover loss averse investors with time-varying risk aversion, who expect a relatively

stable market in the future and contribute to a low premium. These agents are equipped

with a strongly asymmetric U-shaped SDF projection. These agents take short positions on

out-of-the-money options. Similar intuition also allows us to recover SDF projections that are

monotonically decreasing, monotonically increasing, or tilde-shaped. Earlier literature ignores

options because they are in zero-net supply. Since in reality, options are non-redundant, we

show that holdings in option portfolios are informative about investors’ beliefs. For example,

a larger investment in the options corresponds to conservative investors that are progressively

more sensitive to higher-order risk factors and trade options to reallocate them profitably. Not

only the sign, but also the cyclicality of the market risk premium is endogenous to investor’s

belief. In order to illustrate our theoretical framework, we make use of buy and sell orders of

large investors in option markets.

More specifically, we use our results to gain insights about the beliefs and risk perceptions

of two groups of option market participants: public investors (retail and institutional) and

intermediaries. To this end, we leverage the CBOE Open-Close Database which records daily

buy and sell orders per investor category for every option. Real-time holdings data, allows us

to recover each investor’s beliefs such that the solution to our recovery problem is aligned

with the observed portfolio positions.

We summarize our empirical findings as follows. First, we find that public investors and

market makers have complementary patterns with regards to the shape of their SDFs. For

example, during normal times, market makers have U-shaped SDFs as a function of expected

returns, while public investors have inverted U shapes. The U-shape comes from the fact

that during normal times, market makers hold large short positions in calls and puts. They

are hence exposed to both changes in the underlying on the up- and the downside. Public

investors who act as net demanders of these options, have the opposite patterns. The patterns

are strikingly different during “crisis” periods such as the Great Financial Crisis or Covid. We
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find that in November 2008, public investors’ SDF projection is monotonically decreasing,

while market makers’ SDF is flat for negative returns and increasing for positive returns. The

reason for that is that during that period, market makers effectively became net demanders of

downside protection as their financial constraints started to bind.

Second, the shifting portfolio holdings and exposures to downside risk during crisis periods

across the two investors has large effects on the properties of expected returns. We find that

the ensuing expected returns are pro-cyclical and very volatile for market makers. In fact, we

observe that expected returns become negative during crises. Intuitively again, this happens

because of the large long put positions that they hold on their portfolios. Public investors, on

the other hand, have countercyclical expected returns because they make the market for crash

insurance during bad times.

To summarize, our empirical findings provide intuition for why some of the literature has

documented different cyclicality patterns in surveys and price-based measures. Our focus

on portfolio holdings rather than just prices alone explains why the time-series properties of

beliefs can drastically change depending on investor type.

Related Literature. This paper is related to several strands of the literature. Starting from

the seminal work of Ross [2015] a growing literature has proposed ways to recover investors’

subjective beliefs, see, e.g., Borovička, Hansen, and Scheinkman [2016], Jensen, Lando, and

Pedersen [2019], among others for recent refinements of the Ross [2015] recovery theorem.

Our framework differs from these papers in at least three ways: First, we do not constrain the

recovered belief with model-specific assumptions on the SDF nor agent preferences. Second,

we include demand-based data instead of just asset pricing data to extract investor-specific

beliefs. Third, our framework allows us to recover conditional beliefs in real-time.

Chen, Hansen, and Hansen [2020], Ghosh and Roussellet [2023], and Korsaye [2024] use

survey data in addition to price data to recover the representative agent’s belief and study their

properties relative to a rational expectations framework. As we show, holdings data allows us to

recover beliefs on a much more granular level, that is at the investor level. More generally, our

theoretical framework also allows for the inclusion of survey data. However, long time-series

of granular survey data is hard to obtain.

Our paper is also related to the literature that studies the option demand of heterogeneous

investors. For example, Chen, Joslin, and Ni [2019] document how variation in the net de-

mand of deep OTM put options between intermediaries and public investors is driven by

intermediaries’ constraints. Almeida and Freire [2022] show how net option demand helps

explain the pricing kernel puzzle. And Farago, Khapko, and Ornthanalai [2021] study a hetero-

geneous agent economy to explain index put trading volumes. We complement this literature

by estimating intermediaries’ and public investors’ beliefs from observed option demand.

Our paper is also closely related to the literature that makes use of higher-order moments
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of the market return and options to recover measures of the expected return. Even tough these

papers do not explicitly recover investors’ beliefs, their results are nested in our framework. For

example, Martin [2017], Martin and Wagner [2019], and Gao and Martin [2021] derive lower

bounds on expected returns for stocks by assuming that the risk premium on an asset and its

derivatives can be inferred from the allocation of a growth-optimal portfolio that maximizes an

investor’s long-run growth. Similarly, Gormsen and Jensen [2022] study physical (as opposed

to risk-neutral) moments as perceived by a power utility investor. Gandhi, Gormsen, and

Lazarus [2023] study the term structure of expected returns inferred from option prices and

find that long-term expected returns are (excessively) countercyclical and volatile. Tetlock

[2023] assumes that the SDF is given by 1/R̂, where R̂ is the return of a portfolio of higher-

order moments of R whose weights come from regressing the variance premium on some

risk-neutral moments to obtain point estimates of the expected return. Our findings show

that the results in these papers are sensitive to the assumption of the optimal weights in the

investor’s portfolio. While Martin [2017] assumes that investors hold 100% of their wealth in

the market (and none in the derivatives themselves), Tetlock [2023] allows for holdings in

both the market and the derivatives where the growth-optimal weights are calculated from

the data. In our setting, we do not need to make any assumptions about utilities or wealth.

In particular, our estimation framework incorporates information from actual weights as

provided by transaction level data.

Our paper contributes to an empirical literature studying beliefs of heterogeneous in-

vestors. Dahlquist and Ibert [2023] document large heterogeneity in asset managers’ beliefs,

while Giglio et al. [2021] study the relationship between retail investors’ beliefs and portfolio

holdings. Meeuwis et al. [2022] document that political orientation determines households’

beliefs and portfolio allocation into risky assets. Ghosh, Korteweg, and Xu [2022] recover

heterogeneous beliefs from the cross-section of stock returns. Our paper is different from

these papers since we recover beliefs from price and holdings data jointly, allowing us to

measure beliefs for a long-time series at the daily frequency for large investors.

Finally, our paper contributes to the demand-based asset pricing literature starting with

the seminal work of Koijen and Yogo [2019]. Similar to our approach, asset-demand sys-

tems impose constraints such that holdings data is matched and market clearing holds in

equilibrium. While that literature is mainly interested in how heterogeneous investors affect

movements in asset prices, our focus is on expected returns.

Outline. The rest of the paper is organized as follows. The key idea of our paper is that

holdings data is informative about investors’ risk perceptions. We illustrate this idea in an

intuitive example in Section 2. Section 3 presents a general theoretical framework where we

show how to infer investor’s beliefs from holdings data. Section 4 contains our main empirical

results. All proofs and some additional mathematical details are provided in the Appendix.
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Additional results are gathered in an Online Appendix.

2 Illustrative Example

The key idea of our paper is that portfolio holdings are informative about risk perceptions of

market participants. To provide some intuition, we start with an example to illustrate how

portfolio holdings affect SDFs. Assume heterogeneous investors who hold a growth-optimal

portfolio. That is, investors maximize expected long-run wealth. As is well-known, in this case,

the growth-optimal return is the reciprocal of the stochastic discount factor, i.e., M⋆ = 1/R⋆,

where R⋆ is the return of the optimal portfolio according to the investor’s subjective view,

see, e.g., Long [1990]. Even though investors have the same preferences and are subject to

the same constraints, the optimal portfolio can vary across investors because they may have

different beliefs.

To set a benchmark, assume there exists a specific constrained utility-maximization prob-

lem whose solution is a portfolio fully invested in the market. In that case, the SDF takes the

following form: M0 := 1/R, where R is the return on the market index. This is the case studied

in Martin [2017]. A priori, there is no reason to exclude other traded assets (say, options) from

the optimal portfolio. In fact, ample empirical evidence in the literature shows that options

are non-redundant securities and demand for options can be in the order of trillions of dollars,

especially following market crashes.1 In that case, the corresponding optimal portfolio will

have non-zero positions in the index options, and the return R⋆ will be different from R (and

in turn M⋆ ̸= M0).

LetM∗ be the SDF consisting of a portfolio being long some calls or puts. Figure 1 compares

the value of M⋆ relative to M0, as a function of the only state variable R for calls (left panel)

and puts (right panel) across different moneyness. For illustrative purposes, we assume that

the investor holds a portfolio consisting of 90% in the index and 10% of calls or puts.2 As is

immediately evident, even for a small investment in options (with respect to the investment

in the underlying) and small fluctuations of the market return, the ratio M0/M⋆ is different

from 1. While for in-the-money (ITM) calls, the ratio is not very different from 1, M0/M⋆

rises significantly for at-the-money (ATM) and out-of-the-money (OTM) calls and puts. For

example, assuming the market excess return is +20% (-20%), the ratio increases to 17 (25) for

OTM calls (puts).

1Theoretically, positive net demand for options can arise in settings with heterogeneous beliefs
with frictions and market incompleteness. Johnson, Liang, and Liu [2016] study empirical drivers of
option demand and argue that the primary reason for the high demand in index option is transfer of
unspanned crash risk.

2In later sections, we will use transaction-level data from CBOE to track portfolio holdings in
real-time.
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Figure 1. Ratio between Benchmark SDF M0 and M⋆

Notes: This figure plots M0/M⋆ as a function of the excess return on the market. M⋆ = 1/R⋆, where R⋆

is the return of a portfolio investing 90% of the wealth in the underlying and 10% in an equally-weighted
portfolio of calls (left plot) and puts (right plot) with different moneyness. ATM options have moneyness
m = K/S ∈ [.95, 1.05] (being S the current index value), ITM calls (OTM puts) are with .9 ≤ m < .95,
OTM calls with 1.05 < m ≤ 1.1.

Intuitively, we can interpret the ratio, M0/M⋆, as the probability distortion one has to

introduce to recover probability measure P⋆ (supported by SDF M⋆) from the benchmark P0

(as supported by SDF M0). For instance, the belief of an investor who optimally chooses to be

long in puts, is more left-skewed than the benchmark. Investing in puts, shifts the probability

mass uniformly from the region of positive market return towards the region of negative

returns proportional to the strikes and the moneyness. In general, investors who assign higher

weights to extreme events have higher demand for deep OTM puts. The reverse holds when

the investors is long calls.

In a next step, we study the effect of investors’ demand on perceived risk premia. In Figure

2, we plot the time-series of the expected market return for different M⋆ implied by options

with different moneyness together with the benchmark log investor case who is 100% invested

in the index (M0).

The upper panel plots the perceived risk premia for investors who in addition to the

index, hold call options with different moneyness. As we can see, the patterns mirror the

benchmark case almost one-for-one. Expected returns increase in bad time and are highly

volatile. Intuitively, the size of the risk premium itself increases relative to the benchmark

since the options represent a levered trade on the underlying itself. The portfolio with ATM

calls has the highest premium, since ATM calls move one-for-one with the underlying market

index.

We can juxtapose this pattern with inferred risk premia from investors’ who are long in

puts. As can be seen from the lower panel, being long in puts decreases the exposure to

market risk, and as a consequence, the corresponding risk premium is lower. In fact, the
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risk premium even becomes negative. As discussed before, holding puts reflects the view

of investors holding more left-skewed beliefs, who expect higher (negative) fluctuations of

the market. From their perspective, the risk-return ratio given by holding the index alone is

not profitable. Accordingly, the volatility of the premium is higher with respect to what we

recover under M0. The contribution of the puts may be enough to offset the premium towards

a pro-cyclical pattern, whose size and cyclicality properties depend on the moneyness, and

on the amount of wealth invested in the puts.

To be more specific, in Figure 3, we vary the amount of wealth invested in OTM puts from

5% to 20%. We notice that the recovered market premium is pro-cyclical when the wealth

fraction invested in OTM puts is 20%. Higher investments in insurance means that market

downturns are ex-ante perceived as less risky.

We conclude that not only the size, but also the sign, cyclicality, and volatility of the

market risk premium depend on asset demand. While these results are based on hypothetical

portfolios, in our empirical section, we will use transaction level data on buy and sell orders to

track investors’ beliefs over time.
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Figure 2. Monthly Time-Series of Expected Market Return
Notes: This figure plots the expected market return recovered from different stochastic discount factors.
The dotted line represents the benchmark M0 = 1/R, where M0 is 100% invested in the index. The
other lines arise from M⋆ = 1/R⋆, where R⋆ is the return of a portfolio investing 90% in the market
and 10% in an equally-weighted portfolio of calls (upper panel) and puts (lower panel) with different
moneyness (see caption of Figure 1). Grey areas indicate NBER recession periods.
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Figure 3. Monthly Time-Series of Expected Market Return
Notes: This figure plots the expected market return recovered from different stochastic discount factors.
Each supporting portfolio invests a fraction 1− x of the wealth into the market, and x into an equally-
weighted portfolio of OTM puts (.9 ≤ K/S < .95); x is either 5% or 20%. The blue dotted line displays
the implied volatility index (VIX). Grey areas indicate NBER recession periods.
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3 Theoretical Framework

Consider an economy consisting of m different investors indexed by i, each with logarithmic

utilities, but potentially different beliefs. Let Ei[·] denote the subjective expectation operator

with respect to the belief of investor i. Motivated by our illustrative example presented before,

all investors can trade three types of assets, a risk-free asset with return Rf , a risky asset with

forward return R, and an entire family of options on the risky asset with a continuum of strike

prices. In this paper, we assume that the risky asset is the S&P 500 index and the options are

European calls and puts. Let Re = R−1 be the excess forward return of the index and options.

Our goal is to recover the physical belief Pi for investor i under the minimal assumptions

stated above to infer the subjective expected return on the market, Ei[R]. Since investors have

logarithmic utility, it immediately implies that one can define an agent-specific SDF Mi that

prices all assets from the perspective of agent i as follows:

Mi =
(
1 + θ′

iR
e
)−1

, (1)

where θi is the share of wealth invested in the market index and the options by investor i. No

arbitrage implies that

Ei[MiR
e] = 0.

Several remarks are in order. Our set-up is similar to Martin [2017], who also assumes a log

utility investor. The crucial difference to Martin [2017] is that he assumes that the optimal

portfolio held by the log investor consists of 100% in the market. A consequence of this

assumption is that all options are redundant as otherwise the growth-optimal portfolio would

contain positions in options. In contrast, our framework does not assume such redundancy.

However, our setting nests Martin [2017]’s case if θ is 1 for the market and zero otherwise.

Another special case is Tetlock [2023] who assumes that the investor can hold (integer) power-

contracts written on the market index. In general, however, we do not observe holdings of

power-contracts. What we do observe is the holdings of plain vanilla options, that is, calls and

puts.

In the following, we will consider two different cases. First, the fact that portfolio holdings

are observable in the data, allows us to directly recover agent i’s expected return of the market

as a function of holdings and option prices. Second, it is reasonable to assume that holdings

data is measured with some error. The reason for this is twofold. First, we only observe a

subset of the “true” portfolio of investors. For example, while we observe the holdings on

calls and puts for the S&P500, we do not observe the holdings on other derivatives, such as
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SPY options (that is on the ETF tracking the S&P500).3 Second, our data is aggregated to the

monthly frequency and across different types of investors (retail and institutional). We will

therefore consider a second case where we assume that portfolio holdings are observed with

some measurement error.

3.1 Subjective Expected Returns

As is well-known, an arbitrage-free cross-section of options suffices for the existence of a

probability measure Q, which determines the price of any payoff X that is replicable by a

delta-hedged option portfolio (see, e.g., Acciaio et al. [2016]). In our application, the pricing

measure Q is a forward probability between times t and t + 1. This trivially implies that

EQ[Re] = 0.

Since we can obtain the risk-neutral expectations, we can now relate this risk-neutral

expectation to agent i’s subjective expectation via the following relationship:

EQ[X] =
Ei[MiX]

Ei[Mi]

for any payoff X . Therefore, we can use the observed portfolio weights θ′ to construct the SDF

Mi in (1) and obtain our main result of the paper.

Proposition 1 (Subjective Expected Returns). Assume that portfolio weights θi are observed

without error, then the subjective expected return on the market of investor i is given by:

Ei[R] = EQ[(1 + θ′Re)R] (2)

We can directly compute equation (2) from the data, since we observe the portfolio hold-

ings θi and we can calculate the risk-neutral expectation of (1 + θ′Re)R using the Carr and

Madan [2001] formula. Notice that we can recover the implied equity premium in Martin

[2017], again by assuming that the weights θi are zero except for the market, where the weight

is equal to 1. In that case, the expected return of investor i is equal to EQ[R2] which is the

risk-neutral variance measured under the forward-measure Q. We can now study the case

with measurement error.

3.2 Subjective Expected Returns With Measurement Error

In this section, we provide bounds on the subjective return on the market assuming that port-

folio weights θi are observed with error. Since we want to constrain the amount by which the

3Moussavi, Xu, and Zhou [2024] show that market makers tend to hold positions in both markets.
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optimal portfolio weights can deviate from the observed weights, we impose some constraint

such that

d(θ,θ⋆) ≤ δ , (3)

where θ⋆ are the growth-optimal portfolio weights and for some convex discrepancy function

d(·, ·) ≥ 0 such that d(x, y) = 0 if and only if x = y. Intuitively, δ measures the amount that

optimal weights can deviate from the observed weights. To be concrete, let’s assume a L2-

norm. In that case, d(θ,θ⋆) = 1
2 ||θ

⋆ − θ||22. To solve for the subjective expected return, we now

have to solve the following optimization problem:

inf
θ⋆∈RN

{
EQ[(1 + θ⋆′Re)R] + λ

(
1

2
||θ⋆ − θ||22 − δ

)}
. (4)

This leads us to our second main result which are closed-form solutions on the bounds of

subjective expected returns.

Proposition 2 (Bounds on Subjective Expected Returns). Define f(R) := (1 + θ′Re)R. Assume

that portfolio weights θ are observed with error, in that case, the lower bound for the subjective

return on the market for investor i is:

EL
i [R] = EQ[f(R)] + EQ[θ′Ref(R)]−

√
2δ||EQ[Ref(R)]||2 . (5)

The upper bound for the subjective return on the market for investor i is given by:

EU
i [R] = EQ[f(R)] + EQ[θ′Ref(R)] +

√
2δ||EQ[Ref(R)]||2 . (6)

It is obvious that if the measurement error is assumed to be zero, i.e., δ = 0, that equations

5 and 6 coincide with equation 2. Intuitively, we can interpret the lower bound as the most

conservative assessment of the subjective expected return for any investor who’s portfolios

align in a neighborhood around the observed portfolios, θ.

4 Empirical Analysis

This section describes the data used and how we empirically implement our main theoretical

results.
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4.1 Data

To empirically implement our theory, we make use of the CBOE Open-Close dataset that

provides daily buy and sell volumes of SPX options since 1996 aggregated by type of position

(opening/closing) and origin: (i) customer; (ii) broker-dealer; (iii) firms; and (iv) market makers.

We aggregate these daily volumes to cumulative positions for the last three categories and

label them market makers. The label ’broker-dealer’ is available only from 2011.

The volume data comes without pricing information. We obtain end-of-day option prices

from the OptionMetrics database and use bid- and ask-prices to compute mid-point prices.

Throughout our empirical analysis, we use monthly frequency and horizons. Portfolios

investing in the risk-free asset, S&P 500, and monthly OTM options are assembled at date t and

held to maturity without intermediate rebalancing before the third Friday of the expiration

month. We assume that investors build delta-hedged strategies in which the investment in

the index is the negative of the delta of the portfolio at time t, see, e.g., Gayda, Grünthaler, and

Harren [2023] and Baltussen, Jerstegge, and Whelan [2024].

4.2 Implementation

In order to implement the expression in equation 2, we apply the Carr and Madan [2001]

formula to approximate EQ[(1+θ′Re)R]. More specifically, let X(K) be the payoff of an option

with strike K, and recall that f(R) := (1+ θ′Re)R, then the subjective expected return is given

by:

Ei[R] = EQ[f(R)],

≈ EQ[f(1) + f ′(1)(R− 1) +
∑

f ′′(k)x(k)∆k],

where x(k) := X(K)
F with F being the forward price of the market index, and k = K

F .

4.3 Subjective Expected Returns with No Measurement Error

We start from our main result provided in Proposition 1: the variation of expected returns

over time as perceived by different agents assuming that the portfolio weights are observed

without error. Figures 4 and 5 plot expected returns for customers and market makers over

time together with the benchmark case of a full investment in the index.

We notice strikingly different dynamics of the expected return measures across customers

and market makers but also distinct from the benchmark case not just in size but also comove-
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Notes: This figure plots the time-series of the expected market return as recovered by the benchmark
SDF M0 = 1/R and the M⋆ supported by customers’ positions in delta-hedged options. Frequency is
monthly and gray bars indicate NBER recessions.

ment. For example, customers’ expected returns are highly volatile and increase in bad times,

especially the 2008 Great Financial Crisis and Covid where the expected returns increased

by 2% monthly, but not during the 2001 dot-com bubble. Subjective expected returns for the

market makers drop during the 2008 crisis and the 2021 Covid period but are elevated during

the 2001 crisis. The expected return recovered by M0 is by construction counter-cyclical only.

The correlation between the time-series of the benchmark and the customers is 36% and -36%

for market makers.

Intuitively, our results align with the observation that public investors are typically net

buyers of OTM options, but they become net sellers of OTM options during periods of higher

volatility when market makers become constrained. We will discuss these results in more

details later when turning to investors’ SDFs. Notice also, that the expected return is below the

case of Martin [2017] almost everywhere, and it is slightly less volatile (around 0.4% vs. 0.3%

for both investors). This is intuitive, since our earlier results showed that options portfolio can

mitigate exposure to the market risk.
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Figure 5. Subjective Expected Market Return Market Makers
Notes: This figure plots the time-series of the expected market return as recovered by the benchmark
SDF M0 = 1/R and the M⋆ supported by market makers’ positions in delta-hedged options. Frequency
is monthly and gray bars indicate NBER recessions.

4.4 Expected Returns with Measurement Errors

We now turn to the case when portfolio holdings contain some measurement error. We

solve the linear optimization problem in equation 4 with δ = 0.01 to determine the most

conservative and the maximum expected market return compatible with investors’ observed

positions.

Figures 6 and 7 plot the resulting time-series of subjective expected returns. More specifi-

cally, the upper plots show the most conservative subjective expected return for each investor;

the lower plots show all the admissible values that lie between the minimum and the maxi-

mum. These act as lower and upper bounds for the subjective expected return perceived by all

the possible investors whose portfolios are aligned (to some degree) with the observed posi-

tions of customers and market makers. In a sense, the lower bound represents the expectation

of the “most pessimistic” investor in the group - or, equivalently, it represents the “worst-case”

expectation that customers and market makers may formulate.

From our illustrative example discussed before, we expect that the lower bound is attained

with a portfolio that hedges volatility risk with long positions in calls and puts. The upper

bound, however, is most likely supported by portfolios which tend to have short positions in

calls and puts. Therefore they will be more sensitive to periods of high volatility. Indeed the

range of admissible values is larger during times of increasing volatility. This explains why the

lower bound is largely pro-cyclical (correlation with the M0 time-series is -78% for market

makers and -48% for customers) and the upper bound is mostly counter-cyclical (correlations

48% for market makers and 78% for customers).

Interestingly, as the observed weights are opposite between customers and market makers,
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Figure 6. Bounds Subjective Expected Market Return Customers
Notes: This figure plots the time-series of the lower bound on the subjective expected market return
(upper plot) and all the possible values for the expected market return (lower plot) as recovered by SDFs
compatible with customers’ positions in delta-hedged options. Frequency is monthly and gray bars
indicate NBER recessions.

the lower bound for each investor class in perfectly negatively correlated with the upper bound

of the other investor.
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Figure 7. Bounds Subjective Expected Market Return Market Makers
Notes: This figure plots the time-series of the lower bound on the subjective expected market return
(upper plot) and all the possible values for the expected market return (lower plot) as recovered by SDFs
compatible with market makers’ positions in delta-hedged options. Frequency is monthly and gray
bars indicate NBER recessions.

4.5 Demand-Based SDFs

To build intuition, we now recover the SDFs of our two investor groups on “crisis” days. To this

end, we compare the SDF shapes with and without measurement errors in the same setting as

above, on October 2008 and April 2020. Figures 10 and 11 depict the results, while the observed

portfolio weights are summarized in Figures 8 and 9.

In both instances, we find that customers are overall short in OTM calls and puts, while

market makers are long. Moreover, the amount invested in puts is significantly larger than in

calls. This echoes earlier findings in Chen, Joslin, and Ni [2019] who argue that while market

makers are net sellers of insurance in normal times, they become net demanders in bad

times when their financial constraints bind. The different compositions in the portfolios have

large effects on the ensuing expected returns. Customers perceive larger risk premia as they

have increased their exposure to the index volatility. It is 2.2% in 2008 and 0.7% in Covid.

Correspondingly, market makers perceive -2.2% and -0.7%. Negative risk premium is intuitive

since intermediaries hold a portfolio of crash insurance, they are protected against market
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Figure 8. Portfolio Weights October 2008
Notes: This figure shows the distribution of the portfolio weights for OTM calls and puts in the observed
option portfolio of customers (upper panel) and market makers (lower panel), across different levels of
moneyness, on October 2008.

downturns.

Looking at the SDF shapes confirm these observations. The SDF of the customers is in-

creasing in the upside risk and decreasing in the downside region, because of the positive

weights assigned to the options. At the end it exhibits a U−shape. The opposite holds for

market makers. This is evident during the 2008 financial crisis, when even if we consider

deviations due to measurement errors, the supporting SDFs do preserve the shape. Interest-

ingly, this does not happen in April 2020: ceteris paribus, the optimized weights may differ

enough to invert the convexity of the SDF. For example, the market makers’ SDF can become

U−shaped, leading to high maximum expected return of 4% monthly. That’s why the range of

admissible values for the investors on April 2020 is the highest in the dataset.
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Figure 9. Portfolio Weights Covid
Notes: This figure shows the distribution of the portfolio weight for OTM calls and puts in the observed
option portfolio of customers (upper panel) and market makers (lower panel), across different levels of
moneyness, on April 2020.
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Figure 10. Recovered SDFs
Notes: This figure plots the stochastic discount factors M⋆ recovered for market makers and customers
on October 2008, as function of the market return. The black line is the SDF recovered from the observed
investors’ portfolios. The coloured lines display the SDFs supporting the minimum and the maximum
expected market return attainable under the constraints.
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Figure 11. Recovered SDFs
Notes: This figure plots the stochastic discount factors M⋆ recovered for market makers and customers
on April 2020, as function of the market return. The black line is the SDF recovered from the observed
investors’ portfolios. The coloured lines display the SDFs supporting the minimum and the maximum
expected market return attainable under the constraints.
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5 Conclusion

In this paper, we propose a theoretical framework for recovering investors’ beliefs using

demand-based data. Information about investors’ holdings allows us to pin down the beliefs

of individual investors when observing a cross-section of option prices. Our main empirical

result is that the size, dynamics, and cyclicality properties of belief-implied expected returns

vary significantly across investor types. Using granular transaction data on buy and sell orders

of financial intermediaries and public investors, we show that beliefs are heterogeneous and

the implied expected returns vary considerably across the two investors.

For example, customers’ expected returns mirror those estimated from price data alone:

they increase in bad times and display higher volatility. Public investors’ expected returns are

less volatile and drop in bad times, hence, are procyclical. Intuitively, this follows from the

fact that in normal times, financial intermediaries are the net suppliers of insurance (puts) on

the index. In bad times, when their constraints bind, they become net demanders of crash

insurance.

Earlier literature rationalizes the procyclicality of expected returns elicited from survey

data with models of return extrapolation, see, e.g., Nagel and Xu [2023]. Our paper is agnostic

about the origins of the particular time-series patterns of expected returns recovered from the

data. Future work could explore the link between our beliefs measures and those elicited from

survey data and study deviations from the rational expectations benchmark.
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A Proofs and Derivations

Proposition 3 (Upper and lower bounds on expected payoffs of a log investor). Suppose

θ ∈ Θ, where Θ is some closed convex set, indexes a log investor holding an optimal portfolio θ,

with return R, and having belief P. Further let f(R) be some payoff depending on R. Then, the

following upper and lower bounds hold:

U(f) := sup
θ∈Θ

EQ[Rf(R)] ≥ Ei[f(R)] , (7)

and

L(f) := inf
θ∈Θ

EQ[Rf(R)] ≤ Ei[f(R)] . (8)

Proof. Since portfolio θ is optimal for the log utility investor and the associated belief P, we

get:

Ei[f(R)] = EQ[Rf(R)] , (9)

where by construction EQ[R] = 1. Given convex set Θ of admissible portfolio weights, the

worst case expected payoff across admissible maximum growth portfolios is:

L(f) := inf
θ∈Θ

Ei[f(R)] = inf
θ∈Θ

EQ[Rf(R)] . (10)

Analogously, the best case expected payoff across admissible maximum growth portfolios is:

U(f) := sup
θ∈Θ

Ei[f(R)] = sup
θ∈Θ

EQ[Rf(R)] . (11)

This concludes the proof. ■

Corollary 1 (Upper and lower bounds on expected payoffs from observed investor’s holding).

In the context of Proposition 3, suppose that θ⋆
0 is the optimal portfolio of a log investor with

beliefP, which is however not observable. Assume further that there exists an observable portfolio

θ0 such that

d(θ0,θ
⋆
0) ≤ δ , (12)
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for some convex discrepancy function d(·, ·) ≥ 0 such that d(x, y) = 0 if and only if x = y. Then,

the upper and lower bounds in Proposition 3 are such that:

L(f) = inf
d(θ,θ0)≤δ

EQ[Rf(R) ≤ Ei[Rf(R)] ≤ U(f) = sup
d(θ,θ0)≤δ

EQ[R(θ)f(R)] . (13)

In the case where δ = 0, i.e., there is no portfolio measurement error, then

L(f) = Ei[f(R)] = U(f) .

Example 1. If d(θ,θ0) = 1
2 ||θ − θ0||22, then:

gL(f)(λ) = inf
θ∈RN

{
EQ[R(θ)f(R)] + λ

(
1

2
||θ − θ0||22 − δ

)}
. (14)

This gives the optimality condition:

0 = ∇gL(f)(λ) = EQ[Ref(R)] + λ(θ − θ0) , (15)

and, whenever the constraint is binding:

1

2
||EQ[Ref(R)]||22 =

1

2
λ2||θ − θ0||22 = λ2δ , (16)

i.e., an optimal Lagrange multiplier given by:

λ⋆ =
1√
2δ

||EQ[Ref(R)]||2 . (17)

Therefore, the optimal portfolio supporting the lower bound is such that:

θ⋆ = θ0 −
1

λ⋆
EQ[Ref(R)] = θ0 −

√
2δ

||EQ[Ref(R)]||2
EQ[Ref(R)] . (18)

This gives the closed-form lower bound:

L(f) = gL(f)(λ
⋆) = EQ[R(θ⋆)f(R)] = EQ[f(R)] + EQ[θ′

0R
ef(R)]−

√
2δ||EQ[Ref(R)]||2 . (19)
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In an analogous vein, we obtain:

U(f) = gU(f)(λ
⋆) = EQ[f(R)] + EQ[θ′

0R
ef(R)] +

√
2δ||EQ[Ref(R)]||2 . (20)

Proposition 4 (Lower bound on expected log return of optimally invested wealth). Suppose

θ ∈ Θ indexes a log investor holding an optimal portfolio θ, with return R, and having belief P.

Then, the following lower bound holds:

L := inf
θ∈Θ

EQ[R logR] ≤ Ei[logR] . (21)

Proof. Since portfolio θ is optimal for the log utility investor and the associated belief P, we

get:

Ei[logR] = EQ[R logR] , (22)

where by construction EQ[R] = 1. Given convex set Θ of admissible portfolio weights, the

worst case expected log utility over maximum growth portfolios is:

L := inf
θ∈Θ

Ei[logR(θ)] = inf
θ∈Θ

EQ[R(θ) logR(θ)] . (23)

This problem is convex, with solution obtained using standard duality methods. This con-

cludes the proof. ■

Corollary 2 (Lower bound extracted from observed investor’s holdings). In the context of

Proposition 4, suppose that θ⋆
0 is the optimal portfolio of a log investor with belief P, which is

however not observable. Assume further that there exists and observable portfolio θ0 such that

d(θ0,θ
⋆
0) ≤ δ , (24)

for some convex discrepancy function d(·, ·) ≥ 0 such that d(x, y) = 0 if and only if x = y. Then,

the lower bound in Proposition 4 becomes:

L = inf
θ

EQ[R logR(θ)] s.t. d(θ,θ0) ≤ δ . (25)

In the case where δ = 0, i.e., there is no portfolio measurement error, then

L = Ei[logR(θ⋆
0)] .
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Proof. The lower bound follows from Proposition 4 once we define Θ := {θ | d(θ,θ0) ≤ δ}. In

the case where there is no measurement error, δ = 0 and Θ = {θ⋆
0}, i.e.:

L = EQ[R logR] = Ei[logR] . (26)

This concludes the proof. ■

Corollary 3 (Dual formulation). In the context of Proposition 4, for any λ ≥ 0 it follows:

L ≥ g(λ) := inf
θ∈RN

{
EQ[R(θ) logR(θ)] + λ(d(θ,θ0)− δ)

}
. (27)

Therefore, L ≥ supλ≥0 g(λ). Moreover, when suitable Constraints Qualification conditions hold,

then L = supλ≥0 g(λ). In particular, if there exists 0 < δ′ < δ such that EQ[R(θ) logR(θ)] < ∞
for all θ such that d(θ,θ0) < δ′ then Slater’s Constraint Qualification conditions hold.

Proof. The proof follows with standard Lagrangian duality arguments. ■

Example 2. If d(θ,θ0) = 1
2 ||θ − θ0||22, then:

g(λ) = inf
θ∈RN

{
EQ[R(θ) logR(θ)] + λ

(
1

2
||θ − θ0||22

)}
. (28)
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