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Abstract

Our study introduces a novel framework to interpret machine learning
asset pricing models through the Local Interpretable Model-agnostic
Explanations (LIME) method. This methodology illuminates how
the inclusion of LIME local coefficients, representing the interaction
among characteristics within ML models, modifies the relationship be-
tween a firm characteristic and stock returns. The empirical results
underscore the significance of incorporating moderation effects into
portfolio analysis. Our results present that certain firm character-
istics exhibit varying long-short portfolio performance across LIME
groups, suggesting their predictive power is specific to certain asset
segments. These findings deepen our understanding of the complexi-
ties in cross-sectional stock returns, uncovering the detailed dynamics
between firm characteristics and their return effects, and distinguish-
ing our research from existing studies.
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1 Introduction

In the field of empirical asset pricing, an important component of under-

standing why different assets have different returns is exploring how interac-

tions among firm characteristics contribute to the cross-section of expected

stock returns. This challenge becomes more complex within the “factor zoo”

(Cochrane, 2011), where a myriad of characteristics and their potential inter-

actions complicate the analysis. With the rise of machine learning methods

in asset pricing, researchers have started to focus on the interpretation of

the complex non-linearity of such models. Specifically, this paper focused on

the moderation effect, which examines how the relationship between one firm

characteristics and stock returns can be changed when other characteristics

are considered.

Machine learning has emerged as a promising method in empirical asset

pricing literature due to its proficiency in managing high-dimensional data.

Additionally, it accommodates nonlinearity and interactions among variables

and delivers superior predictive performance (Gu, Kelly, & Xiu, 2020). This

capability makes it particularly adept at addressing the challenges presented

by the “factor zoo” (Jensen, Kelly, & Pedersen, 2023; Freyberger, Neuhierl,

& Weber, 2020; Feng, Giglio, & Xiu, 2020). However, the application of

machine learning in asset pricing introduced the “black-box” problem, where

the inner mechanism of many models remains opaque. Recognizing the crit-

ical need for transparency, researchers in asset pricing have also begun to
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prioritize the interpretability of the machine learning applications (Cong,

Tang, Wang, & Zhang, 2021; Cheng, Dong, & Lapata, 2016; Demirbaga

& Xu, 2023). In our research, we employed Local Model-agnostic Explana-

tions(LIME) to enhance the interpretability of machine learning models used

in empirical asset pricing. The implementation of LIME involves using a lin-

ear model to locally approximate the predictions of the “black-box” machine

learning models for each instance. The coefficients of these linear models

serve as a measure of sensitivity, indicating how changes in the features affect

the prediction. This process allows for a detailed and economically mean-

ingful interpretation of how each firm characteristics, through interactions

among others, contribute to stock return predictions.

Our approach to addressing this challenge involves employing machine

learning and Local Interpretable Model-agnostic Explanations (LIME) method

to interpret the contribution of firm characteristics to cross-section asset re-

turns. Machine learning is promising in empirical asset pricing for its ability

to handle complex, high-dimensional data and uncover non-linear relation-

ships and interactions among variables. LIME enhances this by improving

the transparency of machine learning models, offering insights into how indi-

vidual firm characteristics predict stock returns at the local level. Through

LIME, we interpret the moderation effects among firm characteristics, pro-

viding a clearer understanding of their roles in explaining the cross-section

of expected stock returns. This methodology allows us to delve deeper into

the “factor zoo”, shedding light on the nuanced dynamics that explain the
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cross-section of stock returns.

Additionally, we explore the concept of moderation effects within the

realm of empirical asset pricing. Moderation effects occur when the influ-

ence of one variable on another is modified by a third variable, known as

the moderator (Baron & Kenny, 1986). This concept is critical for under-

standing how one firm characteristic’s impact on stock returns may change

when accounting for other characteristics. Empirical asset pricing literature

demonstrates that variables such as industry (Asness, Porter, & Stevens,

2000) and firm size (Chan & Chen, 1991) can act as moderators but often

in a simplified structure, where interactions between size or industry and a

limited number of firm characteristics were analyzed in a one-to-one linear

fashion. In contrast, our study adopts a novel approach by exploring how

a single firm characteristic can interact simultaneously and nonlinearly with

multiple others within a machine learning model, offering a more complex

and comprehensive analysis of interactions. This method stands in contrast

to the more common additive models, such as those assumed by Freyberger

et al. (2020), which limit interactions to firm size and overlook the complexity

of broader interactions. Furthermore, our analysis employs LIME to explore

the interactions among characteristics and their impact on stock returns. It

diverges from the work of Green, Hand, and Zhang (2017), which focuses on

the independent predictive power of individual characteristics without ex-

amining their interactions. Specifically, we use the LIME local coefficients

derived from machine learning models as moderators, offering a nuanced
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perspective on model interpretation that distinguishes our work from the

existing literature.

Our empirical investigation starts with a comparative analysis between

machine learning models and Fama-Macbeth regression. We observe en-

hanced predictive performance from machine learning, attributed to its ca-

pacity for handling nonlinearity and interactions, setting the stage for a

deeper exploration of moderation effects. Subsequently, we apply LIME to

our machine learning models as a foundational step, streamlining our ap-

proach for the nuanced analysis ahead.

Building on the groundwork, our main contribution rests on the intro-

duction of a LIME-adjusted moderation regression framework to understand

the moderation effects between firm characteristics and stock returns. This

framework involves performing a cross-section moderation regression of stock

returns on individual firm characteristics, with LIME’s local coefficients act-

ing as moderators. This methodology allows us to dissect both the direct

and moderation effects of each firm characteristics on stock returns system-

atically.

Second, to ensure the integrity and reliability of our findings, we employ

rigorous multiple testing and p-value adjustment techniques. This method-

ological safeguard is essential for discerning genuinely significant predictors

of stock returns from the myriad of tested firm characteristics, thus mitigat-

ing the risk of false discoveries inherent in high-dimensional data analysis.

This process underscores our commitment to statistical rigor and robustness
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in uncovering meaningful insights into asset pricing.

Finally, we conduct a bivariate dependent sort portfolio analysis, which

further demonstrates the practical implications of the moderation effects

identified in our study. Specifically, for each firm characteristic, we ini-

tially sort stocks based on their LIME local coefficients, and then further

sort stocks within each of these LIME coefficient groups based on the firm

characteristic. This two-step sorting process is meticulously performed for

each firm characteristic, allowing us to construct portfolios that reflect the

moderated influences on stock returns.

Our research aims to understand the complex interactions and moder-

ation effects of individual firm characteristics, considering a specific set of

characteristics simultaneously included in the machine learning model. Our

exploration of firm characteristics similar to Green et al. (2017), simulta-

neously includes a set of characteristics to assess cross-sectional predictive

power. However, our approach diverges by incorporating an analysis of their

interactions, an aspect not addressed in their study. Our study explores the

complex dynamics among firm characteristics. It diverges from Feng et al.

(2020); Freyberger et al. (2020), which examines the incremental contribution

of new factors within a high-dimensional set of existing factors.

Our primary focus of utilizing machine learning models is to unpack

the complex interactions and moderation effects among firm characteristics,

rather than pursuing the “best” predictive model. Building on the premise

established by Gu et al. (2020), which highlighted machine learning’s poten-
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tial in empirical asset pricing through comparative analysis, our study seeks

to deepen the interpretation of these models’ outputs. Unlike other stud-

ies, such as those referenced by Moritz and Zimmermann (2016); Feng, He,

and Polson (2018); L. Chen, Pelger, and Zhu (2023); Cong, Feng, He, and

He (2022), our objective is not to propose new or superior machine learn-

ing applications within empirical asset pricing. Instead, we aim to provide

a nuanced understanding of the underlying dynamics revealed by machine

learning, setting our work apart by focusing on interpretation based on es-

tablished research foundations.

Our framework is rooted in a cross-sectional examination of stock returns,

employing a methodological framework inspired by the Fama-Macbeth style

regression for comparative purposes. This approach not only anchors our

methodology but also provides a context for highlighting how our interpre-

tations, based on machine learning outputs, diverge from existing literature.

While Cong et al. (2022) introduces a novel, interpretable machine learn-

ing method tailored for empirical asset pricing, our interpretation strategy

is model-agnostic, applicable across various machine learning models that

demonstrate strong predictive performance. This flexibility allows us to

explore moderation effects inherent in the models, a feature not confined

to a single method. Furthermore, although studies like Gu et al. (2020);

Demirbaga and Xu (2023) offer model-agnostic interpretations focusing on

identifying the most important firm characteristics in predictions, our anal-

ysis uniquely concentrates on the direct and moderation effects within the
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cross-section of stock returns. We do not prioritize the importance of one

characteristic over another; instead, we deem all characteristics significant

to the extent that they exhibit statistically significant direct and moder-

ate effects. This nuanced interpretation sets our work apart, emphasizing a

comprehensive understanding of the roles these characteristics play in asset

pricing models.

Additionally, our framework evaluates both the collective and individ-

ual impacts of firm characteristics, acknowledging that moderation effects

depend on the specific combination of characteristics in the model. This

individualized testing approach necessitates careful consideration of multi-

ple testing and data-snooping challenges. In line with Harvey, Liu, and Zhu

(2016), we adopt a multiple-testing framework to address these issues dili-

gently, ensuring the integrity of our findings. Similar to Green et al. (2017),

we apply p-value adjustments to control the false discovery rate, thereby

reinforcing the statistical robustness of our results.

Anchored in the Fama-MacBeth regression framework and enhanced by

Local Interpretable Model-agnostic Explanations (LIME), our study gains

further depth by incorporating moderation effects as interpreted from ma-

chine learning models. Our study reveals that an expanded set of firm char-

acteristics becomes significant after considering these moderation effects, in-

dicating that machine learning models with enhanced predictive performance

tend to identify a greater number of characteristics as significant. Building on

this foundation, our analysis uncovers that certain firm characteristics, ini-
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tially not significant in traditional analyses, exhibit substantial significance

within the context of moderation effects. Characteristics such as dollar trad-

ing volume, 12-month momentum, size, return volatility, maximum daily

return, and 6-month momentum, emerge as notably significant when ana-

lyzed through the lens of machine learning models considering moderation

effects. This shift highlights the added value of incorporating moderation ef-

fects in uncovering the nuanced roles these characteristics play in predicting

cross-sectional stock returns.

Our bivariate dependent sort portfolio analysis highlights how modera-

tion effects intricately influence firm characteristics’ predictive power. For

example, size exhibits divergent performances across LIME groups: a uni-

variate sort yields a modest return of -0.726 (t-statistic of -2.394), but de-

pendent sorting within specific groups reveals an average return of 3.791

with a t-statistic of 7, indicating that its predictive power is concentrated

in particular asset segments. Similarly, 6-month momentum, initially show-

ing weak predictive strength with an average return of 0.36 (t-statistic of

1.4), demonstrates significant variances through dependent sorting: the low-

est LIME coefficient group sees a -1.03 return (t-statistic of -3.13), while the

highest group achieves a 1.36 return (t-statistic of 4.39). Such findings in-

dicate that univariate sorts may obscure substantial, opposing effects within

different segments. This nuanced analysis, extendable to more firm charac-

teristics, underscores moderation effects’ vital role in accurately evaluating

firm characteristics’ predictive capabilities.
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Our paper offers a methodological contribution by developing an inno-

vative framework that combines interpretable machine learning to system-

atically analyze the moderation effects of firm characteristics on predicting

cross-sectional stock returns. This new approach makes the application of

machine learning in this field more transparent, revealing complex inter-

actions and non-linear relationships that were previously overlooked. Our

empirical findings offer novel insights, especially on how moderation effects

can inform future asset pricing research. These insights add new dimen-

sions to our understanding of how firm characteristics explain cross-sectional

stock returns. Furthermore, we demonstrate the practical value of our re-

search through a bivariate dependent sort portfolio analysis. This method

illustrates how our findings can enhance investment strategies and portfolio

management.
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2 Firm Characteristics and Cross-Sectional

Expected Returns

Consider an economy with Nt stocks at each discrete time t = 1, · · · , T . For

any given firm i at time t, we denote its next-period excess return from time

t to time t + 1 by ri,t+1. The general factor model for an excess return is of

the form

ri,t+1 = αi,t + β′
i,tft+1 + ϵi,t+1 (1)

where βi,t is a J-dimensional vector representing the risk exposures at time t,

ft+1 is a J-dimensional vector of common factor returns, and ϵi,t+1 represents

the scalar idiosyncratic risk for firm i at time t+1. The idiosyncratic risk is

assumed to have a mean of zero for all firms at any time and is uncorrelated

with the common factor returns, i.e., Et[ϵi,t+1] = Et[ϵi,t+1ft+1] = 0, and the

expected value of the common factor returns is denoted as Et[ft+1] = λt.

Taking the conditional expectation of both sides of Equation (1)and im-

posing the non-arbitrage restriction (which states that αi,t = 0 to prevent

arbitrage opportunities), the model can be simplified to:

Et[ri,t+1] = β′
i,tλt =

J∑
j=1

β
(j)
i,t λ

(j)
t , (2)

where Et[ri,t+1] represents the expected excess return of firm i from time t to

t+ 1.

Informed by the factor model described in Equation (2), we understand
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that the variations in expected returns across assets come from the differences

in risk exposures. This framework forms the basis of our investigation into

firm characteristics. Previous studies have established a strong connection

between observable firm characteristics and the variation in expected stock

returns. Our research aims to extend these findings by thoroughly examining

how these firm characteristics, serving as proxies for risk exposures, help

explain the observed differences in stock returns, particularly through their

interactions.

Let us denote the firm-level characteristics observed at time t for firm i

as ci,t, where ci,t = (c
(1)
i,t , · · · , c

(K)
i,t )′ represents a vector of K characteristics

for each firm. These characteristics are assumed to be orthogonal to the

idiosyncratic shock ϵi,t+1, implying that the expected value of ϵi,t+1 given

ci,t is zero, i.e., E[ϵi,t+1|ci,t] = 0. It is important to note that the number of

observable firm characteristics (K) does not necessarily equate to the number

of factors (J) in our model.

2.1 Current Methods

We first introduce the conventional methodology employed to examine the

cross-sectional relationship between future stock returns ri,t+1 and individual

firm characteristics c
(k)
i,t . This lays the groundwork for our proposed frame-

work, wherein we evaluate each firm characteristics, while also considering

their interactions with other characteristics.
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2.1.1 Univariate Portfolio Analysis

Portfolio analysis is widely used to explore the relationship between firm

characteristics and future stock returns cross-sectionally. This method in-

volves creating portfolios based on varying levels of a firm characteristic and

analyzing the returns of these portfolios over time. Specifically, we focus on

the performance difference between the portfolios at the extreme ends of the

characteristic spectrum for each time period t. The goal is to determine if

this difference, observed over time, significantly deviates from zero. A sig-

nificant deviation from zero suggests a consistent relationship between the

chosen firm characteristic and future stock returns across time periods.

Portfolio sorting, while straightforward and intuitive, is not without sig-

nificant drawbacks, such as the curse of dimensionality. This issue arises as

the quantity of portfolios increases exponentially with the addition of more

characteristics. To illustrate, consider the scenario where there are 10 dis-

tinct characteristics, each divided into 10 quantiles. In this case, the total

number of possible portfolios escalates to 1010.

2.1.2 Fama-MacBeth Regression

Cochrane (2011) highlight that portfolio sorting and nonparametric cross-

sectional regressions share fundamental similarities. Freyberger et al. (2020)

advocate for the utilization of cross-sectional rankings of firm characteristic

values. Specifically, for each characteristic, they introduce the notation c̃
(k)
i,t

to represent the rank transformation of c
(k)
i,t , normalizing the distribution of
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characteristics across firms within the unit interval, such that c̃
(k)
i,t ∈ [−1, 1].

This mathematical framework underpins our analysis, aligning with the es-

tablished equivalence of the methodologies discussed.

Parallel to the portfolio analysis, nonparametric Fama-MacBeth regres-

sion analysis is an alternative statistical method designed to examine the

cross-sectional relation between firm characteristics and future returns. Fama-

MacBeth regression analysis is implemented using a two-step procedure. The

first step is to run periodic cross-sectional regression of the future return ri,t+1

on transformed firm characteristics c̃
(k)
i,t for each period t.

ri,t+1 = δ0,t +
K∑
k=1

δk,tc̃
(k)
i,t + ϵi,t (3)

The second step is to compute the time-series average of the cross-sectional

regression coefficients δk,t for each firm characteristic k. To examine whether

a firm characteristic c
(k)
i,t can predict the cross-sectional stock return, we test

whether the average coefficient δ̄k =
1
T

∑T
t=1 δk,t is statistically different from

zero. The economic magnitude of the cross-sectional relation between firm

characteristic c
(k)
i,t and expected future return is reflected by the average of the

coefficient δ̄k. This average represents the expected change in future returns

resulting from a one-unit change in c̃
(k)
i,t .

This prevailing framework typically assumes an additive model. A critical
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limitation of any additive model is articulated in the following restriction:

∂ri,t+1

∂c(k)∂c(k′)
= 0 (4)

for all k ̸= k′. This constraint signifies that additive models do not accom-

modate interdependencies between characteristics unless explicitly specified.

2.2 Machine Learning in Empirical Asset Pricing

In empirical asset pricing, machine learning offers a markedly different ap-

proach. Rather than assume a restricted functional form between the future

return and the firm characteristics, machine learning directly targets the esti-

mation of the conditional expected return function g(·) as a black box, devoid

of any presupposed functional form. This is encapsulated in the equation:

Et[ri,t+1] = g(c̃i,t) (5)

Here we impose the same assumptions as Gu et al. (2020):

a. The function g(·) depends neither on i nor t. The model maintains the

same form over time and across different stocks.

b. The function g(·) depends on c̃ only through c̃i,t. The prediction does

not use information from history before time t or from individual stocks

other than i.
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The machine learning model, by approximating the conditional mean

function without assuming any specific functional form, generalizes the non-

parametric Fama-MacBeth regression. Its flexibility surpasses that of the

portfolio sorts method, as it does not confine returns within a portfolio. Ad-

ditionally, it transcends the limitations of the regression approach by not

adhering to an additive structure between characteristics and excess return,

and by allowing for cross-dependencies between characteristics. However, this

flexibility comes at the cost of economic interpretability, notably in terms of

explicating the nature of risk exposures β and risk premium λ.

Gu et al. (2020) conducted an extensive analysis of various machine learn-

ing methods within the context of empirical asset pricing. Their findings

indicate the promise of machine learning in terms of predictive performance.

Nonetheless, the challenge of interpretability remains a significant hurdle in

the application of these models. Our research contributes to this discourse by

introducing a novel approach to interpreting the cross-sectional relationship

between firm characteristics and expected returns.

2.3 Interpreting Machine Learning Models with LIME

LIME represents a groundbreaking algorithm that elucidates the predictions

of any machine learning model by approximating it locally with an inter-

pretable, typically linear, model (Ribeiro, Singh, & Guestrin, 2016b). For-

mally, we define an explanation of a prediction from a machine learning

model g for stock i at time t as an interpretable linear model gi,t(z). z is a
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K-dimensional vector representing the same set of observable firm character-

istics as c̃i,t. However, z is not observed from the real world but simulated

from the historical distribution. The proximity measure πc̃i,t(z) quantifies

the closeness of an instance z to c̃i,t, so as to define the locality πc̃i,t around

c̃i,t.

E[g(z)] = gi,t(z) z ∈ πc̃i,t (6)

gi,t(z) = ai,t +
K∑
k=1

b
(k)
i,t z

(k) (7)

We employ the loss function L(f, g, π) be a measure of how effectively gi,t(·)

approximates g(·) within the defined locality πx. The explanation gi,t(·) is

obtained by minimizing L. So L is a loss function, and here we use l2 loss.

For each observation c̃i,t, we aim to estimate K+1 unknown parameters.

This involves generating random samples zm, m = 1, · · · ,M in the vicinity of

c̃i,t. Each sample zm yields a machine learning prediction ym = f(zm), serving

as a target for the explanatory model gi,t. Using the generated dataset Zi,t =

(z1, z2, · · · , zM)′ around c̃i,t and associated labels Yi,t = (y1, y2, · · · , yM)′,

where ym = g(zm), an OLS regression is conducted to obtain the local in-

tercept ai,t, and local coefficients bi,t. The regression equation is represented

as:

ym = ai,t +
K∑
k=1

b
(k)
i,t z

(k) + em zm ∈ πci,t (8)

It’s important to note that while zm represents a set of firm characteristics,
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an actual firm possessing this exact set may not exist. The value ym denotes

the prediction from the machine learning mode g differing from the true

excess return rm, which remains unobservable to us.

In the context of a complex, black-box machine learning mode g, the

functional form and parameters remain elusive and non-interpretable. How-

ever, with the application of LIME, the local linear surrogate model and its

parameters become accessible for interpretation. A machine learning model

g approximates the conditional mean function of the expected return, while

the local surrogate model gi,t approximates g in the vicinity of observation

ci,t. The coefficients bi,t in local model gi,t are not time-varying variables but

constant parameters linked to the specific observation ci,t

Et[ri,t+1] = g(ci,t) = gi,t(ci,t) + ei,t (9)

While the local surrogate model gi,t(·) provides a means to approximate ex-

pected excess returns, it potentially introduces a larger error term compared

to the original machine learning model g(·). Thus, while we utilize the ma-

chine learning model for predicting expected returns, the local coefficients

b
(k)
i,t offer valuable insights for analyzing firm characteristics.

2.4 Moderation Effect

Moderation analysis, similar to including an interaction term in regression,

explores when or under what conditions a relationship between two variables
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exists or changes in strength or direction. In this context, the moderator,

W, interacts with the relationship between X and Y to identify when X

influences Y. In our asset pricing framework,Y represents future stock re-

turns (ri,t+1), and X denotes a specific firm characteristic (c(k)). The LIME

local coefficient for the same firm characteristic, b
(k)
i,t , acts as a moderator

by summarizing the feature interactions within the machine learning model.

Rather than directly regressing ri,t+1 on c
(k)
i,t to examine the relationship be-

tween stock returns and firm characteristics, we also incorporate the LIME

local coefficient b
(k)
i,t as a moderator.

The baseline regression model is univariate Fama-MacBeth regression in

Equation (3)

ri,t+1 = a+ δk,tc
(k)
i,t + ε (10)

where δk,t quantifies the direct impact of firm characteristic k on the one-

month-ahead stock return. The change in the estimate of excess return for

a one-unit change in firm characteristic k is δk,t. If δk,t is statistically signifi-

cantly different from 0, we conclude that the firm characteristic k significantly

predicts future expected returns.

To account for the moderation effect suggested by the machine learning

model, we conduct a LIME-adjusted regression:

ri,t+1 = a+ δk,tc
(k)
i,t + γk,tb

(k)
i,t c

(k)
i,t + ξk,tb

(k)
i,t + ε (11)

where the adjusted estimate of excess return for a one-unit change in firm
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characteristic k becomes δk,t + γk,tb
(k)
i,t . The influence of firm characteristic k

on future excess returns depends on other firm characteristics, as captured

by the LIME local coefficient b
(k)
i,t .

In this case, we examine two coefficients: δk,t for the direct impact, and

γk,t for the moderation effect.
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3 Empirical Results

Our empirical analysis aims to identify how many and which among a set of

firm characteristics significantly influence one-month-ahead returns, partic-

ularly when we challenge the traditional assumptions of independence and

linearity. To achieve this, we utilize machine learning models, which allow

nonlinearity and interaction to include all firm characteristics in the model

simultaneously, and interpret the black-box model with the LIME local coef-

ficient. Following this, we perform a cross-section LIME-adjusted moderation

regression, as detailed in Equation (13).

3.1 Dataset

Our sample period for the empirical study spans 58 years, from January 1964

to December 2021. We strategically divide the full dataset into three distinct

segments: a 13-year training sample (1964-1976), a 12-year validation sample

(1977-1988), and a 33-year out-of-sample testing sample (1989-2021).

For our machine learning models, we adopt an annual refitting strategy.

Each year, we expand the training sample by one year and roll the validation

sample forward by the same duration, maintaining a consistent validation

period of 12 years.

Monthly equity return data is sourced from CRSP, and we use the one-

month Treasury bill rates from the Kenneth French Data Library as the

risk-free rate for calculating excess returns.
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The firm-level characteristics used in our analysis match those referenced

by Gu et al. (2020) and Green et al. (2017)1. For these characteristics, we

conduct a monthly cross-sectional ranking, transforming these rankings into

quantiles and normalizing them to fit within the [−1, 1] range. To man-

age missing values, we substitute them with the cross-sectional median for

each stock within the same month, ensuring our dataset’s consistency and

integrity. It’s important to highlight that early historical records do not

include some firm characteristics of all stocks. When we address this by

imputing a median value of 0 for missing entries before performing cross-

sectional linear regression, we encounter a challenge: the firm characteristics

become uniformly valued (i.e., missing = 0). To enable a meaningful com-

parison between our machine learning models and linear models with the

same set of characteristics, we selectively reduced our dataset from 94 to 72

characteristics. This selection process, which deviates from the approaches

of Gu et al. (2020) and Green et al. (2017), maximizes our sample size. The

72 chosen characteristics are detailed in Table C.1.

3.2 Machine Learning Models

In our empirical analysis, we utilized two examples of machine learning mod-

els to interpret the implied moderation effects. The first, a Neural Network

model with three hidden layers (NN3), excels at identifying complex nonlin-

earities and interactions, making it highly effective for analyzing the intricate

1The firm-level characteristics data are available from Dacheng Xiu’s website.
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dynamics of stock returns. The second, a Random Forest model (RF), com-

bines multiple decision trees to enhance prediction accuracy. This model is

celebrated for its robust approach to nonlinearity and ability to integrate

varied predictions, offering a comprehensive view of the outcomes.

In the study conducted by Gu et al. (2020), both the NN3 and RF models

are identified as top-performing techniques. Our research focuses on inter-

preting these advanced black-box models. It’s important to note that when

we mention the NN3 and RF models, we are referring to the specific versions

we have trained, rather than the general methodologies. Our conclusions are

drawn from the results of our specific implementations, not from the general

techniques themselves. Although our NN3 and RF models were trained using

methods very similar to those employed by Gu et al. (2020), they may differ

significantly from Gu et al. (2020)’s models and consequently yield distinct

predictions.

We compare the predictive performance of traditional linear models with

machine learning approaches, specifically Neural Networks (NN3) and Ran-

dom Forest (RF), against a naive benchmark. Consistent with existing liter-

ature, our findings confirm the efficacy of machine learning models in finan-

cial prediction. Both NN3 and RF models demonstrated superior predictive

ability over linear models, with NN3 exhibiting the highest overall predic-

tive performance based on out-of-sample R-squared values. Detailed results

of the comparative analysis in terms of predictive performance are included

in the Appendix A. The enhanced performance of machine learning models
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underscores their potential for capturing complex, non-linear relationships in

stock returns, motivating our further exploration through LIME for interop-

erability.

3.3 Multiple Testing and p-value Adjustment

When evaluating if firm characteristics are consistently related to expected

returns, we consider the potential for inferential biases due to data snooping.

Our analysis risks incorrectly rejecting the null hypothesis for certain char-

acteristics by chance, given our aim to examine the significance of individual

firm characteristics. This issue of multiple testing is well-documented in re-

search literature (Harvey et al., 2016; Green et al., 2017). Similar to Green et

al. (2017), our concern lies in the possibility of mistakenly identifying a char-

acteristic as significant due to conducting multiple analyses with the same

dataset. To mitigate this bias from multiple testing, we adjust p-values for

the false discovery rate using Benjamini-Hochberg-Yekutieli’s method.

The Benjamini-Hochberg-Yekutieli adjustment is a sequential technique

to control the false discovery rate (FDR). It involves comparing each p-value,

starting from the smallest, against a threshold determined by its rank and

the total number of tests, adjusting for dependencies among test statistics.

Specifically, a null hypothesis is rejected if its p-value is less than i
K
αd, where i

is the p-value’s rank. This step-up procedure sorts p-values in ascending order

and sequentially tests them against adjusted thresholds. This approach, less

stringent than methods controlling the family-wise error rate (FWER), seeks
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a balance between minimizing Type I and Type II errors.

We adopt a 5% significance level for our analysis, aiming to rigorously

identify truly significant firm characteristics while controlling for the risk of

false discoveries.

3.4 Lime-adjusted Regression Analysis

We begin by establishing a conventional baseline for comparison with our

LIME-adjusted Moderation results, which integrates Machine Learning (ML)

for interpretation. This baseline is crucial, serving as a benchmark to gauge

the added insights our ML approach contributes. It involves performing

univariate Fama-MacBeth regressions as in Equation (12) for each of the 72

firm characteristics, conducting a monthly cross-sectional regression during

the out-of-sample period and averaging the coefficients δk,t over time, δ̄k =∑
T3 δk,t. T3 is the set of testing samples, where the data never enter into

model estimation or tuning.

ri,t+1 = a+ δk,tc
(k)
i,t + ε (12)

The analysis presented in Table 1 reveals that, after adjusting for multiple

testing through p-values, 16 firm characteristics emerge as statistically sig-

nificant in the Fama-MacBeth regression analysis (left column of the table).

The table also shows the average direct impacts (δ̄k) and the corresponding

t-statistics, analyzed through NN3 and RF models considering the modera-

24



tion effects (middle and right columns, respectively), for the same set of firm

characteristics.

ri,t+1 = a+ δk,tc
(k)
i,t + γk,tb

(k)
i,t c

(k)
i,t + ξk,tb

(k)
i,t + ε (13)

Upon incorporating moderation effects as interpreted by the NN3 model, 11

out of the 16 characteristics remain significant in their direct effects. How-

ever, Industry-adjusted change in profit margin(chempia), growth in com-

mon shareholder equity(egr), employee growth rate(hire), industry momen-

tum(indmom), and sales to price(sp) loses their significance after adjusting

for the false discovery rate and considering moderation effects. Similarly,

when evaluating direct effects through the RF model, 14 characteristics re-

tain their significance. In this context, industry-adjusted cash flow to price

ratio(cfp ia) and 1-month momentum(mom1m) do not maintain their sta-

tistical significance after adjustments for the false discovery rate and account-

ing for moderation effects in the RF model.
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Table 1: Firm Characteristics Significant in Direct Effect

Fama-MacBeth NN3 RF
mean t-stats mean t-stats mean t-stats

agr 0.656 5.012 agr 0.358 3.425 agr 0.732 4.834
cfp ia 0.319 3.107 cfp ia 0.359 3.958 cfp ia 0.33 3.194
chcsho -0.389 -3.792 chcsho -0.413 -3.419 chcsho -0.401 -3.96
chempia -0.289 -3.591 chempia -0.194 -2.446 chempia -0.285 -3.59
chinv -0.343 -4.441 chinv -0.278 -4.037 chinv -0.372 -4.477
egr -0.454 -3.736 egr -0.283 -2.583 egr -0.459 -3.615
grcapx -0.339 -4.341 grcapx -0.356 -4.502 grcapx -0.344 -4.369
grltnoa -0.418 -4.279 grltnoa -0.337 -3.854 grltnoa -0.435 -4.152
hire -0.397 -4.564 hire -0.251 -3.000 hire -0.406 -4.729
indmom 0.408 3.273 indmom 0.452 2.905 indmom 0.648 3.796
invest -0.411 -4.024 invest -0.364 -4.215 invest -0.459 -3.841
lgr -0.359 -5.573 lgr -0.289 -4.433 lgr -0.38 -5.568
mom1m -0.531 -4.522 mom1m 0.667 3.447 mom1m -0.843 -2.084
pctacc -0.243 -3.294 pctacc -0.222 -3.206 pctacc -0.251 -3.363
sgr -0.39 -5.401 sgr -0.332 -4.707 sgr -0.431 -5.116
sp 0.517 3.193 sp 0.394 2.391 sp 0.594 3.233

This table reports the average univariate regression coefficients (δ̄k) for firm char-
acteristics that are statistically significant with the baseline model at the 5% level,
after Benjamini-Hochberg-Yekutieli (BHY) p-value adjustment for multiple testing.
The columns under Fama-MacBeth, NN3, and RF display the average regression co-
efficients δ̄k and their respective t-statistics, averaged over the out-of-sample period.
These coefficients quantify the estimated direct linear impact of each firm character-
istic on stock returns. T-statistics are provided to assess the statistical significance of
the coefficients.

Table 2 showcases additional firm characteristics deemed significant by

the NN3 and RF models for their direct effects on future stock returns, tak-

ing into account moderation effects. Both models conclusively found that

size(mvel1) significantly explains one-month-ahead stock returns. Beyond

these, the NN3 model highlighted 3 other firm characteristics, dollar trad-

ing volume(dolvol), 12-month momentum(mom12m), and return volatil-

ity(retvol) with significant direct impacts.
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Table 2: Firm Characteristics Significant in Direct Effect

NN3 RF
mean t-stats mean t-stats

dolvol 0.996 4.733 mvel1 -0.967 -4.027
mom12m 0.686 4.025
mvel1 0.774 4.426
retvol 0.952 3.619

This table presents additional firm characteristics that have been identified as sig-
nificant at the 5% significance level, after adjusting for multiple testing using the
Benjamini-Hochberg-Yekutieli (BHY) procedure, within NN3 and RF LIME-adjusted
moderation regressions. The table enumerates the mean coefficients, which represent
the direct effects of these characteristics on stock returns, alongside their associated
t-statistics. The values are averaged over the out-of-sample period. The reported t-
statistics aid in determining the reliability of the coefficients’ estimates, with all listed
characteristics surpassing the significance threshold set forth by the BHY adjustment
method.

Table 3 illustrates the firm characteristics identified by the NN3 model

(Neural Network 3) as having significant moderation effects. According

to the NN3 model, 13 firm characteristics exhibit significant moderation

effects, with 4 of these, dollar trading volume(dolvol), 1-month momen-

tum(mom1m), size(mvel1), and return volatility(retvol) also showing sig-

nificance in both direct and moderation impacts.
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Table 3: Firm Characteristics Significant in Moderation Effect(NN3)

NN3 δ̄k NN3 γ̄k
mean t-stats mean t-stats

betasq 0.075 0.313 -1.538 -4.069
chmom 0.239 2.28 0.533 4.302
dolvol 0.996 4.733 2.456 4.221
ep 0.328 1.253 -1.8 -3.401
ill -0.124 -0.784 -1.152 -3.246
maxret 0.737 3.132 1.023 3.592
mom12m 0.686 4.025 1.176 3.335
mom1m 0.667 3.447 1 4.195
mom6m -0.287 -1.688 2.272 5.878
mvel1 0.774 4.426 1.779 4.877
retvol 0.952 3.619 2.019 4.175
std dolvol 0.032 0.298 -1.688 -3.569
turn 0.575 2.878 0.827 4.307

This table presents the NN3 LIME-adjusted regression coefficients, focusing on the
moderation effects (γ̄k) of firm characteristics that are statistically significant at the
5% level after BHY p-value adjustments for multiple comparisons. We report both the
direct linear effects (δ̄k) and the significant moderation effects (γ̄k), along with their
corresponding mean coefficients and t-statistics. The bold figures indicate statistically
significant values. It is important to note that the table exclusively reports firm
characteristics significant in the moderation effect (γ̄k), providing a focused view of
how these characteristics interact with other variables to influence stock returns within
the RF model framework.

Similarly, Table 4 details the findings from the RF model, highlighting

5 firm characteristics with significant moderation effects. They are industry

momentum(indmom), maximum daily return(maxret), 6-month momen-

tum(mom6m), size(mvel1), and return volatility(retvol). Out of which,

industry momentum(indmom) and size(mvel1) exhibit significance in both

direct and moderation effects.
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Table 4: Firm Characteristics Significant in Moderation Effect(RF)

RF δ̄k RF γ̄k
mean t-stats mean t-stats

indmom 0.648 3.796 -5.817 -3.384
maxret 0.873 2.824 5.924 4.3
mom6m -0.057 -0.365 9.137 3.787
mvel1 -0.967 -4.027 9.507 4.325
retvol 0.839 2.704 13.671 4.964

This table presents the NN3 LIME-adjusted regression coefficients, focusing on the
moderation effects (γ̄k) of firm characteristics that are statistically significant at the
5% level after BHY p-value adjustments for multiple comparisons. We report the direct
linear effects (δ̄k) and the moderation effects (γ̄k) of firm characteristics. The analysis
reports the mean coefficients and their associated t-statistics, which are derived from
firm characteristics deemed significant at a 5% level after BHY p-value adjustments
for multiple comparisons. Bold figures represent statistically significant coefficients.

Notably, maximum daily return(maxret), 6-month momentum(mom6m),

size(mvel1), and return volatility(retvol), are recognized for their significant

moderation effects by both the NN3 and RF models.

Despite the differences in direct and moderation effect outcomes, which

stem from the inherent differences between the NN3 and RF models, a consis-

tent pattern emerges. Certain firm characteristics are robustly identified as

significant across both models. This observation underscores a foundational

consistency. These characteristics likely represent fundamental aspects of

stock returns that are robust across different analytical approaches. However,

the divergence in the number of characteristics identified and the specifics

of direct and moderation effects reflects the models’ unique capabilities and

biases. NN3’s broader identification suggests a sensitivity to complex, non-

linear relationships, while RF’s more conservative identification hints at its
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emphasis on broad, generalizable patterns.

Figure 1: Significant Level Cut Off
This figure depicts the number of firm characteristics identified as statis-
tically significant, either through direct or moderation effects, at vary-
ing false discovery rate (FDR) significance levels ranging from 0 to 10%.
The analysis compares the baseline univariate regression against more
complex models, including NN3 LIME-adjusted moderation regression
and RF LIME-adjusted moderation regression. The y-axis quantifies
the count of significant characteristics, while the x-axis represents the
incrementally adjusted significance thresholds.

Figure 1 illustrates how the number of coefficients recognized as signif-

icant varies across different levels of statistical significance. Near the 5%

significance level, the trend lines stabilize and become relatively flat. Within

a significance level range of (0, 10%), the NN3 LIME-adjusted moderation

regression consistently identifies more significant firm characteristics than

both the RF LIME-adjusted regression and the baseline univariate regres-

sion model. This finding underscores that machine learning LIME-adjusted

regression analysis is capable of uncovering nonlinear and interactive effects
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that predict future cross-sectional returns—effects that conventional univari-

ate regression analyses may miss. Importantly, this insight remains robust

across different significance levels, indicating that the effectiveness of machine

learning models in identifying these effects is not significantly influenced by

the choice of significance threshold.

3.5 Bivariate Dependent Sort Portfolio Analysis

Portfolio analysis is another common method used to assess the predictabil-

ity of future returns based on firm characteristics and to understand the

cross-sectional relationships among these characteristics. It’s established

that sorting portfolios by characteristics equates to nonparametric regres-

sion (Freyberger et al., 2020). In this section, we aim to incorporate the

LIME local coefficient derived from machine learning models(NN3 and RF)

into our portfolio analysis to demonstrate the moderation effects.

Parallel to regression analysis, we set a baseline model. Throughout our

out-of-sample period, we sort stocks into equal-weighted 5 portfolios based

on one firm characteristics. We focus on the performance of zero-cost long-

short portfolios, which involve going long on the top quintile and short on

the bottom quintile. Significant differences from zero in these long-short

portfolio returns suggest the predictive power of the characteristic.

To effectively integrate LIME local coefficients as moderators in our port-

folio analysis, we employ bivariate dependent-sort portfolio analysis. This

approach allows us to examine the relationship between firm characteristics,
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LIME local coefficients, and expected returns. Specifically, our analysis fo-

cuses on those firm characteristics deemed significant within a LIME-adjusted

moderation regression framework, listed in Table 3 and Table 4 for NN3

model and RF model respectively.

For each period analyzed, we started by dividing stocks into 5 distinct

groups based on their LIME local coefficient, b
(k)
i,t , and then further sorting

them into 5 subgroups by firm characteristics,c
(k)
i,t within each LIME group.

This sorting results in the formation of 5× 5 dependent sort equal-weighted

portfolios.

We then proceed to calculate the average excess return for each of these

5 × 5 portfolios over the out-of-sample period, including their respective t-

statistics. For each LIME group, we also analyze the average return and

t-statistics for the zero-cost long-short portfolios, which are based on going

long the highest and short the lowest firm characteristics subgroups.

Table 5 presents the result from the bivariate dependent sort portfolio

analysis, focusing on firm characteristics identified as significant in a mod-

eration effect with NN3 model. Each column shows the average return of

the long-short portfolio within each LIME group and the corresponding t-

statistics. Each row represents a level of LIME local coefficients, with the

final row showing the results of the baseline long-short portfolio result with-

out this control. This detailed analysis demonstrates how LIME coefficients

adjust the cross-sectional relationship between the firm characteristics and

expected returns.
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Table 5: Bivariate Dependent Sort Portfolio Analysis(NN3)

maxret retvol betasq ep turn mom6m mom12m

LIME1 -0.325 -1.011 0.235 0.38 -1.691 -1.027 -0.711
(-1.013) (-2.804)** (0.524) (0.926) (-5.427)*** (-3.133)* (-1.493)

LIME2 0.372 0.041 0.187 0.144 -0.237 0.255 1.29
(1.445) (0.133) (0.516) (0.485) (-0.785) (1.143) (4.388)***

LIME3 0.512 0.635 0.186 0.164 0.292 0.276 1.231
(2.046)* (2.114)* (0.503) (0.618) (0.922) (1.343) (5.07)***

LIME4 0.893 0.876 0.093 -0.091 0.325 0.59 1.293
(3.609)** (3.191)** (0.233) (-0.328) (1.308) (2.377)* (5.225)***

LIME5 1.412 2.823 -0.415 -1.194 0.393 1.36 1.287
(3.656)** (5.651)*** (-1.193) (-2.554)* (2.259)* (4.397)*** (3.379)***

baseline 0.020 0.166 0.214 -0.236 -0.281 0.36 0.515
(0.052) (0.402) (0.554) (-0.667) (-0.962) (1.398) (1.639)

ill std dolvol chmom mvel1 dolvol mom1m

LIME1 2.096 1.095 -0.773 -3.791 -2.776 -3.249
(4.365)*** (3.948)*** (-3.261)** (-7.039)*** (-7.646)*** (-5.539)***

LIME2 0.545 0.155 -0.054 -0.17 -0.234 -0.904
(2.089)* (0.923) (-0.266) (-0.747) (-0.907) (-4.161)***

LIME3 0.312 0.05 -0.136 0.072 0.332 -0.384
(1.335) (0.357) (-0.789) (0.406) (1.418) (-2.875)**

LIME4 0.127 0.055 -0.091 0.15 0.113 -0.027
(0.63) (0.338) (-0.503) (0.996) (0.572) (-0.193)

LIME5 0.396 -0.225 0.208 0.096 0.343 0.356
(1.94) (-1.254) (1.093) (0.754) (2.351)* (1.525)

baseline 0.427 0.338 -0.471 -0.726 -0.7 -0.956
(1.862) (1.951) (-2.305)* (-2.394)* (-3.191)** (-4.55)***

This table presents simple average returns and t-statistics for long-short portfolios,
generated through bivariate dependent sorting. Stocks are first grouped into five cat-
egories based on their LIME coefficients generated based on the NN3 model, then
further sorted within these groups by specific firm characteristics. The table specifi-
cally reports performance metrics for long-short portfolios within each LIME grouping.
This table incorporates 13 firm characteristics identified by the NN3 model as signif-
icant moderators, the table is structured with each column dedicated to one of these
characteristics. Rows correspond to different LIME groups, offering a clear view on
how varying levels of LIME coefficients interact with firm characteristics to influence
stock returns. A baseline row at the bottom provides comparison results.
Significance codes: *, **, and ***Significant at the 5%, 1%, and 0.1% levels, respec-
tively.

There are 13 firm characteristics identified as significantly moderated by

the LIME local coefficient, as derived from the NN3 model. Among these,
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only 4 characteristics show significant predictability in the baseline univari-

ate sort long-short portfolios with a 5% confidence level without p-value

adjustment for multiple testing. When adjusting for the LIME local coef-

ficient from the NN3 model, the link between firm characteristics and ex-

pected returns becomes more pronounced. The baseline model of change of

6-month momentum(chmom) indicates a negative relationship between size

and expected return, with a long-short portfolio having an average monthly

return of -0.471% and a t-statistic of -2.305. However, under LIME adjust-

ment, the strongest negative relationship at the lowest LIME local coefficient

group(LIME1), showing an average return of -0.773% with a t-statistic of

-3.261. For other LIME groups, variations are not significant under a 5% sig-

nificant level. Dollar trading volume(dolvol) in the baseline model yields an

average excess return of -0.7% with a t-statistics of -3.494. The strongest neg-

ative relationship at the lowest LIME local coefficient group(LIME1), show-

ing an average return of -2.776% with a t-statistic of -7.646. Remarkably,

at the highest LIME coefficient group (LIME5), this relationship reversed

to an average return of 0.343% with a t-statistics of 2.351. Similar pat-

terns are observed with 1-month momentum(mom1m). The baseline model

presents a significant negative relationship with long-short portfolios yield-

ing an average monthly return of -0.956% and a t-statistics of -4.55. With

LIME adjustment, the negative relationship intensified in the lowest LIME

group(LIME1) resulting in an average return of -3.249% and a t-statistics

of -5.539. Conversely, in the highest LIME group(LIME5), the relationship
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flips. Size(mvel1) also follows this pattern. The baseline model indicates

a negative relationship between size and expected return, with a long-short

portfolio having an average monthly return of -0.726% and a t-statistics of

-2.394. This difference primarily originates from the higher return of the

lowest size level, while returns from groups 2 to 5 remain similar. However,

under LIME adjustment, the lowest LIME group(LIME1) shows a significant

decrease in portfolio returns as size increases, with long-short portfolios av-

eraging -3.791 monthly return and a t-statistics of -7.039. For other LIME

groups, variations are not significant.

The baseline model reveals distinct patterns for illiquidity (ill), 12-month

momentum (mom12m), 6-month momentum (mom6m), and volatility of

dollar trading volume (std dolvol) with a 10% confidence level without p-

value adjustment for multiple testing. However, when we apply multiple

testing corrections across 72 firm characteristics for sorted long-short port-

folios, these returns no longer appear significant after adjusting p-values.

Yet, by adjusting for LIME local coefficients, some LIME groups display

a strengthened relationship, evidenced by higher t-statistics for the long-

short portfolios. Specifically, illiquidity (ill) in the LIME1 group exhibits a

notable positive relationship, with a 2.096% return and a 4.365 t-statistic,

surpassing the baseline’s 0.427% return and 1.862 t-statistic. For 12-month

momentum, LIME groups 2 to 5 show enhanced positive relationships, each

outperforming the baseline in terms of returns and t-statistics. However, the

LIME1 group’s relationship with 12-month momentum is negatively aligned
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but insignificantly so. The baseline model’s positive association with 6-month

momentum, indicating a 0.36% return and a 1.398 t-statistic, is significantly

strengthened in the LIME5 group, which shows a 1.36% return and a 4.397

t-statistic, while a negative relationship is observed in the LIME1 group,

with a -1.027% return and a -3.133 t-statistic. Lastly, for the volatility of

dollar trading volume (std dolvol), the baseline model’s positive relation-

ship, yielding a 0.338% return and a 1.951 t-statistic, is markedly stronger

in the LIME1 group, showing a 1.095% return and a 3.948 t-statistic after

adjusting for LIME coefficients.

In the baseline model, earnings to price (ep), maximum daily return

(maxret), return volatility (retvol), and share turnover (turn) displayed

no significant patterns. Adjusting for LIME local coefficients, however, re-

veals significant patterns in certain LIME groups. For Earnings to Price

(ep), groups LIME1 to LIME3 exhibited a negative relationship with ex-

pected returns, which reverses in groups LIME4 and LIME5, notably within

LIME5, where the long-short portfolio returned -1.194% with a t-statistic of

-2.554. With maximum daily return (maxret), LIME1 displayed a negative

pattern, whereas LIME4 and LIME5 showed a positive, significant relation-

ship, with portfolio returns of 0.893% and 1.412%, and t-statistics of 3.609

and 3.656, respectively. For return volatility (retvol), LIME1 presented a

notable negative pattern, with the long-short portfolio returning -1.011% and

a t-statistic of -2.804, while LIME5 indicated a strong positive relationship,

with a return of 2.823% and a t-statistic of 5.651. Lastly, share turnover
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(turn) in LIME1 exhibited a significant negative relationship, with returns

of -1.691% and a t-statistic of -5.427, whereas LIME5 demonstrated a sig-

nificant positive relationship, with a return of 0.393% and a t-statistic of

2.259.

In the baseline analysis, beta squared (betasq) does not exhibit signifi-

cant cross-sectional patterns. However, the scenario shifts dramatically upon

adjusting for LIME local coefficients, which illuminate significant patterns

across diverse LIME groups. Specifically, while the baseline analysis for beta

squared(betasq) presents a slightly positive long-short portfolio return, the

LIME-adjusted findings depict a more complex scenario. LIME1 through

LIME4 groups show varying degrees of positive H-L differences, suggesting

a mild positive moderation effect, particularly in LIME3 with a 0.186 H-L

difference and a 0.503 t-statistic. However, in a significant shift, the LIME5

group exhibits a negative long-short portfolio return of -0.415 with a -1.193 t-

statistic, indicating a pronounced negative impact on returns as Beta Squared

increases, a stark contrast to the other groups.
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Table 6: Bivariate Dependent Sort Portfolio Analysis(RF)

indmom maxret mom6m mvel1 retvol

LIME1 0.867 -0.563 -0.380 -3.723 -0.780
(3.227)** (-2.450)* (-1.256) (-7.319)*** (-2.782)**

LIME2 0.576 -0.01 0.409 -0.800 -0.187
(2.339)* (-0.027) (1.481) (-4.192)*** (-0.493)

LIME3 0.347 0.799 0.325 -0.022 0.628
(1.353) (2.060)* (1.185) (-0.214) (1.396)

LIME4 0.265 0.583 0.599 0.011 1.160
(1.269) (2.452)* (2.304)* (0.072) (3.462)***

LIME5 0.086 0.523 0.623 0.100 1.062
(0.513) (2.620)** (2.218)* (0.806) (3.889)***

baseline 0.705 0.020 0.360 -0.726 0.166
(2.900)** (0.052) (1.398) (-2.394)* (0.402)

This table presents simple average returns and t-statistics for long-short portfolios,
generated through bivariate dependent sorting. Stocks are first grouped into five
categories based on their LIME coefficients generated by RF model, then further sorted
within these groups by specific firm characteristics. The table specifically reports
performance metrics for long-short portfolios within each LIME grouping.
This table incorporates 5 firm characteristics identified by the RF model as significant
moderators, the table is structured with each column dedicated to one of these char-
acteristics. Rows correspond to different LIME groups, offering a clear view of how
varying levels of LIME coefficients interact with firm characteristics to influence stock
returns. A baseline row at the bottom provides comparison results.
Significance codes: *, **, and ***Significant at the 5%, 1%, and 0.1% levels, respec-
tively.

Table 6 present findings from a bivariate dependent sort portfolio analy-

sis, focusing on firm characteristics with significant moderation effects when

using the RF model. This analysis parallels the NN3 model’s findings, re-

vealing similar patterns across four specific firm characteristics. In terms

of the industry momentum(indmom), the baseline model reveals significant

patterns. However, after p-value adjustment for multiple testing 72 firm
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characteristics for sorted long-short portfolios, these returns no longer ap-

pear significant. Yet, by adjusting for LIME local coefficients, the LIME1

group demonstrates the most pronounced positive relationship, showing a

long-short portfolio return of 0.867% and a t-statistic of -3.227, compared to

the baseline’s 0.705% return and 2.9 t-statistic.

Notably, both models identify these characteristics as significantly mod-

erated by LIME coefficients. For maximum daily return(maxret), in con-

trast to the baseline model’s lack of significance, the LIME1 group reveals a

notable negative relationship, while the LIME4 and LIME5 groups exhibit

positive relationships. Specifically, the LIME1 group’s long-short portfolio re-

turn difference is -0.563% with a t-statistic of -2.45, showcasing a significant

departure from the baseline. Conversely, LIME4 and LIME5 groups show

positive long-short portfolio returns of 0.583% and 0.523%, with t-statistics

of 2.452 and 2.62, respectively, indicating robust positive moderation effects.

For 6-month momentum(mom6m), the LIME1 group displays a negative

association, whereas a stronger positive relationship emerges in the LIME5

group. The long-short portfolio return for LIME5 is 0.623% with a t-statistic

of 2.218, underscoring the significant positive effect in higher LIME groups.

In terms of size(mvel1), a pronounced negative relationship is observed in

the LIME1 and LIME2 groups, with the LIME1 group showing a striking

long-short portfolio return of -3.723% and a t-statistic of -7.319, highlight-

ing a strong negative moderation effect. Lastly, for return volatility(retvol),

LIME1 exhibits a significant negative pattern, whereas LIME4 and LIME5
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groups demonstrate significant positive relationships. The LIME5 group, in

particular, shows a long-short portfolio return of 1.062% with a t-statistic of

3.889, indicating a significant positive moderation effect.
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4 Conclusion

In this paper, we explore the concept of moderation effects—specifically, how

the relationship between a firm characteristic and cross-sectional stock re-

turns changes when considering many other characteristics. We introduce a

framework that combines machine learning models with Local Interpretable

Model-agnostic Explanations (LIME) to dissect these effects. Our method-

ology begins by training a machine learning model to predict stock returns

using a comprehensive set of firm characteristics. We then apply LIME to

this model to systematically uncover the moderation effects. The culmina-

tion of our approach is a LIME-adjusted moderation regression, which allows

for a detailed quantitative analysis of how the interactions between firm char-

acteristics influence stock returns. This process provides a clearer picture of

the complex dynamics of empirical asset pricing.

We apply the proposed methodologies to a comprehensive set of firm char-

acteristics identified in the literature as predictors of cross-sectional stock

returns, utilizing two distinct machine learning models: the Neural Network

(NN3) and the Random Forest (RF) model. Our empirical investigation re-

veals several notable findings. First, we find that several firm characteristics

demonstrate statistical significance in predicting cross-section stock returns

with moderation effects. However, it’s important to note that some of these

characteristics lose their significance when moderation effects are not taken

into account. Moreover, our bivariate dependent sort portfolio analysis re-
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veals how moderation effects influence the predictive power of these firm char-

acteristics on cross-sectional stock returns. Additionally, we discover that

machine learning models with enhanced predictive capabilities are inclined

to incorporate additional characteristics and their interactions. Finally, our

findings highlight distinct differences from those that would emerge from em-

ploying the traditional Fama-MacBeth regression method, underscoring the

unique insights provided by our approach.

Our study advances the empirical asset pricing literature by introduc-

ing a novel analytical framework that combines the predictive power of ma-

chine learning models with the interpretability of Local Interpretable Model-

agnostic Explanations (LIME). This new framework not only sheds light on

the complex moderation effects among firm characteristics on stock returns

but also advances the transparency and applicability of “black-box” machine

learning models within empirical asset pricing.

Despite these contributions, our study acknowledges several limitations,

particularly our analysis is constrained by the scope of firm characteristics

and machine learning models employed. The inclusion of additional predic-

tors or alternative modeling techniques may yield different results.

Future research should endeavor to expand our framework, offering deeper

insights into asset pricing models. Questions such as how the recognition of

nonlinearity and interactions in moderation effects can refine our estimates

of common risk factors, and risk exposures, or even augment the portfolio

optimization process, are ripe for exploration. By addressing these limita-
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tions and exploring these avenues, subsequent studies can build on our work

to further demystify the “factor zoo”, ultimately contributing to a more com-

prehensive and nuanced understanding of empirical asset pricing.
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A The Predictive Performance of Machine

Learning Models

We assess the predictive performance of machine learning models to confirm
that they can outperform linear models. This implies that machine learn-
ing models, which allow for nonlinearity and feature interactions, can yield
superior results compared to linear models, and the interpretations derived
from the estimated machine learning models can offer valuable new insights.

A.1 Out-of-Sample R-square

We use out-of-sample R-squared from (Gu et al., 2020) to assess the predic-
tive performance on a panel level of each model.

R2
oos = 1−

∑
(i,t)∈T3(ri,t+1 − r̂i,t+1)

2∑
(i,t)∈T3(ri,t+1)2

(14)

where T3 is the set of testing samples, where the data never enter into model
estimation or tuning. In our case, the out-of-sample predictions of monthly
returns are calculated from January 1989 to December 2021. Different from
the traditional R2 measure, the denominator is the sum of squared excess
returns without demeaning. We compare the model with the naive forecast
of zero.

Table A.1: Out-of-Sample Predictive Performance

Naive Linear NN3 RF

Out-of-Sample R2 0.00% -1.02% 0.49% 0.20%
Out-of-Sample MSE 344.63 348.14 342.96 343.94

This table summarizes the out-of-sample R2
oos and Mean Squared Error(MSE) for

four prediction models: Naive, Linear, Neural Network with three hidden layer(NN3),
and Random Forest(RF). The R2

oos is calculated as specified in the Equation (14),
which spans from January 1989 to December 2021. The MSE values represent the
average squared differences between the observed and predicted monthly returns for
each model.

Table A.1 presents the out-of-sample R2 values and Mean Squared Er-
rors(MSE) for four different predictive models: Naive, Linear, Neural Net-

49



work with three hidden layers(NN3), and Random Forest(RF). The R2
oos for

the Naive model serves as a baseline at 0.00%, indicating no predictive ca-
pability. The Linear model shows a slight underperformance relative to the
naive forecast with negative R2

oos. Both NN3 and RF models show positive
out-of-sample R2

oos values, suggesting that they have predictive power with
NN3 being the most predictive. Correspondingly, the out-of-sample Mean
Squared Error(MSE) is listed for each model, offering a measure of the aver-
age magnitude of the errors in the predictions, where the NN3 model demon-
strates the lowest error, implying a more accurate predictive performance
relative to the other models.

A.2 Predictive Accuracy

To assess the predictive accuracy across stocks, following Lewellen et al.
(2015), we regress the actual realized return rt+1

i on the predicted expected
returns r̂t+1

i

ri,t+1 = γ0 + γ1r̂i,t+1 + ϵi,t (15)

With an accurate prediction, this regression should have a slope γ1 = 1, and
an intercept γ0 = 0.

Table A.2: Predictive Accuracy

Linear NN3 RF

Intercept 0.666 0.325 0.467
Coefficient 0.195 0.676 0.514

R2 0.001 0.004 0.000

This table reports the regression results of actual realized returns on predicted re-
turns for three prediction models: Linear, Neural Network with three hidden lay-
ers(NN3), and Random Forest(RF). The table presents the estimated intercept(γ0)
and the slope(γ1) from the regression specified in Equation (15), alongside the R2

statistic for each regression.

Table A.2 illustrates the predictive accuracy of the expected returns
across individual stocks for three different models: Linear, Neural Network
with three hidden layers (NN3), and Random Forest(RF). Following the
methodology outlined by Lewellen et al. (2015), we report the intercept γ0
and the slope γ1, as well as the R2. The OLS model yields a significantly
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lower slope coefficient of 0.195 and an intercept of 0.666, indicating a con-
siderable deviation from the ideal. The NN3 model performs better with a
coefficient of 0.676 and an intercept of 0.325, while the RF model demon-
strates a coefficient of 0.514 and an intercept of 0.467. The R2 values for
each regression are low, suggesting limited explanatory power of the predic-
tive returns for the actual realized returns. The NN3 model has the highest
R2, albeit still very low, indicating a marginally better fit compared to the
OLS and RF models.

A.3 Prediction-Sorted Portfolio

We sort all firms into 10 portfolios based on their model-predicted returns
and compute the holding period equal-weighted returns for each portfolio.
Additionally, we construct a zero-investment portfolio that involves buying
stocks with the highest predicted returns and selling those with the lowest.
We report the average equal-weighted portfolio returns and the Sharpe Ratio.
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Table A.3: Prediction-Sorted Portfolio

Linear NN3 RF
Mean SD t-stats SR Mean SD t-stats SR Mean SD t-stats SR

Low(L) -0.34 0.38 -0.90 -0.15 -0.99 0.47 -2.09 -0.41 -0.23 0.42 -0.55 -0.10
2 0.31 0.31 1.01 0.16 0.17 0.33 0.53 0.09 0.31 0.31 1.00 0.18
3 0.58 0.28 2.09 0.34 0.44 0.29 1.53 0.30 0.37 0.29 1.25 0.22
4 0.64 0.26 2.49 0.42 0.62 0.24 2.55 0.48 0.58 0.26 2.21 0.39
5 0.76 0.24 3.17 0.53 0.75 0.23 3.21 0.61 0.70 0.25 2.76 0.50
6 0.87 0.24 3.60 0.62 0.99 0.22 4.44 0.78 0.87 0.24 3.60 0.64
7 1.02 0.26 3.84 0.71 1.02 0.23 4.46 0.78 1.00 0.25 3.98 0.72
8 1.23 0.29 4.26 0.81 1.28 0.26 5.02 0.90 1.13 0.26 4.41 0.81
9 1.45 0.32 4.49 0.87 1.51 0.29 5.16 0.96 1.34 0.27 4.92 0.88

High(H) 2.21 0.45 4.91 1.01 2.89 0.51 5.72 1.13 2.66 0.48 5.54 1.17
H-L 2.55 0.41 6.27 1.05 3.88 0.49 7.93 2.69 2.89 0.43 6.80 2.02

This table presents the performance metrics for portfolios sorted based on model-
predicted returns, spanning from the lowest (Low) to the highest (High) deciles. We
evaluate the portfolios using three predictive models: Linear, Neural Network (NN3),
and Random Forest (RF). The metrics reported include the mean monthly out-of-
sample return (Mean), standard deviation of returns (SD), t-statistics (t-stats), and
the Sharpe Ratio (SR). The portfolios are constructed on an equal-weighted basis,
reflecting the average performance across all firms within each decile. Additionally, the
table features the High minus Low (H-L) portfolio, which represents a zero-investment
strategy of buying stocks with the highest predicted returns and selling those with the
lowest. This strategy’s performance is indicative of the predictive models’ ability to
capture return patterns across the spectrum of portfolio deciles. The analysis aims
to provide insights into the efficacy of each predictive model in terms of risk-adjusted
returns and statistical significance.

Table A.3 showcases the results for prediction-sorted portfolios using three
predictive models: Linear, Neural Network with three layers (NN3), and
Random Forest (RF). Each model demonstrates a consistent increase in mean
returns from the lowest to the highest quintiles, indicating their effectiveness
in distinguishing stocks with varying levels of predicted returns. Notably,
the zero-investment strategy—long positions in the highest quintile stocks
and short positions in the lowest—yields significant mean returns across all
models, with NN3 leading in performance. The high T-statistics for the H-L
portfolios signify robust statistical significance in this strategy’s performance,
and the elevated Sharpe Ratios, particularly for the NN3 model, suggest
superior risk-adjusted returns.
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Figure A.1: Prediction-Sorted Portfolio
The figure illustrates the cumulative returns of ten equal-weighted port-
folios, which are sorted based on their predicted returns using three
predictive models: Linear, Neural Network (NN3), and Random For-
est (RF). Each line represents the growth of one dollar invested in
the respective decile portfolio, beginning from the start of the out-of-
sample period and tracking the accumulation of returns over time. The
portfolios are rebalanced monthly, reflecting the updated predictions.
The ’High’ portfolio comprises stocks with the highest expected returns,
while the ’Low’ portfolio contains stocks with the lowest expected re-
turns for the forthcoming month.

Figure A.1 displays the cumulative returns of five different portfolios
sorted by their predicted returns, which is in line with the previous table
results on prediction-sorted portfolios. The portfolios range from “Low”
(predicted to have the lowest returns) to “High” (predicted to have the high-
est returns). Similar to the results indicated in the table, there is a clear
upward gradient in cumulative returns from the ”Low” to the “High” port-
folios across all three graphs. This suggests that the models are effectively
ranking stocks based on their predicted returns, which translates into actual
realized returns over time. The cumulative returns graph visually supports
the quantitative findings in the table. It shows that the predictive models
can sort stocks into portfolios that realize different levels of returns corre-
sponding to their predictions, with the NN3 model, in particular, showing
the most promising results.
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Figure A.2: Prediction-Sorted Portfolio
This figure shows the cumulative returns of the High minus Low (H-
L) investment strategy, which involves going long on stocks predicted
to have the highest returns and shorting stocks predicted to have the
lowest returns for the next month, based on three different predictive
models: Linear, Neural Network (NN3), and Random Forest (RF). The
returns start from a neutral point and are accumulated by holding and
rebalancing the portfolio monthly according to each model’s predictions.
The graph tracks these cumulative returns over the out-of-sample pe-
riod, showcasing the efficacy of each model in generating excess returns
through this zero-investment strategy. The diverging paths of the models
reflect their varying predictive accuracies and risk profiles in an out-of-
sample context.

Figure A.2 displays the cumulative returns of the zero-investment strat-
egy, which involves buying stocks in the “High“ portfolio and selling those in
the “Low” portfolio. The cumulative returns are consistently positive across
all three models, with the NN3 model showing the highest returns. This
suggests that the zero-investment strategy can generate significant returns,
especially when the predictions are derived from the NN3 model.
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B Bivariate Dependent Sort Portfolio Anal-

ysis

Table B.1: Bivariate Dependent Sort Portfolio Analysis(NN3)

Panel A:Beta Squared(betasq)

Low(L) 2 3 4 High(H) H-L

LIME1 0.663 0.925 0.956 0.993 0.898 0.235
(2.396) (2.77) (2.636) (2.45) (1.648) (0.524)

LIME2 0.577 0.755 0.829 0.729 0.763 0.187
(3.21) (3.278) (3.071) (2.451) (1.784) (0.516)

LIME3 0.718 0.822 0.848 0.895 0.904 0.186
(4.207) (4.039) (3.658) (3.275) (2.157) (0.503)

LIME4 0.875 1.013 0.913 0.916 0.969 0.093
(4.778) (4.824) (3.716) (3.049) (2.102) (0.233)

LIME5 1.54 1.37 1.202 1.166 1.125 -0.415
(5.437) (4.441) (3.636) (2.733) (2.145) (-1.193)

baseline 0.875 0.977 0.95 0.94 0.932 0.214
(4.656) (4.009) (3.304) (2.723) (1.911) (0.554)
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Panel B: Change in 6-month Momentum (chmom)

Low(L) 2 3 4 High(H) H-L

LIME1 2.172 1.862 1.663 1.579 1.399 -0.773
(4.345) (4.063) (3.999) (3.365) (2.582) (-3.261)

LIME2 0.794 0.777 0.736 0.663 0.739 -0.054
(2.473) (2.944) (2.793) (2.193) (1.824) (-0.266)

LIME3 0.794 0.834 0.709 0.568 0.659 -0.136
(3.041) (3.847) (3.266) (2.377) (2.227) (-0.789)

LIME4 0.798 0.8 0.667 0.529 0.707 -0.091
(3.116) (4.25) (3.264) (2.348) (2.293) (-0.503)

LIME5 0.757 0.584 0.636 0.628 0.965 0.208
(2.37) (2.22) (2.634) (2.276) (2.459) (1.093)

baseline 1.063 0.972 0.882 0.793 0.894 -0.471
(3.184) (3.595) (3.339) (2.719) (2.347) (-2.305)

Panel C: Dollar Trading Volume(dolvol)

Low(L) 2 3 4 High(H) H-L

LIME1 3.178 1.452 0.925 0.538 0.402 -2.776
(5.665) (2.803) (1.764) (1.077) (0.857) (-7.646)

LIME2 0.791 0.676 0.667 0.55 0.557 -0.234
(2.194) (1.838) (1.814) (1.699) (1.471) (-0.907)

LIME3 0.624 0.883 0.97 0.949 0.956 0.332
(2.15) (3.03) (3.45) (3.4) (3.351) (1.418)

LIME4 0.816 0.771 0.939 0.975 0.928 0.113
(3.257) (3.36) (4.076) (4.725) (4.122) (0.572)

LIME5 0.477 0.568 0.63 0.749 0.82 0.343
(2.174) (3.059) (3.408) (4.073) (4.756) (2.351)

baseline 1.177 0.87 0.826 0.752 0.733 -0.7
(4.074) (2.92) (2.611) (2.427) (2.33) (-3.191)
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Panel D: Earnings to Price(ep)

Low(L) 2 3 4 High(H) H-L

LIME1 0.297 0.114 0.407 0.516 0.677 0.38
(0.51) (0.254) (0.994) (1.775) (2.172) (0.926)

LIME2 0.741 0.663 0.787 0.791 0.885 0.144
(1.688) (2.265) (3.452) (3.406) (3.356) (0.485)

LIME3 0.781 0.779 0.901 0.897 0.945 0.164
(1.932) (2.955) (4.367) (3.993) (3.357) (0.618)

LIME4 1.102 0.885 0.968 0.976 1.01 -0.091
(2.425) (2.98) (3.981) (4.122) (3.483) (-0.328)

LIME5 2.708 2.039 1.745 1.42 1.514 -1.194
(3.763) (4.58) (4.761) (4.93) (4.405) (-2.554)

baseline 1.126 0.896 0.961 0.92 1.006 -0.236
(2.298) (2.704) (3.619) (3.693) (3.425) (-0.667)

Panel E: Illiquidity(ill)

Low(L) 2 3 4 High(H) H-L

LIME1 -0.032 -0.131 0.194 0.443 2.064 2.096
(-0.076) (-0.298) (0.401) (0.868) (3.487) (4.365)

LIME2 0.635 0.801 0.76 0.787 1.18 0.545
(1.909) (2.507) (2.222) (2.088) (2.818) (2.089)

LIME3 0.918 0.932 0.965 1.038 1.23 0.312
(3.477) (3.798) (3.621) (3.602) (3.529) (1.335)

LIME4 0.902 0.975 1.005 1.022 1.029 0.127
(4.397) (4.574) (4.663) (4.358) (3.489) (0.63)

LIME5 0.891 0.964 0.924 1.008 1.287 0.396
(4.709) (5.499) (5.118) (5.121) (5.083) (1.94)

baseline 0.663 0.708 0.769 0.86 1.358 0.427
(2.388) (2.424) (2.505) (2.677) (4.006) (1.862)
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Panel F: Maximum Daily Return(maxret)

Low(L) 2 3 4 High(H) H-L

LIME1 0.35 0.174 0.105 0.127 0.025 -0.325
(1.04) (0.43) (0.243) (0.247) (0.043) (-1.013)

LIME2 0.814 0.778 0.868 0.993 1.186 0.372
(3.27) (2.82) (2.864) (2.86) (2.752) (1.445)

LIME3 0.897 0.924 0.966 1.034 1.409 0.512
(4.673) (4.524) (4.097) (3.689) (3.78) (2.046)

LIME4 0.688 0.896 0.949 1.023 1.581 0.893
(3.993) (4.869) (4.465) (4.113) (4.541) (3.609)

LIME5 0.631 0.797 1.079 1.489 2.208 1.412
(3.776) (3.9) (4.44) (4.744) (4.647) (3.656)

baseline 0.676 0.714 0.794 0.933 1.263 0.02
(3.079) (2.715) (2.754) (2.818) (2.99) (0.052)

Panel G: 12-month momentum(mom12m)

Low(L) 2 3 4 High(H) H-L

LIME1 2.466 1.264 1.226 1.343 1.754 -0.711
(3.419) (2.439) (2.806) (3.476) (4.141) (-1.493)

LIME2 -0.01 0.633 0.718 0.899 1.28 1.29
(-0.023) (2.282) (3.103) (4.37) (4.72) (4.388)

LIME3 0.075 0.606 0.698 0.979 1.307 1.231
(0.218) (2.508) (3.677) (5.288) (5.396) (5.07)

LIME4 0.121 0.658 0.882 1.068 1.414 1.293
(0.349) (2.789) (4.436) (5.113) (5.049) (5.225)

LIME5 -0.002 0.555 0.803 1.005 1.285 1.287
(-0.006) (2.061) (3.283) (3.497) (3.454) (3.379)

baseline 0.53 0.743 0.865 1.059 1.408 0.515
(1.222) (2.476) (3.46) (4.391) (4.431) (1.639)
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Panel H: 1-month momentum(mom1m)

Low(L) 2 3 4 High(H) H-L

LIME1 3.665 1.43 1.006 0.916 0.416 -3.249
(5.542) (3.184) (2.48) (2.047) (0.785) (-5.539)

LIME2 0.846 0.804 0.692 0.644 -0.058 -0.904
(2.522) (3.1) (2.669) (2.235) (-0.14) (-4.161)

LIME3 0.782 0.805 0.726 0.697 0.397 -0.384
(3.059) (3.666) (3.252) (3.255) (1.334) (-2.875)

LIME4 0.793 0.775 0.722 0.777 0.765 -0.027
(3.043) (3.639) (3.737) (3.824) (2.751) (-0.193)

LIME5 0.724 0.719 0.77 0.822 1.079 0.356
(2.173) (2.715) (3.047) (2.908) (3.018) (1.525)

baseline 1.362 0.907 0.783 0.771 0.52 -0.956
(3.948) (3.324) (2.982) (2.73) (1.419) (-4.55)

Panel I: 6-month momentum(mom6m)

Low(L) 2 3 4 High(H) H-L

LIME1 2.403 1.305 1.031 1.13 1.377 -1.027
(4.488) (3.51) (3.319) (3.486) (3.668) (-3.133)

LIME2 0.988 0.824 0.813 0.922 1.243 0.255
(2.804) (3.768) (4.185) (4.378) (4.229) (1.143)

LIME3 0.934 0.77 0.836 0.962 1.21 0.276
(2.862) (3.547) (4.065) (4.361) (4.041) (1.343)

LIME4 0.644 0.682 0.74 0.859 1.234 0.59
(1.729) (2.651) (3.278) (3.479) (3.833) (2.377)

LIME5 -0.491 -0.113 0.357 0.59 0.869 1.36
(-0.969) (-0.277) (1.1) (1.921) (2.265) (4.397)

baseline 0.896 0.694 0.755 0.893 1.186 0.36
(2.125) (2.448) (3.085) (3.494) (3.546) (1.398)
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Panel J: Size(mvel1)

Low(L) 2 3 4 High(H) H-L

LIME1 4.166 1.068 0.61 0.495 0.375 -3.791
(5.823) (2.089) (1.335) (1.088) (0.853) (-7.039)

LIME2 0.732 0.577 0.557 0.603 0.562 -0.17
(2.098) (1.681) (1.551) (1.73) (1.577) (-0.747)

LIME3 0.713 0.786 0.902 0.883 0.786 0.072
(2.884) (2.795) (3.318) (3.369) (2.919) (0.406)

LIME4 0.74 0.817 0.897 0.871 0.89 0.15
(3.329) (3.519) (3.713) (3.705) (4.011) (0.996)

LIME5 0.717 0.689 0.771 0.808 0.813 0.096
(3.608) (3.685) (3.836) (3.996) (3.954) (0.754)

baseline 1.414 0.787 0.747 0.732 0.685 -0.726
(4.7) (2.614) (2.389) (2.363) (2.272) (-2.394)

Panel K: Return Volatility(retvol)

Low(L) 2 3 4 High(H) H-L

LIME1 0.448 0.255 0.007 -0.031 -0.563 -1.011
(1.49) (0.652) (0.015) (-0.06) (-0.961) (-2.804)

LIME2 0.815 0.812 0.755 0.891 0.856 0.041
(3.541) (2.863) (2.478) (2.408) (1.85) (0.133)

LIME3 0.787 0.83 0.929 1.022 1.422 0.635
(4.105) (3.926) (3.946) (3.671) (3.452) (2.114)

LIME4 0.544 0.81 0.928 1.106 1.421 0.876
(3.257) (4.124) (4.531) (4.533) (3.91) (3.191)

LIME5 0.625 0.808 1.176 1.692 3.447 2.823
(3.269) (3.681) (4.627) (5.374) (6.149) (5.651)

baseline 0.644 0.703 0.759 0.936 1.316 0.166
(3.191) (2.775) (2.655) (2.758) (2.924) (0.402)
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Panel L: Volatility of Dollar Trading Volume(std dolvol)

Low(L) 2 3 4 High(H) H-L

LIME1 1.184 1.412 1.45 1.837 2.279 1.095
(3.052) (3.468) (3.286) (3.835) (4.724) (3.948)

LIME2 0.919 0.897 0.907 0.958 1.074 0.155
(4.017) (3.633) (3.523) (3.323) (3.561) (0.923)

LIME3 0.832 0.789 0.817 0.857 0.882 0.05
(3.966) (3.45) (3.321) (3.603) (3.312) (0.357)

LIME4 0.663 0.662 0.7 0.675 0.718 0.055
(2.759) (2.762) (2.674) (2.717) (2.592) (0.338)

LIME5 0.341 0.365 0.27 0.193 0.115 -0.225
(0.979) (1.037) (0.717) (0.533) (0.303) (-1.254)

baseline 0.788 0.825 0.829 0.904 1.014 0.338
(2.849) (2.742) (2.667) (2.895) (3.295) (1.951)

Panel M: Share Turnover(turn)

Low(L) 2 3 4 High(H) H-L

LIME1 1.708 1.576 1.486 1.207 0.017 -1.691
(3.509) (3.301) (2.742) (2.306) (0.031) (-5.427)

LIME2 0.587 0.725 0.715 0.717 0.35 -0.237
(1.785) (2.116) (2.073) (1.898) (0.807) (-0.785)

LIME3 0.613 0.88 1.022 1.008 0.906 0.292
(2.044) (3.36) (3.877) (3.634) (2.463) (0.922)

LIME4 0.692 0.887 0.967 1.028 1.017 0.325
(2.928) (4.138) (4.38) (4.902) (3.649) (1.308)

LIME5 0.529 0.627 0.799 0.884 0.922 0.393
(2.593) (3.871) (4.691) (4.771) (4.115) (2.259)

baseline 0.826 0.939 0.998 0.969 0.642 -0.281
(3.071) (3.414) (3.346) (3.046) (1.729) (-0.962)
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Table B.2: Bivariate Dependent Sort Portfolio Analysis(RF)

Panel A: Industry Momentum(indmom)

Low(L) 2 3 4 High(H) H-L

LIME1 0.531 0.822 1.12 1.277 1.353 0.867
(1.669) (2.654) (3.45) (4.128) (3.189) (3.227)

LIME2 0.542 0.805 1.011 1.118 1.035 0.576
(1.888) (2.866) (3.682) (3.815) (3.308) (2.339)

LIME3 0.69 0.757 0.873 1.141 1.06 0.347
(2.426) (2.561) (3.035) (3.977) (3.113) (1.353)

LIME4 0.577 0.908 0.929 1.077 0.833 0.265
(2.091) (3.308) (2.835) (3.646) (2.2) (1.269)

LIME5 0.556 0.819 0.713 0.801 0.642 0.086
(1.812) (2.516) (2.247) (2.237) (1.18) (0.513)

baseline 0.579 0.822 0.931 1.092 1.011 0.705
(1.837) (2.776) (3.05) (3.382) (2.781) (2.9)

Panel B: Maximum Daily Return(maxret)

Low(L) 2 3 4 High(H) H-L

LIME1 0.703 0.636 0.557 0.481 0.14 -0.563
(2.377) (1.776) (1.392) (1.153) (0.297) (-2.45)

LIME2 0.827 0.874 0.979 1.106 0.818 -0.01
(3.273) (2.969) (2.748) (2.641) (1.545) (-0.027)

LIME3 0.811 0.986 0.955 1.03 1.609 0.799
(4.222) (4.214) (3.667) (3.358) (3.147) (2.06)

LIME4 0.699 0.881 0.978 0.97 1.282 0.583
(3.801) (4.379) (4.421) (3.753) (3.755) (2.452)

LIME5 0.607 0.784 0.968 1.01 1.142 0.523
(3.401) (4.196) (4.737) (4.561) (3.98) (2.62)

baseline 0.729 0.832 0.887 0.92 0.997 0.02
(3.372) (3.163) (3.001) (2.776) (2.404) (0.052)
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Panel C: 6-month momentum(mom6m)

Low(L) 2 3 4 High(H) H-L

LIME1 1.67 1.151 1.077 1.085 1.29 -0.38
(3.317) (3.776) (4.143) (3.837) (3.589) (-1.256)

LIME2 0.889 0.882 0.929 0.942 1.298 0.409
(2.124) (3.112) (4.008) (3.987) (3.539) (1.481)

LIME3 0.725 0.768 0.842 0.874 1.05 0.325
(1.7) (2.826) (3.724) (3.932) (3.334) (1.185)

LIME4 0.453 0.629 0.709 0.848 1.052 0.599
(1.108) (2.257) (3.101) (3.937) (3.785) (2.304)

LIME5 0.239 0.585 0.632 0.639 0.862 0.623
(0.576) (2.032) (2.574) (2.866) (3.273) (2.218)

baseline 0.795 0.803 0.838 0.878 1.11 0.36
(1.735) (2.74) (3.472) (3.611) (3.464) (1.398)

Panel D: Size(mvel1)

Low(L) 2 3 4 High(H) H-L

LIME1 3.911 1.198 0.646 0.51 0.188 -3.723
(5.795) (2.597) (1.679) (1.331) (0.51) (-7.319)

LIME2 1.289 0.839 0.741 0.685 0.488 -0.8
(4.109) (2.71) (2.388) (2.143) (1.486) (-4.192)

LIME3 0.808 0.662 0.695 0.764 0.786 -0.022
(3.1) (2.379) (2.642) (2.858) (3.122) (-0.214)

LIME4 0.733 0.771 0.768 0.75 0.744 0.011
(2.858) (2.998) (3.151) (3.21) (3.244) (0.072)

LIME5 0.701 0.804 0.738 0.807 0.8 0.1
(2.781) (3.214) (3.121) (3.499) (3.579) (0.806)

baseline 1.414 0.787 0.747 0.732 0.685 -0.726
(4.7) (2.614) (2.389) (2.363) (2.272) (-2.394)
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Panel E: Return Volatility(retvol)

Low(L) 2 3 4 High(H) H-L

LIME1 0.764 0.704 0.597 0.325 -0.016 -0.78
(2.797) (2.142) (1.526) (0.743) (-0.033) (-2.782)

LIME2 0.793 0.921 0.887 0.903 0.606 -0.187
(3.866) (3.237) (2.676) (2.209) (1.165) (-0.493)

LIME3 0.73 0.905 0.981 1.084 1.359 0.628
(3.799) (4.168) (3.704) (3.036) (2.442) (1.396)

LIME4 0.613 0.877 0.937 1.074 1.773 1.16
(3.676) (4.334) (4.226) (4.193) (4.247) (3.462)

LIME5 0.546 0.769 0.983 1.066 1.608 1.062
(3.297) (3.959) (4.799) (4.38) (4.674) (3.889)

baseline 0.689 0.835 0.877 0.89 1.066 0.166
(3.561) (3.361) (3.046) (2.601) (2.31) (0.402)

C Firm-Level Characteristics
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