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Abstract

This paper builds a dynamic model of corporate financing where financial slack arises

from bargaining. When financiers with bargaining power extract rent from cash-strapped

firms, firms—despite the absence of fixed transaction costs or search frictions—finance in

lumps to bargain infrequently, and typically before exhausting internal funds to strengthen

outside option. Continuation value directly amplifies rent, rationalizing large cash-holdings

of ‘growth’ firms. Firms with robust financing access preserve internal funding capacity

that substantially exceeds the size of investment opportunities, whereas firms relying on

concentrated financiers may externally finance investment despite sufficient funds yet forgo

investment with even more funds.
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Why do firms hold cash reserves at all? This seemingly innocuous question points directly

into the heart of financial market imperfections. Suppose hypothetically that any excess

expenses could be frictionlessly financed on demand and incrementally from external sources.

Firms, then, would always promptly expend any earnings, either through reinvestment or

dividend payout, instead of retaining them. Furthermore, the pecking order of financing

would dominate. That is, firms would fully exhaust more flexible sources of internal funding,

most saliently cash and cash equivalents and also short-term debt and lines of credit, before

tapping into costlier ones such as long-term debt and equity issuance. It would be unwise to

deliberately underutilize cheaper funds and reserve them for future occasions.

Departure from the above scenarios, often called financial slack in the literature, is plainly

prevalent. Many firms, despite having long-term borrowing with high interest rates or facing

high cost of equity, hold a sizable amount of cash and tradable securities and often leave

unused spare capacity for convenient funding with low required yields. As Graham (2022)

documents through extensive (and pre-pandemic) surveys, corporate managers across differ-

ent firm sizes consider financial flexibility as the primary factor in capital structure decisions,

and its weakening, prompted by low current profits and cash-holdings, as the main driver of

underinvestment. It is evident that understanding the origin and nature of financial slack has

important economic implications concerning corporate investment and stock returns.

Theoretically, the present question is, at its core, a classic problem of return dominance,

where agents hold an asset position that is strictly dominated in return by another. The

canonical explanation, first proposed by Baumol (1952) and Tobin (1956), is that there is a

fixed transaction cost associated with trading a higher-return illiquid asset for a lower-return

liquid one1; consequently, agents trade for the liquid asset in intermittent “lumps”—rather

than incrementally on demand—to avoid incurring the cost too frequently. While exogenous

fixed cost has since been widely adopted across various fields of economics and finance as

a standard modeling tool to generate lumpiness, it fails to explain the widespread violation

of the pecking order, i.e. raising external financing before fully exhausting internal funds,

except by specifying exogenous stochastic variation of the exogenous fixed cost to generate

precautionary incentives.

In this paper, I propose an alternative model of financing that explains financial slack as

arising solely from bargaining in financial markets. When a firm encounters cash rundowns

and approaches business ‘termination,’ such as severe financial distress including bankruptcy,

they have large surplus to be generated from a successful financing that averts the forced

termination. If financiers have nontrivial bargaining power, then firms must give them a

portion of the financing surplus in return, on top of the fair value of the funds being con-

tributed. Due to this excess compensation from bargaining, financing dilutes equity value

and thereby becomes endogenously frictional to the firm, even when the ideal allocation of

frequent financing with zero internal funds is technologically feasible and efficient. Firms,

1Bank deposits and pocket cash, respectively, in their original setup; unused capacities for costly
external financing and for flexible internal funding, respectively, in the current context.
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then, respond by raising a large amount of funds at each financing transaction to reduce the

frequency of bargaining, i.e. lumpy financing.

Financial slack, however, not only delays the next bargaining through lumpiness. Firms

may also finance “early,” i.e. raising funds externally even before running out of more conve-

nient internal funding sources, to reduce the size of rent extraction. To understand why, note

that it is proximity to unwanted business termination that enables financiers to extract rent

from firms, because without their financing, the proximity is real. The funding cushion left

untapped at financing exactly reduces this proximity; it allows firms to respond to unsuccess-

ful bargaining with financiers, off equilibrium path, by pursuing backstop strategies—such

as finding other financiers, cutting investment down to mitigate expenses, or even divesting

capital to obtain funds—to avoid or delay termination. In other words, sparing the capacity

to fund a viable backup plan reduces the portion of firm value that depends on the success of

the current bargaining, thereby strengthening firms’ outside option as they settle the terms of

financing vis-à-vis financiers. Consequently, financiers can extract less rent in dilution when

firms are financing early with funding cushion—i.e. ‘financial flexibility.’

Optimal financial slack, then, counterbalances the two prongs of reducing financing dilu-

tion, one in frequency through lumpy financing and the other in size through early financing,

against the opportunity cost of financial slack. This may include carry costs2 of corporate

cash reserves, term spreads on bonds with different maturities, equity premium relative to

debt financing, etc. In short, financial slack is firms’ costly bargaining tool against financiers.

This framework has two key predictions. First, financial slack increases in ‘price-to-

earnings’ ratio. In other words, firms with higher continuation value relative to the current

cash inflow maintain relatively greater financial flexibility and raise financing less frequently.

Such firms have greater surplus from financing that averts damage to the high value due to

financial distress, and thus face greater rent extraction, ceteris paribus, as a fraction of the

larger surplus. As such, these ‘growth’ firms employ greater financial slack to reduce dilution.

And the effect is more pronounced if firms are investing intensively. Investment is an

act of reducing current cash flow to raise continuation value. It thus simultaneously makes

dilution greater and more frequent. Financial slack, therefore, is even greater for firms with

a similar price-to-earnings ratio but higher investment expenses.

Second, early financing, i.e. retention of internal funding capacity when financing exter-

nally, endogenously compresses the size of dilution and, as such, may arise even without any

precautionary motive to ‘avoid financing when its cost spikes up.’ Even when there is no risk

of such an impending liquidity crisis, firms may still finance early because doing so creates

distance to termination enabling them to pursue backstop strategies upon bargaining failure,

so that their outside option is strengthened against financiers in bargaining.

Two auxiliary predictions of the model further enrich the key predictions above. First,

at external financing firms may maintain funding cushion that strictly exceeds contingent

2Firms’ inefficiency in directly managing a portfolio of liquid financial securities—either low skill for
asset management or presence of agency frictions—relative to the overall financial sector.
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funding needs for lumpy investment opportunities. For instance, when a firm is waiting for

a randomly arriving and fleeting opportunity to acquire a target firm at a given cost, it may

always preserve strictly more internal funding capacity than the cost. To clarify, the model

allows firms to raise financing right upon the arrival of opportunities, and so the funding

cushion would not be to prevent missing the opportunity. Rather, the fleeting nature of such

an opportunity—merger and acquisition deals are often highly time-sensitive as rivals are

also targeting—means that if a firm needs external financing to fund the lumpy investment,

the financing becomes highly dilutive because its surplus encompasses the total returns to

investment. Moreover, even if the firm earmarked exactly the required amount in internal

funding for stochastic investment opportunities, the arrival of an opportunity when its funding

capacity is close to the preserved cushion would mean that once it has funded the investment

internally, the firm would have nearly run out of funding. The subsequent financing post

investment would thus become, again, highly dilutive. Therefore, firms may find it optimal

to preserve enough financial flexibility so that they have large funding capacity remaining even

after internally funding the investment and despite immediate post-investment financing.

On the flip side, firms without much ability to find alternative financiers may choose to

forgo investment opportunities if the decision to invest would place firms close to funding

depletion that forces external financing. As discussed, financing is highly dilutive for these

firms due to their weak outside option. When they are already quite close to funding depletion

due to accumulated losses, however, the arrival of investment opportunities offers firms a

chance to ‘turn around’ by promptly financing just once to achieve the double goals of funding

the investment and restoring target funding capacity.

In summary, the framework that I propose seamlessly rationalizes why firms with robust

access to external financing (e.g. can find alternative financiers in, say, about a week) tend to

internally fund sizable investment while maintaining funding capacity in substantial excess

of such needs, whereas firms with limited financing access may still occasionally finance

investment—even though they also forgo investment on other occasions.

Second, dilution may be endogenously amplified when both financial market depth and

capital trade liquidity dry up. To understand why, recall that firms finance early when doing

so allows firms to respond to bargaining failure by pursuing backstop strategies, thereby

strengthening their outside option and improving the bargaining outcome. Such strategies

involve finding alternative financiers and/or selling off capital to generate cash. When neither

is feasible, there may be little benefit from financing early. Firms, then, may finance highly

infrequently and only when internal funding is exhausted, amplifying the size of dilution.

But the very occurrence of such amplification can be avoided if firms maintain robust busi-

ness fundamentals, in particular revenue streams and internal investment. The combination

of both factors makes the investment irreversibility constraint dynamically less binding in the

bargaining context. As such, a positive funding cushion, even when irreversibility statically

binds at it, may retain its strategic value. Firms, then, continue financing early, such that

the size of dilution remains small and financing still occurs relatively frequently.
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Methodologically, the framework I propose is highly tractable, and I establish a tight

equilibrium characterization for a rich set of firm technologies, including state dependence. I

focus on the key aspect of outside option within the context of financing bargaining in that

finding alternative financiers takes nonzero time duration. The modeling construction of

stochastic duration with Poisson rate enables a parsimonious representation of this dynamic

bargaining friction such that solution requires keeping track of just a single reservation value

function in conjunction with the main value function on equilibrium path. Empowered by

the model’s tractability, I obtain general comparative statics of financial slack in the key

parameters of bargaining power, and establish additional comparative statics in business

characteristics for stylized examples with closed-form equilibrium solutions.

In terms of application, it is noteworthy that even minimal bargaining power by financiers

results in a substantial increase in financial slack and underinvestment compared to perfectly

competitive financial markets. As such, this paper’s framework is applicable to a broad class

of firms. It can be applied to small firms that face heterogeneous degrees of search friction and

finance mostly from a few specialized investors, such as venture capital funds, that they can

access with ease. It can also be applied to large firms that, in fulfilling their sizable financing

needs, rely on concentrated investment banks that bring together a broad pool of investors

through superior firm valuation technology. Bargaining power might vary substantially across

firm size and financing environment, but this model’s mechanism is likely at work throughout

the financial markets as long as they exhibit nontrivial market power.

Main contribution. As discussed, the conventional theoretical view on cash-holdings in

economics goes back to the classic theory of money demand by Baumol (1952) and Tobin

(1956). In their framework, financial slack arises from fixed transaction costs of withdrawing

cash from high-yield sources—bank deposits in their original setup. The trade-off between

increasing yield from bank deposits and decreasing the frequency of fixed transaction costs

induces lumpy cash withdrawal and the concomitant cash-holdings. The idea of fixed transac-

tion cost has since become the most readily adopted modeling device to generate lumpiness.

In specific application of this standard framework to equity financing, Décamps, Mariotti,

Rochet and Villeneuve (2011) study corporate cash-holdings and dividend policy given ex-

ogenous cash flow and fixed transaction costs of financing. Bolton, Chen and Wang (2011)

add investment into the framework à la Hayashi (1982) to show that marginal value of liquid-

ity, arising due to transaction costs, suppresses optimal investment. These models generate

lumpy financing as expected, but do not rationalize early financing. Bolton, Chen and Wang

(2013) introduce stochastic transaction cost, replicating early financing during normal times

as a precaution to avoid the excessive cost of financing during crisis.

This paper contributes to the literature on equity financing—and also, by implication, to

the vast literature that studies lumpiness in general—with a novel understanding of financial

slack as indicating the presence of strategic frictions in the market. In this new framework

that I propose, the ‘fixed transaction cost’ derives organically from the underlying market
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structure, specifically the bargaining power of trading counterparties. Put differently, this

paper ‘microfounds’ the standard modeling tool through the lens of bargaining. And it does

so in a way that preserves tractability.

Moreover, this paper delivers a novel understanding of early financing. Under the standard

fixed-cost framework, early financing is only rationalized as a precautionary choice when

the cost is stochastic. Here, firms may finance early even without any exogenous variation

in parameters, because doing so may improve their outside option, thereby reducing the

financing cost itself. In other words, early financing is what may reduce the financing cost in

the first place, a novel direction of causality that is absent in the standard framework.

Other related literature. This paper provides a coherent theoretical framework that can be

used to explain many empirically documented patterns in corporate cash-holdings—the most

salient component of firms’ internal funds—in the U.S. For example, Opler, Pinkowitz, Stulz

and Williamson (1999) find that firms with higher growth prospects hold more cash. Bates,

Kahle and Stulz (2009) show that corporate cash-holdings significantly increased from 1980

to 2006 due not only to increased risk but also to firms becoming more R&D intensive. They

document that firms with low cash flow and high Tobin’s q have exhibited the greatest increase

in cash-holdings, and additionally report that, regarding the hypothesis that an increase in

agency problems—à la Jensen (1986) for instance—explains the trend, no consistent evidence

in favor can be found. Graham and Leary (2018) document the increased cross-sectional

divergence in cash-holdings since 1980s. In particular, smaller firms and those in tech/health

industries exhibit greater cash-holding ratios. As discussed, Graham (2022) reports through

(pre-pandemic) surveys of chief financial officers that firms consider financial flexibility as

the primary factor in capital structure decisions and its weakening as the main driver of

underinvestment. The findings of this paper suggest that the theoretically novel insight of

bargaining concerns in corporate finacing can be a key driver of these observations.

Although constructed primarily in the lingo of equity financing, the strategic framework

proposed in this paper offers new insights into firms’ debt financing as well, especially in terms

of maturity management and early refinancing. Froot, Scharfstein and Stein (1993) build a

framework of dynamic risk management where firms with stronger investment opportunities

refinance early to have funds available for investment. Rampini and Viswanathan (2010) study

the collateral channel whereby constrained firms with less collateralizable capital exhaust their

debt capacity to maximize current investment and do not engage in maturity management.

Mian and Santos (2018) empirically find that more creditworthy firms refinance early with

greater procyclicality and early refinancing predicts a particularly strong investment growth.

In this paper’s setup, the ability of creditworthy firms to easily find alternative creditors

implies an early refinancing strategy that is highly sensitive to future firm value, and inability

to switch creditors may preclude maturity management unless the firm can divest capital

efficiently—not for collateral enforcement but as part of backstop cash generation.

On the bargaining side of corporate debt financing is the literature on debt renegotiation.
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In Hart and Moore (1998), inefficiency of asset liquidation deteriorates the bargaining out-

come for its beneficiary—creditors in case of asset seizure—such that the borrowing firm can

strategically default to induce favorable renegotiation. Bolton and Scharfstein (1996) study a

setup where the structure of multiple creditors raises the liquidation proceeds in the presence

of asset complementarity, but also lowers the chance of finding a firm willing to buy despite

information asymmetry. This paper suggests a complementary view wherein the efficiency of

liquidation may also influence whether firms wait for financing until default is imminent.

This paper complements the literature on capital structure under dynamic contract. De-

Marzo and Fishman (2007a, 2007b) characterize optimal contract on firm financing and in-

vestment under agency problems. The predictions of their model include, among others,

delayed dividend payout and positive relation, which is strong for small firms in particular,

between current investment and payoff-irrelevant past cash flows. DeMarzo, Fishman, He

and Wang (2012) expand the framework with the q theory of investment à la Hayashi (1982)

to endogenize financing friction. They find that financial slack, not current cash flow, is the

valid proxy for the friction. This paper provides a novel and highly tractable mechanism that

reinforces the above patterns.

Hugonnier, Malamud and Morellec (2014) study search frictions in financial markets. In

their model, financial flexibility has liquidity value of sustaining business until successful

match. Search friction directly generates lumpy financing and also early financing for precau-

tionary motives.3 Their model also implies greater financial slack for firms with higher equity

value, exactly because these firms have more to lose from failure to finance. In comparison,

this paper is more relevant for firms with direct but limited access to certain financiers, ei-

ther the so-called ‘bulge-bracket’ investment banks or a venture capital fund with specialized

expertise in a particular industry and startup stage.

Theoretically, this paper contributes to the literature on dynamic bargaining with a disci-

plined framework to endogenize dynamic outside options. Recently, McClellan (2024) studies

the classic “split-the-pie” contracting with full commitment when the agent’s outside option

evolves exogenously and finds, somewhat similar to the present paper, that when the outside

option improves, the agent receives a promise of greater reward on equilibrium path and also

simultaneously secures more time before having to decide acceptance or termination. In the

present paper with limited commitment, the financing environment endogenously places a

plausible structure to the evolution of the outside option.

This paper also relates to the literature on strategic tensions between different classes

of firm stakeholders. Myers (1977) shows that corporate debt overhang dilutes equity value

and suppresses profitable investment. Rajan (1992) posits a firm choosing between a more

financially sophisticated creditor possessing bargaining power and a price-taking creditor that

lacks additional financial expertise to boost firm value and shows that shareholders’ optimal

3The optimal financing strategy under search friction alone is to always finance upon any match.
Naturally, such a model does not feature either endogenous inactivity—financing occurs intermittently
exactly because of the search friction—or a single well-defined financing threshold as firms’ nontrivial
strategy—funding cushion is whatever amount of internal funds that remain upon any match.
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choice is interior. More recently, Admati, DeMarzo, Hellwig and Pfleiderer (2018) show that

in absence of commitment to leverage policy, firms ratchet leverage up because deleveraging

benefits senior debt at the cost to equity. DeMarzo and He (2021) consider leverage ratchet

with endogenous response in credit spreads to generate slow mean reversion in leverage.

Donaldson, Gromb and Piacentino (2020) find that a firm’s ability to dilute existing creditors

with new debt induces a collateral overhang that causes underinvestment. Dangl and Zechner

(2021) analyze the trade-off between the benefit of leveraging-reducing commitment device

that short-term debt offers and its frequent transaction costs to rationalize negative relations

between risk and average maturity.

In addition, this paper’s framework provides a complementary perspective to the literature

on investment irreversibility, financing friction and productivity. Caggese (2007) explores

how misallocation of production factors with varying degrees of irreversibility exacerbates

and is exacerbated by the collateral constraint for financing during recessions. Kurlat (2013)

focuses on adverse selection in the context of capital reallocation and financial markets,

and shows that a negative productivity shock worsens the adverse selection through general

equilibrium effects. In the framework of Lanteri (2018), recessions exacerbate irreversibility

for downsizing firms because, due to user specificity of capital, the wedge that expanding firms

face between the returns to new investment and the value of used capital increases. More

recently in Cui (2022), unproductive firms delay divestment and exhaust their debt capacity

to optimally time for stochastic liquidation costs; adverse financial shocks increase delays

in capital liquidation, deteriorating allocative efficiency. This paper adds to the discussion

by illuminating how small variation in productivity may either amplify or suppress—directly

even in partial equilibrium—the interaction between irreversibility and financing friction that

leads to drastic consequences such as a long-lasting breakdown of financial markets.

On a methodological side, this paper’s modeling setup suggests an intriguing innovation to

the canonical search friction models of decentralized asset markets. The literature—initiated

in the current main framework with the seminal work by Duffie, Gârleanu and Pedersen

(2005) and having vastly expanded in many important ways including heterogeneous Nash

bargaining weight in Farboodi, Jarosch, Menzio and Wiriadinata (2019)—mostly assumes

a stochastic match that instantaneously dissolves. Hendershott, Li, Livdan and Schürhoff

(2020) study the effects on trading liquidity of a non-dissolving ‘relationship’ between a client

and a dealer through which multiple transactions take place via Nash bargaining over time,

where a bargaining failure, similar to this paper, dissolves the relationship. The underlying

lumpiness of trading, however, is exogenously modeled through the standard search friction

in the interdealer market and stylized valuation shocks that directly induce clients to seek

to trade a unit quantity. It would be interesting to explore how the durability of a match

endogenously amplifies lumpiness, including strategic non-trading despite gains from trading,

under a richer preference heterogeneity of traders such as Üslü (2019) in asset markets.

Overview. The rest of the paper is organized as follows. In Section 1, I describe the core
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mechanism with a simplified deterministic two-period model as a primer. I then formally set

up the model with exogenous cash flow in Section 2. In Section 3, I proceed to characterize

the equilibrium, including comparative statics in strategic bargaining parameters, to analyze

the mechanism in depth. The analysis is then illustrated graphically in Section 4, ending

with comparative statics results that directly segue into introducing investment.

In Sections 5 and 6, I introduce two extensions of endogenous cash flow with investment

choice. Section 5 features a stochastic arrival of lumpy investment opportunities, and Section

6 smooth investment with convex adjustment cost. The first extension illustrates why firms

with robust financing access maintain financial flexibility in substantial excess of contingent

investment needs, while the second explores what factors may drive or prevent endogenous

amplification of dilution. Section 7 concludes the paper.

1 Core Mechanism

In this section, I present a stylized and analogical model that, despite its simplicity, precisely

captures the core of the mechanism being proposed. Notably, the analytic conditions that

induce slack in this basic model will be replicated with the main model in Sections 2 and 3.

Setup. There are two periods with three dates t ∈ {0, 1, 2}, where t = 2 is the terminal date.

Time is not discounted. There is a crop that lives for the two periods. In each period, the

crop requires a unit amount of fertilizer to survive. With any less fertilizer input, the crop

dies. A ‘long-lived’ agent called farmer owns the crop. She seeks to sustain the crop until

harvest at the terminal date t = 2, when it can be sold for a price v > 0. The crop has no

value other than through harvest.

The farmer cannot manufacture fertilizer by herself. There are two chemists, each coming

to visit the farmer at t ∈ {0, 1} to make fertilizer for her. Each of them incurs a marginal

cost, normalized to unity, to manufacture fertilizer. Each chemist possesses bargaining power

over fertilizer production when he is visiting the farmer and, when requested to manufacture

fertilizer, demands a 1 − θ fraction, θ ∈ (0, 1), of surplus from that period’s fertilization on

top of the manufacturing cost. The farmer has an imperfect technology to store fertilizer: a

unit of stored fertilizer at t decays down to β ∈ (0, 1) at t+1. Lastly, I assume v ≥ 1+ 1
θ > 2

so that the farmer chooses to farm.4

Denote ht as the farmer’s inventory of stored fertilizer at date t. By backward induction,

the farmer purchases from the second chemist max{0, 1 − h1} units of additional fertilizer

4The lower bound is set at 1+1/θ > 2 simply to streamline exposition. With v ∈ (2, 1+1/θ), farming
is censored—i.e. the farmer quits farming though it is efficient not to—when h0 = 0 and β < 1

v−1 .
The censoring arises jointly from the finite horizon and the fact that the second chemist demands rent
from the bargaining surplus without deducting the sunk cost of the first-period fertilizer. No censoring
arises if either (less plausibly) the second chemist demands 1 − θ of net surplus after deducting the
first-period fertilizer, or (as in the main model) the setup is stationary so that the total continuation
value at the second bargaining is also compressed by the same non-deduction going forward. Even
under the less plausible scenario of sunk-cost deduction, slack arises when v and β are high.
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at date t = 1. If h1 ≥ 1, then autarky is feasible until harvest. If h1 < 1, then the farmer

compensates the second chemist for the manufacturing cost plus his rent (1−h1)+(1−θ)
(
v−

(1− h1)
)
= (1− θ)v + θ(1− h1). The farmer’s continuation payoff, therefore, is

θ
(
v − (1− h1)

)
;

that is, they retain a θ fraction of the fertilizing surplus v− (1−h1). Due to the storage cost,

h1 ∈ {0, 1} in equilibrium as long as h0 ≤ 1. The farmer’s continuation payoff at the second

period is, therefore, v if h1 = 1 and θ(v − 1) if h1 = 0. Denote v20 := θ(v − 1).

Lumpy purchase. First suppose that the farmer has zero initial endowment of fertilizer

h0 = 0. At date 0, the farmer decides to purchase from the first chemist either (i) just enough

fertilizer to sustain that period, or (ii) enough to sustain both periods. If she chooses (i),

then she buys exactly unit fertilizer from the first chemist so that h1 = 0, securing v20 in

value. If she chooses (ii), then she buys 1+1/β units of fertilizer, securing v at t = 1 because

bargaining is no longer necessary. Either way, the farmer retains θ of the fertilizing surplus—

i.e. the difference between continuation value at t = 1 and the cost of fertilizer production at

t = 0—and so her payoff in either scenario (i) or (ii) is:

(i) : θ
(
v20 − 1

)
, (ii) : θ

(
v −

(
1 +

1

β

))
.

Therefore, the farmer finds it optimal to buy fertilizer (ii) once at t = 0 instead of (i) twice if

v − v20 ≥ 1

β
⇐⇒ (1− θ)(v − 1) ≥ 1

β
− 1, (1)

i.e. when the rent that the second chemist will demand (1− θ)(v− 1) upon (i) is higher than

the storage cost 1/β − 1 upon (ii).

Despite wasting 1/β−1 units of fertilizer, the farmer retains greater surplus by bargaining

once instead of twice. The total payoffs for the three agents have decreased by 1/β−1 relative

to the efficient choice of (i). By making fertilizer provision infrequent and lumpy, however,

she effectively appropriates the second chemist’s surplus for herself (and the first chemist).

Early purchase. Next, suppose instead that h0 = 1, so that the farmer needs to purchase

fertilizer only to sustain the second period. If she chooses to (iii) buy at t = 1, then her

total payoff is v20 = θ(v − 1); note that in the second-period bargaining, she is at the brink

of losing her crop, i.e. her reservation value is zero. If she chooses to (iv) buy early at t = 0,

the farmer is no longer placed at the brink. Instead, the consequence of a failure of the

present bargaining is simply a deterioration in her bargaining position in the next date; i.e.

her reservation value is now v20 > 0. At the same time, early purchase involves a greater cost

of fertilizer production 1
β > 1 due to inefficient storage.

Under either scenario (iii) or (iv), the farmer’s continuation value upon the one-time
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bargaining is her reservation value plus her θ share of the fertilizing surplus, i.e.

(iii) : 0 + θ
(
v − 0− 1

)
= θ
(
v − 1

)
+ (1− θ)0 =: v20,

(iv) : v20 + θ

(
v − v20 −

1

β

)
= θ

(
v − 1

β

)
+ (1− θ)v20.

Therefore, the farmer buys (iv) 1/β units early at t = 0 instead of (iii) one unit at t = 1 if

v20 − 0 ≥ θ

[(
v20 − 0

)
+
( 1
β
− 1
)]

⇐⇒ (1− θ)
(
v20 − 0

)
≥ θ

(
1

β
− 1

)
, (2)

This time, the same waste of fertilizer 1/β − 1 occurs as in the case of h0 = 0, when

the above inequality holds. Inequality (2) is algebraically equivalent to Inequality (1) but

has the important difference in interpretation as previously explained, highlighted through

a somewhat redundant expression. If she chooses an early purchase, the farmer raises her

reservation value by v20 − 0, and lowers the fertilizing surplus by the same amount plus the

storage cost
(
v20 − 0

)
+
(
1
β − 1

)
; she only bears a θ ∈ (0, 1) fraction of the surplus reduction.

Conclusion. Both forms of ‘fertilizing slack’—i.e. choice of (ii), (iv) over (i), (iii) respectively,

each of which involves wasted resources—may arise despite the absence of fixed transaction

costs or search frictions. The farmer buys enough at a time to sustain multiple periods to

reduce the frequency of dilution, and purchases early to boost her bargaining position and

reduce the size of dilution by preserving the option to bargain at a later date. In addition,

the slack increases in future payoff v for both scenarios because dilution is the sharing of it.

With a higher terminal payoff, dilution becomes costlier to the farmer even as the cost of

wasted fertilizer 1/β − 1 is fixed.

This model captures the essence of the framework that I propose in this paper, but the

derivation quickly loses tractability as the number of periods increases or stochastic elements

are introduced. Therefore, I transition to the formal setup in continuous time to enable more

precise and effective analysis. Despite the generalized setup, I recover both conditions for

slack—(1) asymptotically in Section 3.1 and (2) in the exact same form in Section 3.2.

2 Model

In this section, I formally set up a theoretical model of corporate financing with dilution given

exogenous business cash flow profile—a Lucas tree with cash endowments. After the setup,

I will then analytically characterize the equilibrium in Section 3 and graphically illustrate it

in Section 4, ending with core insights that motivate introducing endogenous cash flow with

investment choice in Sections 5 and 6.
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Environment. Time is continuous and infinite t ∈ [0,∞). Every agent is risk neutral and

has a common time discount rate ρ > 0. There is a business owned by a group of agents

called shareholders. The business has an underlying cash flow profile, to be discussed shortly

in Section 2.1, and holds internal funds (or ‘funds’) ht ≥ 0 to which cash flow accrues. Internal

funds earn a yield at rate r ∈ [0, ρ).

The spread ρ− r > 0 is the carry cost of internal funds. With ht interpreted as holdings

of cash and cash equivalents, the cost may be either literal inefficiency of financial asset

management or a reduced-form representation of the presence of agency problems due to

corporate managers’ ability to stash cash, or both. With ht viewed as unused capacity to

raise funds relatively cheaply and flexibly (i.e. free of bargaining), the cost represents the

difference in the required yields, e.g. term structure across debt maturities or equity premium.

Shareholders may frictionlessly receive non-negative dividend. If the internal funds are

depleted without immediate financing, the business terminates with zero liquidation value.5

Financing bargaining. To avoid termination, shareholders must regularly finance the busi-

ness. Shareholders are assumed penniless, and hence must raise additional business funds

from deep-pocketed outside agents called financiers. The financing market is modeled as a

bilateral Nash bargaining without direct search frictions. That is, shareholders can exactly

choose when to bargain with financiers for funds. Shareholders have Nash bargaining weight

θ ∈ (0, 1) and financiers 1 − θ. To abstract from debt structure and financing history, I as-

sume that financiers receive a proportional ownership stake in the business in compensation

for the funds that they contribute; accordingly, financiers upon financing join the group of

shareholders on a pro-rata basis and become penniless.6

Outside option. If shareholders can walk out from bargaining and immediately find al-

ternative financiers to raise funds from, bargaining is trivialized as they possess a credible

‘take-it-or-leave-it’ technology. Shareholders are therefore assumed to wait a strictly posi-

tive time lag until the next financing if they walk out from the current bargaining. I use

a technical term exclusion to denote this time lag for alternative financing. Exclusion can

be either perfect or imperfect. If perfect, excluded shareholders will continue the business

until internal funds are depleted, at which point the business has to terminate. Generally,

excluded shareholders become re-included into the financing market at a Poisson arrival rate

γ ≥ 0 that parametrizes the accessibility of alternative financing. That is, shareholders face a

stochastic time lag until finding another financing counterparty. Re-inclusion means regaining

the ability to finance, and re-included shareholders may choose not to finance immediately.

The above modeling construction calls for a couple of comments. First, while the exclusion

assumption may appear somewhat arbitrary and its necessity contingent on the continuous-

5More general liquidation will be addressed in Section 6 in the context of divestment.
6The assumption of penniless shareholders and deep-pocketed financiers who, upon financing, become

penniless allows the model to focus on external financing. It is without loss as long as financiers’
commitment to fund the business has an upper bound and involves inefficient interim fund management.
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time setup, it has a concrete conceptual counterpart in a discrete-time version of the model,

such as the one in Section 1. In discrete time, shareholders still possess a take-it-or-leave-it

offer if they can re-bargain with other financiers in the same time period. A natural modeling

choice would be to exclude shareholders for that period if they walk out and re-include them

in the next period. In continuous time, I could similarly let exclusion last a deterministic

time lag to avoid trivializing the bargaining. The stochastic duration of exclusion, given as

Poisson arrival, achieves the same goal and additionally generates tremendous tractability by

requiring the model to keep track of just one more value function—i.e. reservation value—in

addition to the main one on equilibrium path.

The second comment concerns the introduction of what is essentially search friction only

for off equilibrium path. It can be thought of as a reduced-form way of allowing corporate

managers to predict whether they will need financing in a near future and thus start engaging

with financial intermediaries, such as investment banks, in advance. At the same time, firms

are prohibited from engaging with two or more intermediaries for the purpose of pitting one

against another to induce Bertrand competition. The combination of the visibility of short-

term cash forecast and the prohibition of double engagement rationalizes suppressed search

friction on equilibrium path but its latency still influencing the on-path bargaining outcome.

More concretely, this latent search friction can be interpreted as either (i) direct access

to only a handful of specialized financiers, such as venture capital funds with specialty in a

particular sector and particular startup stage, or (ii) time lag in financing that arises because

of necessary due diligence process. These two interpretations can also be jointly employed

in capturing how large firms finance from the concentrated investment banks that syndicate

dispersed investors through their superior firm valuation technology.

It is worth noting that the present modeling construction of exclusion embeds double-

layered conservatism with respect to the above interpretations. First, all financiers are as-

sumed to have the same cost of funding ρ. In practice, alternative financiers are likely to

have higher funding costs, consistent with their not being primary financiers in the first place.

Second, supposing shareholders have walked out from bargaining—off equilibrium path—and

found alternative financiers, the outside option at this off-path bargaining still involves the

same stochastic time lag γ until finding the next alternative financiers. In practice, it is

reasonable that the time lag of finding the next alternative financiers should increase in the

number of past bargaining failures. In short, the present setup with γ > 0 gives an upper

bound on shareholders’ outside option relative to firms in practice that can expect to find

‘second -best’ financiers in 1/γ <∞ time periods. Later in Sections 5 and 6 where I let γ = 26

or 52 so that alternative financiers can be found in ‘a week or two,’ the model’s predictions

of financial slack and, in Section 6, underinvestment will therefore be a lower bound.

Conceptually, one may think of shareholders’ Nash bargaining weight θ and accessibility of

alternative financing γ as their static and dynamic bargaining power, respectively. θ is static

in essence since it takes as given how willing shareholders are to walk out from unfavorable
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bargaining terms. γ is dynamic as this willingness to walk out is strengthened by the ease of

finding an alternative bargaining counterparty in the future. Similarly, 1− θ and 1/γ can be

considered financiers’ static and dynamic bargaining power. The distinction between static

and dynamic nature of θ and γ will be revisited in Section 3 with discussion of Proposition 3.

2.1 Cash flow profile

The business has an exogenously given underlying cash flow profile. The time-t cash flow is

µ dt+ σ dBt,

where µ ∈ R, σ ≥ 0, and Bt is a standard Brownian motion representing cash flow volatility;

one of the two main examples in Sections 2 and 3, introduced right below, will have σ = 0,

i.e. no Brownian motion. In addition, the business may ‘succeed’ at a random time following

Poisson rate λ ≥ 0. Upon success, shareholders receive a one-time liquidating dividend

Π + ht,

where Π ∈ R is the terminal payoff.7 For concreteness, consider two stylized examples to be

explored graphically in Section 4. I intentionally modify notations for µ in each example to

better align with their respective interpretations.

1. The business is a startup that incurs a constant flow expense κ dt with κ > 0, until

success arrives at a Poisson rate λ > 0. Upon success at t, the business earns a terminal

payoff Π > 0 and ends with a liquidating dividend Π + ht.

· µ =: −κ < 0, σ = 0, Π > 0.

2. The business is an operating firm with flow profit π dt+ σ dBt, where π, σ > 0.

· µ =: π > 0, λ = Π = 0.

Π in startups captures the future value of business that is orthogonal to the current cash

flow, whereas π in operating firms determines both future value and current cash flow. It

will generate some interesting contrast in comparative statics in Section 4, motivating the

introduction of investment choice in Sections 5 and 6.

The following assumption is made on the cash flow parameters (µ, σ, λ,Π).

Assumption 1. µ+ λΠ > 0. If σ = 0, then µ < 0 and r < − µ
Π

(
1 + ρ

λ

)
.

The first part, which can be phrased Profitability Assumption, gives a positive net present

value 1
ρ+λ

(
µ + λΠ

)
> 0, ensuring that the business is inherently worth undertaking. The

second part ensures that in the absence of cash flow volatility σ2 = 0, (i) flow loss still occurs

with nonzero probability(= 1) µ < 0, and (ii) it is never optimal to prevent fund depletion

7If Π < µ
ρ , then ‘success’ would be a misnomer.
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entirely by maintaining sufficiently high internal funds so that rht ≥ −µ. Note that µ < 0

implies λ,Π > 0 by Part 1; otherwise it is optimal to immediately terminate the business.

I will refer to (µ, σ, λ,Π) as business parameters and (θ, γ) as strategic parameters.

2.2 Dividend payout and HJB equation

By risk-neutrality, optimal dividend policy is a payout threshold, i.e. h ≥ 0 such that dividend

payout equals dDt = max
{
0, ht − h

}
, where Dt is cumulative dividend. Letting V denote

shareholders’ value function, h satisfies V ′(h) = 1 and V ′′(h) = 0 by smooth pasting and

super contact conditions,8 respectively. Concretely, V ′(h) = 1 equalizes the marginal values

of internal funds and dividend payout, and V ′′(h) = 0 means that risk-neutral shareholders

choose to receive dividend only when they are indeed locally risk-neutral with respect to

volatility in the firm’s funding capacity.

Next, shareholders’ inactive value function, i.e. when they are neither financing nor

receiving dividend, satisfies the following HJB:

ρV (h)− rhV ′(h) = H(V )(h), where

H(V )(h) := λ
(
Π+ h− V (h)

)
+ µV ′(h) +

1

2
σ2V ′′(h). (3)

Here, the term rhV ′(h) denotes the change in value due to the yield on internal funds, and

H(V ) represents the cash flow profile; the first term is expected change in value from terminal

liquidating dividend upon λ, and the last two terms the expected change in value due to non-

terminal running cash inflow.

Note that H is a linear operator on value function, because cash flow is exogenous. Lin-

earity makes analysis substantially transparent by canceling out H entirely in the context of

Nash bargaining, as Section 3 will demonstrate in the workhorse proof of Lemma 2.

2.3 Nash bargaining for financing

Suppose that at time t shareholders have engaged in bargaining with financiers for funds.

Denote by Vo shareholders’ reservation value function (‘outside option’), and by x ∈ [0, 1]

their retained ownership fraction post bargaining. Nash bargaining then solves

max
x∈[0,1], h≥0

(
xV (h)− Vo(ht)

)θ(
(1− x)V (h)− (h− ht)

)1−θ
.

8 Super contact condition does not apply when σ = 0.
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The first-order conditions yield straightforward solutions:

h ∈ argmax
h

V (h)− h ( =⇒ V ′(h) = 1),

x(h)V (h) = Vo(h) + θ
(
V (h)− Vo(h)− (h− h)

)
= θ
(
V (h)− (h− h)

)
+ (1− θ)Vo(h). (4)

Simply put, h maximizes the total net value V −h and x splits the business ownership so that

shareholders’ retained value x(h)V (h) equals their reservation value Vo(h) plus a θ fraction of

the financing surplus. By risk neutrality and the absence of any cost—in particular, variable—

associated with fund injection and dividend payout, h here coincides with the dividend payout

threshold briefly discussed in Section 2.2. None of this paper’s results depend on this identity

in any substantive manner, but it enhances exposition by reducing the number of endogenous

objects to keep track of. Note the implicit restriction to Markov perfect equilibrium in that

the newly financed business value V (h) derives from the ahistorical value function V (·).
Crucially, recall that shareholders can choose when to finance. Therefore, if it is optimal

to finance at h, then V (h) = x(h)V (h) i.e. their continuation value is given by immediate

financing. This is not true for canonical search friction models, because the value function is

formulated without a present match and so does not encompass the surplus from the ability

to bargain immediately. In this paper, if it is optimal to finance at h, Nash bargaining (4)

implies that V (h) is a convex combination of h 7→ V (h)− (h−h) and h 7→ Vo(h). The convex

combination that Nash bargaining without explicit search friction represents means that all

the linear HJB terms in Equation (3) H(V )(h)—that is, the entire right-hand side of (3)—can

be conveniently cancelled out, enabling substantial transparency of analysis in Section 3.

But what does this convex combination represent in terms of economics? In equilibrium,

shareholders’ value when they have chosen optimally to finance at h is determined exclusively

by (i) the value of the newly financed firm V (h) net of fund cost h−h and (ii) their reservation

value at the current funding capacity Vo(h)—i.e. what happens upon bargaining success

versus failure. And these two different scenarios involve the same exogenous running cash

inflow to the business as described in Section 2.1. Conceptually, as Nash (1950) formalized

in the axiom of invariance to positive affine transformation, anything that does not depend

on the success or failure of a bargaining must not affect its outcome. As will be concretely

analyzed shortly in Section 3.2, there is a sense in which, due to shareholders’ ability to

optimally time the financing, the exogenous running cash inflow serves locally as a parallel

vertical shift of the two values. Hence, the bargaining outcome is, under the appropriate

context, invariant to it. Convex combination in Equation (4) will mathematically replicate

this axiomatic invariance.
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3 Analysis

In this section, I analytically characterize the equilibrium, including comparative statics in key

strategic parameters. Equilibrium analysis begins with existence and preferably uniqueness,

and the following lemma establishes both.

Lemma 1 (Unique existence). There uniquely exist V and Vo, the equilibrium value function

of shareholders and their reservation value function.

Proof. Immediate from contraction mapping theorem. See Appendix A.1 for details.

With the assurance of existence and non-multiplicity, I proceed by demonstrating lumpi-

ness of financing in Section 3.1, characterizing optimal financing strategy in Section 3.2,

analyzing costs and benefits of financial slack in Section 3.3, and establishing comparative

statics of financial slack with respect to strategic parameters in Section 3.4.

The analysis in the present section will be graphically illustrated in Section 4.

3.1 Lumpy financing

Let h = inf{argmaxh V (h) − h}. Whenever ht > h, the business will immediately pay out

dividend ht−h to shareholders.9 So h 7→ V (h)−h is constant above h, and therefore choosing

h as the infimum is without loss of generality. Next, define B ⊂ [0, h] as the set of internal

funds h at which shareholders find it optimal to finance in equilibrium. Obviously, 0 ∈ B since

θ > 0 whereas liquidation value upon termination is zero. The following result establishes

that financing is always ‘lumpy,’ indicating the emergence of an endogenous friction.

Proposition 1 (Lumpy financing). Financing is lumpy and intermittent, i.e. supB < h.

Proof. Suppose not, i.e. at ht = h, shareholders find it optimal to finance. By Equation (4),

V (h) = x(h)V (h) = θV (h) + (1− θ)Vo(h).

Since θ < 1, the above is equivalent to V (h) = Vo(h). But this cannot be true since θ > 0

and γ < ∞. This is because (i) there is always some finite time interval over which the

probability of internal funds being depleted at some point within it, barring additional fund

injection, is nonzero by Assumption 1, and (ii) for any finite time interval, the probability

that no re-inclusion occurs within it is also nonzero since γ < ∞. Therefore, there is always

a positive probability that today’s exclusion brings about depletion-prompted business ter-

mination before a finite time interval, while without exclusion, a strictly positive value would

have been retained even at depletion since θ > 0. Hence, V (h) > Vo(h), a contradiction.

9This includes the new financier-turned shareholders, pro rata to the newly acquired ownership stake.
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Financial friction and the resulting lumpiness in this paper’s framework arise solely due

to bargaining. This is clear from writing financiers’ rent using Equation (4) as

(1− θ)

[(
V (h)− V (h)− (h− h)

)
︸ ︷︷ ︸

Y

+
(
V (h)− Vo(h)

)
︸ ︷︷ ︸

Z

]
.

In the above, Y is the social surplus from financing and Z the cost of exclusion; preclusion of

‘take-it-or-leave-it’ directly implies that Z > 0. Financiers receive as their surplus the 1− θ

fraction of not just Y , but also Z. Since (1 − θ)Z > 0 is bounded away from zero,10 the

financing rent above does not vanish11 with the financing amount h− h→ 0, even though Y

does. At the same time, h − h → 0 implies infinite financing frequency, i.e. paying a 1 − θ

fraction of Z > 0 infinitely often. Incremental financing, therefore, is never optimal in the

continuous-time limit.12

Note that the strict positivity of financing rent derives exactly from nontrivial bargaining.

In other words, if either θ = 1 or γ → ∞ so that bargaining is trivialized, then there is no

rent. It is obvious from the above expression that θ = 1 implies zero rent. Suppose θ ∈ (0, 1)

but γ → ∞ so that Z(h) → 0 pointwise for any h > 0. If it is optimal to finance at h > 0,

V (h) = x(h)V (h) = Vo(h) + θ
(
Y (h) + Z(h)

)
→ V (h) + θY (h),

where the last limiting expression is because Z(h) → 0 if and only if Vo(h) → V (h).13

Consequently, Y (h) → 0 as well, and the rent (1− θ)
(
Y (h) + Z(h)

)
vanishes for all h > 0.

3.2 Early financing and backstop strategy

Next, let us characterize the optimal financing strategy. Note that since there is no search

friction for financing and the cash flow profile does not exhibit discrete jumps conditional on

no exogenous termination, any h < supB does not occur on equilibrium path after the initial

financing. Nevertheless, the shape of B affects shareholders’ reservation value at the boundary

Vo(supB) through subgame perfection, and hence the bargaining outcome on equilibrium

path. Therefore, it is crucial for the purpose of analysis to characterize the structure of B.

The following lemma establishes that B is an interval, such that optimal financing strategy

10The proof of Proposition 1 employs the argument of nonzero probability of depletion before alter-
native financing to establish the nonzero bound. Nonzero bound is still valid when exclusion has a
deterministic duration instead, as in a discrete-time case; the argument just needs to be somewhat
more involved, though still with a similar flavor.
11As will be seen in Section 4, this limit is always positive but typically quite small.
12In relation to Section 1, shareholders are now unconstrained in terms of the financing frequency. In
discrete time, there is the natural upper bound on frequency—up to one per period—and so comparison
between frequency of rent extraction and carry cost of infrequency is not trivial, as Inequality (1) shows.
Continuous time allows infinite frequency, and the marginal carry cost of reducing frequency vanishes
asymptotically. The comparison as the frequency asymptotes, therefore, gives an interior solution.
13There is some abuse of notation here: in principle, all expressions to the right of the limiting arrow
‘→’ must be expressed as functions of γ and their limits as γ → ∞.

17



is monotone in internal funds h. While this is a technical result, I include an abridged proof of

the lemma in the article because its derivation points at the core of the model’s transparency.

Lemma 2 (Monotone financing strategy). If h ∈ B, then [0, h] ⊂ B.

Proof. Since the optimal strategy on B is immediate financing, it must be that for h ∈ B,

V (h) = x(h)V (h) = θ
(
V (h)− h+ h

)
+ (1− θ)Vo(h). (5)

Suppose B ⊋ {0}. Since immediate financing at ht ∈ B \ {0} is optimal, it must be preferred

to an instantaneously delayed financing. That is, loss from time discounting must be greater

than instantaneous yield from drifting value along the cash flow. Therefore, for h ∈ B \ {0},

ρV (h)− rhV ′(h) ≥ H(V )(h), (6)

where H(V )(h) := λ
(
Π+h−V (h)

)
+µV ′(h)+ 1

2σ
2V ′′(h) is the HJB operator that represents

the exogenous cash flow profile. Lastly,

ρV (h)− rh = H(V )(h), (7)

ρVo(h)− rhV ′
o(h) = H(Vo)(h) + γ

(
V (h)− Vo(h)

)
, (8)

where V ′(h) = 1 and Vo has the additional HJB term representing re-inclusion upon γ.

Now, let us substitute (5), (7) and (8) into (6). Because H(V )(h) = θH(V )(h) + (1 −
θ)H(Vo)(h), the substitution cancels out the entire H(V )(h) from (6). The result is a compact

expression of the inequality that holds on B:

(1− θ)γ
(
V (h)− Vo(h)

)
≥ θ(ρ− r)

(
h− h

)
. (9)

It then takes a few straightforward steps, albeit on top of a somewhat technical proof for

strict concavity of Vo, to show that this inequality holds in a single-crossing fashion, such

that h ∈ B implies [0, h] ⊂ B. For details including the single-crossing and strict concavity

of Vo (and also of V as an implication), see Appendix A.1.

Why can the model deliver the cancellation of all exogenous cash flow terms? Suppose

that shareholders find it optimal to finance at ht > 0. This implies, at least, that when

they compare bargaining immediately and delaying bargaining by an instant dt as a one-shot

deviation, they prefer the former. Let us analyze this comparison of immediate financing

against instantaneous delay. First, the risk of running out of funds and facing termination

in financing due to the dt delay is negligible because ht > 0, and hence irrelevant to the

comparison. Furthermore, the instantaneous running cash inflow to the business during

(t, t+dt] is not altered; in principle, whether to bargain before or after receiving a given cash

flow is, in the canonical terminology of Nash bargaining, simply a question of whether to

shift the entire feasible set as well as the disagreement point up or down along that player’s

dimension, for which the axiom of invariance to positive affine transformation applies.

18



Immediate financing does create the following three nontrivial changes relative to instanta-

neous delay: (1) the instantaneous cash inflow during the dt interval induces an instantaneous

variation in carry cost because it affects both financing and dividend payout differently in

either scenario; (2) there is an additional carry cost because funds are injected at t instead

of t + dt; (3) shareholders’ reservation value at the immediate bargaining improves because

of the chance of instantaneous access to alternative financing during (t, t+ dt]. Note that the

first change is of order (dt+dBt)·dt, which vanishes as dt→ 0. Shareholders, therefore, assess

the effects from the second and third changes, which do not vanish, in deciding whether to

delay financing by a dt instant.

And that is exactly what Inequality (9) is. On one hand, the benefit of immediate financing

is the chance of instantaneous access to alternative financing γ(V (h)− Vo(h)) dt, improving

their bargaining outcome by a factor of 1− θ; it raises their reservation value and lowers the

total financing surplus by the same amount, but shareholders bear only a θ fraction of the

surplus reduction. On the other hand, immediate financing involves an instantaneous carry

cost (ρ− r)(h− h) dt, of which shareholders again bear a θ fraction. If the benefit is greater,

shareholders choose to finance immediately.14

On a more pragmatic note, Lemma 2 allows the equilibrium to be fully characterized by

the ‘s-S’ bounds (h, h) where h ≡ supB. At the financing threshold h, the business restores

the target funding capacity h. Going forward, I will refer to h both as ‘financing threshold’—

mostly when highlighting the dynamics of financing—and ‘funding cushion’—when addressing

optimal financial slack. ‘Early financing’ will denote its strict positivity h > 0. I will also

refer to h and ∆h := h− h as ‘funding target’ and ‘buffer stock’ of funds, respectively.

Corollary 1. Given other parameters, there exists γ ∈ (0,∞) such that h = 0 if and only if

γ ≤ γ. In particular, γ = 0 always implies h = 0.

Proof. It follows mainly from observing that if γ = 0, then Inequality (9) is strictly reversed

for any h < h, in particular at h = 0. See Appendix A.1 for more detailed reasoning.

Corollary 1 formalizes the logical implication from the proof and discussion of Lemma 2

in that the only reason that shareholders would choose to finance early h > 0 is that this

cushioned funds can be used, off equilibrium path, to secure time to pursue a sufficiently

viable backstop strategy upon exclusion. Since cash flow is exogenous in the main framework

of Section 2, the only available backstop strategy is to access alternative financing. When

the backstop strategy is not effective enough γ ≤ γ, shareholders always wait until depletion

for financing. As a preview, underinvestment can also be a backstop strategy. Hence, with

investment choice, γ = 0 does not imply h = 0, as Section 6 will show.

14Despite the general cash flow profile in the current setup, Inequality (9) exactly coincides with
Inequality (2) in the two-period model of Section 1; the (net) drop in reservation value from delay is
v20−0 in Section 1 when alternative financing was guaranteed in the next period, and γ

(
V (h)−Vo(h)

)
dt

here when it arrives with a γ dt probability over (t, t+ dt].
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3.3 Costs and benefits of financial slack

This part illustrates how shareholders optimize financial slack against dilution. Given a

general cash flow profile from Section 2.1, posit the equilibrium (h, h) along with the implied

ownership retention x at each financing, occurring at the fixed threshold h. Initiate the

dynamics with endowed funds h0 = h. Define a counting process {nt}t≥0 by n0 = 0 and

dnt = 1(ht− = h),

where ht− := lims→t− hs. The process nt tracks how many times financing (hence dilution)

has occurred over the time interval (0, t]. Also define {τm}m∈N by

τm := inf{t ≥ 0 | nt ≥ m}

as the associated increasing sequence of stopping times for mth financing; that is, the first

financing occurs at t = τ1 > 0, and so on. Let τ be the stopping time for the terminal success

arriving at a Poisson rate λ with terminal payoff Π.15

Then, shareholders’ net value V − h can be decomposed as: given h0 = h,

V (h)− h = E0

[∫ τ

0
e−ρtxnt

((
µ− (ρ− r)ht

)
dt+ σ dBt

)
+ e−ρτxnτΠ

]

= E0

[∫ τ

0
e−ρtµ dt+ e−ρτΠ− e−ρt(ρ− r)ht dt

]
− E0

[
nτ∑
m=1

e−ρτm(1− x)
(
V (h)− h

)]
.

As a reminder, x ∈ [0, 1] is shareholders’ retained share fraction at each financing in equilib-

rium, from Section 2.3. Note that inside the last expectation term on the last line, both 1−x
and V (h)−h are constant in equilibrium for all {τm}m∈N due to the time-invariant financing

threshold and funding target h, h, respectively. Rearranging the equation gives

V (h)− h =
NPV− C
1 +D

, (10)

where

NPV :=E0

[∫ τ

0
e−ρtµ dt+ e−ρτΠ

]
=
µ+ λΠ

ρ+ λ
,

C :=E0

[∫ τ

0
e−ρt(ρ− r)ht dt

]
≡ C + C∆

with C := (ρ− r) h
ρ+λ and C∆ := (ρ− r)E0

[∫ τ
0 e

−ρt(ht − h) dt
]
, and

D := (1− x)E0

[
nτ∑
m=1

e−ρτm

]
.

15τm = ∞ if and only if m > nτ , where nτ counts the total financing instances before exogenous
business termination. Also, λ = 0 if and only if τ

a.s.
= ∞ a.s.

= nτ .
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As Equation (10) shows, net equity value is lower than net present value due to carry cost

of financial slack C and dilution D. Shareholders choose financial slack (h,∆h) to maximize

net value V (h)− h, balancing the mitigation of dilution D against the carry cost C. On one

hand, both funding cushion h and buffer stock ∆h = h− h lower dilution D, by reducing its

size (1−x) and frequency E0 [
∑nτ

m=1 e
−ρτm ], respectively.16 On the other hand, financial slack

involves carry cost C = C + C∆, with C for funding cushion h and C∆ for buffer stock ∆h. As

Proposition 1 has shown, ∆h→ 0 fails to drive the size of dilution 1−x(h) down to zero and

yet blows its frequency E0 [
∑nτ

m=1 e
−ρτm ] up to infinity. Shareholders’ dynamic optimization

between dilution and carry cost, therefore, yields an interior solution D > 0, C ≥ C∆ > 0.

Note that funding cushion h, viewed as a one-dimensional Markov strategy, incurs a

greater marginal carry cost ρ−r
ρ+λ than buffer stock ∆h. This is because (ρ− r)h is a fixed flow

cost whereas (ht − h) < ∆h almost always so that C∆ < (ρ − r) ∆h
ρ+λ . Consequently, when a

marginal increase in h fails to sufficiently compress 1− x by boosting Vo(h), shareholders let

h = 0 and resort to ∆h > 0 exclusively in reducing dilution D, as Corollary 1 shows.

Then, when exactly is funding cushion employed, and what does its use imply about

financing rent? The following proposition provides an explicit answer.

Proposition 2 (Funding cushion and financing rent). h > 0 if and only if

(1− θ)γ >
(ρ− r)h

V (h)− h
, (11)

in which case

γ
(
V (h)− V (h)−∆h

)
= (ρ− r)∆h. (12)

Proof. For (11), evaluate Inequality (9) at h = 0 given V (0) = θ
(
V (h)−h

)
. For (12), enforce

equality on (9) at h = h > 0 given (1− θ)
(
V (h)− Vo(h)

)
= θ
(
V (h)− V (h)−∆h

)
.

Proposition 2 first shows that funding cushion is employed despite its higher marginal

cost when the bargaining-adjusted effectiveness of backstop strategy (1− θ)γ is higher than

the total relative carry cost burden (ρ−r)h
V (h)−h . In Inequality (11), the right-hand side does

not have the factor of θ as in (9) because it is evaluated at zero funds in the limit. With

zero reservation value Vo(0) = 0, the flow yield from instantaneous alternative access is

γ
(
V (0) − 0

)
= γθ

(
V (h) − h

)
, which is being compared against shareholders’ θ share of

instantaneous carry cost (ρ−r)h. Consequently, shareholders with ht → 0 can simply compare

total instantaneous carry cost against total net value in deciding whether to delay financing

until exact depletion.

Second, Proposition 2 demonstrates that with a positive funding cushion, shareholders in

equilibrium pay financiers an optimized rent of ρ−r
γ ∆h at each financing; in Equation (12),

V (h)−V (h)−∆h = (1−x)V (h)−∆h is exactly the excess compensation to financiers above

16The dichotomy is heuristic; 1− x represents financiers’ total compensation, i.e. their rent plus ∆h.
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the fair value of funds being contributed. This result is due to the fact that

(1− θ)
(
V (h)− Vo(h)

)
= θ
(
V (h)− V (h)−∆h

)
from Nash bargaining equation (4), with the interpretation that financing rent is determined

by the cost of exclusion V −Vo and static bargaining weight θ. Multiplying both hand sides by

γ dt shows that shareholders’ gain from immediate financing at h is θγ
(
V (h)−V (h)−∆h

)
dt,

i.e. reducing financing rent by a factor of θγ dt. Immediate financing costs shareholders θ(ρ−
r)∆h dt relative to an instantaneous delay. Optimal interior financing threshold equalizes

marginal rent reduction and marginal carry cost burden, which gives (12).

To illustrate the trade-off to early financing in more concrete terms, reformulate17 In-

equality (11) as follows: h > 0 if and only if

(1− θ)γ

ρ+ λ+ (1− θ)γ
>

(ρ− r)h

µ+ λΠ
. (13)

The right-hand side is the flow carry cost from financing instantaneously earlier than h = 0,

relative to the average flow of frictionless business value µ+ λΠ > 0. The left-hand side is a

fraction that represents the relative effectiveness of dynamic bargaining.

Specifically, there is the time preference ρ > 0 that inclines shareholders to delay the cost

of dilution. There is also the chance, λ ≥ 0, that the business will exogenously terminate

before financing, which has a real option value of averting dilution entirely. These two forces

incentivize shareholders to postpone financing as much as possible, i.e. have zero funding

cushion. The last force, (1− θ)γ, reflects the effectiveness of dynamic bargaining and inclines

shareholders towards early financing. This force is strong when financiers have a large on-

the-table bargaining power, i.e. low θ, but shareholders possess a viable backstop strategy

off-the-table of finding an alternative bargaining counterparty, i.e. high γ. A sufficiently

high (1 − θ)γ implies h > 0 because a backstop strategy is feasible only if shareholders

come to the table with positive internal funds; otherwise, immediate termination precludes

its implementation. Note that if financiers have a small on-the-table bargaining power i.e.

high θ, the cost of dilution is already small, in which case the first two forces may dominate

despite high γ.

3.4 Comparative statics of financial slack

Next, let us explore how financial slack varies with strategic parameters (θ, γ). The following

proposition establishes tight comparative statics that will be illustrated in Section 4 with the

two stylized examples introduced in Section 2.1.

Proposition 3 (Comparative statics in θ and γ).

17Solve the HJB (3) for V (h), given V ′(h) = 1, V ′′(h) = 0. Then substitute it into (11).
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1. h decreases18 in θ. h is constant in γ when γ < γ and decreasing otherwise.

2. h decreases in θ when h > 0. h = 0 is constant in θ above some θ < 1.

3. When h > 0, ∆h is constant in θ if r = 0 and increasing if r ∈ (0, ρ). When h = 0,

∆h = h decreases in θ. ∆h is constant in γ when γ < γ. When γ ≥ γ, ∆h is decreasing

in γ if r = 0.

4. h→ 0 as either θ → 1 or γ → +∞.

First off, note from Part 4 of Proposition 3 that an extremely viable backstop financing

strategy γ → +∞ is a near-perfect substitute for a perfect Nash bargaining weight θ → 1,

i.e. first-best. With γ → +∞, shareholders need only minimal funding cushion to access

alternative financing, off equilibrium path, with minimal time delay and nearly absent risk

of fund depletion, thereby extracting almost all surplus on equilibrium path.

In intermediate parameter ranges, these two dimensions of shareholders’ bargaining power

operate similarly in terms of reducing the ‘total’ financial slack h = h + ∆h, as Part 1 of

Proposition 3 shows. Since they both directly reduce dilution, either a higher γ (above γ)

or θ mitigates the incentive to pile up internal funds, hence incurring the carry cost, before

receiving dividend.

But there are interesting contrasts in terms of how each of θ and γ differentially affect (1)

funding cushion h and (2) buffer stock ∆h.

(1) Funding cushion h. Funding cushion always decreases in static bargaining power θ

by a similar reasoning as h. That is, if surplus extraction 1 − θ is less, shareholders find

less incentive to incur carry cost of the funding cushion (ρ− r) · h to boost their bargaining

position Vo(h).

In terms of the accessibility of alternative financing γ, however, funding cushion exhibits

non-monotonicity. In a neighborhood above γ, funding cushion h rises with greater accessi-

bility γ, although it eventually vanishes. With a rising γ above but near γ, the equilibrium is

now pushed away from the corner solution of h = 0. Backstop strategy is still not that viable

so that a substantial funding cushion is needed to sufficiently boost the reservation value. At

some point, as alternative financing becomes more and more accessible, a smaller and smaller

funding cushion is needed to boost the reservation value similarly or more.

(2) Buffer stock ∆h. This element clearly illuminates a key but subtle contrast between

bargaining weight θ and accessibility of alternative financing γ in that the former is inherently

static while the latter dynamic. Let us restrict the following discussion to γ ≥ γ since

otherwise ∆h would simply equal h. For clarity of exposition, consider the case of r = 0.19

18Here, ‘decreasing’/‘increasing’ is reserved for strict monotonicity.
19A positive internal yield r ∈ (0, ρ) introduces another channel through which both θ and γ can
indirectly affect ∆h. This new channel is h. When h goes up, the increased cash inflow from internal
yield implies that the same ∆h can delay next financing more than before. Therefore, shareholders will
re-optimize by lowering ∆h somewhat. Since h is decreasing in both γ ≥ γ and θ, their increase exerts

23



Shareholders’ continuation value V (h) with h ∈ (h, h], in equilibrium, is determined by two

different trade-offs against carry cost of internal funds: how much to delay next financing, and

how much to reduce ownership dilution at each financing. Because cash flow is exogenously

given in the current setup, financing frequency is completely and mechanically determined

by buffer stock ∆h. Optimal frequency balances the carry cost of buffer stock C∆ against the

given financing rent ρ−r
γ ∆h from Proposition 2. Nash bargaining weight θ does not influence

this dynamic trade-off that determines optimal financing frequency. θ is already ‘optimized

away,’ so to speak, by the optimal reservation value Vo(h) at the interior funding cushion

h > 0, whose marginal cost is constant ∂C
∂h = ρ−r

ρ+λ .

Such a dichotomy fails to hold, however, with a change in the viability of backstop strategy

γ ≥ γ. This is because it additionally affects the marginal effective carry cost of improving

reservation value Vo(h) and thereby reducing dilution 1 − x. A rise in γ causes a drop in

this marginal cost, bringing about income and substitution effects. First, through the income

effect, funding target h = h + ∆h falls, as Part 1 of Proposition 3 demonstrates. But this

channel, which is also present when θ changes, does not affect ∆h by itself. Second, through

the substitution effect, the part of the funding target reserved for reducing financing frequency,

i.e. ∆h, is now reallocated towards reducing the size of dilution, i.e. towards h. The marginal

rise in the frequency of dilution is now better compensated by the marginal drop in the size

of dilution, and so ∆h optimally falls through this dynamic substitution.

4 Graphical Illustration

Let us now illustrate the above analysis more concretely with the two examples introduced

in Section 2.1. In Section 4.1, I discuss the cost and benefit of financial slack in their effect to

the frequency and size of dilution. In Section 4.2, I discuss comparative statics in bargaining

parameters (θ, γ) as well as business parameters (µ, σ, λ,Π). In particular, tractability of the

setup allows the respective equilibria to be solved analytically through the steps in Appendix

B.2, enabling proof of additional comparative statics with respect to the business parameters.

It leads to an interesting contrast between current profitability and future payoff, segueing

into the investment extensions in Sections 5 and 6.

4.1 Financial slack and size/frequency of dilution

Let us start with the startup example. As a reminder, a startup incurs a fixed expense κ dt

until success arrives at a Poisson rate λ with a terminal payoff Π. Baseline parameters are

ρ = 0.05, θ = 0.5, γ = 1, λ = 0.1, Π = 50, κ = 2. Note that alternative financing is allowed

γ = 1. Lastly, r = 0 to enable explicit equilibrium solutions.

an upward pressure on ∆h through this channel. Since the baseline channel for θ is neutral, ∆h now
increases in θ. As for γ, this new channel counteracts the baseline channel of dynamic substitution
and so gives rise to potential non-monotonicity.
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(a) Halved funding cushion h̃ = 0.5h (b) Finance only at depletion h̃ = 0

Figure 1: Financial slack and dilution

The left axis tracks internal funds. The funding target in blue and financing threshold in red bound the evolution of
internal funds, which is straightforward due to the cash flow structure of the startup. Whenever financing occurs, i.e.
ht jumps up to the blue line, shareholders incur dilution whose size is the height of the bars in purple measured in the
right axis. The vertical dashed line in gray is when the business ‘succeeds,’ receiving the terminal payoff Π. Bottom
two subplots show the financing frequency and the size of dilution with lower financing thresholds that are suboptimal.

Frequency-size trade-off. Figure 1 illustrates the relationship between financial slack

and dilution. In the main plot that describes the optimal financing strategy, shareholders

finance once every 1.8 periods with a large funding cushion h ≈ 9.1. Upon each financing,

shareholders pay financiers the rent of 0.18 in value. If this cost were ‘fixed,’ the strategy that

the main plot illustrates would be strictly dominated by lower financing thresholds h̃ < h as

it reduces the frequency of the cost. The bottom two subplots, Figures 1a and 1b, show that

these deviations are indeed not optimal. Although frequency indeed decreases, the size of

financing cost endogenously magnifies, up to 1.5 with h̃ = 0.5h and even to 7.88 with h̃ = 0.

And the pattern is not unique to the specific cash flow profile of startups: the ‘operating firm’

example with expected revenue π = 1, volatility σ = 2 and no ‘success’ λ = Π = 0 yields a

similar pattern, as Figure 2 shows.

Why is financing rent amplified when shareholders raise financing without funding cush-

ion? The answer lies in understanding shareholders’ outside option. In Figure 3, I decompose

valuation for the startup example, assuming a one-shot strategy of immediate financing at
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(a) Optimal financial slack (b) Finance only at depletion

Figure 2: Dilution for operating firms

each h across [0, h] on the horizontal axis. The right edge in blue is the funding target h, and

the red vertical line the financing threshold h. As can be inferred, the immediate financing

being considered is, on (h, h], a deviation.

Figure 3: Outside option and dilution

As h rises towards h, the increase in reservation value Vo(h) greatly compresses financing rent (purple). Shareholders’
retained surplus (light blue) is on top of their reservation value (dark shade), which is not being shared with financiers.

The solid black line at the top is value of business right upon financing V ≡ V (h). To

attain this post-money value, financiers must provide financing h− h, represented as height

of the light gray area right below it; this amount decreases in h at a unit slope. Financing

surplus, however, is not simply the difference between post-money value V and ‘money’ h−h.
Shareholders at bargaining possess outside option Vo(h), represented as height of the dark

gray area at the bottom. With a backstop strategy of finding alternative financiers γ = 1,

funding cushion preserved at financing raises the outside option steeply, especially near h = 0.

Financing surplus, which is therefore the two colored areas in the middle, is then divided

according to the (θ, 1−θ) ratio into shareholders’ portion in light blue and financiers’ portion

in purple. With θ = 0.5, shareholders and financiers always split financing surplus in half.
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But with a high h, shareholders’ outside option compresses financing surplus. In other words,

funding cushion allows shareholders to take a large portion of their value off the bargaining

table, as it were, thereby reducing the rent that financiers can extract.

If funding cushion monotonically lowers the size of dilution (which is indeed the case),

why is optimal financing threshold h not even higher? The answer is frequency. In the

startup case, the financing frequency, conditional on no success, is 1
∆h/κ ≈ 0.55 per unit time

period. A higher h decreases ∆h and thus increases the frequency of dilution, while its size

no longer decreases as steeply. As an aside, there is a strictly positive gap even at the top

V (h)− Vo(h) > 0, which is merely 0.022—and so not quite visible on the plot—but certainly

nonzero. As Proposition 1 shows, this non-vanishing cost of exclusion is the source of lumpy

financing, as incremental financing blows the frequency up to infinity.

(a) No alternative financing γ = 0 (b) Breakeven accessibility γ = γ ≈ 0.131

Figure 4: Ineffective backstop strategy

The legends for the two subplots are identical to that for Figure 3. As an aside, post-money value V (h) is higher with
γ ≤ γ ≈ 0.131 than with γ = 1 in Figure 3 only because h is higher. Net value V (h)− h is indeed higher with γ = 1.

Backstop strategy. When, then, is early financing not optimal? As Corollary 1 establishes,

it is not optimal when backstop strategy is not effective. That is, if it takes very long to find

alternative financiers γ ∈ [0, γ] for some γ > 0, then funding cushion does not boost the

outside option enough to justify increases in carry cost and financing frequency. Without

early financing, γ is irrelevant since shareholders’ outside option at financing threshold is

zero Vo(0) = 0, and so equilibrium dynamics is invariant to γ ∈ [0, γ].

Figure 4 illustrates this situation. The main plot at the top describes when shareholders
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(a) SU: Nash bargaining weight (θ) (b) OF: Nash bargaining weight (θ)

(c) SU: accessibility of alternative financing (γ) (d) OF: accessibility of alternative financing (γ)

Figure 5: Comparative statics in strategic parameters

Horizontal axis: parameter being varied. Vertical axis: equilibrium (h, h). SU: startup, OF: operating firm. Baseline
parameters: ρ = 0.05, r = 0, θ = 0.5, γ = 1; startups — λ = 0.1, Π = 50, κ = 2; operating firms — π = 1, σ = 2.

find it optimal to wait until running out of funding to finance. Compared to Figure 1 where

early financing is optimal, shareholders face much larger dilution. They optimize against it

by increasing funding target even more h ≈ 18.27 > 12.74 such that this costly financing is

necessitated much less frequently.

The bottom two subplots, 4a with γ = 0 and 4b with γ = γ ≈ 0.131, show why a low

γ induces zero funding cushion h = 0. Financing rent in either subplot does not diminish

in h as sharply as in Figure 3. A lower γ implies a less steep rise in the reservation value

Vo. Consequently, the marginal drop in rent at h = 0 is not enough to justify the marginal

increase in frequency of financing and the greater marginal carry cost of funding cushion as

discussed in Section 3.3. Note as an aside that compared to Figure 4a with γ = 0, Figure 4b

with γ = γ ≈ 0.131 has a greater marginal drop in the size of financing rent at h = 0 that

renders shareholders marginally indifferent between h = 0 and a very small h = ε > 0.

4.2 Comparative statics

Let us now proceed to comparative statics. I vary strategic parameters (θ, γ) first, and then

consider the effect of varaition in business parameters (µ, σ, λ,Π).

Comparative statics in strategic parameters. Figure 5 illustrates Proposition 3 across

both examples. Funding target h decreases monotonically when shareholders have better
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bargaining power, either statically θ or dynamically γ ≥ γ, eventually converging to zero

slack h→ 0 with either θ → 1 or γ → ∞. Financing threshold h also behaves similarly with

respect to θ. It shows, however, an interesting non-monotonicity with respect to γ. When the

backstop strategy of alternative financing is not sufficiently feasible γ ≤ γ, funding cushion

is not effective at reducing the rent, as Figures 4a and 4b have demonstrated. Financing

threshold rises steeply once γ exceeds the breakeven level γ > 020 so that shareholders choose

to secure sufficient time to pursue the somewhat-feasible backstop strategy as part of the

outside option. When the strategy becomes highly feasible, even a small funding cushion is

enough to substantially raise the outside option.

Also, note from Figures 5a and 5b that financial slack is substantial even for a minimal

but nonzero bargaining weight of financiers 1 − θ. In fact, as demonstrated in Appendix C

(Propositions C.1.1 and C.2.121), ∂h/∂θ → −∞ as θ → 1.

These results suggest that when financiers are highly specialized in a way that both θ and

γ are low, firms that depend on them for funds may exhibit substantial lumpiness without

early financing—hence magnified dilution. On the flip side, even when shareholders have

large bargaining power e.g. θ ≲ 1 and γ ≫ 0, financial slack may still be considerable as long

as financiers possess even just a little bargaining power 1− θ ≳ 0 and 1/γ ≳ 0.

Comparative statics in business parameters. In Figure 6, let us start with the contrast

between future value Π (6a) and current profitability π (6b) previously hinted at. Figure 6a

shows that even though Π is orthogonal to cash rundowns, shareholders pile up larger internal

funds when Π is higher. This is because a higher future value of the business increases the

size of financing rent, inducing greater financial slack to reduce it.

In contrast, π affects financial slack through two countervailing channels. The first is

common with Π in increasing the equity value and hence the size of financing rent. Its effect

is manifested in Figure 6b over the region of π where financial slack is upward-sloped. As π

grows further, the second channel kicks in through the rising drift of the cash flow. Dilution

becomes less likely to occur simply because cash rundowns are less likely. As an aside, note

how 6b looks similar to 6d; λ in startups has the same two channels as π in operating firms.

Figure 6c also illustrates this contrast, perhaps more dramatically. The solid lines are

where κ changes with all other parameters fixed, so that at κ = 5, the business is fundamen-

tally valueless λΠ − κ = 0. The dashed lines co-vary Π = κ/λ + 30 so that business value

is fixed. With vanishing business value (solid), financial slack eventually vanishes as cash

burn rate increases, because the cost of dilution also vanishes. When business value is fixed

(dashed) so that dilution cost does not vanish, slack increases with stronger cash rundowns.

The discussion on current cash flow and future value provides a nice segue into endog-

enizing the business cash flow with an element of intertemporal substitution. Specifically,

investment is an act of reducing the current cash flow to increase the future value of the

20For the operating firm case, γ ≈ 0.06 is so small that it is barely visible in the plot.
21These propositions in the Appendix are stated for the case of γ = 0. But a sufficiently high θ → 1
gives h = 0 so that γ > γ, which gives equivalent outcomes as γ = 0. So the limits hold generally.
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(a) SU: upside potential (Π) (b) OF: average profit (π)

(c) SU: cash burn rate (κ) (d) SU: success rate (λ)

Figure 6: Comparative statics in business parameters

Horizontal axis: parameter being varied. Vertical line: equilibrium (h, h). SU: startup, OF: operating firm. Baseline
parameters: ρ = 0.05, r = 0, θ = 0.5, γ = 1; startups — λ = 0.1, Π = 50, κ = 2; operating firms — π = 1, σ = 2. In
Figure 6c, the dashed lines co-vary Π along with κ such that λΠ−κ

ρ+λ
= 20 is fixed.

business. The findings from the two stylized examples suggest that shareholders may face

the largest incentive to preserve funds exactly when the return to investment is the highest.

How does the incentive to reduce dilution of continuation value through financial slack shape

the shareholder-optimal investment strategy?

5 Extension I: Lumpy Investment

To build upon the concluding insight from Section 4, I now introduce two models of investment

under dilutive financing. The first one in the present section features stochastic arrival of

opportunities to make lumpy investment. It highlights how the robustness of financing access

γ may have a counterintuitive effect on the ways that firms fund investment.

5.1 Extended setup

Here, I continue to adopt the modeling setup from Section 2 and only modify the cash flow

profile in 2.1 to add stochastic investment opportunity.

Cash flow profile. The business has ‘normalized’ running cash inflow π dt + σ dBt, with

π, σ > 0. Upon Poisson arrival at rate λ > 0, the business receives an opportunity to scale
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up by a factor of η > 1 at an upfront investment cost of ξ > 0; that is, if ξ is paid as

a one-time cost, the business cash flow now becomes ηπ dt + ησ dBt from then on, with

subsequent opportunities to further scale up by η arriving at the same rate of λ. To ensure

that investment represents a positive net present value, assume the following.

Assumption 2. π > λξ, ρ > λ(η − 1), and π
ρ ≥ ξ

η−1 .

The second inequality is simply to ensure that business value under the first-best is finite.

Investment choice. Upon receiving the opportunity at rate λ, shareholders with funds

h may choose among the following options, each with its corresponding conditional value

function:

1. Fund the investment internally, with value

ηV

(
h− ξ

η

)
.

2. Forgo the investment, with value V (h).

3. Finance the investment externally, with value

Vo(h) + θ
(
ηV (h)− Vo(h)−

(
ηh+ ξ − h

))
.

A few comments on the setup of investment choice are due. First, the funding value utilizes

the convenient features of homogeneity and stationarity in the setup. Second, the option to

forgo implicitly assumes that each opportunity is fleeting. Third, by the cooperative nature

of Nash bargaining, shareholders and financiers upon the third scenario agree to finance not

only the investment expense ξ but up to the target funding capacity h post investment, so

that the relevant financing amount is ηh + ξ − h. Fourth, the outside option at financing

bargaining upon receiving the investment opportunity entails exclusion as well as loss of the

opportunity. Lastly, investment choice upon the outside option is formulated in the identical

manner, except that firms cannot finance the investment.

5.2 Illustration

Dynamics of financing and investment. Let us now see graphically how dilution affects

shareholders’ optimal investment strategy. For the baseline parameters, I let ρ = 0.07, r =

0, θ = 0.5, γ = 0.3, π = 1, σ = 2, λ = 0.5, ξ = 0.7 and η = 1.1.

As Figure 7 illustrates, shareholders may sometimes forgo—represented as black square

markers—investment opportunities that increases net present value. This occurs when (i)

financing is highly dilutive due to weak backstop strategy (in the present case γ = 0.3),

and (ii) funding capacity is somewhat low but sufficiently away from financing threshold.

Shareholders in such a situation do not fully internalize the returns to investment because it

will likely necessitate financing soon, diluting the returns with outside financiers.
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Figure 7: Three ways to handle investment opportunities

The left axis measures internal funds normalized against scale-ups. The horizontal lines in blue and red are, respectively,
funding target h and financing threshold h (conditional on no λ arrival). The history of internal funds is the black curve.
The vertical dashed lines in gray indicate the arrival of investment opportunities. The region in light green/gray/red
is where such opportunities are internally funded/forgone/financed. The markers in each region indicate the choice
made upon each opportunity in accordance with the investment policy described. Lastly, the purple bar is financing
rent, against the right axis, at investment financing (t ≈ 0.44), and non-investment financing (t ≈ 7.64).

But if internal funds are close to financing threshold so that bargaining is already expected

soon anyway, then the cooperative nature of Nash bargaining locally dominates. Shareholders

now choose the locally efficient22 strategy of executing the investment and simultaneously

financing up to the funding target post the investment expense.

Comparative statics of financing access γ. Figure 8 explores how the strength of ac-

cess to alternative financing influences firms’ investment decisions. In 8a, shareholders face

substantial dilution from financing due to the absence of backstop strategy γ = 0, and so

do not fund investment when funding capacity is even moderately limited. They also choose

to finance the investment extremely rarely—never, in the present simulation of timeframe

t ∈ [0, 10]—and only when they have nearly run out of funding h ≤ 0.14 ≪ 0.7 = ξ.

The case of γ = 0.3 in Figure 8b is the same as Figure 7 discussed above. With γ = 1

in 8c, shareholders never forgo investment opportunities as dilution is now less severe. With

higher funding capacity, they fund investment opportunities internally; with lower funding

capacity, they finance investment opportunities. Notably, they finance investment even when

internal funds are much more than sufficient to fund the expense h ≥ h ≈ 2.50 ≫ 0.7 = ξ.

Perhaps the most interesting case is Figure 8d, where shareholders can expect to find

alternative financiers ‘just in two weeks’ γ = 26. They finance extremely frequently—53

times over t ∈ [0, 10] in the present simulation—and in small lumps ∆h ≈ 0.91, thanks to

the negligible size of dilution around 0.004 at financing threshold. Nevertheless, shareholders

maintain sizable funding cushion h ≈ 2.84, well in excess of the contingent investment needs

22This efficiency is only ‘local’ in the sense that the strategy maximizes the joint surplus of the current
shareholders and the specific group of financiers that they presently have chosen to bargain with.
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(a) ‘Distressed’ firm γ = 0 (b) ‘Small’ firm γ = 0.3

(c) ‘Regular’ firm γ = 1 (d) ‘Mature’ firm γ = 26

Figure 8: How financing access influences investment choice

The axes and the exogenous shocks are identical across subplots. For explanation of graph components, see Figure 7.

ξ = 0.7. As discussed through the main model in Sections 3 and 4, this cushion is what

compresses the dilution to such a negligible size in the first place.

Moreover, shareholders with such robust financing access never directly finance investment

opportunities. They always internally fund investment, even though it often entails an imme-

diate post-investment financing. On one hand, financing the investment when its opportunity

is fleeting means that financing surplus encompasses the investment returns. Financing rent

that shareholders must pay if they were to finance investment at h = h would, therefore, be

the 1− θ fraction of the surplus enlarged due to this wedge of η in post-money value V (h)

Investment financing rent : (1− θ)
(
ηV (h)− Vo(h)−

(
ηh+ ξ − h

))
≈ 0.617.

If, on the other hand, the lumpy investment is internally funded, then the funding capacity

may drop well below financing threshold. Due to the extremely high γ, shareholders’ reserva-

tion value at bargaining rises very steeply in h; and the closer h to 0, the even steeper the rise.

Consequently, these shareholders may set financing threshold so high h ≈ 2.84 ≫ 0.7 = ξ

that even if an investment opportunity arrives when ht → h+, the financing that immediately

follows the internal funding, i.e. when h = (h− ξ)/η ≈ 1.95, still involves small dilution

Post-investment financing rent : η(1− θ)

(
V
(
h
)
− Vo

(
h− ξ

η

)
−
(
h− h− ξ

η

))
≈ 0.054,
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higher only by a small difference than dilution at regular financing threshold

Regular financing rent : (1− θ)
(
V (h)− Vo(h)−∆h

)
≈ 0.004.

As such, shareholders always fund investment internally and preserve enough funding capacity

so that even after the funding of a lumpy investment, financing remains negligibly dilutive.23

Figure 9: Comparative statics of financing and investment policy

The horizontal axis varies γ from 0 to 52. The labels report the expected time until finding alternative financiers 1/γ,
with the interpretation of a unit time period [t, t+ 1) as a ‘year’; in other words, γ = 52 gives ‘one week,’ γ = 26 ‘two
weeks,’ γ = 12 ‘one month,’ and so forth.

Comparison to fixed cost. Let us briefly consider how this framework produces different

predictions from a fixed-cost framework. As is well known, a fixed cost model, in its basic form,

invariably predicts that h = 0 and investment opportunities are financed only if h ≤ ξ. If it is

additionally assumed à la Froot, Scharfstein and Stein (1993), for instance, that investment

must be paid ‘out of pocket’ first before financing, then the fixed-cost model should predict

h ∈ {0, ξ}, which still fails to effectively explain the inordinate sizes of cash-holdings, let alone

internal funds, maintained by many of the largest companies in the United States.24

There is, admittedly, a way for this traditional framework to generate h≫ ξ, by allowing

the fixed cost to be exogenously amplified upon a foreseen regime switch; firms preserve

internal funds for precautionary purposes during ‘normal’ times, so that they won’t have to

incur the magnified cost during ‘financial crisis.’ It is, however, difficult to harmonize this

23As an aside, with γ = 1 in 8c, these three values of financing rent become: 0.602 for investment
financing at h = h ≈ 2.50; 1.196 for post-investment financing at h = (h− ξ)/η ≈ 1.63; and 0.490 for
regular financing at h = h. As such, they finance—rather than fund—investment with ht near h.
24Alphabet Inc. (Google), for instance, holds $100.72 billion in cash and cash equivalents as of June
2024, far surpassing its largest-to-date acquisition deal for Motorola Mobility in 2012 at $12.5 billion.
For Apple Inc., the numbers are $61.80 billion for cash and cash equivalents at June 2024, and $3
billion for its largest-to-date acquisition for Beats Electronics in 2014.
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modeling approach with the observation that those large firms holding a tremendous amount

in cash tend to be much more robustly connected to the financial sector than others.

In stark contrast, the bargaining framework proposed in this present paper seamlessly

rationalizes ‘excessive’ financing threshold h ≫ ξ with robust—but imperfect—financing

access 0 ≪ γ < ∞. As Figure 9 shows, even those firms that can find alternative financiers

in a week on average25 still employ sizable financial slack.

6 Extension II: Smooth Investment

Next, let us consider the second investment extension where investment is smoothed due to

convex adjustment cost. The focus will be on the role of divestment as another backstop

strategy, and how business fundamentals matter critically in amplification of dilution when

alternative financing becomes unavailable and investment perfectly irreversible.

Methodologically, here I consider stochastic Markov transition for parameters to enable

more precise analysis. Notably, analytic transparency of the main model in Section 3 is largely

preserved with a continuous Markov transition, which is maintained up until the analysis part

in Section 6.2 to elucidate the role of strategic underinvestment in early financing. Discrete

Markov transition is adopted for clear graphical illustration in the numerical parts of Sections

6.5 and 6.6—Sections 6.3 and 6.4 do not have a Markov transition.

6.1 Extended setup

There is a firm with standard ‘AK’ technology with stochastic TFP and convex investment

adjustment cost. The firm produces cash using the only factor, called capital, that it owns.

Production technology. The firm has a linear expected revenue productivity of capital At

such that capital Kt generates
(
At dt+ σ dBt

)
Kt cash inflow. At ≥ 0 evolves as

dAt = µA(At) dt+ σA(At) dZt,

where Zt is a standard Brownian motion, independent of Bt, that drives the evolution of

At. The simplest case would be that µA(A) = σA(A) = 0, in which case At = A > 0 is

a constant. Cyclical productivity with mean reversion would be captured by an Ornstein-

Uhlenbeck process, a continuous-time equivalent of stationary AR(1) processes:

d logAt =
1

ν
(µa − logAt) dt+

√
2/ν σa dZt,

25As discussed in Section 2, this is a conservative estimate. In practice, if a firm can find the first
alternative financier in, say, a week, then it will expect to find successive alternative financiers in more
than a week, and they will have a higher required yield on financing—in the model’s lingo, a higher
discount rate ρ. In the current model, the expected time lag is fixed regardless of how many alternative
financiers have already been accessed, and the financiers so accessed require the same level of yield ρ.
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where logAt ∼ N (µa, σ
2
a), and ν > 0 represents the persistence of its deviation from the

mean. By Itô’s lemma, the linear differential operator A on value function given as

A(V ) := µA · VA +
1

2
σ2A · VAA

fully characterizes the law of motion of the exogenous productivity. Since A is a linear

operator reflecting the exogenous nature of the evolution of At, it will be entirely canceled

out in the same derivations as in the proof of Lemma 2.

Cost of investment. Investment is subject to convex adjustment cost in the standard

fashion. For the flow investment It dt, the firm incurs an additional flow cost in cash given by

Ψ(It/Kt)Kt dt, where Ψ satisfies Ψ(0) = Ψ′(0) = 0 < Ψ′′. When the firm is neither financing

nor paying dividend, total internal funds Ht evolve as: writing it := It/Kt,

dHt =
(
At − it −Ψ(it)

)
Kt dt+ σKt dBt.

For concreteness, assume a quadratic functional form for the adjustment cost: given ψ > 0,

Ψ(i) = ψ
i2

2
.

Given depreciation rate δ > 0, capital stock Kt evolves as dKt/Kt =
(
it − δ

)
dt.

I do not explicitly introduce capital trades into the model. The canonical construction of

a centralized market for capital stock with instantaneous clearing is not well-suited for this

paper’s context. A sale of existing capital in the current framework is contemplated mainly

as part of an outside option, following a bargaining failure occurring off equilibrium path.

The presumed ability to instantaneously sell an arbitrary fraction of the existing capital upon

the unforeseen realization of such a scenario is directly at odds with the core premise of this

paper that funding cushion gives firms time to pursue a backstop strategy. As such, only

sufficiently frictional models of capital trades would fit the present purpose. For now, I simply

take Ψ as encompassing, in reduced form, any inefficiency in hastened trades of capital stock.

Homogeneity in capital and funds. The firm technology is modeled à la Hayashi (1982),

so that its value is homogeneous with degree one in (K,H), greatly simplifying the analysis.

Define W as the actual shareholder value function. Letting h := H/K and V (A, h) :=

W (A, 1, h), homogeneity gives

W (A,K,H) = KV (A, h).

It then follows that WK = V − hVh, WKK = −hVhh, and WH = Vh, WHH = Vhh/K.

Investment optimization. By homogeneity, the HJB equation during financial inactivity
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can be formulated in terms of V , not W , as follows: suppressing (A, h),

ρV − rhVh = max
i∈R

{(
A− i−Ψ(i)

)
Vh +

1

2
σ2Vhh +

(
i− δ

) (
V − hVh

)︸ ︷︷ ︸
=WK

+A(V )

}

= H(V ) +K(V ) +A(V ), (14)

where

H(V ) := −
(
δ +

1

2ψ

)
V +

(
A+

1

2ψ
+

(
δ +

1

2ψ

)
h

)
Vh +

1

2
σ2Vhh,

K(V ) :=
1

2ψ

(
V

Vh
− h− 1

)(
V − hVh

)
,

A(V ) := µAVA +
1

2
σ2AVAA

from the first-order condition on investment rate i which gives

i =
1

ψ

(
V

Vh
− h− 1

)
. (15)

All the HJB operators above are linear in V except forK = 1
2 iWK , which is optimal investment

times marginal value of capital adjusted for the quadratic excess cost of investment Ψ(i).26 As

will be seen shortly, this non-linearity that accounts for the optimized choice of investment i

gives us a sharp analytic lens through which to understand how shareholders may strategically

underinvest to mitigate the cost of dilution.

6.2 Analysis

The smooth investment cost in the present extended setup generates substantial tractability

close in extent to that of the main model in Section 2. Here, I leverage it, similarly to Section 3,

to obtain analytic insights on the interactions of financial slack and strategic underinvestment.

Underinvestment. Section 5 with lumpy investment illustrated that shareholders—in par-

ticular, those with weak access to alternative financing—may forgo efficient lumpy investment

unless they have large internal funds. Let us presently analyze this theme of underinvestment.

With convex investment cost, underinvestment relative to the first-best level arises globally

for all levels of internal funds—more of it with low funds—and for all parameter values.

I will start by establishing that shareholders invest less when they have less internal

funds. Equation (15) gives ∂i(A, h)/∂h = − 1
ψ

V (A,h)
Vh(A,h)2

Vhh(A, h). It therefore boils down to

establishing the strict fund-concavity of V . The following lemma establishes that V is indeed

strictly concave in internal funds below funding target.

26The quadratic Ψ makes non-linear terms more algebraically compact 1
2ψ

V 2

Vh
under full expansion,

but I do not expand fully for better intuition. In general, non-linear terms are iWK − (i+Ψ(i))Vh.
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Lemma 3 (Funds-driven investment). Vhh(A, h) < 0 for h < h(A) ≡ inf{h | Vh(A, h) = 1}.

Lemma 3, in particular its direct implication that ∂i/∂h > 0, does not immediately

validate the idea of global underinvestment, because one might ask whether at least the

target funding capacity h(A) achieves first-best investment. The answer is a definitive no.

Proposition 4 (Underinvestment at the top). Let i∗(A) denote the optimal investment with

θ∗ = 1, which coincides with the first-best. Let ı(A) denote the shareholder-optimal investment

at productivity A when they hold h(A). Then, i∗(A) > ı(A) for all A.

Proof. In the first-best, optimal investment satisfies

i∗(A) =
1

ψ

(
V ∗(A)− 1

)
,

where V ∗(A) is the corresponding per-capital value function. Whereas the highest shareholder-

optimal investment satisfies: writing V (A) := V (A, h(A)),

ı(A) =
1

ψ

(
V (A)− h(A)− 1

)
,

since V h = 1. It must be that V ∗(A) > V (A) − h(A) so that i∗(A) > ı(A). Basically,

shareholders with perfect bargaining weight (i.e. represented by V ∗) and somehow having

just received a one-time windfall in funds h(A), all of which would optimally be paid out as

dividends so that their value is V ∗(A) + h(A), can instead deviate by mimicking the optimal

strategy under θ < 1 and achieve a strictly higher value than V (A), because financing involves

no rent. Therefore, denoting the value of the θ∗ = 1 shareholders under this deviation strategy

by Ṽ ∗, it follows that V (A) < Ṽ ∗(A, h(A)) ≤ V ∗(A) + h(A), as claimed.

Investment is a funds-consuming activity. To the extent that dilution from financing

incentivizes shareholders to preserve funding capacity as demonstrated by h > 0, they must

be investing strictly less than if they were not so incentivized due to absence of bargaining

(e.g. θ∗ = 1 or γ∗ → ∞). With a lower h, they are more incentivized to add to internal funds

as the strict concavity of V from Lemma 3 shows, and hence further reduce investment.

Strategic underinvestment and financial slack. Under the main model in Sections 2

through 4, shareholders only had financial slack as their strategic choice. Under the first

extension of lumpy investment in Section 5, investment is enabled only upon an exogenous

arrival of opportunities. Here, they can continually optimize with investment as well as

financial slack. How does this added choice affect optimal financial slack against dilution?

First, let us ease notation: V (A) := V (A, h(A)), V (A) := V (A, h(A)), and V o(A) :=

V o(A, h(A)), where h(A) is the financing threshold given state A. Exclusion notation o is now

in superscript for readability with partial derivatives. Let ı(A), i(A), io(A) the optimal in-

vestment rates at the corresponding fund levels h(A), h(A), depending on access to financing.

Also, let WK(A) :=WK(A,K, h(A)K) = V (A)−h(A), and W o
K(A) :=W o

K(A,K, h(A)K) =
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V o(A) − h(A)V o
h(A). Going forward, I will drop notational dependence on exogenous state

variable (A). Accordingly, i(h) denotes the optimal investment rate at h, with access to

financing, which also depends on the notationally suppressed state A.

The same derivation as in Section 3, in particular Lemma 2, leads to key analytic insights.

There are some technical subtleties in derivation due to state dependence, but the end result

is identical in that all linear HJB terms cancel out, and different only in that there are now

some non-linear terms that remain, giving us key insights for strategic underinvestment and

financing. We obtain the following result mirroring Proposition 2.

Proposition 5 (Financial slack and underinvestment). For each A, and suppressing notation

for dependence on A, h > 0 if and only if

(1− θ)γ +
1

2

(
ı− i(0)

)
︸ ︷︷ ︸

(a)

>
(ρ− r)h

V − h
, (16)

in which case

θγ
(
V − V −∆h

)
+

1

2
θ
(
ı− i

)
︸ ︷︷ ︸

(b)

(
V − h

)
︸ ︷︷ ︸

=WK

= θ(ρ− r)∆h+
1

2
(1− θ)

(
i− io

)
︸ ︷︷ ︸

(c)

(
V o − hV o

h

)
︸ ︷︷ ︸

=W o
K

. (17)

Observe that with investment choice, γ = 0 does not necessarily imply h = 0, as it did

in Section 3 (see Corollary 1). The term (a) in Inequality (16) represents the maximum

underinvestment across h ∈ [0, h] with access to financing. If it is too high compared to the

total carry cost burden of financial slack (ρ−r)h
V−h , then shareholders adopt a positive financing

threshold h > 0. One might conjecture that they do so because it pushes the more severe

part of the underinvestment ı− i(h) across h ∈ [0, h) off equilibrium path, thereby curtailing

investment inefficiency that cash rundowns induce.

But this efficiency reasoning fails to capture the core of shareholders’ strategic incentives

for early financing h > 0. This is obvious from the fact that in the conventional fixed-

cost framework, financing threshold is zero regardless of cash flow optimization; the ‘fixed’

cost is indeed held fixed, and so the same magnitude of underinvestment optimally arises

on equilibrium path regardless of when financing occurs, such that zero financing threshold

strictly dominates, as Bolton, Chen and Wang (2011) show. Therefore, any early financing

h > 0 in the current setup, even without alternative financing γ = 0, must still derive

fundamentally from dilution being an endogenous financing cost due to strategic bargaining.

And it indeed does. To see why, let us investigate Equation (17). Note that it is, up to the

first terms on either hand sides, identical to Equation (12) from Section 3 with exogenous cash

flow. The second terms represent the additional effects of strategic underinvestment—both

on equilibrium path (b) and as a backstop (c)—on dilution cost, as explained below.
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The starting point for understanding early financing even without alternative financing

is that on-path underinvestment (b) increases the total financing surplus. This is because

upon financing, investment will optimally expand ı > i along with a greater marginal value of

capital WK = V − h > WK = V − hV h. This increase in total value from higher investment

returns hinges entirely on financing success, and therefore constitutes a part of financing

surplus. Shareholders, therefore, may prefer to be able to limit on-path underinvestment,

thereby reducing the surplus and hence the cost of dilution paid to financiers in bargaining.

But then, how can shareholders actually reduce the size of on-path underinvestment, which

requires, a priori, a smaller financing cost? They can do so because of backstop underinvest-

ment (c). In response to a bargaining failure and the ensuing exclusion, off equilibrium path,

shareholders optimally delay business termination by reducing investment and saving cash.

This ability to underinvest even further io < i boosts shareholders’ reservation value during

the financing bargaining, and hence compresses the cost of dilution on equilibrium path.

With the reduction in financing cost achieved by backstop underinvestment, shareholders can

indeed lower on-path underinvestment.

The strategic complementarity between on-path underinvestment and financing cost—i.e.

shareholders underinvest less on equilibrium path h ∈ [h, h] if financing cost is less, and

dilution is less costly if on-path underinvestment is less—amplifies the effect of backstop un-

derinvestment in compressing dilution. That is, if backstop underinvestment reduces dilution,

shareholders underinvest less on path, which further reduces dilution, and so on. Therefore,

it is expected, as verified shortly in Section 6.3, that even without alternative financing, both

the observed size of dilution and on-path underinvestment can be quite small.

Why can all these effects come into play only throug h early financing h > 0? This is

because of convex adjustment cost Ψ(i). With very little internal funds, backstop under-

investment is useless upon exclusion because shareholders cannot generate additional cash

quickly enough through underinvestment; in particular, the convex cost prevents swift divest-

ment of capital. Put differently, positive funding cushion gives shareholders under exclusion a

self-secured grace period before business termination to effectively substitute cash for capital.

As an aside, this strategic role of divestment will be revisited in greater detail in Section 6.6.

Lastly, how is the exact early financing threshold h > 0 then determined? Equation

(17) compares the marginal costs and benefits of immediate financing at ht = h relative to

instantaneous delay ht+dt. The first terms on both sides are, respectively, the reduction in

rent at t due to the chance of instantaneous access to alternative financing and shareholders’

share of the instantaneous carry cost; this is the exact same comparison as in Proposition 2.

The term 1
2θ
(
ı − i

)
WK on the left-hand side captures the gain in total surplus from higher

instantaneous investment returns, net of adjustment cost, of which shareholders retain a θ

fraction. On the right-hand side, 1
2(1− θ)

(
i− io

)
W o

K shows that with immediate financing,

shareholders’ outside option involves a backstop investment rate of io dt, which is lower than

i dt if they delayed financing by the dt instant. In other words, shareholders, by financing

immediately, choose to bargain with less capital as part of their outside option, i.e. they accept
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a reservation value that is lower by 1
2

(
i−io

)
W o

K dt than under instantaneous delay, worsening

their bargaining outcome on equilibrium path by a factor of 1 − θ. Optimal threshold for

early financing, then, equalizes these marginal costs and benefits, giving Equation (17).

6.3 Numerical analysis 1: strategic underinvestment

I now transition to numerical analysis of the extended model. After discussing a bench-

mark equilibrium in detail to illustrate Proposition 5 and also briefly addressing comparative

statics, I explore two applications. One involves fluctuating investment returns to highlight

why the so-called ‘growth’ firms that invest heavily exhibit large financial slack in general,

reinforcing the findings from the main model’s comparative statics in Section 4.2. The other

application explores the importance of business fundamentals in amplification of dilution

when both alternative financing and divestment—two key backstop strategies—become un-

available. Appendix B.1 explains the computational algorithm in detail.

Figure 10: Investment and financial slack

Parameters are: ρ = 0.06, r = 0.05, θ = 0.5, γ = 0, A = 0.18, δ = 0.1007, σ = 0.09 and ψ = 1.5. The vertical lines
in blue and red represent funding target h and financing threshold (i.e. funding cushion) h, respectively. Note the
absence of alternative financing γ = 0.

The parameters are as follows: ρ = 0.06, r = 0.05, θ = 0.5, γ = 0, A = 0.18, δ = 0.1007,

σ = 0.09, and ψ = 1.5. The non-strategic parameters (ρ, r, A, δ, σ, ψ) are directly adopted

from Bolton, Chen and Wang (2011). I temporarily turn off alternative financing γ = 0 to

isolate the effect of underinvestment on funding cushion and the size of dilution.

Figure 10 illustrates the firm’ optimal policy on financing and investment. The vertical

lines in blue and red represent the funding target h ≈ 0.2202 and the financing threshold

(i.e. funding cushion) h ≈ 0.0558, respectively. As expected from Proposition 4, investment

is lower than under the first-best, and by a noticeable difference even when the firm has

sufficient funds: ı ≈ 0.1057 < 0.1512 ≈ i∗.
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Figure 11: Strategic underinvestment and dilution

The labels (a), (b), (c) are in reference to Proposition 5. Financing rent is computed under a one-shot deviation of
immediate financing at each h, which is counterfactual for h > h. Due to exclusion, this counterfactual financing rent
does not completely vanish (1− θ)

(
V − V o(h)

)
≈ 0.001 > 0.

Note that funding cushion is positive despite the absence of alternative financing γ = 0. As

discussed in depth through Proposition 5, backstop underinvestment enabled by this funding

cushion compresses the dilution cost, so that on-path underinvestment is reduced, which

further reduces the dilution cost, and so on. In sum, on-path underinvestment is greatly

curtailed by funding cushion, from (a) := ı − i(0) ≈ 0.767 down to (b) := ı − i ≈ 0.151.

And as Figure 11 shows, the combination of reduced on-path underinvestment and sizable

backstop underinvestment27 ends up tremendously compressing the size of dilution, from

0.579 at h = 0 down to 0.006 at h = h, despite the absence of alternative financing γ = 0.28

Lumpy divestment. As an auxiliary exercise, let us revisit the lumpy investment opportu-

nity setup from Section 5, which I presently modify into a model of divestment. The business

has ‘normalized’ running cash inflow π dt+σ dBt, and with a Poisson arrival rate of λ > 0, the

business receives an opportunity to downsize for cash proceeds. That is, once the opportunity

is grasped, the business receives cash −ξ > 0 but the future cash flow scales down by η < 1.

I let the parameters ρ = 0.07, r = 0, π = 1, σ = 1, ξ = −0.7, η = 0.9 so that divestment is

inefficient under the first-best. As for bargaining parameters, θ = 0.5, and γ = 0.

As Figure 12 shows, the ability to swiftly underinvest—in this case, divest—incentivizes

firms to finance early for a better outside option and hence lower financing rent. Consequently,

27In Figure 11, the relevant part of the funds-driven underinvestment ı− i in solid curve is on [h, h],
because this tracks the gains in investment returns from successful financing. Whereas the entire
domain of backstop underinvestment i − io in dashed curve is relevant, and particularly so for the
lower part on [0, h], because it compresses the cost of exclusion V − V o by delaying termination.
28Of course, the total effect of dilution must also account for the frequency of dilution—see Section
3.3. The large reduction of underinvestment on equilibrium path makes dilution more frequent. But
this heightened frequency has a small impact exactly because the size of each dilution is now negligible.
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(a) Once a year λ = 1 (b) Once every six months λ = 2

(c) Once every two months λ = 6 (d) Once a month λ = 12

Figure 12: Stochastic divestment opportunities and financing threshold given γ = 0

Plots track internal funds, financing rent and divestment given stochastic arrivals of inefficient divestment opportunities
(vertical dashed lines in gray). In the gray area, optimal policy is to divest; the black marker indicates divestment.

capital trade liquidity λ may reduce inefficient divestment on equilibrium: with high λ, the

divestment area in gray falls mostly—entirely with λ = 12—below financing threshold h.

6.4 Numerical analysis 2: comparative statics

For comparative statics, I maintain all baseline parameters and only revert γ from 0 to 1.

Let us first vary strategic parameters θ, γ and then business parameters A, σ.

Strategic parameters (θ, γ). Figure 13a revisits the result from Section 4 (Figures 5a

and 5b in particular) that even minimal bargaining power of financiers substantially affects

shareholders’ strategy. A mere 1 − θ = 0.05 still induces substantial financial slack of h ≈
0.149, h ≈ 0.06, and underinvestment on equilibrium path ranging between i∗ − i ≈ 4.97%

and i∗ − ı ≈ 3.61%. Obviously, 1− θ = 0 achieves the first-best h = h = 0, ı = i = i∗.

Figure 13b also delivers a broadly similar result to Section 4 (Figures 5c and 5d), in addi-

tion to Section 5 (Figure 9) with regards to financing threshold h. There are two additional

features. First, with investment choice available, firms may still maintain positive funding

cushion even without any access to alternative financing. This is because (i) the ability to

reduce investment and boost cash inflow contingent on exclusion may improve shareholders’

reservation value and hence bargaining outcome, but (ii) a lower investment and the resulting

increase in cash inflow can delay fund depletion only if funds are not already depleted.
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(a) Bargaining weight θ (b) Accessibility of alternative financing γ

Figure 13: Comparative statics in strategic parameters

The black curves, in different line styles, represent optimal investment policy given internal funds that occur on
equilibrium path, bounded in domain by funding target h in blue line segment and financing threshold h in red line
segment. The flat line in gray is the first-best investment. In each plot, θ4 and γ4 correspond to the baseline parameter.

Second, with intensive margin on investment choice unlike in Section 5, firms exhibit

sizable underinvestment even with robust financing access γ = 26 (i.e. finding other financiers

in two weeks25). Across h ∈ [h, h], firms underinvest between i∗−i ≈ 3.61% and i∗−ı ≈ 3.56%.

(a) Productivity A (b) Cash flow volatility σ

Figure 14: Comparative statics in business parameters

The black curves, in different line styles, represent optimal investment policy given internal funds that occur on
equilibrium path, bounded in domain by funding target h in blue line segment and financing threshold h in red line
segment. The flat lines in gray are the first-best investment. In each plot, A1 and σ1 correspond to the baseline
parameter. Note that with 14b, the horizontal axis has doubled in scale.

Business parameters (A, σ). Higher capital productivity A means that more of the firm’s

value derives from building up capital stock for the future. Shareholders of such a firm,

therefore, have more to lose from dilution of equity value. Financial slack and underinvestment

relative to the first-best, therefore, increase in A, as Figure 14a displays.

Figure 14b shows how cash flow volatility increases slack and underinvestment. The
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key driver is the differential likelihoods of cash rundowns, hence of dilution, which prompt

shareholders to respond to a higher volatility with greater slack and weakened investment.

6.5 Numerical analysis 3: stochastic investment returns

Let us now consider stochastic returns to investment. Concretely, consider a firm fluctuating

through a discrete Markov chain s ∈ {1, 2, 3, 4} across normal times A2 = A3 = 0.18, a boom

A1 = 1.2A2 and a bust A4 = 0.8A3. The two normal times are distinguished in terms of their

prospects. At A2, it is likelier to enter a boom soon, whereas at A3, it is likelier to enter a

bust. The following matrix summarizes the Markov chain:

From\To A1 A2 A3 A4

A1 = 0.216 · 0.3 0 0

A2 = 0.180 0.3 · 0.3 0

A3 = 0.180 0 0.3 · 0.3

A4 = 0.144 0 0 0.3 ·

where the entries are Poisson rates of exiting a state (in row) and entering another (in column).

This chain implies a uniform stationary distribution over the Markov state space {1, 2, 3, 4}.
The above setup is designed to isolate the effect of future investment returns. Both A2 and

A3 have the same current revenue, but A2 still merits increased investment due to greater

expected returns.

To have a well-defined first-best solution, I increase ψ from 1.5 to 2 so that investment is

harder to scale.29 I maintain the other baseline parameters, including γ = 1.

Figure 15 plots shareholder-optimal financing and investment strategies the states s ∈
{1, 2, 3, 4}. Table 1 compares the average per capital dynamics across the states and against

the first-best allocation using the ergodic distribution on h ∈ [hs, h
s
] for each s = 1, 2, 3, 4,

conditional on no Markov shift having occurred in the past—i.e. ‘timeless.’ I proceed by

discussing underinvestment, then demonstrating how it is mainly fluctuations in expected—

rather than realized—investment returns that shift financial slack.

(1) Underinvestment. As the very last row of Table 1 shows, average cutback in investment

at A2 relative to the first-best is around 2.06%, higher than that at A3 around 1.53% despite

the same current revenue. With lucrative expected returns, shareholders underinvest more

to avoid dilution exactly because their continuation value is higher and so is the cost of

dilution. With lower expected returns, they underinvest less because continuation value is

lower and so is the cost of dilution. Dilution concerns induce more underinvestment when

firms expect a higher capital productivity in a near future, despite the convex adjustment

cost that incentivizes anticipatory investment smoothing.

29Compared to the baseline case of constant A = 0.18, there is much greater upward growth potential
A1 = 0.216. If ψ is low, then A1 is an inordinately great time to substantially scale up investment
with small inefficiency, so that first-best continuation value blows up.

45



Figure 15: Expected investment returns increase financial slack the most

The black curves, in different line styles, represent optimal investment policy given internal funds in each state that
occur on equilibrium path, bounded in domain by funding target h

s
in blue line segment and financing threshold

hs in red line segment. The flat lines in gray are the first-best investment under each state. Other parameters are
ρ = 0.06, r = 0.05, θ = 0.5, γ = 1, δ = 0.1007, σ = 0.09, ψ = 2.

(2) Financial slack. Both financing threshold and funding target (hs, h
s
) expand most

noticeably as future investment returns fluctuate. Shareholders’ continuation value rises—

and so does the size of dilution—in anticipation of a boom, even as the current net cash

inflow
(
As − it − Ψ(it)

)
Kt dt drops due to greater investment. This is exactly analogous to

the combination, from the startup example in Section 4.2, of a higher upside potential Π and

a higher cash burn rate κ such that the flow business value λΠ − κ has not decreased—see

Figures 6a and 6c (dashed lines). Each of the two changes unambiguously increases optimal

financial slack.

In contrast, the realized changes in productivity, i.e. A2 → A1 and A3 → A4, lead

to relatively small adjustments in financial slack. With A2 → A1, continuation value per

capital rises but so does the current gross cash inflow As dt, so that net cash inflow does not

change much despite the increased investment. In addition, the rise in continuation value

is dampened because there is no more upside potential in the future, only downside. The

combined effect is that shareholders fear dilution somewhat more, but they still have similar

net cash inflow. With A3 → A4, similar effects are at play but in the opposite directions.

To sum up, with fluctuations in realized productivity, the effect of changing continuation

value on financial slack gets partially offset by the variation in cash revenue and additionally

dampened by mean reversion. With fluctuations in expected investment returns, net cash

flow varies directly and in the opposite direction due to variation in investment, and mean

reversion has less bite. Financial slack, therefore, is most sensitive to fluctuations in expected

investment returns.
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Boom Uptrend Downtrend Bust
Markov Chain
Productivity (As) A1 = 0.216 A2 = 0.180 A3 = 0.180 A4 = 0.144
Upward jump rate (As → As−1) - 0.3 0.3 0.3
Downward jump rate (As → As+1) 0.3 0.3 0.3 -
Stationary distribution 0.25 0.25 0.25 0.25

Financial Slack

Funding target (h
s
:= H

s
/K) 0.2307 0.2165 0.1925 0.1876

Financing threshold (hs := Hs/K) 0.1025 0.0967 0.0856 0.0856
Financing frequency 0.2311 0.192 0.1385 0.1361

Value, Dividend, Investment
Gross value (V s :=W s/K) 1.4815 1.3813 1.289 1.2046
Net value (V s − h) 1.2872 1.1957 1.12 1.0386
Dividend ratio (ds := Ds/K) 0.0783 0.0997 0.1403 0.1536
Investment (is := Is/K) 0.1416 0.0956 0.0593 0.0213
Avg. dividend (ρds/(ρ+ δ − is)) 0.2464 0.0919 0.083 0.0661

First-best
FB value (V ∗s :=W ∗s/K) 1.3307 1.2324 1.1492 1.0631
FB dividend ratio (d∗s := D∗s/K) 0.0233 0.0503 0.0998 0.1115
FB investment (i∗s := I∗s/K) 0.1654 0.1162 0.0746 0.0315
Underinvestment (i∗s − is) 0.0237 0.0206 0.0153 0.0103

Table 1: Financial slack and underinvestment across business cycle

Financing frequency, gross/net value, and dividend ratio are computed as arithmetic mean across the
conditional ergodic distribution, and investment as ergodic geometric mean of gross capital growth
1 + it − δ, subtracted by 1− δ. ‘Average dividend’ is flow average of the total discounted amount of
expected lifetime dividend per today ’s capital, conditional on no Markov jump going forward.

6.6 Numerical analysis 4: investment irreversibility

As the last analysis, let us revisit Proposition 5 in Section 6.2, in particular Inequality (16).

It shows, as illustrated in Section 6.3, that funding cushion allows shareholders upon financ-

ing failure to delay termination—thereby improving the bargaining outcome on equilibrium

path—as they seek to not only find alternative financiers but also to cut down on investment

to boost cash inflow. Such reduction in investment can manifest itself in the form of divest-

ment, whereby shareholders without financing access seek to dispose of capital to obtain cash.

As long as firms cannot do so swiftly e.g. due to the convex adjustment cost, funding cushion

is necessary for divestment to be employed as a backstop strategy to boost shareholders’ out-

side option. Funding cushion, therefore, has two strategic uses—one in alternative financing

and the other in cash generation through underinvestment, including divestment.

Divestment, however, can often be costlier to implement than cutting down on positive

investment expenses; salvage value of capital after scrapping is typically much lower than

book value, high user specificity of custom-built plants and equipments can compress re-

sale prices, and there may also be the problem of lemons’ market. With this asymmetry in

investment adjustment cost—positive investment versus divestment—in place, it is easily con-

jectured that financing threshold would respond to persistent shocks differentially depending

on whether (i) shareholders can find alternative financiers relatively easily, and (ii) backstop

47



underinvestment involves divestment.

To explore the interaction tractably, I introduce a reversibility parameter ϕ ≥ 0 to the

present extension such that investment adjustment cost is: for ϕ > 0

Ψϕ(i) :=

ψ i2

2 , i ≥ 0,

ψ
ϕ
i2

2 , i < 0,

and ϕ = 0 is implemented as the domain restriction on investment choice i ≥ 0. With ϕ < 1,

i < 0 involves a greater adjustment cost than when i ≥ 0. Note that this modified Ψϕ is

still continuously differentiable on the entire real line for any ϕ > 0 by construction, and as

such, the solution method remains largely unchanged. ϕ = 1 nests the basic investment setup

where the adjustment cost is symmetric, while ϕ = 0 is when capital cannot be converted

back into cash. For clarity of insight, I abstract from other considerations such as fixed costs

of investment and divestment.

Figure 16: Comparative statics given γ = ϕ = 0

Other parameters are ρ = 0.06, r = 0.05, θ = 0.5, γ = 0, δ = 0.1007, σ = 0.09, ψ = 1.5, ϕ = 0.

Revenue and financing threshold. In Figure 16, I let γ = ϕ = 0 so that there is no explicit

backstop strategy, but positive investment is allowed i ≥ 0, subject to convex adjustment cost
i2

2ψ . I compare the two equilibria across A ∈ {0.175, 0.18}. First, consider only A1 = 0.175,

represented by the solid black curve bounded by its respective funding target h1 in blue

segment and financing threshold h1 in red one. The fact that there is no early financing

h1 is easily rationalized by the insight from Section 3.2, specifically Corollary 1, that early

financing strengthens outside option only when there is a viable backstop strategy to pursue

upon bargaining failure. With γ = ϕ = 0, there seems to be no such strategy to pursue, and

hence shareholders do not choose to finance early.
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But then why does this reasoning fail to hold for a higher productivity A2 = 0.18, rep-

resented in dashed curve, where h2 > 0 even though γ = ϕ = 0? One might guess that it

is due to the higher continuation value under A = 0.18 that increases the cost of dilution.

The conjecture gives only a partial explanation at best, because in the startup example in

the model without investment choice for instance, financing threshold is invariably zero no

matter how large the future value Π is, as long as there is no backstop strategy γ = 0.

(a) Investment, A = 0.175 (b) Investment, A = 0.18

(c) Underinvestment, A = 0.175 (d) Underinvestment, A = 0.18

Figure 17: Productivity and funding cushion

Other parameters are ρ = 0.06, r = 0.05, θ = 0.5, γ = 0, δ = 0.1007, σ = 0.09, ψ = 1.5, ϕ = 0. In particular, both
alternative financing and divestment are precluded.

Two observations from Figure 17 regarding backstop underinvestment i − io, i.e. the

black dashed curves on the bottom two subplots (17c and 17d), point to the core economics

behind the stark difference in financing threshold. First, due to the greater investment with

access to financing i under higher A = 0.18, i.e. (17b versus 17a), there is more backstop

underinvestment overall with A = 0.18 than with A = 0.175. Second and more importantly,

due to the irreversibility constraint i ≥ 0, the entirety of backstop underinvestment for either

case A ∈ {0.175, 0.18} is located on the region of high internal funds. A strong cash drift, i.e.

high A, is therefore needed for the upward-concentrated backstop underinvestment to become

sufficiently relevant for the reservation value at a given financing threshold. Otherwise, the

odds of remaining constrained by irreversibility until fund depletion will dominate, resulting
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Normal s = 0 Crisis s = 1 Crisis s = 2
Markov Chain
State (γs, ϕs, As) (1, 0.5, 0.18) (0, 0, 0.17) (0, 0, 0.16)
Arrival rate (0 → s) - 0.1 0.1
Exit rate (s → 0) - 0.5 0.5

Financing & Investment

Funding target (h
s
:= H

s
/K) 0.2105 0.2358 0.2378

Financing threshold (hs := Hs/K) 0.0992 0.0956 0

Buffer stock (∆hs := hs − hs) 0.1113 0.1401 0.2378
Financing frequency 0.1366 0.0395 0.0005
Investment (is := Is/K) 0.0696 0.061 0.0498

Dilution
Ownership retention (xs ∈ [0, 1]) 0.9144 0.8944 0.4116

Financing rent ((1− xs)V
s −∆hs) 0.0015 0.0017 0.5534

Table 2: Crisis with different productivity

Financing frequency and investment are computed as arithmetic and geometric mean over the timeless ergodic distri-
bution at each state. In normal times, A0 = 0.18, ϕ0 = 0.5 and γ0 = 1. During Crisis s ∈ {1, 2}, ϕs = γs = 0 and
A1 = 0.17 > 0.16 = A2. Other parameters are unchanged: ρ = 0.06, r = 0.05, θ = 0.5, δ = 0.1007, σ = 0.09, ψ = 1.5.

in zero financing threshold.

Business fundamentals and amplification of dilution. Motivated by the above discus-

sions, let us conduct a simple business fluctuation exercise where I allow (γ, ϕ,A) to co-vary

stochastically. There are three states s ∈ {0, 1, 2} with the following Markov chain in Poisson

arrival rates:
From\To (γs, ϕs, As) s = 0 s = 1 s = 2

Normal: s = 0 (1, 0.5, 0.18) · 0.1 0.1

Crisis 1: s = 1 (0, 0, 0.17) 0.5 · 0

Crisis 2: s = 2 (0, 0, 0.16) 0.5 0 ·

The exogenous state variables during the ‘normal’ time s = 0 are given as (γ0, ϕ0, A0) =

(1, 0.5, 0.18). Both Crises s ∈ {1, 2} exhibit perfect irreversibility and absence of alternative

financing γs = ϕs = 0 as well as a drop in productivity A1, A2 < A0. A crisis episode occurs

with Poisson rate 0.2, half as Crisis 1 and half as Crisis 2, and ends with Poisson rate 0.5.

The two Crises are different only in that the first has a higher productivity than the second

A1 = 0.17 > 0.16 = A2. Table 2 and Figure 18 describe the equilibrium, with the latter

also reporting the aggregate transitional dynamics of financing upon the arrival of each crisis,

initiated from the ergodic distribution during the normal time s = 0.

Table 2 indeed shows, as illustrated by Figure 18a, that a correlated crisis of investment

irreversibility and lack of alternative financing has a vastly different impact on financing

threshold depending on the size of the accompanying drop in productivity. Given a larger

drop A2 = 0.16 < 0.18 = A0, backstop underinvestment is unlikely to become relevant for
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(a) Financial slack and investment (b) Transitional financing

Figure 18: Equilibrium and crisis transition

shareholders’ outside option scenario due to the weak upward drift in cash, and hence firms

simply delay financing until funds are depleted. As a result, they now face an endogenously

magnified cost of dilution (1 − x2)V
2 − ∆h2 ≈ 0.553 > 0.001 ≈ (1 − x0)V

0 − ∆h0 due to

zero funding cushion h2 = 0 and so avoid financing by substantially delaying dividend payout

relative to the financing threshold ∆h2 = h
2 ≈ 0.238 > 0.111 ≈ ∆h0. Consequently, financing

dries up almost entirely, with one in every 2,000 firms raising funds in a unit period.

In contrast, a crisis that is otherwise identical but accompanied by a somewhat higher

level of crisis productivity A1 = 0.17 leads to a completely different pattern. This is because

the upward-concentrated backstop underinvestment becomes ‘closer,’ making the irreversibil-

ity constraint dynamically less binding and thereby allowing funding cushion to retain its

strategic value h1 ≈ 0.096. The cost of dilution, therefore, remains almost invariably negligi-

ble (1− x1)V
1 −∆h1 ≈ 0.0017 > 0.0015 ≈ (1− x0)V

0 −∆h0, and firms expand buffer stock

only moderately in response ∆h1 ≈ 0.140 > 0.111 ≈ ∆h0. While considerably rarer than

during normal times, financing still occurs with decent frequency; on average, one in every

25 firms—down from one in every seven—finances in a unit period.

Expectedly, transitional dynamics differ starkly, as Figure 18b shows. Crisis 2 induces

an abrupt freeze in financing, because of a sharp plummet in financing threshold h2 = 0 <

0.099 ≈ h0. Since the conditional long-term mean frequency as shown in Table 2 is nearly

zero, the freeze essentially spans the entire duration of the episode. Crisis 1, in contrast,

involves a negligible drop in funding cushion h1 ≈ 0.096 < 0.099 ≈ h0, inducing a gradual

decline in financing frequency to its conditional mean that is meaningfully away from zero.

In sum, small variation in business fundamentals, such as revenue and internal investment,

may induce drastically different financing costs and dynamics when financial market depth

dries up and investment irreversibility peaks.
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7 Conclusion

In this paper, I propose a tractable model of an endogenous friction in financing that arises

solely from the presence of strategic bargaining in the financial markets. Without fixed

transaction cost or uncertainty in financing such as search frictions or regime switching, the

model predicts not only lumpy financing that indicates the emergence of a friction, but also

in general strictly positive financing threshold. The paper offers a novel understanding of

this positive funding cushion at financing, in particular with respect to its strategic (rather

than precautionary) role of dynamic bargaining; shareholders preserve funding cushion to

improve their outside option at bargaining as it allows time upon off-equilibrium financing

failure to pursue backstop strategies such as finding other financiers and reducing investment.

As funding cushion, when accompanied by viable backstop strategies, compresses the surplus

from financing, the model predicts that observed size of dilution is typically small. At the

same time, it offers a novel and coherent explanation of why financing cost is magnified when

firms finance with little internal funds remaining.

Notably, the framework gives rise to a direct channel through which firms’ equity value

directly and positively intensifies financial slack. Consequently, firms hold more internal funds

and underinvest more when they expect a higher upside potential. Furthermore, higher

expected investment returns exacerbate financial slack. Overall, the framework seamlessly

rationalizes why the so-called ‘growth’ firms exhibit large financial slack in general.

Additionally, the paper presents a counterintuitive yet empirically relevant prediction that

firms with robust financing access may preserve substantial funding capacity in sizable excess

of contingent investment needs—such as time-sensitive mergers and acquisitions—that they

always fund internally. Whereas firms that have limited access to alternative financiers may

finance investment opportunities when their funding capacity is low but forgo investment

when it is moderate. Over a reasonably broad parameter range, financing strategy changes

in a seemingly opposite direction to the strength of firms’ financing access.

Lastly, business fundamentals are shown to have critical role in amplification of dilution

when financing and capital market environments drastically deteriorate. When it becomes

infeasible to find alternative financiers or sell off existing capital stock, firms that can maintain

robust revenue streams and internal investment continue financing early, thereby incurring

negligible dilution. In contrast, firms that experience a tangible drop in revenue and thus must

cut down on investment choose to delay financing as much as possible, amplifying dilution

significantly when they have indeed run out of funding.

Overall, this paper suggests that bargaining in the financing markets may be at the heart

of financial slack and its dynamics.
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Appendix A Proofs

A.1 Section 3 (Analysis)

Lemma 1 (Unique existence). There uniquely exist V and Vo, the equilibrium value function

of shareholders and their reservation value function.

Proof. Let W denote the space of all continuous bounded functions on [0, H] with an ar-

bitrarily large H > 0. Define three self-maps To, T, T
∗ : W → W as follows: for given

W ∈ W,

1. ToW is the value function of excluded shareholders who, upon re-inclusion which arrives

at Poisson rate γ ≥ 0, transitions to W as their new value function,

2. TW is the value function of non-excluded shareholders whose outside option upon bar-

gaining is given by W , and

3. T ∗W := (T ◦ To)W .

The continuity restriction ensures that the above mappings are well-defined. Endow W with

the L∞ supremum metric, so that it is complete. An equilibrium value function V , if it

exists, is a fixed point of T ∗. If T ∗ is a contraction in W, Contraction Mapping Theorem

states that there exists a unique fixed point V ∈ W such that V = T ∗V = limn→∞(T ∗)nW ∈
for some(any) W ∈ W, in which case Vo := ToV . Uniqueness follows because the model setup

with cash inflow and reserve ensures continuity and boundedness of value functions.

The claim on T ∗ immediately follows from Blackwell’s Lemma. First, obviously T ∗ is

monotone increasing. Next, for any W ∈ W and w > 0,

T ∗(W + w) < T ∗W + (1− θ)w.

Basically, a w bonus in value that shareholders would receive only if they became excluded

(by walking out from bargaining) and then re-included is worth less than a (1 − θ)w bonus

in value that they could enjoy immediately. The (1− θ) factor is due to the coefficient on Vo

in Equation (4). By Blackwell’s Lemma, therefore, T ∗ is a contraction.

Lemma 2 (Monotone financing strategy). If h ∈ B, then [0, h] ⊂ B.

Proof. The claim is trivial if B = {0}. Suppose otherwise. On B, V satisfies Equation (4),

i.e. V (h) = θ(V (h)− h+ h) + (1− θ)Vo(h) ∀h ∈ B. Since immediate financing is optimal, it

is better than instantaneously postponed financing: writing H(V )(h) := λ
(
Π+ h− V (h)

)
+

µV ′(h) + 1
2σ

2V ′′(h),

ρV (h)− rhV ′(h) ≥ H(V )(h)

⇐⇒ θ
((
ρV (h)− rh · V ′(h)

)
− (ρ− r)(h− h)

)
+ (1− θ)

(
ρVo(h)− rh · V ′

o(h)
)

≥ θH(V )(h) + (1− θ)H(Vo)(h), (A.1)

A.0



on the interior of B. Equation (4) is being substituted on both hand sides of the inequality.

In particular, because Equation (4) is an identity on B, the following obtain on B30:

V ′(h) = θ + (1− θ)V ′
o(h) = θV ′(h) + (1− θ)V ′

o(h), (A.2)

V ′′(h) = (1− θ)V ′′
o (h) = θV ′′(h) + (1− θ)V ′′

o (h), (A.3)

because V ′(h) = 1 and V ′′(h) = 0 by smooth pasting and super contact8 conditions. This, in

combination with the linearity of the operator H, gives:

H(V )(h) = θH(V )(h) + (1− θ)H(Vo)(h),

which is being substituted on the right-hand side. Next, note that:

ρV (h)− rhV ′(h) = H(V )(h), (A.4)

ρVo(h)− rhV ′
o(h) = H(Vo)(h) + γ

(
V (h)− Vo(h)

)
. (A.5)

Substituting (A.4) and (A.5) into the left-hand side of (A.1) cancels out all H terms, giving

G(h) := (1− θ)γ
(
V (h)− Vo(h)

)
− θ(ρ− r)

(
h− h

)
≥ 0. (A.6)

Note that from V ′(h) = θ + (1− θ)V ′
o(h),

G′(h) = θ
(
(ρ− r)− (1− θ)γ

(
V ′
o(h)− 1

))
. (A.7)

Since h := supB > 0, shareholders with ht = h are indifferent between financing and instan-

taneous waiting, i.e. G(h) = 0. Since G is non-negative on B but not on the outside, it must

be that G′(h) ≤ 0. If Vo is strictly concave in h on [0, h], then Equation (A.7) implies that

G′(h) ≤ 0 for all h < h so that G(h) ≥ 0 for all h < h. Therefore, [0, h] ⊂ B.

Regarding the strict concavity of Vo, consider the reservation value Vo and the associated

funding target ho > 0. The proof proceeds as (i) ho > h, (ii) V ′′
o < 0 on [h, ho), and (iii)

V ′′
o < 0 on [0, h). As an aside, it will be proven at the end that V ′′ < 0 on [0, h).

(i) ho > h. Suppose not. Smooth pasting and super contact at h = ho gives

ρVo(ho)− rho = µ+ λ
(
Π+ ho − Vo(ho)

)
+ γ
(
V (ho)− Vo(ho)

)
≥ µ+ λ

(
Π+ ho − Vo(ho)

)
,

because γ ≥ 0 and V (ho) > Vo(ho) from exclusion. Solve for Vo(ho) to obtain

Vo(ho) ≥
1

ρ+ λ

(
µ+ λΠ+ (r + λ)ho

)
.

30They obtain on the interior from the identity itself. They also obtain on the boundary due to
smooth pasting and super contact.
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Since ho is the funding target under exclusion and h ≥ ho by assumption,

Vo(h) = Vo(ho) + (h− ho) ≥
1

ρ+ λ

(
µ+ λΠ+ (r + λ)ho

)
+ (h− ho)

≥ 1

ρ+ λ

(
µ+ λΠ+ (r + λ)h

)
= V (h),

where the last inequality is because ρ > r. This contradicts Proposition 1.

(ii) V ′′
o < 0 on [h, ho). First, suppose σ > 0. Differentiate (A.5) at h = ho while substituting

V ′
o(ho) = 1, V ′′

o (ho) = 0 to obtain a third (left) derivative as

V ′′′
o (ho) =

2

σ2

(
ρ− r − γ

(
V ′(ho)− 1

))
=

2

σ2
(ρ− r) > 0,

because ho > h and so V ′(ho) = 1. Therefore, there must exist some neighborhood below ho

on which V ′′
o < 0. Suppose by way of contradiction that there exists ĥ ∈ [h, ho) such that

V ′′
o < 0 on (ĥ, ho) but V ′′

o (ĥ) = 0. Then, it must hold that V ′′′
o (ĥ) ≤ 0. Differentiating the

HJB at h = ĥ gives a third (left) derivative as

0 ≥ V ′′′
o (ĥ) =

2

σ2

(
(ρ− r)V ′

o(ĥ) + λ
(
V ′
o(ĥ)− 1

)
+ γ
(
V ′
o(ĥ)− V ′(ĥ)

))
.

Since V ′
o(ĥ) > 1 from V ′

o(ho) = 1 and V ′′
o < 0 on (ĥ, ho), the above implies that γ > 0 (that

is, a contradiction is already reached if γ = 0) and V ′
o(ĥ)− V ′(ĥ) < 0. Because V ′(h) = 1 for

h ≥ h, it must be that ĥ < h. Since V ′
o(h) − V ′(h) > 0 from h ∈ (ĥ, ho), the intermediate

value theorem implies that there exists h̃ ∈ (ĥ, h) such that V ′
o(h̃)− V ′(h̃) = 0. But

V ′′
o (h̃)− V ′′(h̃) =

2

σ2

((
(ρ+ λ+ γ)Vo(h̃)− rh̃V ′(h̃)− λ(Π + h̃)− µV ′(h̃)− γV (h̃)

)
−
(
(ρ+ λ)V (h̃)− rh̃V ′(h̃)− λ(Π + h̃)− µV ′(h̃)

))
=

2

σ2
(ρ+ λ+ γ)

(
Vo(h̃)− V (h̃)

)
< 0.

In other words, the graph of V ′
o − V ′ can never cross zero from below as necessitated by

V ′
o(ĥ)− V ′(ĥ) < 0 < V ′

o(h)− V ′(h) and ĥ < h, a contradiction.

Second, suppose σ = 0. Assumption 1 requires that µ < 0, λ > 0 and Π > −µ
λ > 0. Since

this is essentially the startup example from Section 2.1, relabel parameters κ ≡ −µ > 0 and

Π ≡ Π > κ
λ . Differentiating (A.5) at h = ho gives a second (left) derivative as

V ′′
o (ho) = − ρ− r

κ− rho
,

because of smooth pasting V ′
o(ho) = 1 and ho > h giving V ′(ho) = 1. Since the last part

of Assumption 1 ensures that κ > rho, it follows that V ′′
o (ho) < 0. Again, suppose by way
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of contradiction that there exists ĥ ∈ [h, ho) such that V ′′
o < 0 on (ĥ, ho] and V ′′

o (ĥ) = 0.

Differentiating (A.5) at ĥ gives

(ρ− r)V ′
o(ĥ) + λ

(
V ′
o(ĥ)− 1

)
+ γ
(
V ′
o(ĥ)− V ′(ĥ)

)
= 0.

Since V ′
o(ĥ) > 1, this again implies that γ > 0 and V ′

o(ĥ) − V ′(ĥ) < 0. The same reasoning

as with σ > 0 implies ĥ < h. Since V ′
o(h)− V ′(h) > 0, the intermediate value theorem again

implies that there exists h̃ ∈ (ĥ, h) such that V ′
o(h̃) = V ′(h̃). Then,

ρVo(h̃)− rh̃V ′(h̃) = λ
(
Π+ h̃− Vo(h̃)

)
− κV ′(h̃) + γ

(
V (h̃)− Vo(h̃)

)
,

ρV (h̃)− rh̃V ′(h̃) = λ
(
Π+ h̃− V (h̃)

)
− κV ′(h̃),

and therefore, Vo(h̃) = V (h̃), contradicting exclusion γ <∞.

(iii) V ′′
o < 0 on [0, h). First, suppose σ > 0. Because V ′′

o (h) < 0, there exists a neighborhood

below h on which V ′′
o < 0. The aforementioned observation on G′ implies that if V ′′

o < 0

on the interior of a neighborhood below h, then the neighborhood, including its closure, is a

subset of B. Substituting (5) that holds on B, the HJB for Vo on this interval is written as

ρVo(h)− rhV ′
o(h) = λ

(
Π+ h− Vo(h)

)
+ µV ′

o(h) +
1

2
σ2V ′′

o (h) + θγ
((
V (h)− h

)
+ h− Vo(h)

)
.

Suppose by way of contradiction that there is h̃ ∈ [0, h) such that V ′′
o < 0 on (h̃, h) but

V ′′
o (h̃) = 0. Note that V ′

o(h̃) > 1, because V ′
o(ho) = 1 and V ′′

o < 0 on (h̃, ho). Differentiating

the above HJB at h̃ gives a third derivative as

V ′′′
o (h̃) =

2

σ2

(
(ρ− r + λ+ θγ)V ′

o(h̃)− (λ+ θγ)
)
>

2

σ2
(ρ− r) > 0,

which contradicts V ′′
o (h̃) = 0 and V ′′

o < 0 on (h̃, h].

Next, suppose σ = 0 and use the startup relabeling κ ≡ −µ > 0, Π ≡ Π > 0. Since

V ′′
o (h) < 0, there is a neighborhood below h which is a subset of B and on which V ′′

o < 0.

Differentiating the HJB gives

(ρ− r)V ′
o(h) + (λ+ θγ)

(
V ′
o(h)− 1

)
+ (k − rh)V ′′

o (h) = 0.

Suppose by way of contradiction that there exists ĥ < h such that V ′′
o < 0 on (ĥ, h] but

V ′′
o (ĥ) = 0. Then, [ĥ, h] ⊂ B by the property of G′ and so the above equality must hold at

h = ĥ. But it contradicts V ′
o(ĥ) > 1, which is implied by V ′

o(ho) = 1 and V ′′
o < 0 on (ĥ, ho].

Side claim: V ′′ < 0 on [0, h). First, establish the claim on [h, h). If σ > 0, then strict

concavity is established by the same reasoning (ii) above, but with γ = 0 so that a third (left)

derivative at ĥ already gives a contradiction. Suppose σ = 0 and adopt the startup relabeling.

Differentiating the HJB (3) gives a second (left for h = h, right for h = h) derivative on [h, h]
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as

V ′′(h) = −
(ρ− r)V ′(h) + λ

(
V ′(h)− 1

)
κ− rh

.

Assumption 1 ensures that rh < κ. By smooth pasting V ′(h) = 1, V ′′(h) < 0. For any

ĥ ∈ [h, h) such that V ′′ < 0 on (ĥ, h], V ′(ĥ) > 1 and so V ′′(ĥ) < 0. As such, V ′′ < 0 on [h, h].

Strict concavity of V on [0, h] is immediate because V ′′ = (1− θ)V ′′
o < 0 on it.

Corollary 1. Given other parameters, there exists γ ∈ (0,∞) such that h = 0 if and only if

γ ≤ γ. In particular, γ = 0 always implies h = 0

Proof. With γ = 0, G(0) = −(ρ − r) · h < 0 from Equation (A.6). Since the inequality is

strict, it must be that G(0) < 0 for γ in some neighborhood above zero. By proof of Lemma

2, G(0) < 0 implies that h = 0. Also, the result γ → ∞ =⇒ h→ 0 in Part 4 of Proposition 3

means31 that h cannot be globally zero for all γ ∈ [0,∞) since otherwise γ would be irrelevant

in equilibrium and thus h could not be affected. Lastly, in Inequality (11), the right-hand

side is non-increasing and the right-hand side strictly increasing in γ. Therefore, once h > 0,

then it remains strictly positive for any higher γ. γ > 0 thus exists (uniquely).

Proposition 3 (Comparative statics in θ and γ).

1. h decreases18 in θ. h is constant in γ when γ < γ and decreasing otherwise.

2. h decreases in θ when h > 0. h = 0 is constant in θ above some θ < 1.

3. When h > 0, ∆h is constant in θ if r = 0 and increasing if r ∈ (0, ρ). When h = 0,

∆h = h decreases in θ. ∆h is constant in γ when γ < γ. When γ ≥ γ, ∆h is decreasing

in γ if r = 0.

4. h→ 0 as either θ → 1 or γ → +∞.

Proof. Part 1. Constancy of h in γ ∈ [0, γ] is obvious since shareholders bargain only

at ht = 0, where re-inclusion is simply irrelevant. Take γ2 > γ1 ≥ γ and consider the

equilibrium with γ = γ2. When shareholders bargain with financiers, they choose h2 to

maximize V (h2; γ2) − h2. Suppose that they agree, as a one-shot deviation, to choose h1

instead and then mimic the optimal financing strategy under γ = γ1 (i.e. refinance at h1,

pay out above h1) until next financing. Denote the payoff function associated with this

strategy as Ṽ . Note that Ṽ (h1; γ2) > V (h1; γ1), as the reservation value at ht = h1 > 0

is strictly higher with γ = γ2 > γ1. Since h2 without the one-shot deviation is optimal,

V (h2; γ2)− h2 ≥ Ṽ (h1; γ2)− h1 > V (h1; γ1)− h1. Finally, since

V (h; γ)− h =
1

ρ+ λ

(
µ+ λΠ− (ρ− r) · h

)
, (A.8)

from evaluating Equation (3) at h = h with V ′(h) = 1, V ′′(h) = 0, we have h2 < h1. Global

strict monotonicity in θ is established by a similar reasoning.

31There is no circular reasoning since Part 4 does not rely on Corollary 1 for its proof.
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Part 2. Strict monotonicity of h = h −∆h > 0 in θ is immediate from the decreasing h in

Part 1 and the non-decreasing ∆h in Part 3. The claim on the existence of such a θ is from

Parts 3 and 4 since ∆h > 0 is non-decreasing in θ when h > 0 but ∆h→ 0 when θ → 1.

Part 3. Constancy of ∆h in γ ∈ [0, γ] is obvious since γ ≤ γ =⇒ ∆h = h. Strict

monotonicity of ∆h in θ when h = 0 is implied by strict monotonicity of h in θ in Part 1.

Now suppose that h > 0. By Proposition 2,

V (h)− V (h)

∆h
= 1 +

ρ− r

γ
. (A.9)

Three important observations on V and Equation (A.9) can be drawn. First, Equation

(A.9) stipulates an average rate of change in V over [h, h]. The required rate is decreasing in

γ and independent of θ. Second, recall that V on [h, h] satisfies Equation (3) along with the

two boundary conditions V ′(h) = 1, V ′′(h) = 0 determined by dividend payout optimality.8

Equation (3), to be solved downward from h = h, does not directly depend on either γ or θ;

the only indirect channel through which the differential equation might depend on them is the

rhV ′(h) term, since the starting point h changes with γ ≥ γ and θ. Third, ∆h is determined

as the extent of descent in h from h over which the average of the marginal rates of change

in V , as obtained by (3) and the payout optimality, equals the right-hand side of (A.9).

If r = 0, then, the evolution of V ′ below h is independent of γ ≥ γ and θ, and the required

average is decreasing in γ and independent of θ. Therefore, ∆h is independent of θ (as long

as h > 0), and decreasing in γ ≥ γ since γ compresses the required excess rate of change

above one while V ′(h) = 1 and V ′ rises as h falls. This establishes the two claims for r = 0.

If r ∈ (0, ρ), the aforementioned subtlety is introduced since the level of h changes how

V ′ evolves below it. Consider two equilibria (h1, h1), (h2, h2) with h1, h2 > 0 and h1 < h2

and sharing the same parameters other than γ, θ. Write Equation (3) as

ρV (h) = rhV ′(h) +M(V )(h) +
1

2
σ2V ′′(h),

where M subsumes all terms of Λ, H except the second order one. For i ∈ {1, 2}, consider
solving Vi downward starting from hi. With every nth step of descent dh > 0 in hi below

hi (i.e. h0i = hi, h
n
i = h

(n−1)
i − dh), the left-hand side ρVi(h

n
i ) falls (approximately) by

ρV ′
i (h

(n−1)
i ) · dh. On the right-hand side, the rise in V ′

i , i.e. dV
′n
i := V ′

i (h
n
i )− V ′

i (h
(n−1)
i ), has

greater positive contribution with hn2 than with hn1 since hn2 > hn1 and dV ′n
i > 0. If σ2 > 0,

then it must be that dV ′′n
2 < dV ′′n

1 to restore the equality, so that dV
′(n+1)
2 > dV

′(n+1)
2 > 0. If

σ2 = 0 (implying a1 < 0 by Part 3 of Assumption 1), then the coefficient on V ′ in the above

equation is −(−µ− rh). Since −µ > rh by Part 4 of Assumption 1, a higher hn2 > hn1 means

that dV ′n
2 > 0 must be greater than dV ′n

1 > 0 to restore the inequality.

In conclusion, a higher h corresponds, ceteris paribus and with h > 0, to a steeper V

below h. Therefore, it takes less extent of descent ∆h to achieve the required average rate of

change in V . Since h decreases in γ ≥ γ and θ by Part 1 and the required rate is decreasing
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in γ and independent of θ, ∆h increases in θ (when h > 0). Whereas a higher γ ≥ γ has two

opposing effects of making V less steep and lowering the required rate, making comparative

statics ambiguous; it is clear, though, that the latter effect dominates at least asymptotically,

since h ≥ 0 is bounded from below.

Part 4. Since h ≥ 0 decreases (strictly) in θ, it converges as θ → 1− by monotone convergence

theorem. Suppose by way of contradiction that h → h̃ > 0 as θ → 1−. Then, Inequality

(11) implies that there exists32 some θ ∈ (0, 1) such that h = 0 for any θ ∈ [θ, 1), because

h ≥ h̃ > 0 and V (h)− h is bounded above by the frictionless net present value.

By zero liquidation value, V (0) = θ
(
V (h)− h

)
= V (h)− h− (1− θ)

(
V (h)− h

)
. Consider

θ > θ. Since h = 0, the equilibrium financing cost is (1 − θ)
(
V (h) − h

)
, which vanishes

as θ → 1− because V (h) − h is bounded above. At the same time, the buffer interval

[h, h] converges, in a two-dimensional sense, to [0, h̃] with a strictly positive length. For any

θ ∈ [θ, 1), shareholders with h = h̃ < h incur a carry cost of delayed dividend, and its size does

not vanish with θ → 1− exactly because the buffer interval does not fully shrink in length.

But the benefit of internal funds h = h̃ in delaying financing cost fully vanishes because the

financing cost does. As such, given a sufficiently high θ ∈ [θ, 1) and h = h̃, it strictly profits

to deviate by receiving an immediate dividend payout of h̃, a contradiction.

Next, Inequality (11) implies that h is positive for γ sufficiently high, since net value

V (h) − h is increasing in γ and h decreasing. Then, (12) gives ∆h → 0 as γ → ∞ by the

same reasoning as θ → 1− =⇒ h → 0. Therefore, it suffices to show that h = h −∆h → 0

as well. Suppose by way of contradiction that h → h̃ > 0.33 For any fixed small ε ∈ (0, h̃),

V − Vo → 0 uniformly on [ε, h̃] as γ → ∞, and so does V ′ − V ′
o → 0. Nash bargaining (4)

then implies that V ′
o(h) → 1 uniformly on [ε, h̃]. Therefore, across h ∈ [ε, h̃], the marginal

reduction in the financing rent (1−θ)
(
V ′
o(h)−1

)
for a marginal increase in h vanishes. Hence,

the marginal benefit of h, taken as a single-dimensional Markov strategy, vanishes—at least

with respect to the excess of the arbitrarily small ε. But its marginal cost is constant at
ρ−r
ρ+λ > 0, a contradiction.

A.2 Section 6 (Extension II: Smooth Investment)

Lemma 3 (Funds-driven investment). Vhh(A, h) < 0 for h < h(A) ≡ inf{h | Vh(A, h) = 1}.

Proof. For this lemma I only consider the case of ordinary differential equations, by remov-

ing the state dependence on A. While not rigorously proven, concavity of value functions

in internal funds for the general case with exogenous state variable appears heuristically

plausible.

32This claim actually holds in itself, as Part 2 shows. But since Part 2 relies on Part 4, here I
independently reason from the contradictory assumption to tentatively establish the existence of θ.
33In the logically possible scenario of no convergence, construct an increasing sequence {γn}n∈N such

that γn → +∞ and hn → h̃ > 0 as n → +∞. Bolzano Weierstrass theorem would guarantee the
existence of such a sequence because h ∈ [0, h) and h is decreasing in γ.
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For reasons to become clear soon, I use a slightly different notation for this proof only.

Let B (not B) be the set of internal fund levels h ≤ h where shareholders find it optimal to

finance and let h = supB. Similar to the previous proof of Lemma 2, the argument proceeds

as (i) h
o
> h, (ii) V o

hh(h), Vhh(h) < 0 on [0, h) \ B, and (iii) V o
hh(h), Vhh(h) < 0 on B.

Unlike in the main model, non-linearity from the investment choice makes it elusive to prove

that B, which must contain zero, is an interval from zero. As such, I do not impose the

structure of B, except that h < h for which Proposition 1 still applies, in proving the strict

concavity of V . Therefore, Parts (ii) and (iii) must be jointly and iteratively proven. As an

aside, numerical algorithm in Appendix B.1 does not rely on B being an interval, so that the

analyses in Sections 6.3 through 6.6 are still valid; and they all generate intervals for B.

(i) h
o
> h. Suppose not. First, rearrange the main HJB as(

ρ+ δ +
1

ψ

)
V −

(
A+

1

2ψ
+

(
r + δ +

1

ψ

)
h

)
Vh −

1

2ψ

(
V 2

Vh
− 2hV − h2Vh

)
− 1

2
σ2Vhh

=: ρ̃V −
(
µ̃+ r̃h

)
Vh −

1

2ψ

(
V 2

Vh
− 2hV − h2Vh

)
− 1

2
σ2Vhh = 0.

Impose smooth pasting and super contact for V at h = h and V o at h = h
o
to obtain

1

2ψ
V

2 −
(
ρ̃+

h

ψ

)
V +

(
µ̃+ r̃h− h

2

2ψ

)
= 0,

1

2ψ
V
o2 −

(
ρ̃+

h
o

ψ

)
V
o
+

(
µ̃+ r̃h

o − h
o2

2ψ

)
+ γ
(
V (h

o
)− V

o
)
= 0.

Define Φ(v|h) := 1
2ψv

2 −
(
ρ̃+ h

ψ

)
v +

(
µ̃+ r̃h− h2

2ψ

)
. Then, it must be that Φv(V |h) < 0.

This is because, letting V ∗ denote the first-best value, both roots that solve Φ(v∗|0) = 0

are strictly between v− − h and v+ − h, where v± are the two roots of Φ(v|h) = 0, even as

V − h < V ∗ by the virtue of first-best. Since V o(h) = V
o
+ (h − h

o
) < V from h ≥ h

o
as

assumed, it must be that Φ(V o(h)|h) > 0, or

0 <
1

2ψ

(
V
o2

+ 2(h− h
o
)V

o
+ (h− h

o
)2
)
−
(
ρ̃+

h

ψ

)(
V
o
+ (h− h

o
)
)
+

(
µ̃+ r̃h− h

2

2ψ

)

=
1

2ψ
V
o2 −

(
ρ̃+

h
o

ψ

)
V
o
+
(
µ̃+ r̃h

o
)
− (ρ− r)(h− h

o
) +

h
o2

2ψ
− h

2

ψ

≤ 1

2ψ
V
o2 −

(
ρ̃+

h
o

ψ

)
V
o
+

(
µ̃+ r̃h

o − h
o2

2ψ

)
= −γ

(
V (h

o
)− V

o
)
,

where the second inequality is from h ≥ h
o
. This contradicts exclusion V (h

o
) > V

o
.

Before proceeding to Parts (ii) and (iii), it helps to define the following collections of
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intervals. Construct B̃ by removing from B any isolated points34; for example, if B = {0},
then B̃ is empty. Let B be a collection of all disjoint and closed intervals with nonempty

interiors whose union gives B̃. Similarly, let C be a collection of all disjoint intervals with

nonempty interiors whose union gives the closure of [0, h) \ B̃ but excluding h.35 Index each

interval in each collection by its supremum, i.e.

B =: {Bhj | j ∈ JB}, C =: {Chj | j ∈ JC}, where

{hj | j ∈ JB} := {supB | B ∈ B} and {hj | j ∈ JC} := {supC | C ∈ C}.

Given the requirement of nonempty interiors, both index sets JB, JC are at most countable.

(ii) V o
hh, Vhh < 0 on Chj for all j ∈ JC . First, consider Ch = [h, h). I will establish the

claim for V o first. Differentiate the HJB for V o at h = h
o
> h for a third (right) derivative:

V
o
hhh =

2

σ2

(
ρ− r +

2

ψ
h
o
)
> 0,

where h
o
> h gives Vh(h

o
) = V

o
h. Therefore, V o

hh < 0 on some neighborhood below h
o
.

Suppose by way of contradiction that there exists ĥ ∈ [h, h
o
) such that V o

hh < 0 on (ĥ, h
o
)

but V o
hh(ĥ) = 0. Then,

0 ≥ V o
hhh(ĥ) =

2

σ2

(
(ρ− r)V o

h (ĥ) +
2

ψ
ĥV o

h (ĥ)− γ
(
Vh(ĥ)− V o

h (ĥ)
))

.

Therefore, it must be that γ > 0 and Vh(ĥ) − V o
h (ĥ) > 0. Since Vh(h) − V o

h (h) < 0 from

h
o
> h, intermediate value theorem implies there is h̃ ∈ (ĥ, h) such that Vh(h̃)− V o

h (h̃) = 0.

Vhh(h̃)− V o
hh(h̃) =

2

σ2

((
ρ̃+ γ +

h̃

ψ

)(
V (h̃)− V o(h̃)

)
− 1

2ψ

V (h̃)2 − V o(h̃)2

Vh(h̃)

)

=
2

σ2

(
ρ̃+ γ − 1

ψ

(
V (h̃) + V o(h̃)

2Vh(h̃)
− h̃

)
︸ ︷︷ ︸

=:(a)

)(
V (h̃)− V o(h̃)

)
︸ ︷︷ ︸

>0

.

Note that (a) < ψρ̃. This is established by the following reasoning. First,

V (h̃) + V o(h̃)

2Vh(h̃)
− h̃ <

V (h̃)

Vh(h̃)
− h̃ < V − h,

because Vhh < 0 on [h, h)—which holds by the present reasoning (specifically, up to imposing

34For purely technical reasons (to address an analytically pathological situation that is highly im-
plausible anyway given the setup), here I use a slightly modified definition of isolated points: a point
x ∈ X is isolated in X if for any ε > 0, neither (x − ε, x) nor (x, x + ε) is a subset of X. Barring
unlikely pathology, the standard definition of isolated points will also do.
35The wording ensures that all the intervals in C are closed except [h, h).
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non-positive third derivative of V at h = V
(−1)
hh (0)) but with γ = 0—and so

∂

∂h

(
V (h)

Vh(h)
− h

)
= 1− V (h)

Vh(h)2
Vhh(h)− 1 > 0.

Next, V −h < ψρ̃, because V is, as shown when proving (i), the lower root of Φ(v|h) = 0, i.e.

V = h+ ψ

ρ̃−
√(

ρ̃+
h

ψ

)2

− 2
µ̃+ r̃h

ψ
+
h
2

ψ2

 < h+ ψρ̃.

As such, Vhh(h̃)− V o
hh(h̃) > 0. That is, Vh− V o

h cannot cross zero from above, as required by

h > ĥ and Vh(ĥ)− V o
h (ĥ) > 0 > Vh(h)− V o

h (h), a contradiction.

As for V on Ch, the same reasoning as above but with γ = 0 gives a contradiction more

directly since 0 < Vhhh(ĥ). Next, for other Chj ’s with hj < h, first assume that V o
hh < 0

on [hj , h
o
) and Vhh < 0 on [hj , h)

36 and proceed with the above reasoning starting at the

contradiction-inducing assumption of the existence of ĥ ∈ Chj where the second derivative

becomes zero for the first time (with h going down). When it comes to the application

of intermediate value theorem towards the existence of h̃, which is relevant only for V o,

it needs to be invoked that such a h̃ can only exist on one of the Chj ’s; on any Bh ∈ B,
Vh = θ + (1 − θ)V o

h < V o
h since V o

h > 1 by the assumed strict concavity of V o and V
o
h = 1.

Jointly with Part (iii), then, the initial assumption of strict concavity above hj will hold.

(iii) V o
hh, Vhh < 0 on Bhj for all j ∈ JB. Start by assuming that V o

hh < 0 on [hj , h
o
), which

will be iteratively validated jointly with Part (ii). Suppose by way of contradiction that there

exists ĥ ∈ Bhj \ {hj} such that V o
hh < 0 on (ĥ, hj) but V

o
hh(ĥ) = 0. Since Bhj ⊂ B, substitute

the identity V = θ
(
V − (h − h)

)
+ (1 − θ)V o on Bhj and differentiate the HJB for V o to

obtain the third derivative at h = ĥ as

V o
hhh(ĥ) =

2

σ2

((
ρ− r + 2

ĥ

ψ

)
V o
h (ĥ) + θγ

(
V o
h (ĥ)− 1

))
> 0,

because V o
h (ĥ) > 1 from V o

hh < 0 on (ĥ, h
o
) and V

o
h = 1. This contradicts V o

hh(ĥ) = 0 and

V o
hh < 0 on a neighborhood above ĥ. Hence, V o

hh < 0 and also Vhh = (1− θ)V o
hh < 0 on Bhj .

Parts (ii) and (iii) jointly—and iteratively37 from above—prove that Vhh < 0 on [0, h).

36Because super contact is not invoked at the boundaries of Bh ∈ B, it is in principle possible that
the second derivative of V is not continuous, which in principle should allow V −

hh(hj) ≥ 0 > V +
hh(hj).

But continuity of Vhh actually holds, because the HJB equation ρV − rhVh = H(V ) + K(V ), which
includes the term 1

2σ
2Vhh, should hold at the boundary hj using the right derivatives as well—due to

the absence of underlying payoff irregularities such as kinks at the boundary, shareholders at it must
be indifferent between instantaneous waiting and immediate financing. Since V and Vh are continuous
by value matching and smooth pasting, it must follow that Vhh is also continuous.
37This ‘iteration’ is well-defined because of the countability of JB and JC , as well as the continuity
of V ohh that follows from the single HJB equation that holds on [0, h] across which both V and Vh are
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Proposition 5 (Financial slack and underinvestment). For each A, and suppressing notation

for dependence on A, h > 0 if and only if

(1− θ)γ +
1

2

(
ı− i(0)

)
︸ ︷︷ ︸

(a)

>
(ρ− r)h

V − h
, (A.10)

in which case

θγ
(
V − V −∆h

)
+

1

2
θ
(
ı− i

)
︸ ︷︷ ︸

(b)

(
V − h

)
︸ ︷︷ ︸

=WK

= θ(ρ− r)∆h+
1

2
(1− θ)

(
i− io

)
︸ ︷︷ ︸

(c)

(
V o − hV o

h

)
︸ ︷︷ ︸

=W o
K

. (A.11)

Proof. Denote B ⊂ R++ × R+ as the set of states (A, h) at which shareholders optimally

refinance, and B(A) ⊂ R+ as its projection onto the A dimension. As in Lemma 2, by

optimality of immediate financing relative to instantaneously postponed financing, for all

(A, h) ∈ B,

ρV − rhVh ≥ H(V ) +K(V ) +A(V ), (A.12)

where

H(V ) :=

(
A+

1

2ψ

)
Vh +

1

2
σ2 · Vhh −

(
δ +

1

2ψ

)(
V − hVh

)
,

K(V ) :=
1

2ψ

(
V

Vh
− h− 1

)(
V − h · Vh

)
,

A(V ) := µA(A)VA +
1

2
σ2AVAA.

At the same time, Section 2.3 still holds, so that, letting V o denote the excluded value,

V (A, h) = θ
(
V (A, h(A))− h(A) + h

)
+ (1− θ) · V o(A, h)

=⇒ (1− θ)
(
V (A, h(A))− V o(A, h)

)
= V (A, h(A))− V (A, h)− θ(h(A)− h).

Lastly, V o on B satisfies

ρV o − rhV o
h = H(V o) +K(V o) +A(V o) + γ

(
V (A, h)− V o(A, h)

)
.

continuous due to value matching and smooth pasting.
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Let us establish that H and A are linear operators in the appropriate sense. First,

Vh(A, h) = θ Vh(A, h(A))︸ ︷︷ ︸
=1

+(1− θ)V o
h (A, h),

Vhh(A, h) = θ Vhh(A, h(A))︸ ︷︷ ︸
=0

+(1− θ)V o
hh(A, h),

V (A, h)− hVh(A, h) = θ
(
V (A, h(A))− h(A)Vh(A, h(A))︸ ︷︷ ︸

=1

)
+ (1− θ)

(
V o(A, h)− hV o

h (A, h)
)
.

Consequently, H(V )(A, h) = θH(V )(A, h(A)) + (1− θ)H(V o)(A, h).

Second, h(A) satisfies both Vh(A, h(A)) = 1 and Vhh(A, h(A)) = 0. Implicit function

theorem on the second identity gives a well-defined h
′
(A). Then, differentiating the first

identity in A gives 0 = VAh(A, h(A)) + Vhh(A, h(A)) · h
′
(A) = VAh(A, h(A)). Therefore,

d

dA

(
V (A, h(A))− h(A)

)
= VA(A, h(A)) + Vh(A, h(A))h

′
(A)− h

′
(A) = VA(A, h(A)),

d2

dA2

(
V (A, h(A))− h(A)

)
= VAA(A, h(A)) + VAh(A, h(A))h

′
(A) = VAA(A, h(A)).

As such, A(V )(A, h) = θA(V )(A, h(A)) + (1− θ)A(V o)(A, h).

Therefore, the same derivation as in the proof of Lemma 2 leads to the cancellation of the

linear H and A while K survives, giving the rearrangement of Inequality (A.12) as

(1− θ)γ
(
V (A, h)− V o(A, h)

)
≥ θ
(
ρ− r

)(
h(A)− h

)
+K(V )(A, h)− θK(V )(A, h(A))− (1− θ)K(V o)(A, h). (A.13)

Note, as an aside, that the first line is exactly Inequality (A.6).

Using the two identities

(1− θ)
(
V (A, h)− V o(A, h)

)
= θ
(
V (A, h(A))− V (A, h)−

(
h(A)− h

))
,

V (A, h)− hVh(A, h) = θ
(
V (A, h(A))− h(A)Vh(A, h(A))

)
+ (1− θ)

(
V o(A, h)− hV o

h (A, h)
)
,

which hold for (A, h) ∈ B, evaluate (A.13) at h = 0 to obtain (A.10), and enforce equality

for (A.13) to obtain (A.11).
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A.3 Section C.1 (Startups)

Proposition C.1.1 (Comparative statics — Startups without re-inclusion).

∂h

∂θ
= −1

ρ
· λΠ− κ− ρh

exp
(
ρ+λ
κ · h

)
− θ

< 0, lim
θ→0

h <
λΠ− κ

ρ
, lim
θ→1

h = 0, and lim
θ→1

∂h

∂θ
= −∞,

(A.14)

∂h

∂Π
=
λ

ρ
· 1− θ

exp
(
ρ+λ
κ · h

)
− θ

> 0, (A.15)

lim
λ→κ/Π

h = lim
λ→∞

h = 0. (A.16)

Proof. Most results above are straightforward. For the first inequality in (A.14), it is sufficient

to show that λΠ− κ− ρh(0) > 0 where h(θ) is h expressed as a function of θ ∈ [0, 1].

To prove the claim, note that

λΠ− κ > ρh(0)

⇐⇒ exp

(
ρ+ λ

κ
· λΠ− κ

ρ

)
> exp

(
ρ+ λ

κ
· h(0)

)
=
λ

ρ

(
(ρ+ λ)

Π

κ
− 1

)
∵ Equation (C.3) with θ ≡ 0

= 1 +
ρ+ λ

κ
· λΠ− κ

ρ

⇐⇒ ρ+ λ

κ
· λΠ− κ

ρ
> 0,

which is equivalent to Assumption C.1.1.

Proposition C.1.2 (Startup financing). Denote

η :=
(1− θ)γ

ρ+ λ+ (1− θ)γ
, ξ :=

λΠ− κ

ρ
.

The equilibrium is characterized by h = 0 and h implicitly defined by Equation (C.3) if

θρ
(
(ρ+ λ)ηξ + κ

)
+ (1− θ)λ

(
(ρ+ λ)Π− κ

)
≥ ρκ · exp

(
ρ+ λ

κ
· ηξ
)
. (A.17)

If the inequality is strictly reversed, then h = h−∆h > 0 and h > ∆h is implicitly defined by

1− θ

ρ+ λ

(
(ρ+ λ+ θγ)λΠ− θργ

(
h+

κ

ρ+ λ+ θγ

)
− (λ+ θγ)κ

)
= ρ

(
ρ+ λ+ γ

γ
∆h+ (1− θ)

κ

ρ+ λ+ θγ

)
· exp

(
ρ+ λ+ θγ

κ
· (h−∆h)

)
, (A.18)
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where ∆h = h− h > 0 is given by

1 +
ρ+ λ

κ
·
(
1 +

ρ+ λ

γ

)
·∆h = exp

(
ρ+ λ

κ
·∆h

)
. (A.19)

Proof. If (A.17) holds, then Inequality (C.7) also holds with h defined by (C.3). Therefore,

h = 0. Now consider the case where (A.17) fails. Let us use Smooth Pasting and Stationary

Recursion to determine (h, h).

Smooth Pasting. For ease of notation, denote V o := Vo(h) and V := θ(V (h)−h+h)+(1−
θ)V o. The shareholders’ non-excluded and excluded value functions for h ∈ [h, h] are given

by

V (h) =

∫ (h−h)/κ

0
λe−(ρ+λ)t

(
Π+ h− κt

)
dt+ e−

ρ+λ
κ

(h−h) · V

=
λ

ρ+ λ

(
Π+ h− κ

ρ+ λ

)
−
(

λ

ρ+ λ

(
Π+ h− κ

ρ+ λ

)
− V

)
· e−

ρ+λ
κ

(h−h),

Vo(h) = V (h)− e−
ρ+λ+γ

κ
(h−h) ·

(
V − V o

)
.

Vo(h) is derived based on the observation that, given the strategy of waiting on (h, h) regard-

less of market access, the only difference that exclusion creates is that you find yourself with

V o instead of V at h = h if neither success nor re-inclusion occurs while the internal funds h

run down to h.

Note that

V (h) =
1

ρ+ λ

(
λ(Π + h)− κ

)
=⇒ ρκ

(ρ+ λ)2
=

(
λ

ρ+ λ

(
Π+ h− κ

ρ+ λ

)
− V

)
· exp

(
−ρ+ λ

κ
(h− h)

)
=⇒ V (h) =

λ

ρ+ λ

(
Π+ h− κ

ρ+ λ

)
− ρκ

(ρ+ λ)2
· exp

(
ρ+ λ

κ
· (h− h)

)
, and

V − V o =
θ

1− θ

(
− ρ

ρ+ λ

(
h− h+

1

ρ+ λ
κ

)
+

ρκ

(ρ+ λ)2
· exp

(
ρ+ λ

κ
· (h− h)

))
.

Next, denote by Vd a payoff function on (h, h] for the deviation strategy of immediate

financing. That is, for h ∈ (h, h],

Vd(h) := θ
(
V (h)− h+ h

)
+ (1− θ)Vo(h).

Smooth pasting condition is

V ′(h) = V ′
d(h) = θ + (1− θ)

(
V ′(h) +

ρ+ λ+ γ

κ
(V − V o)

)
,

which, after some algebra, is equivalent to Equation (A.19).
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Stationary Recursion. This time, start by deriving Vo on [0, h], which satisfies:

ρVo(h) = γ
(
θ
(
V (h)− h+ h

)
+ (1− θ)Vo(h)− Vo(h)

)
+ λ

(
Π+ h− Vo(h)

)
− κV ′

o(h),

Vo(0) = 0

=⇒ Vo(h) =
1

ρ+ λ+ θγ

[
λΠ+ θγ

(
V (h)− h

)
− λ+ θγ

ρ+ λ+ θγ
κ+ (λ+ θγ)h

−
(
λΠ+ θγ

(
V (h)− h

)
− λ+ θγ

ρ+ λ+ θγ
κ

)
· exp

(
−ρ+ λ+ θγ

κ
· h
)]

.

Since ∆h := h − h > 0 has been determined by Equation (A.19), h is obtained by the

recursion:

V (h−∆h) = θ
(
V (h)−∆h

)
+ (1− θ)Vo(h−∆h).

Simplifying and substituting (A.19) give Equation (A.18).

Proposition C.1.4 (Breakeven re-inclusion — Startups). γ strictly decreases in Π, and

converges to zero as Π goes to ∞. It goes to ∞ as Π goes down to κ/λ, the lower bound in

Assumption C.1.1.

Proof. γ is defined by ηξ = h
∗
where (h∗, h

∗
) is the equilibrium associated with γ = γ and

(η, ξ) given by Proposition C.1.2. Since γ = γ implies h∗ = 0, Proposition C.1.1, in particular

Equation (C.5) holds with h replaced with ηξ. Note that

λ

ρ
· 1− θ

exp
(
ρ+λ
κ · ηξ

)
− θ

=
∂(ηξ)

∂Π
= η

∂ξ

∂Π
+ ξ

∂η

∂Π
,

∂ξ

∂Π
=
λ

ρ

=⇒
∂η

∂Π
=

λ

λΠ− κ

 1− θ

exp
(
ρ+λ
κ · ηξ

)
− θ

− 1− θ

1 + ρ+λ
γ − θ

 .

Since h
∗
= ηξ, smooth pasting holds at h∗ = 0. Therefore, from Equation (C.10),

exp

(
ρ+ λ

κ
· ηξ
)

= 1 +
ρ+ λ

γ
· ρ+ λ+ γ

κ
· ηξ.

Next, assume for now that ηξ = h
∗
> κ

ρ+λ+γ , which will be established at the end. Then,

exp

(
ρ+ λ

κ
· ηξ
)
> 1 +

ρ+ λ

γ
,

And so ∂η/∂Π < 0. Since η =
(1−θ)γ

ρ+λ+(1−θ)γ , we have ∂γ/∂Π < 0.

Next is the convergence claim. Since h
∗
satisfies Equation (C.3), it goes to ∞ as Π does.

Note that ∆h∗ := h
∗ −h∗ = h

∗
satisfies Equation (C.10) with γ = γ. Since ρ, λ, κ are fixed,

the only way for the solution of Equation (C.10) to be satisfied by a ∆h that diverges to
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infinity is by having the linear coefficient on LHS also diverge to infinity. This can only be

achieved if γ goes to zero, as claimed.

The divergence claim is straightforward from ηξ > κ
ρ+λ+γ . Since ξ = (λΠ− κ)/ρ and η is

in the unit interval, LHS vanishes as Π goes down to κ/λ. Therefore, RHS also vanishes, i.e.

γ → ∞.

Finally, as for the intermediate claim on the strict lower bound on ηξ, first rearrange the

Smooth Pasting condition—i.e. Equation (C.10)—into the following:

γ

ρ+ λ
·
(
exp

(
ρ+ λ

κ
·∆h

)
− 1

)
=
ρ+ λ+ γ

κ
·∆h.

Denote LHS and RHS above as functions of ∆h. Note that LHS(0) = RHS(0) and LHS′(0) <

RHS′(0). Therefore, LHS crosses RHS only once and from below on R++. Note that

LHS

(
κ

ρ+ λ+ γ

)
=

γ

ρ+ λ

(
exp

(
ρ+ λ

ρ+ λ+ γ

)
− 1

)
< 1 = RHS

(
κ

ρ+ λ+ γ

)
.

This holds for any set of parameters because, letting f(x) := x ·
(
exp

(
1

1+x

)
− 1
)
, we have

∀ x > 0, f ′(x) > 0, and lim
x→∞

f(x) = 1.

Therefore, LHS(∆h) < RHS(∆h) for any ∆h ∈ (0, κ
ρ+λ+γ ]. That is, if Smooth Pasting holds

at h, then it must be that ∆h = h − h > κ
ρ+λ+γ . Since γ = γ means that Smooth Pasting

holds at h∗ = 0, it must be that γξ = h
∗
= ∆h∗ > κ

ρ+λ+γ , as claimed.

A.4 Section C.2 (Operating firms)

Proposition C.2.1 (Comparative statics — Operating firms without re-inclusion).

∂h

∂θ
= −1

ρ
· π − ρh

Φ
Φ+ϕ · e−ϕ·h + ϕ

Φ+ϕ · eΦ·h − θ
< 0,

lim
θ→0

h <
π

ρ
, lim
θ→1

h = 0, and lim
θ→1

∂h

∂θ
= −∞, (A.20)

∂h

∂σ2
=

ρ

π2 + 2ρσ2
·
h
√
π2 + 2ρσ2

(
eΦ·h + e−ϕ·h

)
− σ2

(
eΦ·h − e−ϕ·h

)
√
π2 + 2ρσ2

(
eΦ·h + e−ϕ·h − 2θ

)
− π

(
eΦ·h − e−ϕ·h

) > 0,

lim
σ2→0

h = 0, lim
σ2→∞

h =
π

ρ
, lim
σ2→0

∂h

∂σ2
= ∞, and lim

σ2→∞

∂h

∂σ2
= 0,

(A.21)

lim
π→0

h = lim
π→∞

h = 0. (A.22)

Proof. Most results are straightforward. As for the sign of ∂h/∂σ2, first write the denominator
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of the second fraction as e−ϕ·h ·DN(h) where

DN(z) :=
√
π2 + 2ρσ2

(
e(Φ+ϕ)·z + 1− 2θ · eϕ·z

)
− π

(
e(Φ+ϕ)·z − 1

)
.

Then, it is easily verified that DN(0) > 0, DN ′(z) > 0. Therefore, the denominator is

positive. Next, write the numerator as e−ϕ·h ·NM(h) where

NM(z) := z
√
π2 + 2ρσ2

(
e(Φ+ϕ)·z + 1

)
− σ2

(
e(Φ+ϕ)·z − 1

)
.

Then, it is easily verified that NM(0) = NM ′(0) = NM ′′(0) = 0 < NM ′′′(z) for all z ≥ 0.

Therefore, for any positive z, NM is positive as well. Since h > 0, positivity is established.

Lastly, the limit of ∂h/∂σ2 as σ2 → 0 is established as follows. First, note that as σ2 → 0,

Φ/ϕ

Φ+ ρ
→ π

ρ
,

ϕ/Φ

Φ+ ϕ
→ 0.

Since ϕ → ρ/π and h → 0, the first term on the right-hand side of (C.13) goes to π/ρ.

Therefore,
ϕ/Φ

Φ+ ϕ
· eΦh → (1− θ)

π

ρ
> 0,

implying that eΦh → +∞. Since Φh =
(√

π2 + 2ρσ2 + π
)

h
σ2 , it follows that h/σ2 → +∞.

Since h→ 0 as σ2 → 0, L’hospital’s rule establishes that

+∞ = lim
σ2→0

h

σ2
= lim

σ2

∂h/∂σ2

∂σ2/∂σ2
= lim

σ2→0

∂h

∂σ2
,

as claimed.

Proposition C.2.2 (Operating firm financing). Denote

η :=
(1− θ)γ

ρ+ (1− θ)γ
, ξ :=

π

ρ
.

The equilibrium is characterized by h = 0 and h implicitly defined by Equation (C.13) if

θ(1− η)ξ ≤ 1

Φ + ϕ

(
Φ

ϕ
· exp (−ϕ · ηξ)− ϕ

Φ
· exp (Φ · ηξ)

)
. (A.23)
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If the inequality is strictly reversed, then h = h−∆h > 0 and h > ∆h is implicitly defined by(
π

ρ+ θγ
− 1

1− θ

(
1 +

ρ

γ

)
·∆h

)
·
ϕo exp

(
ϕo(h−∆h)

)
+Φo exp

(
−Φo(h−∆h)

)
exp
(
ϕo(h−∆h)

)
− exp

(
−Φo(h−∆h)

)
+ θ (Φo + ϕo)

γ

ρ

((
1 +

ρ

ρ+ θγ

)
π

ρ
− h

)
·

exp
(
−2π(h−∆h)/σ2

)
exp
(
ϕo(h−∆h)

)
− exp

(
−Φo(h−∆h)

)
=

ρ+ θγ

(1− θ)ρ

(
ϕ

(
π

ρ
−
(
1 +

ρ

γ

)
·∆h

)
+
ϕ

Φ
· exp

(
Φ ·∆h

))
− θ

1− θ

(
1 +

γ

ρ

)
, (A.24)

where

Φo := (
√
π2 + 2(ρ+ θγ)σ2 + π)/σ2, ϕo := (

√
π2 + 2(ρ+ θγ)σ2 − π)/σ2

and ∆h = h− h > 0 is given by

π

ρ
−
(
1 +

ρ

γ

)
·∆h =

1

Φ + ϕ

(
Φ

ϕ
· e−ϕ·∆h − ϕ

Φ
· eΦ·∆h

)
. (A.25)

Proof. First, Inequality (A.23) is simply Inequality (C.17) reformulated through Equation

(C.13). Therefore, the equilibrium claim when h = 0 is straightforward. Suppose now that

Inequality (A.23) fails.

Threshold Indifference. Vo on [0, h] satisfies

ρVo(h) = γθ

(
π

ρ
− h+ h− Vo(h)

)
+ πV ′

o(h) +
1

2
σ2V ′′

o (h),

Vo(0) = 0, Vo(h) =
π

ρ
−
(
1 +

ρ

(1− θ)γ

)
·∆h ≡ V o

=⇒ Vo(h) =
θγ

ρ+ θγ
·
[(

1 +
ρ

ρ+ θγ

)
· π
ρ
+ h− h

]
+

ρ

ρ+ θγ

[{
π

ρ+ θγ
− 1

1− θ

(
1 +

ρ

γ

)
·∆h

+
θγ

ρ

((
1 +

ρ

ρ+ θγ

)
· π
ρ
− h

)
· e−Φo·h

}
· e

ϕo·h − e−Φo·h

eϕo·h − e−Φo·h

− θγ

ρ

((
1 +

ρ

ρ+ θγ

)
· π
ρ
− h

)
· e−Φo·h

]
. (A.26)

The boundary condition at h is given by Threshold Indifference (G(h) = 0).

Stationary Recursion. As h goes down to h from above, V on [h, h] must converge to the

financing value based on V o. Substituting h into Equation (C.11), denoting ∆h ≡ h− h and

equating it to θ
(
V (h)−∆h

)
+ (1− θ)V o give (A.25).

Smooth Pasting. On [0, h], V is characterized by immediate financing. Therefore, for
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h ∈ [0, h],

V (h) = θ

(
π

ρ
− h+ h

)
+ (1− θ)Vo(h).

Its derivative at h = h = h − ∆h, with Vo given by Equation (A.26), must agree with the

derivative of Equation (C.11) evaluated at the same point. Some algebra with substituting

(A.25) gives (A.24).

Proposition C.2.3 (Comparative statics — Operating firms). Both h and ∆h strictly in-

crease in σ2. There exists σ2 > 0 such that σ2 ≥ σ2 if and only if h = 0. Above it, h = ∆h

converge to π
ρ as σ2 → ∞. h, h, ∆h converge to zero as either σ2 goes to zero or π goes to

zero. ∆h converges to zero as π goes to ∞. Lastly, there exists π > 0 such that π ≤ π if and

only if h = 0.

Proof. First, on σ2. A higher σ2 is less desirable due to forcing more frequent dilution, hence

V (h)−h = π
ρ −h must be decreasing in σ2. Monotonicity of ∆h and existence of σ2 are since

∂

∂σ2

[
1

Φ + ϕ

(
Φ

ϕ
· e−ϕ·z − ϕ

Φ
· eΦ·z

)]
< 0, lim

σ2→0

[
1

Φ + ϕ

(
Φ

ϕ
· e−ϕ·z − ϕ

Φ
· eΦ·z

)]
= −∞.

When σ2 > σ2, Proposition C.2.1 applies. As σ2 → 0, the business becomes a constant

perpetuity stream. Hence, h→ 0 and so do ∆h, h since they add up to h.

Next, on π. Since V (h) − h = π
ρ − h ≥ 0, π → 0 implies h → 0. The existence of π is

immediate from that of σ2 since an equilibrium with (π, σ) is isomorphic to that with (bπ, bσ)

for any b > 0. As π → ∞, the left and right-hand sides of (C.20) go to +∞, −∞ with any

fixed ∆h > 0. Therefore, ∆h→ 0.

Proposition C.2.4 (Breakeven re-inclusion — Operating firms). γ is strictly increasing in

σ2 and strictly decreasing in π, and diverges to ∞ as either σ2 goes to ∞ or π goes to zero.

It converges to zero as either σ2 goes to zero or π goes to ∞.

Proof. γ is defined by ηξ = h
∗
where (h∗, h

∗
) is the equilibrium associated with γ = γ

and (η, ξ) defined by Proposition C.2.2. Since γ = γ implies h∗ = 0, Proposition C.2.3,

in particular Equation (C.15), holds with h replaced with ηξ, that is, ∂ηξ/∂σ2 > 0. Since

∂η/∂γ > 0, ∂ξ/∂γ = 0, it follows that ∂γ/∂σ2 > 0. The limit claims follow from the existence

of σ2 for any γ in Proposition C.2.3. The remaining claims on π follow from the isomorphism

stated in the proof of Proposition C.2.3.
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Appendix B Solution Algorithms

B.1 Numerical algorithm for smooth investment model

I explain numerical algorithm for the setup in Section 6—the algorithm for Section 5 is a

simpler adaptation of it. I first set up the main algorithm for the case without business

fluctuations in Section B.1.1. I then introduce Markov chains, both discrete and continuous,

in Section B.1.2. Lastly, I briefly explain in Section B.1.3 how to solve the model under

investment irreversibility, as introduced in Section 6.6.

B.1.1 Main algorithm

Formulation. Start by setting some H > 0. It should be higher than h
o
, the funding target

under exclusion, which is higher than h but typically by a slight margin. V on [0, H] satisfies:

h ≥ h =⇒ 0 = Vhh(h) (∵ Vh = 1 on [h,∞)) (B.1)

h ∈ [h, h] =⇒ ρV (h)− rhVh(h) = max
i

(
A− i−Ψ(i)

)
Vh +

(
i− δ

)(
V − hVh

)
+

1

2
σ2Vhh

=

(
A+

1

2ψ
+

(
δ +

1

ψ

)
h

)
Vh −

(
δ +

1

ψ

)
V +

1

2ψ

(V − hVh)
2

Vh
+

1

2
σ2Vhh

(B.2)

h ≤ h =⇒ V (h) = θ
(
V (H)−H + h

)
+ (1− θ)V o(h). (B.3)

Note that (B.1) implies V (H) − H = V (h) − h, which is being substituted in (B.3). Next,

V o on [0, H] satisfies:

h ≥ h
o
=⇒ 0 = V o

hh(h) (∵ V o
h = 1 on [h

o
,∞)) (B.4)

h ∈ [0, h
o
] =⇒ ρV o(h)− rhV o

h (h)

=

(
A+

1

2ψ
+

(
δ +

1

ψ

)
h

)
V o
h −

(
δ +

1

ψ

)
V o +

1

2ψ

(V o − hV o
h )

2

V o
h

+
1

2
σ2V o

hh

+ γ
(
V (h)− V o(h)

)
. (B.5)

For ease of notation, define

α := ρ+ δ +
1

ψ
, β(h) := A+

1

2ψ
+

(
r + δ +

1

ψ

)
h, ξ(v, vh, h) :=

1

2ψ

(v − hvh)
2

vh
.

The five piecewise equalities above—(B.1) through (B.5)—switch to strict inequalities when

evaluated outside the respective intervals, with left-hand sides being higher. Therefore, these
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can be summarized as: for h ∈ [0, H],

αV (h)− β(h)Vh(h)−
1

2
σ2Vhh(h) = NL(V, V o, h)

:= max

{
αV (h)− β(h)Vh(h), ξ

(
V (h), Vh(h), h

)
,

α
(
θ
(
V (H)−H + h

)
+ (1− θ)V o(h)

)
− β(h)Vh(h)−

1

2
σ2Vhh(h)

}
, (B.6)

(α+ γ)V o(h)− β(h)V o
h (h)−

1

2
σ2V o

hh(h) = NLo(V, V o, h)

:= max

{
(α+ γ)V o(h)− β(h)V o

h (h), ξ
(
V o(h), V o

h (h), h
)
+ γV (h)

}
. (B.7)

Both NL and NLo capture the nonlinear components of the pair of differential equations. In

the expression for NL, the first element gives the maximum on [h,H], the second on [h, h]

and the last on [0, h] (if h > 0), and similarly in NLo given ho = 0.38 Lastly, the boundary

conditions are:

V (0) = θ
(
V (H)−H

)
, Vh(H) = 1 (B.8)

V o(0) = 0, V o
h (H) = 1. (B.9)

Discretization and linearization. Let us discretize the fund space [0, H] into Nh evenly

spaced grids and let ∆H := H
Nh−1 the grid size. For now, let i ∈ {1, 2, . . . , Nh} index

[0, H] increasingly and denote h ∈ [0, H]Nh as the column vector discretizing [0, H], such

that h(0) = 0, h(Nh) = H. Posit V0, V
o
0 ∈ RNh as column vectors representing conjectured

approximate value functions under inclusion and exclusion, respectively. LetW0 ∈ R2Nh with

W0 :=

(
V0

V o
0

)
,

represent the stacked value functions. i ∈ {Nh+1, . . . , 2Nh} represents funds under exclusion.

The core of the algorithm is to summarize the left-hand sides of the combined HJB

equations (B.6), (B.7) as well as the boundary conditions (B.8), (B.9) into a single 2Nh ×
2Nh sparse matrix M(W ), which depends on the true stacked value function W , such that

M(W ) · W = NL(W ), where NL is essentially a stack of NL and NLo, but with some

additional adjustments at the respective end rows, to be specified soon. M should depend on

W exclusively due to the upwinding method described shortly. I will start with some initial

38The first elements of NL and NLo make use of the fact that Vhh, V
o
hh ≤ 0 with the equality if and

only if h ≥ h, h ≥ h
o
, respectively. The second elements are the standard HJB equations. The third

element in NL derives from V ≥ θ
(
V (H)−H + h

)
+ (1− θ)V o, with the equality if and only if h ≤ h.
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W0 and use a linear solver to obtain W1 such that

W1 −W0

∆t
+M(W0) ·W1 = NL(W0).

Above, the first term on the left-hand side is the pseudo-time derivative to enable efficient

convergence, with ∆t ∈ R++. Until W1 is sufficiently close to W0, update W0 and repeat.

In principle, M(·) is a mapping from R2Nh to R2Nh×2Nh , although the sparsity of the

target matrix substantially reduces its rank. This mapping should capture everything linear

in both the combined HJB equations, including the linear differential terms, and the boundary

conditions. More concretely, given V0 and V o
0 , it should specify the linear coefficient on each

grid point of the newly obtained V1 and V o
1 such that M(W0) ·W1 captures all the linear

requirements in terms of V1 and V o
1 .

Upwinding the derivatives. I will approximate the combined HJB equations (B.6), (B.7)

for the interior rows of h only, i.e. i = 2, 3, . . . , Nh−1. The endpoints i = 1, Nh will be reserved

for the boundary conditions (B.8), (B.9). For each of the interior rows i ∈ {2, 3, . . . , Nh− 1},
I approximate the first and second derivatives of a given approximated function V as follows:

letting V̂ (i) :=
(
V (i− 1), V (i), V (i+ 1)

)′
,

∆f
h · V̂ (i) =

V (i+ 1)− V (i)

∆H
,

∆b
h · V̂ (i) =

V (i)− V (i− 1)

∆H
,

∆c
h · V̂ (i) =

1

2

V (i+ 1)− V (i− 1)

∆h
,

∆2
h · V̂ (i) =

V (i+ 1)− 2V (i) + V (i− 1)

∆H2
.

Here, ∆f
h denotes forward first difference, ∆b

h backward first difference, ∆c
h centered first

difference, and ∆2
h second difference, in h. As can be seen, each of ∆f

h, ∆
b
h, ∆

c
h and ∆2

h can

be thought of as a three-dimensional row vector given as:

∆f
h :=

(
0,− 1

∆H
,

1

∆H

)
,

∆b
h :=

(
− 1

∆H
,

1

∆H
, 0

)
,

∆c
h :=

(
− 1

2∆H
, 0,

1

2∆H

)
,

∆2
h :=

(
1

∆H2
,− 2

∆H2
,

1

∆H2

)
.

I follow the standard numerical method of ‘upwinding’ where the forward/backward differ-

ence is used in approximating the first derivative with a positive/negative drift. Determining

the sign of the drift in cash flow, however, is somewhat tricky since it depends on which

region—[0, h], (h, h] or (h,H] under inclusion and [0, h
o
] or (h

o
, H] under exclusion—the cur-
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rent internal funds level belongs to. Determining the region is equivalent to determining

which element is the maximum in NL and NLo in Equations (B.6) and (B.7), whose elements

all involve first derivatives.

Therefore, I employ the centered first difference to determine the regions and then use them

to implement the upwinding. Given V0 and V o
0 , define ten row indicator vectors—fm, bm ∈

{0, 1}Nh for m = 1, 2, 3 and fom, b
o
m ∈ {0, 1}Nh for m = 1, 2—such that i ∈ {1, Nh} =⇒

∀m, fm(i) = bm(i) = fom(i) = bom(i) = 0 and for i ∈ {2, 3, . . . , Nh − 1}, f1(i) = fo1 (i) = 1,

f2(i) := 1

(
A− E

(
V0(i),∆

c
h · V̂0(i), h(i)

)
+
(
r + δ − I

(
V0(i),∆

c
h · V̂0(i), h(i)

))
· h(i) > 0

)
,

fo2 (i) := 1

(
A− E

(
V o
0 (i),∆

c
h · V̂ o

0 (i), h(i)
)
+
(
r + δ − I

(
V o
0 (i),∆

c
h · V̂ o

0 (i), h(i)
))

· h(i) > 0

)
,

f3(i) := 1

(
A− E

(
V o
0 (i)− θ

(
V0(Nh)−H + h(i)

)
,∆c

h · V̂0(i)− θ, h(i)
)

+
(
r + δ − I

(
V o
0 (i)− θ

(
V0(Nh)−H + h(i)

)
,∆c

h · V̂0(i)− θ, h(i)
)
· h(i)

)
> 0

)
,

and bm(i) = 1− fm(i), b
o
m(i) = 1− fom(i) for all m. In the above, I and E denote optimized

values of gross investment i39 and total investment expense i+Ψ(i), respectively, given as

I(v, vh, h) =
1

ψ

(
v

vh
− h− 1

)
, E(v, vh, h) =

1

2ψ

((
v − hvh
vh

)2

− 1

)
.

As can be inferred from f1 = fo1 = 1, I use forward differences on (h,H] and (h
o
, H]. Define

∆hm(i) := fm(i)∆
f
h + bm(i)∆

b
h, ∆hmo(i) := fom(i)∆

f
h + bom(i)∆

b
h.

Let m∗(i) ∈ {1, 2, 3} be the maximizing index in the set{
αV0(i)− β(h(i))∆h1(i) · V̂0(i), ξ

(
V0(i),∆h2(i) · V̂0(i), h(i)

)
,

α
(
θ(V0(Nh)−H + h(i)) + (1− θ)V o

0 (i)
)
− β(h(i))∆h3(i) · V̂0(i)−

1

2
σ2∆2

h · V̂0(i)

}
, (B.10)

and mo∗(i) ∈ {1, 2} in the set{
(α+ γ)V o

0 (i)− β(h(i))∆h1o(i) · V̂ o
0 (i), ξ

(
V o
0 (i),∆h2o(i) · V̂ o

0 (i), h(i)
)
+ γV0(i)

}
. (B.11)

39I and δ enter the drift in cash flow because h is internal funds per capital.
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Lastly, let f(i) := fm∗(i), fo(i) := fomo∗(i), b(i) := 1− f(i), bo(i) := 1− fo(i), and

∆h(i) := f(i)∆f
h + b(i)∆b

h, ∆o
h(i) := fo(i)∆f

h + bo(i)∆b
h.

These ∆h(i), ∆
o
h(i) ∈ R3 implement the upwinding for first differences in the construction of

M(·), to which I now transition.

Constructing the matrix. As a reminder, M(W0) is a 2Nh × 2Nh sparse matrix, because

W0 is a stacked vector of V0, V
o
0 . For each of i = 2, 3, . . . , Nh − 1 rows,

M(i, i− 1 : i+ 1 | W0) := (0, α, 0)− β(h(i))∆h(i)−
1

2
σ2∆2

h,

where M(i, i−1 : i+1) denotes the ith row from the (i−1)th column to the (i+1)th column,

in order to implement the left-hand side of Equation (B.6). Similarly, for each of (Nh + i)th

rows with i = 2, . . . , Nh − 1, implement the left-hand side of (B.7) by

M(Nh + i,Nh + i− 1 : Nh + i+ 1 | W0) := (0, α+ γ, 0)− β(h(i))∆o
h(i)−

1

2
σ2∆2

h.

Next, construct the ‘nonlinear’ column vector NL(W0) ∈ R2Nh as follows: for each of

i = 2, 3, . . . , Nh− 1 rows, NL(i | W0) is the maximum in the set (B.10) and NL(Nh+ i | W0)

in the set (B.11). The rows i = 1, Nh, Nh + 1, 2Nh will be separately specified right below.

Lastly, the boundary conditions (B.8) and (B.9) are implemented as:

M(1, 1 | W0) := α, M(1, Nh | W0) := −θ
(

1

∆t
+ α

)
, NL(1 | W0) := −θ

(
1

∆t
+ α

)
H,

M(Nh, Nh − 1 | W0) := −
(

1

∆t
+ α

)
, M(Nh, Nh | W0) := α, NL(Nh | W0) :=

(
1

∆t
+ α

)
∆H,

M(Nh + 1, Nh + 1 | W0) := 0, NL(Nh + 1 | W0) := 0,

M(2Nh, 2Nh − 1 | W0) := −
(

1

∆t
+ α+ γ

)
, M(2Nh, 2Nh | W0) := α+ γ,

NL(2Nh | W0) :=

(
1

∆t
+ α+ γ

)
∆H.

Any unspecified element of M(W0) is set to zero, making it highly sparse.

Iteration to solution. Posit H. Start with some initial guess V0, V
o
0 , and stack them into

W0. Obtain W1 that solves(
1

∆t
I2Nh

+M(W0)

)
·W1 =

1

∆t
W0 +NL(W0),

where I2Nh
is the 2Nh×2Nh identity matrix, also highly sparse. If W1 is close enough to W0,

stop; V :=W1(1 : Nh) and V
o :=W1(Nh+1 : 2Nh). Otherwise, updateW0 := aW1+(1−a)W0

for some weight a ∈ (0, 1] and repeat.
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If H is set too high, convergence might be achieved too slowly or even fail, and even upon

success, the solution becomes unnecessarily coarse on [0, h]. On the other hand, if H is too

low, then possibly H < h, in which case the algorithm fails. Therefore, I run the algorithm

twice, an initializer and a verifier. During initializing, I use an adequate fraction (say 0.2) of

the first-best value V ∗ as the initial H and use a high error tolerance. If convergence fails, I

raise the initial H. If it succeeds, I choose a new H to be only slightly higher than max{h, ho}
and run the verifier with the main error tolerance.

B.1.2 Stochastic fluctuations

Stacked value. Let Ns denote the number of Markov states. For a continuous Markov

chain, Ns is the number of grids in discretization. I use s ∈ {1, 2, . . . , Ns} to index the

Markov states. Given V0(ih, s) and V
o
0 (ih, s), define

W0 :=



V0(:, 1)

. . .

V0(:, Ns)

V o
0 (:, 1)

. . .

V o
0 (:, Ns)


∈ R2NhNs

as their stacked column vector. i ∈ {1, . . . , 2NhNs} now jointly indexes (ih, s) and inclu-

sion/exclusion. The mappingM : R2NhNs → R2NhNs×2NhNs will be defined in a fashion overall

identical to Appendix B.1.1 for each of the Nh×Nh blocks corresponding to s ∈ {1, 2, . . . , Ns}
along the main diagonal M

(
(s − 1)Nh + 1 : sNh, (s − 1)Nh + 1 : sNh | W0

)
. There will be,

however, an additional sparse matrix for the Markov chain and some changes to NL, NLo.

Discrete Markov. Consider a Markov chain in Poisson arrival rates of transition given as

−λ1 λ12 λ13 . . . λ1Ns

λ21 −λ2 λ23 . . . λ2Ns

λ31 λ32 −λ3 . . . λ3Ns

. . . . . . . . . . . . . . .

λNs
1 λNs

2 λNs
3 . . . −λNs


,

where λss′ ≥ 0 is the Poisson rate of transition at s to s′ ̸= s, and λs :=
∑

s′ ̸=s λ
s
s′ .
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The combined HJB equations (B.6) and (B.7) are modified as follows: for s ∈ {1, . . . , Ns},

(α(s) + λs)V (h, s)− β(h, s)Vh(h, s)−
1

2
σ2Vhh(h, s)−

∑
s′ ̸=s

λss′V (h, s′) = NL(V, V o, h, s)

:= max
{
(α(s) + λs)V (h, s)− β(h, s)Vh(h, s)−

∑
s′ ̸=s

λss′V (h, s′), ξ
(
V (h, s), Vh(h, s), h, s

)
,

(α(s) + λs)
(
θ
(
V (H, s)−H + h

)
+ (1− θ)V o(h, s)

)
− β(h, s)Vh(h, s)−

1

2
σ2Vhh(h, s)

−
∑
s′ ̸=s

λss′V (h, s′)
}
, (B.12)

(α(s) + λs + γ(s))V o(h, s)− β(h, s)V o
h (h, s)−

1

2
σ2V o

hh(h)−
∑
s′ ̸=s

λss′V
o(h, s′) = NLo(V, V o, h, s)

:= max
{
(α(s) + λs + γ(s))V o(h, s)− β(h, s)V o

h (h, s)−
∑
s′ ̸=s

λss′V
o(h, s′),

ξ
(
V o(h, s), V o

h (h, s), h, s
)
+ γ(s)V (h)

}
. (B.13)

The dependence of α, β, γ, ξ on s captures the fluctuating state variable. In case of fluctuating

productivity in Section 6.6, only β(h, s) := A(s) + 1
2ψ +

(
r + δ + 1

ψ

)
h depends on s.

Define a Markov chain matrix for the entire (i, s) space by

Λ :=



−λ1ĨNh
λ12ĨNh

λ13ĨNh
. . . λ1Ns

ĨNh

λ21ĨNh
−λ2ĨNh

λ23ĨNh
. . . λ2Ns

ĨNh

λ31ĨNh
λ32ĨNh

−λ3ĨNh
. . . λ3Ns

ĨNh

. . . . . . . . . . . . . . .

λNs
1 ĨNh

λNs
2 ĨNh

λNs
3 ĨNh

. . . −λNs ĨNh


∈ RNhNs×NhNs ,

where ĨNh
is the Nh × Nh identity matrix but with the first and the last main diagonal

elements replaced with zero; the first and the last rows in each block are preserved for the

boundary conditions. Proceed to extend Λ to both inclusion and exclusion by defining

Λ :=

(
Λ 0

0 Λ

)
∈ R2NhNs×2NhNs .

The zero off-diagonal blocks indicate that Λ is orthogonal to inclusion and exclusion.

The construction of each main diagonal block ofM(W0)—i.e. M
(
(s−1)Nh+1 : sNh, (s−

1)Nh+1 : sNh |W0

)
—is unchanged, both for the interior rows i ∈ {(s−1)Nh+2, . . . , sNh−1}

that implement the combined HJB (B.12), (B.13)40 and for the boundaries i ∈ {(s− 1)Nh +

1, sNh} that implement the same boundary conditions. The construction of NL(W0) is

adjusted slightly for the interior, in accordance with the modified definition of NL,NLo in

40Note that the maximizing indices m∗,mo∗ are based on the modified NL and NLo in (B.12), (B.13).
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(B.12), (B.13). Once the mappings M(·), NL(·) are constructed, iteratively solve(
1

∆t
I2NhNs +M(W0)−Λ

)
·W1 =

1

∆t
W0 +NL(W0).

Continuous Markov chain. Let st follow

dst = µs(st) dt+ σs(st) dZt.

Discretize the state space into Ns grids with size ∆S. Let s ∈ {1, 2, . . . , Ns} index the state

space increasingly. The above law of motion is ‘discretized’ into a Markov chain such that

µs(s) ≥ 0 =⇒ λss−1 =
σs(s)

2

2∆S2
, λss+1 =

µs(s)

∆S
+
σs(s)

2

2∆S2
,

µs(s) < 0 =⇒ λss−1 = −µs(s)
∆S

+
σs(s)

2

2∆S2
, λss+1 =

σs(s)
2

2∆S2
.

As for the endpoints s ∈ {1, Ns}, mean reversion will generally allow upwinding of the first-

order terms ±µs(s)
∆S . The second-order terms, however, cannot be correctly computed as they

go outside the grid. I therefore use W0 to compute second as well as third finite differences

at s ∈ {2, Ns − 1}, and use them to linearly approximate the endpoint second derivatives.41

Once the discretized Markov chain has been set up, follow the same procedure as above.

B.1.3 Investment irreversibility

The algorithm remains mostly the same and is modified only as follows. First, whenever
1
ψ shows up in the above algorithm, multiply it by 1 + (ϕ − 1) · 1( V0

∆h·V0 − h < 1); use V o
0 ,

∆o
h instead of V0, ∆h appropriately. The indicator function tracks whether the firm divests.

Second, move all terms involving this modified expression to the inside of NL, as investment

versus divestment makes the system highly nonlinear.

B.2 Closed-form solution procedure for exogenous cash flow

Sections 3.2 and 3.3 inform a general procedure for analytically solving the equilibrium for

exogenous cash flow models in Section 2 when the HJB equation (3) admits an explicit solution

(which requires r = 0). By Lemma 2, the equilibrium is fully characterized by a pair (h, h),

0 ≤ h < h. The procedure is as below:

1. In all cases, V ′(h) = 1, and if σ > 0, then V ′′(h) = 0.

2. Solve the model with γ = 0. By Corollary 1, h = 0, and h is implicitly defined by

V (0) = θ
(
V (h)− h

)
.

41For these endpoints, the ‘discrete jump’ interpretation might not hold, but the algorithm still works.
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3. For γ > 0, first determine whether h = 0 or h > 0. This can be done as follows: (i) posit

the value of h obtained in Step 2, and (ii) evaluate Inequality (13). If h = 0, assign to

h the value obtained in Step 2.

4. If h > 0, then use the following conditions to determine (h, h):

(a) Stationary Recursion: V (h)− V (h) =
(
1 + ρ−r

γ

)
·∆h,

(b) Threshold Indifference: for h ∈ [0, h],

ρVo(h)− rhV ′
o(h) = γθ

(
V (h)− h+ h− Vo(h)

)
+ Λ(Vo)(h) +H(Vo)(h),

with boundary conditions Vo(0) = 0, G(h) = 0,42 and

(c) Smooth Pasting: V ′(h) = θ + (1− θ)V ′
o(h).

42See the full proof of Lemma 2 in Appendix A.
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Appendix C Analytic Derivations

Here, I go through analytic solutions to the startup and operating firm examples. The main

purpose is to prove comparative statics in business parameters, which will motivate extending

the framework with investment choice. An analytic solution to the HJB equation requires

that the internal yield be zero r = 0. Note, as an aside, that regardless of the existence of an

analytic solution for the value function, all the formal results in the main documents hold.

C.1 Solving startup equilibrium

The business incurs a fixed flow expense κ dt, κ > 0, until success arrives at Poisson rate

λ > 0 upon which the business terminates with one-time payoff Π > 0. As discussed, assume

r = 0. Let us reiterate the first part of Assumption 1 as a reference.

Assumption C.1.1 (Positive net present value). λΠ > κ.

Then, V on (h, h) satisfies the following ODE:

ρV (h) = λ
(
Π+ h− V (h)

)
− κV ′(h)

=⇒ V (h) = −c · e−
ρ+λ
κ
h +

λ

ρ+ λ

(
Π+ h− κ

ρ+ λ

)
,

for some c ∈ R. In addition, since V ′(h) = 1, we have

V (h) =
1

ρ+ λ

(
λ ·
(
Π+ h

)
− κ

ρ+ λ
·
(
λ+ ρ · e

ρ+λ
κ

(h−h)
))

, (C.1)

V (h) =
1

ρ+ λ

(
λ ·
(
Π+ h

)
− κ

)
. (C.2)

C.1.1 Baseline: no re-inclusion

First consider γ = 0. Since h = 0 by Corollary 1, the equilibrium—just h in this case—is

implicitly defined by the stationary recursion as follows:

V (0) = x(0)V (h) = θ(V (h)− h)

⇐⇒ θρ
(
(ρ+ λ)h+ κ

)
+ (1− θ)λ

(
(ρ+ λ)Π− κ

)
= ρκ · exp

(
ρ+ λ

κ
· h
)
. (C.3)

In the first line, Vo(0) = 0 is used. Note that the solution to Equation C.3 is positive if and

only if Assumption C.1.1 holds.

With Equation (C.3), comparative statics is straightforward.
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Proposition C.1.1 (Comparative statics — Startups without re-inclusion).

∂h

∂θ
= −1

ρ
· λΠ− κ− ρh

exp
(
ρ+λ
κ · h

)
− θ

< 0, lim
θ→0

h <
λΠ− κ

ρ
, lim
θ→1

h = 0, and lim
θ→1

∂h

∂θ
= −∞,

(C.4)

∂h

∂Π
=
λ

ρ
· 1− θ

exp
(
ρ+λ
κ · h

)
− θ

> 0, (C.5)

lim
λ→κ/Π

h = lim
λ→∞

h = 0. (C.6)

Proof. Most results are straightforward. For the first inequality in (C.4), see Appendix

A.3.

C.1.2 General comparative statics

Consider the general case of γ ≥ 0. Inequality (11) translates into: h > 0 if and only if.

ρh <
(1− θ)γ

ρ+ λ+ (1− θ)γ
· (λΠ− κ). (C.7)

By Section B.2, the following result is obtained.

Proposition C.1.2 (Startup financing). Denote

η :=
(1− θ)γ

ρ+ λ+ (1− θ)γ
, ξ :=

λΠ− κ

ρ
.

The equilibrium is characterized by h = 0 and h implicitly defined by Equation (C.3) if

θρ
(
(ρ+ λ)ηξ + κ

)
+ (1− θ)λ

(
(ρ+ λ)Π− κ

)
≥ ρκ · exp

(
ρ+ λ

κ
· ηξ
)
. (C.8)

If the inequality is strictly reversed, then h = h−∆h > 0 and h > ∆h is implicitly defined by

1− θ

ρ+ λ

(
(ρ+ λ+ θγ)λΠ− θργ

(
h+

κ

ρ+ λ+ θγ

)
− (λ+ θγ)κ

)
= ρ

(
ρ+ λ+ γ

γ
∆h+ (1− θ)

κ

ρ+ λ+ θγ

)
· exp

(
ρ+ λ+ θγ

κ
· (h−∆h)

)
, (C.9)

where ∆h = h− h > 0 is given by

1 +
ρ+ λ

κ
·
(
1 +

ρ+ λ

γ

)
·∆h = exp

(
ρ+ λ

κ
·∆h

)
. (C.10)

Proof sketch. Inequality (C.8) is simply a combination of Equation (C.3) and Inequality (C.7).

When h = 0, h satisfies the same Stationary Recursion as when γ = 0. Suppose Inequality

(C.8) fails. Equation (C.9) derives from Stationary Recursion, while Equation (C.10) from
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Smooth Pasting. Threshold Indifference is redundant in the startup model. For details, see

Appendix A.3.

Proposition C.1.3 (Comparative statics — startups). h strictly increases in Π. When

h > 0, h strictly increases in Π and ∆h is constant in Π and strictly decreasing in λ. Lastly,

h, h and ∆h converge to zero as either (i) Π goes to κ/λ, or (ii) λ goes to either κ/Π or ∞.

Proof. Immediate from Proposition C.1.2.

Proposition C.1.4 (Breakeven re-inclusion — Startups). γ strictly decreases in Π, and

converges to zero as Π goes to ∞. It goes to ∞ as Π goes down to κ/λ, the lower bound in

Assumption C.1.1.

Proof. See Appendix A.3.

C.2 Solving operating firm equilibrium

The second example involves a fixed average profit but with volatility. That is, the business’s

underlying cash flow is captured by

π dt+ σ dBt,

with π, σ2 > 0, where Bt is a standard Brownian motion. Again, assume r = 0 for simplicity.

Note that V on (h, h) satisfies the following ODE:

ρV (h) = πV ′(h) +
1

2
σ2V ′′(h).

In addition, since shareholders will receive dividends at ht = h such that h becomes a reflection

boundary, both smooth pasting and super contact conditions must hold at h, i.e. V ′(h) =

1, V ′′(h) = 0. Therefore,

V (h) =
1

Φ + ϕ

(
Φ

ϕ
· e−ϕ(h−h) − ϕ

Φ
· eΦ(h−h)

)
, (C.11)

V (h) =
π

ρ
, (C.12)

where Φ := (
√
π2 + 2ρσ2 + π)/σ2 and ϕ := (

√
π2 + 2ρσ2 − π)/σ2.

C.2.1 Baseline: no re-inclusion

First suppose that γ = 0. Then, again by Corollary 1, h = 0 and h is implicitly defined by

V (0) = θ
(
V (h)− h

)
, which is simply

θ

(
π

ρ
− h

)
=

1

Φ + ϕ

(
Φ

ϕ
· e−ϕ·h − ϕ

Φ
· eΦ·h

)
. (C.13)
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From above, we can derive comparative statics.

Proposition C.2.1 (Comparative statics — Operating firms without re-inclusion).

∂h

∂θ
= −1

ρ
· π − ρh

Φ
Φ+ϕ · e−ϕ·h + ϕ

Φ+ϕ · eΦ·h − θ
< 0,

lim
θ→0

h <
π

ρ
, lim
θ→1

h = 0, and lim
θ→1

∂h

∂θ
= −∞, (C.14)

∂h

∂σ2
=

ρ

π2 + 2ρσ2
·
h
√
π2 + 2ρσ2

(
eΦ·h + e−ϕ·h

)
− σ2

(
eΦ·h − e−ϕ·h

)
√
π2 + 2ρσ2

(
eΦ·h + e−ϕ·h − 2θ

)
− π

(
eΦ·h − e−ϕ·h

) > 0,

lim
σ2→0

h = 0, lim
σ2→∞

h =
π

ρ
, lim
σ2→0

∂h

∂σ2
= ∞, and lim

σ2→∞

∂h

∂σ2
= 0,

(C.15)

lim
π→0

h = lim
π→∞

h = 0. (C.16)

Proof. See Appendix A.4.

C.2.2 General comparative statics

Now consider γ ≥ 0. Let us first evaluate Inequality (11): h > 0 if and only if

ρh <
(1− θ)γ

ρ+ (1− θ)γ
· π. (C.17)

Proposition C.2.2 (Operating firm financing). Denote

η :=
(1− θ)γ

ρ+ (1− θ)γ
, ξ :=

π

ρ
.

The equilibrium is characterized by h = 0 and h implicitly defined by Equation (C.13) if

θ(1− η)ξ ≤ 1

Φ + ϕ

(
Φ

ϕ
· exp (−ϕ · ηξ)− ϕ

Φ
· exp (Φ · ηξ)

)
. (C.18)

If the inequality is strictly reversed, then h = h−∆h > 0 and h > ∆h is implicitly defined by(
π

ρ+ θγ
− 1

1− θ

(
1 +

ρ

γ

)
·∆h

)
·
ϕo exp

(
ϕo(h−∆h)

)
+Φo exp

(
−Φo(h−∆h)

)
exp
(
ϕo(h−∆h)

)
− exp

(
−Φo(h−∆h)

)
+ θ (Φo + ϕo)

γ

ρ

((
1 +

ρ

ρ+ θγ

)
π

ρ
− h

)
·

exp
(
−2π(h−∆h)/σ2

)
exp
(
ϕo(h−∆h)

)
− exp

(
−Φo(h−∆h)

)
=

ρ+ θγ

(1− θ)ρ

(
ϕ

(
π

ρ
−
(
1 +

ρ

γ

)
·∆h

)
+
ϕ

Φ
· exp

(
Φ ·∆h

))
− θ

1− θ

(
1 +

γ

ρ

)
, (C.19)
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where

Φo := (
√
π2 + 2(ρ+ θγ)σ2 + π)/σ2, ϕo := (

√
π2 + 2(ρ+ θγ)σ2 − π)/σ2

and ∆h = h− h > 0 is given by

π

ρ
−
(
1 +

ρ

γ

)
·∆h =

1

Φ + ϕ

(
Φ

ϕ
· e−ϕ·∆h − ϕ

Φ
· eΦ·∆h

)
. (C.20)

Proof sketch. The equilibrium claim for h = 0 is straightforward. If Inequality (C.18) fails,

first obtain Vo on [0, h] by the appropriate ODE along with two boundary conditions Vo(0) = 0

and G(h) = 0 from Equation (9) (i.e. Threshold Indifference). Stationary Recursion, with

V (h) evaluated by Equation (C.11) and with Vo(h) that solvesG(h) = 0, gives (C.20). Smooth

Pasting at h, with some algebra, gives (C.19). For details, see Appendix A.4.

Proposition C.2.3 (Comparative statics — Operating firms). Both h and ∆h strictly in-

crease in σ2. There exists σ2 > 0 such that σ2 ≥ σ2 if and only if h = 0. Above it, h = ∆h

converge to π
ρ as σ2 → ∞. h, h, ∆h converge to zero as either σ2 goes to zero or π goes to

zero. ∆h converges to zero as π goes to ∞. Lastly, there exists π > 0 such that π ≤ π if and

only if h = 0.

Proof. See Appendix A.4.

Proposition C.2.4 (Breakeven re-inclusion — Operating firms). γ strictly increases in σ2,

strictly decreases in π, and diverges to ∞ as either σ2 goes to ∞ or π goes to zero. It converges

to zero as either σ2 goes to zero or π goes to ∞.

Proof. See Appendix A.4.
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