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Abstract

This paper provides causal evidence that benchmarking-induced asset price distortions have

real effects on corporate investment. We exploit exogenous variation in stocks’ benchmarking

intensity around Russell index reconstitutions to establish causality. We find that increased

exposure to benchmark-linked capital flows causes stocks’ CAPM β to rise. Firm managers

perceive this as an increase in their cost of capital and reduce investment. Treated firms have

7.1% less physical and 8.4% less intangible capital after six years. At the aggregate level, the

asset price distortions caused by benchmarking can explain 10.7% lower capital accumulation

from 2000 to 2016. Our findings highlight how benchmark-linked investing affects capital

allocation in the real economy.
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1 Introduction

Over the past 25 years the U.S. economy has been shaped by two trends: weak corporate invest-

ment relative to valuations and a rise in benchmark-linked capital. The growth of passive index

funds and the evaluation of active funds against benchmarks means that a large share of capital is

allocated based on stocks’ membership in benchmark indices, as opposed to fundamentals.
1
This

inelastic demand distorts asset prices, leading to higher prices (Shleifer, 1986), increased volatil-

ity (Ben-David, Franzoni, and Moussawi, 2018), and greater co-movement (Barberis, Shleifer, and

Wurgler, 2005, Boyer, 2011) for stocks in benchmark indices. Whether these asset price distor-

tions have contributed to weak corporate investment is not well understood.

This paper studies the causal effects of benchmarking-induced asset price distortions on cor-

porate investment. We document a novel mechanism through which benchmarking influences

corporate behavior. We use exogenous variation in stocks’ exposure to benchmark-linked capital

flows to show that increased benchmarking raises stocks’ CAPM βs. Firmmanagers interpret this

CAPM β increase as a higher cost of capital and consequently reduce investment. Importantly,

we show that these results are not driven by changes in firm fundamentals. Instead, we argue

that firm managers rely on textbook guidance to set discount rates using their stock’s CAPM β

without accounting for distortions created by benchmarking. These distortions have a substan-

tial impact on investment decisions at both the firm and aggregate level through their effect on

the perceived cost of capital. Our study provides new insights into how the growing trend of

benchmark-linked investing affects real economic outcomes.

We illustrate our proposed mechanism in a stylized model that introduces two frictions into

a standard model of corporate investment. The first source of friction are benchmarking-induced

asset price distortions that drive wedges into firm discount rates (Kashyap, Kovrijnykh, Li, and

Pavlova, 2021). The inelastic demand of benchmarked funds for benchmark constituent stocks

raises their price, but also increases their co-movement. These forces have opposing effects on the

discount rate: the increase in stock price lowers discount rates and incentivizes investment, while

greater co-movement discourages it. As such, the overall effect of benchmarking on discount rates

and optimal investment is ambiguous. The second friction is a behavioral assumption that firm

managers behave exactly as they are taught to in textbooks and MBA classrooms. They invest in

projects with positive net present value and use the weighted average cost of capital implied by

1
In 2023, $17.9 trillion in assets were benchmarked to S&PDow Jones’ and $10.5 trillion to FTSE-Russell’s U.S. indices.
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the firm’s CAPM β to discount future cash flows.
2

While the assumption that firm managers practice what textbooks teach may seem innocu-

ous, it is key to our mechanism. Firm managers who set discount rates using their stocks’ CAPM

β will observe an increase in co-movement which discourages investment. However, they will

overlook the price effect that incentivizes investment. This failure to internalize the distortionary

effects of benchmarking leads managers to perceive an increase in their cost of capital. As a con-

sequence, benchmarking has an unambiguously negative impact on corporate investment.

We test the model’s predictions using the benchmarking-intensity measure (BMI) developed

by Pavlova and Sikorskaya (2023), which measures the total inelastic demand that a stock attracts

from benchmarked funds, expressed as a fraction of the stock’s market capitalization. We merge

the BMI measure with CAPM β estimates from Welch (2022b), accounting data from Compustat,

data on managers’ perceived cost of capital from Gormsen and Huber (2024) and stock market

data from CRSP from 1998 to 2018.

We begin by establishing the causal effect of changes in a stock’s BMI on its CAPM β. We

use a difference-in-differences design that compares the evolution of CAPM β between firms

experiencing BMI changes around the Russell index reconstitution dates and those that do not.

This approach does not require that index inclusion is random or common support in covariate

levels across firms. It only requires that treated and control firms would have evolved similarly

absent BMI changes. To ensure that our estimates arewell-identifiedwe include high-dimensional

fixed effects that remove as much time-varying unobserved heterogeneity as possible.

The difference-in-differences results show that an increase in the BMI of a stock by at least 5

percentage points (p.p.) increases its CAPM β by 0.16. The treatment effects of index inclusion on

CAPM β are increasing in BMI. Stocks with a BMI increase of at least 10 p.p. (20 p.p.) subsequently

have 0.23 (0.35) higher CAPM βs. These effects are not driven by micro-cap stocks and are also

present for stocks with market capitalizations above the 20th percentile of the New York Stock

Exchange (NYSE). We confirm that changes in CAPM βs are not due to changes in fundamentals

or increased risk exposure. Instead, our results indicate that increased co-movement with the

market is explained by institutional ownership, similar to the findings of Antón and Polk (2014).

The increase in treated firms’ cost of equity is substantial and persistent. Assuming an annual

equity risk premium (ERP) of 6%, our baseline results imply an increase by 96 basis points (bps),

with firms experiencing BMI increases of more than 10 p.p. seeing a 144 bps rise. These effects

2
For example, corporate finance textbooks by Brealey, Myers, Allen, and Edmans (2023), Berk and DeMarzo (2023),

and Ross, Westerfield, Jaffe, and Jordan (2016). A notable exception is Welch (2022a, Chapter 10) who suggests to

always use a market β of 1 to calculate discount rates. Gollier (2021) estimates that the welfare loss from using a

single discount rate is equivalent to a permanent reduction in consumption of up to 45% in a calibrated Lucas model.
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persist over time: a 10 p.p. shock to BMI raises the cost of equity by 150 bps after one year, 110

bps after four years, and 61 bps after seven years. Compared to other discount rate shocks these

effects are fast, large and persistent. For example, Bauer and Rudebusch (2020) estimate that the

natural real rate of interest declined by 100 bps between 2002 and 2020. In contrast, effects on

stock prices and the implied cost of capital (ICC) are short-lived, with a 41 bps decrease at index

inclusion
3
fading to 11 bps after one year and becoming insignificant thereafter. Our findings

suggest that benchmarking primarily affects the cost of capital through persistent changes in

CAPM βs, rather than short-term fluctuations in the stock price. If managers rely on the CAPM

for capital allocation decisions, these persistent changes in βs can have long-lasting effects on

investment behavior.

We estimate the influence of benchmarking-induced distortions on corporate investment us-

ing changes in BMI as an instrumental variable (IV).We use Jordà’s (2005) local projections (LP) to

estimate the effects of an increase in CAPM β on capital allocation over horizons of up to 6 years.

The instrument uses the plausibly exogenous variation in BMI from Russell index reconstitution

to instrument for the endogenous relationship between CAPM β and investment. We use two

methods to ensure that our estimates are well-identified. First, we saturate our LP-IV estimator

with high-dimensional fixed effects to remove as much time-varying unobserved heterogeneity

as possible. Second, we confirm that our results are robust to inclusion of known predictors of

capital accumulation (e.g., Tobin’s Q or cash flow).

We conduct several tests to validate the IV exclusion restriction. We find no evidence that

changes in BMI correlate with changes in risk exposure, debt market access, or corporate gov-

ernance. The CAPM β of peer firms remains stable when a treated firm’s BMI changes, and

firm-level risk measures show no correlation with changes in BMI. Measures of financial fric-

tions and cost of debt, including CDS spreads and their CAPM β, are unaffected by BMI changes.

Corporate governance scores also do not change when BMI changes. These findings suggest that

BMI changes are orthogonal to other factors that influence investment. This supports the use of

BMI changes as valid instrument and allows for a causal interpretation of our results.

A benchmarking-induced increase in a firm’s CAPM β leads to a substantial and persistent

reduction in investment. Specifically, a 15% rise in CAPM β results in a cumulative decrease

of 10.0% in capital expenditure over a six-year period. Instead of investing, treated firms first

accumulate cash and subsequently increase payouts to shareholders. The treatment effects are

consistent with firms using rolling window estimators that gradually update their CAPM β esti-

3
The 41 bps decrease in ICC we observe at index inclusion implies a 4.85% stock price increase, close to the 5%

documented by Chang, Hong, and Liskovich (2015).
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mates: they are near zero for short horizons, grow over time, and become statistically significant

after three years. Over six years the average treated firm’s physical capital stock declines by 7.1%;

its’ intangible capital stock declines by 8.4%. The estimated response of the physical capital stock

implies a user cost of capital elasticity of -1.09, close to the theoretical value of unity implied by

Cobb-Douglas production technology.

Consistent with our mechanism and the observed change in corporate investment, we find

that increases in benchmarking predict increases in the perceived cost of capital of firmmanagers

reported by Gormsen and Huber (2023, 2024). As before, we use changes in BMI as IV to identify

the causal effect of changes in CAPM β on a firm’s perceived cost of capital. The estimates

show that managers’ perceived cost of capital is responsive to benchmarking-induced increases

in CAPM β: a two standard deviation increase in a firm’s CAPM β raises managers’ perceived

cost of capital by 80 bps.

An influential body of literature finds that U.S. investment has been low in recent decades

relative to profitability and valuations (Gutiérrez and Philippon, 2017).
4
According to standard

Q-theory, investment should have increased with an increase in Tobin’s Q. However, investment

has been low by historical standards. This has led researchers to argue that there is “missing

investment", exceeding over 20% of the aggregate capital stock (Gormsen and Huber, 2023).

We argue that benchmarking has contributed to themissing investment puzzle. The difference-

in-differences results show that BMI increases cause CAPM βs to rise. Extending this to the

cross-section of stocks, we estimate that the average CAPM β increased by 0.46 over the past 25

years after being stable from 1975 to 2000. We attribute 80% of this increase to the more than

10 p.p. increase in average BMI since 1998. Counterfactuals show that the increase in CAPM βs

caused by benchmarking raised the average firm’s WACC by 162 to 199 bps from 1998 to 2018,

which largely offset the decline in risk-free rates.

We support this argument with industry-level evidence from the NBER-CES manufacturing

database. We measure the effects of CAPM β increases on capital accumulation using IV regres-

sions in long-differences from 2000 to 2016. The estimates show that higher CAPM βs led to

10.7% lower capital accumulation at the aggregate-level during this period. Gormsen and Huber

(2023) calculate that the cumulative investment shortfall in the U.S. from 2002 to 2016 was ap-

proximately 17.5%. Our results suggest that the increase in CAPM βs due to benchmarking can

explain up to 57% of this investment shortfall.

Our study shines a new light on the importance of benchmarking for asset pricing and cor-

4
Consistent with our results, Gutiérrez and Philippon (2017) find that “within industry-year, the investment gap is

driven by firms owned by quasi-indexers". Our findings provide an explanation for why firms owned by quasi-

indexers reduce investment: CAPM β increases with ownership by institutions that are benchmarked to an index.
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porate investment decisions. The findings underscore the need for managers, policy makers, and

investors to consider the unintended consequences of the growth in benchmark-linked investing

and its impact on the real economy.

The remainder of this paper is organized as follows. The remainder of this section discusses

related literature. Section 2 illustrates our proposed mechanism in a stylized model. Section 3

describes the data. Section 4 establishes a causal link between BMI and CAPM β. Section 5 tests

whether changes in BMI correlate with changes in firm fundamentals. Section 6 shows that BMI-

induced changes in CAPM β affect real outcomes at the firm-level. Section 7 shows that the

aggregate increase in BMI can partly explain the aggregate investment shortfall since the early

2000s. Section 8 concludes.

Related Literature This paper contributes to several strands of literature, including the effects

of benchmark-linked investing on asset prices, corporate behavior, and capital (mis-)allocation.

The literature on benchmark-linked investing, starting with Shleifer (1986) and Harris and

Gurel (1986), established that stocks appreciate when included in an index and that stock volatility

(Ben-David et al., 2018) and co-movement with the index (Vijh, 1994, Barberis et al., 2005, Boyer,

2011) increase after index inclusion (see Wurgler, 2010, for a survey). We add to this literature by

providing causal evidence that the level of a stock’s co-movement is determined by its BMI. We

further document that the average co-movement of stocks increased in lockstep with the average

BMI over the past 25 years.

Basak and Pavlova (2013) provide a theoretical framework showing that benchmarking of

funds leads to asset class effects consistent with the observed index inclusion effects.
5
Building

on this, Kashyap et al. (2021) derive optimal corporate investment policies in the presence of

benchmarked funds, arguing that managers should internalize the inelastic demand for index

stocks and over-invest to maximize firm value.

We contribute to the discussion about the effects of benchmarking on real investment in

two ways: empirically, we provide causal evidence that increases in benchmarking lead to lower

investment and a higher perceived cost of capital. Conceptually, we introduce a behavioral ar-

gument that reconciles our findings with Kashyap et al. (2021). We argue that managers, who

rely on textbook guidance to estimate the cost of capital using the CAPM, fail to internalize

benchmarking-induced asset price distortions. This results in an overestimation of the cost of

capital and a sub-optimal decline in investment, ultimately destroying shareholder value.

Additionally, our paper contributes to the literature on how firmmanagers set discount rates.

Despite the CAPM’s failure to explain the cross-section of expected stock returns (Fama and

5
See also Cuoco and Kaniel (2011), Buffa, Vayanos, and Woolley (2022), and Buffa and Hodor (2023).
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French, 2004),
6
it reigns supreme in practice. Welch (2008) reports that about 75% of finance

professors recommend using the CAPM. The Duke CFO survey (Graham, 2022) finds that the

CAPM is the leading method to determine discount rates. Further evidence from earnings calls

(Gormsen and Huber, 2024), M&A transactions (Dessaint, Olivier, Otto, and Thesmar, 2020), and

mutual funds (Berk and Van Binsbergen, 2016) confirms that practitioners rely on the CAPM. We

add by documenting that benchmarking induced CAPM distortions have first-order effects on

the discount rates that managers use to make capital budgeting decisions. We argue that these

distortions are large enough to affect the economy as a whole.

Despite the widespread use of the CAPM in practice, the effects of variation in CAPM βs

on investment are not widely studied. The literature primarily focuses on how the cost of debt

(Gilchrist and Zakrajšek, 2007, Philippon, 2009)
7
or tax policy (Zwick and Mahon, 2017, Mark,

Garrett, Ohrn, Roberts, and Suárez Serrato, 2021, Matray, 2023) affect investment. Notable ex-

ceptions are Krüger, Landier, and Thesmar (2015) and Frank and Shen (2016). Krüger et al. (2015)

document investment distortions caused by the use of a single discount rate within firms. Using

OLS regressions, Frank and Shen (2016) find that higher contemporaneous CAPM βs are associ-

ated with higher investment. In contrast, we use an IV approach to address the endogenous re-

lationship between CAPM βs and investment (Berk et al., 1999, Zhang, 2005, Kuehn and Schmid,

2014) and forecasts the effects of CAPM distortions up to six years into the future. Consistent

with theoretical predictions, we find that increases in CAPM β lead to lower investment.

Our findings also link to a literature on the corporate governance implications of passive

investing. Appel, Gormley, and Keim (2016), Edmans andHolderness (2017), Bebchuk, Cohen, and

Hirst (2017), Heath, Macciocchi, Michaely, and Ringgenberg (2021), and Lewellen and Lewellen

(2022) examine the effects of the rise in passive investing on corporate governance, while Azar,

Schmalz, and Tecu (2018) study the implications of common ownership for competition. Our

results show that passive investing can affect corporate investment without an explicit corporate

governance channel through its impact on the perceived cost of equity capital.

6
Berk, Green, and Naik (1999) show that stock returns need not satisfy the CAPM even when the expected returns on

all individual projects do, since a firm’s stock has real options to abandon established projects and undertake new

projects embedded. Da, Guo, and Jagannathan (2012) show that an option-adjusted CAPM does well empirically.

7
De Fraisse (2024) finds that a higher supply of long-term government bonds increases firms’ discount rates over

long horizons, leading to crowding-out of long-duration investment.
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2 A stylized model that highlights the mechanism

Every standard corporate finance textbook instructs firm managers to implement investment

policies that maximize firm value. The canonical guidance is to maximize net present value

(NPV).
8
Firm managers need two key components to calculate NPV: the expected cash flows and

the discount rate to convert future cash flows to present value. While most textbooks provide

little guidance on estimating the former, they typically recommend using the weighted average

cost of capital (WACC) as discount rate and to estimate the CAPM β to determine the cost of

equity capital. The following stylized model highlights how the presence of benchmarked funds

distorts the discount rate and thus affects capital allocation decisions.

Textbook investment policy The value of a firm Vi,t is determined by the net present value of

its expected future cash flows {CFi,t+h}∞h=1 discounted at the firm-specific discount rate {Ri,t→t+h}∞h=1:

Vi,t = Et

[
∞∑
h=1

CFi,t+h

Ri,t→t+h

]
. (1)

The discount rate Ri,t→t+h equals the firm’s weighted average cost of capital, determined by

exposure to aggregate risk of the cash flows generated by the firm’s assets, βA
i , and the yield

curve of risk-free rates {Rf
t+h}∞h=1.

Ri,t→t+h =
h∏

j=1

(
Rf

t+j + βA
i ERPt+j

)
(2)

Assuming for simplicity that firm leverage remains constant over time and is sufficiently low to

not create default risk, the aggregate risk exposure of the firm’s cash flows is proportional to

exposure of the firm’s equity to the equity risk premium (ERPt):

βA
i =

βE
i

1 + (1− τ)Di

Ei

(3)

As such, it can be directly inferred from the empirical CAPM β of the firm’s equity β̂E
i = Ĉov(ri,rm)

V̂ar(rm)
.

A firmmanager considering a firm-typical project with costCi,t and future cash flows {yi,t+h}∞h=1

8
See Ben-David and Chinco (2023) for a model in which managers maximize earnings-per-share instead.
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should invest in the project if it increases firm value, that is if

Et

[
∞∑
h=1

yi,t+h

R̂i,t+h

]
= Et

 ∞∑
h=1

yit+h∏h
j=1

(
Rf

t+j +
β̂E
i

1+(1−τ)
Di
Ei

ERPt+j

)
 > Ci,t, (4)

where R̂i,t results from substituting the empirical counterpart of (3) into (2).

Benchmarking distortions The presence of benchmarked funds distorts asset prices. Kashyap

et al. (2021) show that benchmarked funds’ inelastic demand for index constituents increases their

price and thereby lowers the discount rate for index constituents. However, index membership

also induces excess co-movement between index constituent stocks that is unrelated to the ag-

gregate risk exposure of the firm’s cash flows (Vijh, 1994, Barberis et al., 2005, Boyer, 2011).
9
The

excess co-movement of index stocks increases βE
i and thus the discount rate proportional to the

equity risk premium.

We illustrate two opposing effects in reduced form by postulating two discount rate wedges

as functions of a stock’s benchmarking intensity (BMI). The price pressure from index inclusion

reduces the effective discount rate by ∆I(BMIi,t). At the same time, βE
increases to β̃E

i,t =

βE
i + ∆β(BMIi,t). Both ∆I(BMIi,t) and ∆β(BMIi,t) monotonically increase in BMIi,t and

satisfy ∆I(0) = ∆β(0) = 0.

The discount rate, adjusted for benchmarking distortions, that maximizes firm value is

R̃i,t→t+h =
h∏

j=1

(
Rf

t+j +
βE
i +∆β(BMIi,t)

1 + (1− τ)Di

Ei

ERPt+j −∆I(BMIi,t)

)
. (5)

The total effect of both discount rate wedges is ambiguous and depends on the functional forms of

∆I(BMIi,t) and∆β(BMIi,t). Empirically, positive price effects at index inclusion (Chang et al.,

2015) suggest that ∆I(BMIi,t) dominates in the short-run.

CAPM investment policy with benchmarking distortions Whether the benchmarking

distortions to the discount rate in Eq. (5) cause firmmanagers to invest more or less is ambiguous.

The level-shift in discount rates by ∆I(BMIi,t) (in blue) incentivizes investment, whereas the

increase in CAPM β, ∆β (in red), discourages investment.

What if firm managers do not internalize the inelastic demand of benchmarked funds for

index constituent stocks but use the cost of capital implied by the CAPM to evaluate investment

9
See also Appendix D of Kashyap et al. (2021) for further details.
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opportunities as in Eq. (4)? In this case, the presence of benchmarked funds has an unambiguously

negative effect on investment for index constituents. Firm managers, with expectations E⋆
t [·],

observe an increase in their stock’s CAPM β from β̂E
i to β̃E

i = β̂E
i + ∆β(BMIi,t) and infer an

increase in the firm’s cost of capital. Firm managers now invest only in projects that satisfy

E⋆
t

 ∞∑
h=1

yi,t+h˜̂
Ri,t+h

 = E⋆
t

 ∞∑
h=1

yi,t+h∏h
j=1

(
Rf

t+j +
β̂E
i +∆β(BMIi,t)

1+(1−τ)
Di
Ei

ERPt+j

)
 > Ci,t. (6)

All else equal, a firm inside the index invests less than the same firm outside the index.

Testable hypothesis Our proposed mechanism rests on the behavioral assumption that firm

managers do not internalize the total effect of benchmarking-induced discount rate distortions.

Instead, managers follow textbook guidance to form aweighted average cost of capital using their

firm’s empirical CAPM βs. Empirical CAPM βs, however, are distorted by benchmarking-induced

co-movement and will thus lead index constituents to under-invest.

We empirically validate our mechanism by presenting evidence that supports three testable

hypotheses directly derived from it. All else equal,

(i) there is a monotonic positive relationship between changes in firm BMI and changes in βE
,

(ii) an increase in firm BMI increases the firm’s perceived cost of capital,

(iii) and leads to a decline in investment.

3 Data and sample

We use four main sources in our empirical analysis: (1) the measure of benchmarking intensity

developed by Pavlova and Sikorskaya (2023), (2) estimates of firm CAPM βs from Welch (2022b),

(3) firm-level data from S&P’s Compustat North America Fundamentals, and (4) additional firm-

level variables from various sources.

Benchmarking Intensity We use the benchmarking intensity measure developed by Pavlova

and Sikorskaya (2023) from 1998 to 2018. Benchmarking intensity (BMI) for stock i in month t is

defined as

BMIi,t =
J∑

j=1

λj,tωi,j,t

Market Valuei,t

=
J∑

j=1

λj,t1{Stock is in Index}i,t
Market Value of all Stocks in Indexj,t

(7)

10



Table 1: Summary Statistics of Matched BMI-CAPM Sample

Mean SD Min P5 P10 Median P90 P95 Max N

CAPM β (Welch, 2022) 0.88 0.48 -0.71 0.14 0.25 0.88 1.51 1.69 2.67 1,231,865

∆ CAPM β 0.02 0.27 -1.67 -0.41 -0.29 0.02 0.34 0.46 1.88 59,510

BMI in May 0.15 0.09 0.00 0.00 0.00 0.17 0.26 0.28 0.34 61,099

BMI in June 0.16 0.09 0.00 0.00 0.00 0.17 0.26 0.27 0.36 61,099

∆ BMI 0.00 0.04 -0.41 -0.04 -0.02 0.00 0.03 0.05 0.24 61,098

Market Cap. (in $m) 3,737 15,447 0.00 11.00 21.00 309.00 6,305 15,382 350,232 1,231,865

Shares Out. (in 1000s) 90.85 257.69 0.00 2.00 4.00 26.00 174.00 347.00 3,914 1,231,865

Trading Vol. (in 100,000s) 16,842 50,099 0.00 29.00 73.00 2,630 38,506 75,318 1,085,943 1,231,865

Notes: Monthly sample from 1998 to 2019. ∆CAPM β is the difference between the average CAPM β in the first and last quarter of a year.

Variables are winsorized at the 0.5% and 99.5% level.

where λj,t is the assets under management (AUM) of mutual funds and ETFs benchmarked to

index j and ωi,j,t =
Market Valuei,t1{Stock is in Index}i,t
Market Value of all Stocks in Indexj,t

is the stock’s weight in value-weighted index j.

Similar to Pavlova and Sikorskaya (2023), we use changes in BMI between the rank day of

Russell indices in May and the reconstitution day in June as an instrumental variable for changes

in institutional ownership. Changes in BMI satisfy the relevance condition because they pre-

dict how benchmarked investors rebalance their portfolios after a Russell index reconstitution.

The exclusion restriction requires that index membership is exogenous. The literature on index

inclusion effects argues that after controlling for factors that determine index inclusion, most

importantly the ranking variable (market value) that Russell uses for index assignment at the end

of May, the index membership dummy is exogenous.

CAPM βs Weuse end-of-month estimates of thewinsorized and exponentiallyweighted CAPM

βs from Welch (2022b), calculated using daily data.
10

The β estimator first winsorizes a firm’s

daily stock return at –2 and +4 times the contemporaneous market return, and then estimates

an exponentially weighting least squares regression of the stock’s (winsorized) excess return on

the market excess return. The half-life of the exponential decay is 90 days. Welch (2022b) shows

that this estimator outperforms other well known β estimators like Bloomberg β or the Vasicek

(1973) β in predicting future market βs. We focus on common equities that are traded on either

the NYSE, AMEX, or NASDAQ, and exclude ADRs, REITs, and ETFs. Table 1 reports descriptive

statistics for the matched BMI-CAPM dataset covering 1998 to 2019.

Firm-level data We use annual data for publicly listed companies incorporated and located

in the U.S. from Compustat for the sample period from 1998 to 2018. We exclude financial firms

(SIC codes 6000-6999) and firms in regulated industries (4900-4999), as well as firms with less

10
Levi and Welch (2017) caution against using monthly data, showing that monthly CAPM βs have half the explana-
tory power of daily βs in forecasting future βs.
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than $50m in total assets or less than $10m sales (in 2017 dollars). Firms must have at least five

years of consecutive data. We winsorize the data at the 2.5% and 97.5% level.

Additional firmdata We obtain stock returns andmarket data from the Center for Research in

Security Prices (CRSP). Data on firmmanagers’ perceived cost of capital is sourced fromGormsen

and Huber (2024), who hand-collect these from earnings calls. Measures of firm-level intangible

capital are from Peters and Taylor (2017). Executive compensation peer group information is col-

lected from Institutional Shareholder Services (ISS).We use firm-level risk measures fromHassan,

Hollander, Van Lent, and Tahoun (2019) and data on financial frictions from Hoberg and Maksi-

movic (2015) and Linn and Weagley (2021). Governance scores are obtained from Sustainalytics,

Refinitiv, and S&P. Estimates of stocks’ implied cost of capital (ICC) are from Eskildsen, Ibert,

Jensen, and Pedersen (2024).

4 Changes in a firm’s CAPM β due to benchmarking

We estimate the causal effect of changes in a firm’s BMI on its CAPM β using a difference-in-

differences design. We compare the evolution of CAPM βs of (treated) stocks that experience BMI

changes around Russell index reconstitution dates to (control) stocks that do not. Our treatment

group consists of stocks that experience changes in BMI greater than ±5 p.p.. The control group

consists of stocks that experience changes in BMI smaller than ±1.5 p.p..

The difference-in-differences results show that changes in a stock’s BMI causally affect its

CAPM β. This effect is symmetric and monotonically increasing in treatment intensity. A stock

whose BMI increases (decreases) by at least 5 p.p. experiences an increase (decrease) in CAPM β

by 0.16 (-0.14) relative to the control group. A stockwhose BMI increases by 10 p.p. to 20 p.p. (more

than 20 p.p.) experiences a 0.24 (0.35) increase in CAPM β. These effects are large and economi-

cally meaningful. The baseline treatment effect of an increase in BMI greater than 5 p.p. translates

into a 96 bps increase in the cost of equity capital (assuming a 6% ERP). An increase in BMI by

10 p.p. to 20 p.p. (greater than 20 p.p.) translates into increase of 132 bps (210 bps).

In Appendix A.3 and A.4 we find qualitatively and quantitatively similar results using regres-

sion discontinuity designs that exploit discontinuities in BMI at Russell index cutoffs.
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4.1 Difference-in-differences strategy

Weanalyze the effect of an increase in BMI on a firm’s CAPM β by estimating a series of difference-

in-differences specifications of the form:

CAPM βi,t = δ Treatedi × Postt>May + θi + θt,s + εi,t (8)

where Treatedi is an indicator variable for whether firm i’s BMI changed by more than ±5 p.p..

The coefficient of interest, δ, summarizes the treatment effect on a firm’s CAPM β.

The inclusion of firm fixed effects, θi, removes time-invariant heterogeneity across firms and

accounts for possible ex-ante differences between treated and control firms. Size-by-month or

liquidity-by-month fixed effects, θs,t, restrict the identifying variation to comparisons within the

same size or liquidity decile each period, controlling for time-varying unobserved heterogeneity

correlated with a firm’s CAPM β. To ensure our results are not driven by micro-cap stocks, we

exclude stocks with market values below the fifth percentile of those traded on the NYSE.
11

The Russell indices reconstitute each year, and identification in (8) thus exhibits staggered

treatment timing with potentially misleading estimates when the treatment effect is heteroge-

neous between cohorts or over time (De Chaisemartin and d’Haultfoeuille, 2023). We follow the

suggestion of Baker, Larcker, and Wang (2022) to stack the yearly cohorts and include cohort by

firm and cohort by time fixed effects but suppress cohort subscripts for brevity.
12

Identifying assumptions and threats to identification. Our identification strategy relies on

the following assumption: conditional on the set of fixed effects, firms that experience changes

in BMI are not differentially exposed to unobservable shocks that are correlated with BMI. The

identification assumption does not require random assignment of index inclusion, nor does it

require that firms have similar characteristics in levels. Rather, we rely on the parallel trends

assumption that outcomes for treated and control firms would have trended similarly absent an

increase in BMI. We provide supporting evidence of parallel pre-treatment trends in Figures 1a

and 1b and additionally perform a placebo test that compares firms with BMI increases between

0 p.p. and 1 p.p. to firms with BMI decreases between 0 p.p. and -1 p.p. in Figure A2. As expected,

this placebo test finds no effects.

Results Figures 1a and 1b show the event study coefficients of our difference-in-differences

estimation for treatments defined as an increase or decrease in BMI of 5 p.p., respectively. We

11
We obtain similar results when using the 10th or 20th percentile of the NYSE as a cutoff (see Appendix Table A1).

12
See, e.g., Gormley and Matsa (2011), Cengiz, Dube, Lindner, and Zipperer (2019) and Deshpande and Li (2019) for

similar implementations of stacked difference-in-differences designs.
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Figure 1: Difference-in-differences Event Study
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(a) Treated stocks with an increase in∆ BMI > 5 p.p. relative to control group.
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Notes: This figure shows difference-in-differences event study coefficients of Eq. (8). Change in CAPM β of treated

stocks with an increase or decrease in BMI of at least 5 p.p. relative to a control group, where |∆ BMI| < 1.5 p.p..

Pointwise confidence intervals (99%) and sup-t confidence bands based on double-clustered standard errors. Values

in parentheses on the Y-axis show the average CAPM β before treatment.
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Table 2: Causal Effects of Changes in Benchmarking Intensity on CAPM βs

Treatment Group: ∆ BMI>5p.p. ∆ BMI<-5 p.p.

(1) (2) (3) (4) (5) (6) (7) (8)

Treated × Post 0.158
∗∗∗

0.164
∗∗∗

0.161
∗∗∗

0.160
∗∗∗

-0.143
∗∗∗

-0.133
∗∗∗

-0.135
∗∗∗

-0.136
∗∗∗

(0.014) (0.014) (0.014) (0.014) (0.021) (0.021) (0.020) (0.020)

Firm × Cohort ✓ ✓ ✓ ✓ ✓ ✓
Time × Cohort ✓ ✓
Size Decile × Time × Cohort ✓ ✓
Volume Decile × Time × Cohort ✓ ✓
Shrs. Out. Decile × Time × Cohort ✓ ✓

Observations 316,883 316,848 316,762 316,695 308,973 308,927 308,855 308,782

Notes: This table reports δ̂ for specifications of the form: CAPM βi,t = δ Treatedi × Postt>May + θi + θt,s + εi,t. Treated×Post is average of post-

treatment coefficients after 4 months (to account for the expanding-window estimation of CAPM β). Control group are firms with |∆BMI| <1.5 p.p..

Standard errors in parentheses are double-clustered at firm and year-month level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

normalize the dynamic treatment effect to zero in May and estimate dynamic treatment effects

for the period from 9 months before to 12 months after index inclusion.

Several facts are worth noting. First, the CAPM βs of treated and control firms evolve in

close parallel before index reconstitution, supporting the identification assumption and causal

interpretation of treatment effects. The p-values for the Wald-style pre-trend test suggested by

Freyaldenhoven, Hansen, Pérez, and Shapiro (2021) are 1.00 and 0.77, respectively. Second, after

index reconstitution, CAPM βs begin to diverge for both increases and decreases in BMI. The

smooth event-time trend in Figure 1 is largely mechanical, as older information receives expo-

nentially smaller weights.
13
Therefore, the treatment effect of a BMI increase on a firm’s CAPM β

is likely immediate, but our measurement captures it only when older information is sufficiently

down-weighted. Third, treatment effects for BMI increases and decreases of at least 5 p.p. have

similar magnitudes but opposite signs, suggesting that treatment effects are linear in BMI.

Table 2 reports the average estimated post-shock coefficient.
14

The coefficient estimate for

the interaction Treatedi×Postt > May is positive for increases in BMI and negative for decreases

in BMI, with treatment effects always statistically significant at the 0.1% level. Columns (1) and

(5) present results with firm and year-month fixed effects, while subsequent columns add more

granular fixed effects by year-month, size, volume, or shares outstanding. These fixed effects

control for potential size or liquidity differences between treated and control firms. The estimated

effects of BMI changes remain stable across different fixed effects. Column (2) shows that a BMI

increase of at least 5 p.p. raises a firm’s CAPM β by 0.16, while Column (6) shows that a decrease

in BMI by at least 5 p.p. lowers a firm’s CAPM β by -0.14. These effects are large and economically

meaningful. An increase of 0.16 in CAPM β implies a 96 bps increase in the cost of equity capital.

13
The β estimator uses an expanding-window with exponential weights of 90 trading days half-life.

14
We exclude the coefficients for 0 ≤ t ≤ 4 since the CAPM βs by construction have a dynamic component.
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The estimates of the average treatment effect in Table 2 mask substantial heterogeneity. Ap-

pendix Figure A1 plots the event-time coefficients for three different treatment intensities. Treat-

ment levels are defined in increasing order of treatment intensity as changes in BMI by 5 p.p. to 10

p.p., 10 p.p. to 20 p.p., and greater than 20 p.p.. The estimated treatment effect is 0.15 for the lowest

treatment intensity, 0.24 for the medium treatment intensity, and 0.35 for the highest treatment

intensity after 12 months. The treatment effects are statistically significant at the 0.1% level for

all treatment intensities. For firms in the highest treatment intensity group, the treatment effect

is 0.35, which is equivalent to a 210 bps increase in the cost of equity capital.

Alternative CAPM β estimators To verify that our results are not driven by the choice of β

estimator, we estimate the following reduced form specification for a set of alternative estimators:

∆βALT
i,t = αi + αt + γ∆BMIi,t + εi,t

Appendix Table A2 shows reduced form regression results using different estimators for the un-

known CAPM β. We compare the usual OLS estimator with alternative estimators proposed by

Blume (1975) (the “Bloomberg β”), Dimson (1979), and Welch (2022b). We also report estimates

of the β with the ten largest stocks by market capitalization, and correlation with the market and

idiosyncratic volatility. For each estimator, we provide expanding-window (using exponentially

decaying weights) estimates and 2-year rolling-window (using equal weights) estimates.

We find that all CAPM β estimators show a statistically significant (p<0.001) association with

changes in BMI.
15
Estimates using rolling-windows with equal weighting are smaller in magni-

tude but highly statistically significant. Changes in CAPM β occur due to changes in market

correlation, not because of increases in idiosyncratic volatility. This aligns with Antón and Polk

(2014), who show that mutual funds’ common ownership increases return correlation of equities.

4.2 Persistence of effects and changes in stock’s implied cost of capital

In our model we assume that managers use the CAPM to set discount rates and do not account

for the distorting effects of benchmarking on stock prices. Alternatively, managers might infer

the discount rate from stock prices and expected cash flows, as in Kashyap et al. (2021). We test

whether BMI changes from index reconstitution influence the implied cost of capital (ICC) that

managers could infer from stock prices. The ICC, based on current stock prices, captures any

price distortion from benchmarking.

15
Online Appendix Table B1 shows that industry CAPM βs estimates react similar.
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We further test whether the benchmarking distortions persist over long horizons. Our difference-

in-differences results show that the distortionary effects of BMI increases on CAPM βs persist

for at least 12 months. However, CAPM βs tend to revert to 1 in the long-run (Blume, 1975). If

the distortionary effects of benchmarking on the cost of equity fade after a year, we would not

expect any long-term impact on investment. We therefore test whether the effects on the ICC

and on CAPM βs persist for horizons of up to 7 years.

Implied Cost of Capital Following Eskildsen et al. (2024),
16
we calculate the ICC by averaging

four popular models from the accounting literature: the residual income models from Gebhardt,

Lee, and Swaminathan (2001) and Claus and Thomas (2001), and the dividend discount models

from Easton (2004) and Ohlson and Juettner-Nauroth (2005). Note that the ICC only captures the

implied cost of equity, we thus compare it to the cost of equity implied by the CAPM.

We test whether changes in BMI affect the ICC using the following specification:

Avg. ICCi,t+h = θh0 + θh1∆BMIi,t + ξhXi,t + εi,t+h, h = 0, . . . , 7, (9)

for firm i in year t+h. Additionally, we estimate how long BMI induced CAPM β distortions

persist using the following specification:

CAPM βi,t+h = γh
0 + γh

1∆BMIi,t + ζhXi,t + νi,t+h, h = 0, . . . , 7. (10)

The coefficients of interest, γh
1 and θh1 , summarize the long-term effects of an BMI increase on a

firm’s CAPM β or ICC after h years, respectively. The vector Xi,t contains year fixed effects and

the lagged level of BMI. We scale the estimates to a 10 p.p. increase in BMI for ease of interpreta-

tion and adjust the CAPM estimates to match the units of the ICC estimates by multiplying them

by a 6% ERP. Standard errors are double-clustered at the year- and firm-level.

Results Figure 2 shows estimates for γh
1 and θh1 of Eq. (10) and (10), respectively. The distor-

tionary effects of BMI increases on CAPM βs persist for at least 7 years. At each forecast horizon,

we find statistically significant (p<0.001) positive effects of BMI increases on CAPM βs. These

effects gradually diminish over time but remain economically significant. One year after the ini-

tial BMI increase, the cost of equity capital is 150 bps higher. Four years later, it remains 110 bps

higher, and even seven years later, it is still 61 bps higher. This prolonged impact suggests that

benchmarking has a long-term effect on firms’ perceived cost of capital, potentially leading to

sustained changes in investment behavior.

16
Using these measures, Eskildsen et al. (2024) estimate an annual green equity premium of -25 bps. Similarly, Kontz

(2023) estimates a green convenience yield of 28 bps in auto asset-backed securities.
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Figure 2: Persistence of BMI Shock on the Cost of Equity Capital over Long Horizons
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clustered standard errors. Value in parentheses on the Y-axis is the median ICC over the sample period.

The effects on the ICC are more short-lived. The estimate for the year of index inclusion

shows that the implied cost of capital decreases by approximately 41 bps (p<0.001). The effect on

the ICC fades to 11 bps (p<0.10) after one year and becomes statistically insignificant afterwards.

The finding that the impact of BMI increases on the ICC is small and diminishes rapidly, implies

that any effects on investment through this channel are unlikely.

Price Effects of Index Inclusion We perform a back-of-the-envelope calculation to estimate

the implied stock return at index inclusion using Gordon’s growth model, P0 = D1/(r − g). We

assume the expected dividend, D1, and expected dividend growth rate, g, remain constant when

BMI changes, but r changes by θ̂01 ×∆BMI. The implied stock return is given by:

4.85% ≈ P Post

P Pre
− 1 =

−θ̂01 ×∆ BMI

r + θ̂01 ×∆ BMI− g
=

0.41%

10.46%− 0.41%− 1.6%
,

where we set r to the long-run average of the ICC (≈10.5%), g to the long-run average of real

dividend growth (≈1.6%), and∆BMI to 10 p.p (as in Figure 2). The 41 bps decrease in the ICC at

index inclusion implies a 4.85% increase in the stock price, close to the 5% documented by Chang

et al. (2015). Our estimate is larger but not statistically different from the 2.8% increase in stock
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price for a 10 p.p. increase in BMI estimated by Pavlova and Sikorskaya (2023).
17

5 Additional tests and instrument validity

Our first main result shows that increases in a stock’s BMI cause its CAPM β to rise. We use

changes in BMI between the Russell ranking day in May and the reconstitution day in June as an

IV to exploit the effect of benchmarking on corporate investment. However, concerns may arise

that other factors, such as risk exposure, access to debt markets, or governance, could change

alongside CAPM βs when BMI changes, potentially violating the exclusion restriction. In this

section, we test whether changes in BMI correlate with changes in risk, financial frictions, or

governance, but find no evidence that they do.

5.1 Changes in BMI and measures of risk exposure

Apotential concernwith our IV identification strategy is that changes in BMI could correlate with

changes in exposure to aggregate or idiosyncratic risk. Firm-level exposure to aggregate risk is

influenced by an industry’s aggregate risk (Karolyi, 1992) and by firm fundamentals (Gomes, Ko-

gan, and Zhang, 2003). We test whether the aggregate risk exposure of treated firms changes by

estimating whether the CAPM β of comparable peer firms changes when a firm’s BMI changes.

We also test whether measures of idiosyncratic firm-level risk exposure change with BMI. How-

ever, we find no evidence that changes in BMI correlate with changes in risk exposure.

Changes in CAPM βs of peer firms We collect information about a firm’s peer group from

ISS. For each firm, we randomly select three peer firms and test whether the firm’s change in

BMI correlates with changes in the CAPM β of peers. To avoid confounding our estimates, we

exclude peers that also experience a change in BMI. Appendix Table A3 shows the results of

this test using a firm’s peers. The regression of changes in a firm’s CAPM β on changes in its

peers’ CAPM β shows a significant positive coefficient, indicating common exposure to aggregate

risk.
18
However, changes in a firm’s BMI do not correlate with changes in peers’ CAPM βs, with

insignificant coefficients close to zero. This suggests that the significant changes in a firm’s CAPM

β are driven by benchmarking distortions rather than by changes in aggregate risk exposure.

Firm-level riskmeasures We analyze six firm-level risk measures derived from earnings calls

by Hassan et al. (2019): the overall risk exposure of firms, exposure to overall political risk, and

17
Discrepancies between Pavlova and Sikorskaya (2023) and Chang et al. (2015) are primarily due to differing sample

years and filters, see Pavlova and Sikorskaya (2023, Appendix A.15).

18
Levi and Welch (2017) similarly show that the CAPM βs of peer firms are good predictors of own firms’ β.
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exposure to political risk stemming from economic policy, security policy, technological policy,

and trade policy. Appendix Table A4 reports estimates of OLS regressions of changes in firm-level

risk measures on changes in CAPM β and changes in BMI. Two things are worth noting. First,

changes in the CAPM β correlate with changes in the firm-level risk measures. Four of six firm-

level risk-measure show a statistically significant positive relationship with changes in the CAPM

β of firms. Second, changes in BMI do not correlate with changes in firm-level risk measures. The

estimated coefficients across all risk measures are close to zero and are not statistically significant.

5.2 Changes in BMI and measures of financial constraints

Changes in BMI could correlate with changes in financial constraints, potentially violating the ex-

clusion restriction of our IV strategy. We test this by examining the correlation between changes

in a firm’s BMI and measures of financial constraints and CDS spreads. If changes in BMI corre-

lated with changes in financing costs due to factors other than CAPM β, the exclusion restriction

would be violated. However, we find no evidence of such correlations.

Text-based measures of financial constraints We collect text-based measures of financial

constraints from Hoberg and Maksimovic (2015) and Linn and Weagley (2021). These measures

capture the extent to which firms face financial constraints and are likely to constrain investment

based on the text of their annual reports. Appendix Table A6 reports estimates of OLS regres-

sions of changes in the firm’s financial constraints on changes in the BMI of a firm. The estimated

coefficients of BMI are close to zero and not statistically significant across all measures. Impor-

tantly, Column (1) of Appendix Table A6 shows that changes in BMI do not correlate with firm

statements about plans to delay investments.

Changes in CDS spreads and CDS CAPM β We collect CDS spreads for senior unsecured

debt with tenor of 5 year from 2010
19
to 2019. CDS CAPM βs are calculated on daily data using

the estimator of Welch (2022b). We calculate changes in a firm’s CDS spreads and firm’s CAPM

β of CDS spreads as the difference between the average of daily observations in the first and last

quarter of a year. Appendix Table A5 reports estimates of OLS regressions of changes in CDS

spreads and changes in the CDS CAPM β on changes in the BMI of a firm. We find no evidence

that changes in the BMI predict changes in firm CDS spreads or CDS CAPM βs. The estimated

coefficients on BMI are insignificant and close to zero.

19
We focus on the period after ISDA’s “Big Bang" reforms of April 2009 to maintain a consistent sample.

20



5.3 Changes in BMI and measures of corporate governance

An increase in BMI and associated institutional ownership could impact investment through im-

proved corporate governance (Appel et al., 2016, Aghion, Van Reenen, and Zingales, 2013). How-

ever, increased passive ownership may also decrease monitoring incentives, as in the model of

Bebchuk and Hirst (2019). We test whether measures of governance change with changes in BMI

but find no evidence of such an effect.

We obtain governance and ESG scores from S&P, Sustainalytics, and Refinitiv and test whether

changes in BMI correlate with changes in those scores. Appendix Table A7 reports estimates of

OLS regressions of changes in governance and ESG scores on changes in the BMI of a firm. The

estimated coefficients are close to zero and are not statistically significant. Our findings are con-

sistent with Kacperczyk, Sundaresan, and Wang (2021), who also find no evidence of changes in

governance at index inclusion.

6 Effects of CAPM β distortions on capital accumulation

Our second set of results estimates how firms react to changes in their CAPM β induced by

changes in BMI. For a firm manager who follows textbook guidance to set investment policies

using the CAPM, an increase in CAPM β raises the user cost of capital and should lead to a decline

in investment. We therefore test whether changes in CAPM β affect firm outcomes like capital

expenditure, physical and intangible capital stocks, cash holdings, and payouts.

The results show that firms react to BMI-induced changes in their CAPM β by reducing

investment. Specifically, capital expenditure declines by 10.0% over six years, and physical and

intangible capital stocks are 7.1% and 8.4% lower, respectively. Firms initially accumulate cash and

then increase payouts to shareholders. The findings are robust to the inclusion of other known

predictors of investment like firm size, cash flow, and Tobin’s Q.

Consistentwith thismechanism, managers’ perceived cost of capital responds to benchmarking-

induced increases in CAPM β. Using data from Gormsen and Huber (2024), we find that increases

in BMI predict increases in managers’ perceived cost of capital. We use changes in BMI as an IV

to identify the causal effect of changes in CAPM βs on a firm’s perceived cost of capital. The

IV estimates imply that a two standard deviation change CAPM β increase managers’ perceived

cost of capital by 80 bps.
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6.1 Empirical strategy

We use an instrumental variable (IV) local projections (LP) strategy to forecast the effects of a

change in CAPM β on capital allocation over horizons of up to 6 years.
20
We instrument changes

in CAPM β with changes in BMI, in an effort to identify causal effects. Pavlova and Sikorskaya

(2023) argue that changes in BMI between the rank day of Russell indices in May and the recon-

stitution day in June serve as instruments for changes in institutional ownership. Our results in

Section 4 show that changes in the level of institutional ownership cause changes in the firms’

CAPM βs. Section 5 shows that these changes in CAPM β are orthogonal to aggregate risk ex-

posure and fundamentals of the firm, thus acting as exogenous shock to the firm’s cost of capital.

To analyze the effect of BMI-induced changes in a firm’s CAPM β on real outcomes, we

estimate a series of local projection instrumental variable regressions of the following form:

∆CAPM βi,t = δi + δj,t + θ∆BMIi,t + ζXi,t + ϵi,t (11)

log (Yi,t+h)− log (Yi,t−1) = αh
i + αh

j,t + γh∆ ̂
CAPM βi,t + ξhXi,t + εi,t+h (12)

for firm i in industry j in calendar year t+h. The coefficients of interests, γh
, provide cumulative

local average treatment effects in % after h = 0, 1, . . . , 6 years.

We remove time-invariant heterogeneity across firms by including firm-fixed effects αi and

δi in both first and second stage. We additionally include (3-digit SIC) industry-by-year-by-total-

asset quintile fixed effects αj,t and δj,t to control for time-varying unobserved heterogeneity

across industries, such as differences in industry-level business cycles, which may be correlated

with firm outcomes. The use of industry-by-year-by-total-asset fixed effects forces the param-

eters of interest, γh
, to be identified solely from comparing similar sized firms within the same

industry. The vector Xi,t includes a set of time-varying firm-level control variables, such as log

of market equity (size) at the end of May and cumulative 1-year excess returns (momentum). We

additionally include up to three lags of the outcome and shock variables.

We cluster standard errors at the firm-level, which allows for a completely unrestricted speci-

fication of the residual covariance matrix in the time-series dimension. This effectively addresses

the issue of serial correlation in residuals arising in a local projection framework.

Identifying assumptions and threats to identification The instrumental variable exclu-

sion restriction in a local projection setting differs slightly from the usual one due to the dynamic

structure of the problem. Identification requires a contemporaneous and a lead-lag exclusion re-

20
Similarly, LP-IVs are often used to study the effects of monetary policy on investment or asset prices (e.g., in Jordà,

Schularick, and Taylor, 2020, Kroen, Liu, Mian, and Sufi, 2021, and Bauer and Swanson, 2023).
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striction. The instrument must be uncorrelated with past and future shocks, at least after includ-

ing control variables. The exclusion restriction requires that assignment of index membership

is exogenous and that changes in BMI only affect firm outcomes through changes in CAPM β.

In Section 5 we find no evidence that changes in BMI correlate with changes in risk, financial

constraints, or governance at the firm. Importantly, Column (1) of Appendix Table A6 shows that

changes in BMI do not correlate with firm statements about delaying investments. Failure of the

exclusion restriction would introduce bias in the estimated treatment effects. The size and sign

of the bias depend on the size and sign of the failure and the strength of the instrument.
21

The

literature on index inclusion effects generally finds positive but modest direct effects of index

inclusion on real outcomes (e.g., Kacperczyk et al., 2021). Therefore, if anything, we might expect

an upward bias in our estimates.

To ensure that our estimates are well-identified, we follow three steps. First, we include up

to three lags of outcomes and shock in our regressions. Second, we saturate our LP-IV estimator

with high-dimensional fixed effects to remove as much time-varying unobserved heterogeneity

as possible. Third, we verify that including a set of known predictors of capital accumulation

(e.g., Tobin’s Q or cash flow) does not change our results in a robustness test.

6.2 Results

Figure 3 shows estimates of the dynamic impulse response path of Eq. (12) to an increase in the

CAPM β for capital expenditure, physical capital, intangible capital, and cash and short-term

investments. The impulse is scaled to the average effect size for an increase of 5 p.p. in BMI in

the Compustat sample (approximately a 15% increase in CAPM βE). Note that the coefficients

derived from local projection (LP) impulse responses are highly correlated. Similar to the case

of regressions affected by near-collinearity, individual t-statistics may not appear significant, but

a joint test for significance overwhelmingly rejects the null of zero treatment effect (see Jordà,

2023, for details). We therefore report F-statistics of joint-significant test and additionally display

approximate 90% significance bands. The significance bands are calculated by inverting the F-

statistic of the null that all impulse response coefficients are zero.

Several key results are evident in Figure 3. First, the impulse responses across all outcome

variables have the expected signs: capital expenditure and physical and intangible capital stocks

21
Consider the example given by Jordà et al. (2020): let y be the outcome,∆r the intervention, and z the instrument.

The IV setup consists of the first and second stage given by∆r = zb+η and y = ∆̂rβ+zϕ+ν where E [∆rν] ̸= 0

but E [zν] ̸= 0. The exclusion restriction assumes that ϕ = 0. If ϕ ̸= 0, we have β̂IV
p→ β+ϕ/b. The bias induced

by failure of the exclusion restriction depends on both the size of the failure, ϕ, and the strength of the instrument,

b. Weaker instruments tend to worsen the bias (see also Conley, Hansen, and Rossi, 2012).
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Figure 3: LP-IV: Impulse Response of Outcome Variables to CAPM β shock
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Notes: This figure shows LP-IV coefficient estimates for 100× cumulative log-changes of outcome variables. Inter-

vention is a shock to CAPM β estimated with change in BMI as an instrumental variable. Dashed red lines represent

90% significance bands computed by inverting the F-statistic of joint significance around zero using Scheffé’s method.

decrease in response to an equity cost shock, while cash and short-term investments increase.

Firms also increase dividends and stock repurchases after several years. Second, firm responses

to an increase in CAPM β are gradual and slow-moving, with effects starting from zero in the

treatment year and growing over time. The cumulative impact becomes statistically and eco-

nomically significant after about three years, aligning with industry practices of using a two to

five year rolling window to estimate CAPM βs. This gradual adjustment reflects how managers’

estimated cost of capital incorporates older data points, even though the “true" CAPM β responds

immediately. Third, the effects on capital expenditure and capital stocks are persistent and remain

significant for at least six years after the shock.

Benchmarking-induced increases in CAPM βs lead to large and persistent declines in invest-

ment. We find that firms reduce their capital expenditure by approximately 10.0% over six years
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in response to a shock to their CAPM β of 15%. The resulting decrease in physical capital stocks

is 7.1% and in intangible capital stocks is 8.4% after six years. Point estimates after six years im-

ply a user cost of capital elasticity of around -1.09 and -1.28 for physical and intangible capital,

respectively. These elasticities are larger but close to the theoretical elasticity of 1 implied by a

Cobb-Douglas production function.

Appendix Table A8 reports the estimates of the LP-IV regressions of Eq. (12). We check

whether the BMI instrument is weak with Kleibergen-Paap tests. We find that changes in BMI are

strong instruments for changes in CAPM β with average first-stage F-statistics above 50. Finally,

we test the null hypothesis that all ATE coefficients are jointly zero, reporting the p-value of the

test in the row labeled H0: ATE = 0. All average treatment effects are statistically significant at

conventional levels, except for dividends and repurchases; reflecting the noise visible in Figure 3.

Robustness Checks We perform several robustness checks on the main results. First, we add

firm-level controls, such as cash flow, Tobin’s Q, and the debt-to-equity ratio, which are known

predictors of investment, to the LP-IV regressions. Second, we incorporate different levels of fixed

effects, replacing firm size by industry by year fixed effects with sales by industry by year fixed

effects. Appendix Figure A3 shows coefficient estimates of these robustness checks alongside the

original estimate. The figure shows that adding firm-level controls does not change the estimates,

supporting our identification strategy. Altering the level of fixed effects only marginally affects

point estimates, with all changes well within one standard error of the original estimates.

Investment rates Appendix Figure A4 shows the impact of a 15% increase in CAPM β on

corporate investment rates. The investment rate
22
declines over time in response to the shock.

Starting from a near-zero impact at t+0, gradually becoming more negative, reaching the lowest

point after four to five years. The shock to the CAPM β leads to a significant (p<0.005) drop of

-2.56 p.p. in investment rates after four years. In standard deviation units, corporate investments

drops by 0.19 standard deviations. In terms of economic magnitudes this compares to Alfaro,

Bloom, and Lin (2024) who find that uncertainty shocks lead to a 0.18 standard deviation drop in

investment rates.

6.3 Changes in CAPM β and manager’s perceived cost of capital

We document that changes in the CAPM β affect the perceived cost of capital of firm managers,

using firm’s self-reported data collected from earnings calls by Gormsen and Huber (2023, 2024).

22
Defined as

CAPXt
1
2 (PPENTt−1+PPENTt)

(see e.g, Belo, Lin, and Bazdresch, 2014).
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We estimate the pass-through of changes in a firm’s CAPM β on the perceived cost of capital

using a series of instrumental variable (IV) regressions of the following form:

∆CAPM βi,t = δi + δj,t + θ∆BMIi,t + ϵi,t (13)

∆Perceived Cost of Capitali,t = αi + αj,t +
4∑

h=0

γh∆ ̂
CAPM βi,t−h + εi,t (14)

where the coefficient of interest,

∑4
h=0 γh, provides a causal estimate of the pass-through of

changes in a firm’s CAPM β to its perceived cost of capital. Including firm fixed effects αi ensures

we remove time-invariant heterogeneity across firms, and, in particular, accounts for possible ex-

ante differences in characteristics between treated and control firms. Size-by-year or industry-

by-year fixed effects, αj,t, further restrict the identifying variation to comparing firms within the

same size decile, liquidity decile, or industry each period.

We use a distributed lag model in Eq. (14) for both economic and econometric reasons. Man-

agers typically estimate CAPM β using OLS regressions using two to five years windows, so

changes in CAPM β are gradually incorporated into their perceived cost of capital as new data

becomes available. Gormsen and Huber (2023) show that this perceived cost of capital affects

managers’ required returns on new investments and investment decisions, with a transmission

lag of several years. Additionally, the data supports a distributed lag model over a contempora-

neous effect model, with Bayesian information criterion (BIC) values favoring fourth-order lags

(Appendix Table A9).

A firm’s perceived cost of capital and its stock’s CAPM β are jointly determined by its expo-

sure to aggregate risk in equilibrium. To address endogeneity and measurement error, we use an

instrumental variable approach, with BMI change as a natural instrument. BMI changes induce

CAPM β changes orthogonal to aggregate risk as shown by the difference-in-differences results.

The exclusion restriction requires that BMI increases affect a firm’s perceived cost of capital only

through changes in its CAPM β. This could be violated if BMI impacts perceived cost through

other channels, like reducing credit spreads due to reputational effects. However, in Section 5,

we find no evidence that BMI changes correlate with risk, financial constraints, or governance

changes, supporting the validity of the exclusion restriction.

Table 3 reports coefficient estimates of Eq. (14) for reduced form (RF), OLS, and IV specifica-

tions. Columns (1) to (3) report RF, columns (4) to (6) OLS, and columns (7) to (9) IV estimates.

The coefficients are positive, stable across specifications, and statistically significant (p<0.001).

Columns (1) to (3) of Table 3 show that increases in BMI predict increases in managers’ perceived
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Table 3: Effect of∆CAPM β on Managers’ Perceived Cost of Capital (Gormsen and Huber, 2024)

RF OLS IV

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent variable: ∆ Perceived Cost of Capital

∆ BMI 1.643
∗∗∗

1.680
∗∗∗

1.667
∗∗∗

(0.375) (0.373) (0.402)

∆ CAPM βA
1.202

∗∗∗
1.183

∗∗∗
1.135

∗∗∗
3.153

∗∗∗
3.694

∗∗∗
3.148

∗∗∗

(0.057) (0.059) (0.075) (0.825) (0.920) (0.769)

Firm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time ✓ ✓ ✓
Size Quartile × Time ✓ ✓ ✓
Industry × Time ✓ ✓ ✓
Observations 19,501 19,501 18,940 19,501 19,501 18,940 19,501 19,501 18,940

Notes: This table reports
∑4

h=0 γ̂h for specifications of the form: ∆Perc. Cost of Capitali,t = αi+αj,t+
∑4

h=0 γh∆CAPM βi,t−h+ εi,t
for reduced form, OLS, and IV regression where the instrument is∆BMI for stock i in year t. IV estimated via LIML. Yearly sample from

2000 to 2018. Standard errors in parentheses are clustered at firm-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

cost of capital. Comparing OLS to IV estimates shows that OLS estimates are downward-biased,

likely due to classical measurement error. IV estimates using BMI changes as an instrument for

CAPM β changes, are approximately three times larger than OLS estimates. Two mechanisms

introduce measurement error. First, we do not observe how firms estimate their CAPM β when

calculating their perceived cost of capital. We use the CAPM β estimates of Welch (2022b) due to

their superior performance in predicting future CAPM βs out of sample. In practice, firms often

simply estimate CAPM βs using equally-weighted observations on a rolling window of two to

five years (Berk and DeMarzo, 2023). Second, any empirical measure of CAPM β is an estimate
of the true CAPM β and thus subject to measurement error.

The IV estimates in column (8) imply that a two standard deviation change in a firm’s CAPM

β increases the manager’s perceived cost of capital by 80 bps. The resulting increase in perceived

cost of capital is substantial compared to typical financial price fluctuations. For example, Krish-

namurthy and Vissing-Jorgensen (2011) find that the Fed’s quantitative easing reduced corporate

bond yields by up to 50 bps.

7 Aggregate Effects of increased benchmarking

A body of literature finds that U.S. investment has been low in recent decades relative to prof-

itability and valuations. According to standard Q-theory, investment should have increased with

the rise in Tobin’s Q (Gutiérrez and Philippon, 2017). However, investment rates have been low

by historical standards, leading researchers to argue that there is “missing investment”, now ex-
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ceeding 20% of the aggregate capital stock, even after accounting for intangibles and other mea-

surement issues (Gormsen and Huber, 2023).

We argue that increased benchmarking has contributed to the missing investment puzzle.

Our difference-in-differences results show that BMI increases due to index inclusion raise firms’

CAPM βs. Extending this to the broader cross-section of firms, we estimate that the average

CAPM β increased by 0.46 over the past 25 years after being stable for nearly 30 years. We

attribute 80% of this increase to the 10.16 p.p. increase in average BMI since 1998. Counterfactuals

show that the increase in benchmarking raised the average firm’s WACC between 162 and 199

bps from 1998 to 2018, which largely offset the decline in risk-free rates.

We use the NBER-CES Manufacturing Industry Database to estimate the effect of increases

in industries’ average CAPM β on capital accumulation. Value-added weighted results indicate

that higher CAPM βs led to 10.7% lower capital accumulation from 2000 to 2016 at the aggregate

level. Thus, increases in CAPM βs can thus explain up to 57% of the missing investment.

7.1 Increase in average CAPM β over the past 25 years

Figure 4 shows the evolution of average CAPM β and average BMI from 1998 to 2018.
23
A casual

inspection of the graphs suggests that both time-series are related. The average BMI increased

from 8.16% in 1998 to 18.32% in 2018, while the average CAPM β increased from 0.63 to 1.09.

We estimate how an increase in the average cross-sectional BMI affects the average CAPM β

using the following specification:

CAPM βt+1 = α + γ1 BMIt + γ2 CAPM βt + εt. (15)

To address the potential of a “spurious regression”, we follow the advice of Hansen (p. 588, 2023)

and include a lag of the outcome variable.

Table 4a reports results of this time-series regressions in Columns (1) to (4). Column (1) shows

that BMI is a statistically significant (p<0.01) predictor of CAPM β, even after considering the au-

tocorrelation of CAPM βs. A 1 p.p. increase in average BMI is associated with a short-run increase

of 0.021 in the average CAPM β. The short-run estimate of 0.021×10 p.p.=0.21 is nearly identical

to the causally identified difference-in-differences estimate of 0.23 for a similar size increase in

BMI, as shown in Figure A1. The long-run effect of a 1 p.p. increase is 0.036≈0.021/(1-0.413).

Column (7) shows that the average BMI has increased by 10.16 p.p. from 1998 to 2018. Column

(8) shows that a 10.16 p.p. increase in average BMI is associated with an 0.37 long-run increase in

23
Appendix Figure A5 shows that the average CAPM β remained stable around a mean of 0.67 from 1975 to 2000.
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Figure 4: Average Cross-Sectional CAPM β and BMI over the Past 25 Years
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BMIt (%) CAPM βt Cons. Adj. R
2

BMI1998 BMI2018 ∆ BMI′98→′18 ∆ ̂
CAPM β ′98→′18

CAPM βt+1 0.021
∗∗

0.413
∗

0.173
∗

0.81 8.16% 18.32% 10.16 p.p. 0.367
∗∗∗

(0.006) (0.169) (0.062) (0.10) (0.16) (0.046)

Notes: Columns (1), (2), (3) report γ̂1, γ̂2, and α̂ of the following regression: CAPM βt+1 = α+γ1 BMIt+γ2 CAPM βt+εt+1. Column

(5) and (6) report the average BMI in 1998 and 2018, respectively. Column (7) is the increase in BMI over the sample period. Column

(8) reports the predicted increase in the CAPM β due to increasing BMI over the sample period (γ̂1/(1− γ̂2)×10.16 p.p.). Newey-West

standard error in parentheses with L=2 lags. Yearly sample from 1998 to 2018 (N=21). + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

average CAPM β. This implies that approximately 80% of the increase in average CAPM β from

1998 to 2018 is due to the rise in average BMI.
24

7.2 The weighted average cost of capital over the past 25 years

We next document that the benchmarking induced CAPM β distortions are large enough to affect

the average firm’s weighted average cost of capital (WACC) over the past 25 years. We calculate

two counterfactuals to illustrate this point. First, we adjust the CAPM β for the increase in BMI

and recalculate the WACC. Second, we set the CAPM β constant at its pre-2000 average.

We calculate the average cross-sectional WACC in the Compustat sample as follows:

WACCt = ωt × rEt + (1− ωt)× rDt × (1− τ t) (16)

24
We cannot statistically reject that 100% of the increase in CAPM β is driven by the increase in BMI.
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Figure 5: Actual and Counterfactual Estimates of Cost of Equity Capital and WACC
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Notes: This figure shows monthly estimates of the cross-sectional averages of cost of equity capital and WACC. Red

solid line shows cost of capital estimates using the actual CAPM βt. Blue and orange dashed lines show counterfac-

tuals where CAPM βt is adjusted for BMI increase (see Eq. 18) or set constant at its pre-2000 average, respectively.

where ωt = Et/(Et + Dt) represents the fraction of firm value financed by equity (on average

0.76 over the sample period). The term τ t is the average cross-sectional tax rate (on average 0.26).

The expected return on equity is given by the CAPM

rEt = rft + βt ×
(
Et

[
rMkt

]
− rft

)
, (17)

where we set the real risk-free rate, rft , to the constant maturity yield on 10-year Treasury

Inflation-Protected Securities (TIPS). We assume a constant 6% ERP
25
and use the yield on the

ICE-BofA High-Yield Bond Index to estimate the average expected return on debt, rDt .
26

We calculate two simple counterfactual WACCs motivated by our findings that increases in

BMI cause CAPM βs to rise and that 80% of the aggregate increase in CAPM βs was driven by

increases in the BMI (see Figure 4). In the first counterfactual, we set the CAPM β to its long-run

average before the year 2000, i.e. β
CF 1

t = 0.67 ∀ t (see Appendix Figure A5). In the second, we

25
Results using a time-varying ERP show that the cost of equity and WACC have increase over the past 25 years.

The weighted average cost of capital would have declined had the CAPM β not increased (Appendix Figure A7).

26
The ICE-BofA yield closely tracks other common proxies for the average cost of debt. For instance, Gormsen and

Huber (2024) use interest expenses over total debt in Compustat. Appendix Figure A6 shows both time-series.
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adjust the average CAPM βt in Eq. (17) as follows:

β
CF 2

t = β1998/1 +
1

5
×

t∑
i=1998/2

(βi − βi−1) ∀ t > 1998/1. (18)

This adjustment guarantees that the counterfactual CAPM β
CF 2

t is perfectly correlated with the

actual CAPM βt, but the increase in CAPM β is exactly 20% at the end of the sample.

Results Figure 5 shows estimates of the actual and counterfactual cost of equity capital and

WACC from 1998 to 2018. The actual cost of equity capital remained relatively stable over the

time-period. The cost of equity for the average firm in 2018 is approximately 60 bps lower than

in 1998. In the counterfactual scenarios, however, the cost of equity declines substantially. The

decline is driven by the secular decline in the risk-free rate over the past 25 years (Bauer and

Rudebusch, 2020). The counterfactual uncovers that the decline in the risk-free rate was largely

offset by an increase in equity risk premium for the average firm. The actual WACC decreased

slightly over the sample period, while the counterfactuals decreased substantially. The actual

WACC decreased by approximately 60 bps over the sample period. The counterfactual WACC

declines between 162 and 199 bps from 1998 to 2018.

7.3 Long-term effects of CAPM β distortions on capital accumulation

We use the NBER CESManufacturing Industry database to study the long-term effects of increas-

ing CAPM βs due to increased benchmarking on capital accumulation at the aggregate-level.

We estimate the long-term effects of increasing CAPM βs due to higher benchmarking at

the NAICS-5 digit industry-level. We weigh each industry observation by its value-added in the

year 2000 to obtain results comparable to the aggregate economy. We estimate a series of IV

regressions in long-differences from 2000 to 2016 of the form:

∆CAPM β‘00→‘16
i = δj + θ∆BMI

‘00→‘16
i + ζX ‘00

i + ϵi (19)

log
(
Real Capital Stock

‘16
i /Real Capital Stock‘00i

)
= αj + γ∆ ̂

CAPM β
‘00→‘16

i + ζX ‘00
i + εi (20)

where αj are NAICS 3-digit subsector fixed effects. The vector of control variablesX
‘00
i includes

industry-level characteristics in 2000, such as the log of employment and TFP. The controls ac-

count for initial differences in industry characteristics that may affect capital accumulation. We

calculate the change in CAPM β for industry i from 2000 to 2016 as the difference between the

market equity-weighted average CAPM β of firms in that industry in 2016 and 2000. Similarly,
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Table 4: Long-term Effects of Benchmarking on Capital Accumulation at the Industry-level

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable: log
(
Real Capital Stock

‘16
)
− log

(
Real Capital Stock

‘00
)

∆CAPM β‘00→‘16
-0.327

+
-0.300

+
-0.484

∗
-0.525

∗∗
-0.280

∗
-0.276

∗
-0.322

∗
-0.293

∗

(0.172) (0.155) (0.188) (0.195) (0.132) (0.128) (0.147) (0.147)

log
(
Emp

‘00
)

-0.041 -0.003 0.0054 0.072
∗

(0.034) (0.037) (0.035) (0.030)

log
(
TFP

‘00
)

0.057 -0.341
+

0.383
∗∗

-0.019

(0.150) (0.175) (0.134) (0.116)

Constant 0.266
∗

0.428
∗

0.213
∗∗∗

0.193

(0.104) (0.211) (0.063) (0.213)

Fixed Effects
Subsector ✓ ✓ ✓ ✓

FS F-stat. 20.14 26.33 17.71 18.32 25.64 30.70 29.23 27.29

Weights VA
‘00

VA
‘00

VA
‘00

VA
‘00

Observations 111 111 107 107 111 111 107 107

Notes: This table reports coefficient estimates of regressions at the NAICS 5-digit industry-level of the form:

∆ log (Real Capital Stock)
‘00→‘16
i = αj + γ∆CAPM β‘00→‘16

i + ζX ‘00
i + εi where changes in CAPM β are instru-

mented with changes in BMI. Sub-sector fixed effects are at the NAICS 3-digit level. Columns (5) to (8) weighted by

industry value added in 2000. FS F-stat is Kleibergen-Paap F-stat for weak instruments. All variables are winsorized

1% and 99% level to account for outliers. Standard errors in parentheses. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

we calculate the change in industry BMI from 2000 to 2016 as the difference between the market

equity-weighted average BMI of firms in the same industry in 2016 and 2000.

A potential concern with our industry-level analysis is that the effects of increasing bench-

marking on capital accumulation may be confounded by other secular changes in the economy.

Perhaps the most significant change over the sample period was the U.S. economy’s transition

from a manufacturing-based economy to a technology- and information-based economy.

We address this concern by including NAICS 3-digit sub-sector
27
fixed effects in the regres-

sions. Using sub-sector fixed effects, we identify the effects of changes in CAPM β on capital

accumulation using variation across industries within the same sub-sectors.

Results Table 4 reports coefficient estimates of Eq. (20) for OLS and WLS, with observations

weighted by their value added in 2000. Several things are worth noting. First, across all specifi-

cations, we find that increases in CAPM βs have a statistically significant (p<0.05) negative effect

on long-term capital accumulation at the industry-level. Second, the estimated coefficients are

economically meaningful. The weighted coefficient of Column (8) implies that a 0.37 increase in

average CAPM β is associated with a 10.7% (≈0.37×0.29×100%) lower aggregate capital stock

27
For example, the NAICS 3-digit sub-sector “311 - Food Manufacturing” contains 12 NAICS 5-digit industries.
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over the 17-year period. These magnitudes imply a user cost of capital elasticity of approxi-

mately -0.98, which is close to the value of unity implied by a Cobb-Douglas production function.

Third, the results are robust to the inclusion of industry-level controls and sub-sector fixed effects.

Fourth, changes in BMI are strong instruments for changes in CAPM β even at the industry-level,

with first-stage F-stats of at least 17.7.

Gormsen and Huber (Figure 10, 2023) calculate that the cumulative investment shortfall in

the U.S. from 2002 to 2016 is approximately 17.5%. Our results suggest that the increase in CAPM

βs due to the increase in benchmarking can explain up up to 57% of the cumulative investment

shortfall.

8 Conclusion

This paper studies the causal effects of benchmarking-induced asset price distortions on corpo-

rate investment. We find that increases in benchmarking intensity cause CAPM βs to rise. Over

the past 25 years, increased benchmarking has caused the average CAPM β to rise by 0.37, follow-

ing nearly 30 years of stability. Firms reduce investment in response to benchmarking-induced

increases in CAPM β. We argue that this behavior results from managers’ reliance on textbook

guidance to estimate the cost of capital using the CAPM, without internalizing the asset price

distortions caused by benchmarking. Consistent with this mechanism, managers report higher

perceived costs of capital in earnings calls after their CAPM β increases due to benchmarking.

An influential literature shows that U.S. investment has been low relative to valuations over

the past two decades. Our findings suggest that increases in average CAPM β can explain up to

57% of the cumulative investment shortfall since the early 2000s. The benchmarking of asset man-

agers and the rise in passive investing therefore have significant and economically meaningful

implications for aggregate investment.

In conclusion, our study highlights the important role of benchmarking in shaping asset

prices and corporate investment decisions. The findings underscore the need formanagers, policy

makers, and investors to consider the unintended consequences of the growth in benchmark-

linked capital and its impact on the real economy.
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A Appendix

A.1 Appendix Figures

Figure A1: Difference-in-differences Event Study for Different Treatment Intensities
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Notes: This figure shows difference-in-differences event study coefficients of Eq. (8) for different treatment intensities.

Treatment effects are normalized to zero in t-4. Change in CAPM β of treated stocks relative to control group

where |∆ BMI|<1.5 p.p.. Pointwise confidence intervals (90%) based on double-clustered standard errors. Values in

parentheses on the Y-axis indicate the median CAPM β pre-treatment for all treatment intensities.
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Figure A2: Event Study Placebo

-0.05

-0.04

-0.03

-0.02

-0.01

0.01

0.02

0.03

0.04

0.05

0 (1.16)

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
9
+

-6
+

Relative Time in Months

Diff-in-Diff: Placebo Test

Notes: This figure shows difference-in-differences event study coefficients of Eq. (8). Treatment group: ∆BMI ∈
(0 p.p., 1 p.p.]. Control group: ∆BMI ∈ [−1 p.p., 0 p.p.]

Figure A3: LP-IV Robustness to various Alternative Specifications
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Figure A4: Impact of changes in CAPM β on investment rate
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Notes: This figure shows estimates for γh
of Investment Ratei,t+h = αi + αj,t + γh

ĈAPM βi,t + X ′
i,tξ + εi,t+h,

estimated using changes in BMI as an IV for changes in CAPM β. Estimates are scaled to a 0.16 change in CAPM β.
Investment rate is defined as

CAPXt
1
2 (PPENTt−1+PPENTt)

(see e.g, Alfaro et al., 2024 or Belo et al., 2014). Median and standard

deviation of investment rate is 19.9% and is 13.5% over the sample period from 2000 to 2018, respectively.

Figure A5: Time Series of Average CAPM β since 1975
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Notes: This figure shows the monthly cross-sectional average CAPM β of Welch (2022b) since 1975. Time-series are

smoothed using a two-sided moving-average filter with 12 month window on either side.
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Figure A6: Average Cost of Debt Capital and Real Risk-free Rate over the Past 25 Years
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Notes: This figure shows monthly estimates of the average firm’s cost of debt. The solid blue line proxies for cost

of debt using interest expenses over total debt in Compustat. The dashed red line proxies for cost of debt using the

yield on the ICE-BofA HY index. Dashed blued line proxies for risk-free rate using the yield on 10-year TIPS from

2004 to 2018 and before 2004 nominal Treasurys adjusted for 10-year inflation expectations from the SPF.
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FigureA7: Average Cost of Equity Capital andWACCover the Past 25 Years (Using Time-varying

Equity Risk Premium Implied by S&P 500 Dividend Yield)

4.0%

4.5%

5.0%

5.5%

6.0%

6.5%

7.0%

7.5%

8.0%

8.5%

9.0%

9.5%

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Actual βt
CF 1: βt = 0.67∀ t
CF 2: βt = β1 +

∑
1/5(βt − βt−1)

(a) Cost of Equity Capital

4.0%

4.5%

5.0%

5.5%

6.0%

6.5%

7.0%

7.5%

8.0%

8.5%

9.0%

9.5%

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

(b) Weighed Average Cost of Capital

Notes: This figure shows monthly estimates of the cross-sectional averages of cost of equity capital andWACC using

a time-varying ERP. We estimate Et

[
rMkt

]
− rft by calculating the time-varying expected return on the market

(proxied by the S&P 500) using Gordon’s growth model: Et

[
rMkt

]
= Dt+1/Pt+g. We assume the average expected

real dividend growth, g, to be constant at 4.88%. We use the average expected dividend growth rate of the S&P 500

(7.31%) from 1994 to 2011 (Golez, 2014) and subtract expected annual inflation over the next 10 years (SPF). Red solid

line shows cost of capital estimates using the actual CAPM βt. Blue and orange dashed lines show counterfactuals

where CAPM βt is adjusted for BMI increase (see Eq. 18) or set constant at its pre-2000 average, respectively.
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A.2 Appendix Tables

Table A1: Effect of Change in Benchmarking Intensity on CAPM β

Treatment Group: ∆ BMI>5p.p.

Sample: Market Equity ≥ P10 NYSE Market Equity ≥ P20 NYSE

(1) (2) (3) (4) (5) (6) (7) (8)

Treated × Post 0.111
∗∗∗

0.117
∗∗∗

0.111
∗∗∗

0.111
∗∗∗

0.102
∗∗∗

0.109
∗∗∗

0.102
∗∗∗

0.103
∗∗∗

(0.013) (0.012) (0.012) (0.012) (0.014) (0.012) (0.013) (0.013)

Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fixed Effects

Firm × Cohort ✓ ✓ ✓ ✓ ✓ ✓
Time × Cohort ✓ ✓
Size Decile × Time × Cohort ✓ ✓
Volume Decile × Time × Cohort ✓ ✓
Shrs. Out. Decile × Time × Cohort ✓ ✓

Observations 291,822 291,754 291,688 291,617 249,916 249,840 249,745 249,703

Notes: This table shows reports coefficient estimates of Eq (8). Treated×Post is the average of the post-treatment coefficients after 5 months (to

account for the expanding-window estimation of CAPM β). Sample from 2000-01 to 2019-06. Standard errors in parentheses are double-clustered

at firm and year-month level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table A2: Robustness to Alternative CAPM β Estimators

(1) (2) (3) (4) (5) (6) (7)

Panel A: CAPM β estimates using expanding windows of daily data with exponentially decaying weights of 3-months half life

∆ CAPM βOLS
EW ∆ CAPM βWEL

EW ∆ CAPM βDIM
EW ∆ CAPM βBLU

EW ∆ CAPM βTOP
EW ∆ ρ(ri, rm)EW ∆ σi

EW

∆ BMI 1.146
∗∗∗

0.947
∗∗∗

0.752
∗∗∗

0.764
∗∗∗

1.056
∗∗∗

0.388
∗∗∗

-0.00222

(0.059) (0.047) (0.080) (0.039) (0.055) (0.019) (0.002)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Adj. R

2
0.19 0.20 0.14 0.19 0.30 0.38 0.55

Observations 36,095 36,095 36,095 36,095 36,095 36,095 36,095

Panel B: CAPM β estimates using daily data with a 2-year rolling window (with equal weights)

∆ CAPM βOLS
RW ∆ CAPM βWEL

RW ∆ CAPM βDIM
RW ∆ CAPM βBLU

RW ∆ CAPM βTOP
RW ∆ ρ(ri, rm)RW ∆ σi

RW

∆ BMI 0.300
∗∗∗

0.247
∗∗∗

0.212
∗∗∗

0.200
∗∗∗

0.325
∗∗∗

0.140
∗∗∗

-0.00429
∗∗∗

(0.040) (0.032) (0.055) (0.027) (0.038) (0.013) (0.001)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Adj. R

2
0.24 0.25 0.18 0.24 0.33 0.39 0.53

Observations 36,095 36,095 36,095 36,095 36,095 36,095 36,095

Notes: This table reports coefficient estimates of specifications of the form: ∆βi,t = αi + αt + γ∆BMIi,t + εi,t. β
WEL

is estimator of Welch (2022b), βDIM
is estimator

of Dimson (1979), βBLU
is estimator of Blume (1975) (also known as Bloomberg β), βTOP

is β with respect to ten largest stocks by market capitalization, EW stands

for expanding window, RW for rolling window. Changes in BMI and CAPM βs are winsorized at the 1% and 99% level. Standard errors in parentheses are clustered at

firm-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

Table A3: Placebo test using the CAPM β of peer firms

(1) (2) (3) (4) (5) (6)

Firm’s Firm’s All Peers’ Peer n=1’s Peer n=2 Peer n=3’s

∆ CAPM βE ∆ CAPM βE ∆ CAPM βE ∆ CAPM βE ∆ CAPM βE ∆ CAPM βE

∆ CAPM βPeer
0.232

∗∗∗

(0.010)

∆ BMI 0.814
∗∗∗

0.037 0.075 -0.009 0.043

(0.054) (0.029) (0.046) (0.043) (0.045)

Fixed Effects
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Peer FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓

Adj. R
2

0.421 0.249 0.472 0.466 0.471 0.479

Observations 46,689 16,995 47,749 16,470 16,022 15,257

Notes: This table reports coefficient estimates for a placebo test using N=3 firm peers’ change in CAPM β and assigns them

the ∆ BMI of the firm: ∆CAPM βPeer

j,t = αi + αj + αt + ∆BMI
Firm

i,t + εj,i,t for firm i and peer j in year t. Standard errors in

parentheses are clustered at the firm-level in column (2) and double-clustered at firm and peer level in other columns. + p<0.10,

* p<0.05, ** p<0.01, *** p<0.001.
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Table A4: Changes in CAPM β and firm-level risk measures of Hassan et al. (2019)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(in σ units) ∆ Risk ∆ Pol. Risk ∆ Pol. Risk - Econ. ∆ Pol. Risk - Secu. ∆ Pol. Risk - Tech. ∆ Pol. Risk - Trade

∆ CAPM βE
0.0192

∗∗
0.0170

∗
0.0163

∗
0.0149

∗
0.0087 -0.0002

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

∆ BMI -0.0086 0.0080 -0.0011 0.0097 0.0115 -0.0088

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

Fixed Effects
Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Adj. R
2

0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.13 0.13

Observations 29,970 29,970 29,985 29,985 29,963 29,963 29,978 29,978 29,982 29,982 29,976 29,976

Notes: This table reports coefficients estimates for regression specifications of the form: ∆Firm-level Riski,t = αi+αt+γ ∆BMIi,t+ νi,t. Changes in firm-level risk

(Hassan et al., 2019) calculated between 1st and 4th quarter of the year. Coefficients are standardized to unit variances. Changes in firm-level risk measures, CAPM

βs, and BMI are trimmed at the 1% and 99% level. Standard error in parentheses are clustered at the firm-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

Table A5: Changes in CDS Spreads and CAPM βs of CDS Spreads

Dependent variable: ∆ CDS Spread (in σ units) ∆ CDS CAPM β (in σ units)

(1) (2) (3) (4) (5) (6) (7) (8)

∆ BMI (in σ units) -0.0221 -0.0244 -0.0189 -0.0283 0.0280 0.0189 0.0014 0.0305

(0.0212) (0.0209) (0.0207) (0.0210) (0.0240) (0.0242) (0.0253) (0.0260)

Momentum (Cum. Ret.) -0.120
∗∗∗

-0.140
∗∗∗

-0.0618
∗∗

-0.0366

(in σ units) (0.0315) (0.0332) (0.0238) (0.0259)

Fixed Effects
Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Year × Size Decile ✓ ✓
Year × Momentum Decile ✓ ✓

Adj. R
2

0.260 0.269 0.303 0.315 0.103 0.106 0.179 0.155

Observations 2,798 2,798 2,798 2,798 2,299 2,299 2,299 2,299

Notes: This table reports coefficients estimates for regression specifications of the form: ∆CDS Spreadsi,t = αi+αt+γ ∆BMIi,t+ νi,t.
Coefficients are standardized to unit variances. CDS spreads for senior unsecured debt with tenor of 5 year and doc clause XR14 (no

restructuring). CDS CAPM βs are calculated on daily data from 2010 to 2019 using the weighted least squares estimator of Welch (2022b)

with exponentially decay of 3 months half life. Changes in CDS spreads and CDS CAPM βs are trimmed at the 2% and 98% level. Standard

error in parentheses are clustered at the firm-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

Table A6: Changes in measures of text-based financial frictions (Hoberg and Maksimovic, 2015)

(1) (2) (3) (4) (5) (6)

(in σ units) ∆ Inv. Delay ∆ Inv. Delay &

Equity Issue

∆ Inv. Delay &

Debt Issue

∆ Inv. Delay &

Private Issue

∆ Inv. Delay &

Equity (LW, ’23)

∆ Inv. Delay &

Debt (LW, ’23)

∆ BMI -0.0008 -0.007 -0.0004 -0.005 -0.010 0.004

(0.009) (0.009) (0.009) (0.009) (0.008) (0.007)

Fixed Effects
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓

Adj. R
2

0.08 0.07 0.06 0.07 0.07 0.04

Observations 23,463 23,463 23,463 23,463 32,275 32,275

Notes: This table reports coefficients estimates for regression specifications of the form: ∆Measure of Financial Constrainti,t = αi+αt+γ∆BMIi,t+
νi,t. Changes in text-based financial constraint measures from Hoberg and Maksimovic (2015) and Linn and Weagley (2021). Coefficients are

standardized to unit variances. Changes in financial constraints measures, CAPM βs, and BMI are trimmed at the 1% and 99% level. Standard error

in parentheses are clustered at the firm-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table A7: Changes in measures of corporate governance

(1) (2) (3) (4) (5) (6)

(in σ units) ∆ S&P G-Score ∆ Sus. G-Score ∆ Ref. G-Score ∆ Sus. ESG ∆ S&P ESG ∆ Ref. ESG

∆ BMI -0.024 -0.020 0.008 -0.009 0.031 -0.003

(0.057) (0.024) (0.017) (0.026) (0.057) (0.017)

Fixed Effects
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓

Adj. R
2

0.31 0.20 0.07 0.23 0.34 0.10

Observations 2,003 7,168 13,925 7,326 2,003 13,925

Notes: This table reports coefficients estimates for regression specifications of the form: ∆Governance Scorei,t = αi + αt +
γ ∆BMIi,t + νi,t. Governance and ESG scores of Standard & Poor, Sustainalytics, and Refinitiv. Coefficients are standardized to

unit variances. Changes in G-Scores, ESG Scores, and BMI are trimmed at the 1% and 99% level. Standard error in parentheses are

clustered at the firm-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

Table A8: LP-IV: Point Estimates of the Real Effects of Changes in β

Horizon

Capital

Expenditure

Cash &

Short-Term Inv.

Dividends &

Repurchases

Physical

Capital

Intangible

Capital

No Obs.

t+1 -2.00 -1.24 0.04 -0.85 -1.44 13,829

(2.59) (2.71) (12.75) (1.59) (1.19)

t+2 -3.93 3.96 2.33 -3.18 -3.98
∗

11,943

(3.21) (3.14) (10.49) (1.96) (1.56)

t+3 -6.10
+

3.68 11.70 -4.30
+

-4.20
∗

10,342

(3.52) (3.42) (13.23) (2.41) (1.76)

t+4 -5.58 8.41
+

9.86 -3.83 -6.62
∗∗

8,881

(3.57) (4.91) (18.66) (2.61) (2.51)

t+5 -9.47
∗

11.40
+

38.30 -6.87
∗

-8.14
∗

7,518

(4.82) (5.94) (24.16) (3.23) (3.81)

t+6 -9.92 5.50 30.89 -7.12 -8.36
+

6,327

(6.52) (6.93) (25.43) (4.72) (4.69)

H0: ATE = 0 0.03 0.12 0.53 0.02 0.00

Avg. FS F-stat. 50.48

Notes: This table reports coefficient estimates of LP-IV specifications of the form: log (Yi,t+h/Yi,t−1) = αh
i +

αh
j,t + γh∆ ̂

CAPM βi,t + ξhXi,t + εi,t+h for h = 1, . . . , 6. Specifications include lags of outcome variables and

shocks of up to 3th order. All variables are winsorized at the 2.5% and 97.5% level. FS F-stat is Kleibergen-Paap

F-statistic for weak instruments. H0 ATE = 0 refers to the null that the coefficients for h = 1, . . . , 6 are jointly

zero. Standard error in parentheses are clustered at the firm-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table A9: Lag-selection based on Bayesian/Schwartz Information Criterion

Maximum lag length L=0 L=1 L=2 L=3 L=4 L=5 L=6

Bayesian Information Criterion (OLS) 451 391 389 310 187 157 165

Bayesian Information Criterion (IV) 1,970 755 518 460 411 577 628

Observations 14,495 14,495 14,495 14,495 14,495 14,495 14,495

Notes: This table reports BIC for regression specifications of the form: ∆Perceived Cost of Capitali,t = αi + αt +
γ ∆CAPM βi,t + νi,t for OLS and IV regression specification where changes in CAPM β are instrumented by

changes in BMI.
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A.3 RDD at the Russell 3000 cutoff

We employ an alternative strategy to estimate the change in a firm’s CAPM β due to a change in

the stock’s BMI using a regression discontinuity design at the Russell 3000 cutoffs.
28
To do so, we

translate monthly estimates of CAPM βs to the year-firm-level using the following procedure.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Avg. pre-period β̂ ∆ BMI
Avg. post-period β̂

∆CAPM β = Avg. post-period β̂ − Avg. pre-period β̂

Figure A8: Timeline of Changes in CAPM

We define the change in a firm’s CAPM β as the difference between the average β in the period

before the BMI changes
29
(December toMarch) and a post-period (August to November). We drop

April to July to avoid the potentially confounding effects of trading related to the index inclusion

or exclusion on the β estimates. Figure A8 provides a visual representation of the timeline.

We estimate the local average treatment effect of Russell 3000 index inclusion on a firm’s

CAPM β by estimating a series of regression discontinuity specifications using the following

form:

∆CAPM βi = α0 + α1Di + f(Rank− Cutoff)i + f(Rank− Cutoff)i ×Di + ηi (21)

whereDi is an indicator variable for whether firm i’s market value rank exceeds the Russell 3000

inclusion cutoff in year t. The coefficient of interest, α1, summarizes the local average treatment

effect of changes in BMI due to index reconstitution on a firm’s CAPM β.

Identifying assumptions and threats to identification Our identification assumes that firms

are not able to manipulate their market equity rank relative to the index cutoff with precision.

This assumption is typically tested by checking for bunching around the cutoff with the McCrary

(2008) test. However, bunching is not possible because the assignment variable is a rank. More-

over, an idiosyncratic shock to the market value on the rank date can bring the stock to the other

side of the cutoff. Taken together, these two points imply that index assignment near the cutoff is

28
Appendix A.4 repeats this exercise at the Russell 1000 cutoffs for the years from 2002 to 2006 with similar results.

29
We again focus on stocks for which the BMI changes by at least 5 p.p. in absolute value to ensure that we select

stocks that are affected by the index reconstitution.

51



Figure A9: Regression discontinuity study at Russell 3000 cutoffs
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Notes: This figure shows changes in BMI and CAPM β relative to index inclusion cutoffs. Y-axis values in parentheses

are average of variables in levels pre-treatment within 50 ranks of cutoff. Changes in BMI are calculated as the

difference in BMI between May and June. Changes in CAPM β is difference between the average in the first and

fourth quarter. Standard errors are clustered at firm-level. Sample from 2008 to 2018.

as good as random (Chang et al., 2015). Limburg (2024) tests if firm try to manipulate their equity

rank to become index members but finds no evidence of such behavior.

Results Panel (a) of Figure A9 shows that the BMI discontinuously changes at the Russell 3000

inclusion cutoff. The BMI for stocks included in the Russell 3000 increases on average by 17 p.p.;

an approximately five-fold increase relative to their pre-treatment average (measured within 50

ranks of the cutoff) of 3% BMI. Conversely, stocks dropped from the Russell 3000 see an average

decrease of 18 p.p. in BMI.

Panel (b) of Figure A9 shows that this increase in BMI associated with index reconstitution

drastically change the CAPM βs of treated firms. The CAPM β of stocks that experience an

increase in BMI due to index inclusion increases by 0.14 on average. Conversely, the CAPM β of

stocks that experience a decrease in BMI at index reconstitution decreases by 0.21; a decrease of

18% relative to their pre-treatment average CAPM β of 1.18.

Table A10 reports the results of the regression discontinuity specification in (21). The co-

efficient estimate of the local average treatment effect, α1, is positive and always statistically

significant at the 5% level or higher. Columns (1) to (7) use a parametric regression discontinuity
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Table A10: Regression Discontinuity

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable: ∆ CAPM β

LATE 0.363
∗∗∗

0.305
∗∗

0.342
∗∗

0.311
∗

0.342
∗∗

0.289
∗

0.303
∗∗∗

0.218
∗

(0.0740) (0.0963) (0.0880) (0.105) (0.0995) (0.102) (0.0783) (0.101)

f(X) Linear Quadratic Linear Quadratic Linear Quadratic Poly(1) Poly(2)

Window width 300 300 200 200 150 150 300 300

Kernel Triangular Triangular

Bandwidth 122.4 111.2

Adj. R
2

0.415 0.417 0.440 0.441 0.437 0.440

Observations 1,185 1,185 914 914 737 737 1,185 1,185

Notes: This table reports the local average treatment effect (α1) of Russell 3000 index inclusion on a firm’s CAPM β from regression

discontinuity specifciations: ∆CAPM βi = α0 + α1Di + f(Rank − Cutoff)i + f(Rank − Cutoff)i ×Di + ηi. Standard errors in

parentheses are double-clustered at firm and year level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

designs, while (7) and (8) are show non-parametric estimates using local polynomial regressions

of order 1 and 2 using triangular kernels with automatic bandwidth selection. Columns (1), (2),

(7), (8) estimate treatment effects around the index cutoffs with a window of 300 ranks on each

side. Columns (3) and (4) use a window of 200 ranks, and columns (5) and (6) use a window of

150 ranks. The estimated coefficients are reasonably stable across columns (1) to (7) but around

one third smaller for the local quadratic non-parametric estimate of column (8). The local aver-

age treatment effect, however, are again all large and economically meaningful. For example, the

coefficient estimate of 0.289 in Column (6) implies an increase of 1.73 p.p. in the cost of equity

capital using the CAPM (assuming an ERP of 6%).

A.4 RDD at the Russell 1000 cutoff

Table A11: Regression Discontinuity at Russell 1000 cutoffs

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable: ∆ CAPM β

LATE -0.114
∗

-0.142
∗

-0.124
+

-0.131
+

-0.126
+

-0.167
+

-0.233
∗∗∗

-0.262
∗∗∗

(0.0354) (0.0509) (0.0551) (0.0488) (0.0490) (0.0641) (0.0573) (0.0642)

f(X) Linear Quadratic Linear Quadratic Linear Quadratic Poly(1) Poly(2)

Window width 300 300 200 200 150 150 300 300

Kernel Triangular Triangular

Bandwidth 52.8 86.4

Adj. R
2

0.104 0.106 0.124 0.132 0.159 0.162

Observations 474 474 390 390 322 322 474 474

Notes: This table reports the local average treatment effect (α1) of Russell 1000 index inclusion on a firm’s CAPM β from regression

discontinuity specifciations: ∆CAPM βi = α0 + α1Di + f(Rank− Cutoff)i + f(Rank− Cutoff)i ×Di + ηi. Standard errors in

parentheses are double-clustered at firm and year level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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B Online Appendix (for online publication only)

Table B1: Robustness to Industry CAPM β Estimators (scaled to 10 p.p. increase in BMI)

(1) (2) (3) (4) (5) (6) (7) (8)

∆ CAPM βOLS
RW ∆ CAPM βWEL

RW ∆ CAPM βDIM
RW ∆ CAPM βBLU

RW

∆ BMI 0.193
∗

0.169
∗∗

0.157
∗

0.140
∗∗

0.281
∗∗

0.221
∗∗∗

0.129
∗

0.113
∗∗

(scaled to 10 p.p. incr.) (0.071) (0.051) (0.060) (0.043) (0.085) (0.060) (0.047) (0.034)

Industry Classification FF30 FF48 FF30 FF48 FF30 FF48 FF30 FF48

Industry FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Adj. R

2
0.03 0.03 0.03 0.04 0.05 0.04 0.03 0.03

Observations 507 753 507 753 507 753 507 753

Notes: This table reports coefficient estimates of specifications of the form: ∆βi,t = αi + γ∆BMIi,t + εi,t at the
industry level i for Fama-French’s 30 and 48 industries. Estimates are scaled to a 10 p.p. increase in BMI at the

industry level. βWEL
is estimator of Welch (2022b), βDIM

is estimator of Dimson (1979), βBLU
is estimator of

Blume (1975) (also known as Bloomberg β), RW stands for rolling window. Changes in BMI and CAPM βs are

winsorized at the 1% and 99% level. Standard errors in parentheses are clustered at industry-level. + p<0.10, * p<0.05,

** p<0.01, *** p<0.001.
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