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1 Introduction

What moves asset prices is one of the oldest questions in finance. The intermediary asset

pricing literature suggests that the prices of many assets depend not only on the preferences

of households, but also on the equity capitalization of financial intermediaries, called dealers

(e.g., Brunnermeier and Pedersen (2009); He and Krishnamurthy (2012, 2013); Brunnermeier

and Sannikov (2014)). One reason is that dealers face capital constraints. At the same time,

dealers enjoy market power in various markets, including Treasury, repo and foreign exchange

markets (e.g., Allen and Wittwer (2022); Huber (2022); Wallen (2022)). This stands in

contrast to the traditional view that financial markets are highly competitive, motivating

the assumption of perfect competition in models of intermediary asset pricing.

We zoom in on the intermediary sector to study how dealer capitalization a↵ects asset

demand, and therefore prices, and quantify the e↵ect in a framework that allows for dealer

market power (as in Kyle (1989)). We first introduce a model in which strategic dealers face

regulatory capital constraints to highlight how their asset-demand, and ultimately prices,

are impacted by their degree of capitalization and market power. Then, we provide evidence

in favor of our model and calibrate it with data on Canadian Treasury auctions by leveraging

regulatory changes during the COVID-19 pandemic.

In the model, presented in Section 2, dealers compete to buy multiple units of an asset

that pays out an uncertain return in the future. They are risk averse and subject to a

capital constraint. The market may clear via di↵erent auction formats, which represent

primary auctions or exchanges. In the benchmark auction, each dealer submits a demand

curve that specifies how much it is willing to pay for di↵erent units of the asset. The market

clears at the price at which aggregate dealer demand meets supply, and each dealer wins the

amount it asked for at that price (uniform price auction).

We show that there is an equilibrium in which each dealer’s demand depends on whether

and how tightly the capital constraint binds. This is measured by the shadow cost of the
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capital constraint. The main prediction of the model is that demand (which map prices into

quantities) becomes flatter when capital constraints are relaxed as it becomes cheaper to buy

larger amounts of the asset. Unless supply adjusts, the market price increases.1 At the same

time, dealers distort the market price further away from the price that would arise if they

were price-takers. This is a source of ine�ciency, for instance, because distorted prices in

the primary market may distort trading and the security allocation in the secondary market.

We use data on Canadian Treasury auctions to test and calibrate the model leveraging two

attractive features. First, dealers submit entire demand curves. We can therefore observe

whether demand is flat or steep. Alternatively, we would need to aggregate individual

demands from secondary market trades—which involves observing individual trades, and

pooling data points over time and across market participants. Second, we can link the

dealers’ demand curves to balance sheet information, which is crucial for establishing a link

between dealer demand and capitalization.

Our data, presented in Section 3, combines bidding information on all regular Canadian

Treasury auctions between January 2015 and February 2022 with balance sheet information

of the eight largest dealers at the company holding level (following He et al. (2017)). We

observe all winning and losing bids. To make bonds with di↵erent coupons and maturities

more comparable, bids are expressed in the yield-to-maturity (the annualized interest rate

that equates the price with the present discount value of the bond). Therefore, we conduct

our empirical analysis with yields instead of prices. In addition, we see the Basel III Leverage

Ratio (LR) of each dealer-bank, which is the Canadian equivalent to the Supplementary

Leverage Ratio (SLR) in the U.S. It is reported quarterly, measures a bank’s Tier 1 capital

relative to its total leverage exposure, and must be above an institutional-specific regulatory

1The prediction that the asset price increases when the shadow cost of the capital constraint
decreases (because the constraint becomes weaker) is in line with He and Krishnamurthy (2012,
2013) and Brunnermeier and Sannikov (2014)’s prediction that a positive shock to the net worth,
i.e., equity capital, of a dealer increases its risk-bearing capacity, which leads to higher asset prices.
In our model, risk aversion is constant.
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threshold, which we also observe.

With the data, we gather evidence in favor of the model’s predictions in Section 4. For

this, we leverage the feature that domestic government bonds were temporarily exempted

from the LR to bu↵er against negative e↵ects of the COVID-19 pandemic. Through the lens

of our model, this means that the capital constraint was temporarily lifted. An event study

confirms that the demand of dealers who were more strongly a↵ected by the policy change

became flatter when the exemption period started, and steeper when it ended, relative to

the other dealers, as predicted by our model. In theory, this leads to a decrease in market

yields and an increase in markups; empirically, these e↵ects are hard to identify.

We leverage our model to quantify by how much the market yield and markups change

when the constraint is relaxed or tightened in Section 5. To pin down the banks’ degree of risk

aversion and the shadow cost of the capital constraint, we first estimate how much bidders

are willing to pay in each auction using estimation techniques from the auctions literature

(introduced by Guerre et al. (2000); Hortaçsu and McAdams (2010); Kastl (2011)). With

this, we are able to identify the degree of dealer risk-aversion and their shadow cost of capital

by leveraging how dealer willingness to pay varies around the policy change, conditional on

market observable characteristics (such as market volatility).

We find that banks are close to risk-neutral. This is reassuring given that these are global

banks who can diversity away most types of risk. At the same time, banks face sizable costs

due to the regulatory capital constraint. The shadow cost parameters imply that yields

decrease and markups increase by 0.23%–0.49% if the shadow cost of the constraint decreases

by 1%. In comparison, estimates from regressing auction yields on LR—which we suspect

to be downward biased due to endogeneity—imply that a 1% increase in the LR (which

decreases the shadow cost) decreases the yield by roughly 1.1%–1.6%. This result provides

some validation to the model, given that the elasticities are not dissimilar and the bias goes

in the expected direction, even though we have not used this information to estimate our

model.
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Our findings have valuable implications for government bond markets, which were under

severe distress in March 2020. Globally, banking regulators took measures to facilitate central

bank interventions to support financial intermediation, such as (temporarily) relaxing capital

requirements.2 Our counterfactual analyses highlights new welfare benefits and costs: the

relaxation of the capital constraint leads to a reduction in bond yields but an increase in

markups. This translates into higher auction revenues and thus savings for the government

at an implicit cost of larger yield distortion.

Beyond implications for government bond markets, our evidence contributes to an ongo-

ing debate in the asset pricing literature on whether, and if so how, capitalization of financial

intermediaries a↵ects asset prices (e.g., Adrian et al. (2014); He et al. (2017); Gospodinov

and Robotti (2021)). We complement existing studies that rely on market-level data and

proxy variables for intermediary costs by zooming in on one market in which we can observe

the relationship between intermediary capitalization, demand and the market price. Since

our model is not specific to the Canadian Treasury market, we conjecture that our findings

generalize to many financial markets in which financial institutions intermediate trade.

Finally, our analysis contributes to the theoretic literature on intermediary asset pricing.

To draw the connection, we extend our baseline model in Section 6 to study the extent

to which intermediary market power a↵ects whether intermediary frictions (such as moral

hazard and capital constraints) matter for asset prices. Our findings highlight that it is

important to take intermediary market power into account, and that price e↵ects depend

on the degree of market power. Hopefully, this motivates future research that can analyze

the implications of intermediary market power in a macroeconomic model of intermediary

asset pricing, and empirical research to assess the degree of competition in di↵erent financial

markets.

2Capital requirements are meant to strengthen the risk management of banks and avoid the
build up of systemic risks. Our analysis does not incorporate how these risks change when relaxing
constraints.
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Related literature. Our main contribution is to explain and quantify how dealer capital-

ization a↵ects asset demand and prices when dealers have market power.

The topic fits into an ample intermediary asset pricing literature that examines the

impact of dealer capitalization (or leverage) on asset price behavior due to constraints on

debt (e.g., Brunnermeier and Pedersen (2009); Pedersen and Gârleanu (2011); Adrian and

Shin (2014); Moreira and Savov (2017); Elenev et al. (2021)), or constraints on equity (e.g.,

He and Krishnamurthy (2013, 2012); Brunnermeier and Sannikov (2014)). Given our focus

on banks, we follow He et al. (2017) and rely on equity constraints.

The key di↵erence relative to these models is that we zoom in on the intermediary

financial sector (for most of the paper) and allow dealers to impact prices as a result of

market power in the tradition of Kyle (1989). The market clears via a multi-unit auction (as

in Vayanos (1999); Vives (2011); Rostek and Weretka (2012); Malamud and Rostek (2017);

Wittwer (2021)). Our innovation is to introduce a capital constraint and analyze its e↵ect

on market outcomes and market power.3

Our empirical analysis adds to a growing literature on the relation between intermediary

costs or constraints and asset prices (e.g., Adrian and Shin (2010); Ang et al. (2011); Adrian

et al. (2014); He et al. (2017, 2022); Du et al. (2018); Check et al. (2019); Gospodinov and

Robotti (2021); Haddad and Muir (2021); Baron and Muir (2022); Fontaine et al. (2022)).

Most existing studies use market-level data, such as cross-sectional returns of di↵erent as-

set classes, and rely on proxy variables to capture intermediary costs, such as the VIX or

aggregate capital holdings.

We zoom in on one market in which we can link dealer demand with balance sheet

3Our extended model, presented in Section 6, is more similar to the intermediary asset pricing lit-
erature, which abstracts from market power with few recent exceptions (e.g. Corbae and D’Erasmo
(2021); Jamilov (2021); Villa (2022); Wang et al. (2022)). In contrast to these papers, we analyze
market power between intermediaries rather than market power of intermediaries vis-a-vis firms or
consumers. Therefore, our insights, especially those on the linkage between intermediary market
power and capital constraints, are fundamentally di↵erent from those found in this literature.
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information to establish a direct relationship between dealer capitalization and asset de-

mand, and identify a mechanism through which capital a↵ects asset prices. Furthermore, we

calibrate our model to quantify elasticities and conduct counterfactuals. For this, we rely

on estimation techniques of a literature on multi-unit auctions, developed by Guerre et al.

(2000), Hortaçsu and McAdams (2010) and Kastl (2011) and extended by Hortaçsu and

Kastl (2012), and Allen et al. (2020, 2023). Our findings support Albuquerque et al. (2022)

who suggest that the price elasticity of aggregate demand in Portuguese Treasury auctions

may proxy for dealers’ risk-bearing capacity.

Convention. Throughout the paper, we refer to markups as the di↵erence between the

price at which the market would clear if it was perfectly competitive and the price at which

it clears under imperfect competition; or equivalently, as the di↵erence between the yield

at which the market clears under imperfect competition versus perfect competition. In a

uniform price auction, markups increase in price impact—a common object of interest.

2 Model

Our goal is study how the market price and markups change when capital constraints are

relaxed under di↵erent market clearing mechanisms. In our benchmark, we model market-

clearing via a uniform price auction, which may be one-sided, meaning that bidders buy but

not sell, or double-sided, so that bidders buy and sell. In practice, many primary markets,

for instance in the U.S., clear via uniform price auctions, while trading on an exchange can

be approximated via a double-sided uniform price auction (e.g., Kyle (1989)).

There are N > 2 dealers who compete in a uniform price auction to buy units of an asset

of total supply A > 0; payment is in cash (numeraire). Dealer i holds zi 2 R of inventory

of the asset, equity capital Ei > 0 as well as other assets on the balance sheet, which we

normalize to 0 w.l.o.g. One unit of the asset pays a return of R ⇠ N(µ, �) in the future.

In our empirical application, where the asset is a government bond, R represents the return
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from selling the bond in the secondary market, which is unknown at the time of the auction.

Dealers may be uncertain about the supply, expected return of the asset, the inventory

positions of other dealers or capital positions. In the simplest version of the model, presented

here, dealers are uncertain about the supply A, thus face aggregate uncertainty, but have

no private information about the asset’s expected return µ, inventory zi, or capital positions

Ei. In Appendix A we generalize our results to the case of private information. In our

empirical application, supply is random because dealers don’t know the issuance size when

they compete. In other settings, the supply might be random due to noise traders.

Each dealer submits a continuous and strictly decreasing demand schedule: ai(·) : R ! R,

which specifies how many units of the asset, ai(p), the dealer seeks to buy at price, p. For a

given price, the dealer chooses demand to maximize the utility it expects to earn from the

wealth, !i(ai, p), that would be generated if the dealer won amount ai at price p, subject to

a capital constraint:

max
ai

ER

h
1� exp

⇣
� ⇢i!i(ai, p)

⌘i
subject to i 

Ei

p(ai + zi)
. (1)

Parameter ⇢i > 0 measures the dealer’s degree of risk-aversion. Future wealth, !i(ai, p), is

equal to the asset payo↵, R, net of the price paid, p:

!i(ai, p) = (ai + zi)R� pai. (2)

The capital constraint is motivated by the Basel III requirement according to which a bank

must hold su�cient equity capital, Ei, relative to its total balance sheet exposure. In our

case, the total exposure is the nominal amount of the asset the bank holds after the auction,

p(ai + zi).

Once all dealers have submitted their demand curves, the auction clears at the price,

p
⇤, at which aggregate demand meets total supply,

P
i
ai(p⇤) = A, and each bank pays

the market clearing price for the amount won, a⇤
i
= ai(p⇤). After auction clearance, all
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transactions take place and the asset pays out its return.

We focus on Bayesian Nash equilibrium with linear demand curves (hereafter, equilib-

rium), which is common in the related literature (e.g., Kyle (1985, 1989), Vayanos (1999);

Vives (2011); Malamud and Rostek (2017); Wittwer (2021)). Crucially, this does not imply

that dealers can only submit linear demand curves. Instead, it is optimal for dealers to

submit linear demand curves when all others do so.

Proposition 1. (i) In equilibrium dealer i submits demand curve

ai(p) = ((1 + �ii)⇤i + �⇢i)
�1(µ� (�⇢i + ⇤i�ii)zi � (1 + �ii)p), (3)

with ⇤i = �i↵i� with �i = 2

↵ib�2+
p

(↵ib)2+4
and ↵i = ⇢i

1+�ik
, where b 2 R+ is the unique

positive solution to 1/2 =
P

i
(↵ib + 2 +

p
(↵ib)2 + 4)�1, and the �i’s are pinned down by

the system of N equations: �i(Ei � ip
⇤(ai(p⇤) + zi)) = 0 8i with p

⇤ : A =
P

i
ai(p⇤). This

equilibrium exists for parameter constellations for which �i � 0 8 i.

(ii) When dealers are identical (⇢i = ⇢, zi = z, Ei = E,i = ), the demand curve is

ai(p) =

✓
N � 2

N � 1

◆
1

⇢�

⇣
µ� ⇢�z � (1 + �)p

⌘
, (4)

with � = A

NE

�
µ� ⇢�z � �⇢

�
N�1
N�2

�
A

N

�
� 1


when E 6= p

⇤[ai(p⇤) + z] and � = 0 otherwise.

This equilibrium exists for parameter constellations for which � � 0, for instance, when µ

and  are su�ciently high.

To derive an intuition for this equilibrium, consider a dealer who chooses how much to de-

mand at price p. The dealer takes the behavior of the other dealers as given and maximizes

its expected utility from winning the asset subject to market-clearing and the capital con-

straint. Optimal demand equalizes the expected marginal utility (LHS) with the marginal

payment (RHS):

µ� ⇢i�(zi + ai) = (1 + �ii)(p+ ⇤iai) + �ii⇤izi. (5)
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The marginal utility is decreasing in the amount of the asset. For the first unit of the

asset, the dealer earns the per-unit return. For the next units, the utility becomes smaller,

depending on the variance of the asset’s return and the dealer’s degree of risk aversion.

The marginal payment has several components and depends on the regulatory shadow

cost of the capital constraint (the Lagrange multiplier �i � 0), and the dealer’s price impact,

⇤i � 0. The latter is known as Kyles’ lambda and is 0 when the market is perfectly

competitive so that dealers are price-takers. When the constraint is not binding (�i = 0)

and dealers are price-takers (⇤i = 0), the marginal payment is just the price, p, that the

dealer has to pay for amount ai. When the constraint binds (�i > 0) and dealers are price-

takers (⇤i = 0), the marginal payment is the price they have to pay plus a shadow cost

that comes from the capital constraint, which is similar to an ad-valorem tax: (1 + �ii)p.

When dealers face a binding capital constraint (�i > 0) and have market power (⇤i 6= 0),

⇤iai measures by how much a dealer’s choice impacts the e↵ective price (1 + �ii)p. Not

only does this depend on their risk-aversion and the number of players in the market, it also

depends on the shadow cost of capital. For instance, with identical dealers ⇤i =
1

N�2
⇢�

1+�
for

all i. Finally, when zi 6= 0, there is an extra term, �ik⇤izi, which reflects the regulatory cost

that comes from the fact that a dealer’s existing inventory, zi, is evaluated at the market

price in the capital constraint.

The key prediction of the model is about what happens when the capital constraint is

relaxed, for instance because the minimal capital thresholds decrease.

Corollary 1. Let p⇤(0) denote the market price when dealers are price-takers and p
⇤(⇤) when

they have market power, and consider a relaxation of capital constraints which decreases all

�i’s, for instance, a decrease in the i thresholds. The demand ai(·) of each dealer i becomes

flatter, and market price p
⇤(⇤) increases. Further, the price impact ⇤i of each dealer i, and

the markup = p
⇤(0)� p

⇤(⇤) increase.
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Figure 1: Own and cross demand e↵ect when capital constraints are relaxed

(a) Dealer’s demand ai(p)a

p

A

p⇤p⇤

(b) Residual Supplyi(p)

a1
a2

p1 p2 p2p1

Figure 1 illustrates the change in the dealer’s own demand and her residual supply curve when
capital constraints are relaxed in (a) and (b), respectively, for the case in which no dealer carries
inventory (zi = 0 for all i). In gray we see the initial demand curve and residual supply curve.
Both become flatter, as shown by the black line, when constraints are relaxed. In (a) we see how
this increases the market clearing price, p⇤, when supply is fixed. In (b) we see the increase in the
price impact, which measures by how much the clearing price changes, p2 � p1, when the dealer
marginally changes her demand from a1 to a2.

Figure 1 illustrates two e↵ects from relaxing capital constraints. The first is an own-demand

e↵ect. Since the e↵ective price, (1 + �ii)p, decreases, it becomes cheaper for the dealer

to buy larger amounts. The dealer’s demand, ai(·), flattens and the market price increases

mechanically, unless supply adjusts.

The second e↵ect comes from the change in demand of other dealers. This is because the

relaxed capital constraint not only a↵ects dealer i, but all other dealers as well. All other

dealers submit flatter demand curves, which implies that the residual supply curve that

dealer i faces when choosing its own demand schedule is flatter. A flatter residual supply

curve, in turn, means that the dealer moves the market clearing price more strongly when

changing her demand. The dealer’s price impact and markup increase.

When dealers are identical, we can derive by how much the price and the markup change

in response to a 1% change in the shadow cost of capital, i.e., �.
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Corollary 2. Let dealers be identical. When the shadow cost of capital (�) decreases by

1%, the market price and the markup increases each by ⌘ =
�� 1
1+�

� 1
��%.

Take away. Our model helps explain how capital constraints a↵ect asset prices and markups.

The main prediction is that both the market price and markups increase when capital con-

straints are relaxed, which highlights a trade-o↵ for debt-managers in primary markets.

In Appendix A, we show that this prediction (captured in Corollaries 1 and 2) generalizes

to discriminatory price auctions, in which winning bidders pay their bids, not the market

clearing price. This auction format is used to sell government debt in many countries,

including Canada.

3 Institutional setting and data

To test the predictions of our model (Corollary 1) and to quantify by how much demand, the

price, or equivalently the yield, and markups change when capital constraints are relaxed

(Corollary 2), we use data on Canadian Treasury auctions. They have the attractive feature

that dealers submit entire demand curves, which we can link to balance sheet information

of each dealer at the company holding level.

Market players. There are eight deposit-taking primary dealers in Canada who are fed-

erally regulated.4 They dominate the Canadian Treasury market and intermediate the vast

majority of the daily trade volume in government bonds. More broadly, these banks domi-

nate the Canadian banking sector and hold over 90% of the sector’s assets.

4In total there are eleven primary dealers. One of these dealers is provincially regulated and
two are private securities dealers. They face di↵erent capital regulation than the eight dealers we
study. We therefore do not observe any balance sheet information for these players. Technically,
two of the eight banks have multiple dealers. For example, the Bank of Montreal has two dealers
(Bank of Montreal and BMO Nesbitt Burns) who attend di↵erent Treasury auctions, and therefore
do not compete or share information within an auction. We treat them as one dealer.
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Primary dealers have a responsibility, as market-makers, to buy bonds from the govern-

ment and trade them with investors, brokers, or one another to provide liquidity. They hold

a substantial amount of bonds on their own balance sheets (see Appendix Figure A1). In

exchange, primary dealers enjoy benefits, including privileged access to liquidity facilities

and overnight repurchase operations at the central bank.

Market-making is a small part of the bank’s total business, which includes accepting

deposits, making loans, and wealth management. Therefore, the dealer has no control over

most determinants on the bank’s balance sheet. A dealer’s assets are on average 9% of the

bank’s total assets (Allen and Usher (2020)). The bank’s balance sheet, in turn, is what

matters for the regulator since capital requirements must be met at the company holding

level.

Treasury auctions. Governments issue bonds in the primary market via regularly held

uniform price or discriminatory price auctions. In Canada, regular auctions are discrimina-

tory price. They take place several days a week. Anyone may participate, but most of the

supply is purchased by dealers. The largest eight dealers purchase on average 81% of the

supply in order to sell (or lend) on the secondary market.5

Capital constraints. According to a survey among market participants, the Basel III

LR represents the most relevant capital constraint when trading government bonds (CGFS

(2016)). This regulatory requirement came into e↵ect in September 2014 to reduce systematic

risk—a benefit which we do not consider in this paper. We focus on the cost-side of the

constraint, which was emphasized by Du�e (2018), He et al. (2022) and others.

Formally, the LR measures a bank’s Tier 1 capital relative to its total leverage exposure,

and must be at least 3%:

5This percentage represents how much of the amount that is issued to bidders other than the
Bank of Canada, who bids non-competitively, is allocated to the eight largest dealers.
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LRiq =
regulatory capital of bank i in quarter q

total leverage exposure of i in q
.

Tier 1 capital consists primarily of common stock and disclosed reserves (or retained earn-

ings), but may also include non-redeemable non-cumulative preferred stock; the leverage

exposure includes the total notional of all cash and repo transactions of all securities, includ-

ing government bonds, regardless of which securities are used as collateral (for more details

see OSFI (2023)).

In reality, banks refrain from getting close to the minimal Basel III threshold (see Figure

3b, explained below).6 One reason for this is that each institution faces an additional super-

visory LR threshold that reflects the underlying risk of the bank’s operations. To determine

this threshold, the regulator considers a range of factors, such as operating and management

experience, strength of parent institution, earnings, diversification of assets, type of assets,

and appetite for risk (Engert (2005)). These institution-specific thresholds are communi-

cated to institutions on a bilateral basis, and are considered supervisory information. They

are not permitted to be disclosed to the public (see OSFI (2023), Section IV). Another rea-

son is that banks tend to hold su�cient conservation bu↵er for Tier 1 capital so as to avoid

punishment in the form of restricted distributions (including dividends and share buybacks,

discretionary payments and bonus payments to sta↵).

Data. The unique feature of our data is that we can link how a dealer bids in the Treasury

auction to balance sheet information about the dealer’s bank.

We obtain bidding data of all regular Treasury auctions between January 1, 2015 and

February 1, 2022 from the Bank of Canada. We see who bids (identified by a legal entity

identifier) and all winning and losing bids. For consistency, we restrict attention to bids of

the eight dealers who are deposit-taking throughout most of the paper.

6Barth et al. (2005), Berger et al. (2008) and Brewer et al. (2008) document that bank capital
is substantially above the regulatory minimum in countries other than Canada.
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We collect balance sheet information for these eight dealers at the bank level. Specifically,

we obtain the LRs and supervisory LR thresholds of each bank. Both are reported quarterly,

at the end of January (first quarter), April (second quarter), July (third quarter) and October

(fourth quarter of the reporting year) from January 2015 until January 2022 from a data

source, called LR.7 In addition, we obtain the daily aggregated long and short positions in

government bonds of the six largest dealer-banks from the Collateral and Pledging Report

(H4). Finally, we collect information on who holds government bonds—banks versus other

investor types—from the National Accounts (Statistics Canada).

In addition, we obtain yields of all trades with Canadian government bonds in the sec-

ondary market from November 2015 until December 2020 to better isolate the yield e↵ect

of dealer capitalization. These data are collected by the Industry Regulatory Organization

of Canada in the Debt Securities Transaction Reporting System (MTRS2.0) and are made

available for research with a time lag.

Finally, we collect the Implied Volatility Index for Canadian Treasuries from the Bank

of Canada. The index measures the expected volatility of Treasury prices over the next 30

days, similar to the Merrill Lynch Option Volatility Estimate (MOVE) for U.S. Treasuries or

CBOE Volatility Index (VIX) for stocks. It is based on option prices on interest rate futures

(Chang and Feunou (2014)).

Conventions and summary statistics. So far, we have used prices to express bond

values, because it is more intuitive for us to think through the economics when demand

schedules are downward sloping. From now on, we express bond values in yields-to-maturity,

as is the data. This makes the value of bonds that have di↵erent maturities and coupon

payments more comparable. Since yields increase when prices decrease, demand schedules

with yields are upward sloping. An overview of the main variables is in Table 1.

7One of the banks, HSBC, has a di↵erent reporting schedule than the others. Its fiscal year
ends in December, instead of October. In our empirical analysis this di↵erence is absorbed when
we include dealer fixed e↵ects.
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Table 1: Summary statistics

Mean Median Std Min Max

Total amount issued (in bn C$) 3.97 3.20 2.33 1 20.6

Average bid yield (in %) 0.92 0.65 0.63 0.04 2.50

Days to maturity 1,094 352 2,292 99 12,399

Number of dealers per auction 8.00 8.00 0.04 7 8

Number of steps in demand curve 4.74 5 1.67 1 7

Maximal amount demanded (in mil C$) 741 600 569 0.48 8,240

Amount dealer won (in mil C$) 277 150 395 0 5,739

Quarterly LR (in %) 4.41 4.36 0.28 - -

Implied Volatility Index (in %) 0.46 0.25 0.77 0.04 7.57

Table 1 shows the average, median, standard deviation, minimum and maximum of key variables
in our sample. Our auction data goes from January 1, 2015 until February 1, 2022 and counts 917
auctions. In total there are 21 di↵erent securities. The min and max LR are empty because we
cannot disclose this information.

4 Evidence in favor of our model

We now provide supporting evidence of our model. In Section 5 we calibrate the model to

quantify by how much yields and markups change when capital constraints are relaxed.

Demand e↵ect. To provide evidence that demand becomes flatter when capital con-

straints are relaxed, we leverage two features. First, when dealers failed to absorb the

extraordinary supply of government bonds in March 2020, government bonds, central bank

reserves, and sovereign-issued securities that qualify as High Quality Liquid Assets (HQLA)

were temporarily exempted from the LR constraint—starting on April 9, 2020.8 As a result,

8Exposures related to the US Government Payment Protection Program (PPP), which are
minor in the case of Canadian banks, were also temporarily exempted. The announcement
to start the exemption period is available at: www.osfi-bsif.gc.ca/Eng/fi-if/in-ai/Pages/
20200409-dti-let.aspx; the one to end it is here: www.osfi-bsif.gc.ca/Eng/fi-if/in-ai/
Pages/lrfbunwd.aspx, both accessed on 05/31/2022.
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the LR spiked upward, moving away from the constraint (see Figure 3b). The exemption of

government bonds and HQLA ended on December 31, 2021, while reserves continued to be

excluded. Second, in the absence of the exemption some banks faced higher, i.e., stricter,

capital thresholds than other banks. According to our model, the demand of these banks

should have become flatter during the exemption period than the demand of other banks.

To show the predicted e↵ect, we construct a measure of the slope of demand and analyze

how slopes of banks with higher institution-specific capital thresholds changed relative to

those of the other banks. Creating a slope measure is challenging because it must be dealer

and auction-specific so as to account for di↵erences in capitalization, capital requirements

and market conditions. For instance, we cannot simply regress demand on prices or yields

and use the regression coe�cient as our slope measure. Not only are prices endogenous,

but this approach would eliminate the variation across time and dealers that is crucial for

estimation.

To construct a slope measure, assume for a moment that dealers can submit linear demand

curves that map from prices to quantities, like in the model. Dealer i’s demand on day t for

security s would be: aits(p) = interceptits � slopeits ⇥ p. If this was so, we could read the

intercept and slope o↵ the data (see Figure 2). In reality, there are two di↵erences. The first

is that dealers cannot submit linear demand curves but instead have to submit step functions

with maximally 7 steps. A dealer i submits Kits  7 quantity-price tuples: {aitsk, pitsk}Kits

k=1 .

This implies that the measure we introduce,

slopeits =
maxk{aitsk}
maxk{pitsk}

for Kits > 1, (6)

is an approximation (see Figure 2). The second di↵erence is that the value of the bond is

expressed in yields rather than prices, which means that the submitted demand curves are

upward sloping. To incorporate this, we convert the maximal price in equation (6) into the

corresponding yield.
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Figure 2: Example of a demand function with 6 steps

q

(0,0) p

maxk{aitsk}

interceptits =

maxk{pitsk}

Figure 2 illustrates how we measure the slope of demand of dealer i on day t for security s. In black,
we show an example of a step-function, {aitsk, pitsk}6k=1, that a bidder could submit at auction (with
prices instead of yields). In gray, we show a continuous, linear demand function which connects the
maximal amount that the bidder asks for, maxk{aitsk}, with the maximal price that it is willing
to pay, maxk{pitsk}. We use the slope of this auxiliary function to approximate the “slope” of the
step function, and convert prices into yields.

One concern with slope measure (6) is that it relies on two extreme points on the demand

curve.9 To ensure that our estimation results are not biased by extreme points, we perform

robustness checks with alternative measures in Appendix D.

To conduct our event study, we regress the average slope in the demand function of dealer

i in quarter q for security s on an indicator variable Dk equal to 1 k quarters before/after

the first event quarter (2020q2) multiplied by the bank’s supervisory LR threshold in that

quarter.10 We include quarter-security fixed e↵ects, ⇣qs, to absorb common unobservables

that a↵ect dealer demand, such as the start of quantitative easing (QE) or COVID-related

9Ex ante, the dealer does not know where the market will clear, and submits bids at prices
that may win with positive probability. However, ex post with finite data, it may be that we don’t
observe dealers ever winning at extreme points on their demand curves.

10We do not include dealer fixed e↵ects because the thresholds are persistent over time with few
changes. As part of our robustness analyses, we estimate an analogous regression with leverage
ratios LRik replacing the thesholdik and with dealer fixed e↵ects.
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Figure 3: The e↵ect of the exemption on Treasury positions and the LR

(a) Aggregated positions in Treasuries (b) Time series of LR for an average bank

Figure 3a shows the aggregated amount of Canadian government bonds that the biggest six Cana-
dian banks hold in long (in green) and short (in red) positions in millions of C$ from January 2019
until February 2022. The vertical line is April 9, 2020, when government bonds were exempt from
LR. Figure 3b shows the time series of the LR (in %) of an average bank. In blue, we show the
actual LR. In red the counterfactual LR that the average bank would have had if government bonds,
central bank reserves, sovereign-issued securities that qualify as HQLA, and exposures related to
the PPP were not exempt. In 2022q1, the LR does not get back to its original level, partially
because central bank reserves are still exempted.

demand and supply factors:

slopeiqs = ↵ +
KX

k=�K

�k ⇥Dk ⇥ thesholdik + ⇣qs + ✏iqs. (7)

The slope is measured in million C$ per 1 bps. For, instance, a slope of 1 means that a

dealer demands C$ 1 million less when the yield increases by 1 bps. The threshold is also

expressed in bps.

The parameter of interest, �0, tells us by how much the slope of a bank that faces a

tighter constraint (higher supervisory LR threshold) changes relative to the slope of a bank

that faces a less stringent constraint (lower supervisory LR threshold), when government

bonds are exempted, and similarly for �7.

In line with our model, we find that the estimated coe�cients are not statistically di↵erent
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Figure 4: Change in the slope

Figure 4 shows the �k estimates and 95% confidence intervals of the regression (7): slopeiqs =
↵ +

PK
k=�K �k ⇥Dk ⇥ thresholdik + ⇣qs + ✏iqs. All magnitudes are relative to the benchmark in

2020q1. The slopes are in million C$/bps, thresholds are in bps.

from 0 when government bonds are not exempt from the LR, but drop during the exemption

period (see Figure 4). The size of the e↵ect is large (C$1 million per bps). This suggests that,

during the exemption period, a bank whose capital threshold is 1 bps above the threshold

of another bank reduces its demand by C$ 1 million less than the other bank in response to

a 1 bps yield increase. This change is sizable compared to the average amount a dealer wins

at auction (C$ 277 million).

The estimated relationship would be causal, meaning that demands became flatter as

a result of the exemption, under three conditions. First, bank-specific capital thresholds

were not changed in response to, or set in expectation of, the temporary exemption. This

is plausible given that COVID was unpredictable. Second, the Canadian regulator did not

change the LR requirement in response to how dealers bid in the primary auctions—which

is likely true given that the Canadian response to COVID was part of a global response (see

Bank of International Settlement (2020)). Third, there were no systematic changes over time
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(other than the exemption) that a↵ected the slope of di↵erent dealers di↵erently.

Crucially, we do not require banks with tighter thresholds to be identical to those with

weaker thresholds. For instance, it is okay for banks to di↵er in their underlying risk in

operations. To confirm the model’s prediction we only need that these unobserved factors

do not change materially during the exemption period, and therefore explain the entire

change in demand.

Two confounding factors come to mind. First, the Bank of Canada increased the maxi-

mal bidding limits from April 2020 until June 2021. This was to allow dealers to buy larger

amounts of government bonds, even though pre-COVID maximal bidding limits were typ-

ically not binding (see Appendix Figure A2). Second, the Bank of Canada started buying

government bonds in the secondary market via QE from April 2020 until October 2021.

Both of these policy interventions were meant to help ensure that dealers continued to buy

in the primary market.11 Thus, if anything, these interventions likely increased the amount

a dealer asked for at auction. By definition, such increases would have increased the slope

measure (6). We find the opposite and therefore don’t think that the change in bidding

limits or QE drives the drop in 2020q2. Moreover, neither of the two confounding factors

were present in 2022q1, when the slope jumps back up.

Yield e↵ect. When demand becomes flatter the market clearing yield must decrease, all

else equal. This is a mechanical e↵ect in theory, which is hard to show in the data. The

reason is that we only observe one market clearing yield per auction. We don’t see the

counterfactual scenario in which demand curves would have been flatter and the market

would have cleared at a di↵erent yield, and can no longer rely on variation in thresholds

across dealers. However, we can study how yields change when the LR increases—either

11This raises the concern that dealers were at the minimal bidding limits. These limits are only
soft constraints since dealers are given 6 months to improve their performance if they fall below the
minimum. They are bank-specific and the exact numbers are unknown to us. However, we know
that for most banks the minimal limit is around 10% and do not see that banks are more likely to
be at that limit during 2020–2021 (see Appendix Figure A2).
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Table 2: Correlation between yield and LR

(OLS) (FE1) (FE2)

LR �0.360⇤⇤⇤ �0.370⇤⇤⇤ �0.245⇤⇤⇤

(0.036) (0.041) (0.052)

controls � � X
fixed e↵ects � X X
Observations 2,912 2,912 2,904

Adjusted R
2 0.032 0.679 0.789

Column (OLS) of Table 2 shows results of yieldt = ↵ + �LRqi + ✏ti. In (FE1) we add the dealer
and year fixed e↵ect; in (FE2) the control variables. Yield and LR are in %. Standard errors are in
parentheses, clustered at the dealer level in (FE1) and (FE2). *p < 0.05, **p < 0.01, ***p < 0.001

because banks hold su�cient capital, which lowers their shadow cost of capital, or because

capital requirements are relaxed—and control for factors that move yields but are unrelated

to dealer capitalization.

For this we regress the yield in auction t on the quarterly LR of a dealer, LRqi, control

variables, controlst, and dealer, ⇣i, as well as year fixed e↵ects, ⇣y:

yieldt = ↵ + �LRqi + controlst + ⇣y + ⇣i + ✏ti. (8)

First, to take out unobservable factors that move yields (such as interest rate uncertainty

and inflation risk) we control for the yield at which the bond with the closest maturity date

is traded on that day in the secondary market; on average the maturity di↵ers by a few

days.12 Second, to remove any e↵ect that extra supply might have on the yield, we control

for the supply of the auction.

In line with the model’s prediction, we report in Table 2 a negative relationship between

the auction yield and the LR. The average LR increase from 4.3% to 4.5% in 2020q1–2020q2

12One concern is that this bond is less liquid than the bonds issued due to an on-the-run e↵ect.
However, this e↵ect is less common in Canada because many bonds are re-issued multiple times to
avoid low liquidity of a particular security.
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correlates with a yield drop of 5–7 bps, which is sizable given the low yields in the sample.

The estimates would be downward biased (and hence larger in absolute value than they

should be) if the LR was positively correlated with the error term. This would be the case if

there were unobservable factors that lead banks to decrease the LR and decrease the yield.

Before April 9, 2020, one way for this to happen is if banks actively increased their LR in

response to some negative capital shock by buying less government bonds in a way that

decreases the total asset exposure but keeps capital constant. Then, since dealer demand is

downward (upward) sloping in price (yield), the market yield would decrease.

Take away. Our empirical evidence provides support for our model hypothesis that dealer

demand becomes flatter when capital constraints are relaxed. This decreases the market

yield.

5 Quantification

To quantify by how much the yield and markups change when capital constraints are relaxed,

we take our model to the data. The size of the change depends on the shadow cost of the

capital constraint, and the dealer’s risk aversion, in addition to observables, such as market

volatility.

5.1 Identifying risk aversion and shadow costs

To estimate the shadow cost and the degree of risk aversion, we face three challenges that

stem from the fact that Treasury auctions are more complicated in reality than what we can

capture with a tractable theory. First, the auction is discriminatory price, not uniform price.

Second, demand functions are step-functions. Third, dealers are not the only bidders in the

auction. Customers (which include pension, mutual and ETF funds, insurance companies,

sovereigns, and bank treasuries) can participate but must place their bids with a dealer
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who passes them to the auctioneer. This means that dealers might obtain information from

observing their customer bids.

To overcome these challenges, we use insights and techniques from the empirical lit-

erature on auctions (Guerre et al. (2000): Hortaçsu and McAdams (2010); Kastl (2011);

Hortaçsu and Kastl (2012); Allen et al. (2023)). The main idea is that we can back out

how much bidders are truly willing to pay from the bids they submit under the assumption

that bidders are rational and play an equilibrium of an auction game that incorporates the

key institutional features of Canadian Treasury auctions. To do this, we do not have to

solve for an equilibrium, but only characterize (necessary) equilibrium conditions. With the

bidders’ estimated willingness to pay—which depends on the shadow cost and risk aversion

according to our theory—we can separately identify these parameters by leveraging the fact

that Treasuries were temporarily exempt from the constraint.

Identifying assumptions. There are ND potential dealers and NC potential customers

who participate in auction t. They play the auction game of Hortaçsu and Kastl (2012),

which minics the auction process of Canadian Treasury auctions.

Before bidding, each dealer and customer draws a private signal ⇠ti about her true willing-

ness to pay vti(q) for amount q. The signal ⇠ti is drawn independently from all other bidders

according to atomless distributional functions FD

t
(⇠ti) and F

C

t
(⇠ti) for dealers and customers,

respectively. This implies that dealers are ex-ante identical, but may be asymmetric relative

to customers.13

A bidder’s signal can be persistent over time, but it must be independent from all other

bidders’ signals conditional on any information that is known to all bidders at the time of the

13In theory, we could allow dealers with high capital thresholds to be di↵erent from those with low
capital thresholds by creating a third bidder group. In practice, we quickly run into power issues
without pooling information across auctions, which we refrain from to avoid estimation biases
that come form unobservable auction characteristics. The presence of such characteristics implies
correlations in bidder signals when going across auctions, which violates one of our identifying
assumptions.
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auction. This includes a price-range which is provided by the Bank of Canada for reference,

and all public information that is available in the active when-issued and secondary market.

Given the liquidity and structure of these markets—for example, the fact that many clients

trade with the same dealer (Allen and Wittwer (2022))—it seems reasonable to assume that

bidders are equally informed about the price at which they can sell the bond after the auction,

unless they receive diverging private information, for instance, from observing client orders.

To further validate the assumption of conditional independence, Hortaçsu and Kastl (2012)

and Allen et al. (2023) conduct statistical tests and find supporting evidence.

Di↵erent to Hortaçsu and Kastl (2012), we assume that a dealer’s willingness to pay,

vti(·), has a specific functional form (9). To see why, recall equation (5). This equation

characterizes how much a dealer is truly willing to pay, which is simply the price that the

dealer would submit if she was a price-taker (i.e., ⇤i = 0). Adjusting the notation to highlight

that parameters may change across auctions t, we rearrange equation (5) with ⇤ti = 0 to

obtain the dealer’s true willingness to pay for amount a,

vti(a) = ⇠ti �
✓

⇢t�t

1 + �tt

◆
a, (9)

when dealers are (ex-ante) identical. According to our theory, ⇠ti = (µt�⇢t�tzti)(1+�tt)�1,

although for estimation we do not have to impose any specific functional form.

To identify dealer risk aversion and the shadow cost of the capital constraint, we assume

that the dealer’s risk aversion does not change in auctions close to the policy change, ⇢t = ⇢q,

and that the shadow cost is constant within a quarter, �tt = �qq. We include all auctions

in the quarter before and after the two policy changes, motivated by the fact that capital

requirements are only required to hold quarterly.

Estimation procedure Our estimation procedure has two steps.

First, we estimate the dealers’ true willingness to pay, v̂tik = v̂ti(q), for each submitted

amount q, or, equivalently submitted step k, from the necessary equilibrium conditions
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(characterized in Kastl (2012), Proposition 1). These conditions depend on what dealers

believe about where the auction will clear, that is, the distribution of the market clearing

price. To estimate this distribution from the viewpoint of each bidder in each auction,

we adopt the resampling method of Allen et al. (2023) who generalize Hortaçsu and Kastl

(2012). The core idea is to draw from the submitted bids of an auction to simulate possible

market outcomes.

Second, we leverage the assumption that a dealer’s willingness to pay is given by equation

(9), together with the fact that most dealers submit a step function with more than one step.

We first estimate an auction-specific slope coe�cient, �t, by regressing the dealer’s estimated

value at step k on the amount she demanded at that step, atik, and a dealer-time-auction

fixed e↵ects, ⇠ti,
v̂tik = ⇠ti + �tatik + ✏tik, (10)

using values from dealers who submit more than one step in auction t.14 Then, we normalize

each slope coe�cient by the Implied Volatility Index for Canadian Treasuries, shown in

Figure 5a, which measures return volatility, �t, in the dealer’s willingness to pay (9). The

normalized coe�cient, �t

�t

, is equal to the dealer’s risk aversion, ⇢t, during the exemption

period (in which the shadow costs are 0) and ⇢t

1+�tt

otherwise.

Finally, under the assumption that risk aversion does not change around the policy

change and that the shadow cost of capital is constant within a quarter, we can back out

our parameters of interest by comparing slope coe�cients around the two policy changes.

Alternatively, we can estimate these parameters in one step with the following regression,

v̂tik = ⇣ti + ⇢⇥ exemptt�tatik +
⇢

1 + �
⇥ (1� exemptt)�tatik + ✏tik, (11)

using estimated values, v̂tik, and respective quantities atik of dealers who submit more than

one step in an auction t during 2020q1 and 2020q2 when the exemption period started. For

14As robustness, we also use only functions with more than 2 or 3 steps. Findings are similar.
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the end of the exemption period, we use data from 2021q4 and 2022q2. Indicator variable

exemptt is 1 in 2020q1 and 2022q1, respectively, and 0 otherwise; �t is the daily Implied

Volatility Index, and ⇣ti is a dealer-auction-time fixed e↵ect.

5.2 Estimated parameters and elasticities

Risk aversion and shadow costs. As a first step, we visualize the distribution of �t

�t

in

Figure 5b. This is already informative. We see that ⇢t is small, with a median of around

0.001. This is reassuring since we would expect global banks to be able to diversity away

most risks. In addition, we see that ⇢t varies across auctions. One reason for this is that

di↵erent auctions o↵er government bonds of di↵erent maturities and risk aversion varies in

the length to maturity. Longer bonds are more risky to buy than short T-bills. Finally, the

median �t

�t

outside of the exemption period is lower than the median during the exemption

period, which suggests that the shadow cost is strictly positive in 2020q1 and 2022q2.

In line with these insights, we estimate low risk aversion and high shadow costs using

regression (11)—see Table 3a. The risk aversion is +0.0001 in 2020q1–2020q1 and +0.0003

in 2021q4–2022q1, which means that a dealer’s average willingness to pay decreases by only

C$2.77–C$8.31 when going from winning nothing to winning the average amount (C$277

million).15 Dealers appear close to risk neutral, which would be the case if the willingness

to pay was perfectly flat. The shadow cost of capital is very high—0.96 in 2020q1–2020q2,

when dealers were asked to absorb large amounts of Treasuries onto their balance sheets,

which tightened capital constraints. The cost decreases to 0.30 in 2021q1–2022q4 when the

Treasury market had calmed down.

As a sanity check, we also estimate regression (11) with submitted, observed bids, instead

15Risk aversion for 2021q4–2022q1 is slightly higher than for 2020q1–2020q1, perhaps, because
dealers were uncertain about when the exemption for settlement balances would be lifted. This
would tighten their LR. In addition, dealers might have been concerned that the Bank of Canada
would start unwinding their bond QE-purchases, which would increase their exposure and lower
their LR given their obligation to buy these bonds.
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Figure 5: Implied Volatility Index and normalized coe�cients of regression (10)

(a) Implied Volatility Index: �t (b) Normalized coe�cients: �̂t

�t

Figure 5a displays the time series of the daily Implied Volatility Index �t (in %) of the Canadian
Treasury market from 2019 until March 2022. Figure 5b shows the distribution of the estimated
slopes coe�cient of the dealers’ willingness to pay in auction t, �̂t of regression (10) with dealer
values in % and quantities in million C$, normalized by �t for three time periods: before the
exemption of Treasuries from the LR (2019q1–2020q1), during the exemption period (2020q1–
2021q4) and after the exemption (2022q1).

of estimated values. In line with our expectations, parameter estimates in Table 3b are similar

in magnitudes but not identical. In particular, estimates are slightly downward biased when

using bids. The reason is that dealers shade early steps, i.e., small amounts, more strongly

than higher steps, i.e., large amounts (see Figure 6). This implies that the dealer’s true

willingness to pay is steeper than the submitted bidding function.

The high shadow cost estimates suggest that it is not profitable for dealers to buy Trea-

suries in the primary market. To see this, consider a dealer in 2020q1–2020q2 who holds

zero inventory going into an auction. To buy amount a of bonds, a dealer must pay weakly

more than p
⇤
a in a discriminatory price auction plus 0.96p⇤a due to the capital constraint.

In return, the dealer earns Ra from selling the bonds in the secondary market. For this

transaction to be profitable it must be that the dealer can sell the bond at a price that is at

least double the auction price in the secondary market. This never happens in the data.
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Table 3: Estimated risk aversion and shadow cost parameters from regression (11)

(a) With values as independent variable

2020q1-2020q2 2021q4-2022q1

⇢ +1.52/104*** (0.033/104) +3.96/104*** (0.155/104)

� +0.965*** (0.187) +0.302*** (0.115)

N 23,074 12,894

(b) With bids as independent variable

2020q1-2020q2 2021q4-2022q1

⇢ +0.68/104*** (0.010/104) +2.04/104*** (0.045/104)

� +0.842*** (0.141) +0.169*** (0.068)

N 23,074 12,894

Tables 3a shows the estimates of regression (11) v̂tik = ⇣ti + ⇢ ⇥ exemptt�tqtik + ⇢
1+� ⇥ (1 �

exemptt)�tqtik + ✏tik with values expressed in yields in %, and quantities in million C$. In Table

3b we replace the estimated values by the observed bids btik. Standard errors are in parentheses.

*p < 0.05, **p < 0.01, ***p < 0.001

This raises the question of why any dealer would want to participate in Treasury auctions.

It suggests that it must be valuable for banks to have the primary dealer status, otherwise

we should observe more dealers exiting the market. Given that primary dealers are carefully

chosen by the government and heavily regulated, the status signals trustworthiness and

stability. This helps to attract bank clients who seek to invest outside of the government

bond market. Primary dealers also have access to central bank liquidity facilities and can

use their position in the government bond market to cross-sell to investors other investment

products, such as underwriting or trading corporate debt. When the benefit of having the

primary dealer status no longer out-weights the cost, dealers exit the market. This has

happened several times over the past decades (Allen et al. (2023)).
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Figure 6: Distribution of bid shading per step k

Figure 6 shows box plots of how much dealers shade their bids at each of the seven steps. Formally,

it is the di↵erence between the submitted yield bid and the estimated value, both in bps. The

distribution for each step is taken over dealers and auctions. Shading factors are small in absolute

terms, and comparable to those in the literature (e.g., Chapman et al. (2007); Kang and Puller

(2008); Kastl (2011); Hortaçsu et al. (2018); Allen et al. (2020, 2023)).

Elasticities. With the estimated risk aversion parameters and shadow costs, we can ap-

proximate by how much yields and markups change when capital constraints are relaxed.

For this, we leverage Corollary 2, which generalizes to discriminatory price auctions with

ex-ante identical dealers that have private information and submit linear demand schedules

(see Appendices A and C). In practice, demand schedules are step-functions. However, they

are approximately linear, in that the R
2 of regression (10) with bids instead of values is

high (see Appendix Table A1). Therefore, we can rely on Corollary 2 to approximate by

how much the market price (yield) increases (decreases) and the markup increases when the

shadow cost of capital decreases by 1%, namely by ⌘ =
�� 1
1+�

� 1
��%.

The shadow cost point estimates presented in Table 3 imply an ⌘ of 0.49% and 0.23% in

2020q1–2020q2 and 2021q4–2022q1, respectively. This means that the market yield decreases

and the markup increases by 0.23%–0.49% if the shadow cost decreases by 1%.
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In comparison, the regression evidence, presented in Table 2, says that a 1 pp, or, equiv-

alently, a 1/4.41 ⇡ 23% increase of the average LR—moving banks further away from the

capital thresholds and thus decreasing the shadow costs—decreases the yield by roughly

25–36 bps. This implies that a 1% increase in the average LR decreases the average yield

(which is 92 bps) by roughly 25/23–36/23 = 1–1.5 bps, or equivalently 1.1%-1.6%. These

numbers are in the same ballpark, but slightly larger, than the calibrated yield e↵ect—in

line with our conjecture that the regression coe�cients might be biased downward because

of endogeneity. This provides a validation for our model since we haven’t used the regression

information to estimate it.

Counterfactual. With the model we can quantify by how much the auction yield and

markups would have changed had the regulator not changed the LR requirement.

For illustration, consider 1Y-bond auctions around both policy changes. The first auction

after the LR was relaxed (on April 14, 2020) cleared at a yield of 51 bps. The average amount

by which a dealer shaded her bid at market clearing, which approximates the markup due

to market power, was roughly 2 bps. Had the LR not been relaxed—which implies a 100%

increase in the shadow cost of the capital constraint—the auction would have cleared at a

yield of (1+0.49)51 ⇡ 76 bps with a markup of (1-0.49)2 ⇡ 1 bps. The first auction after the

LR was tightened (on January 5, 2022) cleared at 89 bps, with average shading of roughly 1

bps at market clearing. Had the LR not been tightened, the auction would have cleared at

(1-0.23)89 ⇡ 68 bps with markup of (1+0.23)1 ⇡ 1.2 bps

This highlights a new trade-o↵ that regulators should take into account when deciding

whether to relax or tighten capital constraints. Relaxing capital constraints decreases yields

but increases markups—in addition to the way the LR a↵ects trading in the secondary

market and concerns about systematic risk. Whether the e↵ect is sizable in absolute terms

depends on the interest rate level. If interest rates are low—as is the case in our sample—the

absolute e↵ect is small. For instance, a 1 bps yield increase per auction translates into an
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annual revenue loss of approximately C$ 69.3 million in 2021. However, with raising interests

rates and growing balance sheets of banks, the trade-o↵ may become first order in the future.

6 Implications for intermediary asset pricing

The main focus of this paper is on analyzing the e↵ect of changing capital constraints on

the price of an asset and markups that arise due to dealer market power. To draw a closer

connection to the intermediary asset pricing literature and inspire future research, we extend

our formal analysis in Appendix B to study how intermediary market power a↵ects whether

intermediary frictions (such as moral hazard or capital constraints) matter for asset prices.

Here we only briefly mention the main take aways from this exercise and refer to the appendix

for details.

Our first finding highlights that intermediary market power matters for intermediary

asset pricing (see Corollary 4). We show that it is not possible to eliminate both moral

hazard frictions and frictions that arise due to imperfect competition by hiring a manager

who competes for the asset and is paid a fraction of the return that the asset will generate.

In this sense, intermediary financing frictions always a↵ect the asset price when the asset

market is imperfectly competitive.

Our second finding highlights that capital constraints a↵ect the asset price di↵erently

depending on how competitive the asset market is (see Corollary 5). We show that when

intermediary market power increases because fewer intermediaries compete for the asset,

frictions that arise from capital constraints distort the price more or less strongly, depending

on asset-market competition. To be more concrete, consider a market in which many inter-

mediaries compete for the asset. If the number of intermediaries decreases, the asset price

moves further away from the price that would arise without capital constraints. The reason

is that each intermediary wins more of the asset when fewer of them compete. This increases

total exposure, and tightens the capital constraint. The opposite is true in a market with
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few intermediaries. Now, even though each intermediary wins more, the less competitive

auction clears at a su�ciently low price. The price e↵ect dominates the quantity e↵ect and

relaxes the constraint.

Taken together, these findings underline that it matters to take imperfect competition

into account when analyzing how intermediary frictions a↵ect asset prices, and motivates

future research to assess the di↵erent degrees of competition across asset markets.

7 Conclusion

This paper studies if and how the capitalization of dealers a↵ects asset demand and, with

that, prices, when dealers have market power. We introduce a model to show that weaker

capital requirements lead dealers to demand more of the asset at higher prices but also higher

markups. We test the model’s prediction and calibrate the model with data on Canadian

Treasury auctions, where we can link asset demand to balance sheet information of individual

intermediaries. Our findings highlight that weaker capital requirements reduce the funding

cost of debt but increase market power.
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Appendix

Overview. Appendix A generalizes our benchmark model to incorporate private informa-

tion in uniform price and discriminatory price auctions. Appendix B generalizes the model

to draw implications for the intermediary asset pricing literature. Proofs are in Appendix

C. Robustness analyses are in Appendix D.

A Model extension: Private information

In our benchmark model, potentially asymmetric dealers face aggregate uncertainty in a

uniform price auction. In the empirical model, dealers are ex-ante identical but have private

information. Here we show that the model’s prediction generalize to such a setting. In

reality, dealers could be uncertain about the asset’s mean return, their inventory, or equity

positions. We focus on private information about inventory positions. The other cases are

analogous.

Uniform price auction. There are two di↵erences compared to the benchmark model.

First, dealers are ex-ante identical (Ei = E,i = , ⇢i = ⇢ 8i). Each draws an inventory

position zi independently from all other dealers from some distribution. A dealer observes her

own position privately prior to the auction, in addition to the aggregate inventory position,
P

i
zi. Second, dealers balance out their total exposure post-auction in a market outside of

the model, for example in an inter-dealer market.16 This assumption reflects the fact that

by the end of quarter banks want to balance their exposure. Further, it makes the model

tractable because it ensures that dealers can predict the Lagrange multipliers, �i, of their

competitors.17

16For simplicity, balancing is done at an exogenous price, normalized to zero.
17With unknown �i’s there is no linear equilibrium, which substantially complicates the analysis.

As comparison, the related literature only considers linear equilibria.
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We model the balancing process in reduced form by assuming that for each zi and market

price p there is an xi(p) such that ai(p)+ zi+xi(p) = ⌘(p). Here ai(·) is the dealer’s demand

schedule, and ⌘(·) is a mapping from the price to the total exposure a dealer carries when

the capital constraint must be satisfied. In reality this happens at the end of each quarter.

To achieve tractability within the linear-demand environment, we assume that ⌘(p) is linear,

i.e., ⌘(p) = ↵��p for some ↵ 2 R+
, � 2 R. We focus on the case in which exposure decreases

in price, � > 0. An equilibrium for the other case can be derived analogously.

The sequence of events is as follows: First, each dealer observes her inventory position, zi,

and the aggregate inventory,
P

i
zi. Then, each dealer submits her demand schedule, ai(·).

Finally, the auction clears at price p
⇤ :
P

i
ai(p⇤) = A, and dealers balance out their total

exposure, so that their exposure equals ⌘(p⇤). The asset pays its return and all transactions

are made.

Proposition 2. In equilibrium dealer i submits

ai(p) = (⇤+ �⇢)�1
⇣
µ� ↵⇤�� �⇢zi � (1� �⇤�)p

⌘
(12)

with ⇤ =
(N�2)±

p
(N�2)2�4��(N�1)⇢�

2��(N�1) and � such that �(E � p
⇤
⌘(p⇤)) = 0 where p

⇤ :
P

i
ai(p⇤) = A. This equilibrium exists as long as � � 0, ⇤ > 0, and (1� �⇤�) > 0.

Like in the benchmark model, each dealer chooses how much to demand at each price p so as

to equate marginal utility and marginal payment: µ�⇢�(zi+ai) = p+⇤iai+⇤i�i⌘(p). The

marginal payment is slightly di↵erent from before because the dealer now anticipates that

she holds ⌘(p) of total exposure on her balance sheet at the end of the game. The constraint

now binds when E = p⌘(p) rather than when E = p(ai + zi).

Discriminatory price auction. Here we adjust our benchmark model to fit discrimina-

tory price auctions, in which bidders pay the prices they o↵ered to pay for all units they

win rather than the market clearing price. We make two changes to the benchmark set-

ting. First, we rely on the fact that dealer i’s true willingness to pay for amount a is
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vi(a) =
1

1+�
[µ� �⇢(zi + a)] given objective function (1) and shadow cost of capital � � 0.18

Here, zi is the dealer’s private information, which is drawn iid across i from a distribution

with support [z, z]. Supply A is drawn from some distribution with support [A, Ā].

Second, we assume that the amount that a bidder wins in the auction follows a Gen-

eralized Pareto Distribution.19 Formally, winning quantities are drawn from a distribution

with CDF Fi(a) = 1� (⌫i+⇠a

⌫i
)�

1
⇠ with ⇠ 2 (�1,�1], ⌫i = �⇠(N(1�⇠)�1

N(1�⇠) )(z � zi)� ⇠( Ā
N
). Proving

existence and characterizing an equilibrium for discriminatory price auctions for other distri-

butions of winning quantities (when bidders have private information and demand multiple

units) is a challenging and open question in the literature, that is beyond the scope of this

paper.

Proposition 3. There exists an equilibrium in which dealer i submits

ai(p) =

✓
N(1� ⇠)� 1

N � 1

◆
1

�⇢
(µi � (1 + �)p) (13)

with µi = µ+⇢�( 1
1�⇠

(⇠z�zi)+
⇠Ā

N(1�⇠)�1) for quantities that she wins with positive probability.

The intuition for this equilibrium is similar to the intuition for the equilibrium in a uniform

price auction. The main di↵erence is that bidders form di↵erent expectations over how likely

it is to win each unit.20

Importantly, all equilibria of Propositions 1-3 have a similar functional form. The only

di↵erence between discriminatory price and uniform price auction is that the price impact

is not clearly defined for the former. We therefore omit the price impact in the following

corollary (which generalizes Corollary 1).

18We explain why this is true in Section 5.1
19This assumption implies functional form restrictions on the model’s exogenous primitives that

cannot be easily summarized.
20See Ausubel et al. (2014) who describe the trade-o↵ in a framework without private information.
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Corollary 3 (Analogue to Corollary 1). When the capital constraint is relaxed so that �

decreases, demand becomes flatter, and the market price and markup increase in a uniform

and discriminatory price auction.

B Intermediary asset pricing implications

Here we study whether the degree of competition between intermediaries a↵ects the way

intermediary frictions—specifically, moral hazard and capital constraints—a↵ect asset prices.

Technically, we rely on a simple version of the He and Krishnamurthy (2012, 2013) models,

presented in He and Krishnamurthy (2018), that builds on Holstrom and Tirole (1997). Our

contribution is to introduce imperfect competition in the asset market by relying on insights

from the literature on auctions and market microstructure.

Model with moral hazard. The economy runs for three periods, t = 0, 1, 2.21 There is

one risky asset of aggregate supply A that pays out a return R per unit and a numeraire

(cash). The supply and return of the asset are unknown to all agents in all periods but the

last one; R ⇠ N(µ, �) and A is drawn from some distribution.

There are 2 < N < 1 intermediaries, that is banks, indexed by I. Each bank serves a

unit mass of households (H) who never consider switching banks. You may therefore think of

fixed households-bank pairs. In addition, each bank has a trading desk i who is responsible

for trading the risky asset.

Households cannot directly invest in the asset market, but must invest via a bank. For

this, the households and their bank contract with trading desk i (of the bank that serves the

households) who invests on the households’ behalf in the risky asset.

Banks and households have CARA preferences, that is, holding wealth !j generates the

following utility for an agent of type j 2 {H, I}:

uj(!j) = 1� exp (�⇢j!j) , (14)

21Alternatively we could merge t = 0 and t = 1 into a single period.
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with risk aversion ⇢j > 0. A trading desk and its bank share the same utility function.

Wealth comes from buying and holding the asset. For instance, if agent j gets aj at price p,

the wealth is !j = aj(R� p).

The sequence of events is as follows: In period 0 each households-bank pair chooses what

fraction �i of the total wealth (that will be generated from investing in the asset) will be paid

to trading desk i in period 2. The contract is chosen to maximize their joint expected utility

obtained at the end of the game.22 In period 1, all N trading desks compete in a uniform

price auction to buy ai of the risky asset. As in the baseline model presented in Section 2,

bidders (here trading desks) face uncertainty about the asset’s supply when placing their

bids, but have no private information. Di↵erent to before, each trading desk may decide to

shirk or exert e↵ort; si 2 {0, 1}, where si=1 is shirking. When a trading desk chooses not

to exert e↵ort, the wealth of its bank falls by �, but the trading desk gains a private benefit

of b. In period 2, the asset pays its return and supply realizes. All transactions take place.

Proposition 4. Define m = �
b
�1 � 0. There exists an equilibrium in which �i = � = 1

1+m
,

and the clearing price is

p
⇤ = µ�

✓
�⇢I

1 +m

◆✓
N � 1

N � 2

◆
A

N
. (15)

Trading desk i buys amount A

N
, its bank obtains �A

N
, and each mass of households (1� �)A

N
.

In this equilibrium, the market clearing price has the familiar functional form of a uniform

price auction with N bidders (here trading desks). m = �
b
� 1 is the maximum amount of

dollars that households can invest (per dollar that the trading desk purchases) so that the

22You may think of a market designer who chooses all contracts to maximize expected welfare
of the economy subject to incentive constraints. If asset markets were perfectly competitive, we
could let the pair choose an a�ne contract parametrized by (Ki,�i) where �i is the linear share of
the return generated by the fund (conditional on supply A) that is paid to the trading desk, and
Ki is a management fee that is paid to the trading desk and is independent of the fund’s return.
In the case of CARA preferences, the lack of a wealth e↵ect implies that Ki plays no role in asset
demand and equilibrium prices.
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trading desk exerts e↵ort in the auction. If the moral hazard friction is small, which happens

when the benefit b from shirking is small, the trading desk can be incentivized to exert e↵ort

with little skin in the game, that is, with a small �i. The more beneficial it becomes to shirk,

the higher �i must be.

When the asset market is perfectly competitive as in He and Krishnamurthy (2018), there

are two cases depending on how attractive it is for the trading desk to shirk. In the first

case, shirking is attractive so that the constraint that incentivizes trading desk i to exert

e↵ort, �i� � b, binds, or equivalently �i =
1

1+m
. As a result, the intermediation frictions

a↵ect the asset price. In the second case, the incentive constraint doesn’t bind, and the first

best solution can be obtained through choosing the optimal contract �i.

When the asset market is imperfectly competitive, intermediation frictions always a↵ect

the asset price. Intuitively, this is because one instrument (per households-bank pair), �i,

cannot correct two frictions: moral hazard and imperfect competition.

Corollary 4. There is no contract �i = � 8i that implements the price and allocation of a

frictionless market, in which both banks and households have access to and compete in an

auction that induces truthful bidding, that is, avoids bid shading.

Model with capital constraints. So far, the intermediation friction came from moral

hazard. Now we add capital constraints. Suppose that each trading desk purchases ai(p) of

the asset if the asset market clears at price p, and makes some loans L to an un-modeled

sector of the economy, which we normalize to 0 w.l.o.g. The desk is subject to a Basel

III-type capital constraint (here without risk weights): pai(p)  E, where E denotes the

total equity capital.

From He and Krishnamurthy (2018) we know that the capital constraint binds only if

the moral hazard incentive constraint binds. Given this, it is not surprising, that the auction

clearing price is analogous to the price of Proposition 1 (ii), where bidders face a similar

capital constraint.
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Proposition 5. In equilibrium �i =
1

1+m
for all i, and the market clears at

p
⇤ =

1

1 + �

✓
µ�

✓
�⇢I

1 +m

◆✓
N � 1

N � 2

◆
A

N

◆
(16)

with � = A

NE

�
µ� ��⇢I

�
N�1
N�2

�
A

N

�
� 1


when p

⇤ A

N
6= E and � = 0 otherwise.

Trading desk i buys amount A

N
, its bank obtains �A

N
, and each mass of households (1��)A

N
.

Does competition matter? We now analyze whether imperfect competition in the asset

market matters for whether and how the asset price is a↵ected by intermediary frictions.

To vary the degree of competition, we vary the number of intermediaries (or trading desks)

who compete for the asset. More bidders in an auction translates into higher competition.

Note that this is di↵erent to the main text, in which we measure competition by the extent

to which the market price that arises in the market with market power di↵ers to the price

that would arise in a perfectly competitive market. Measuring this price wedge directly gives

a more precise idea of the impact of market power on prices than counting the number of

market participants. However, since this wedge is endogenous, it is less useful for analyzing

how changes in market power a↵ect prices. Crucially, both measures of competition are

qualitatively identical in that the price wedge (and the price impact) decreases monotonically

when the number of market participants increases. In both cases, we say that competition

increases.

Corollary 5. Define N̄ : µ = (4+N̄(2N̄�5))�⇢I�A
(N̄�2)2N̄

and let µ > 0.

(i) Intermediary financing frictions always a↵ect the asset price.

(ii) Let the asset market become less competitive in that N decreases to N
0. For N 0 � N̄ , the

shadow cost of the capital constraint increases, so that market price is more strongly

a↵ected by the capital constraint. For N
0
< N̄ , the shadow cost decreases and the

market price is less strongly a↵ected by the capital constraint.
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Competition matters in two ways. First, with imperfectly competitive asset markets, it is no

longer the case that intermediation frictions—either moral hazard or capital constraints—

can be corrected by choosing intermediary remuneration, �i, optimally. To overcome (or at

least reduce) the extra friction which arises from the fact that the asset market isn’t perfectly

competitive, a more complex remuneration scheme would be necessary.

Second, when the market is less competitive as a result of fewer intermediaries competing

for the asset, the shadow cost of the capital constraint changes. Intuitively, a positive shadow

cost guarantees that the capital constraint binds: p⇤ai(p⇤)  E. The shadow cost is higher,

the larger p
⇤
ai(p⇤) would be relative to E in a setting without the constraint. Thus to

understand how the shadow cost changes, we must think through how p
⇤
ai(p⇤) changes as

the auction becomes less competitive, i.e., the number of bidders N decreases. There are

two opposing e↵ects. On the one hand, each bidder wins more: ai(p⇤) =
A

N
increases. On

the other hand, the less competitive auction clears at a lower price: p
⇤ decreases. When

the quantity e↵ect dominates the price e↵ect, the shadow cost increases as N decreases.

Whether this is true or not depends on how competitive the market is, i.e., the number of

bidders. If the degree of competition is su�ciently strong (N 0 � N̄), the quantity e↵ect

dominates, otherwise (N 0
< N̄) the price e↵ect dominates.

C Proofs

Proof of Proposition 1. Consider dealer i who takes the behavior of all other dealers as

given and determine her best-response. Given CARA utility and R ⇠ N(µ, �), the dealer

maximizes µ[ai + zi]� ⇢i�

2 [ai + zi]2 � aip+ �i[Ei � ip(ai + zi)] with respect to ai for a given

p subject to market clearing. The point-wise first order condition w.r.t. ai for each clearing

price p is

µ� ⇢i�[ai + zi] = (1 + �ii)(p+ ⇤iai) , ai(p) = ((1 + �ii)⇤i + �⇢i)
�1(µ� �⇢izi � (1 + �ii)p),

(17)
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where ⇤i =
@p

@ai
is the price impact. The necessary condition is su�cient as long as �⇢i� �

(1 + �ii)⇤i < 0, which holds in equilibrium.

In equilibrium, dealer i’s price impact equals the slope of the inverse residual supply curve,

⇤i = �
⇣P

j 6=i

@aj(p)
@p

⌘�1

, and all dealers submit best-responses to each other. Therefore,

given aj(p) = ((1 + �jj)⇤j + �⇢j)�1(µ� �⇢jzj � (1 + �jj)p),

⇤i =

 
X

j 6=i

((1 + �jj)⇤j + �⇢j)
�1(1 + �jj)

!�1

=

 
X

j 6=i

(⇤j +
�⇢j

1 + �jj

)�1

!�1

. (18)

By Proposition 1 in Malamud and Rostek (2017), the unique fixed point is the ⇤i that we

specify in Proposition 1. The Lagrange multipliers are such that �i(Ei � ip
⇤[ai(p⇤) + zi]) =

0 8i, where

p
⇤ =

P
i
((1 + �ii)⇤i + �⇢i)�1(µ� �⇢izi)� AP

i
((1 + �ii)⇤i + �⇢i)�1(1 + �ii)

. (19)

This equilibrium exists if �i � 0 for all i.

When dealers are identical (⇢i = ⇢, zi = z, Ei = E,i = ), the Lagrange multipliers are

all the same, and the demand function simplifies to equation (4) given that ⇤i =
�⇢

N�2
1

1+�
.

The market clears at p
⇤ = µ(N�2)N�⇢�((N�1)A+(N�2)Nz)

(1+�)(N�2)N . The capital constraint E = p
⇤ A

N

characterizes � if � > 0: � = A

NE

�
µ� ⇢�z � �⇢

�
N�1
N�2

�
A

N

�
� 1


.

Proof of Proposition 2. We derive the equilibrium by guess and verify. For this, take

the perspective of dealer i and assume all others play the equilibrium of the proposition.

Call the guessed equilibrium demand function a
G

i
(·). We want to show that it is optimal for

dealer i to respond with the same function.

The dealer anticipates that she will hold ⌘(p) in asset exposure at the end of the game if

the auction clears at price p. She maximizes µ(ai+zi)� ⇢�

2 (ai+zi)2�aip+�i(E�p⌘(p)) point-

wise w.r.t. ai for each p subject to market clearing. The rearranged point-wise necessary

condition is
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ai(p) = (⇤+ �⇢)�1(µ� ↵⇤�i� �⇢zi � (1� ��i⇤)p), (20)

with ⇤ being the slope of the inverse residual supply curve. The condition is su�cient and

therefore constitutes a best-response as long as �(⇢� + ⇤) > 0. This holds by assumption.

If dealer i submits ai(·) and all other dealers j 6= i submit aG
j
(·), the market clears at price

p
BR : ai(pBR) +

P
j 6=i

a
G

j
(pBR) = A. The capital constraint E � p

BR
⌘(pBR) = 0 pins down

a mapping between �i and � that we call �i(�). The guessed equilibrium exists if there is a

fixed point �i(�) = �, such that � � 0. Furthermore, ⇤, which solves ⇤ = �
⇣P

j 6=i

@a
G

j
(p)

@p

⌘�1

must be strictly positive.

Given that �i(·) is continuous and maps from a closed interval of R, namely [0,1), to

itself, it has a fixed point by Brouwer fixed-point theorem. Whether this fixed point is such

that � � 0 and ⇤ > 0 depends on exogenous parameters.23

Proof or Proposition 3. To prove this proposition, we follow Wittwer (2018) who proves

existence of an equilibrium in a discriminatory price auction with random supply and inde-

pendent private information. To apply Theorem 2 and Corollary 1, it su�ces to replace Q

by A, ⇢ in Wittwer (2018)’s setting by ⇢�

1+�
, ti by

1
1+�

(µ� �⇢zi), and t by 1
1+�

(µ� �⇢z).

Further, we must invert the bidding function so that it becomes demand function (13).

Proof of Proposition 4. To derive the equilibrium of the proposition, we guess and verify.

We guess that there is a symmetric equilibrium in which all contracts are the same, �i = �,

and all trading desks i choose the same demand,

ai(p) = a(p) =

✓
N � 2

N � 1

◆
1

⇢I��
(µ� p), (21)

23The equilibrium may not be unique. For instance, when N = 3,↵ = 5,� = 0.5, µ = 10, E =
1, zi = 0 8i, � = 1, ⇢ = 0.1, = 0.3, A = 1, there are two solutions: �1 = 0.23 and �2 = 2.80.
⇤1 = {13.92, 0.10},⇤2 = {1.07, 0.11}. The demand curve is strictly downward sloping in all cases.
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for each p, and level of e↵ort, si = 0. To verify that this equilibrium exists and derive the

functional form for �, we begin in the auction stage. We let all trading desks other than i

play the symmetric equilibrium and determine trading desk i’s best-response in the auction.

Then we find contract �i that trading desk i’s intermediary and households choose assuming

that �j = � for all j 6= i. The proof is complete when we have shown that the best-responses

equal to the guessed equilibrium.

A trading desk with contract �i chooses her demand function ai(·) and whether to exert

e↵ort or not, si 2 {0, 1}, to maximize the expected utility she obtains from wealth

!i(ai(p), si) = �i{ai(p)(R� p)� si�}+ sib (22)

point-wise for each p and subject to market clearing, i.e.,
P

i
ai(p) = A. If the trading desk

exerts e↵ort (si = 0), her wealth in period 2 is �i of the return that the asset will generate,

which is ai(p)(R � p). If she shirks (si = 1), she obtains benefit b but su↵ers a loss which

comes from the fact that the total generated wealth reduces by � due to shirking. Given

her contract, the trading desk’s loss is �i of that. Thus, the trading desk exerts e↵ort if the

benefit of doing so is larger than the cost, which is the case when

�i� � b , �i(1 +m) � 1 where m =
�

b
� 1. (23)

Following the same steps as in the proof of Proposition 1, we find that i chooses

ai(p) = (⇤i + �i⇢I�)
�1 (µ� p) with ⇤i =

�⇢I�

N � 2
(24)

in response to all other trading desks choosing the equilibrium guess. The auction clears at

ai(p
⇤) + (N � 2)

1

⇢I��
(µ� p

⇤) = A ) p
⇤ = µ� (N � 1)��i⇢I�A

(N � 2)(�+ (N � 1)�i)
. (25)

Anticipating how trading desks behave in the auction, households and the intermediary
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choose �i for trading desk i to maximize their joint expected utility from wealth. Given

CARA utility, this is equivalent to

max
�i

Welfare(�i) =
X

j2{H,I}

aj(p
⇤)(µ� p

⇤)� 1

2
a
2
j
(p⇤)⇢j� subject to �i� � b, (26)

where aH(p) = (1 � �i)ai(p), aI(p) = �iai(p), and ai(p), and p
⇤ are given by (24) and (25),

respectively. The solution to this problem pins down a mapping between �i and �. In the

symmetric equilibrium, �i must be chosen to be � in response to all other contracts j 6= i

being �. Depending on the size of � and b, or equivalently m, there are two solutions to

this. For m � 0, the solution is �i =
�
b
, or equivalently, �i =

1
1+m

. For m < 0, which is not

the case we focus on, the solution is � = 1 + ⇢H

(N�2)(⇢H+⇢I)
. Inserting this �i =

1
1+m

into the

market clearing price completes the proof.

Proof of Proposition 5. Since the moral hazard incentive constraint binds, so that � =

1
1+m

, whenever the capital constraint binds, the proof is analogous to the proof of Proposition

1 in combination with the proof of Proposition 4.

Proof of Corollary 1. Let all �i’s decrease, which happens, for instance, when i’s de-

crease. The corollary makes four separate statements, which we address in order. (i) To

show that demand (3) becomes flatter, take the derivative w.r.t. p and then w.r.t. �i:

@

@�i

@ai(p)

@p
=

�i⇢i� + (1 + �ii)2
@⇤i

@�i

(⇢i� + ⇤i + i�i⇤i)2
. (27)

This expression is negative since @⇤i

@�i

 0 by statement (iii) and i⇢i� � 0. Thus, when

�i decreases, the (negative) slope increases towards 0, which means that demand becomes

flatter; (ii) When demand curves become flatter, the market price must increases ceteris

paribus; (iii) By Malamud and Rostek (2017) Proposition 1, the price impact ⇤i is mono-

tonically increasing in ↵i, which implies that it is decreasing in �i; (iv) By definition,
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markup = p
⇤(0) � p

⇤(⇤) with p
⇤(⇤) as defined in (19). The markup increases when �i’s

decreases, because p⇤(0) increases more than p
⇤(⇤). When dealers are identical, the markup

has a closed form solution:

markup = p
⇤(0)� p

⇤(⇤) =
1

1 + �

✓
A

N

◆✓
1

N � 2

◆
⇢�. (28)

From this expression, we see that the markup decreases in �.

Proof of Corollary 2. Consider uniform price auctions. With identical dealers, the

equilibrium is given by Proposition 1 (ii). The clearing price (19) simplifies to p
⇤ =

1
1+�

�
1
N

P
i
µi � N�1

N�2
A

N
�⇢
�
where µi = µ � �⇢zi. The markup is given in (28). With these

expressions, we can take partial derivatives w.r.t. � to show that

⌘ =
@markup

@�

�

markup
=

@p
⇤

@�

�

p⇤
=

1

1 + �
� 1 (29)

with slight abuse of notation.

Extension. Now consider discriminatory price auctions with ex-ante identical dealers for

which Proposition 3 characterizes the equilibrium. Adopting the same notation as before,

the market clears at p⇤(⇤) = 1
1+�

⇣
1
N

P
i
µi � �⇢

⇣
N�1

N(1�⇠)�1

⌘
A

N

⌘
with µi defined as in Propo-

sition 3 when dealers have market power, and at p⇤(0) = 1
1+�

(µ + ⇢�

⇠�1(
A

N
+ 1

N

P
i
zi � ⇠z))

when dealers are price-takers. The markup is

markup = p
⇤(0)� p

⇤(⇤) =
1

1 + �

✓
A

N

◆✓
⇠

⇠ � 1

◆
⇢�. (30)

The remainder of the proof is identical to before.

Proof of Corollary 3 The corollary makes three separate statements, which we address

in order first for uniform price and then for discriminatory price auctions.

Consider the equilibrium in a uniform price auction of Proposition 2. (i) We want to
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show that the (negative) slope of the demand curve,

@ai(p)

@p
= �1� �⇤�

⇤+ �⇢
with ⇤ =

(N � 2)±
p
(N � 2)2 � 4��(N � 1)⇢�

2��(N � 1)
, (31)

increases (meaning that demand becomes flatter) when � decreases. Equivalently, we want

to show that

@
@ai(p)
@p

@�
=

8
>><

>>:

� �p
(N�2)2�4��(N�1)⇢�

if ⇤ =
(N�2)+

p
(N�2)2�4��(N�1)⇢�

2��(N�1)

+ �p
(N�2)2�4��(N�1)⇢�

if ⇤ =
(N�2)�

p
(N�2)2�4��(N�1)⇢�

2��(N�1)

is negative. The first case applies when � > 0, the second when � < 0. In both, the expression

is negative; (ii) When demand curves become flatter, the market price must increases, ceteris

paribus; (iii) By market clearing, p⇤(⇤) = 1
1���⇤

�
µ� ↵�⇤� ⇢�

1
N
(
P

i
zi � A)

�
. This price

together with the definition of the markup and the fact that ⇤ decreases in � when � > 0

implies that the markup decreases in � for relevant valid parameter constellations.

Consider the equilibrium in a discriminatory price auction of Proposition 3. (i) It is

straightforward to see that demand (13) becomes flatter as � decreases; (ii) As before, when

demand curves become flatter, the market price must increases ceteris paribus; (iii) The

markup, given in (30), decreases in �.

Proof of Corollary 4. To show that there is no �i = � for all i that implements the

price and allocation of a frictionless market, we compute the price and allocation of such a

frictionless market and compare both to the analogue in our market setting.

In the frictionless market, agent of type j 2 {H, I} submits the following demand x̄j(p) =

1
⇢j�

(µ � p). Intuitively, each agent submits the marginal utility she achieves from winning

amount aj(p), conditional on the auction clearing at p. The market would clear at price p̄⇤ =

µ� (⇢H + ⇢I)�
A

N
at which NāH(p̄⇤) +NāI(p̄⇤) = A. Households obtains āH(p̄⇤) =

A

N

⇢H+⇢I

⇢H
;

an intermediary obtains āI(p̄⇤) =
A

N

⇢H+⇢I

⇢I
.
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In contrast, by Proposition 4, the actual market clears at p
⇤ = µ � ⇢I��

�
N�1
N�2

�
1
N
A,

households obtains aH(p⇤)(1� �)A
N
, and an intermediary obtains ai(p⇤) = �

A

N
.

Comparing the prices and allocations across market settings, we see that it is not possible

to obtain the frictionless price and frictionless allocation with the same �. We can only obtain

one of the two.

Proof of Corollary 5. Statement (i) follows from Proposition 4 and Corollary 4. To show

statement (ii) we only need to determine how � > 0 changes in N , since we already know

that the market price increases when � decreases.

@�

@N
=

A(�µ(N � 2)2N + (4 +N(2N � 5))�⇢I�A)

E(N � 2)2N3

@�

@N

8
><

>:

< 0 if µ > c(N) = (4+N(2N�5))�⇢I�A
(N�2)2N

> 0 otherwise

Note that cuto↵ c(N) strictly decreases in N , and converges to 0 as N ! 1. Therefore,

given µ > 0, there is some N̄ at which µ = c(N̄) so that for N > N̄ , @�

@N
< 0 and for N < N̄ ,

@�

@N
> 0. If µ >

7
3⇢I��A,

@�

@N
< 0 for any N .

D Robustness analysis

Here, we explain how we construct alternative slope measures for the event study of Section

4, and conduct robustness checks.

Alternative slope measures. First, we replace maxk{aitsk} in (6) by the amount each

dealer asked for at the highest step, k⇤
i
, it ever won: aitsk⇤

i
. Second, we cap maxk{aitsk} by

the largest amount a dealer ever won (in % of supply). Third, we compute the local slope

around the point at which the market clears. For this, we first find the market clearing

yield of an auction, yieldC
ts
. Then, we leverage the fact that, according to the auction rules,
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bid yields cannot have more than three decimal places. We determine the yield that lies

just above, yieldUB

ts
= yield

C

ts
+ 0.001, and the yield that lies just below the clearing yield:

yield
LB

ts
= yield

C

ts
� 0.001. With this, we compute the local slope as the di↵erence in the

demand of a dealer at these two cuto↵ yields over the di↵erence in the cuto↵ yields.24

Among all slope measures, measure (6) is our preferred one. It is intuitive and can

be computed for essentially all demand curves for each dealer and auction. The measure

can account for di↵erences in capitalization, capital requirements and market conditions

over time and across all dealers. In contrast, our alternative slope measures rely on a more

restricted sample of bids. This is especially true when measuring the slope of demand locally,

around the market clearing price. This local measure only considers 69% of all demand

curves—those of bidders who win at auction. This is problematic, for instance, if dealer

capitalization a↵ects how aggressive the dealer bids, which is what our model predicts.

Robustness. We conduct a series of robustness checks. First, we estimate regression (7)

with leverage ratios LRiq instead of capital thresholds to exploit variation in these ratios

(see Appendix Figure A3a). Since LRiq varies over time and quarters, unlike thresholdiq

which is fixed over time with few exceptions, we can include dealer fixed e↵ects to take out

time-invariant unobservable dealer characteristics. We run two specifications, one with and

one without dealer fixed e↵ects. In both cases, the estimates are qualitatively similar to

those with thresholds, but the change in the slope is less sharp when the exemption period

ends. One reason for this is that dealers who were most positively impacted by the LR

exemptions demanded larger amounts in 2020q2 than in subsequent quarters (see Appendix

Figure A4). This mechanically increases the slope measure after the first exemption quarter.

Second, we exclude dealers who hit the pre-COVID bidding limits more frequently than

24One other way to construct a slope measure in other settings, would be to fit straight line
through each submitted demand curve. In our setting, in which the median (maximal) number of
steps in a demand curve is four (seven), this would mean running OLS regressions through only a
few data points.
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0.25% of the time to show that the main results are not driven by dealers who go over these

limits in Appendix Figure A5.

Third, we use the alternative slope measures, described above, to show that the change in

the slope is not driven by the way we construct our slope measure in Appendix Figures A6.

By definition, the size of the slope e↵ect depends on how we compute the slope measure.

The qualitative finding is robust across all specifications with one exception. We find no

significant change in the local slope measure when relying on bank thresholds. This could

be because of insu�cient power given that the local measure only considers a subset of bids,

or because of a bias that comes from using winning bids.

Appendix Table A1: Bid functions are approximately linear

mean median sd

�t 0.20 0.17 0.11

R
2
t

0.82 0.83 0.16

Adj. R2
t

0.77 0.77 0.21

Within R
2
t

0.53 0.54 0.15

Appendix Table A1 shows the point estimate and R2 from regressing bids on quantities in each
auction: btik = ⇣ti + �tatik + ✏tik. The subsample are bidding-functions with at least 2 steps. Bids
are in yields (bps) and quantities in percentage of supply.
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Appendix Figure A1: Holders of Canadian government bonds
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�
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%DQN�RI�&DQDGD 1RQ�UHVLGHQWV

3HQVLRQ�IXQGV %DQNV

,QVXUDQFH�FRV� 2WKHU�SULYDWH�),

Appendix Figure A1 shows who holds Canadian government bonds and bills from 2007 until 2021
in percentage of par value outstanding: Bank of Canada, Non-residents, Canadian pension funds,
Canadian banks, Canadian insurance companies, and other private firms. The bank category
holdings are mostly driven by the eight banks we focus on. They hold over 80% of the assets.

Appendix Figure A2: Maximal dealer demand as % of total supply

Appendix Figure A2 shows box plots of how much the average dealer demanded in an auction in
2020 or 2021 and all other years as % of auction supply. The dashed line represents the maximal
bidding limit in regular times. It was increased to 40% during 2020/2021. The minimal bidding
limits, which must not be met at each auction, are around 10% for most banks.
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Appendix Figure A3: Change in the slope using LR

(a) Without dealer fixed e↵ect (b) With dealer fixed e↵ect

Appendix Figure A3a shows the �k estimates and 95% confidence intervals of the regression (7):
slopeiqs = ↵ +

PK
k=�K �k ⇥ Dk ⇥ LRik + ⇣qs + ✏iqs. Figure A3b adds dealer fixed e↵ects. All

magnitudes are relative to the benchmark in 2020q1. The slopes are measured in million C$ per
bps, leverage ratios are in bps. Standard errors are clustered at the dealer level in (b).

Appendix Figure A4: Event study with maximal demand, i.e., maxk{ai,t,s,k}

(a) Without dealer fixed e↵ect (b) With dealer fixed e↵ect

Appendix Figure A4a shows the �k estimates and 95% confidence intervals of the regression (7):
a maxiqs = ↵ +

PK
k=�K �k ⇥ Dk ⇥ LRik + ⇣qs + ✏iqs with a maxiqs as average of maxk{aitsk}

per a dealer/quarter/security. In Appendix Figure A4b, we add a dealer fixed e↵ect. Demand is
measured in billion C$. Standard errors are clustered at the dealer level in (b).
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Appendix Figure A5: Event study with unconstrained dealers (w.r.t. bidding limits)

(a) With LR (b) With supervisory thresholds

Appendix Figure A5a shows the �k estimates and 95% confidence intervals of the regression (7):
slopeiqs = ↵ +

PK
k=�K �k ⇥ Dk ⇥ LRik + ⇣qs + ✏iqs. Appendix Figure A5b replaces LRik by the

institution-specific Basel III threshold. All magnitudes are relative to the benchmark in 2020q1.
The slopes are measured in million C$ per bps, leverage ratios and thresholds are in bps.
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Appendix Figure A6: Event study with alternative slope measures

(a) Using LR (b) Using supervisory thresholds

Appendix Figure A6 shows the �k estimates and 95% confidence intervals of the regression (7):
slopeotheriqs = ↵ +

PK
k=�K �k ⇥ Dk ⇥ LRik + ⇣qs + ✏iqs in (a) and with supervisory LR thresholds

instead of LRs in (b) for alternative slope measures. In the first row, we replace maxk{aitsk} in
(6) by the demand at the dealer asked for at the highest step it ever won. In the second row, we
cap this amount by the largest amount ever won (in % of supply). In the third row, we use a local
slope measure, defined in Section 4. All magnitudes are relative to the benchmark in 2020q1. The
slopes are measured in million C$ per bps, leverage ratios and thresholds are in bps. All graphs
look similar when we include dealer fixed e↵ects.
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