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Abstract

We study probability forecasts in the context of cross-sectional asset pricing with a large number of

firm characteristics. Empirically, we find that a simple probability forecast model can surprisingly

perform as well as a sophisticated probability forecast model, all of which deliver long-short

portfolios whose Sharpe ratios are comparable to those of the widely used return forecasts.

Moreover, we show that combining probability forecasts with return forecasts yields superior

portfolio performance versus using each type of forecast individually, suggesting that probability

forecasts provide valuable information beyond return forecasts for our understanding of the cross-

section of stock returns.
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1 Introduction

The Fama-MacBeth regression is the fundamental tool used for years by researchers to construct

factors or forecast the cross-section of asset returns. Applications of the approach include Haugen

and Baker (1996), Lewellen (2014), and Green, Hand, and Zhang (2017) who find that a large

number of firm characteristics have predictive power for the cross-section of asset returns and they

together have greater power than any single one. Recently, there has been an increasing application

of sophisticated machine learning (ML) models in finance; examples include Light, Maslov, and

Rytchkov (2017); Chinco, Clark-Joseph, and Ye (2019); Feng, Giglio, and Xiu (2020); Freyberger,

Neuhierl, and Weber (2020); Gu, Kelly, and Xiu (2020); Kozak, Nagel, and Santosh (2020); Giglio,

Liao, and Xiu (2021); Cong et al. (2021); Dong et al. (2022); Avramov et al. (2023) and Chen et al.

(2023). A common feature of all these studies is that their results are all based on predicting the

expected returns of the stocks.

In this paper, we take a different approach by predicting the probabilities that the stocks will

outperform a benchmark, with a large number of firm characteristics as predictors as in those ML

studies. The probability associated with a stock’s return can be of interest by itself as it captures

the information ratio of the stock. In contrast to the expected return, it also takes the risk into

account. If we have the ex-ante probability, sorting by the probability is equivalent to sorting by

the information ratio, which can potentially be more useful than using the expected return alone

if both are estimated accurately. In a given application, however, their performance can vary and

depend on individual estimation accuracy of the return and risk.

Empirically, with the same setup as Gu et al. (2020) who predict the expected return in a

general framework, we predict the probability, and sort stocks into decile portfolios by their

probability forecasts. Since low volatility is often associated with high probability forecast, the

decile portfolios have to be adjusted by volatility so that the volatilities are comparable across

deciles. Then, the standard long-short portfolio is easily constructed. We find that its performance

is comparable with those from the expected return forecasts, with the annualized Sharpe ratios

ranging from 1.27 to 1.51.
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Moreover, we find that combining probability forecasts with expected return forecasts can

generate a better portfolio compared with the one from each type of forecast. The mean-variance

combination of the two forecasts yields long-short portfolios with a Sharpe ratio ranging from 1.64

to 1.74 across different prediction models in the out-of-sample testing period. The results suggest

that probability forecasts generate incremental and significant information above and beyond the

expected return forecasts.

There is another advantage of probability forecasting. We find that simple models in predicting

the probabilities can already achieve superb portfolio performance compared to highly complex

and nonlinear models. For example, a logistic regression prediction model can generate a

long-short portfolio with a Sharpe ratio of 1.46, comparable with the best performance of the

sophisticated Neural Network (NN) models used for expected return forecasts by Gu et al. (2020).

This finding indicates that the probability target can potentially be a simpler function of underlying

characteristics as compared with the expected return on which various studies document complex

nonlinearity.

Overall, our findings highlight the additional insights and value of modeling the probability

instead of just the expected returns alone. By shifting the focus from traditional expected return

forecasts only to consider also probability-based predictions, our study suggests a new paradigm

for asset pricing and portfolio management.

Our paper is related to two broad strands of literature. There is a large literature on

probability forecasts in the time-series context, starting from the early research such as Breen

et al. (1989), Pesaran and Timmermann (1995), Leung et al. (2000), and Pesaran and Timmermann

(2004). Christoffersen and Diebold (2006) further build a volatility-dependence-based theoretical

framework to explain the surprising success in sign forecasting. Such a framework is cater used

in probability forecasting by Chevapatrakul (2013) and Catania et al. (2019), among others.

Moskowitz et al. (2012) and Papailias et al. (2021) provide evidence of sign predictability of

stock past excess return. However, almost all the studies focus on time-series sign forecasting.

In contrast, we study probability forecasts for the cross-section of stock returns, and we use a large
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number of firm characteristics as predictors.

There is also a growing literature on using machine learning tools for cross-sectional asset

pricing. Gu, Kelly, and Xiu (2021) apply the autoencoder model to consider a non-linear version

of IPCA by Kelly, Pruitt, and Su (2019) for latent factor modeling. Chen, Pelger, and Zhu

(2023) extend the idea of GANs or robustness to estimate the SDF. Han, He, Rapach, and

Zhou (2023) propose an E-LASSO approach for equity risk premia forecast that augments the

traditional Fama-MacBeth regression with machine learning. Moreover, we see applications of

machine learning algorithms to other asset classes and contexts, e.g. corporate bond (Bali, Goyal,

Huang, Jiang, and Wen (2020)), options (Bali, Beckmeyer, Moerke, and Weigert (2023)), foreign

exchanges (Filippou, Rapach, Taylor, and Zhou (2020)), mutual funds (Kaniel, Lin, Pelger, and

Van Nieuwerburgh (2023)), and hedge funds (Wu, Chen, Yang, and Tindall (2021)). The existing

literature in this strand focuses on modeling only the expected return of the assets. In contrast, our

paper seems to be the first one to study probability forecasts with machine learning methods.

The rest of the paper is organized as follows. Section 2 explores reasons why the probability

forecast is of interest. Section 3 presents our methodology, interpretation, and performance

evaluation. Section 4 reports our empirical results. Section 5 concludes.

2 Why Probability Forecasts?

In this section, we explain the intuition for probability forecasts. Our explanations are built upon

Christoffersen and Diebold (2006).

Consider, for instance, the returns on stock i and the market portfolio, characterized by the

following distributions where the conditional means are independent and conditional variances are

dependent:

Ri,t+1 | Ωt ∼ N
(

µi,
(

σ
i
t+1|t

)2
)
, µi > 0, (1)

Rmkt
t+1 | Ωt ∼ N

(
µ

mkt ,
(

σ
mkt
t+1|t

)2
)
, µ

mkt > 0, (2)
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The expected returns above are assumed positive for simple illustration.

A pivotal aspect of our analysis is the comparison of individual stock performance against

the market portfolio, a common benchmark in evaluating investment strategies.1 In pursuit of

generating excess returns to outperform a benchmark like the S&P 500, investment managers often

rely on metrics such as the Information Ratio (IR), which is an effective tool for assessing the

performance of individual stocks relative to the market return,

IR =
E[Ri,t+1 −Rmkt

t+1

σ(Ri,t+1 −Rmkt
t+1)

, (3)

where σ(Ri,t+1 −Rmkt
t+1) denotes the standard deviation of the excess returns, signifying the risk

associated with these returns. The distribution of excess return Ri − Rmkt adheres to a normal

distribution:

Ri,t+1 −Rmkt
t+1 | Ωt ∼ N

(
µi −µ

mkt ,
(

σ
i
t+1|t

)2
+
(

σ
mkt
t+1|t

)2
−2ρσ

i
t+1|tσ

mkt
t+1|t

)
, (4)

where ρ represents the correlation coefficient between Ri and Rmkt .

The probability of a stock’s return outperforming the market return implies a positive excess

return, which can be expressed as:

Probt

(
Ri,t+1 −Rmkt

t+1 > 0
)
= 1−Probt

(
Ri,t+1 −Rmkt

t+1 < 0
)

= 1−Prob

((
Ri,t+1 −Rmkt

t+1
)
−
(
µi −µmkt)

σt+1|t
<

−
(
µi −µmkt)
σt+1|t

)

= Φ

(
µi −µmkt

σt+1|t

)
,

(5)

where Φ(·) denotes the cumulative density function of the standard normal distribution N(0,1),

and σ2
t+1|t represents the conditional volatility of excess return, varying with Ωt . Equation (5)

links explicitly the probability to the IR of the stock under the normality assumption. The greater

1We also test other benchmarks for robustness.

4



the expected return difference, the greater the probability. It also has two other implications. First,

the probability depends not only on the expected returns but also on the volatility. Second, even if

the expected returns are constant, as long as the volatility is time-varying, the probability will be

time-varying too.

3 Methodology

In this section, we introduce the methodology we use for in the probability forecast of stock returns,

the metrics we use to evaluate variable importance, and the measures for performance evaluation.

3.1 Prediction Models with Mean Squared Loss

The models we consider can be classified into two categories by their objectives: (1) mean squared

error loss with an identity linking function; and (2) cross-entropy loss with a Logit linking function.

The linking function transforms the model output into a probability forecast. We introduce the two

categories of models in detail in this section.

Similar to the literature on the linear probability model, when the outcome becomes a discrete

0-1 variable, one straightforward way is to just apply the same regression framework to the 0-1

outcome variable. The theory of regression would imply the regression coefficients inherit all the

good BLUE properties of simple OLS. In this case, the loss function can be written as:

L (θ) =
1

NT

N

∑
i=1

T

∑
t=1

(yi,t+1 −g(zi,t ;θ)), (6)

where yi,t+1 is a 0-1 variable indicating whether return outperforms the benchmark or not, g(·;θ)

is the prediction model, and zi,t are the predictors for stock i at time t.

In this case, although the final forecast may be outside the probability bound of 0 and 1, the

model is still capable of learning the probability distribution of the final outcome. We consider two

models: the OLS and PLS models.
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3.1.1 OLS

For the OLS model, we assume that each predictor has a linear effect on the final probability. Then

we can write the prediction model as:

g(zi,t ;θ) = z′i,tθ . (7)

This model provides a linear benchmark. It is essentially an OLS regression of the discrete outcome

y on all the predictors, which can be solved in closed form.

3.1.2 Partial Least Squares

To avoid overfitting, we consider reducing the dimension of the predictors using partial least

squares (PLS). The model is first used in finance by Kelly and Pruitt (2013) to construct a market

return forecast using many valuation measures. Huang, Jiang, Tu, and Zhou (2015) then apply it

to construct an investor sentiment index aligned with predicting market returns.

We write the probability forecast model as follows:

g(zi,t ;θ) = (z′i,tΩ)′θ , (8)

where Ω is a K × P matrix that transforms the K predictors in zi,t into P lower dimensional

components.

To extract the j-th component with the PLS, the objective function can be written as:

ω j = argmax
ω

Cov(Y,Zω), s.t. w′w = 1, Cov(Zω,Zωi) = 0, i = 1,2, · · · j−1. (9)

Intuitively, the algorithm extracts predictive components in a sequence where the extracted one

should have maximum covariance with the outcome variable while being orthogonal to previous

components. Our outcome variable Y here is a 0-1 discrete variable indicating whether the stock
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return outperforms its benchmark or not.

3.2 Prediction Models with Cross-Entropy Loss

Another natural loss function in the context of probability forecast is the cross-entropy loss,

L (θ) =− 1
NT

N

∑
i=1

T

∑
t=1

(yi,t+1 log(g(zi,t ;θ))+(1− yi,t+1) log(1−g(zi,t ;θ))) . (10)

Minimizing this loss is equivalent to maximizing the log-likelihood of observing all the outcomes.

Note that to compute the loss, we require the model output of probability forecast to be strictly

within the range of (0,1). One popular choice is to use the sigmoid function as,

S(x) =
1

1+ e−x , (11)

which is the link function to map or squash any function output to a value within the range of 0

and 1.

Therefore, the final probability forecast can be written as:

g(zi,t ;θ) = S( f (zi,t ;θ)), (12)

where f (zi,t ;θ) is output from a prediction model. In this paper, we consider two such prediction

models: (1) a linear model and (2) a non-linear neural network following Gu et al. (2020).

3.2.1 Logistic Regression

When f (zi,t ;θ) is a simple linear function, the regression becomes a logistic regression. We have

f (zi,t ;θ) = z′i,tθ , (13)

g(zi,t ;θ) =
1

1+ e−z′i,tθ
. (14)
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Compared to the OLS, the sigmoid linkage function introduces the non-linearity to the model. The

property of the linkage function will make extreme input saturate.

3.2.2 Neural Networks

One natural extension to the linear setup in Equation (13) is to consider using a neural network

as a prediction model. Consider a three-layer neural network as the prediction model. The entire

prediction problem can be written as:

f (zi,t ;θ) =W3 ×σ (W2 ×σ (W1zi,t +b1)+b2)+b3 , (15)

g(zi,t ;θ) =
1

1+ e− f (zi,t ;θ)
, (16)

where σ(·) is the ReLU activation function for neural network, Wi and bi are the weights and bias

for layer i. For neural networks with more (less) layers, we are adding (removing) the composition

of functions in Equation (15).

For the neural network architecture, we follow Gu et al. (2020) with 32 neurons in the first

layer, followed by 16, 8, 4, and 2 in subsequent layers. We consider a neural network with 1 to 5

layers and follow the training and optimization procedure in Gu et al. (2020).2 This model serves

as an extension to the basic logistic regression. We want to examine whether introducing additional

non-linearity would improve the prediction performance under the cross-entropy loss specification.

3.3 Model Interpretation

To interpret the prediction model output, we adopt the SHAP (Shapley Additive exPlanations)

framework by Lundberg and Lee (2017). The idea originates from Shapley (1953), who attempts

to solve the problem of distributing the payoff fairly among N players in a game. He shows that the

Shapley value is the only metric satisfying three axioms for evenly distributing the payoff based

2To regularize the model, we add early stop procedures that stop training the neural network once the validation
loss stops decreasing. We also retrain the model five times and use an equal-weighted ensemble of the five model
outputs as the final prediction.
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on the contributions.

Empirically, the Shapley value can be written as:

φi( f ,x) = ∑
z⊆x

|z|!(M−|z|−1)!
M!

[ f (z)− f (z\i)] , (17)

where i is the index for predictor, f is the prediction model of interest, and x is the total set of

predictors considered. In this paper, we use this measure to account for variable importance across

different models. One thing to note is that the Shapley value requires an input for X when it is

missing. Following Gu et al. (2020), we use the value of zero as the input given the data has been

transformed into cross-sectional rank mapped into the interval of [−1,1].3

3.4 Performance Evaluation

To evaluate the performance of our model, we evaluate the sign-of-change forecast in our test

sample with prediction accuracy and cross-entropy. The accuracy is calculated as:

AccuracyOOS =
∑(i,t)∈T3 T Pit +T Nit

∑(i,t)∈T3 T Pit +T Nit +FPit +FNit
, (18)

where T3 represents the out-of-sample testing period and T P, T N, FP, FN are indicator variables

for true positive, true negative, false positive, and false negative, respectively. For model

prediction, if the probability output is larger than 50%, we classify the output as y = 1. Otherwise,

we classify it as y = 0.

The out-of-sample cross-entropy is calculated as:

CEOOS =− 1
| T3 | ∑

(i,t)∈T3

(
yit log(g(zi,t ; θ̂))+(1− yit) log(1−g(zi,t ; θ̂))

)
. (19)

To gauge the economic significance, we sort stocks based on the probability forecast into

3A value of 0 would mean using the cross-sectional median to impute the missing values.
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value-weighted decile portfolios and examine the out-of-sample decile portfolio performance. We

rebalance our portfolio at a monthly frequency. We construct a long-short strategy that longs the

decile ten portfolio and shorts the decile one portfolio.

3.4.1 Variance Adjusted Decile Portfolios

From our discussion in section 2, the volatility dynamic plays an important role in determining

the probability that a stock outperforms the benchmark. In other words, predicting probability

is volatility. To alleviate the effect of volatility dependence, we perform a variance adjustment

procedure.

To be specific, at the beginning of each month, we use a rolling window of 36 months to

calculate real-time volatility for each decile portfolio:

σ j,t =

√√√√ 1
36

t−1

∑
τ=t−36

(
r j,τ − r j

)2
, for j = 1, · · · ,10, (20)

where r j,τ is the excess return of decile j portfolio at time τ , and r j is the sample average of excess

return of the decile j portfolio over the sample. Next, at each point in time, we scale the decile

portfolio excess return to have the same volatility as the decile 1 portfolio:

rad j
j,t = r j,t

σ1,t

σ j,t
, for j = 1, · · · ,10. (21)

We form the variance adjusted zero-cost long short portfolio as rad j
10,t − rad j

1,t .

4 Data and Empirical Results

In this section, we introduce the data and report the empirical results from the probability forecast.

We then compare and contrast the probability forecast with the expected return forecast. Finally,

we conclude with various robustness checks.
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4.1 Data

Following Gu et al. (2020) paper, our research aggregates a comprehensive dataset comprising

monthly individual stock returns sourced from the Center for Research in Security Prices

(CRSP). Inspired by Green et al. (2017), we incorporate an array of 94 firm-level predictive

characteristics. This dataset captures the market activity of all firms listed on the New York

Stock Exchange (NYSE), American Stock Exchange (AMEX), and NASDAQ from January 1957

through December 2020.

Our sample features a total of 31,492 unique stocks. The average number of cross-sectional

observations per month notably exceeds 5,000, providing a rich basis for in-depth analysis.

Additionally, market returns and risk-free rate data are compiled from the comprehensive databases

available on the Fama-French website, 4 ensuring a high standard of data reliability and relevance.

Following Gu et al. (2020), we split our data into training, validation, and test sets. For models

with no hyperparameters (OLS and Logit), we combine the training and validation set together as

the training set. We use an expanding window training scheme and re-train the model each year.

For example, for the first model, we train the model using data from January 1957 to December

1974, validate the model on data from January 1975 to December 1986, and test the model from

January 1987 to December 1987. For the second model, we expand the training set by one year,

keep the validation set length the same for the next 12 years, and test the model prediction in the

year 1988. With this setup, our out-of-sample testing period for all models is from January 1987

to December 2020.

4.2 Emprirical Results with Probability Forecasts

In this section, we focus on the empirical performance of the models with probability forecasts. In

the first section, we report the summary statistics of the model prediction as well as the variable

importance. In the second section, we present the portfolio performance from the probability

4https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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forecasts to gauge the economic value.

4.2.1 Model Prediction and Variable Importance

Table 1 and Table 2 present the summary statistics of the probability forecasts and their

corresponding predictive accuracies across various models. The initial observation reveals that

the average proportion of stock returns outperforming the market benchmark is 46.4% for the

aggregated sample period.

For model-specific performance, we evaluate the performance of eight distinct models:

Ordinary Least Squares (OLS), Logistic Regression (Logit), Partial Least Squares (PLS), and a

set of Neural Networks with one to five hidden layers (NN1 through NN5). We report accuracy

and cross-entropy for each model as forecast performance measures.

This cross-entropy calculates the log loss for each forecast and then averages it over all the

forecasts, providing a robust measure of the model’s performance in predicting the probability.

Higher values of accuracy and cross-entropy indicate better performance of the forecasting model.

The OLS model exhibits a mean sign forecast of 0.371, along with a comparatively high

standard deviation of 0.183. This divergence from the empirical percentage of stocks surpassing

market returns is anticipated, highlighting the potential inadequacies of OLS in capturing the

intricacies of non-linear predictor-outcome relationships, as well as its vulnerability to in-sample

overfitting phenomena. In contrast, the binary logistic regression model (Logit) manifests a marked

enhancement in forecasting precision. The mean prediction soars to 0.459, which closely mirrors

the actual observed frequency, and the standard deviation contracts substantially to 0.044. This

model’s skewness is moderately negative at -0.384, and its kurtosis is nearly negligible at 0.055,

indicating a more symmetric and less outlier-prone distribution of forecast errors compared to its

linear counterpart.

We further directed towards the PLS model, a technique aimed at dimensionality reduction in

regression contexts. This model parallels the improvements seen with Logit, showing predictions
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that align more closely with actual outcomes than the OLS model. The remaining part of Table

1 focuses on the predictive sign forecasts derived from Neural Networks, ranging from a single-

layer network (NN1) to a five-layer network (NN5). The summary statistics show a consistent

predictive performance across these neural network models, suggesting a negligible effect of model

complexity on sign forecast accuracy.

In Table 2, we adopt a binary classification scheme where forecasted probabilities above

0.5 are considered positive predictions and those below as negative.5 Realized stock returns

are correspondingly designated as positive if they outperform the market return and negative if

they do not. Observations are thus segmented into four distinct categories: stocks with both

a positive prediction and actual market outperformance (true positive), those with a positive

prediction that underperform the market (false positive), stocks with a negative prediction that do

underperform (true negative), and those with a negative prediction but positive actual performance

(false negative).

The model’s accuracy is measured by how well these predictions match reality. Statistically,

the OLS model registers an accuracy of 0.54, accompanied by a cross-entropy score of 0.689.

The Logit and PLS models exhibit a comparable level of accuracy and an identical cross-entropy

score, underscoring a consistency in performance. Neural network models, ranging from NN1 to

NN5, reveal subtle improvements in accuracy with added complexity—NN1 starts at an accuracy

of 0.537, ascending marginally to 0.539 for NN5.

In general, Table 1 and Table 2 highlight the subtle but significant trade-offs involved in model

complexity versus predictive accuracy. Non-linear models, such as Logit and neural networks, are

effective at navigating the complex, non-linear relationships in the dataset. Yet, the incremental

gains in accuracy begin to diminish as model complexity increases, suggesting a threshold beyond

which additional complexity does not equate to meaningful increases in predictive performance.

We now examine the relative importance of individual predictors for the performance of each

model using the Shapley value method, as described in Section 3. For every observation, the yearly

5Notably, This split mainly leads to more negative predictions, as the average forecast falls below the 0.5 threshold.
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fitted model is used to calculate how each of the 94 anomaly predictors contributes to the forecast

in comparison to the dataset’s average prediction. The average deviation of each observation in the

sample is calculated as a measure of the predictor’s significance. Figure 1 displays the importance

of the characteristics of the top-20 variables for each model, with the sum of variable importance

in each model normalized to one. This normalization permits easy comparison across the models.

Figure 1 indicates that, with the exception of OLS, there is a general consensus among the

models regarding the most influential covariates for sign forecasts. The significant variables fall

into four categories. The first category includes risk and volatility measures such as return volatility

(retvol), idiosyncratic return volatility (idiovol), market beta (beta), volatility of dollar trading

volume (std dolvol), and volatility of share turnover (std turn), which are consistent with our

probability forecast framework.

Momentum-based predictors form the second category, including 1-month short-term momen-

tum (mom1m), 12-month long-term momentum (mom12m), and 6-month momentum (mom6m).

The third category is composed of liquidity measures, including share turnover (turn), zero trading

days (zerotrade), bid-ask spread (baspread), and Amihud illiquidity (ill), all of which provide

insights into the market’s ability to facilitate transactions without significantly affecting the stock

price.

The final category comprises fundamental characteristics, which include return on invested

capital (roic), the number of earnings increases (nincr), initiation and omission of dividends (divi

and divo), and issuance of secured debt (securedind). These reflect the risk factors and financial

conditions of firms and are crucial for probability forecasts.

Compared with the variable importance reported by Gu et al. (2020), our approach yields

different patterns: the volatility measures have larger weights in our probability prediction models.

This highlights the distinctive information offered by probability forecasts.
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4.2.2 Portfolio Performance with Probability Forecasts

In this subsection, we focus on the portfolio performance from probability forecasts. At the

beginning of every month, we sort stocks into decile portfolios based on the model’s predicted

probability of outperforming the bench market return, i.e., the market.

Within each portfolio, we weight the stock by its market cap at the end of the previous month

to remove the effect of microcaps following Hou, Xue, and Zhang (2020). We then perform the

variance adjustment procedure laid out in Section 3.4.1 to dynamically adjust portfolio weights for

each decile portfolio and construct a zero-cost long-short portfolio by longing the decile ten and

shorting the decile one portfolio.

To explain the rationale behind the variance adjustment strategy, consider decile one and decile

ten excess returns, which both load on common factors in returns:

r1,t = β
′
1Ft + ε1,t , (22)

r10,t = β
′
10Ft + ε10,t . (23)

The long-short return can be written as:

rLS,t = (β10 −β1)
′Ft + ε10,t − ε1,t . (24)

From our presentation of the analytical framework in Section 2, the prediction based on probability

not only sorts stocks based on expected returns but also volatility. As a result, the decile ten

portfolio will have lower volatility than the decile one portfolio, which suggests that β10 is of

smaller magnitude than β1.

Therefore, the long-short strategy loads excessively on the factor risk, decreasing its Sharpe

ratio. With the adjustment, we have reduced the factor risk while boosting the portfolio’s expected

return. As a result, we expect to see the Sharpe ratio improve.

Table 3 presents the portfolio performance from probability forecasts. The average forecast
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probability (P̂rob) closely mirrors the realized probability (Prob), underscoring the efficacy of our

models. Except for the OLS model, the returns of the portfolios generally increase in line with the

probability forecasts. Notably, the NN1 model performs the best among all models considered,

delivering an average monthly return of 2.75% with a Sharpe ratio of 1.51.

It is also worth noting that the simple Logit model generates comparable performance with an

average monthly return of 2.61% with a Sharpe ratio of 1.46. The numbers are comparable to the

best-expected return forecast model from Gu et al. (2020).

The results further suggest that probability objectives are easier to learn compared to expected

return targets. Even the 1-layer Neural Network or the Logit model can beat Neural Networks with

more layers.

4.3 Comparison with Expected Return Forecast

In this section, we focus on discussing the similarities and differences between probability and

expected return forecasts.

From our discussion in section 2 equation 5, if returns are jointly normal, the probability that

stock i outperforms the market would equal the normal CDF with an argument of the information

ratio of stock i relative to the market portfolio. The higher the stock i’s expected return, the greater

the probability this stock will outperform the market.

However, the probability measure has information beyond just the expected return. It also takes

into account the volatility of the difference between stock i and the benchmark, i.e., σ(Ri −Rmkt).

As a result, even if expected excess return µi−µmkt is constant, as long as the conditional volatility

σ(Ri −Rmkt) is predictable, the resulting probability Φ

(
µi−µmkt

σ(Ri−Rmkt)

)
will be predictable.

Therefore, choosing probability as a target to model can improve the signal-to-noise ratio in

return forecasting problems. The low signal-to-noise ratio problem in expected return forecast

or measurement has plagued empirical asset pricing, as is argued in Black (1986). In many

contexts, when there is no need for precise estimates of expected returns, choosing probability
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as the modeling object can reduce the amount of data needed for the algorithm to converge since

there is more signal from the data to learn from. This is especially useful when the market is having

structural breaks and time-varying regimes in expected returns (Ang and Timmermann (2012)).

Moreover, another advantage of probability forecasting is that it takes volatility information

into account. In Section 2, we show that when returns follow a joint normal distribution, the

probability forecast can be exactly mapped into the information ratio of the individual stock return

relative to a benchmark. For example, if we choose the risk-free rate as the benchmark, the ratio is

exactly the Sharpe ratio. Suppose the learning algorithm is able to uncover the probability forecast

perfectly. Sorting on the final output from the forecast would be equivalent to sorting on the Sharpe

ratio/information ratio of the assets. Expected return forecasts, on the other hand, will only sort

stocks based on their mean returns regardless of the risks facing investors. This sorting property on

Sharpe ratio/information ratios instead of only on returns can potentially generate a richer variation

of information in stocks that span the SDF.

Comparing our portfolio performance results in Table 4 to the expected return forecast from Gu

et al. (2020), we find that sorting based on probability forecast generate long-short portfolio return

and Sharpe ratios comparable to the best neural network models from Gu et al. (2020) that target

on expected returns. For a fair comparison, we perform the same variance adjustment procedure

to the expected return forecasts from Gu et al. (2020).

Moreover, we find that the probability forecast generates incremental information relative to

expected return forecasts. Firstly, the long-short portfolio returns from probability forecasts are

only moderately correlated with the ones from expected returns forecasts. Secondly, when we

combine the two portfolios using equal-weighted or mean-variance efficient weight, we find that

the resulting portfolio has a higher Sharpe ratio than each individual portfolio. The results are

shown in panel C and panel D of Table 4. For the best-performing model, the Logit, when

combining expected return with probability forecast, the long-short portfolio can reach a Sharpe

ratio of 1.73, beating each individual one. The resulting improvement is consistent across all the

models we considered.

17



Overall, our empirical results show that the probability forecasts generate incremental infor-

mation relative to the expected return forecasts, as is evidenced by the increase in the Sharpe ratio

when combining the two. Moreover, our preliminary finding suggests that the modeling objective

is simpler. As a result, even simpler machine learning models such as logit and PLS can generate

comparable performance as the complex nonlinear Neural Network models.

4.4 Robustness Check

In our baseline results, we focus on predicting whether a stock outperforms the market. For

robustness, we consider two alternative sets of targets. These are (1) whether the stock outperforms

the risk-free rate and (2) whether the stock outperforms its β times the market return.

Mapping these four targets into our framework in Section 2. We can write their corresponding

probabilities as:

Prob(Ri ≥ R f ) = Φ

(
µi −R f

σ(Ri −R f )

)
, (25)

and

Prob(Ri ≥ βi Rmkt) = Φ

(
µi −βi Rmkt

σ(Ri −βi Rmkt)

)
. (26)

The first specification has a natural interpretation of targeting the Sharpe ratio of each individual

stock, while the second specification targets the information ratio of individual stock return relative

to the β adjusted market return.

Table 5 and Table 7 report the portfolio performance of these two alternative probability

forecasting targets. Table 6 and Table 8 present the incremental value from combining the two

alternative probability forecasts with expected return forecasts.6 We find that our general con-

clusion holds true across these different specifications. Probability forecasts achieve comparable

6Our results are robust when using targets of zero and cross-sectional median returns. The results are presented in
our internet appendix.
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performance as expected return forecasts, and combining portfolio forecasts with return forecasts

generates a strictly better portfolio.

5 Conclusion

In this paper, we focus on modeling the probability a stock is going to outperform a benchmark

and predict this probability in the cross-section with a large number of firm characteristics. This

contrasts with the existing literature that focuses mainly on modeling the expected return dynamics.

Compared to modeling the expected returns, probability modeling has a simple economic

interpretation of focusing on the information ratio of a stock relative to a benchmark under the

assumption that both the stock and the benchmark returns are jointly normally distributed. This

allows the model to incorporate the additional predictability from volatility, which potentially

increases the signal-to-noise ratio for studying empirical asset prices.

Empirically, we find that forecasting probability can yield significant long-short portfolio return

performance that is comparable with those from expected return forecasts. It also generates

incremental information relative to the expected return forecasts. Combining probability forecasts

with expected return forecasts can generate long-short portfolios with significantly better Sharpe

ratios.

Interestingly, we find that, in the context of probability forecast, a simple model, such as

Logistic regression, can achieve predictive and portfolio performance similar to a highly complex

neural network model. The results suggest that the probability of outperforming a benchmark

is a simpler object to learn. Given their incremental information value, future research could

explore the wide application of probability forecasts in the cross-section. These forecasts have the

capability to address various crucial questions in asset pricing, encompassing stocks, corporate

bonds, currencies, and other asset classes. Traditionally, these questions were predominantly

explored only through the perspective of return forecasts.
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Figure 1 Shapley Values for Variable Importance across Different Models
This figure presents the variable importance for different prediction models, which is calculated following the SHAP

framework by Lundberg and Lee (2017). We take an average of the absolute value of the Shapley measure as the

variable importance across all observations in our testing sample. We then standardize the variable importance so that

they sum up to one.
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Figure 2 Cumulative Log-return of Portfolios Sorted on Probability Forecasts
The figure displays the cumulative log excess returns of portfolios sorted on probability forecasts for different models.

In each figure, we report five time series: (1) the decile ten portfolio return (High (H)); (2) the decile one portfolio

return (Low (L)); (3) the long-short portfolio return (H-L); (4) the variance adjusted decile ten portfolio return (High

(H) Adj); (5) the variance adjusted long-short portfolio return (H-L Adj). We report the performance of four models:

OLS, Logit, PLS, and NN4. The grey bars in all plots indicate NBER-dated recessions. All samples start from January

1987 and end in December 2020.
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Table 1 Summary Statistics of the Probability Forecasts

This table presents the summary statistics of the probability forecasts and their targets. The first row, ‘% Beat Mkt’,
reports the summary statistics for the proportion of stocks beating the market across time. ‘β ’ represents stocks’
realtime CAPM β s estimated following Fama and MacBeth (1973). The next eight rows report the probability forecasts
from the eight forecasting models (OLS, Logit, PLS, and NN1-5). The statistics are reported for an out-of-sample
testing period starting from January 1987 and ending in December 2020.

Mean Std Median Skew Kurt

% Beat Mkt 0.464 0.086 0.460 0.308 0.279
β 1.003 0.687 1.000 3.963 164.673
Prob OLS 0.371 0.183 0.431 -1.184 0.661
Prob Logit 0.459 0.044 0.463 -0.384 0.055
Prob PLS 0.459 0.043 0.463 -0.425 0.159
Prob NN1 0.461 0.046 0.466 -0.521 0.237
Prob NN2 0.456 0.043 0.461 -0.585 0.041
Prob NN3 0.449 0.045 0.454 -0.597 0.137
Prob NN4 0.446 0.046 0.451 -0.537 -0.010
Prob NN5 0.445 0.043 0.449 -0.456 -0.014
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Table 2 Summary Statistics of the Forecasting Accuracy of the Probability Forecasts

This table presents the prediction accuracy of the eight models considered in this paper (OLS, Logit, PLS,
and NN1-5). The ‘Pos’ (‘Neg’) row reports the model prediction conditional on stock return outperforming
(underperforming) the market returns. Prediction accuracy is computed as the ratio of the number of accurate
predictions to the total number of predictions. Additionally, the cross-entropy is calculated using the formula:
CE =− 1

|T3| ∑(i,t)∈T3

(
yit log(g(zi,t ; θ̂))+(1− yit) log(1−g(zi,t ; θ̂))

)
. The statistics are reported for our out-of-sample

testing period starting from January 1987 and ending in December 2020.

OLS Logit PLS NN1

Pos Neg Pos Neg Pos Neg Pos Neg

Pos 0.239 0.761 0.191 0.809 0.182 0.818 0.219 0.781
Neg 0.217 0.783 0.163 0.837 0.155 0.845 0.190 0.810
Accuracy 0.540 0.540 0.540 0.537
Cross-Entropy 0.689 0.689 0.689 0.689

NN2 NN3 NN4 NN5

Pos Neg Pos Neg Pos Neg Pos Neg

Pos 0.165 0.835 0.136 0.864 0.126 0.874 0.101 0.899
Neg 0.143 0.857 0.116 0.884 0.108 0.892 0.086 0.914
Accuracy 0.538 0.539 0.539 0.540
Cross-Entropy 0.689 0.689 0.690 0.689
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Table 3 Performance of the Probability Forecasts Portfolios

This table reports the value-weighted decile portfolio performance sorted by each model’s probability forecast. The prediction target is the probability of a stock
outperforming the market. For each portfolio, we report the following measures: average predicted probability (P̂rob), actual realized probability (Prob), mean and
standard deviation of excess returns, and the Sharpe ratio. These portfolios are rebalanced at a monthly frequency based on the latest out-of-sample predictions
from the respective model. The ‘H-L’ row represents the strategy of investing in the 10th decile (High) while selling the 1st decile (Low) short. The data spans from
January 1987 to December 2020.

OLS Logit PLS NN1

P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR

Low (L) -0.02 0.45 0.74 5.01 0.51 0.38 0.39 -0.69 7.77 -0.31 0.38 0.39 -0.62 7.78 -0.28 0.37 0.39 -0.75 8.11 -0.32
2 0.14 0.44 0.31 5.48 0.19 0.41 0.43 0.14 7.73 0.06 0.41 0.43 0.00 7.77 0.00 0.41 0.43 -0.05 7.95 -0.02
3 0.29 0.44 0.10 5.20 0.07 0.43 0.44 0.48 7.72 0.21 0.43 0.44 0.59 7.76 0.26 0.43 0.44 0.49 8.02 0.21
4 0.38 0.44 0.34 5.25 0.23 0.45 0.45 0.62 7.64 0.28 0.45 0.45 0.63 7.69 0.28 0.45 0.46 0.51 8.08 0.22
5 0.42 0.45 0.53 5.10 0.36 0.46 0.46 0.79 7.63 0.36 0.46 0.46 0.71 7.67 0.32 0.46 0.46 0.76 7.99 0.33
6 0.44 0.46 0.51 5.15 0.35 0.47 0.47 0.93 7.71 0.42 0.47 0.47 0.95 7.62 0.43 0.47 0.47 0.94 7.87 0.42
7 0.47 0.47 0.63 5.04 0.43 0.48 0.48 1.23 7.49 0.57 0.48 0.48 1.12 7.55 0.52 0.48 0.48 1.22 7.91 0.54
8 0.49 0.48 0.73 4.98 0.51 0.49 0.48 1.46 7.40 0.69 0.49 0.48 1.30 7.41 0.61 0.49 0.48 1.35 7.78 0.60
9 0.52 0.48 0.89 4.87 0.63 0.5 0.49 1.57 7.36 0.74 0.5 0.49 1.55 7.42 0.72 0.51 0.49 1.51 7.62 0.69
High (H) 0.58 0.49 1.17 4.86 0.84 0.53 0.51 1.92 7.45 0.89 0.53 0.51 1.91 7.48 0.89 0.53 0.51 2.00 7.70 0.90
H-L - - 0.43 3.66 0.41 - - 2.61 6.19 1.46 - - 2.54 6.44 1.36 - - 2.75 6.32 1.51

NN2 NN3 NN4 NN5

P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR

Low (L) 0.37 0.39 -0.63 8.04 -0.27 0.37 0.39 -0.75 8.16 -0.32 0.37 0.39 -0.64 8.03 -0.27 0.37 0.39 -0.62 8.27 -0.26
2 0.41 0.43 0.24 7.99 0.10 0.4 0.43 0.24 8.14 0.10 0.4 0.43 0.12 7.87 0.05 0.4 0.43 0.32 8.10 0.14
3 0.43 0.45 0.55 8.02 0.24 0.42 0.45 0.52 8.30 0.22 0.42 0.45 0.57 7.98 0.25 0.42 0.45 0.49 8.36 0.20
4 0.44 0.46 0.51 8.06 0.22 0.44 0.46 0.84 8.14 0.36 0.43 0.46 0.48 7.89 0.21 0.43 0.46 0.95 8.19 0.40
5 0.46 0.46 0.78 7.87 0.34 0.45 0.46 0.58 8.10 0.25 0.44 0.46 0.83 7.80 0.37 0.44 0.46 0.66 8.18 0.28
6 0.47 0.47 0.91 7.85 0.40 0.46 0.47 0.82 7.92 0.36 0.46 0.47 0.95 7.89 0.42 0.45 0.47 1.04 8.04 0.45
7 0.48 0.48 1.21 7.80 0.54 0.47 0.47 1.16 8.02 0.50 0.47 0.48 1.02 7.83 0.45 0.46 0.47 1.16 8.02 0.50
8 0.49 0.48 1.27 7.76 0.57 0.48 0.48 1.27 8.02 0.55 0.48 0.48 1.34 7.70 0.60 0.47 0.48 1.23 7.87 0.54
9 0.5 0.49 1.59 7.61 0.72 0.49 0.49 1.51 7.94 0.66 0.49 0.49 1.56 7.66 0.71 0.49 0.49 1.57 7.89 0.69
High (H) 0.52 0.5 1.93 7.76 0.86 0.51 0.5 2.10 7.95 0.91 0.5 0.5 1.95 7.70 0.88 0.5 0.5 2.01 7.92 0.88
H-L - - 2.56 6.57 1.35 - - 2.84 6.86 1.44 - - 2.59 6.74 1.33 - - 2.63 7.15 1.27
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Table 4 Combining Probability Forecasts with Expected Return Forecasts

This table reports the comparison results for the long-short portfolios based on probability forecasts and expected
return forecasts. The prediction target is the probability of a stock outperforming the market. The first row reports
the correlation between the ‘H-L’ portfolio of the two approaches. Following this, for each panel, we report the
value-weighted ‘H-L’ portfolio mean, Sharpe ratio, α relative to Fama and French (2015) five factors with momentum
(six factors in total), and the t-statistics for α . We consider eight forecasting models in total (OLS, Logit, PLS, and
NN1-5). Panel A (B) reports the results based on the probability (expected return) forecast. Panel C (D) reports
the equal-weighted (mean-variance efficient) combination of ‘H-L’ portfolios from probability and expected return
forecasts. We estimate the expected return and variance-covariance matrix using real-time data with an expanding
window. In constructing the portfolios, we assume a relative risk aversion of 5. All samples start from January 1987
and end in December 2020.

OLS Logit PLS NN1 NN2 NN3 NN4 NN5

Corr 0.25 0.34 0.34 0.27 0.32 0.37 0.33 0.30

Panel A: Probability Forecast

Mean 0.43 2.61 2.54 2.75 2.56 2.84 2.59 2.63
SR 0.41 1.46 1.36 1.51 1.35 1.44 1.33 1.27
α 0.42 1.81 1.73 1.88 1.64 1.85 1.69 1.55
tα 2.15 5.72 5.60 6.62 5.35 5.49 5.52 5.18

Panel B: Expected Return Forecast

Mean 3.00 3.00 3.00 2.24 2.68 2.87 3.00 2.89
SR 1.43 1.43 1.43 1.18 1.23 1.30 1.43 1.34
α 2.72 2.72 2.72 1.76 2.29 2.52 2.72 2.54
tα 4.45 4.45 4.45 3.52 3.41 3.70 4.45 4.06

Panel C: 1/N Combination of Probability and Expected Return Forecasts

Mean 1.71 2.80 2.77 2.50 2.62 2.85 2.79 2.76
SR 1.33 1.76 1.71 1.68 1.58 1.65 1.69 1.62
α 1.57 2.27 2.22 1.82 1.96 2.19 2.21 2.04
tα 4.36 5.65 5.58 5.99 4.84 4.98 5.73 5.27

Panel D: Mean-variance Combination of Probability and Expected Return Forecasts

Mean 6.62 9.62 9.36 9.02 9.21 9.17 9.24 9.09
SR 1.38 1.73 1.68 1.68 1.63 1.65 1.65 1.63
α 6.53 8.29 8.18 6.89 7.61 7.57 7.91 7.53
tα 4.56 5.37 5.19 5.63 5.00 5.00 5.15 4.94
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Table 5 Performance of the Probability Forecasts Portfolios (Probability of Outperforming R f )

This table reports the value-weighted decile portfolio performance sorted by each model’s probability forecast. The prediction target is the probability of a stock
outperforming the risk-free rate (R f ). For each portfolio, we report the following measures: average predicted probability (P̂rob), actual realized probability (Prob),
mean and standard deviation of excess returns, and the Sharpe ratio. These portfolios are rebalanced at a monthly frequency based on the latest out-of-sample
predictions from the respective model. The ‘H-L’ row represents the strategy of investing in the 10th decile (High) while selling the 1st decile (Low) short. The
data spans from January 1987 to December 2020.

OLS Logit PLS NN1

P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR

Low (L) -0.01 0.49 0.77 5.13 0.52 0.35 0.38 -0.92 9.15 -0.35 0.35 0.39 -0.98 8.91 -0.38 0.35 0.39 -0.78 9.32 -0.29
2 0.15 0.52 0.26 5.83 0.15 0.4 0.43 -0.62 9.17 -0.23 0.4 0.43 -0.56 9.12 -0.21 0.4 0.43 -0.33 9.40 -0.12
3 0.29 0.46 -0.06 5.42 -0.04 0.42 0.45 0.00 8.98 0.00 0.43 0.45 0.04 8.71 0.02 0.43 0.46 -0.08 9.25 -0.03
4 0.38 0.45 0.23 5.38 0.15 0.45 0.48 0.32 8.92 0.12 0.45 0.48 0.20 8.70 0.08 0.45 0.48 0.29 9.15 0.11
5 0.42 0.47 0.52 5.32 0.34 0.47 0.5 0.55 8.86 0.22 0.47 0.5 0.46 8.61 0.18 0.47 0.5 0.70 9.14 0.26
6 0.45 0.49 0.47 5.27 0.31 0.49 0.51 0.81 8.73 0.32 0.49 0.52 0.82 8.64 0.33 0.49 0.52 0.84 9.12 0.32
7 0.48 0.5 0.58 5.25 0.38 0.5 0.53 1.11 8.78 0.44 0.5 0.53 1.00 8.55 0.41 0.51 0.53 1.07 9.06 0.41
8 0.51 0.52 0.67 5.04 0.46 0.52 0.55 1.62 8.59 0.65 0.52 0.55 1.29 8.46 0.53 0.52 0.55 1.15 8.96 0.45
9 0.54 0.53 0.90 4.89 0.64 0.54 0.56 1.77 8.49 0.72 0.53 0.56 1.79 8.37 0.74 0.54 0.56 1.64 8.77 0.65
High (H) 0.6 0.54 1.18 4.86 0.84 0.56 0.57 2.19 8.50 0.89 0.56 0.57 2.10 8.40 0.87 0.56 0.57 2.24 8.75 0.89
H-L - - 0.41 3.64 0.39 - - 3.10 7.93 1.35 - - 3.09 7.90 1.35 - - 3.02 8.53 1.23

NN2 NN3 NN4 NN5

P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR

Low (L) 0.36 0.39 -0.82 9.33 -0.30 0.36 0.39 -0.84 9.43 -0.31 0.37 0.39 -0.96 9.34 -0.36 0.38 0.39 -0.87 9.18 -0.33
2 0.41 0.43 -0.33 9.14 -0.12 0.4 0.43 -0.25 9.56 -0.09 0.41 0.43 -0.32 9.39 -0.12 0.42 0.43 -0.44 9.16 -0.17
3 0.43 0.46 -0.04 9.19 -0.01 0.43 0.46 -0.09 9.44 -0.03 0.44 0.46 0.05 9.14 0.02 0.44 0.46 0.04 9.17 0.01
4 0.46 0.48 0.30 9.09 0.11 0.46 0.48 0.39 9.32 0.15 0.46 0.48 0.21 9.23 0.08 0.47 0.48 0.38 8.93 0.15
5 0.48 0.5 0.74 9.02 0.29 0.48 0.5 0.59 9.16 0.22 0.48 0.5 0.47 9.11 0.18 0.49 0.5 0.67 8.99 0.26
6 0.49 0.51 1.09 8.97 0.42 0.5 0.51 0.93 9.22 0.35 0.5 0.51 0.88 9.05 0.34 0.5 0.51 0.68 9.03 0.26
7 0.51 0.53 1.07 8.95 0.41 0.51 0.53 0.82 9.28 0.31 0.51 0.53 0.91 9.07 0.35 0.52 0.53 1.07 8.66 0.43
8 0.52 0.55 1.30 8.91 0.51 0.53 0.55 1.36 9.07 0.52 0.53 0.55 1.36 8.81 0.54 0.53 0.55 1.38 8.72 0.55
9 0.54 0.56 1.52 8.68 0.61 0.54 0.56 1.74 8.80 0.68 0.54 0.56 1.80 8.87 0.70 0.54 0.56 1.88 8.61 0.76
High (H) 0.55 0.57 2.20 8.71 0.88 0.55 0.57 2.23 8.89 0.87 0.55 0.57 2.16 8.72 0.86 0.55 0.57 2.09 8.60 0.84
H-L - - 3.02 8.43 1.24 - - 3.07 8.67 1.23 - - 3.12 8.50 1.27 - - 2.96 8.13 1.26
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Table 6 Combining Probability Forecasts (Probability of Outperforming R f ) with Expected
Return Forecasts

This table reports the comparison results for the long-short portfolios based on probability forecasts and expected
return forecasts. The prediction target is the probability of a stock outperforming the risk-free rate (R f ). The first row
reports the correlation between the ‘H-L’ portfolio of the two approaches. Following this, for each panel, we report the
value-weighted ‘H-L’ portfolio mean, Sharpe ratio, α relative to Fama and French (2015) five factors with momentum
(six factors in total), and the t-statistics for α . We consider eight forecasting models in total (OLS, Logit, PLS, and
NN1-5). Panel A (B) reports the results based on the probability (expected return) forecast. Panel C (D) reports
the equal-weighted (mean-variance efficient) combination of ‘H-L’ portfolios from probability and expected return
forecasts. We estimate the expected return and variance-covariance matrix using real-time data with an expanding
window. In constructing the portfolios, we assume a relative risk aversion of 5. All samples start from January 1987
and end in December 2020.

OLS Logit PLS NN1 NN2 NN3 NN4 NN5

corr 0.24 0.21 0.18 0.19 0.17 0.15 0.18 0.20

Panel A: Probability Forecast

Mean 0.41 3.10 3.09 3.02 3.02 3.07 3.12 2.96
SR 0.39 1.35 1.35 1.23 1.24 1.23 1.27 1.26
α 0.27 1.85 1.82 1.67 1.69 1.70 1.77 1.64
tα 1.78 5.45 5.69 5.20 5.25 5.13 5.67 5.31

Panel B: Expected Return Forecast

Mean 3.00 3.00 3.00 2.24 2.68 2.87 3.00 2.89
SR 1.43 1.43 1.43 1.18 1.23 1.30 1.43 1.34
α 2.72 2.72 2.72 1.76 2.29 2.52 2.72 2.54
tα 4.45 4.45 4.45 3.52 3.41 3.70 4.45 4.06

Panel C: 1/N Combination of Probability and Expected Return Forecasts

Mean 1.71 3.05 3.04 2.63 2.85 2.97 3.06 2.93
SR 1.33 1.79 1.81 1.55 1.61 1.66 1.75 1.68
α 1.50 2.29 2.27 1.72 1.99 2.11 2.25 2.09
tα 4.52 6.27 6.41 5.64 5.17 5.64 6.37 5.61

Panel D: Mean-variance Combination of Probability and Expected Return Forecasts

Mean 6.65 10.37 10.71 8.53 11.22 9.76 10.95 10.34
SR 1.37 1.75 1.76 1.55 1.70 1.66 1.73 1.70
α 6.55 8.68 8.99 6.46 9.28 8.02 9.17 8.52
tα 4.46 5.39 5.32 4.35 4.63 4.83 5.16 4.78
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Table 7 Performance of the Probability Forecasts Portfolios (Probability of Outperforming β ×Rmkt)

This table reports the value-weighted decile portfolio performance sorted by each model’s probability forecast. The prediction target is the probability of a stock
outperforming its CAPM β times the market return (β ×Rmkt ). We estimate each stock’s CAPM β in real-time following Fama and MacBeth (1973). For each
portfolio, we report the following measures: average predicted probability (P̂rob), actual realized probability (Prob), mean and standard deviation of excess returns,
and the Sharpe ratio. These portfolios are rebalanced at a monthly frequency based on the latest out-of-sample predictions from the respective model. The ‘H-L’
row represents the strategy of investing in the 10th decile (High) while selling the 1st decile (Low) short. The data spans from January 1987 to December 2020.

OLS Logit PLS NN1

P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR

Low (L) -0.02 0.46 0.76 5.14 0.51 0.37 0.39 -0.55 8.71 -0.22 0.37 0.39 -0.46 8.93 -0.18 0.37 0.39 -0.58 8.84 -0.23
2 0.15 0.49 0.15 5.72 0.09 0.41 0.42 0.09 8.62 0.04 0.41 0.42 0.16 8.85 0.06 0.41 0.42 0.14 8.87 0.06
3 0.29 0.44 0.12 5.41 0.07 0.43 0.44 0.62 8.71 0.25 0.43 0.44 0.60 8.78 0.24 0.43 0.44 0.70 8.74 0.28
4 0.37 0.44 0.38 5.42 0.24 0.45 0.46 0.56 8.59 0.23 0.45 0.46 0.74 8.69 0.29 0.45 0.46 0.68 8.54 0.28
5 0.41 0.45 0.54 5.29 0.35 0.46 0.47 1.00 8.46 0.41 0.47 0.47 0.95 8.74 0.38 0.47 0.47 0.89 8.67 0.35
6 0.45 0.46 0.51 5.30 0.33 0.48 0.48 0.86 8.46 0.35 0.48 0.48 0.82 8.61 0.33 0.48 0.48 0.97 8.61 0.39
7 0.48 0.48 0.61 5.19 0.41 0.49 0.49 1.28 8.40 0.53 0.49 0.49 1.24 8.52 0.50 0.5 0.49 1.04 8.52 0.42
8 0.51 0.49 0.81 5.03 0.56 0.51 0.51 1.58 8.18 0.67 0.51 0.51 1.50 8.49 0.61 0.51 0.51 1.54 8.27 0.65
9 0.54 0.51 0.92 4.90 0.65 0.53 0.53 2.01 8.21 0.85 0.52 0.53 1.86 8.32 0.78 0.53 0.53 1.86 8.34 0.77
High (H) 0.6 0.52 1.25 4.85 0.89 0.55 0.56 2.40 8.18 1.01 0.55 0.55 2.45 8.37 1.01 0.55 0.56 2.42 8.37 1.00
H-L - - 0.49 4.13 0.41 - - 2.94 7.74 1.32 - - 2.90 8.15 1.23 - - 3.00 8.34 1.25

NN2 NN3 NN4 NN5

P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR

Low (L) 0.37 0.39 -0.53 9.25 -0.20 0.37 0.39 -0.52 9.07 -0.20 0.37 0.39 -0.55 9.05 -0.21 0.38 0.39 -0.43 9.12 -0.16
2 0.4 0.42 0.20 9.14 0.08 0.41 0.42 0.30 8.92 0.12 0.41 0.42 0.25 8.87 0.10 0.41 0.42 0.22 9.09 0.08
3 0.43 0.44 0.81 9.16 0.31 0.43 0.45 0.75 9.00 0.29 0.43 0.45 0.77 8.86 0.30 0.43 0.44 0.75 9.14 0.28
4 0.45 0.46 0.75 9.07 0.29 0.45 0.46 0.79 8.71 0.31 0.45 0.46 0.70 8.70 0.28 0.44 0.46 0.74 8.96 0.28
5 0.46 0.47 0.93 8.96 0.36 0.46 0.47 0.78 8.92 0.30 0.46 0.47 0.95 8.85 0.37 0.46 0.47 0.82 8.98 0.31
6 0.48 0.48 0.83 9.00 0.32 0.48 0.48 0.87 8.71 0.35 0.48 0.48 0.84 8.61 0.34 0.47 0.48 0.76 8.91 0.30
7 0.49 0.49 1.21 8.93 0.47 0.49 0.49 1.08 8.70 0.43 0.49 0.49 1.21 8.64 0.49 0.49 0.49 1.20 8.81 0.47
8 0.51 0.5 1.51 8.62 0.61 0.51 0.51 1.50 8.48 0.61 0.51 0.51 1.61 8.39 0.66 0.5 0.51 1.45 8.59 0.59
9 0.52 0.53 1.94 8.59 0.78 0.52 0.53 1.91 8.55 0.77 0.52 0.53 1.85 8.39 0.77 0.52 0.53 2.08 8.56 0.84
High (H) 0.55 0.56 2.39 8.66 0.95 0.55 0.56 2.35 8.47 0.96 0.54 0.56 2.41 8.48 0.99 0.54 0.56 2.20 8.53 0.89
H-L - - 2.92 8.95 1.13 - - 2.87 8.19 1.21 - - 2.96 8.59 1.20 - - 2.63 8.57 1.06
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Table 8 Combining Probability Forecasts (Probability of Outperforming β ×Rmkt) with Expected
Return Forecasts

This table reports the comparison results for the long-short portfolios based on probability forecasts and expected
return forecasts. The prediction target is the probability of a stock outperforming its CAPM β times the market return
(β × Rmkt ). We estimate each stock’s CAPM β in real-time following Fama and MacBeth (1973). The first row
reports the correlation between the ‘H-L’ portfolio of the two approaches. Following this, for each panel, we report the
value-weighted ‘H-L’ portfolio mean, Sharpe ratio, α relative to Fama and French (2015) five factors with momentum
(six factors in total), and the t-statistics for α . We consider eight forecasting models in total (OLS, Logit, PLS, and
NN1-5). Panel A (B) reports the results based on the probability (expected return) forecast. Panel C (D) reports
the equal-weighted (mean-variance efficient) combination of ‘H-L’ portfolios from probability and expected return
forecasts. We estimate the expected return and variance-covariance matrix using real-time data with an expanding
window. In constructing the portfolios, we assume a relative risk aversion of 5. All samples start from January 1987
and end in December 2020.

OLS Logit PLS NN1 NN2 NN3 NN4 NN5

Corr 0.13 0.29 0.28 0.32 0.33 0.27 0.29 0.32

Panel A: Probability Forecast

Mean 0.49 2.94 2.90 3.00 2.92 2.87 2.96 2.63
SR 0.41 1.32 1.23 1.25 1.13 1.21 1.20 1.06
α 0.19 1.73 1.66 1.77 1.61 1.64 1.64 1.31
tα 1.18 5.83 5.35 4.94 4.11 5.23 4.46 3.51

Panel B: Expected Return Forecast

Mean 3.00 3.00 3.00 2.24 2.68 2.87 3.00 2.89
SR 1.43 1.43 1.43 1.18 1.23 1.30 1.43 1.34
α 2.72 2.72 2.72 1.76 2.29 2.52 2.72 2.54
tα 4.45 4.45 4.45 3.52 3.41 3.70 4.45 4.06

Panel C: 1/N Combination of Probability and Expected Return Forecasts

Mean 1.74 2.97 2.95 2.62 2.80 2.87 2.98 2.76
SR 1.37 1.71 1.65 1.49 1.44 1.57 1.62 1.46
α 1.46 2.23 2.19 1.77 1.95 2.08 2.18 1.92
tα 4.85 5.91 5.84 5.60 4.58 5.35 5.54 5.00

Panel D: Mean-variance Combination of Probability and Expected Return Forecasts

Mean 6.66 9.25 8.97 7.97 9.04 8.17 8.92 8.02
SR 1.38 1.70 1.66 1.51 1.53 1.57 1.63 1.52
α 6.62 7.78 7.64 6.04 7.74 6.77 7.60 6.81
tα 4.52 5.33 5.20 4.66 4.52 4.98 4.99 4.48
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Table A1 Characteristics

This table reports the anomaly variables considered in this paper. We obtain the data from Gu et al. (2020) who
constructed the dataset following Green et al. (2017). Gu et al. (2020) provide a detailed description of the dataset in
their appendix.

Acronym Description Acronym Description

absacc Absolute accruals mom36m 36-month momentum
acc Working capital accruals mom6m 6-month momentum
aeavol Abnormal earnings announcement volume ms Financial statement score
age # years since first Compustat coverage mvel1 Size
agr Asset growth mve ia Industry-adjusted size
baspread Bid-ask spread niincr Number of earnings increases
beta Beta operprof Operating profitability
betasq Beta squared orgcap Organizational capital
bm Book-to-market pchcapx ia Industry adjusted % change in capital expenditures
bm ia Industry-adjusted book to market pchcurrat % change in current ratio
cash Cash holdings pchdepr % change in depreciation
cashdebt Cash flow to debt pchgm pchsale % change in gross margin - % change in sales
cashpr Cash productivity pchquick % change in quick ratio
cfp Cash flow to price ratio pchsale pchinvt % change in sales - % change in inventory
cfp ia Industry-adjusted cash flow to price ratio pchsale pchrect % change in sales - % change in A/R
chatoia Industry-adjusted change in asset turnover pchsale pchxsga % change in sales - % change in SG&A
chcsho Change in shares outstanding pchsaleinv % change in sales-to-inventory
chempia Industry-adjusted change in employees pctacc Percent accruals
chinv Change in inventory pricedelay Price delay
chmom Change in 6-month momentum ps Financial statements score
chpmia Industry-adjusted change in profit margin quick Quick ratio
chtx Change in tax expense rd R&D increase
cinvest Corporate investment rd mve R&D to market capitalization
convind Convertible debt indicator rd sale R&D to sales
currat Current ratio realestate Real estate holdings
depr Depreciation / PP&E retvol Return volatility
divi Dividend initiation roaq Return on assets
divo Dividend omission roavol Earnings volatility
dolvol Dollar trading volume roeq Return on equity
dy Dividend to price roic Return on invested capital
ear Earnings announcement return rsup Revenue surprise
egr Growth in common shareholder equity salecash Sales to cash
ep Earnings to price saleinv Sales to inventory
gma Gross profitability salerec Sales to receivables
grCAPX Growth in capital expenditures secured Secured debt
grltnoa Growth in long term net operating assets securedind Secured debt indicator
herf Industry sales concentration sgr Sales growth
hire Employee growth rate sin Sin stocks
idiovol Idiosyncratic return volatility sp Sales to price
ill Illiquidity std dolvol Volatility of liquidity (dollar trading volume)
indmom Industry momentum std turn Volatility of liquidity (share turnover)
invest Capital expenditures and inventory stdacc Accrual volatility
lev Leverage stdcf Cash flow volatility
lgr Growth in long-term debt tang Debt capacity/firm tangibility
maxret Maximum daily return tb Tax income to book income
mom12m 12-month momentum turn Share turnover
mom1m 1-month momentum zerotrade Zero trading days
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Table A2 Performance of the Probability Forecasts Portfolios (Non-variance-adjusted)

This table reports the value-weighted decile portfolio performance sorted by each model’s probability forecast without variance adjustment. The prediction target
is the probability of a stock outperforming the market return. For each portfolio, we report the following measures: average predicted probability (P̂rob), actual
realized probability (Prob), mean and standard deviation of excess returns, and the Sharpe ratio. These portfolios are rebalanced at a monthly frequency based on
the latest out-of-sample predictions from the respective model. The ‘H-L’ row represents the strategy of investing in the 10th decile (High) while selling the 1st
decile (Low) short. The data spans from January 1987 to December 2020.

OLS Logit PLS NN1

P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR

Low (L) -0.02 0.45 0.74 5.01 0.51 0.38 0.39 -0.69 7.77 -0.31 0.38 0.39 -0.62 7.78 -0.28 0.37 0.39 -0.75 8.11 -0.32
2 0.14 0.44 0.40 6.10 0.23 0.41 0.43 0.06 6.60 0.03 0.41 0.43 -0.04 6.81 -0.02 0.41 0.43 -0.08 7.20 -0.04
3 0.29 0.44 0.30 6.76 0.15 0.43 0.44 0.30 5.86 0.18 0.43 0.44 0.38 6.19 0.22 0.43 0.44 0.32 6.30 0.18
4 0.38 0.44 0.55 6.16 0.31 0.45 0.45 0.43 5.44 0.28 0.45 0.45 0.43 5.48 0.27 0.45 0.46 0.33 5.79 0.20
5 0.42 0.45 0.67 5.31 0.44 0.46 0.46 0.46 5.28 0.30 0.46 0.46 0.43 5.24 0.29 0.46 0.46 0.47 5.19 0.31
6 0.44 0.46 0.64 4.92 0.45 0.47 0.47 0.56 4.75 0.41 0.47 0.47 0.59 4.82 0.43 0.47 0.47 0.55 4.95 0.39
7 0.47 0.47 0.66 4.61 0.49 0.48 0.48 0.69 4.55 0.52 0.48 0.48 0.66 4.69 0.48 0.48 0.48 0.66 4.70 0.49
8 0.49 0.48 0.69 4.32 0.55 0.49 0.48 0.78 4.49 0.60 0.49 0.48 0.70 4.45 0.54 0.49 0.48 0.79 4.54 0.60
9 0.52 0.48 0.83 4.07 0.70 0.5 0.49 0.87 4.41 0.68 0.5 0.49 0.87 4.46 0.67 0.51 0.49 0.82 4.35 0.65
High (H) 0.58 0.49 1.10 4.45 0.86 0.53 0.51 1.06 4.65 0.79 0.53 0.51 1.04 4.53 0.79 0.53 0.51 1.09 4.38 0.86
H-L - - 0.36 3.38 0.37 - - 1.75 5.73 1.06 - - 1.66 5.86 0.98 - - 1.84 6.00 1.06

NN2 NN3 NN4 NN5

P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR

Low (L) 0.37 0.39 -0.63 8.04 -0.27 0.37 0.39 -0.75 8.16 -0.32 0.37 0.39 -0.64 8.03 -0.27 0.37 0.39 -0.62 8.27 -0.26
2 0.41 0.43 0.18 7.18 0.09 0.4 0.43 0.19 7.37 0.09 0.4 0.43 0.09 7.45 0.04 0.4 0.43 0.23 7.44 0.11
3 0.43 0.45 0.38 6.43 0.21 0.42 0.45 0.37 6.42 0.20 0.42 0.45 0.42 6.27 0.23 0.42 0.45 0.34 6.33 0.19
4 0.44 0.46 0.37 5.57 0.23 0.44 0.46 0.58 5.88 0.34 0.43 0.46 0.38 5.65 0.23 0.43 0.46 0.62 5.83 0.37
5 0.46 0.46 0.49 5.14 0.33 0.45 0.46 0.40 5.22 0.26 0.44 0.46 0.54 5.20 0.36 0.44 0.46 0.45 5.09 0.31
6 0.47 0.47 0.55 4.93 0.39 0.46 0.47 0.49 5.05 0.34 0.46 0.47 0.58 4.95 0.41 0.45 0.47 0.66 4.85 0.47
7 0.48 0.48 0.68 4.65 0.51 0.47 0.47 0.68 4.67 0.51 0.47 0.48 0.61 4.40 0.48 0.46 0.47 0.68 4.67 0.51
8 0.49 0.48 0.70 4.40 0.55 0.48 0.48 0.73 4.40 0.57 0.48 0.48 0.75 4.53 0.58 0.47 0.48 0.66 4.44 0.52
9 0.5 0.49 0.88 4.51 0.67 0.49 0.49 0.83 4.37 0.66 0.49 0.49 0.86 4.40 0.68 0.49 0.49 0.87 4.41 0.68
High (H) 0.52 0.5 1.03 4.42 0.81 0.51 0.5 1.10 4.31 0.88 0.5 0.5 1.06 4.43 0.83 0.5 0.5 1.08 4.34 0.86
H-L - - 1.67 6.06 0.95 - - 1.84 6.25 1.02 - - 1.70 6.16 0.96 - - 1.70 6.50 0.90
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Table A3 Combining Probability Forecasts with Expected Return Forecasts (Non-variance-
adjusted)

This table reports the comparison results for the long-short portfolios based on probability forecasts and expected
return forecasts without variance adjustments. The prediction target is the probability of a stock outperforming the
market return. The first row reports the correlation between the ‘H-L’ portfolio of the two approaches. Following this,
for each panel, we report the value-weighted ‘H-L’ portfolio mean, Sharpe ratio, α relative to Fama and French (2015)
five factors with momentum (six factors in total), and the t-statistics for α . We consider eight forecasting models in
total (OLS, Logit, PLS, and NN1-5). Panel A (B) reports the results based on the probability (expected return) forecast.
Panel C (D) reports the equal-weighted (mean-variance efficient) combination of ‘H-L’ portfolios from probability and
expected return forecasts. We estimate the expected return and variance-covariance matrix using real-time data with
an expanding window. In constructing the portfolios, we assume a relative risk aversion of 5. All samples start from
January 1987 and end in December 2020.

OLS Logit PLS NN1 NN2 NN3 NN4 NN5

Corr 0.32 0.46 0.47 0.48 0.52 0.56 0.53 0.58

Panel A: Probability Forecast

Mean 0.36 1.75 1.66 1.84 1.67 1.84 1.70 1.70
SR 0.37 1.06 0.98 1.06 0.95 1.02 0.96 0.90
α 0.32 1.40 1.31 1.45 1.24 1.35 1.29 1.14
tα 1.92 5.71 5.58 6.98 5.67 5.84 5.97 5.38

Panel B: Expected Return Forecast

Mean 2.54 2.54 2.54 1.83 2.28 2.51 2.54 2.33
SR 1.39 1.39 1.39 1.02 1.20 1.31 1.39 1.23
α 2.19 2.19 2.19 1.38 1.84 2.12 2.19 1.96
tα 5.57 5.57 5.57 3.93 4.34 4.62 5.57 4.96

Panel C: 1/N Combination of Probability and Return Forecasts

Mean 1.45 2.15 2.10 1.84 1.97 2.18 2.12 2.01
SR 1.24 1.44 1.39 1.21 1.24 1.32 1.34 1.20
α 1.26 1.79 1.75 1.42 1.54 1.73 1.74 1.55
tα 5.21 6.32 6.26 6.32 5.53 5.64 6.52 5.79

Panel D: Mean-variance Combination of Probability and Return Forecasts

Mean 3.10 4.15 4.05 3.68 3.96 4.05 4.03 3.72
SR 1.42 1.58 1.56 1.40 1.44 1.49 1.51 1.43
α 2.84 3.64 3.58 3.08 3.39 3.51 3.56 3.23
tα 5.19 5.49 5.32 4.79 4.78 4.88 5.12 4.90
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Table A4 Performance of the Probability Forecasts Portfolios (Probability of Positive Return)

This table reports the value-weighted decile portfolio performance sorted by each model’s probability forecast. The prediction target is the probability of a stock
having a positive return. For each portfolio, we report the following measures: average predicted probability (P̂rob), actual realized probability (Prob), mean and
standard deviation of excess returns, and the Sharpe ratio. These portfolios are rebalanced at a monthly frequency based on the latest out-of-sample predictions
from the respective model. The ‘H-L’ row represents the strategy of investing in the 10th decile (High) while selling the 1st decile (Low) short. The data spans from
January 1987 to December 2020.

OLS Logit PLS NN1

P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR

Low (L) -0.02 0.51 0.75 5.09 0.51 0.44 0.41 -0.21 8.48 -0.09 0.44 0.41 0.05 8.76 0.02 0.44 0.41 -0.13 8.58 -0.05
2 0.18 0.53 0.13 5.51 0.08 0.48 0.45 0.33 8.55 0.14 0.48 0.45 0.43 8.70 0.17 0.48 0.45 0.65 8.74 0.26
3 0.34 0.48 0.21 5.34 0.14 0.5 0.47 0.66 8.41 0.27 0.5 0.47 0.62 8.68 0.25 0.5 0.47 0.71 8.46 0.29
4 0.43 0.48 0.46 5.32 0.30 0.52 0.49 0.67 8.36 0.28 0.52 0.48 0.73 8.68 0.29 0.52 0.49 0.78 8.49 0.32
5 0.48 0.49 0.54 5.24 0.36 0.54 0.5 1.04 8.28 0.43 0.54 0.5 0.87 8.54 0.35 0.53 0.5 0.88 8.35 0.36
6 0.51 0.49 0.51 5.25 0.34 0.55 0.52 0.93 8.18 0.39 0.55 0.51 0.99 8.48 0.40 0.55 0.52 1.14 8.27 0.48
7 0.55 0.51 0.65 5.04 0.45 0.56 0.53 1.33 8.11 0.57 0.56 0.53 1.27 8.26 0.53 0.56 0.53 1.37 8.13 0.58
8 0.58 0.52 0.83 4.95 0.58 0.58 0.55 1.73 7.98 0.75 0.58 0.55 2.01 8.08 0.86 0.57 0.55 1.59 8.14 0.68
9 0.62 0.52 1.08 4.77 0.78 0.6 0.56 2.02 7.91 0.89 0.6 0.56 1.79 8.14 0.76 0.59 0.56 1.85 8.11 0.79
High (H) 0.7 0.51 1.29 4.83 0.92 0.63 0.56 2.65 8.14 1.13 0.62 0.56 2.60 8.24 1.09 0.62 0.54 2.46 8.35 1.02
H-L - - 0.53 4.37 0.42 - - 2.86 8.45 1.17 - - 2.55 8.68 1.02 - - 2.59 8.31 1.08

NN2 NN3 NN4 NN5

P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR

Low (L) 0.44 0.41 -0.18 8.56 -0.07 0.45 0.41 -0.01 8.60 -0.00 0.45 0.41 0.01 8.59 0.00 0.45 0.41 -0.17 8.68 -0.07
2 0.48 0.45 0.70 8.66 0.28 0.49 0.45 0.66 8.64 0.26 0.49 0.45 0.63 8.75 0.25 0.49 0.45 0.63 8.75 0.25
3 0.5 0.47 0.77 8.49 0.31 0.51 0.47 0.91 8.48 0.37 0.51 0.47 0.71 8.49 0.29 0.51 0.47 0.75 8.63 0.30
4 0.52 0.49 0.92 8.30 0.38 0.52 0.49 0.78 8.43 0.32 0.52 0.49 0.77 8.65 0.31 0.52 0.49 0.75 8.63 0.30
5 0.53 0.5 0.97 8.37 0.40 0.54 0.5 0.92 8.37 0.38 0.54 0.5 1.03 8.21 0.44 0.54 0.5 0.79 8.34 0.33
6 0.54 0.52 1.27 8.21 0.54 0.55 0.52 1.20 8.36 0.50 0.55 0.51 1.08 8.38 0.45 0.55 0.52 1.22 8.42 0.50
7 0.56 0.53 1.41 8.05 0.61 0.56 0.53 1.32 8.19 0.56 0.56 0.53 1.29 8.05 0.55 0.56 0.53 1.37 8.20 0.58
8 0.57 0.55 1.54 7.90 0.68 0.58 0.55 1.59 7.94 0.69 0.57 0.54 1.48 7.96 0.64 0.58 0.55 1.44 8.02 0.62
9 0.58 0.56 1.79 8.03 0.77 0.59 0.56 2.06 8.03 0.89 0.59 0.56 1.95 8.14 0.83 0.59 0.56 2.29 8.07 0.98
High (H) 0.61 0.55 2.51 8.21 1.06 0.62 0.55 2.60 8.27 1.09 0.61 0.56 2.80 8.30 1.17 0.61 0.55 2.63 8.29 1.10
H-L - - 2.69 8.18 1.14 - - 2.61 8.68 1.04 - - 2.79 8.70 1.11 - - 2.79 8.78 1.10
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Table A5 Combining Probability Forecasts (Probability of Positive Return) with Expected
Return Forecasts

This table reports the comparison results for the long-short portfolios based on probability forecasts and expected
return forecasts. The prediction target is the probability of a stock having a positive return. The first row reports
the correlation between the ‘H-L’ portfolio of the two approaches. Following this, for each panel, we report the
value-weighted ‘H-L’ portfolio mean, Sharpe ratio, α relative to Fama and French (2015) five factors with momentum
(six factors in total), and the t-statistics for α . We consider eight forecasting models in total (OLS, Logit, PLS, and
NN1-5). Panel A (B) reports the results based on the probability (expected return) forecast. Panel C (D) reports
the equal-weighted (mean-variance efficient) combination of ‘H-L’ portfolios from probability and expected return
forecasts. We estimate the expected return and variance-covariance matrix using real-time data with an expanding
window. In constructing the portfolios, we assume a relative risk aversion of 5. All samples start from January 1987
and end in December 2020.

OLS Logit PLS NN1 NN2 NN3 NN4 NN5

Corr 0.22 0.37 0.32 0.40 0.33 0.35 0.35 0.41

Panel A: Probability Forecast

Mean 0.53 2.86 2.55 2.59 2.69 2.61 2.79 2.79
SR 0.42 1.17 1.02 1.08 1.14 1.04 1.11 1.10
α 0.28 1.73 1.46 1.33 1.58 1.36 1.52 1.64
tα 1.47 4.37 3.83 3.84 4.40 3.41 3.84 3.93

Panel B: Expected Return Forecast

Mean 3.00 3.00 3.00 2.24 2.68 2.87 3.00 2.89
SR 1.43 1.43 1.43 1.18 1.23 1.30 1.43 1.34
α 2.72 2.72 2.72 1.76 2.29 2.52 2.72 2.54
tα 4.45 4.45 4.45 3.52 3.41 3.70 4.45 4.06

Panel C: 1/N Combination of Probability and Return Forecasts

Mean 1.76 2.93 2.77 2.42 2.68 2.74 2.89 2.84
SR 1.32 1.56 1.48 1.34 1.45 1.41 1.52 1.44
α 1.50 2.23 2.09 1.54 1.93 1.94 2.12 2.09
tα 4.62 5.27 5.16 4.87 4.78 4.45 5.24 4.71

Panel D: Mean-variance Combination of Probability and Return Forecasts

Mean 6.82 7.85 7.65 5.54 6.92 6.11 7.24 7.20
SR 1.38 1.54 1.51 1.36 1.46 1.33 1.48 1.44
α 6.83 7.13 7.05 4.17 6.10 5.61 6.67 6.70
tα 4.50 4.73 4.64 4.44 4.59 4.06 4.64 4.38
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Table A6 Performance of the Probability Forecasts Portfolios (Probability of Outperforming the Cross-sectional Median)

This table reports the value-weighted decile portfolio performance sorted by each model’s probability forecast. The prediction target is the probability of a stock
outperforming the cross-sectional median. For each portfolio, we report the following measures: average predicted probability (P̂rob), actual realized probability
(Prob), mean and standard deviation of excess returns, and the Sharpe ratio. These portfolios are rebalanced at a monthly frequency based on the latest out-of-
sample predictions from the respective model. The ‘H-L’ row represents the strategy of investing in the 10th decile (High) while selling the 1st decile (Low) short.
The data spans from January 1987 to December 2020.

OLS Logit PLS NN1

P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR

Low (L) -0.02 0.49 0.76 5.12 0.52 0.4 0.4 -0.71 8.95 -0.27 0.4 0.4 -0.68 9.01 -0.26 0.41 0.41 -0.70 8.90 -0.27
2 0.16 0.5 0.18 5.67 0.11 0.45 0.44 -0.25 8.91 -0.10 0.45 0.44 0.09 9.01 0.03 0.45 0.45 0.09 9.01 0.04
3 0.32 0.47 0.08 5.38 0.05 0.47 0.47 0.53 8.89 0.21 0.47 0.47 0.40 8.84 0.16 0.47 0.47 0.55 8.96 0.21
4 0.41 0.47 0.42 5.38 0.27 0.49 0.49 0.50 8.82 0.20 0.49 0.48 0.65 8.73 0.26 0.49 0.48 0.73 8.72 0.29
5 0.45 0.48 0.49 5.27 0.32 0.51 0.5 0.87 8.81 0.34 0.51 0.5 0.71 8.89 0.28 0.51 0.5 0.84 8.87 0.33
6 0.49 0.49 0.53 5.29 0.35 0.52 0.51 0.84 8.74 0.33 0.52 0.51 1.00 8.73 0.40 0.52 0.51 0.86 8.67 0.34
7 0.52 0.5 0.54 5.17 0.36 0.54 0.52 1.29 8.46 0.53 0.53 0.52 1.12 8.64 0.45 0.54 0.52 1.31 8.54 0.53
8 0.55 0.52 0.81 5.02 0.56 0.55 0.53 1.49 8.45 0.61 0.55 0.53 1.48 8.52 0.60 0.55 0.53 1.47 8.42 0.61
9 0.58 0.53 0.91 4.84 0.66 0.57 0.55 2.04 8.40 0.84 0.56 0.55 1.84 8.37 0.76 0.56 0.54 1.60 8.39 0.66
High (H) 0.65 0.53 1.27 4.85 0.90 0.59 0.56 2.31 8.44 0.95 0.59 0.56 2.36 8.48 0.96 0.58 0.56 2.37 8.44 0.97
H-L - - 0.50 3.99 0.44 - - 3.02 7.90 1.32 - - 3.04 7.98 1.32 - - 3.07 8.07 1.32

NN2 NN3 NN4 NN5

P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR P̂rob Prob Mean SD SR

Low (L) 0.4 0.41 -0.64 9.00 -0.25 0.4 0.4 -0.69 9.37 -0.26 0.41 0.41 -0.57 9.15 -0.22 0.41 0.4 -0.65 9.06 -0.25
2 0.44 0.45 0.08 8.94 0.03 0.44 0.45 -0.13 9.37 -0.05 0.45 0.45 -0.06 9.37 -0.02 0.45 0.45 0.04 9.05 0.02
3 0.47 0.47 0.58 9.04 0.22 0.47 0.47 0.59 9.50 0.21 0.47 0.47 0.53 9.28 0.20 0.47 0.47 0.62 9.14 0.24
4 0.49 0.48 0.64 8.86 0.25 0.49 0.49 0.70 9.20 0.26 0.49 0.49 0.69 9.04 0.26 0.49 0.49 0.67 8.76 0.26
5 0.51 0.5 0.94 8.75 0.37 0.51 0.5 0.83 9.25 0.31 0.51 0.5 0.72 9.12 0.28 0.51 0.5 0.85 8.89 0.33
6 0.52 0.51 0.84 8.71 0.33 0.52 0.51 0.75 9.22 0.28 0.52 0.51 0.90 8.97 0.35 0.52 0.51 0.94 8.99 0.36
7 0.54 0.52 1.15 8.63 0.46 0.54 0.52 1.15 9.02 0.44 0.54 0.52 0.93 8.89 0.36 0.54 0.52 1.02 8.58 0.41
8 0.55 0.53 1.32 8.60 0.53 0.55 0.53 1.49 8.81 0.58 0.55 0.53 1.45 8.74 0.58 0.55 0.53 1.71 8.70 0.68
9 0.56 0.54 1.83 8.36 0.76 0.56 0.54 1.88 8.68 0.75 0.56 0.54 1.81 8.57 0.73 0.56 0.55 1.72 8.41 0.71
High (H) 0.58 0.56 2.37 8.56 0.96 0.58 0.56 2.40 8.76 0.95 0.58 0.56 2.32 8.69 0.92 0.58 0.56 2.48 8.58 1.00
H-L - - 3.01 7.95 1.31 - - 3.09 8.60 1.24 - - 2.89 8.43 1.19 - - 3.13 8.23 1.32
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Table A7 Combining Probability Forecasts (Probability of Outperforming Cross-sectional
Median) with Expected Return Forecasts

This table reports the comparison results for the long-short portfolios based on probability forecasts and expected
return forecasts. The prediction target is the probability of a stock outperforming the cross-sectional median. The
first row reports the correlation between the ‘H-L’ portfolio of the two approaches. Following this, for each panel,
we report the value-weighted ‘H-L’ portfolio mean, Sharpe ratio, α relative to Fama and French (2015) five factors
with momentum (six factors in total), and the t-statistics for α . We consider eight forecasting models in total (OLS,
Logit, PLS, and NN1-5). Panel A (B) reports the results based on the probability (expected return) forecast. Panel
C (D) reports the equal-weighted (mean-variance efficient) combination of ‘H-L’ portfolios from probability and
expected return forecasts. We estimate the expected return and variance-covariance matrix using real-time data with
an expanding window. In constructing the portfolios, we assume a relative risk aversion of 5. All samples start from
January 1987 and end in December 2020.

OLS Logit PLS NN1 NN2 NN3 NN4 NN5

Corr 0.16 0.29 0.28 0.33 0.26 0.25 0.29 0.33

Panel A: Probability Forecast

Mean 0.50 3.02 3.04 3.07 3.01 3.09 2.89 3.13
SR 0.44 1.32 1.32 1.32 1.31 1.24 1.19 1.32
α 0.23 1.77 1.82 1.75 1.71 1.74 1.61 1.87
tα 1.35 5.36 5.55 5.13 5.00 5.12 4.76 5.81

Panel B: Expected Return Forecast

Mean 3.00 3.00 3.00 2.24 2.68 2.87 3.00 2.89
SR 1.43 1.43 1.43 1.18 1.23 1.30 1.43 1.34
α 2.72 2.72 2.72 1.76 2.29 2.52 2.72 2.54
tα 4.45 4.45 4.45 3.52 3.41 3.70 4.45 4.06

Panel C: 1/N Combination of Probability and Return Forecasts

Mean 1.75 3.01 3.02 2.66 2.84 2.98 2.94 3.01
SR 1.37 1.71 1.71 1.53 1.60 1.60 1.61 1.63
α 1.48 2.25 2.27 1.76 2.00 2.13 2.16 2.21
tα 4.79 5.82 6.09 5.75 5.26 5.41 5.54 5.48

Panel D: Mean-variance Combination of Probability and Return Forecasts

Mean 6.69 9.79 9.50 7.58 9.71 8.79 9.00 9.11
SR 1.37 1.69 1.69 1.55 1.65 1.55 1.59 1.64
α 6.65 8.24 8.10 5.59 8.05 7.32 7.76 7.62
tα 4.47 5.10 5.20 5.12 5.01 4.81 4.84 4.97
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