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Abstract

Uncovering the underlying structure of global factor returns and assessing whether assets

are priced on a local, regional, or global level are important tasks to understand the

dynamics of asset pricing. I am the first to assess the regional extent of factor dynamics

or the optimal level of aggregation by comprehensively analyzing factor dependencies

in 35 countries. Following a data-driven approach I identify three-factor regions along

geographical and economic lines. With regards to asset pricing, I grant novel insights that

the performance of local asset pricing models is largely driven by the local market factor

and that optimal models contain local, regional, and global factors, challenging current

findings that local models perform best. The findings offer guidance for international asset

pricing tests, deepen understanding of factor return dynamics, and provide evidence of

the efficacy of global pricing models.

Keywords: Factor Models, Financial Markets, International Asset Pricing, Market Integra-

tion, Cluster Analysis.

JEL Classification: C52, G11, G12, G15, G17.

∗University of St. Gallen, Swiss Institute of Banking and Finance, Unterer Graben 21, 9000 St. Gallen,
Switzerland joshua.traut@unisg.ch https://www.joshuatraut.com

†I am grateful for insightful comments from Merlin Bartel, Niclas Käfer, Manuel Mezger, Paul Söderlind,
Kevin Schneider, Paul Schneider, and Tobias Wiest as well as from participants of the Finance Research
Seminar at the University of St. Gallen on an earlier version of this paper. All errors are my own.

1

mailto:joshua.traut@unisg.ch
https://www.joshuatraut.com


1 Introduction

In the dynamic landscape of factor asset pricing, the ongoing discourse surrounding the

efficacy of local, regional, or global asset pricing factors has been a key point of the discussion.

A recent contribution by Hollstein (2022) aimed to settle this debate, offering a comprehensive

analysis across 48 equity markets. Analyzing multiple factor models Hollstein (2022) asserts

the superiority of local asset pricing models in effectively pricing the cross-section of stocks.

While his findings present compelling evidence in favor of local models, some aspects about

the evaluation of local vs. regional vs. global asset pricing models remain open, prompting

a revisit of the subject.

One notable gap in the existing literature pertains to the level of regionality with which

regional asset pricing models are built. Previous studies on regional asset pricing models

predominantly employ a broad categorization of regions based on continental affiliations or

developmental statuses (Brooks & Del Negro, 2005; Fama & French, 2012, 2017). Recent

studies (e.g., Hollstein, 2022; Karolyi & Wu, 2018) adopt the regions defined by Fama and

French (2012) who argue that in their regions markets can be assumed to be reasonably

integrated. However, they do not explain how they develop those specific regions. Yet, the

optimal delineation of regions remains uncharted territory. Should regions encompass only

neighboring countries or span entire continents? Can we even find regional integration for

asset pricing factors that warrant a rationale to test regional models? Moreover, the studies

above define the same regions for all factors they test. But what if the level of regional

integration differs among factors? Addressing these gaps, this paper is the first to establish

data-driven regions for factor asset pricing analyses.

Furthermore, the extant literature predominantly evaluates asset pricing models based on

traditional metrics like R2 and regression alphas (Fama & French, 2012, 2017; Griffin, 2002;

Hollstein, 2022; Hou et al., 2011). However, recent advancements advocating the assessment

of asset pricing models through Sharpe ratios (Barillas et al., 2020; Barillas & Shanken, 2017)

have yet to be incorporated into this discourse. It is recommended to use Sharpe ratios over

traditional alpha intercepts because this measure does not depend on the test assets (Fama

& French, 2018). Because of this, more recent papers have started evaluating factor models
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solely using Sharpe ratios as the evaluation metric (e.g., Detzel et al., 2023). Additionally,

the prevailing approach often confines the analysis to examining local, regional, and global

models in isolation, neglecting the possibility of hybrid models that encompass both local and

global components. Addressing these deficiencies, this study not only evaluates asset pricing

models through established metrics but also integrates Sharpe ratios into the assessment

framework. Moreover, it explores the possibility of integrated models, composed of both

local and global factors and thereby provides a more nuanced understanding of asset pricing

dynamics.

To address these research gaps, I adopt a data-driven approach utilizing global factor data

that encompasses monthly factor returns across 35 countries from January 1992 to December

2023. For the analysis, I employ the Fama and French (2018) six-factor model that has been

shown to be superior over other factor models (Barillas et al., 2020; Fama & French, 2018).

However, I also show that the results are robust for other models such as the Fama and

French (2015) five-factor model or Hou et al. (2015) q-factor model.

To identify candidate regions for regional asset pricing analyses, I employ principal component

analysis (PCA) on the correlation matrices of international factor returns. This investigation

reveals distinct groupings of countries by geographic regions and development status. Al-

though the groupings are consistent across factors, their strengths vary significantly between

them. An integrated analysis of all factor returns yields that factor returns can be clus-

tered into three regions: an ”established” region encompassing European countries, the U.S.,

and Canada; an ”emerged” region comprising rising Asian countries like South Korea and

Thailand; and a ”developing” region including developing countries from Europe, Asia, and

South America. Notably, I do not find support for treating Japan as an outlier, a practice

commonly employed in other studies such as Fama and French (2012) and Hollstein (2022).

For the asset pricing analysis I build three different factor models for each country, c,—a

local model consisting of factors in c, a regional model that holds factors built from all

other countries in c’s region, and a rest-of-world model that is constructed from all other

countries outside of c’s region. Beginning with an evaluation of whether regional factor returns

encapsulate those of individual countries, I regress local factor returns on their corresponding
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regional returns. Remarkably, local factor returns are comprehensively represented by their

regional counterpart. Subsequently, I assess the efficacy of local, regional, and rest-of-world

factor models in pricing GICS 10 industry portfolios. While local models perform well in terms

of R2 and average alphas, rest-of-world models demonstrate superiority when considering the

Gibbons et al. (1989) (GRS) statistic and Barillas et al. (2020) Sharpe ratio tests. I thus

find that the conclusion on the superiority of local, regional, or rest-of-world factor models

depends on the test metric.

Lastly, to determine an optimal factor asset pricing model, I follow the procedure by Swade

et al. (2024) which iteratively builds a factor model intending to optimize either R2, average

alphas, or the GRS statistic. To maximize R2 the optimal model consists of mostly local

factors but concerning the other two metrics, the optimal model consists of local, regional,

and rest-of-world factors. To dig deeper into this matter, I run the refined version of the

Barillas and Shanken (2018) test (Choi et al., 2022) that assesses what subset of factors

prices all other local, regional, or rest-of-world factors. I find that the optimal model mostly

consists of regional and rest-of-world factors. Furthermore, I can show that the superiority

of local asset pricing models can mostly be attributed to the local market factor.

I conclude that there are significant regional dependencies in factor returns that should be

recognized when testing factor models internationally. The strength of these dependencies

varies among factor types but generally separates countries along geographical and economic

lines. In asset pricing tests, the performance ranking of factor models varies depending on the

evaluation metric employed, with local models excelling in certain metrics while more global

models outperform in others. However, local asset pricing factors are not over-represented in

optimally constructed models and their superiority concerning certain performance metrics

can partly be attributed to the local market factor.

The literature on asset pricing models encompasses empirical, theoretical, and predictive di-

mensions, with ongoing debates surrounding the efficacy of local, regional, and global factors.

As mentioned before, many empirical studies like those by Fama and French (2012, 2017),

Griffin (2002), Hollstein (2022), and Hou et al. (2011) consistently provide support for local

asset pricing models. However, these findings are not without contention, as highlighted by
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Petzev et al. (2016), who track the evolution of local and global models over time, noting an

increasing explanatory power of global models. Furthermore, Hau (2011) employs a natural

experiment in a major MSCI index, suggesting a global rather than local pricing mechanism.

In reconciling these empirical discrepancies, Brooks and Del Negro (2005) suggests advocating

for regional factor models when pricing local assets. Theoretical literature predominantly

favors global asset pricing models (e.g., Grauer et al., 1976; Solnik, 1974; Stulz, 1981), yet

empirical evidence, as summarized above, often aligns with local models. A comprehensive

review of the literature is provided in Karolyi and Stulz (2003). My work reunites these

theoretical models with the prevailing empirical findings as I find that the answer to the best

model most likely consists of local, regional, and global components.

Extending the debate beyond stocks, research by Ilmanen (1995) and Longstaff et al. (2011)

explores the local vs. global asset pricing dynamics in bonds, while Brandt et al. (2006)

delves into the implications for exchange rates. Another closely related literature stream is

that of prediction as it is argued that stock characteristics can always be seen as the stock’s

factor loading to some latent factor (Kelly & Xiu, 2023, Lemma 1). Contrary to empirical

asset pricing, where local models often prevail, for predictive models more global models

seem to perform better. It is reported that the inclusion of U.S. data for international stock

return prediction increases performance (Choi et al., 2022; Tobek & Hronec, 2021). Similarly,

Rapach et al. (2013) show that lagged U.S. market returns can predict market returns of other

countries. Hellum et al. (2023) quantifies the regionality in prediction and reports that 94%

of return predictability follows global parameters. Finally, broader considerations such as

home bias, flows, integration, and globalization, as reviewed by Lewis (2011) and Bekaert

et al. (2016), underscore the multifaceted nature of asset pricing dynamics in an increasingly

interconnected world.

The structure of the remaining article is as follows: Section 2 introduces the data. Section 3

detects what regional structure can be found in international factor returns and defines

the regions that are used in later analyses. Section 4 contains the asset pricing analysis

of the paper. It presents the results from spanning tests, examines the ability of local,

regional, and rest-of-world factor models to explain asset returns, creates optimal factor

models, and controls the results for the local market factor. Section 5 concludes and lays out
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the implications of my work. The appendix holds supplementary material such as additional

tables and figures, a detailed description of the sorting variables, and technical details for

some statistical tests.

2 Data

My data sample covers 35 stock markets around the world between January 1992 and Decem-

ber 2023. This sample of countries represents 84% of the World GDP in 2022 and is thus a

representative sample for global factor analyses.1 Return data for the U.S. market is sourced

from CRSP while all other return data and accounting variables are gathered from Compus-

tat. Following international asset pricing literature (i.e. Fama & French, 2012, 2017), returns

are in USD based on Compustat exchange rates. For some parts of the paper, I use local

currency returns but if not stated otherwise, returns are in USD. The risk-free rate is proxied

by the 1-month Treasury rate. To minimize errors of Compustat returns, I winsorize returns

at the 0.01% and 99.9% level cross-sectionally as in Jensen et al. (2023).2 A comprehensive

summary of the data is provided in Table A.1.

For the primary analysis, I employ the six-factor model by Fama and French (2018). This

selection is motivated by two key reasons. First, to analyze the heterogeneity in regional

dynamics of factors, it is appropriate to use a model with a relatively large number of factors.

Second, this model has demonstrated superiority over the widely used five-factor model by

Fama and French (2015) (Barillas et al., 2020; Fama & French, 2018). Though the main

analysis will use the six-factor model, I will show that the use of other models such as the

q-factor model by (Hou et al., 2015), the five-factor model by Fama and French (2015), the

three-factor model by Fama and French (1993), as well as the replacement of the accruals

based profitability factor with a cash profitability factor as proposed by Ball et al. (2016)

will lead to similar results.

With regards to the factor construction, I closely follow Jensen et al. (2023). Each month, I

sort stocks into tercile characteristics portfolios with breakpoints based on non-micro stocks.
1This calculation is based on global USD-converted GDP data from the Worldbank database.
2E.g., in January 1992 in Argentina when the country replaced its the Austral with the Peso at a rate of

10,000 to 1 returns of more than 100,000% are reported in the data for a few stocks . This is presumably due
to an error in the conversion of exchange rates and should be corrected.
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Micro-stocks are spread equally across those portfolios thereafter to make the portfolios more

tradable. I require at least 5 stocks in each of the long and short legs. For each leg I

compute the capped value weight return, meaning that I weight stocks by their market equity

winsorized at the NYSE 80th percentile. Factor returns are a long-short zero investment

strategy between the upper and lower portfolio. Though proposed by some of the original

authors of the respective factor models I deviate from their methodology that uses double or

triple sorts (e.g., Hou et al., 2015). I do this to ensure a large sample of countries to uncover

regional dynamics and such sorting procedures result in multiple portfolios for which a large

sample of stocks is required. However, I show later that my results also hold if factors are

built following the traditional double sorting procedure by Fama and French (2017).3

The six-factor model is composed of a market factor, which is defined as the cross-sectional

value-weighted excess return of stocks, and five long-short factors—a size factor, that sorts

stocks on market capitalization, a value factor, that sorts stocks on book-to-market ratios, an

investment factor, that sorts stocks on asset growth, a profitability factor, that sorts stocks

on operating profits to book equity, and a momentum factor, that sorts stocks on their past

12-1-month return.4

3 Structure Detection

To justify regional asset pricing tests there should be some regional integration of factor

returns. If they are regionally integrated, it can be expected that they also show some co-

movement. Because of this reasoning, I examine the correlation structure of factor returns in

the following paragraphs. This analysis helps answer the question of whether there is enough

regional integration to justify regional testing and along what borders those regions should

be defined.

Studies such as those by Rapach et al. (2013) examine the effects of market returns across

different countries and find significant spillover effects. However, no research to date has

investigated the international structure of factor returns. To ensure that results are not
3Due to the more data intensive double sorting procedure, the sample size decreases to 21 countries in this

setting.
4A detailed description of the sorting variables used for the long-short portfolios can be found in Ap-

pendix B.
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influenced by any residual market exposure, I first regress all factor returns on their respective

market returns as

fτ = ατ + βτrm + ετ (1)

for each factor, τ , and only use the residuals to perform the following analyses. In the above

equation, fτ is a vector of factor returns and rm is a vector of respective market returns. This

cleaning approach is particularly important to isolate the pure factor exposure since I find

that some of the factors exhibit modest correlations with the market factor (see Figure A.1).

Another cause for spurious correlation could be the influence of currency returns as all returns

are converted into USD. To assess whether the currency conversion affects the results, I

repeated the below analysis for factor returns in local currency returns. I find that the

results are identical to those outlined below, implying that the structure I find is not caused

by currency effects.5

3.1 Individual Factor Analysis

To get a first impression of whether there is co-movement in international factor returns,

I calculate the complete Pearson correlation matrix, C, for all country-wise factor returns

separately for each factor as C = S−1/2ΣS−1/2, where Σ is the covariance matrix of factor

returns and S is the diagonal matrix of Σ. Σ is calculated as Σ = F>F , where F is a matrix

of factor returns for one factor type (i.e., value),6 with T rows and N columns, where T is

the total number of months and N is the total number of countries in my sample.

In total, I calculate six correlation matrices7 that are illustrated in Figure 1. The countries are
5The results of the iPCA Analysis with local currency returns among other methodological robustness

checks are illustrated in Figure A.5.
6Following the earlier notation all variables would require a subscript τ that identifies the respective factor

types (i.e., F would be Fτ ). For ease of readability this subscript is dropped in this section.
7Due to the heterogeneous availability of factor data among countries, the number of observations with

which the correlation matrices can be calculated is not the same for each factor. The number of complete
observations per factor is reported in Table A.2. To ensure better comparability with regards to the number of
observations, the analysis has been redone using pairwise complete correlation matrices for which the results
are almost identical and thus not reported here.
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ordered according to their respective continents and we can see that for market returns, there

is co-movement within continents. The value and momentum factors show similar patterns

which cannot be observed for the profitability factor. International size and investment factor

returns also show some co-movement but not as strong as that for value and momentum.

This already provides evidence that factor returns differ concerning their strength of regional

integration.
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Figure 1: Correlation plots of global factor returns
The figure illustrates correlation matrices for monthly international returns in USD of the Fama and French (2018)
six-factor model between 1992 and 2023 that were cleaned for spurious market exposure. The matrix for each factor is
plotted separately.

While the correlation matrices grant interesting insights into the co-movement, they cannot

be used to assess the similarity or distance between the factor returns. To overcome this
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hurdle, I perform principal component analysis (PCA) using an eigendecomposition of each

of the correlation matrices for the international factor returns. This procedure provides axes

among which the data varies the most, which can be used for determining distances between

countries. Furthermore, I use this dimensionality reduction algorithm because it is helpful

to extract spurious correlation from the signal. This is necessary as it is reported that in

finance the signal-to-noise ratio is very low (e.g., Kelly et al., 2019).

The correlation matrix of returns, C, can be decomposed as,

C = PDP ′, with D = diag(d1, d2, . . . , dN ) (2)

where P = (v1, . . . , vN ) is the matrix of eigenvectors vi and D is a diagonal matrix of eigenval-

ues di ordered in decreasing magnitude. From the definition of the eigenvector and eigenvalue,

we know that Cvi = divi and that di/
∑
di is the quantity of total variance explained by the

corresponding vi. The eigenvectors that correspond to the largest eigenvalues thus represent

the axis among which the data is most spread out.8 The literature on PCA often describes

the underlying data in terms of samples and features. For my application, I treat each time

stamp as a sample of international factor data for which each country-wise return represents

a feature.

To get an impression among what axis the factor return data varies the most, I perform the

eigendecomposition and plot v1 and v2 in Figure 2. The eigenvectors are examined because

they represent scaled versions of the principal components (PCs) (Tang & Allen, 2021).

Thus, these axes can be interpreted as the distance between factor returns. Since I use the

correlation matrix for the decomposition, which effectively normalizes returns, their mean

and volatility do not affect the results.
8It is important to note that using the correlation matrix ensures that the eigenvectors represent the axes

along which the data is most spread out jointly. This approach effectively normalizes the returns, which
is desired for the undertaking of this study. Without normalization, if a factor return is significantly more
volatile in one country compared to others, the decomposition might produce an eigenvector dominated by
that country’s variance, thereby isolating it from the rest. Since the focus of this study is to determine joint
variation across countries, using the correlation matrix eliminates the impact of such variance differences,
which are not of primary interest in this analysis.
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We can see that the first two eigenvectors group countries with similar development status and

geographic region. This pattern is relatively similar for all factors. However, the strength of

this clustering is very different. Consistent with the observations of the correlation matrices,

the variance explained by the first two PCs is highest for the market factor at close to 60%

and lowest for the profitability factor at around 18%. This suggests that although the regional

dynamics are relatively consistent across different factors, their magnitudes vary significantly.
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Figure 2: Principal component analysis of international factor returns
The figure holds the first two eigenvectors, v1 and v2 of correlation matrices from international Fama and French (2018)
six-factor model returns in USD between 1992 and 2023 that were cleaned for market exposure. The eigenvectors
are plotted for each factor separately. The percentages on the axes describe the portion of explained variance by the
respective eigenvector. Development statuses are sourced from MSCI.
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3.2 Joint Analysis

The following section lays out an integrated analysis of all factor returns from which fully

data-driven factor regions are defined. An integrated analysis is possible because the above

evidence suggests that (if they exist) the regional dynamics are relatively similar for different

factors. The extraction of regions from the factor data will involve five steps: first, jointly

decomposing the factor data; second, determining the number of dimensions to retain; third,

assessing whether the retained data forms clusters; fourth, defining the optimal number of

clusters; and fifth, retrieving the cluster allocation for each country. The following paragraphs

will outline each of the five steps within which I am employing a battery of different statistical

metrics. To not dilute the text with technical details, I shift the technicalities to Appendix C.

Here, I will provide intuition for what the statistical measures do and interpret the results.

Step 1: Joint Decomposition: For the first step of the analysis, I use the integrated PCA

(iPCA) algorithm by Tang and Allen (2021). This method allows to decompose multiple

matrices simultaneously and is a generalized form of PCA. It is particularly useful for the

task at hand for two reasons. First, iPCA aims to extract dominant joint patterns which are

common to multiple data sets, not necessarily the variance-maximizing patterns since they

might be specific to one data set. Second, it treats each of the matrices as a standalone

sample of observations, which comes in handy as the number of complete observations varies

among factors.9

The first two eigenvectors that result from the iPCA analysis are plotted in Figure 5. As

expected, the emerging pattern looks very similar to that for individual factor returns in

Figure 2. Again, countries are grouped along continents and development status. It is

worth noting that the variance explained by the first two principal components is now much

lower than in the setting for individual factors. This is expected because, unlike traditional

PCA, the iPCA algorithm does not focus solely on extracting variance-maximizing patterns.

Instead, it also aims to find joint patterns in the data, resulting in lower explained total
9Due to the heterogeneous availability of factor data among countries, the number of observations with

which the correlation matrices can be calculated varies for each factor. The number of complete observations
per factor is reported in Table A.2. Furthermore, to ensure that the results are not excessively influenced by
the market factor—which has more complete observations available than the other factors—I run the iPCA
algorithm for the Fama and French (2018) six-factor model, excluding the market factor. The results for this
analysis among other methodological robustness checks are illustrated in Figure A.5.
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variance. The results are insensitive to the method as other integration algorithms such as

the Multiple Factor Analysis (MFA) (Abdi et al., 2013; Escofier & Pagès, 1994) yield very

similar results.10

Step 2: Dimension Reduction: The second step of the analysis involves determining the

appropriate number of eigenvectors to retain. Initially, for the sake of easier graphical inter-

pretation, the first two eigenvectors were examined in the eigenvector plots above. However,

the optimal number of dimensions to retain may differ from this number. To extract the

number of informative dimensions, I utilize the parallel analysis method by Horn (1965) that

adjusts eigenvectors for sampling errors using bootstrapping. Effectively it adjusts the eigen-

values by randomly generated noise. After this adjustment, eigenvectors whose eigenvalue is

larger than 1 are deemed to carry information about the underlying data.

I perform this adjustment with 10,000 bootstrap iterations for which the results are visualized

in Figure A.2. The first two eigenvalues comply with the criterion of being larger than 1 and

are thus retained for the following analyses.

Step 3: Assess Clustering Tendency: After having retained the informative part of the

eigendecomposition, it has to be determined whether the observations are clustered. For this

task, I use the clustering statistic by Hopkins (1954). The statistic compares the nearest-

neighbor distribution of randomly generated data points in the observed span to that for

randomly selected data points. If the data was randomly distributed, the statistic should be

about 0.5, and a value of more than 0.7 is deemed to indicate clustering (Banerjee & Davé,

2004).

I estimate the statistic using 10.000 bootstrapped draws for two different settings11. Both

setups lead to similar results (0.76 and 0.73), indicating that the data is clustered. For one

of the two settings, the result is statistically different from 0.5 at 10% confidence.

Step 4: Optimal Number of Clusters: Knowing that the data is clustered, the optimal

number of clusters has to be determined. For this task, I use three different metrics. First,

I use the within sum of squares (WSS) which calculates the average distance between points
10The results for the MFA algorithm among other methodological robustness checks are illustrated in Fig-

ure A.5.
11The exact setup of these settings can be found in Appendix C.
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within a cluster. The optimum number of clusters is the point where the WSS cannot be

improved strongly for one more cluster (elbow method). Second, I use the silhouette method

by Rousseeuw (1987) which takes the distance of each data point to all other points within

its cluster and compares it to the average distance of this point to all other points outside

its cluster. The optimal number of clusters maximizes the average silhouette value of all

data points. Third, I use the gap statistic by Tibshirani et al. (2001). In a nutshell, the gap

statistic compares the average intra-cluster variation of the actual clusters to the intra-cluster

variation of uniformly randomly generated data. This statistic is maximized for the optimal

number of clusters.

I calculate the above three metrics for different numbers of clusters between one and ten

using the hierarchical agglomerative clustering method (Murtagh & Legendre, 2014) with

the linkage criterion of Ward (1963).12 The results are illustrated in Figure 3. It can be

seen that for more than three clusters, the WSS can no longer be improved by much. The

silhouette and gap statistics show a similar result as they are maximized for three clusters.

Thus, the optimum number of clusters is three.

Step 5: Define Final Clusters: The concrete cluster allocation of each cluster can directly

be retrieved from the hierarchical cluster analysis in step 4 with three clusters. The result-

ing dendrogram of this specification is illustrated in Figure 4 within which I highlight three

regional clusters that I call ”established”, ”emerged” and ”developing”.13 The established

region comprises developed European countries as well as Canada, the U.S., and Australia.

It thus represents developed Western countries. The emerged region includes the most de-

veloped Asian countries, such as Japan, Korea, and China. Lastly, the developing region

comprises developing countries from all continents, such as Turkey, Argentina, and India.

The classification of the hierarchical clusters for the results of the iPCA analysis is illustrated

in Figure 5. It can be seen that three dense clusters were created. Also, consistent with the

picture from the visual inspection of the first two eigenvectors, the clustering of the countries
12To validate the results for the choice of clustering algorithm, I calculate the above summary statistics

again using the k-means clustering method and the Partitioning Around Medoids (PAM) algorithm (Kaufman
& Rousseeuw, 1990) instead of hierarchical clustering. The results are illustrated in Figure A.3 and Figure A.4
and look almost identical to those presented here.

13Although the naming of these three data-driven clusters is heavily inspired by the two development
statuses, ”developed” and ”emerging,” they should not be confused with them.
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Figure 3: Clustering statistics using the hierarchical clustering
The figure holds three clustering measures for the first two eigenvectors, of correlation matrices from international Fama
and French (2018) six-factor model returns in USD between 1992 and 2023 that were cleaned for market exposure.
The eigenvectors are calculated jointly using the iPCA procedure by Tang and Allen (2021). ”WSS” is the average
distance between points within a cluster. ”Silhouette” is the silhouette statistic by Rousseeuw (1987) which compares
the distance of each data point within the cluster to the average distance to all other points outside the cluster. ”Gap”
is the gap statistic by Tibshirani et al. (2001) which compares the average intra-cluster variation to the intra-cluster
variation of uniformly randomly generated data. The x-axis holds the number of respective clusters for which the
measures were calculated. The clusters are generated using hierarchical agglomerative clustering (Murtagh & Legendre,
2014) with the linkage criterion of Ward (1963).

follows along geographic lines and development status.

A robustness check that the resulting clusters do not result from my modeling choices can be

found in Figure A.5 of the appendix. The figure plots the first two eigenvectors for different

modeling settings (local currency, MFA decomposition, exclusion of market factor, factor
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construction following the traditional factor formation methodology by Fama and French

(2017), and other factor models). Despite flipped signs for some of the eigenvectors, the

clustering is very similar to the setting employed here. It is worth mentioning that in none of

the scenarios explored, I find compelling reasons to consider Japan as an outlier warranting

the creation of its own distinct region, a practice commonly employed in other studies such as

Fama and French (2012) and Hollstein (2022). However, unlike what one might expect based

on economic proximity, Japan is not part of the established cluster (despite being close) but

rather falls into the emerged cluster to which it shows a high geographical proximity. The

only country that nearly qualifies as a single-country region is Argentina. Its distance to

any other country is very large which causes it to be merged very late into a cluster in the

dendrogram below.

Lastly, to determine the strength of regional integration for the different factors I calculate

the average correlation for the factor returns in Table 1. It can be seen that the established

region shows the largest average correlation across factor returns. This is consistent with the

results of the clustering analysis as in this region many countries fall very closely together in

Figure 5. The emerged region shows less co-movement and the developing region has very

little to no integration for most long-short factor returns. Consistent with the PCA analysis,

the factors for which most variance is explained by the first two PCs also show the highest

average correlation. If we take market returns as a benchmark, the regional integration for

the most integrated factors (like value and momentum) can reach up to 68% of the market

return’s integration.

4 Asset Pricing

To test whether asset pricing is more local, regional, or global, I create three different factors

for each factor class in each country. I define a local factor in country c as fLc following

the procedure outlined in Section 2. Note, that I suppress the time subscripts to make

the notation cleaner. Next, I define a regional factor as the market capitalization-weighted

16



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

U
SA

A
U

S
C

A
N

ES
P

FI
N

A
U

T
D

N
K

FR
A

IT
A

C
H

E
G

B
R

D
EU

N
LD

SW
E

B
EL

N
O

R
H

K
G

T
W

N
JP

N
K

O
R

N
ZL

SG
P

T
H

A
C

H
N

M
Y

S
PE

R
ID

N
PH

L
A

R
G

C
H

L
T

U
R

G
R

C
M

EX
B

R
A

IN
D

Established Emerged Developing

Figure 4: Dendrogram for international factor returns
The figure holds a dendrogram resulting from a hierarchical agglomerative clustering (Murtagh & Legendre, 2014) with
the linkage criterion of Ward (1963). The underlying data are the first two eigenvectors, of correlation matrices from
international Fama and French (2018) six-factor model returns in USD between 1992 and 2023 that were cleaned for
market exposure. The eigenvectors are calculated jointly using the iPCA procedure by Tang and Allen (2021).

average factor return for all other countries that are in the same region as c as

fRc =
∑ mk

(mR
c −mc)

fLk ∀k ∈ Rc, k 6= c, (3)

where Rc is the region that includes c, mi is the market capitalization of country i, and mR
c

is the total market cap of countries in that region.14 Lastly, I define a rest-of-world factor as

the market capitalization-weighted average factor return for all countries outside of Rc as
14Note the slight abuse of notation. Whenever I refer to the region of country c, I denote it with Rc.

However, whenever I refer to some other variable that is determined by Rc I put the c in the subscript of the
main variable to make the notation cleaner. For example, I denote the regional factor return in Rc as fR

c .
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Figure 5: Principal component analysis of global factor returns
The figure holds the first two eigenvectors, v1 and v2, of correlation matrices from international Fama and French
(2018) six-factor model returns in USD between 1992 and 2023 that were cleaned for market exposure. The eigenvectors
are calculated jointly using the iPCA procedure by Tang and Allen (2021). The percentages on the axes describe the
portion of explained variance by the respective eigenvector. Development statuses are sourced from MSCI. The regions
are assessed based on the results of a hierarchical agglomerative clustering (Murtagh & Legendre, 2014) with the linkage
criterion of Ward (1963) of the data using three clusters.

fWc =
∑ mj

(M −mR
c )
fLj ∀j /∈ Rc, (4)

where M is the total market capitalization of all countries in my sample. I set the minimum

number of countries from which fWc and fRc can be built to two. Note, that fRc is unique

for each country as c is always excluded from its respective regional factor return while
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Table 1: Average correlations of factor returns within regions
The table holds the within-region average correlations of country-wise Fama and French (2018) six-factor model returns
in USD between 1992 and 2023. The regions are assessed using hierarchical agglomerative clustering (Murtagh & Leg-
endre, 2014) with Ward’s linkage criterion (Ward, 1963) on the first two eigenvectors of international factor correlation
matrices that were jointly extracted using the iPCA procedure by Tang and Allen (2021).

Developing Emerged Estab-
lished

Market 0.35 0.40 0.73

Size 0.14 0.10 0.26

Value 0.06 0.09 0.40

Investment 0.13 0.15 0.25

Profitability 0.10 0.13 0.17

Momentum 0.19 0.26 0.50

Total 0.16 0.19 0.38

fWc is the same for all c from the same region. Following Asness et al. (2015), Ehsani and

Linnainmaa (2022), Gupta and Kelly (2019), and Jensen et al. (2023), among many others,

I scale all factor returns to have a yearly volatility of 10%.15 My definitions for regional and

global factors differ from current literature (e.g., Fama & French, 2012; Hollstein, 2022) that

does not exclude c (constituents of the region) from its region (the global model) and uses

sorting portfolios from the regional/global pool instead of aggregating country-level factors

to regional/global factors. The motivation for this differentiation is twofold. I perform the

exclusion of c (the respective region) to not contaminate regional (global) factors with local

(regional) information. Also, I aggregate local factor portfolios so all countries are represented

in the respective regional/global portfolio. This is not guaranteed if such portfolios were

created from sorting stocks in the regional/global pool of assets.16 Nevertheless, I show in

Table A.6 and Figure A.8 that the main results of my asset pricing analysis are robust to
15The reason for this is twofold. First, as argued by Jensen et al. (2023), ensuring that factors have the same

variance provides a prior that factors are similar in terms of their information ratio (i.e., appraisal ratio). This
is crucial because I later conduct Bayesian testing and investigate maximum Sharpe ratio portfolios, where it
is beneficial for each factor to have a similar risk contribution. Second, I perform spanning regressions and
examine the coefficients relative to other factors. For ease of comparability, it is essential that the factors have
the same variance.

16E.g., in case of a regional value portfolio, if stocks in one country have very extreme book-to-market ratios,
the regional portfolio will be mostly composed of stocks from that country. This is not an unlikely scenario
as it is shown that e.g. book-to-market ratios are fundamentally different between European and U.S. banks
(Simoens & Vennet, 2021) and that large differences in valuation ratios can be caused by different accounting
regulations among countries (Arce & Mora, 2002)
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the choice of the portfolio construction. To make my results more comparable to those of

the existing literature, I use the raw factor returns instead of the residuals from (1) for the

following parts of the analysis.

4.1 Spanning Tests

To begin, I assess the strength of the regional dependencies for factor returns. In doing

so, I test whether the regional factor returns encompass their local counterparts. This is

accomplished by conducting the following spanning regression for each country, c, and factor,

τ , against regional factor returns from all three regions:

fLc,τ = αc,τ +
∑

βc,τf
R
τ + εc,τ (5)

If the regional dependencies are strong, the local factor should load heavily on its regional

factor. The other regional factors can be interpreted as a control terms. All βc,τ and αc,τ

that are significant at 5% are plotted in Figure 6. We can see that those factors for which the

structure analysis shows stronger regional integration (e.g., value and momentum) load more

heavily on their respective regional factors. We further see that this loading is stronger in the

established region. For the emerged and developing regions the pattern cannot be observed.

The results provide evidence that in the established region the information of local factors is

well included in their regional counterparts.

To make my results more comparable to existing work, I repeat the spanning analysis but

only include the factor of the respective region on the right side of (5). The equation thus

simplifies to

fLc,τ = αc,τ + βc,τf
R
c,τ + εc,τ . (6)

The relative number of insignificant αc,τ is reported in Table 2. We can see that even if local

factors are only regressed on their regional counterpart, most local factors are spanned by

their regional counterparts. This conclusion contradicts that by Hollstein (2022) who argues
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Figure 6: Spanning regressions of regional factor returns
The figure holds the results of spanning regressions for international Fama and French (2018) six-factor model returns
in USD between 1992 and 2023. The regression setup is fL

c,τ = αc,τ +
∑

βc,τfR
τ + εc,τ , for each country, c, and factor,

τ where fL
c,τ is the local factor return and fR

τ are regional factor returns from the developed, emerged, and established
region. A local factor consists of sorted long-short stock portfolios in the respective country. A regional factor is a value-
weighted average of local factors in the respective region, excluding the respective country. The regression equation is
fitted with GMM. Confidence intervals are calculated using Newey and West (1987) adjusted standard errors using 6
lags. The plot holds βc,τ and αc,τ coefficients that are significant at 5% confidence.

for weak spanning results. The reasons for this contradiction are twofold. First, Hollstein

(2022) tests whether complete asset pricing models, that contain multiple factors, can be

spanned by their regional counterparts. Such a joint test is harder to pass and thus leads to

more rejections. Furthermore, Hollstein (2022) concludes weak spanning given his finding of

sizable alpha intercepts. When looking at the statistical significance reported in his study,

we can see that though sizable, the hypothesis that these alphas are different from zero can
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not be rejected in most cases, similar to the results reported here.

Table 2: Averages of insignificant αc,τ in regional spanning test
The table holds the results of spanning regressions for international Fama and French (2018) six-factor model returns
in USD between 1992 and 2023. The regression setup is fL

c,τ = αc,τ + βc,τfR
c,τ + εc,τ , for each country, c, and factor,

τ where fL
c,τ is the local factor return and fR

c,τ is the respective region of country c. A local factor consists of sorted
long-short stock portfolios in the respective country. A regional factor is a value-weighted average of local factors in the
respective region, excluding the respective country. The regression equation is fitted with GMM. Confidence intervals
are calculated using Newey and West (1987) adjusted standard errors using 6 lags. The table holds the relative number
of αc,τ coefficients that are insignificant at 5% confidence in each region and in total.

Factor Develop-
ing

Emerged Estab-
lished

Total

Market 100% 92% 94% 94%

Size 86% 92% 100% 94%

Value 86% 75% 94% 86%

Investment 86% 92% 94% 91%

Profitability 86% 83% 81% 83%

Momentum 100% 92% 56% 77%

Total 90% 88% 86% 88%

4.2 Pricing Test Assets

To test how well factors perform with regards to their asset pricing ability I assess how well

local, regional, and rest-of-world factors can price test assets for which I use GICS 10 port-

folios. This decision aims to include as many countries as possible due to the heterogeneous

availability of data. Although data-rich countries like the U.S. would allow for more test

assets, I use the same number of test assets across countries to ensure comparability of re-

sults.17 The asset pricing tests are conducted by regressing the excess return of industry

portfolio i on that of local, global, and regional factor models as

rc,i = αc,i +
∑

βc,if
L/R/W
c + εc,i, (7)

where f
L/R/W
c contains the returns of a local, regional or rest-of-world factor model. I

17For robustness, results for tests using size-value sorted portfolios as test assets can be found in the Ap-
pendix, Table A.3.
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require at least 120 months of observations for an industry portfolio to be included in the

analysis. Furthermore, I use the same number of observations for each factor model to ensure

comparability between models. I fit the above regression using the generalized method of

moments (GMM) and evaluate statistical significance using Newey and West (1987) adjusted

standard errors with six lags.

Following Hollstein (2022), I use R2 of the above regression as well as the average size of the

regression alphas, ᾱc, to evaluate the goodness of the different factor models. Additionally,

I include two more measures that are based on recent developments in the literature that

propose to use Sharpe ratios to evaluate factor models (Barillas et al., 2020; Barillas &

Shanken, 2017; Fama & French, 2018). First, I employ the Gibbons et al. (1989) (GRS)

statistic. This statistic jointly evaluates whether all αc,i = 0. It can be calculated as

FGRS =
T (T − I −K)

I(T −K − 1)

αTΣ−1α

(1 + Sh2(f))
, (8)

where T is the number of observations, I is the number of test assets, K is the number of

factors, Sh2(f) is the maximum squared Sharpe ratio obtainable by the tested factors, α is

a vector holding all αc,i, and Σ is the covariance matrix of the regression residuals εc,i. The

statistic follows is distributed as FGRS ∼ F (I, T − I −K). Note, that this statistic heavily

depends on the ratio between αTΣ−1α and Sh2(f). Thus, a better FGRS can be achieved by

a factor model that minimizes αc,i and can obtain a high Sh2(f). Lastly, I use the squared

Sharpe ratio criterion by Barillas and Shanken (2017) who build on the argument by Gibbons

et al. (1989) that

αTΣ−1α = Sh2(f,Ac)− Sh2(f), (9)

where Ac is the matrix of test asset returns rc,i. When Ac includes all possible factors,

Sh2(f,Ac) = Sh2(Ac) and minimizing αTΣ−1α is equivalent to maximizing Sh2(f) which

can be directly taken to evaluate asset pricing models and thus no test assets are required.
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To evaluate whether the Sh2(f) values between competing models are statistically different,

I employ the closed-form test statistic proposed by Barillas et al. (2020).

In theory, both FGRS and Sh2(f) should rank factor models similarly, but their rankings

can differ in practice. For example, consider two nested asset pricing models. According to

Sh2(f), the model with more factors will always perform at least as well as the one with fewer

factors, because the weight of the additional factor in the tangency portfolio can always be

set to zero. However, if the additional factor has a negative slope coefficient, the average αc,i

increases for the model with more factors, potentially causing FGRS to favor the model with

fewer factors. Although it is shown that differences in rankings between the two measures

are rare (Fama & French, 2018), both are included here for completeness.18

The results for R2, ᾱc, and FGRS are reported in Table 3. The results for R2 and ᾱc are

consistent with the findings of Hollstein (2022). Local models perform better than regional

and rest-of-world models as they have the highest R2 and the lowest ᾱc. Also, we see that

for the established region, the regional model has a higher R2 than the rest-of-world model,

whereas for the other regions, the two models perform more alike. For the FGRS statistic the

picture changes. Now the local model is the worst in terms of average FGRS and the rest-of-

world model performs the best. This is likely because more international factor models have

higher Sh2(f), thus lowering the FGRS . This intuition is supported by the results plotted

in Figure 7 where I report a comparison of Sh2(f). We can see that regional and rest-of-

world models achieve significantly higher Sh2(f) than local models. When comparing Sh2(f)

between regional and rest-of-world models, we see that the rest-of-world model has higher

Sh2(f) in the established region whereas for other regions they are fairly similar.

Overall, the asset pricing tests show that the conclusion on what factor model performs best

heavily depends on the metric of choice. Consistent with Hollstein (2022), we would favor

a local model if we look at R2 and ᾱc. However, if we look at FGRS or Sh2(f) we would

favor more global models. The results are robust to using 3×3 sorted size-value portfolios as

alternative test asset19 for which the results are stored in Table A.3. Also, the results carry
18For a more detailed discussion on the differences between the two measures, see Barillas et al. (2020),

Barillas and Shanken (2017), and Fama and French (2018).
19I acknowledge that the standard setting is to use 5×5 portfolios. The choice to reduce the total number of

portfolios from 25 to 9 is based on the desire to include as many countries as possible in the analysis because
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Table 3: Asset pricing tests local vs. regional vs. rest-of-world factor model with GICS
portfolios
The table holds the results of asset pricing regressions for local, regional, and rest-of-world Fama and French (2018)
six-factor model returns in USD between 1992 and 2023. The regression setup is rc,i = αc,i +

∑
βc,if

L/R/W
c + εc,i, for

each country, c. rc,i are return of industry portfolio i for GICS 10 portfolios. f
L/R/W
c contains the returns of a local,

regional or rest-of-world factor model. The local model consists of sorted long-short stock portfolios in the respective
country. The regional model is a value-weighted average of local factor models in the respective region, excluding the
respective country. The rest-of-world model is a value-weighted average of local factor models of all countries outside
the respective region. The regression equation is fitted with GMM. Confidence intervals are calculated using Newey
and West (1987) adjusted standard errors using 6 lags. The number of observations for the regressions is fixed for the
different factor models in each country. I require at least 120 observations for a test portfolio to be included. The
”IDs” column holds the number of portfolios for which the asset pricing test is conducted. ”R2” hold the average
goodness-of-fit measure of the regressions. ”ᾱc holds the average αc,i. ”FGRS” holds the Gibbons et al. (1989) test
statistic for the regression. ”Local”, ”Regional”, and ”Rest of World” hold the results for the respective factor models.
Statistical significance at confidence levels of 10%, 5%, and 1% are indicated with *, **, and *** respectively.

Local Regional Rest of world

Country Region IDs R2 ᾱc FGRS R2 ᾱc FGRS R2 ᾱc FGRS

AUS 10 78% 1.47% 0.58 60% 1.55% 0.58 51% 1.95% 0.57

AUT 3 77% 1.15% 1.15 54% 5.56% 1.99 44% 2.60% 0.25

BEL 7 70% 1.39% 0.59 57% 2.29% 0.43 41% 2.28% 0.57

CAN 10 65% 2.35% 1.43 58% 2.22% 1.16 39% 4.72%* 1.53

CHE 7 76% 2.08% 1.29 64% 1.69% 0.54 46% 5.49% 1.51

DEU 9 73% 4.18%*** 3.45*** 64% 4.47%* 2.92*** 44% 3.10% 1.55

DNK 5 69% 2.48% 0.53 53% 2.74% 0.90 38% 6.08%* 2.34**

ESP 6 70% 2.58% 1.43 52% 2.38% 0.76 38% 2.77% 1.99*

FIN 5 68% 4.27%*** 4.41*** 58% 3.45%* 2.41** 42% 2.78% 0.53

FRA 10 76% 2.47% 1.27 68% 3.49% 2.98*** 45% 3.88% 1.83*

GBR 10 74% 2.64%*** 2.86*** 63% 2.89% 1.33 44% 2.39% 1.44

ITA 8 74% 2.11% 0.90 57% 2.72% 1.26 39% 3.58% 2.07**

NLD 5 76% 3.23%* 2.05* 64% 3.40%** 2.45** 43% 4.75%** 2.39**

NOR 8 72% 4.52%*** 3.57*** 59% 4.62% 2.51** 45% 4.68% 1.70*

SWE 8 72% 1.80% 1.16 63% 1.87% 0.40 42% 4.64% 1.81*

USA 10 76% 2.06%* 1.71* 62% 4.95%*** 5.55*** 41% 5.71%*** 2.97***

Avg.

E
st
ab

lis
he

d

8 73% 2.55% 1.77 60% 3.14% 1.76 43% 3.84% 1.57
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Table 3: (continued)

Local Regional Rest of world

Country Region IDs R2 ᾱc FGRS R2 ᾱc FGRS R2 ᾱc FGRS

CHN 9 86% 3.12%*** 3.47*** 22% 5.21%** 2.38** 12% 5.39% 1.57

HKG 10 73% 3.81%*** 1.90** 51% 4.06%* 1.99** 40% 2.46% 1.38

IDN 8 73% 5.32%** 2.31** 26% 5.13% 1.56 31% 5.98% 1.64

JPN 10 68% 3.15%*** 2.74*** 18% 2.37% 1.23 28% 1.61% 0.76

KOR 10 73% 3.17%** 2.82*** 40% 3.28% 0.99 45% 3.50% 1.76*

MYS 10 79% 1.95% 1.18 33% 3.07%* 1.68* 37% 2.67% 1.33

NZL 6 76% 3.36%** 3.88*** 36% 3.30%* 3.31*** 49% 2.81% 2.17**

PER 3 82% 3.61%* 2.35* 32% 2.98% 0.75 30% 8.53% 1.18

PHL 8 66% 1.74% 0.40 25% 3.15% 0.56 28% 2.48% 0.58

SGP 8 79% 3.51%*** 4.30*** 48% 3.74%*** 3.39*** 54% 4.34%*** 4.45***

THA 8 77% 4.99%*** 5.11*** 33% 6.13%*** 3.48*** 38% 4.24%*** 3.80***

TWN 7 80% 1.25% 0.54 30% 2.80% 1.13 32% 2.18% 0.76

Avg.

E
m
er
ge
d

8 76% 3.25% 2.58 33% 3.77% 1.87 35% 3.85% 1.78

ARG 3 81% 7.18% 2.24* 18% 6.33% 0.77 12% 2.11% 0.05

BRA 6 84% 2.67% 1.12 45% 5.09% 1.58 48% 2.19% 0.21

CHL 6 84% 3.16%*** 4.59*** 41% 3.23%*** 3.54*** 38% 2.56% 2.05*

GRC 6 82% 2.97% 1.12 31% 7.48%* 2.18** 37% 6.73%** 1.90*

IND 10 81% 3.19%* 1.66* 35% 7.55% 1.36 35% 7.24% 1.17

MEX 5 82% 2.69% 2.32** 44% 2.58% 0.68 53% 1.43% 0.15

TUR 6 83% 3.58%** 2.88*** 30% 2.94% 0.52 29% 11.61% 0.85

Avg.

D
ev
el
op

in
g

6 83% 3.63% 2.28 35% 5.03% 1.52 36% 4.84% 0.91

Avg. 7 76% 3.01% 2.15 45% 3.73% 1.75 39% 4.04% 1.51

over to a setting where portfolios are aggregated using equal-weighting instead of value-

weighting in (3) and (4) for which results are stored in Table A.4 and Figure A.620, as well

as for the traditional double sorting factor construction methodology following Fama and

French (2017) for which results are reported in Table A.5 and Figure A.721 and the common

sorting aggregation of regional factors (e.g., Fama & French, 2012; Hollstein, 2022) for which

results are reported in Table A.6 and Figure A.8.22 Lastly, the choice of factor model does
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Figure 7: Barillas and Shanken (2017) test for Sharpe ratio comparison
The plot illustrates the results of the Barillas and Shanken (2017) squared Sharpe ratio test for local, regional, and
rest-of-world Fama and French (2018) six-factor model returns in USD between 1992 and 2023. The local model consists
of sorted long-short stock portfolios in the respective country. The regional model is a value-weighted average of local
factor models in the respective region, excluding the respective country. The rest-of-world model is a value-weighted
average of local factor models of all countries outside the respective region. The upper plot evaluates the regional
model against the local model, i.e., Sh2(fR)− Sh2(fL). The middle plot evaluates the rest-of-world model against the
regional model, i.e., Sh2(fW ) − Sh2(fR). The lower plot evaluates the rest-of-world model against the local model,
i.e., Sh2(fW )− Sh2(fL). Bars are filled, if the difference between Sh2(f) is statistically significant at 5% confidence.

not alter the results either as shown by the regionally aggregated summaries in Table A.7.

the availability of data is highly heterogeneous among the countries in the sample.
20The overall picture does not change but there are two notable differences for the equally-weighted setting.

First, regional portfolios perform worse than local portfolios concerning FGRS . This is because regional
models have much higher alphas than local models. Still, the most global rest-of-world model performs best
with regard to this measure. Second, regional (rest-of-world) models have much higher statistically significant
Sharpe ratios than the local model in the established (developing and emerged) region. This is caused by
the large market capitalization of the U.S. that makes the respective models more concentrated in the value-
weighted setting, reducing cross-country diversification among factors.

21This double-sorting methodology requires more data for the factor construction. Because of this, the
sample size decreases to 21 countries for this methodology.

22The overall picture does not change but there is one notable differences for the sorting aggregation setting.
The dominance of the regional and rest-of-world models over local models concerning higher statistically
significant Sharpe ratios is decreased. This is presumably caused by the fact that the sorting aggregation
does not ensure that all countries within a region are represented in the regional and rest-of-world portfolios,
leaving less potential for diversification. However, the more global models still show higher Sharpe ratios than
the local model in most countries.
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4.3 Factor Importance

Given that employing different performance metrics leads to favoring different models, this

analysis will examine the importance of various factors when optimizing asset pricing models

for different performance metrics. For this purpose, I employ a modified version of Swade et

al.’s (2024) iterative selection algorithm. The algorithm iteratively adds one new factor to an

existing factor model and checks the performance of the augmented factor model. It always

adds the factor that improves the model’s performance for desired performance metrics the

most. Once all possible factors have been tested and the best factor has been chosen, the

factor is permanently added to the factor model, and the procedure is repeated until a certain

number of factors in the model is reached or a convergence criterion is met. Formally, the

algorithm works as follows:

1. Set l := 0.

2. TestK−l different augmented factor models that each add one of the remaining factors,

labeled ftest, to the model from the previous iteration as

ri = αi +

l∑
k=1

βkfk + βtestftest + εi

to price returns from test assets ri,t. Note that for the first iteration there are no factors

in fk.

3. Select the strongest model based on the lowest (highest) ᾱc, FGRS (R2) statistic.

4. Check whether improvement in the performance measure converged. If yes, set l := l+1

and continue with step 2. If not, break.

As the convergence criterion, I assess whether the performance metric improved by 1% in

comparison to the last iteration for R2 and ᾱc. For the FGRS I set the required performance

improvement to 5% from the previous iteration.

The results for the analysis are illustrated in Figure 8. The market factor is highlighted

because it is the only one that is not a long-short factor and is thus substantially different

than the others. In line with previous results, the selection of the optimal factor model
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is vastly different for different metrics. With regards to R2, we see that by far the most

important factor is the local market factor. Furthermore, to improve R2 the most, almost

exclusively local factors are selected. For ᾱc the result is quite different. It can be observed

that a market factor, either local or regional is most important for reducing alphas. In terms

of non-market factors, roughly the same number of factors are selected to reduce alphas

(13 local, 15 regional, and 15 rest-of-world). Also, we can see a strong divergence between

countries regarding what factors are selected. For FGRS the result looks similar to the one

for ᾱc. Again, some market factor is selected among the first factors.

As a last test to determine what factors are important, I follow the procedure by Barillas

and Shanken (2018). They argue that the best factor asset pricing model among a pool

of potential factors must be able to price all factors that are not part of the model. They

propose a Bayesian procedure that simultaneously assesses what combination of factors is

most likely to price all others. Their testing framework has been refined by Chib et al. (2020)

who show that the original version uses an improper prior.

In short, for a set of O traded potential risk factors, there are J = 2O − 1 possible factor

combinations. The model space of possible factor models is M = {M1,M2, . . . ,MJ}. Mj is a

model of Pj included factors f̃j and O−Pj excluded factors f∗j . The data-generating process

for the two sets of factors is defined as

f̃j = α̃j + ε̃j (10)

f∗j,t = B∗
j,f f̃j + ε∗j (11)

where ε̃j and ε∗j are multivariate normally distributed residual vectors. The log marginal

likelihood of Mj(j 6= J) with sample data y can be calculated in closed form as

log m̃(y|Mj) = log m̃(f̃ |Mj) + log m̃(f∗|Mj) (12)

for which the detailed solution is described in Appendix D. I calculate log m̃(y|Mj) for all

Mj . The model with the highest log marginal likelihood is the winning model as all other

terms can be summarized in a normalization constant.
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Figure 8: Factor selection following Swade et al. (2024) for local, regional, and rest-of-world
factors
The plot illustrates the factor selection using the Swade et al. (2024) algorithm on local, regional, and rest-of-world
Fama and French (2018) six-factor model returns in USD between 1992 and 2023. The algorithm augments a factor
model

∑l
k=1 fk by adding each factor from the test pool and evaluates the model’s performance in pricing GICS 10

industry portfolio returns, ri as test assets as ri = αi +
∑l

k=1 βkfk + βtestftest + εi. I require at least 120 observations
for a test portfolio to be included in the test. The factor ftest that improves performance the most is added to

∑l
k=1 fk,

and l = l + 1. Initially, l := 0 and
∑l

k=1 fk is empty. The process continues until performance converges. The plots
show results for models optimized to increase R2 (top), decrease average αi, ᾱc (middle), and decrease the Gibbons
et al. (1989) statistic, FGRS (bottom). Convergence is achieved if the performance measure does not improve by 1%
for R2 and ᾱc, or by 5% for FGRS compared to the last iteration.30



Following Chib et al. (2020) I run the scanning process for all J models using 10% of the

available data as the training sample. The results are plotted in Figure 9 where the model

with the highest log m̃(y|Mj) is illustrated for each country. Since the scanning algorithm

can pick different numbers of factors for each country, the factor contribution is shown on

a relative scale. The total number of selected factors is illustrated on the right side of the

graph. Overall, the results show that the algorithm picks more rest-of-world factors for the

established region and more regional factors for the two other regions. While a few local

factors are chosen for some countries, all models consist of more global than local factors.
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Figure 9: Bayesian factor selection for local, regional, and rest-of-world factors
The plot illustrates the factor selection using the Bayesian scanning by Chib et al. (2020) which is based on the works
of (Barillas & Shanken, 2018). The data used for the scan are local, regional, and rest-of-world Fama and French (2018)
six-factor model returns in USD between 1992 and 2023. The algorithm tests what set of factors among a pool of
potential risk factors is most likely to price all remaining factors. The plot illustrates the composition of the most likely
model for every country. It is highlighted whether a factor is local, regional, or rest-of-world and whether it is a market
factor. The total number of factors chosen is documented on the left side of the plot.
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4.4 Controlling for Local Factors

The previous selection analysis shows that the local market factor is particularly important

for improving R2 and also plays a vital role for reducing ᾱc in many countries. Given the

importance of these two performance measures and the unique nature of the local market

factor as the only factor with directional exposure, it is essential to analyze whether the

findings of previous studies—which suggest that local factor models perform best (Fama &

French, 2012; Griffin, 2002; Hollstein, 2022)—are driven by the local market factor. This

analysis is detailed in the following paragraph.

I repeat the asset pricing analysis from Section 4.2 using the same regression equation as in

(7) but now all three-factor models are equipped with the local factor model. In other words,

I swap the regional and rest-of-world market factor for the local market factor in the regional

and rest-of-world model respectively. All other specifications of the testing procedure remain

as before.

A summary of the results is documented in Table 4 that compares the results to the setting

where each model uses its own market factor. Complete country-level results are reported

in Table A.8 and results for the Sharpe ratio test are illustrated in Figure A.9. We can see

that the performance for ᾱc and R2 of the regional and rest-of-world global models improves

strongly when granted the local market factor. Still, the local model does better than the

more global models with regards to these two metrics but the difference is far smaller than

for the case when all models use their own market factor. With regards to the FGRS statistic,

the more global models still perform better than the local model even though their FGRS

slightly increases. Similarly, the evaluation based on Sh2(f) remains unchanged as more

global models outperform their local counterparts. These results also carry over to other

factor models for which the results are stored in Table A.7.

Lastly, I control whether the pricing performance of the regional and rest-of-world factors

can be explained by exposure to their regional or local counterparts. In a similar fashion to

the structural analysis, where I regress all factors on the market factor and performed the

analysis using the residuals, I now do the same but using three different settings:
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Table 4: Asset pricing test comparison for local vs. regional vs. rest-of-world factor model
with GICS portfolios using local market factor in every model
The table holds the regionally aggregated results of asset pricing regressions for local, regional, and rest-of-world factor
model returns between 1992 and 2023. The regression setup is rc,i = αc,i+

∑
βc,if

L/R/W
c +εc,i, for each country, c. rc,i

are return of industry portfolio i for GICS 10 portfolios. fL/R/W
c contains the returns of a local, regional or rest-of-world

factor model. The local model consists of sorted long-short stock portfolios in the respective country. The regional
model is a value-weighted average of local factor models in the respective region, excluding the respective country. The
rest-of-world model is a value-weighted average of local factor models of all countries outside the respective region. The
models are evaluated once using their market factor (columns 3-6) and once where the market factor is fixed to be the
market factor of the local model for the regional and rest-of-world models (columns 7-10). The regression equation is
fitted using GMM. Confidence intervals are calculated using Newey and West (1987) adjusted standard errors with 6
lags. The number of observations for the regressions is fixed for the different factor models in each country. I require
at least 120 observations for a test portfolio to be included. The ”Region” column shows over what region the results
are aggregated. The ”Models” column shows whether the aggregated results are for a local, regional, or rest-of-world
model. ”R2” hold the average goodness-of-fit measure of the regressions. ”ᾱc holds the average αc,i. ”FGRS” holds
the Gibbons et al. (1989) test statistic for the regression. ”∆Sh2” holds the results of the Barillas and Shanken (2017)
squared Sharpe ratio test. Results in this column are always evaluated against the local model. E.g., for the regional
model, the column holds the result from Sh2(fR)−Sh2(fL). ”Local”, ”Regional”, and ”Rest of World” hold the results
for the respective factor models.

Model Market Factor Local Market Factor

Region Model R2 ᾱc FGRS ∆Sh2 R2 ᾱc FGRS ∆Sh2

Local 83% 3.63% 2.28 83% 3.63% 2.28
Regional 35% 5.03% 1.52 0.15 78% 4.59% 2.18 0.11Developing
Rest of World 36% 4.84% 0.91 0.06 78% 4.33% 1.80 0.04

Local 73% 2.55% 1.77 73% 2.55% 1.77
Regional 60% 3.14% 1.76 0.10 70% 2.90% 1.80 0.11Established
Rest of World 43% 3.84% 1.57 0.07 68% 2.95% 1.60 0.01

Local 76% 3.25% 2.58 76% 3.25% 2.58
Regional 33% 3.77% 1.87 0.04 71% 3.47% 2.13 0.02Emerged
Rest of World 35% 3.85% 1.78 0.17 72% 2.94% 2.15 0.16

Local 76% 3.01% 2.15 76% 3.01% 2.15
Regional 45% 3.73% 1.75 0.08 72% 3.44% 1.99 0.07Avg.
Rest of World 39% 4.04% 1.51 0.11 71% 3.22% 1.83 0.09

fRc,τ = αc,τ + βc,τf
L
c,τ + εc,τ,R|L (13)

fWc,τ = αc,τ + βc,τf
L
c,τ + εc,τ,W |L (14)

fWc,τ = αc,τ + βc,τf
R
c,τ + εc,τ,W |R (15)
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In (13) I clean the regional factors for exposure to the respective local factors. In (14) I

clean the rest-of-world factors for exposure to the respective local factors. Lastly, in (15)

I remove exposure to regional factors from the respective rest-of-world factors. Using the

residuals from the above regressions I perform the asset pricing analysis. The results of the

asset pricing analysis remain almost unchanged and are therefore not reported. Additionally,

I compute the correlations between the cleaned residuals and the respective factors before

cleaning in Table 5. We can see that the correlations between the clean residuals and their

respective factors are very high, indicating that little of their factor exposure can be explained

by exposure to less global factors.

Table 5: Residual correlations with respective factors
The table holds correlations between factors and regression residuals of local, regional, and rest-of-world Fama and French
(2018) six-factor model returns in USD between 1992 and 2023. The regression following three regressions are executed
for each factor, τ : fR

c,τ = αc,τ + βc,τfL
c,τ + εc,τ,R|L cleans regional factor returns fR

c,τ for local factor return exposure.
The Pearson correlation between fR

c,τ and εc,τ,R|L is reported in the second column. fW
c,τ = αc,τ + βc,τfL

c,τ + εc,τ,W |L

cleans rest-of-world factor returns fW
c,τ for local factor return exposure. The Pearson correlation between fW

c,τ and
εc,τ,W |L is reported in the third column. fW

c,τ = αc,τ + βc,τfR
c,τ + εc,τ,W |R cleans rest-of-world factor returns fW

c,τ for
regional factor return exposure. The Pearson correlation between fW

c,τ and εc,τ,W |R is reported in the fourth column.

Factor cor(fR
c
, εc,R|L) cor(fW

c
, εc,W |L) cor(fW

c
, εc,W |R)

Market 67% 74% 64%

Size 96% 99% 99%

Value 87% 92% 80%

Investment 93% 97% 91%

Profitability 98% 99% 100%

Momentum 85% 91% 79%

5 Conclusion

In this study, I revisit whether assets are priced on a local, regional, or global level. Previous

research has largely converged on the superiority of local asset pricing models over their

regional and global counterparts (Fama & French, 2012, 2017; Griffin, 2002; Hollstein, 2022).

However, these studies often make simplifying assumptions, such as uniform regionality across

factors, arbitrary regional definitions, limited evaluation metrics, and isolated model testing,

neglecting the nuanced interplay of local, regional, and global components in asset pricing.
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In this paper, I address these limitations and offer fresh insights into the mechanics of factor

asset pricing. Leveraging principal component analysis, I uncover varying degrees of regional

integration, with clustering patterns consistent across factors but exhibiting diverse strengths.

Through a data-driven approach, I define three distinct clusters, primarily delineated along

continental and developmental lines, that lay the groundwork for constructing regional asset

pricing models. Also, I do not find evidence to consider Japan as an outlier warranting the

creation of its own distinct region.

Drawing from these structural insights, I conduct rigorous asset pricing tests using diverse

metrics. While local models perform best in terms of R2 and alpha reduction, more global

models outperform when considering Sharpe ratios. Notably, the dominance of local models

in certain performance measures is largely attributable to the influence of the local market

factor. When creating optimal asset pricing models from a pool of local, regional, and rest-of-

world factors, I show that the winning models consistently include elements of local, regional,

and rest-of-world factors.

Overall, my findings underscore the complexity of the asset pricing landscape, challenging

simplistic characterizations of local versus global dynamics. The answer to the asset pricing

conundrum is contingent upon the choice of performance metrics, with an ideal model likely

comprising a blend of local, regional, and global components. These insights bridge empir-

ical asset pricing literature which mostly advocates local models with recent findings in the

prediction literature, that suggests a convergence towards more globally oriented models in

predicting asset returns.
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A Additional Tables and Figures

0.14

0.01

-0.35

-0.37

-0.27

0.06

-0.15

-0.46

-0.17

0.72

0.36

-0.67

0.48

-0.25 -0.01

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

M
ar

ke
t

Si
ze

Va
lu

e

In
ve

st
m

en
t

Pr
ofi

ta
bi

lit
y

M
om

en
tu

m

Market

Size

Value

Investment

Profitability

Momentum

Figure A.1: Factor correlations
The figure shows the average Pearson correlation coefficient between factors from different themes or between factors from
a theme and market returns on the off-diagonal elements. The diagonal elements show the average Pearson correlation
coefficients for factors in the same theme. The underlying data are monthly world factors and market returns between
January 1992 and December 2023. The world factor and market returns are calculated as capitalization-weighted
averages of the country factor returns.
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Figure A.2: Horn (1965) adjustment of eigenvalues
The figure results of the eigenvalue correction for eigenvalues that were created from international factor and market
return correlation matrices using the iPCA algorithm by Tang and Allen (2021). The red line illustrates the unadjusted
eigenvalues. The blue line illustrates the average eigenvalues from randomly generated correlation matrices of randomly
generated data using 10.000 iterations. The black line illustrates the difference between the unadjusted eigenvalues and
the randomly generated eigenvalues. Following the Kaiser (1960) criterion only adjusted eigenvalues that are greater
than 1 are deemed to carry information about the correlation structure of the data.
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Figure A.3: Clustering statistics using the k-means algorithm
The figure holds three clustering measures for the first two eigenvectors, of correlation matrices from international Fama
and French (2018) six-factor model returns in USD between 1992 and 2023 that were cleaned for market exposure.
The eigenvectors are calculated jointly using the iPCA procedure by Tang and Allen (2021). ”WSS” is the average
distance between points within a cluster. ”Silhouette” is the silhouette statistic by Rousseeuw (1987) which compares
the distance of each data point within the cluster to the average distance to all other points outside the cluster. ”Gap”
is the gap statistic by Tibshirani et al. (2001) which compares the average intra-cluster variation to the intra-cluster
variation of uniformly randomly generated data. The x-axis holds the number of respective clusters for which the
measures were calculated. The clusters are generated using k-means clustering.
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Figure A.4: Cluster statistics using the PAM algorithm
The figure holds three clustering measures for the first two eigenvectors, of correlation matrices from international Fama
and French (2018) six-factor model returns in USD between 1992 and 2023. The eigenvectors are calculated jointly
using the iPCA procedure by Tang and Allen (2021). ”WSS” is the average distance between points within a cluster.
”Silhouette” is the silhouette statistic by Rousseeuw (1987) which compares the distance of each data point within
the cluster to the average distance to all other points outside the cluster. ”Gap” is the gap statistic by Tibshirani
et al. (2001) which compares the average intra-cluster variation to the intra-cluster variation of uniformly randomly
generated data. The x-axis holds the number of respective clusters for which the measures were calculated. The clusters
are generated using the PAM clustering algorithm by Kaufman and Rousseeuw (1990).
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Figure A.5: Robustness of integrated principal component analysis of global factor returns
The plot illustrates the first two eigenvectors, v1 and v2, and the percentage of explained variance of their respective
eigenvalues for international factor returns of the Fama and French (2018) six-factor model returns in USD that were
decomposed using the iPCA algorithm by Tang and Allen (2021). Each plot illustrates a modified version of this baseline
setting where one of the methodological decisions was changed. ”Local Currency” shows the results if returns are in
domestic currency instead of the USD. ”MFA” displays the results of when the MFA algorithm was employed instead
of the iPCA algorithm. The remaining plots display the results for different factor models. ”FF6m” displays the results
for the Fama and French (2018) six-factor model from which the market factor was removed. ”FF6FF ” displays results
for the Fama and French (2018) six-factor model that was created using the traditional factor formation methodology
by Fama and French (2017). ”FF6c” displays the results for the Fama and French (2018) six-factor model where the
profitability factor was calculated using cash profitability. ”FF5” shows the results for the Fama and French (2015)
five-factor model, ”HXZ4” displays the results for the Hou et al. (2015) q-factor model, and ”FF3” displays the results
for the Fama and French (1993) three-factor model. 44
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Figure A.6: Barillas and Shanken (2017) test for Sharpe ratio comparison with equally
weighted regional and rest-of-world factors
The plot illustrates the results of the Barillas and Shanken (2017) squared Sharpe ratio test for local, regional, and
rest-of-world Fama and French (2018) six-factor model returns in USD between 1992 and 2023. The local model consists
of sorted long-short stock portfolios in the respective country. The regional model is an equally weighted average of
local factor models in the respective region, excluding the respective country. The rest-of-world model is an equally
weighted average of local factor models of all countries outside the respective region. The upper plot evaluates the
regional model against the local model, i.e., Sh2(fR) − Sh2(fL). The middle plot evaluates the rest-of-world model
against the regional model, i.e., Sh2(fW ) − Sh2(fR). The lower plot evaluates the rest-of-world model against the
local model, i.e., Sh2(fW )− Sh2(fL). Bars are filled, if the difference between Sh2(f) is statistically significant at 5%
confidence.
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Figure A.7: Barillas and Shanken (2017) test for Sharpe ratio comparison with traditional
Fama and French (2017) factor formation methodology
The plot illustrates the results of the Barillas and Shanken (2017) squared Sharpe ratio test for local, regional, and
rest-of-world Fama and French (2018) six-factor model returns in USD between 1992 and 2023. The local model is
built following the methodology by Fama and French (2017) that creates 2×3 sorted long-short stock portfolios in
the respective country. The regional model is built from sorted long-short stock portfolios in the respective region,
excluding stocks from the respective country. The rest-of-world model consists of sorted long-short stock portfolios with
stocks from all countries outside the respective region. The upper plot evaluates the regional model against the local
model, i.e., Sh2(fR) − Sh2(fL). The middle plot evaluates the rest-of-world model against the regional model, i.e.,
Sh2(fW )−Sh2(fR). The lower plot evaluates the rest-of-world model against the local model, i.e., Sh2(fW )−Sh2(fL).
Bars are filled, if the difference between Sh2(f) is statistically significant at 5% confidence.
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Figure A.8: Barillas and Shanken (2017) test for Sharpe ratio comparison with sorting ag-
gregation procedure
The plot illustrates the results of the Barillas and Shanken (2017) squared Sharpe ratio test for local, regional, and
rest-of-world Fama and French (2018) six-factor model returns in USD between 1992 and 2023. The local model consists
of sorted long-short stock portfolios in the respective country. The regional model is built from sorted long-short stock
portfolios in the respective region, excluding stocks from the respective country. The rest-of-world model consists of
sorted long-short stock portfolios with stocks from all countries outside the respective region. The upper plot evaluates
the regional model against the local model, i.e., Sh2(fR)−Sh2(fL). The middle plot evaluates the rest-of-world model
against the regional model, i.e., Sh2(fW ) − Sh2(fR). The lower plot evaluates the rest-of-world model against the
local model, i.e., Sh2(fW )− Sh2(fL). Bars are filled, if the difference between Sh2(f) is statistically significant at 5%
confidence.

47



S
h
2
(f

R
)
−

S
h
2
(f

L
)

S
h
2
(f

W
)
−

S
h
2
(f

R
)

S
h
2
(f

W
)
−

S
h
2
(f

L
)

A
R

G

B
R

A

C
H

L

G
R

C

IN
D

M
EX

T
U

R

C
H

N

H
K

G

ID
N

JP
N

K
O

R

M
Y

S

N
ZL

PE
R

PH
L

SG
P

T
H

A

T
W

N

A
U

S

A
U

T

B
EL

C
A

N

C
H

E

D
EU

D
N

K

ES
P

FI
N

FR
A

G
B

R

IT
A

N
LD

N
O

R

SW
E

U
SA

Developing Emerged Established

-0.1

0.0

0.1

0.2

-0.1

0.0

0.1

0.2

-0.1

0.0

0.1

0.2

Figure A.9: Barillas and Shanken (2017) test for Sharpe ratio comparison with local market
factor in every model
The plot illustrates the results of the Barillas and Shanken (2017) squared Sharpe ratio test for local, regional, and
rest-of-world Fama and French (2018) six-factor model returns in USD between 1992 and 2023. The local model consists
of sorted long-short stock portfolios in the respective country. The regional model is a value-weighted average of local
factor models in the respective region, excluding the respective country. The rest-of-world model is a value-weighted
average of local factor models of all countries outside the respective region. The market factor is fixed to be the
market factor of the local model for all other models. The upper plot evaluates the regional model against the local
model, i.e., Sh2(fR) − Sh2(fL). The middle plot evaluates the rest-of-world model against the regional model, i.e.,
Sh2(fW )−Sh2(fR). The lower plot evaluates the rest-of-world model against the local model, i.e., Sh2(fW )−Sh2(fL).
Bars are filled, if the difference between Sh2(f) is statistically significant at 5% confidence.
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Table A.1: Summary Statistics
The table holds summary statistics for the country and region data. ”Co.” is the total number of companies in the
sample. ”Av. Co.”, ”Min. Co.”, and ”Max. Co.” are the average, minimum, and maximum number of companies per
month respectively. ”Ret.”, ”SD”, ”Skew.”, and ”Kurt.” are average cross-sectional mean, standard deviation, skewness,
and excess kurtosis of stock excess returns respectively. ”M.Cap” is the time-series average of the cross-sectional mean
market capitalization of the firms in millions of USD. ”First Obs.” is the first date for which the complete Fama and
French (2018) six-factor model is available.

Co. Av. Co. Min. Co. Max. Co. Ret. SD Skew Kurt M.Cap First Obs.

World 78,410 26,862 12,169 38,271 5.4% 61.4% 1.09 5.60 1,535 Jan 1992

Developing 8,060 2,695 250 5,527 21.9% 67.8% 1.19 4.50 621 Mai 1994

ARG 166 62 33 83 12.4% 60.4% 0.95 5.30 704 Apr 1997
BRA 397 114 10 262 16.1% 62.5% 0.70 3.40 1,658 Jan 2000
CHL 287 121 30 180 22.8% 41.1% 1.41 9.20 1,066 Mai 1994
GRC 439 183 24 331 7.2% 63.0% 1.19 5.70 366 Mai 1998
IND 5,799 1,840 73 4,266 24.3% 70.3% 1.23 4.10 471 Apr 2000
MEX 290 91 32 126 9.3% 45.7% 0.70 5.50 2,357 Mai 1993
TUR 682 286 43 528 21.7% 74.7% 1.30 5.60 443 Mai 1998

Emerged 26,705 11,447 2,769 19,716 5.4% 55.0% 1.27 6.70 950 Jan 1992

CHN 5,309 1,740 1 4,999 6.6% 50.1% 1.03 4.60 1,032 Sep 1998
HKG 3,020 1,207 153 2,404 4.6% 64.0% 1.54 8.10 1,222 Jan 1992
IDN 1,035 355 93 832 7.2% 71.1% 1.55 8.60 529 Mai 1993
JPN 6,060 3,442 1,705 3,992 3.6% 47.0% 1.24 7.10 1,238 Jan 1992
KOR 3,788 1,395 125 2,561 1.8% 66.6% 1.20 5.60 496 Feb 1995
MYS 1,495 775 158 999 10.0% 57.5% 1.65 9.80 361 Jan 1992
NZL 311 109 38 136 5.7% 49.7% 0.81 4.40 418 Aug 1993
PER 189 57 5 112 22.4% 47.8% 1.67 12.20 619 Jan 2007
PHL 348 181 18 261 7.8% 61.5% 1.95 11.20 568 Feb 1997
SGP 1,166 498 93 720 11.0% 58.1% 1.41 7.70 673 Jan 1992
THA 1,201 507 210 864 5.7% 53.0% 1.39 8.10 407 Mai 1993
TWN 2,783 1,182 155 2,126 5.7% 49.2% 1.12 5.30 610 Mai 1997

Established 43,645 12,719 9,130 14,613 2.3% 64.2% 0.96 5.20 2,424 Jan 1992

AUS 3,796 1,230 277 1,819 11.1% 74.4% 1.21 5.10 639 Jan 1992
AUT 209 74 50 93 -0.2% 50.6% 0.98 6.30 1,180 Jan 1992
BEL 337 131 59 161 6.1% 46.4% 0.91 7.10 1,895 Jan 1992
CAN 3,159 1,076 484 1,630 19.6% 69.3% 1.11 5.50 1,255 Jan 1992
CHE 512 216 62 268 5.2% 41.2% 0.62 4.90 3,882 Jan 1992
DEU 1,932 708 214 1,018 -1.9% 66.0% 1.14 6.10 1,971 Jan 1992
DNK 418 151 33 216 -0.7% 50.1% 0.93 6.20 1,363 Jan 1992
ESP 505 154 94 245 1.4% 39.0% 1.01 6.90 3,412 Jan 1992
FIN 315 119 24 181 4.9% 43.8% 0.85 4.50 1,361 Jan 1992
FRA 2,034 663 277 848 6.2% 56.0% 1.07 5.60 2,442 Jan 1992
GBR 5,879 1,668 925 2,243 -5.4% 57.7% 0.90 5.50 1,519 Jan 1992
ITA 892 272 181 417 -1.9% 42.8% 0.94 5.00 2,013 Jan 1992
NLD 392 146 101 220 0.9% 42.4% 0.71 5.50 4,067 Jan 1992

49



Table A.1: (continued)

Co. Av. Co. Min. Co. Max. Co. Ret. SD Skew Kurt M.Cap First Obs.

NOR 740 187 53 335 4.3% 59.6% 0.82 3.90 891 Jan 1992
SWE 1,639 400 70 998 -5.9% 66.5% 1.00 4.00 1,039 Jan 1992
USA 20,886 5,525 4,184 7,999 0.9% 67.6% 0.90 5.00 3,911 Jan 1992

Table A.2: Number of observations per factor
The table holds the number of complete time series observations for monthly international returns in USD of the Fama
and French (2018) six-factor model between 1992 and 2023 in 35 countries. An observation is deemed to be complete
if no country factor return is missing.

Factor Obs.

Market 391

Size 184

Value 200

Investment 203

Profitability 179

Momentum 206
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Table A.3: Asset pricing tests local vs. regional vs. rest-of-world factor model with size-value
sorted portfolios
The table holds the results of asset pricing regressions for local, regional, and rest-of-world Fama and French (2018)
six-factor model returns in USD between 1992 and 2023. The regression setup is rc,i = αc,i +

∑
βc,if

L/R/W
c + εc,i, for

each country, c. rc,i are returns of portfolio i 3×3 double sorted portfolios based on market capitalization and book-to-
market ratios. f

L/R/W
c contains the returns of a local, regional or rest-of-world factor model. The local model consists

of sorted long-short stock portfolios in the respective country. The regional model is a value-weighted average of local
factor models in the respective region, excluding the respective country. The rest-of-world model is a value-weighted
average of local factor models of all countries outside the respective region. The regression equation is fitted with GMM.
Confidence intervals are calculated using Newey and West (1987) adjusted standard errors using 6 lags. The number of
observations for the regressions is fixed for the different factor models in each country. I require at least 120 observations
for a test portfolio to be included. The ”IDs” column holds the number of portfolios for which the asset pricing test is
conducted. ”R2” hold the average goodness-of-fit measure of the regressions. ”ᾱc holds the average αc,i. ”FGRS” holds
the Gibbons et al. (1989) test statistic for the regression. ”Local”, ”Regional”, and ”Rest of World” hold the results for
the respective factor models. Statistical significance at confidence levels of 10%, 5%, and 1% are indicated with *, **,
and *** respectively.

Local Regional Rest of world

Country Region IDs R2 ᾱc FGRS R2 ᾱc FGRS R2 ᾱc FGRS

AUS 9 93% 1.38%* 1.94** 62% 3.54%** 2.00** 52% 1.46%** 1.93**
AUT 4 80% 2.34% 5.41*** 49% 7.52%*** 16.33*** 37% 5.56%* 7.72***
BEL 9 77% 1.93% 4.35*** 56% 3.21%* 4.16*** 35% 3.19% 2.46***
CAN 9 89% 1.34%** 2.17** 67% 2.02%*** 2.55*** 45% 2.89% 1.45
CHE 9 82% 1.45% 0.98 60% 1.65% 1.57 41% 5.48%** 1.74*
DEU 9 88% 2.03% 2.15** 66% 3.32%** 1.56 40% 2.26% 1.85*
DNK 6 78% 1.78% 1.27 53% 2.89% 1.99* 34% 4.66% 3.80***
ESP 9 84% 1.48%* 1.87* 51% 3.01%* 1.87* 32% 2.49%* 2.26**
FIN 8 75% 1.71% 4.11*** 56% 3.11%** 5.49*** 36% 5.76% 3.74***
FRA 9 90% 1.46%*** 2.73*** 68% 1.92%*** 2.71*** 41% 2.86%*** 3.49***
GBR 9 92% 1.52%*** 2.65*** 68% 2.57% 1.02 44% 1.47% 1.13
ITA 9 89% 1.41% 1.16 50% 3.78% 0.91 31% 2.28% 1.66*
NLD 9 81% 2.32%*** 2.71*** 66% 2.66%*** 2.66*** 40% 5.26%*** 6.13***
NOR 9 84% 1.92% 2.92*** 61% 4.63% 2.39** 41% 3.97% 1.95**
SWE 9 88% 1.88% 1.02 64% 1.94% 1.41 40% 7.58% 1.68*
USA 9 95% 0.82%*** 3.09*** 68% 6.70%*** 4.75*** 43% 7.21%*** 3.63***
Avg.

E
st
ab

lis
he

d

8 85% 1.67% 2.53 60% 3.40% 3.33 40% 4.02% 2.91
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Table A.3: (continued)

Local Regional Rest of world

Country Region IDs R2 ᾱc FGRS R2 ᾱc FGRS R2 ᾱc FGRS

CHN 9 95% 2.24%*** 3.55*** 20% 4.79%*** 2.63*** 11% 5.16%*** 3.85***
HKG 9 90% 1.16%*** 2.78*** 38% 3.26%** 1.89* 34% 3.02%*** 3.22***
IDN 9 86% 4.16%** 6.11*** 29% 4.21% 2.23** 31% 7.17% 2.24**
JPN 9 95% 1.00%*** 2.17** 15% 2.66%*** 3.18*** 22% 3.16%*** 3.51***
KOR 9 89% 2.81%*** 2.50*** 45% 5.39%** 2.80*** 42% 4.95%** 1.70*
MYS 9 92% 1.82%** 2.08** 18% 2.86%* 1.75* 19% 3.56%** 1.90*
NZL 3 87% 3.00%*** 7.00*** 40% 2.57% 0.36 51% 2.63% 0.41
PER 2 86% 1.76% 1.87 33% 5.21% 2.22 27% 9.05% 2.09
PHL 8 83% 2.79%** 4.97*** 33% 4.20%** 4.02*** 30% 3.98% 2.42**
SGP 9 90% 1.92%* 2.35** 42% 2.37% 1.67* 42% 2.67%** 2.20**
THA 9 89% 2.58%** 3.66*** 31% 2.71% 1.45 33% 4.37% 2.29**
TWN 9 90% 1.01% 1.18 32% 2.91% 2.55*** 34% 1.88% 2.27**
Avg.

E
m
er
ge
d

8 89% 2.19% 3.35 31% 3.59% 2.23 31% 4.30% 2.34

ARG 3 88% 3.69% 1.63 18% 5.60% 1.76 17% 5.07% 0.97
BRA 9 92% 4.14%** 2.91*** 45% 5.84% 2.03** 48% 2.51% 1.06
CHL 9 88% 1.91%*** 8.91*** 40% 2.73%* 2.65*** 37% 3.12%** 3.29***
GRC 3 89% 3.05% 1.56 29% 5.59% 0.58 31% 3.04% 1.95
IND 9 94% 1.52% 2.39** 42% 7.38% 1.68* 37% 8.48% 1.54
MEX 8 85% 2.17%** 2.67*** 44% 3.08% 1.23 49% 3.04% 2.25**
TUR 9 92% 4.04%*** 7.38*** 31% 9.55%*** 3.27*** 28% 8.52%** 2.94***
Avg.

D
ev
el
op

in
g

7 90% 2.93% 3.92 35% 5.68% 1.89 35% 4.82% 2

Avg. 8 88% 2.10% 3.09 45% 3.93% 2.67 36% 4.28% 2.53
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Table A.4: Asset pricing tests local vs. regional vs. rest-of-world factor model with equally
weighted regional and rest-of-world factors
The table holds the results of asset pricing regressions for local, regional, and rest-of-world Fama and French (2018)
six-factor model returns between 1992 and 2023. The regression setup is rc,i = αc,i +

∑
βc,if

L/R/W
c + εc,i, for each

country, c. rc,i are return of industry portfolio i for GICS 10 portfolios. f
L/R/W
c contains the returns of a local,

regional or rest-of-world factor model. The local model consists of sorted long-short stock portfolios in the respective
country. The regional model is an equally weighted average of local factor models in the respective region, excluding
the respective country. The rest-of-world model is an equally weighted average of local factor models of all countries
outside the respective region. The regression equation is fitted with GMM. Confidence intervals are calculated using
Newey and West (1987) adjusted standard errors using 6 lags. The number of observations for the regressions is fixed
for the different factor models in each country. I require at least 120 observations for a test portfolio to be included.
The ”IDs” column holds the number of portfolios for which the asset pricing test is conducted. ”R2” hold the average
goodness-of-fit measure of the regressions. ”ᾱc holds the average αc,i. ”FGRS” holds the Gibbons et al. (1989) test
statistic for the regression. ”Local”, ”Regional”, and ”Rest of World” hold the results for the respective factor models.
Statistical significance at confidence levels of 10%, 5%, and 1% are indicated with *, **, and *** respectively.

Local Regional Rest of world

Country Region IDs R2 ᾱc FGRS R2 ᾱc FGRS R2 ᾱc FGRS

AUS 10 78% 1.47% 0.58 60% 3.05% 0.83 59% 4.31% 1.63*
AUT 3 77% 1.15% 1.15 64% 6.93%* 3.75** 48% 5.66% 1.03
BEL 7 70% 1.39% 0.59 63% 3.03% 1.03 49% 3.95% 0.79
CAN 10 65% 2.35% 1.43 54% 4.26%*** 3.39*** 46% 4.42% 2.02**
CHE 7 76% 2.08% 1.29 68% 2.81% 1.20 51% 3.17% 1.21
DEU 9 73% 4.18%*** 3.45*** 69% 5.66%*** 4.23*** 51% 3.10% 0.42
DNK 5 69% 2.48% 0.53 59% 4.20%* 2.93** 43% 4.94%** 2.53**
ESP 6 70% 2.58% 1.43 62% 3.23% 2.18** 45% 5.21% 1.22
FIN 5 68% 4.27%*** 4.41*** 64% 2.46% 1.18 48% 4.30% 0.72
FRA 10 76% 2.47% 1.27 75% 5.06%*** 4.32*** 53% 3.58%* 2.56***
GBR 10 74% 2.64%*** 2.86*** 66% 4.61%*** 3.21*** 50% 4.30% 1.45
ITA 8 74% 2.11% 0.90 66% 3.65%** 2.88*** 47% 4.67%** 3.08***
NLD 5 76% 3.23%* 2.05* 68% 5.27%*** 4.48*** 48% 4.27% 1.54
NOR 8 72% 4.52%*** 3.57*** 62% 4.89% 2.36** 52% 5.96% 1.47
SWE 8 72% 1.80% 1.16 66% 4.43% 2.04** 49% 2.92% 3.13***
USA 10 76% 2.06%* 1.71* 60% 5.41%*** 4.97*** 46% 4.38%*** 2.21**
Avg.

E
st
ab

lis
he

d

8 73% 2.55% 1.77 64% 4.31% 2.81 49% 4.32% 1.69
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Table A.4: (continued)

Local Regional Rest of world

Country Region IDs R2 ᾱc FGRS R2 ᾱc FGRS R2 ᾱc FGRS

CHN 9 86% 3.12%*** 3.47*** 19% 3.63%* 2.30** 13% 5.76% 1.86*
HKG 10 73% 3.81%*** 1.90** 51% 3.62% 1.76* 43% 3.29%* 1.57
IDN 8 73% 5.32%** 2.31** 38% 5.56%* 1.67 34% 6.47% 0.84
JPN 10 68% 3.15%*** 2.74*** 23% 3.05%** 2.11** 28% 4.17%*** 1.84*
KOR 10 73% 3.17%** 2.82*** 48% 5.43% 1.84* 45% 5.94%** 2.58***
MYS 10 79% 1.95% 1.18 45% 2.58%* 1.51 43% 4.13%*** 2.38**
NZL 6 76% 3.36%** 3.88*** 44% 4.41%*** 4.54*** 48% 6.22%*** 5.89***
PER 3 82% 3.61%* 2.35* 42% 2.88% 0.43 31% 6.05% 0.99
PHL 8 66% 1.74% 0.40 37% 3.46% 0.85 29% 4.93% 0.57
SGP 8 79% 3.51%*** 4.30*** 64% 6.96%*** 4.82*** 58% 5.28%*** 3.56***
THA 8 77% 4.99%*** 5.11*** 47% 5.90%*** 3.96*** 40% 7.32%*** 4.72***
TWN 7 80% 1.25% 0.54 39% 2.03% 0.65 36% 2.42% 0.72
Avg.

E
m
er
ge
d

8 76% 3.25% 2.58 41% 4.13% 2.2 37% 5.16% 2.29

ARG 3 81% 7.18% 2.24* 16% 2.85% 0.07 14% 3.94% 0.14
BRA 6 84% 2.67% 1.12 52% 3.41% 1.23 51% 5.49% 0.80
CHL 6 84% 3.16%*** 4.59*** 43% 3.86%** 3.09*** 44% 5.46%* 3.54***
GRC 6 82% 2.97% 1.12 30% 8.42%* 2.37** 41% 7.67%*** 2.75**
IND 10 81% 3.19%* 1.66* 34% 7.90%** 1.54 40% 5.45% 1.13
MEX 5 82% 2.69% 2.32** 47% 2.33% 0.70 56% 2.66% 0.56
TUR 6 83% 3.58%** 2.88*** 33% 2.76% 0.70 30% 9.16% 0.89
Avg.

D
ev
el
op

in
g

6 83% 3.63% 2.28 36% 4.50% 1.39 39% 5.69% 1.4

Avg. 7 76% 3.01% 2.15 51% 4.29% 2.32 43% 4.88% 1.84
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Table A.5: Asset pricing tests local vs. regional vs. rest-of-world factor model with tradi-
tional Fama and French (2017) factor formation methodology
The table holds the results of asset pricing regressions for local, regional, and rest-of-world Fama and French (2018)
six-factor model returns between 1992 and 2023. The regression setup is rc,i = αc,i +

∑
βc,if

L/R/W
c + εc,i, for each

country, c. rc,i are return of industry portfolio i for GICS 10 portfolios. f
L/R/W
c contains the returns of a local,

regional or rest-of-world factor model. The local model is built following the methodology by Fama and French (2017)
that creates 2×3 sorted long-short stock portfolios in the respective country. The regional model is built from sorted
long-short stock portfolios in the respective region, excluding stocks from the respective country. The rest-of-world
model consists of sorted long-short stock portfolios with stocks from all countries outside the respective region. The
regression equation is fitted with GMM. Confidence intervals are calculated using Newey and West (1987) adjusted
standard errors using 6 lags. The number of observations for the regressions is fixed for the different factor models
in each country. I require at least 120 observations for a test portfolio to be included. The ”IDs” column holds the
number of portfolios for which the asset pricing test is conducted. ”R2” hold the average goodness-of-fit measure of
the regressions. ”ᾱc holds the average αc,i. ”FGRS” holds the Gibbons et al. (1989) test statistic for the regression.
”Local”, ”Regional”, and ”Rest of World” hold the results for the respective factor models. Statistical significance at
confidence levels of 10%, 5%, and 1% are indicated with *, **, and *** respectively.

Local Regional Rest of world

Country Region IDs R2 ᾱc FGRS R2 ᾱc FGRS R2 ᾱc FGRS

AUS 10 76% 4.86%*** 4.60*** 57% 2.78%* 1.81* 50% 5.66%*** 2.39**
BEL 7 64% 2.82% 0.79 57% 4.76% 1.75 43% 6.26% 1.21
CAN 10 62% 2.73% 1.32 59% 2.62% 1.53 40% 4.36%*** 1.61
CHE 7 75% 1.87% 1.20 64% 3.13% 1.06 44% 5.66% 0.77
DEU 9 66% 3.13% 1.16 61% 4.17% 1.04 39% 3.18% 1.17
FRA 10 75% 2.38% 2.56*** 67% 3.97% 3.22*** 44% 6.91% 2.35**
GBR 10 67% 2.00% 0.71 59% 3.79% 1.27 40% 2.90% 1.19
ITA 8 70% 3.41% 1.35 56% 5.09%* 1.58 38% 3.04% 1.05
NLD 5 78% 2.97% 0.88 71% 7.12%** 2.47** 54% 4.64%** 2.66**
NOR 8 64% 4.93%* 2.11** 53% 12.68%*** 4.90*** 32% 9.71%*** 4.84***
SWE 8 71% 3.94% 1.62 65% 5.62%* 2.35** 47% 13.70%** 2.97***
USA 10 69% 1.65% 1.28 56% 4.47%*** 2.20** 38% 7.69%*** 2.23**
Avg.

E
st
ab

lis
he

d

8 70% 3.06% 1.63 60% 5.02% 2.1 42% 6.14% 2.04

CHN 9 86% 2.41%* 1.81* 20% 3.24% 1.26 13% 7.79% 0.90
HKG 10 70% 3.08%*** 2.54*** 51% 7.52%*** 3.22*** 39% 2.80% 1.42
IDN 8 65% 8.03%*** 3.06*** 21% 5.35% 1.38 25% 9.69% 1.35
JPN 10 64% 1.26% 0.61 17% 2.45% 0.95 27% 1.79% 0.75
KOR 10 72% 2.77% 1.18 42% 8.17% 1.21 47% 3.98% 1.72*
MYS 10 75% 3.87%*** 3.23*** 34% 2.79%** 1.55 37% 3.10% 1.52
SGP 8 76% 6.16%*** 12.15*** 48% 4.57%*** 2.93*** 53% 5.18%*** 3.59***
THA 8 75% 5.34%*** 4.22*** 32% 8.40%*** 3.33*** 36% 5.68%*** 4.01***
TWN 7 77% 2.60%*** 2.20** 43% 7.38%*** 2.48** 42% 5.13%* 1.39
Avg.

E
m
er
ge
d

9 73% 3.95% 3.44 34% 5.54% 2.04 35% 5.02% 1.85

Avg. 9 71% 3.44% 2.41 49% 5.24% 2.07 39% 5.66% 1.96
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Table A.6: Asset pricing tests local vs. regional vs. rest-of-world factor model with sorting
aggregation procedure
The table holds the results of asset pricing regressions for local, regional, and rest-of-world Fama and French (2018)
six-factor model returns between 1992 and 2023. The regression setup is rc,i = αc,i +

∑
βc,if

L/R/W
c + εc,i, for each

country, c. rc,i are return of industry portfolio i for GICS 10 portfolios. fL/R/W
c contains the returns of a local, regional

or rest-of-world factor model. The local model consists of sorted long-short stock portfolios in the respective country.
The regional model is built from sorted long-short stock portfolios in the respective region, excluding stocks from the
respective country. The rest-of-world model consists of sorted long-short stock portfolios with stocks from all countries
outside the respective region. The regression equation is fitted with GMM. Confidence intervals are calculated using
Newey and West (1987) adjusted standard errors using 6 lags. The number of observations for the regressions is fixed
for the different factor models in each country. I require at least 120 observations for a test portfolio to be included.
The ”IDs” column holds the number of portfolios for which the asset pricing test is conducted. ”R2” hold the average
goodness-of-fit measure of the regressions. ”ᾱc holds the average αc,i. ”FGRS” holds the Gibbons et al. (1989) test
statistic for the regression. ”Local”, ”Regional”, and ”Rest of World” hold the results for the respective factor models.
Statistical significance at confidence levels of 10%, 5%, and 1% are indicated with *, **, and *** respectively.

Local Regional Rest of world

Country Region IDs R2 ᾱc FGRS R2 ᾱc FGRS R2 ᾱc FGRS

AUS 10 78% 1.47% 0.58 59% 1.40% 0.55 53% 1.57% 0.53
AUT 3 77% 1.15% 1.15 54% 4.93% 1.83 40% 2.97% 0.96
BEL 7 70% 1.39% 0.59 57% 1.77% 0.31 41% 2.82% 0.66
CAN 10 65% 2.35% 1.43 58% 2.42% 1.41 39% 4.82% 1.05
CHE 7 76% 2.08% 1.29 64% 2.44% 0.56 48% 6.08% 1.92*
DEU 9 73% 4.18%*** 3.45*** 64% 3.94% 2.67*** 45% 2.93% 0.88
DNK 5 69% 2.48% 0.53 54% 3.66% 1.31 39% 8.08%** 2.93**
ESP 6 70% 2.58% 1.43 54% 1.26% 0.48 40% 2.62% 1.42
FIN 5 68% 4.27%*** 4.41*** 58% 3.05%* 2.41** 42% 4.19% 1.17
FRA 10 76% 2.47% 1.27 70% 3.24% 3.30*** 46% 3.64% 0.78
GBR 10 74% 2.64%*** 2.86*** 64% 2.45% 1.25 45% 1.86% 0.95
ITA 8 74% 2.11% 0.90 59% 2.42% 1.55 41% 3.92% 2.08**
NLD 5 76% 3.23%* 2.05* 64% 2.61%* 2.47** 43% 4.23% 1.45
NOR 8 72% 4.52%*** 3.57*** 59% 4.35% 2.23** 45% 2.61% 0.62
SWE 8 72% 1.80% 1.16 63% 2.50% 0.71 43% 5.75% 2.02**
USA 10 76% 2.06%* 1.71* 62% 4.56%*** 5.03*** 41% 5.64%*** 2.37**
Avg.

E
st
ab

lis
he

d

8 73% 2.55% 1.77 60% 2.94% 1.76 43% 3.98% 1.36
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Table A.6: (continued)

Local Regional Rest of world

Country Region IDs R2 ᾱc FGRS R2 ᾱc FGRS R2 ᾱc FGRS

CHN 9 86% 3.12%*** 3.47*** 24% 3.42%** 2.27** 12% 5.77% 1.81*
HKG 10 73% 3.81%*** 1.90** 51% 2.68% 1.64* 40% 3.00%* 1.70*
IDN 8 73% 5.32%** 2.31** 27% 6.92% 1.85* 30% 5.78% 1.97*
JPN 10 68% 3.15%*** 2.74*** 21% 2.74% 1.24 28% 1.48% 0.69
KOR 10 73% 3.17%** 2.82*** 42% 3.58% 0.96 44% 3.52% 1.43
MYS 10 79% 1.95% 1.18 34% 2.51% 1.16 37% 2.37% 1.32
NZL 6 76% 3.36%** 3.88*** 39% 5.56%** 4.01*** 49% 2.69% 2.02*
PER 3 82% 3.61%* 2.35* 30% 7.61% 1.49 31% 10.50% 1.44
PHL 8 66% 1.74% 0.40 26% 4.41% 0.97 27% 2.42% 0.57
SGP 8 79% 3.51%*** 4.30*** 49% 3.33%*** 3.29*** 53% 3.36%*** 4.10***
THA 8 77% 4.99%*** 5.11*** 36% 7.81%*** 3.75*** 37% 4.91%*** 3.91***
TWN 7 80% 1.25% 0.54 29% 3.45% 0.96 32% 2.93% 0.96
Avg.

E
m
er
ge
d

8 76% 3.25% 2.58 34% 4.50% 1.97 35% 4.06% 1.83

ARG 3 81% 7.18% 2.24* 17% 7.26% 0.73 12% 3.98% 0.20
BRA 6 84% 2.67% 1.12 48% 7.09% 1.45 46% 3.49% 0.70
CHL 6 84% 3.16%*** 4.59*** 42% 3.49%** 2.85** 37% 2.40% 2.45**
GRC 6 82% 2.97% 1.12 30% 7.46%** 2.58** 38% 6.06%* 1.81*
IND 10 81% 3.19%* 1.66* 35% 8.75%** 1.87** 34% 8.45% 1.35
MEX 5 82% 2.69% 2.32** 45% 2.03% 0.66 52% 1.78% 0.20
TUR 6 83% 3.58%** 2.88*** 30% 3.09% 0.69 30% 11.11% 0.90
Avg.

D
ev
el
op

in
g

6 83% 3.63% 2.28 35% 5.60% 1.55 36% 5.33% 1.09

Avg. 7 76% 3.01% 2.15 46% 4.00% 1.79 39% 4.28% 1.47
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Table A.7: Asset pricing tests model comparison for local vs. regional vs. rest-of-world factor
model
The table holds the regionally aggregated results of asset pricing regressions for local, regional, and rest-of-world factor
model returns in USD between 1992 and 2023. The regression setup is rc,i = αc,i +

∑
βc,if

L/R/W
c + εc,i, for each

country, c. rc,i are return of industry portfolio i for GICS 10 portfolios. f
L/R/W
c contains the returns of a local,

regional or rest-of-world factor model. The local model consists of sorted long-short stock portfolios in the respective
country. The regional model is a value-weighted average of local factor models in the respective region, excluding the
respective country. The rest-of-world model is a value-weighted average of local factor models of all countries outside
the respective region. The models are evaluated once using their own market factor (columns 3-6) and once where the
market factor is fixed to be the market factor of the local model for the regional and rest-of-world models (columns
7-10). The regression equation is fitted using GMM. Confidence intervals are calculated using Newey and West (1987)
adjusted standard errors with 6 lags. The number of observations for the regressions is fixed for the different factor
models in each country. I require at least 120 observations for a test portfolio to be included. The ”Region” column
shows over what region the results are aggregated. The ”Models” column shows whether the aggregated results are for
a local, regional, or rest-of-world model. ”R2” hold the average goodness-of-fit measure of the regressions. ”ᾱc holds
the average αc,i. ”FGRS” holds the Gibbons et al. (1989) test statistic for the regression. ”∆Sh2” holds the results
of the Barillas and Shanken (2017) squared Sharpe ratio test. Results in this column are always evaluated against the
local model. E.g., for the regional model, the column holds the result from Sh2(fR) − Sh2(fL). ”Local”, ”Regional”,
and ”Rest of World” hold the results for the respective factor models. The factor models are ”FF6c”, the Fama and
French (2018) six-factor model with a cash profitability factor, ”FF5”, the Fama and French (2015) five-factor model,
”HXZ4”, the Hou et al. (2015) q-factor model, and ”FF3”, the Fama and French (1993) three-factor model.

Model Market Factor Local Market Factor

Region Model R2 ᾱc FGRS ∆Sh2 R2 ᾱc FGRS ∆Sh2

FF6c

Local 90% 2.93% 3.92 83% 3.66% 2.37
Regional 35% 5.68% 1.89 0.19 78% 4.05% 1.87 0.07Developing
Rest of World 35% 4.82% 2.00 0.24 78% 4.34% 1.91 0.27

Local 85% 1.67% 2.53 73% 2.54% 1.75
Regional 60% 3.40% 3.33 0.22 70% 2.95% 1.75 0.24Established
Rest of World 40% 4.02% 2.91 0.27 68% 3.14% 1.63 0.16

Local 89% 2.19% 3.35 76% 3.06% 2.46
Regional 31% 3.59% 2.23 0.13 71% 3.53% 1.97 0.16Emerged
Rest of World 31% 4.30% 2.34 0.38 72% 3.04% 1.95 0.31

Local 88% 2.10% 3.09 76% 2.95% 2.12
Regional 45% 3.93% 2.67 0.17 72% 3.37% 1.85 0.17Avg.
Rest of World 36% 4.28% 2.53 0.32 71% 3.35% 1.80 0.25

FF5

Local 82% 3.77% 2.34 82% 3.77% 2.34
Regional 34% 5.87% 1.77 0.08 78% 4.75% 2.33 0.06Developing
Rest of World 35% 4.85% 0.98 0.07 78% 4.22% 1.84 0.05
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Table A.7: (continued)

Model Market Factor Local Market Factor

Region Model R2 ᾱc FGRS ∆Sh2 R2 ᾱc FGRS ∆Sh2

Local 72% 2.37% 1.48 72% 2.37% 1.48
Regional 59% 2.80% 1.38 0.05 70% 2.72% 1.50 0.05Established
Rest of World 42% 3.04% 1.50 0.09 67% 2.60% 1.63 0.04

Local 76% 3.22% 2.86 76% 3.22% 2.86
Regional 32% 3.89% 2.20 0.07 71% 3.50% 2.52 0.05Emerged
Rest of World 35% 3.75% 1.75 0.09 71% 2.88% 2.16 0.08

Local 75% 2.94% 2.13 75% 2.94% 2.13
Regional 45% 3.79% 1.74 0.07 72% 3.39% 2.02 0.05Avg.
Rest of World 38% 3.65% 1.48 0.09 71% 3.02% 1.85 0.06

HXZ4

Local 81% 3.41% 1.58 81% 3.41% 1.58
Regional 37% 5.95% 1.54 0.08 78% 4.86% 2.38 0.03Developing
Rest of World 36% 4.63% 1.09 0.11 78% 4.69% 1.94 0.06

Local 73% 2.35% 1.52 73% 2.35% 1.52
Regional 61% 3.84% 1.88 0.09 71% 3.13% 1.81 0.08Established
Rest of World 44% 4.22% 1.51 0.07 69% 2.76% 1.39 0.04

Local 76% 2.85% 2.23 76% 2.85% 2.23
Regional 36% 5.18% 1.65 0.05 72% 3.02% 1.78 0.03Emerged
Rest of World 38% 4.94% 1.92 0.10 72% 3.02% 1.97 0.09

Local 75% 2.73% 1.77 75% 2.73% 1.77
Regional 48% 4.72% 1.74 0.07 73% 3.44% 1.92 0.05Avg.
Rest of World 41% 4.55% 1.57 0.09 72% 3.24% 1.70 0.07

FF3

Local 82% 3.91% 2.50 82% 3.91% 2.50
Regional 33% 4.75% 1.42 0.00 77% 3.98% 2.24 0.00Developing
Rest of World 35% 4.11% 1.33 -0.01 77% 3.80% 1.86 -0.01

Local 70% 2.27% 1.47 70% 2.27% 1.47
Regional 57% 2.93% 1.49 0.03 68% 2.56% 1.40 0.03Established
Rest of World 42% 3.49% 1.76 -0.01 67% 2.75% 1.84 -0.01

Local 74% 3.13% 2.84 74% 3.13% 2.84
Regional 31% 4.07% 2.25 0.00 71% 3.29% 2.50 -0.01Emerged
Rest of World 34% 3.69% 1.92 0.03 71% 2.93% 2.26 0.04

Local 74% 2.89% 2.14 74% 2.89% 2.14
Regional 43% 3.68% 1.74 0.01 71% 3.10% 1.94 0.01Avg.
Rest of World 38% 3.69% 1.73 0.01 70% 3.02% 1.99 0.01
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Table A.8: Asset pricing tests local vs. regional vs. rest-of-world factor model with local
market factor in every model
The table holds the results of asset pricing regressions for local, regional, and rest-of-world Fama and French (2018)
six-factor model returns between 1992 and 2023. The regression setup is rc,i = αc,i +

∑
βc,if

L/R/W
c + εc,i, for each

country, c. rc,i are return of industry portfolio i for GICS 10 portfolios. f
L/R/W
c contains the returns of a local,

regional or rest-of-world factor model. The local model consists of sorted long-short stock portfolios in the respective
country. The regional model is a value-weighted average of local factor models in the respective region, excluding the
respective country. The rest-of-world model is a value-weighted average of local factor models of all countries outside
the respective region. The market factor is fixed to be the market factor of the local model for all other models. The
regression equation is fitted with GMM. Confidence intervals are calculated using Newey and West (1987) adjusted
standard errors using 6 lags. The number of observations for the regressions is fixed for the different factor models
in each country. I require at least 120 observations for a test portfolio to be included. The ”IDs” column holds the
number of portfolios for which the asset pricing test is conducted. ”R2” hold the average goodness-of-fit measure of
the regressions. ”ᾱc holds the average αc,i. ”FGRS” holds the Gibbons et al. (1989) test statistic for the regression.
”Local”, ”Regional”, and ”Rest of World” hold the results for the respective factor models. Statistical significance at
confidence levels of 10%, 5%, and 1% are indicated with *, **, and *** respectively.

Local Regional Rest of world

Country Region IDs R2 ᾱc FGRS R2 ᾱc FGRS R2 ᾱc FGRS

AUS 10 78% 1.47% 0.58 78% 1.66% 0.88 77% 2.22% 1.16
AUT 3 77% 1.15% 1.15 71% 4.16% 1.97 71% 2.14% 0.90
BEL 7 70% 1.39% 0.59 66% 2.11% 0.67 64% 1.70% 0.57
CAN 10 65% 2.35% 1.43 66% 2.63% 1.54 59% 3.68%* 1.57
CHE 7 76% 2.08% 1.29 75% 2.09% 0.97 72% 2.76% 1.22
DEU 9 73% 4.18%*** 3.45*** 71% 2.82% 1.40 69% 2.95% 1.18
DNK 5 69% 2.48% 0.53 65% 2.62% 0.57 63% 4.52% 1.40
ESP 6 70% 2.58% 1.43 67% 1.64% 1.15 65% 2.71%** 2.71**
FIN 5 68% 4.27%*** 4.41*** 60% 4.66%** 3.12*** 59% 2.53% 0.48
FRA 10 76% 2.47% 1.27 78% 3.08% 2.82*** 74% 2.70% 1.58
GBR 10 74% 2.64%*** 2.86*** 73% 2.04% 1.12 69% 2.94%* 1.74*
ITA 8 74% 2.11% 0.90 72% 3.27% 1.92* 70% 4.13% 2.27**
NLD 5 76% 3.23%* 2.05* 73% 3.35%*** 3.29*** 70% 3.60% 1.76
NOR 8 72% 4.52%*** 3.57*** 69% 3.83%** 2.82*** 67% 3.70%** 3.15***
SWE 8 72% 1.80% 1.16 72% 2.33% 0.56 69% 2.21% 1.56
USA 10 76% 2.06%* 1.71* 71% 4.11%*** 4.04*** 66% 2.76%** 2.42***
Avg.

E
st
ab

lis
he

d

8 73% 2.55% 1.77 70% 2.90% 1.8 68% 2.95% 1.6
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Table A.8: (continued)

Local Regional Rest of world

Country Region IDs R2 ᾱc FGRS R2 ᾱc FGRS R2 ᾱc FGRS

CHN 9 86% 3.12%*** 3.47*** 82% 3.69%** 2.64*** 81% 2.38%** 2.64***
HKG 10 73% 3.81%*** 1.90** 68% 2.69% 1.61 69% 2.45% 1.46
IDN 8 73% 5.32%** 2.31** 69% 4.49%* 1.83* 69% 3.87% 1.56
JPN 10 68% 3.15%*** 2.74*** 62% 2.18% 0.82 65% 1.78% 0.95
KOR 10 73% 3.17%** 2.82*** 70% 2.73% 1.01 70% 2.35% 1.14
MYS 10 79% 1.95% 1.18 74% 3.18%* 1.73* 75% 2.33% 1.44
NZL 6 76% 3.36%** 3.88*** 71% 4.80%*** 5.64*** 72% 3.02%* 2.76**
PER 3 82% 3.61%* 2.35* 78% 3.23% 1.49 79% 4.46%** 3.10**
PHL 8 66% 1.74% 0.40 61% 2.87% 0.57 62% 1.84% 0.56
SGP 8 79% 3.51%*** 4.30*** 76% 4.50%*** 3.36*** 77% 4.25%*** 4.55***
THA 8 77% 4.99%*** 5.11*** 72% 5.49%*** 4.25*** 73% 5.22%*** 5.19***
TWN 7 80% 1.25% 0.54 72% 1.84% 0.57 72% 1.32% 0.49
Avg.

E
m
er
ge
d

8 76% 3.25% 2.58 71% 3.47% 2.13 72% 2.94% 2.15

ARG 3 81% 7.18% 2.24* 72% 3.86% 0.62 72% 6.28% 2.34*
BRA 6 84% 2.67% 1.12 83% 3.21% 1.08 83% 2.98% 0.50
CHL 6 84% 3.16%*** 4.59*** 83% 3.40%*** 4.58*** 83% 2.41%** 2.57**
GRC 6 82% 2.97% 1.12 71% 10.08%* 2.31** 70% 8.05% 1.72
IND 10 81% 3.19%* 1.66* 77% 3.83% 1.67* 78% 3.40% 1.31
MEX 5 82% 2.69% 2.32** 81% 3.30% 2.51** 81% 3.67%* 2.45**
TUR 6 83% 3.58%** 2.88*** 80% 4.47%* 2.53** 80% 3.52% 1.70
Avg.

D
ev
el
op

in
g

6 83% 3.63% 2.28 78% 4.59% 2.18 78% 4.33% 1.8

Avg. 7 76% 3.01% 2.15 72% 3.44% 1.99 71% 3.22% 1.83

B Detailed Variable Description

This section provides a detailed description of the variables used in the factor models for

the analysis. In the construction methodology, I follow (Jensen et al., 2023). Capitalized

items refer to the respective fields in the COMPUSTAT and CRSP library. It is assumed

that accounting variables become available 4 months after the end of the accounting period.

The accounting data is sourced from the quarterly and yearly COMPUSTAT files. To make

quarterly income and cash flow items comparable to the corresponding annual items, the sum

of the last four quarters is taken. Quarterly and annual data is created separately and the

most recent characteristic is taken from each data set to create a final joint data set. A suffix

of ”*” indicates that the alteration for missing values was provided earlier in the text.

The sorting variables for the five long-short portfolios of the Fama and French (2018) six-
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factor model are defined as follows:

Size is the market equity in million USD of the stock that is computed as the shares out-

standing times the price (SHROUT/1000 ∗ |PRC|).

Value is defined as the book equity to market equity ratio of the stock. Book equity is

defined as the sum of shareholder equity and deferred taxes and investment credit minus

preferred stock (SEQ+ TXDITC − PSTK). If TXDITC or PSTK are missing, they are

set to zero.

Investment measures the asset growth of total assets (AT ) over the last 12 months as
ATt

ATt−12
− 1. If it is not available I use the sum of shareholder equity, long-term debt, current

liabilities, liabilities, deferred taxes and investment tax credit (SEQ+DLTT +LCT +LO+

TXDITC). If LCT , LO, or TXDITC are missing, they are set to zero.

Profitability is defined as the operating profitability to book equity∗ ratio. Operating prof-

itability is calculated as earnings before interest, taxes, depreciation and amortization minus

interest rate expenses (EBITDA − XINT ). If EBITDA is missing, it is replaced by op-

erating income before depreciation (OIBDP ). If this is unavailable, sales minus operating

expenses is used (SALE − XOPR)23. If this is missing, gross profit minus selling, general

and administrative expenses (GP −XSGA)24 is used.

Momentum is defined as the cumulative return of the past 12 months while skipping the

most recent month.

Additional sorting variables for the other factor models used as robustness checks are defined

as follows:

Cash Profitability is defined as the ratio between cash profitability to 12-month lagged

total assets (AT ∗
t−12). Cash profitability is defined as the sum of EBITDA∗ and research

and development expenses (XRD) minus operating accruals where XRD is set to zero if it is

missing. Operating accruals is defined as income before extraordinary items minus operating

activities (IB −OANCF )25. If that is unavailable, the sum of the yearly change in current
23If SALE is unavailable, total revenue (REV T ) is used. If XOPR is missing, the sum of cost of goods

sold and selling, general and administrative expenses (COGS +XSGA) is used.
24If GP is unavailable, it is defined as sales minus cost of goods sold (SALE−COGS). If this is unavailable,

it is defined as total revenue minus cost of goods sold (REV T − COGS).
25If IB is missing, net income minus extraordinary items and discontinued operations is used (NI−XIDO).

If XIDO is missing, the sum of extraordinary items and discontinued operations (XI +DO) is used. If DO
is unavailable, it is set to zero. If NI is unavailable, IB is defined as earnings before tax and extraordinary
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operating working capital26 and the the yearly change in net non-current operating assets27

is used.

Profitability following Hou et al. (2015) is defined as the ratio between quarterly income

(IBY ) and the book equity∗ lagged by one quarter.

C Technical Details Joint Analysis

This section contains the technical details for the methods employed in Section 3.2.

Step 1: Joint Decomposition: The iPCA algorithm by Tang and Allen (2021) allows to

perform eigendecomposition of multiple data sets simultaneously.

Suppose there are M coupled data matrices Z1, . . . , ZM of dimensions n × p1, where n is

the number of samples and pm is the number of features in Zm. Let p :=
∑M

m=1 pm and

Z̃ := |Z1, . . . , ZM |. Under the iPCA model, it is assumed that each Zm arises from a matrix

variate normal distribution,

Zm ∼ Nn,pk(0,Σ⊗∆m) (m = 1, . . . ,M) (C.1)

where Σ is an n×n covariance matrix that is jointly shared by all data matrices, and ∆m is a

pm×pm column covariance matrix that is specific to Zm. The iPCA model aims to maximize

items minus the sum of income taxes and non-controlling interest (PI − TXT − MII) where MII is set to
zero if missing. If PI is missing, earnings before interest and taxes minus interest and related expense plus
the sum of special items and non-operating income (EBIT −XINT +SPI+NOPI) is taken where SPI and
NOPI are set to zero if missing. If EBIT is missing, operating income after depreciation OIADP is used. If
this is unavailable, EBITDA∗ minus depreciation and amortization (DP ) is used.

26This is defined as current operating assets minus current operating liabilities. Current operating assets is
defined as current assets minus cash and short-term investmens (ACT −CHE). If ACT is missing, the sum of
receivables, inventories, cash and short-term inventories and other current assets (RECT + INV T +CHE +
ACO) is used. Current operating liabilities is defined as current liabilities minus debt in current liabilities
(LCT −DLC) where DLC is set to zero if missing. If LCT is unavailable, the sum of accounts payable, debt
in current liabilities, income taxes payable, and current liabilities (AP +DLC + TXP + LCO) is used.

27This is defnied as non-current operating assets minus non-current operating liabilities. Non-current oper-
ating assets are total assets minus current assets minus investments and advances (AT ∗ −ACT − IV AO). If
ACT is missing, the sum of receivables, inventories, cash and short-term inventories and other current assets
(RECT+INV T+CHE+ACO) is used. Non-current operating liabilities are defined as total liabilities minus
current liabilities minus long term debt (LT − LCT − DLTT ). If LCT is unavailable, the sum of accounts
payable, debt in current liabilities, income taxes payable, and current liabilities (AP +DLC + TXP +LCO)
is used.
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both, Σ and ∆1, . . . ,∆M simultaneously. This is done in a penalized maximum likelihood

framework as

Σ̂−1, ∆̂−1
1 , . . . , ∆̂−1

M = max
Σ�0

∆−1
1 ,...,∆M�0

{
p log |Σ−1|+ n

M∑
m=1

log|∆−1
m |

− 1
M∑

m=1

tr(Σ−1Zm∆−1
m ZT

m)

− P (Σ−1,∆−1
1 , . . . ,∆−1

M )

}
,

(C.2)

where Σ̂−1 and ∆̂−1
m are sample estimates of Σ−1 and∆−1

m and P ∗(Σ−1,∆−1) =
∑M

m=1 λm||Σ−1⊗

∆−1
m ||2F || is a multiplicative Frobenius penalty for which λm is a penalty term. I follow Tang

and Allen (2021) and estimate the respective penalty terms in their proposed ”flip-flop” al-

gorithm. Lastly, since I am mostly interested in the joint patterns, the eigenvectors can be

retrieved by performing an eigendecomposition on Σ.

Step 2: Dimension Reduction: The parallel analysis method by Horn (1965) applies the

Kaiser (1960) criterion for eigenvalue retention and adjusts eigenvalues for random errors

using bootstrapping.

Consider a correlation matrix, Cr, for independent random variables. In theory, Cr = I

where I is an identity matrix of same dimensions as Cr. Therefore, the PCs should be the

same as the original variables, and all eigenvalues, di, should be equal to 1. The Kaiser

(1960) rule states that because of this only those PCs whose di ≥ 1 should be retained. Horn

(1965) proposes a procedure that is based on the Kaiser (1960) rule but corrects for spurious

correlation that can be attributed to sampling error. The procedure corrects eigenvalues of

the original data, dHi by subtracting the mean value of the randomly generated eigenvectors

d̄ri , i.e. dHi = di − d̄ri , where dHi is the eigenvalue after the Horn (1965) correction.

Some authors suggest taking a higher percentile (e.g., the 95th) of the distribution of the ran-

domly generated eigenvalues (e.g., Glorfeld, 1995) to better correct for spurious correlation.

However, others argue that the cutoff of the Kaiser (1960) criterion is too strict, and thus too
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few PCs are contained (e.g., Jolliffe, 1972, 1973). Because of this divergence in the literature,

I stick to Horn (1965) original approach and subtract the mean of the randomly generated

eigenvalues.

Step 3: Assess Clustering Tendency: The clustering statistic by Hopkins (1954) mea-

sures how much the data is spread out compared to randomly created data in the same span.

It can be calculated as follows. Let V be a space composed of e eigenvectors. Let Y be a

set of m data points that are placed uniformly randomly in the e-dimensional sample space.

Define uj as the Euclidean distance from yk to its nearest neighbor in V and wk as the Eu-

clidean distance from a randomly selected data point in V to its nearest neighbor (m out of

the available n points are drawn at random for this purpose). The Hopkins (1954) statistic

is defined as

H =

m∑
j=1

uej

m∑
j=1

uej +
m∑
j=1

we
j

. (C.3)

The statistic compares the nearest-neighbor distribution of randomly created data points to

that of randomly selected data points. If the data was randomly distributed, H should be

about 0.5. If the data is clustered, the distance between randomly created data points and

their nearest neighbor should be larger than that of randomly selected data points and their

nearest neighbor, so H should be larger than 0.5. A value of H > 0.7 is deemed to indicate

clustering (Banerjee & Davé, 2004).

It is recommended to set m � n, for example, m < 0.1n. With such a condition, it can be

ensured that all 2m draws are statistically independent and H follows a beta distribution

with shape parameters (m,m). However, it is also suggested to ensure m > 10 to avoid small-

sample problems Cross and Jain (1982). Because the eigenvectors from my factor have only 35

entries (one for each of the 35 countries in my sample) I either disregard the recommendation

to set m < 0.1n or m > 10. To fix this issue I run the procedure for m = 10 and m = 3.

I estimate H using 10.000 bootstrapped draws. To meet both of the above requirements I
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repeat the simulation two times, for m = 10 and m = 3. Both setups lead to similar results,

indicating that the data is clustered (H̄m=10 = 0.76, H̄m=3 = 0.73). For the m = 10 setup,

the result is statistically different from 0.5 at 10% confidence.

Step 4: Optimal Number of Clusters: To identify the optimal number of clusters, I use

three different metrics, the within sum of squares (WSS), the silhouette measure, and the gap

statistic. For all measures, I use the Euclidean distance as the measure of distance between

points and define the clusters using the k-means clustering algorithm.

The WSS is the average distance between points within a cluster as:

WSS =

O∑
o=1

∑
x∈Xi

D(x,Ci)
2, (C.4)

where O is the total number of clusters investigated, D(x, y) is the euclidean distance between

x and y, Xi is a cluster of data points x, and Ci =
1

|Xi|
∑

x∈Xi
x is the centroid of cluster Xi.

The optimum number of clusters is the point where the WSS cannot be improved strongly

for one more cluster (elbow method).

The silhouette method by Rousseeuw (1987) compares the distance of each data point to all

other points within its cluster and compares it to the average distance of this point to all

other points outside its cluster. The silhouette value of data point x in cluster Xi is defined

as

sx =
bx − ax

max{ax, bx}
, (C.5)

where ax = 1
Xi−1 i

∑
x∈Xi,x 6=yD(x, y) is the the mean distance between the data point x and

all other points in its cluster and bx = mini 6=j
1
Xj

∑
y∈Xj

D(x, y) is the mean distance of x to

all other points in any other cluster. The optimal number of clusters maximizes the average

silhouette value of all data points.

The gap statistic by Tibshirani et al. (2001) compares the average intra-cluster variation of

the actual clusters to the intra-cluster variation of uniformly randomly generated data in the
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same range of observed values. It is calculated as

gx = E∗{log(ax)} − log(ax)) (C.6)

where E∗ denotes the expectation under the reference distribution. It is defined via boot-

strapping and defines a reference dataset under the assumption of randomly distributed data.

The reference dataset X∗
i has the same number of observations as Xi which are drawn uni-

formly in the interval [min(x),max(x)]. This reference should not be exposed to clustering

and thus the optimal number of clusters is the one that maximizes the gap statistic. For the

analysis at hand, I calculate the gap statistic using 10,000 bootstrapped samples.

To validate the results of the above analysis for the choice of the clustering algorithm, I

calculate the above summary statistics again using the Partitioning Around Medoids (PAM)

algorithm (Kaufman & Rousseeuw, 1990) instead of the k-means clustering. The results are

illustrated in Figure A.4 and look almost identical to those where the k-means clustering is

used.

D Bayesian Model Selection Algorithm Specifications

Recall , that the log marginal likelihood of Mj(j 6= J) with sample data y can be calculated

in closed form as

log m̃(y|Mj) = log m̃(f̃ |Mj) + log m̃(f∗|Mj)

where the first term of the right hand side is

(O − Pj)Pj

2
log 2− T̃Pj

2
logπ − Pj

2
log(T̃ oj + 1)− (T̃ − Pj −O)

2
log |ψj |+ logΓPj

T̃ + Pj −O

2

and the second term of the right hand side is
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(O − Pj)Pj

2
log 2− (O − Pj)(T̃ − Pj)

2
logπ − O − Pj

2
log(|W ∗

j |)−
(T̃ )

2
log |ψj |+ logΓO−Pj

T̃

2

where

T̃ = T − nt

W ∗
j =

T∑
t=nt+1

f̃j,tf̃
′
j,t

ψj =
T∑

t=nt+1

(f̃j,t − ˆ̃αj)(f̃j,t − ˆ̃αj)
′ +

T̃

T̃ oj + 1
(ˆ̃αj − α̃j)( ˆ̃αj − α̃j)

′

ψ∗
j =

T∑
t=nt+1

(f∗j,t − B̂∗
j,f f̃j,t)(f

∗
j,t − B̂∗

j,f f̃j,t)
′.

Γd(.) denotes the d-dimensional multivariate Gamma function. All other variables are as

previously defined. Hats indicate that parameters are the estimates obtained by linear re-

gressions of (10) and (11).

In line with the recommendation by Chib et al. (2020) I use the model with the prior α̃j |Mj ∼

N (α̃j0, ojΣj) with

α̃j0 = n−1
t

t = 1

nt
f̃j,t,

where nt = tr × T is the size of the training sample that I set to tr = 10% of the data. The

model-specific oj is calculated as

oj =
1− tr

tr
L−1
j sum(diag(Vj0)/diag(Σ̂j0)),
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where Vj0 is the negative inverse Hessian over α̃j and Σ̂j0 the estimate of the covariance

matrix Σj in the training sample.
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