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Abstract

Existing studies on asset return predictability focus on aggregate performance.

We examine the oft-overlooked grouped heterogeneity in return predictability across

different assets and macroeconomic regimes. A novel tree-based asset clustering

methodology is introduced to partition the panel of asset-return observations ac-

cording to return predictability, using high-dimensional asset characteristics and

aggregate time-series predictors. When implemented on U.S. equities over the

past five decades, we find that some characteristics-managed (dollar trading vol-

umes, unexpected earnings, earnings-to-price, and cashflow-to-price) and/or macro-

based (dividend yield and default yield) clusters are more predictable, resulting in

a heterogeneous predictive model with outperformance. Finally, less predictable

clusters generally exhibit lower risk-adjusted investment performance, revealing

an important empirical link between return predictability and trading profitability.
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1 Introduction

Forecasting asset returns is a long-standing topic in asset pricing, with various

methods developed to study the complex return dynamics. Existing studies on in-

dividual stock return predictability (e.g., Fama and French, 2008; Lewellen, 2015) fo-

cus on whether individual stock returns are predictable on average. Using the entire

stock universe, researchers evaluate the significance of predictor coefficients (through

Fama-Macbeth or panel regression models) or implement a forecast-implied strategy

for risk-adjusted performance. The answer is affirmative, as reconfirmed by recent lit-

erature on empirical asset pricing via advanced machine learning methods (e.g., Gu

et al., 2020).

However, the heterogeneous nature of asset return predictability, which is about

the return forecasting difficulty or signal-to-noise ratio, is less explored. Certain assets

exhibit higher return predictability than others, and the predictability of individual

asset returns varies with macroeconomic conditions. For example, Avramov et al.

(2023) finds that return predictability concentrates in micro-caps, distress stocks, or

high volatility periods. Green et al. (2017) also find a sharp decline (i.e., less signifi-

cant characteristics) of individual stock return predictability since 2003. To this end,

we treat predictability as an unobservable property of individual stock returns. We

investigate a novel and general research question: What types of assets exhibit higher

return predictability, and under which macroeconomic regimes?

“Return predictability” is more nuanced than “return levels.” Notably, the litera-

ture has no unanimous conclusion on whether high predictability implies high return

levels. Instead, return predictability is closely related to the signal-to-noise (S2N) ratio

or the regression R2. Our research, therefore, concentrates on R2 to identify stock types

or macroeconomic regimes that exhibit higher predictability rather than focusing on

expected return levels. According to Rapach et al. (2010) and Kelly et al. (2024), there is

no direct relationship between the out-of-sample predictive R2 and investment gains

(i.e., levels of returns). However, we illustrate that highly predictable stocks consis-
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tently outperform the less predictable ones in risk-adjusted performance.

For the long-documented stock market return predictability linked to business cy-

cle predictors (e.g., Keim and Stambaugh, 1986; Fama and French, 1989), researchers

have investigated the time-varying (heterogeneous in time series) return predictabil-

ity and found stronger predictability during economic recessions (e.g., Henkel et al.,

2011; Dangl and Halling, 2012). A recent study by Farmer, Schmidt, and Timmermann

(2023) also finds ”pockets of predictability,” where return predictability is intermit-

tent, with short periods of significant predictability alternating with long periods of

no predictability. The time-varying coefficient model is commonly used for these em-

pirical investigations to examine the predictability of heterogeneous market returns

over time. The predictor coefficient for market returns can change over time in differ-

ent macroeconomic regimes and may exhibit sparsity over long periods.

Our research explores the heterogeneous predictability of individual asset re-

turns, significantly broadening the scope of the current literature on time-varying pre-

dictability and market returns. This leads to the concept of ”mosaics” of predictability

in the panel data of individual stocks, which builds from ”pockets” of predictability of

market returns (Farmer et al., 2023). The return predictability varies over time periods

and thousands of stocks, revealing clustering-wise heterogeneous patterns that look

like ”mosaics” on the panel. As demonstrated by Cong, Feng, He, and Li (2023), these

heterogeneous panel data analyses can be treated as a clustering problem, identifying

group observations with similar patterns. Beyond clustering, heterogeneous models

can be more effective than homogeneous models.

We introduce a novel clustering approach based on a single decision tree with a

customized objective to tackle this new empirical challenge. Specifically, our approach

identifies optimal cluster structures that capture variations of stock return predictabil-

ity – stock returns with similar levels of predictability are put in the same cluster. Fur-

thermore, the decision tree structure organizes cluster patterns in mosaics on the panel,

described by firm characteristics and aggregate predictors. It preserves the economic

interpretations and identifies critical variables related to the heterogeneous level of

3



predictability. By utilizing the asymmetric interactions between aggregate predictors

and firm characteristics, we uncover heterogeneity in stock returns, fit cluster-wise

heterogeneous predictive models, and enhance the forecasting power.

Methodological Innovations. We present a ”divide-and-conquer” goal-oriented clus-

tering approach that sequentially separates asset-return observations based on their

predictability. Unlike traditional clustering algorithms such as K-means, which min-

imize within-cluster variation of observable characteristics, our method aims to dis-

tinguish clearly between highly predictable and less predictable stock returns, even

though the predictability is not directly observable from data. This partitioning is

achieved by maximizing the difference of S2N ratios, R2, between clusters through

cluster-wise heterogeneous return forecast models. Our study is related to the broader

investigation of asset heterogeneity alongside Cong et al. (2023) and Cong et al. (2023)

but differs in its economic objective for the clustering. The former focuses on max-

imizing the collective Sharpe ratio to span the efficient frontier, and the latter aims

to maximize the marginal likelihood of the heterogeneous factor models. Our paper

focuses on differentiating stock return predictability.

Moreover, the return prediction literature (e.g., Gu et al., 2020) typically fits a ho-

mogeneous global model that applies to all individual stocks and time periods. How-

ever, Feng and He (2022) and Evgeniou et al. (2023) argue that such homogeneous

modeling largely ignores the heterogeneity of asset returns. Our framework addresses

this issue by fitting a cluster-wise heterogeneous predictive model based on the clus-

tering structure. The clusters are defined by firm characteristics and/or aggregate

predictors. Notably, clustering and fitting local predictive models are seamlessly in-

tegrated within a unified framework rather than decomposed as two separate steps.

Furthermore, this clustering framework does not depend on the specific choice of the

workhorse prediction model employed. It can be integrated with various machine

learning models: regression, Lasso, PCA, random forest, and deep learning.

Empirical Highlights. We empirically analyze a large panel of individual U.S. stock

returns from 1973 to 2022, utilizing 58 monthly firm-level characteristics from eight
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major categories alongside eight monthly aggregate predictors.

We present clustering results on the cross-section, utilizing all characteristics, yield-

ing about 15 clusters (distinct leaf nodes) within a decision tree. Notably, the S2N ra-

tios R2 vary dramatically from -0.02% (Figure A.2, non-high SUE, non-high SVAR, non-

low DOLVOL, and high BASPREAD stocks) to 12.09% (also Figure A.2, high SUE, high

EP, low DOLVOL, and high BM IA stocks). Similar to small-growth or high-value stocks

in Fama and French (1992), characteristic ranges define our clusters, and we know the

stock types for high or low return predictability. Characteristics such as dollar trading

volumes, unexpected earnings, earnings-to-price, and cashflow-to-price play a crucial

role in distinguishing the predictability of stock returns. These finding of SUE aligns

with the post-earning-announcement drift of Ball and Brown (1968) and Bernard and

Thomas (1989). We validate the predictability clustering by finding consistent out-of-

sample performance, where highly and less predictable clusters remain consistent in

the out-of-sample data.

Second, we extend our clustering analysis with macroeconomic regime changes

and structural breaks. We observe the mosaics of stock return predictability in both

time-series and cross-sectional dimensions. Notably, stock return predictability drops

dramatically when the dividend yield, an important business cycle predictor (Camp-

bell and Shiller, 1988), is not high. Conversely, stock returns are highly predictable

when the dividend yield is high and the default yield is low, conditions typical of

recession periods. Under three macroeconomic regimes, each decision tree selects dif-

ferent firm characteristics, but value characteristics consistently emerge as important

variables. Structural breaks by calendar months exhibit similar phenomena.

Furthermore, we rank clusters according to their predictability, demonstrating

that the highly predictable clusters consistently outperform the less predictable ones

in risk-adjusted performance. This finding complements Rapach et al. (2010) and

Kelly et al. (2024), indicating that clustered return predictability is associated with

investment gains. Additionally, excluding these highly predictable clusters will signif-

icantly decrease the overall predictability of the remaining stock universe and lower
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the risk premiums of multiple long-short risk factors. These findings support the idea

that a small subset of predictable stock returns significantly influences the overall pre-

dictability, confirming the existence of mosaics of predictability.

Finally, we create forecast-implied long-short portfolios to assess cluster-wise het-

erogeneous predictive modeling enhancement. We find consistent trends in various

financial metrics, including average returns, Sharpe ratio, market alphas, and max-

imum draw-downs. For example, in the highly predictable cluster identified in the

cross-sectional clustering, the monthly average return of value-weighted portfolios

reaches 3.52%. However, the performance of the less predictable clusters is signifi-

cantly worse than that of others, with an average return of only 1.03%. Additional

time-series clustering shows a similar declining performance trend. These findings in-

dicate that cluster-wise heterogeneous predictive modeling significantly outperforms

traditional global homogeneous modeling.

Literature. Our paper contributes to the extensive empirical literature on return pre-

dictability. For aggregate markets of equities and bonds, early studies (e.g., Keim and

Stambaugh, 1986; Fama and French, 1989) identify useful market-wide predictors (e.g.,

term spread and default spread) when studying time-series return predictability over

business cycles. For individual stock returns, a zoo of characteristics, anomalies, or

long-short factors (e.g., market equity values, book-to-market ratios, and prior cumu-

lative returns) have been documented (e.g., Fama and French, 1992, 1993; Jegadeesh

and Titman, 1993) while investigating cross-sectional return predictability.1 However,

many of these empirical findings appear unstable in out-of-sample or post-publication

evaluations (Pesaran and Timmermann, 1995; Welch and Goyal, 2008; Harvey et al.,

2016; McLean and Pontiff, 2016). Our study complements this by investigating the

heterogeneity in return predictability, which may help explain the inconsistencies in

asset return predictions.2

1Green et al. (2013) find that characteristics discovered in the 2000s have similar return properties to
those discovered in earlier decades, indicating that investment technologies have improved over time
to offset a shrinking pool of high-performing but not yet discovered characteristics.

2More specifically on predictability testing, studies such as Stambaugh (1999) and Lewellen (2004)
focus on statistical properties of time-series predictability of the market-wide indices. For the cross-
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Our paper joins the emerging studies on heterogeneous return predictability. Stud-

ies on time-varying return predictability demonstrate that market returns are more

predictable during economic recessions when analyzed using a regime-switching VAR

(Henkel et al., 2011) and a time-varying coefficient model (Dangl and Halling, 2012).

Farmer et al. (2023) document calendar-time pockets of differential predictability. In

the cross-section, Avramov (2002) finds that small-cap value stocks are more pre-

dictable than large-cap growth stocks, and Green et al. (2017) show that hedge returns

from exploiting characteristics-based predictability have been insignificant outside of

micro-caps since 2003. Avramov et al. (2023) further discover that predictability is

concentrated in micro-caps, distressed stocks, or during periods of high volatility. Our

model more systematically analyzes the heterogeneity in return predictability, expand-

ing the traditional time-varying coefficient model by incorporating high-dimensional

characteristics and macroeconomic variables.

This paper, along with Cong et al. (2023) and Cong et al. (2023), is among the

first to develop economically guided clustering (i.e., panel trees), which belongs to the

emerging AI literature on goal-oriented search—a data-driven approach to optimizing

an economic goal in a large and flexible modeling space (e.g., Cong et al., 2020). The

“divide-and-conquer” approach of our panel trees mimics how humans solve com-

plex problems by completing constituent tasks. Cong et al. (2023) and Bryzgalova

et al. (2023) focus on portfolio estimation for endogenously and exogenously gener-

ated leaf-basis portfolios. Cong et al. (2023) and Feng et al. (2024) extend the panel-

tree framework to fit heterogeneous models by maximizing the marginal likelihood,

while ours focuses on separating observations for heterogeneous signal-to-noise ra-

tios. Closely related by also analyzing endogenous grouped heterogeneity in financial

markets, Ahn et al. (2009) use unsupervised clustering based on return correlations,

and Patton and Weller (2022) generalize K-means to group assets based on within-

sectional return predictability of individual assets, a standard test for anomaly predictability entails
risk premium estimate from the cross-sectional regression (Fama and MacBeth, 1973; Fama and French,
2008; Lewellen, 2015). Similar to the recent literature of machine learning models using panel regression
for individual stock returns and risk-adjusted performance of the long-short portfolios (e.g., Gu et al.,
2020; Freyberger et al., 2020), our clustering objective focuses on the fitness of panel return forecasts.
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group slopes and averages, and find risk-price heterogeneity pervasive and essential.

More recently, Evgeniou et al. (2023) applies unsupervised K-means to cluster firms

based on characteristics and estimates post-cluster heterogeneous predictive models.

Our clustering differs in being endogenously guided by economic objectives (largest

predictability dispersion) and further incorporating time-series splits (e.g., clustering

for predictability “mosaics” in panels of asset returns).

The remainder of the paper is organized as follows: Section 2 presents the clus-

tering model with an economically guided split criterion, while Section 3 describes

the data and model evaluation. Section 4 presents the empirical findings from U.S.

equities, and Section Section 5 reports the predictability-implied investment perfor-

mance. Finally, Section 6 concludes, with the appendices containing finer details of

the algorithms and data.

2 Methodology

2.1 Measurement of Return Predictability for Clustering

As discussed earlier, predictability is generally associated with the signal-to-noise

ratio, or R2. However, it is unobservable and lacks a consensus definition in the lit-

erature. Furthermore, no conclusive evidence indicates that assets with higher pre-

dictability yield higher returns. We choose in-sample R2 as a measure of return pre-

dictability to train the clustering model for several reasons. First, we revisit the cal-

culations of R2 to justify its use as a measure of return predictability. In the literature

(e.g., Fama and French, 2008; Lewellen, 2015; Gu et al., 2020), a predictive model is

typically represented as:

ri,t+1 = Et[ri,t+1] + ϵi,t+1, (1)

with assumption E[ϵi,t+1] = 0 such that the prediction of expected return is unbiased.

The information regarding the heterogeneous predictable difficulty can be represented

by the signal-to-noise ratio in Eq. (2):

R2
i,t = 1− Var(ϵi,t)/Var(ri,t) := 1− σ2

ϵ,i,t/σ
2
i,t, (2)
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where σ2
ϵ,i,t and σ2

i,t are the variance of ϵi,t and ri,t respectively. We add subscript i and t

for this metric to highlight its cross-sectional and time-series variability. Conceptually,

when R2
i,t is high for asset i at a specific period t, it is relatively easier for a predictive

model to capture the conditional expectation. If the noise is large for asset i, even

knowing the true Et[ri,t+1] can still yield small R2, let alone learning the conditional

expectation from super noisy data. Therefore, with certain model regularization, the

in-sample R2
i,t is a reasonable measure of the signal-to-noise (S2N) ratios, reflecting the

return predictability for various assets across different periods. Even without model

regularization, the in-sample R2 is barely over 5% during the last fifty years.

Second, estimating R2
i,t for each asset i and time t is challenging due to the lack

of data. Typically, the literature addresses this issue by fitting a pooled model and

calculating a single R2 for all assets across all periods, ignoring the panel structure

(Gu et al., 2020). However, this metric ignores the heterogeneity of predictability. Our

approach balances these two extremes: we cluster asset returns into a few subsets and

calculate R2 for each cluster to measure the cluster-wise predictability. This clustering

method is specifically designed to maximize the differences in predictability among

clusters. Details of the clustering approach will be discussed in Section 2.3.

Third, readers may question why we do not use out-of-sample (OOS) R2
i,t to guide

our clustering approach. The primary reason is that focusing on the OOS metric could

prevent our clustering algorithm from detecting time heterogeneity patterns during

training periods. Additionally, notice that the expected OOS mean squared error has

the well-known bias-variance decomposition as:

Et[(ri,t+1 − Et[ri,t+1])
2] =

(
Bias{Êt[ri,t+1]}

)2

+ σ2
ϵ,i,t+1 + Var{Êt[ri,t+1]}. (3)

When predicting stock returns, σ2
ϵ,i,t+1 dominates this measure due to the meager S2N

ratio. Robust prediction benchmarks, such as zero for individual stocks or the histor-

ical average for the market index, may not reduce predictive bias but typically lead

to almost zero predictive variance. Despite these challenges, as reported in the liter-

ature, the OOS R2
i,t is generally less than 1%, suggesting its limited effectiveness in
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environments characterized by low S2N ratio.

Last, we use the in-sample metric solely to identify clustering patterns in stock

returns. We still evaluate the out-of-sample performance once the clustering pattern is

detected and heterogeneous predictive models are fitted.

2.2 Heterogeneous Predictive Modeling

Next, we introduce our methodology. We denote the data as D = {(ri,t+1, zi,t,xt) |

i = 1, . . . , N and t = 1, . . . , Ti}, where ri,t+1 is the excess return of stock i at time pe-

riod t + 1. Common predictors used in stock return prediction literature include zi,t,

a C-dimensional vector of firm characteristics, and xt, a M -dimensional vector of ag-

gregate predictors.

Ideally, the best way to model heterogeneous and time-varying expected excess

return Et[ri,t+1] is to express it as gi,t(zi,t,xt) that varies for different assets across dif-

ferent periods. However, due to the limited observations for individual stock return

data, estimating each gi,t(·) separately is hard. Instead, many studies (e.g., Gu et al.,

2020) estimate a homogeneous predictive function gt(·) and update the time-varying

coefficients through a rolling-window scheme. However, Feng and He (2022) and Ev-

geniou et al. (2023) argue that such homogeneous modeling of gt(·) largely ignores

the predictive power heterogeneity for different assets. More importantly, this homo-

geneous predictive modeling implicitly assumes homogeneous return predictability

(same R2 for every asset i), conflicting with the empirical findings (Hou et al., 2020;

Avramov et al., 2023). Moreover, while rolling-window estimation is robust, it naively

overlooks potential macroeconomic-driven regime shifts in the stock market.

We propose a heterogeneous predictive modeling approach that lies in between

an individual model and a pooled model, where we fit a cluster-wise heterogeneous

predictive model. Unlike the two-step clustering and estimation of Evgeniou et al.

(2023), we adopt the panel tree framework proposed by Cong et al. (2023) and cus-

tomize it for clustering according to asset return predictability. The clustering ap-

proach aims to obtain multiple small rectangles (leaf nodes or clusters) by partition-

ing the entire stock return panel. The entire panel is partitioned through the cross-
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sectional and time-series dimensions according to values of firm characteristics zi,t and

aggregate predictors xt. See below Figure 1 for an illustration. There are three non-

overlapped clusters for the panel of stock-return observations3 : (1) high inflation, (2)

non-high inflation and small-cap, (3) non-high inflation and non-small cap.

Figure 1: Clustering illustration via partitions

This figure partitions the panel of stock returns into three rectangular D3, D4, and D5. The first partition
is inflation at 0.7, and the second partition is size at 0.3 when inflation is not high.

0.3

0.70 1

1

Inflation
(Time Series)

Size
(Cross Section)

D3 : (1)

D5 : (3)

D4 : (2)

Rather than fitting individual predictive models, gi,t(·), for every asset i in period

t or a pooled model, we only estimate a small number of heterogeneous models for

each cluster. The cluster-wise predictive model is:

Et[ri,t+1] = gj(zi,t,xt), (4)

where stock-return observation in the j-th cluster follows the same predictive model

gj(·). Our approach clusters observations and estimates local predictive models simul-

taneously, putting stock-return observations with similar return predictability in the

same cluster. This is in contrast to the two-step approach of Evgeniou et al. (2023) that

clusters on firm IDs {ri,t+1}t=1. Remarkably, the clustering approach allows the user’s

3Note that a company can change clusters if the associated characteristic value changes over time.
For instance, if a company transitions from a small firm to a large one in market equity values, its cluster
membership may change based on the partition outcome.
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arbitrary choice of workhorse predictive model gj(·). For simplicity, we illustrate our

approach using Ridge regression, which is suggested to be robust under weak sig-

nal scenarios by Shen and Xiu (2024). Consequently, the in-sample R2
j is calculated

with stock returns in the same cluster. Next, we illustrate our tree-based clustering

approach step-by-step.

2.3 Clustering: First Split

Standard clustering algorithms, such as K-means, optimize within-cluster obser-

vation distances based on characteristic space. These algorithms group returns with

similar characteristic values together. However, our clustering problem aims to parti-

tion the data sample according to the unobservable predictability, distinguishing be-

tween highly and less predictable observations. This implementation involves opti-

mizing the separation of the data sample into two groups to maximize the difference

in their signal-to-noise (S2N) ratios or R2 values.4

Relying on zi,t and xt, we employ an iterative approach to partition the panel of

stock-return observations into clusters sequentially, adding one cluster at a time and

visualizing the results with a decision tree. The initial step involves dividing the data

to identify the optimal split predictor and cutpoint value that effectively separates the

data into two clusters, fitting predictive models and calculating the R2 for every split

candidate, and finally, searching for the optimal one that maximizes the R2 difference.

Figure 2 illustrates one candidate for the first split through a decision tree, which

splits the panel of stock-return observations in the root node D1 into two clusters.

They are also referred to as leaf nodes in the machine learning terminologies, represent-

ing any node without subsequent node under it. D2 and D3 according to a split rule

”varp(Inflation) ≤ ck(0.7)”. Here, the variable ”var” is a characteristic or aggregate

predictor. To gauge the quality of the split candidate, we define a goal-oriented split

criterion, evaluating whether the candidate can successfully distinguish returns with

high predictability from those with lower predictability.

4There might be other clustering objectives for achieving this goal of separating partitioned sub-
samples but maximizing the R2 difference is interpretable and feasible.
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Figure 2: Illustration for the first split

To calculate the split criterion and search for the optimal split predictor and cutpoint value, we consider
one of the first split candidates, INFL≤ 0.7. The left figure shows a decision tree that splits the sample,
and the right figure shows the corresponding partition plot that only partitions over time.

D1 : INFL ≤ 0.7

D2 D3

Yes No

0.70 1

1

Inflation
(Time Series)

D3D2

The first candidate partitions the entire return samples D1 into two clusters D2

and D3. We fit two cluster-wise predictive models to these clusters separately, denoted

as ĝ2(·) and ĝ3(·). Generally, for the j-th leaf node, we fit a cluster-wise predictive

model ĝj(·), and the return predictions are denoted as r̂i,t+1 = ĝj(zi,t,xt). Fama and

French (2008) criticize that small-caps with high return variance largely dominate the

panel regression, and Hou et al. (2020) show that many anomalies are replicable due

to the dominance of micro-caps (about 60% of all firms) in the cross-sectional regres-

sion. Therefore, we consider using the volatility-weighted Ridge regression for the

split criterion calculation.

gj(·) = β0 + β⊺si,t + ϵi,t,

and β̂j = argmin
β0,β

 1

Nleafj

∑
leafj

wi,t (ri,t+1 − β0 − β⊺si,t)
2 + λ||β||22

 ,
(5)

where si,t = {zi,t,xt} and wi,t = 1/σ2
i,t is the inverse of idiosyncratic return variance.

The volatility, σ2
i,t, is estimated on a rolling-window basis, which helps to incorporate

both the time-series and cross-sectional variation for observation weights within the

leaf cluster. The tuning parameter λ is determined by cross-validation. Therefore,

r̂i,t+1 = β̂j,0+ β̂⊺
j si,t is the heterogeneous return forecast for calculating the correspond-
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ing S2N ratios, R2. Within the j-th leaf node:

R2
j = 1−

∑
{i,t}∈leafj(ri,t+1 − r̂i,t+1)

2∑
{i,t}∈leafj r

2
i,t+1

. (6)

Since our goal is to separate returns with high predictability from those with low pre-

dictability, it is natural to use the absolute value of the R2 difference between the two

leaf nodes as the split criterion,

S{leaf2,leaf3}(varp, ck) = |R2
2 −R2

3|. (7)

Intuitively, this criterion evaluates whether the candidate can differentiate the R2 be-

tween two leaf nodes, no matter which one is higher. It focuses on detecting a subset

of stock returns that are more predictable than others.

Different pairs of split candidates {varp, ck} result in various partitions of the data,

leading to non-overlapping sub-samples in leaf nodes D2 and D3 and different cluster-

wise predictive model ĝ2 and ĝ3. These ultimately lead to different values of the split

criterion in Eq. (7). A successful split candidate will make the criterion as large as pos-

sible. Thus, for P candidate variables and K potential cutpoint values for each split,

we consider a total of P × K possible split combinations for the first split. Further-

more, the split variable can be either firm characteristics or aggregated variables for

detecting heterogeneity in either cross-section and time series.

After calculating the criterion for all candidates, we pick the optimal one as the

first split, and the root node is divided into two child nodes, each representing a clus-

ter. Additional splits may be required to capture the heterogeneity of predictability

further.

2.4 Clustering: Subsequent Splits and Stop

Our clustering method uses a sequential iterative partitioning approach to create

non-overlapping clusters one at a time. Suppose the first split is determined as in-

flation at value 0.7; this forms two leaf nodes, and the subsequent division can occur
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at either of these nodes to further separate the data sub-samples. Figure 3 illustrates

two potential splitting candidates for the second split, which can happen in the left

(non-high inflation) or right (high inflation) leaf with different characteristics, demon-

strating the asymmetric interaction of split predictors.

Figure 3: Illustration for the second split

This figure illustrates two example candidates for the second split, which can happen on the left or right
child node, demonstrating the asymmetric interaction of split predictors.

D1 : INFL ≤ 0.7

D3D2 : ME ≤ 0.3

D5D4

NoYes

NoYes

0.3

0.70 1

1

Inflation
(Time Series)

Size
(Cross Section)

D3

D5

D4

(a) If splitting node D2 at ME

D1 : INFL ≤ 0.7

D3 : BM ≤ 0.7D2

D7D6

NoYes

NoYes

0.7

0.70 1

1

Inflation
(Time Series)

Value
(Cross Section)

D7

D2

D6

(b) If splitting node D3 at BM

The second split can occur within D2, partitioning it into D4 and D5, or within D3,

partitioning it into D6 and D7. Each split still processes P × K candidates, totaling

2 × P × K candidates. When evaluating candidate splits within D2, we fit cluster-

wise predictive models ĝ4(·) and ĝ5(·) according to the resulting leaf nodes D4 and

D5, respectively, and calculate the split criterion. The procedure is the same when
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justifying candidate splits for leaf node D3. Among all the split candidates for D2

and D3, we choose the one that maximizes the split criterion as the second split. This

procedure takes a global approach, evaluating the benefits of splitting either leaf node

and selecting the one that can further differentiate return predictability.

All subsequent splits are determined in the same manner. Each time, we examine

all existing leaf nodes, search for all split possible candidates, and choose the one with

the maximum value as the best partitioning of that leaf node. Without prior knowl-

edge of the “correct” clustering pattern, this self-supervised clustering approach par-

titions stock-return observations into multiple clusters, maximizing the split criterion,

predictability heterogeneity between clusters, and then fitting post-cluster heteroge-

neous predictive models.

Stopping Criteria. Criteria for stopping tree growth help regularize in-sample model

training, prevent over-fitting, and maintain the interpretability of decision tree plots.

The clustering process stops when it meets certain predetermined conditions. We set

a minimum sample size for each leaf cluster, while split candidates that cannot satisfy

this minimum leaf size for resulting leaf nodes are eliminated. It is crucial to ensure

that the heterogeneous predictive model within each cluster can be fit with enough

data observations. We also limit the maximum depth and the number of terminal

leaves for the tree structure’s growth. Finally, we stop splitting a node if all split can-

didates fail to improve the predictability – the R2 values of both child nodes are smaller

than that of the parent node.

Heterogeneous Predictions. As mentioned in previous sections, during the iterative

steps splitting the panel of returns, we fit Ridge regression for return prediction and

growing the tree. Shen and Xiu (2024) point out that Ridge regression enjoys robust

prediction under weak signals compared to Lasso and is computationally efficient.

Once the tree growth stops, the entire panel of stock-return observations is parti-

tioned into multiple non-overlapping clusters based on firm characteristics and macro

predictors. We refit cluster-wise heterogeneous predictive models using observations

within each cluster. Notably, while we illustrate clustering results using the decision

16



tree structure, this clustering framework is independent of the choice of the prediction

model. Therefore, our clustering approach provides a general framework for hetero-

geneous predictions with various machine learning models: regression, Lasso, PCA,

random forest, etc.

3 Data and Model Design

3.1 Data

We apply our approach to the U.S. individual stock returns to learn their hetero-

geneous predictability.5 The monthly sample spans from 1973 to 2022, where the first

30 years are used for model estimations and the recent 20 years for out-of-sample tests.

The average and median number of stocks in the training sample are 5,592 and 5,626,

respectively, while in the test sample, these numbers are 4,055 and 3,850.6

Characteristics. As listed in Table A.4, our dataset includes 58 firm-level character-

istics categorized into eight major groups: size, value, investment, momentum, prof-

itability, liquidity, volatility, and intangibles. We standardize each characteristic cross-

sectionally and uniformly in the range of [0, 1] for every month. We use two cut points

{0.3, 0.7} as split value candidates for each characteristic to mimic the ”top-middle-

bottom” sorting approach. We use all these characteristics for forecasts to construct

tree-based clustering and cluster-wise heterogeneous predictive models.

Aggregate Predictors. We examine eight aggregate predictors to construct and choose

macroeconomic regimes with time-varying return predictability. As detailed in Table

A.3, these variables comprise the 3-month treasury bill rate, inflation, term spread,

default spread, and market aggregate characteristics (dividend yield, volatility, net

equity issues, and liquidity). We standardize these aggregate predictors into the [0, 1]

range based on their empirical percentile values in a rolling 10-year window.7 This

5We apply the standard filters (see, e.g., Fama and French, 1992) to (1) only include stocks listed on
NYSE, AMEX, or NASDAQ for more than one year, (2) use observations of firms with CRSP share codes
of 10 and 11, and (3) exclude stocks with negative book equity or negative lagged market equity.

6Note that our algorithm allows the panel data to be unbalanced.
7For example, if the value of inflation exceeds 0.7, it indicates that the current inflation level is higher

than 70% of observations in the past ten years.
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standardization enables us to compare the performance of each predictor on the same

variation scale without introducing look-ahead biases. Similar to the firm-level char-

acteristics, we use two cutpoints {0.3, 0.7} as split value candidates for each aggregate

predictor, employing a ”top-middle-bottom” sorting approach.

Model Design. The baseline analysis for the cross-sectional split uses the first 30 years

for model estimations and the recent 20 years for out-of-sample tests. We update the

tree-based clustering and cluster-specific predictive models every five years using a

30-year window as in-sample data for retraining the decision tree structure. This pro-

cess is repeated four times over a 20-year out-of-sample data span. We implement a

full-sample analysis for the extended analysis with time series splits because of the

long and overlapping business cycles. Finally, we employ cross-validation to select

the optimal hyperparameters for the post-cluster predictive model training.

3.2 Performance Evaluation

We can evaluate two types of outcomes in tree-based clustering: (i) in-sample

and out-of-sample R2 for heterogeneous return predictability and (ii) forecast-implied

investment strategies for heterogeneous predictive modeling. Our first goal is to ex-

amine any heterogeneous return predictability and determine if the results obtained

in the sample data remain consistent when applied to out-of-sample data. The second

outcome is to build the link between return predictability and investment gains, which

is determined by the heterogeneous predictive modeling. Accordingly, we introduce

two types of measurements.

In addition to the in-sample R2 in Eq. (6), we follow Gu et al. (2020) and use R2
OOS

with using zero forecast as the benchmark:

R2
OOS,j = 1−

∑
{i,t}∈leafj(ri,t − r̂i,t)

2∑
{i,t}∈leafj r

2
i,t

. (8)

We are introducing the forecast-implied portfolio as an addition to long-short

strategies, such as equal-weighted and value-weighted portfolios. This new approach

considers all stocks, rather than just the tails of sorted portfolios, and thinks of the
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return forecast values instead of focusing solely on directions or deciles. Within each

leaf cluster j, we define the forecast-implied portfolio as:

Rj,t =
∑

{i,t}∈leafj

ŵi,tri,t, (9)

where the following (10) are the weights for stock i at period t in the j-th portfolio.

Equal-weighted: ŵi,t =


1/NPos

t,leafj , if r̂i,t ≥ 0

−1/N
Neg
t,leafj , if r̂i,t < 0

Forecast-weighted: ŵi,t =
r̂i,t∑

k∈leafj |r̂k,t|

(10)

4 Heterogeneous Return Predictability

4.1 Cross-Sectional Heterogeneity

The baseline model investigates heterogeneous return predictability across the

cross-section: what types of stock returns are predictable. Rather than restricting a

stock to only one cluster for all periods (e.g., Evgeniou et al., 2023), our approach de-

termines cluster assignments based on characteristics. It allows stocks to change clus-

ter membership over time. This cross-sectional decision tree approach also generalizes

the security sorting in empirical asset pricing (Cong et al., 2023).

Tree-based Clustering. Figure 4 showcases the clustering results, derived from train-

ing the model on data spanning the first 30-year period (1973 - 2002), and is visu-

ally presented by a decision tree structure.8 This tree stops growing with 14 termi-

nal leaves, meeting our predetermined stopping criteria.9 Specifically, each leaf node

8For robustness check and out-of-sample evaluations, the rolling-window updated tree clusters for
other periods (1978 - 2007, 1983 - 2012, and 1988 - 2017) can be found in Appendix II..1. One can
reveal a similar selection set of characteristics, including dollar trading volumes, unexpected earnings,
earnings-to-price, and cashflow-to-price.

9A moderately deep decision tree with large leaves (sample size) is robust and easy to understand.
Accordingly, we set the maximum tree depth to 5 (at most 16 leaves) and specify the minimum leaf
size of 10,000 stock return observations. With these settings, the algorithm automatically stops after 13
splits.
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in Figure 4 displays two or three rows of information: (1) The first line signifies the

intermediate node’s leaf number and the split order. For example, the top root leaf

represents the initial partition, and its first row of records corresponds to N1 and S1.

(2) Our algorithm determines the optimal split rule, reported in the middle line. Ob-

servations satisfying the conditions are directed to the left child node, while those not

meeting the criteria are directed to the right-hand side. The terminal leaves, which

do not undergo additional splitting, are represented by their index number alone in

the first line. Lastly, (3) the S2N ratio, R2, of the cluster-wise return predictability is

displayed for every leaf node in the complete tree structure.

Before any split, the aggregate return predictive ability (R2) using a homogeneous

model is 1.40%, which aligns with the overall predictability reported in the existing lit-

erature. After the first split, this metric improves significantly for stock returns with

low dollar trading volume (DOLVOL ≤ 0.3, reaching 2.70% at N2), while it declines

slightly in the complement set (reducing to 1.24% at N3). The R2 difference (2.70-

1.24)% is the maximal value discovered through the complete search by our algorithm.

The low-volume stocks may present low liquidity, being small-caps or distressed, re-

lated to the findings of Avramov et al. (2023). Figure 5 illustrates the average R2 values

for each year and each decile cluster sorted by different characteristics.10 It is evident

that there is a distinct pattern of decreasing predictability in returns for stocks with

higher dollar trading volumes, and this trend has remained consistent over time. Ad-

ditionally, Figure 5 provides only the marginal information derived from the decision

tree depicted in Figure 4.

The second split selects the high earnings-to-price stocks (EP > 0.7), leading to

an R2 value of 4.43% at N5, within the low dollar trading volumes cluster. Value

stocks characterized by low volumes demonstrate a higher level of return predictabil-

ity, while non-value stocks with small trading volumes witness a lower R2 of 2.34%.

The maximum difference in R2 (4.43-2.34)% is determined by the comprehensive search

for the left leaf N2 (stocks with low dollar trading volumes, DOLVOL ≤ 0.3) and the

10For robustness check, the rolling-window updated characteristics-sorted return predictability heat
maps on other periods (1978 - 2007, 1983 - 2012, and 1988 - 2017) are shown in Appendix II..1.
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right leaf N3 (stocks without low dollar trading volumes, DOLVOL > 0.3). We can

also observe that the EP-sorted decile cluster exhibits an ascending trend for higher

R2 in Figure 5. The sub-figure located in the bottom right, sorted by DOLVOL and EP,

highlights the interaction pattern for stocks with low DOLVOL and high EP, exhibit-

ing the highest return predictability on the bottom right region (the darkest shading).

Upon reviewing the rolling-window updated results in Appendix II..1, it is evident

that stocks with low dollar trading volumes and high value (such as earnings-to-price

or cashflow-to-price) demonstrate the highest level of return predictability. The de-

cision tree further identifies the less predictable clusters with an R2 value of 1.03%

by {DOLVOL > 0.3} and {SVAR ≤ 0.7}: stocks without low trading volumes but have

non-high volatility.

Figure 6 summarizes the return predictability from the tree-based clustering, re-

sembling a mosaic painting. The sample period, encompassing all 360 months, is

aligned with the tree structure in Figure 4. There are approximately 4,000 to 6,000

stock return observations in each month. We arrange clusters horizontally based on

their respective R2 values with an ascending order from light (left) to dark (right).

The length of each color bin represents the proportion of observations for each cluster

within each month. As the R2 values increase, the proportions of observations tend

to decrease, indicating that most stock returns have low S2N ratios. Conversely, only

a tiny percentage of observations exhibit high predictability, reflected by R2 values

around 10%. This vertical mountain-like cascading appearance of the consistent mo-

saic structure can be characterized by its variations in cross-section, time series, and

colors, offering insights into the heterogeneous predictability of stock returns. Figure

4 summarizes these facts by displaying an organized decision tree that partitions the

cross-section of stock returns based on firm characteristics.

Return Difference Between Clusters. We now explore the cluster-wise predictive

performance for four trees grown with different periods in Table 1. In addition to the

selected splitting criterion R2 from Eq. (6), we report the number of observations and

the forecast-implied portfolio investment performance by Eq. (9). The table indicates
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Figure 5: Mosaics of Predictability by Predictors (Cross Section, 1973 - 2002)

We present four heat maps to summarize the average return predictability, R2 values (% in the color
bar), for the panel of individual stock returns corresponding to the tree-based clustering results from
Figure 4. The first three illustrate the average R2 values for groups categorized by various years and
deciles based on different characteristics (dollar trading volumes, earnings-to-price, and market equity
value). The last one displays the average R2 values for the 10 × 10 groups by bivariate-sorted deciles
for the top two characteristics.

that each tree structure has a specific count of terminal nodes (14, 16, 15, and 16 leaves

for those four trees, respectively), allowing for further growth without triggering the

termination criteria.

First, when interpreting this table horizontally in descending order of R2, it be-
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Figure 6: Mosaics of Predictability (Cross Section, 1973 - 2002)

This heat map summarizes the predictability, R2 values (% in the color bar), for the panel of individual
stock returns by the tree-based clustering in Figure 4. The vertical axis represents months, and colors
from light to dark indicate ascending levels of return predictability of each cluster within each month.
Horizontally, the length of each color bin corresponds to the proportion of observations for each cluster.

comes evident that there is substantial heterogeneity among the clusters. The varying

values of R2 indicate that each cluster exhibits a different level of predictability, high-

lighting the diversity within the dataset. Across all the tree models generated by each

sample, the clusters with the highest R2 values consistently exceed 9.5% (the second

tree, ranging from 1978 to 2007, leaf N29 contains the highest R2 value of 12.09%),

while the lowest values drop nearly below 1% or even negative (still the second tree,

leaf N19 contains the lowest R2 value of -0.02%). Besides, even though there may be a
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few exceptions among the leaves in the middle ranks, it is notable that the investment

performances generally remain relatively stable, following a descending trend similar

to the predictability.11 As an example, in Figure 4, the leaf with the largest R2 value

(N23, labeled in red with R2 = 11.93%) possesses relatively higher monthly average

return and annualized Sharpe ratio, especially for the value-weighted portfolio (VW,

3.66% and 2.08). Oppositely, the cluster with the lowest predictability (N24, labeled

in blue with R2 = 1.03%) exhibits nearly the smallest values (0.73% and 0.96 for VW).

Regardless of distances or orders, it is evident that observations belonging to clusters

with higher R2s are more likely to be easily predicted.

Second, if we illustrate the results vertically, except for the different number of

leaves mentioned above, the leaf node indexes and the interactive paths vary among

those four tree structures. Even though the leaf nodes may be labeled with the same in-

dex numbers, most are determined by different interactions of firm characteristics and

possess distinct summary statistics. Therefore, this table transforms the tree architec-

tures by the predictability orders on horizontal and vertical dimensions, offering an

alternative perspective for the mosaics of stock returns.

Out-of-Sample Evaluations. Motivated by the previous cluster-wise predictability

rankings analysis, we have temporarily identified potential predictable clusters of spe-

cific stocks. Hence, examining the combinations of stock returns at different levels of

predictive capacity offers an additional perspective for discerning the mosaics corre-

sponding to our tree-based clustering algorithm. Gu et al. (2020) have documented

overall return predictability by advanced machine learning techniques. In contrast,

simpler models are sufficient for our purpose of evaluating clustering. We mainly fo-

cus on assessing heterogeneity within clusters and drawing meaningful insights rather

than model comparisons. In line with the five-year rolling update clustering setup,

we adopt the same horizon with a 2-fold cross-validation tuning strategy for hyper-

11Figure A.1 in the Appendix provides a clearer visualization of the positive relationships between
cluster-wise predictability and forecast-implied portfolio investment performance. The points in differ-
ent shapes reflect the corresponding positions of predictability (R2 on the horizontal axis) with average
returns (left vertical axis) and Sharpe ratios (right vertical axis), respectively.
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Table 1: Cluster-Wise Performance (Cross Section)

This table presents the performance of the cross-sectional tree-based clustering model for four sub-
samples. The in-sample return predictability, R2 (in %), are calculated by Eq. (6). ”# obs” represents
the number of stock returns for each cluster. ”Avg” and ”SR” denote the monthly average return (in %)
and annualized Sharpe ratio for both cluster-wise equal-weighted and value-weighted forecast-implied
portfolios, respectively. Each panel of values is arranged in the descending order of R2 from left to right.

1973-2002 N23 N16 N22 N20 N14 N30 N21 N18 N17 N13 N25 N31 N19 N24

# obs 11,613 14,766 16,293 12,158 15,569 115,226 97,125 49,145 87,720 11,620 249,313 178,386 133,947 931,397
R2 11.93 7.92 7.38 6.72 3.68 3.29 3.23 3.18 3.06 2.56 2.32 1.95 1.75 1.03
AvgEW 4.47 4.21 3.26 2.53 2.18 3.23 2.13 2.43 3.17 1.36 1.62 2.12 1.99 1.11
SREW 2.35 1.46 1.94 1.47 1.05 1.74 2.71 1.48 2.17 1.03 1.45 1.18 2.10 1.43
AvgVW 3.66 3.47 2.64 2.14 2.13 2.75 1.78 1.97 2.17 0.83 0.96 1.72 1.55 0.73
SRVW 2.08 1.42 1.91 1.35 0.88 1.44 2.51 1.58 2.07 0.52 0.99 0.87 1.84 0.96

1978-2007 N29 N28 N30 N27 N22 N16 N31 N25 N20 N23 N26 N17 N21 N24 N18 N19

# obs 12,552 18,592 21,651 12,423 10,555 14,179 74,328 45,861 193,627 21,685 21,003 169,875 224,019 235,354 764,417 141,215
R2 12.09 7.53 7.30 5.77 5.47 3.87 3.36 2.75 2.73 2.69 2.42 2.12 1.68 1.43 1.05 -0.02
AvgEW 4.22 3.10 2.18 3.12 2.86 2.05 1.84 2.60 3.08 1.93 1.97 1.44 1.96 1.65 0.96 0.78
SREW 2.57 2.20 2.02 2.01 1.24 1.67 1.30 1.69 2.07 0.90 1.89 2.94 1.25 1.38 1.15 0.90
AvgVW 3.37 2.60 1.34 1.57 2.72 1.84 1.10 1.22 2.76 1.98 0.55 1.21 1.85 0.93 0.68 0.63
SRVW 2.40 2.21 1.31 1.06 1.13 1.54 0.87 0.79 1.63 0.89 0.48 2.57 1.01 0.83 0.87 0.60

1983-2012 N23 N16 N21 N22 N30 N28 N13 N20 N31 N25 N19 N29 N17 N18 N24

# obs 15,317 15,353 12,303 14,936 12,603 13,754 11,998 72,010 28,254 12,916 273,188 297,891 25,463 66,235 1,105,104
R2 10.00 6.89 6.59 6.02 5.13 3.17 2.85 2.70 2.34 2.26 2.04 1.90 1.24 1.24 1.01
AvgEW 4.35 2.88 2.41 3.12 3.11 1.85 2.49 2.58 1.89 1.22 2.09 2.44 1.57 1.48 1.05
SREW 2.46 1.03 2.11 2.24 1.32 0.80 1.48 1.68 0.85 0.97 3.46 1.24 1.21 1.59 1.24
AvgVW 3.72 2.24 2.15 2.67 3.06 1.99 2.21 1.88 1.67 1.04 1.62 2.28 1.45 1.24 0.76
SRVW 2.34 0.96 2.09 1.97 1.21 0.80 1.05 1.60 0.76 0.72 3.26 1.12 1.10 1.73 0.93

1988-2017 N28 N26 N16 N29 N30 N22 N27 N25 N19 N21 N31 N17 N23 N18 N24 N20

# obs 25,215 21,843 14,240 10,026 38,491 16,012 31,483 51,787 108,304 48,586 34,861 23,006 235,484 237,528 242,284 721,470
R2 9.88 7.31 6.92 5.59 4.31 3.13 3.01 2.97 2.34 1.77 1.58 1.53 1.47 1.37 1.24 0.75
AvgEW 3.51 1.95 3.03 3.02 2.93 1.67 1.57 2.75 1.63 1.85 1.28 1.62 1.93 1.86 1.50 0.91
SREW 2.71 2.05 1.11 2.04 1.81 0.76 1.22 1.49 2.86 1.11 0.89 1.10 1.01 2.59 1.21 1.07
AvgVW 2.13 1.45 2.50 2.45 2.16 1.74 1.37 1.65 1.35 1.19 0.90 1.49 1.74 1.40 0.96 0.70
SRVW 1.57 1.30 1.03 1.47 1.49 0.65 1.16 1.02 2.49 0.70 0.78 0.99 0.82 2.39 0.96 0.80

parameter optimizations to achieve the most accurate predictions of stock returns.12

According to the tree structures and the initial performance in Table 1, we catego-

rize all the leaves into two (highly predictable leaves against all other clusters) or three

(high, medium, and low) groups corresponding to the ranks of return predictability.13

Next, we aggregate the observations across multiple clusters within each part as a

new sub-sample. For example, in Figure 4, we identify N23, N16, N22, and N20 as the

highly predictable clusters, while N24 represents the less predictable sub-sample. All

nine remaining leaves are aggregated to form the sample with medium predictabil-

ity.14 Since we lack prior knowledge regarding which stock returns with specific char-

12We divide the in-sample data into two equally continuous periods, training the model on one period
while validating it on the other. We identify the best parameter by comparing the average MSE and
retraining the model using all the in-sample data. Finally, we input the coefficients to predict the next
five years of out-of-sample values.

13In all subsequent tables and figures, the sub-sample labeled as ”Others” refers to the combination
of ”Medium” and ”Low,” i.e., ”Others” = ”Medium” + ”Low.”

14We determine the level of predictability of each leaf by balancing the R2 values and the proportion
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acteristics are predictable in advance, we could not explore the evaluations, such as

classification performance. Therefore, we assess the R2 in Eq. (8) to further justify the

mosaics of stock return predictability on the cross-section.

Table 2: Out-of-Sample Evaluations (Cross Section)

This table reports the return predictability, R2s (in %), based on different predictive methods. We
present in-sample (1973 - 2002) and out-of-sample (2003 - 2022, updated every five years) results.
We provide six samples: Global (no clustering), Overall (aggregation clustering results), High, Others
(Medium + Low), Medium, and Low, determined by the predictive rankings within the tree clusters.

Panel A: In-Sample (1973 - 2002) Panel B: Out-of-Sample (2003 - 2022)

Sample OLS Lasso Ridge OLS Lasso Ridge

Global 1.40 0.49 0.79 0.50 0.44 0.46
Overall 2.30 1.54 1.49 0.24 0.57 0.63

High 8.11 7.04 6.49 1.35 1.70 1.87
Others 2.05 1.30 1.27 0.19 0.53 0.58
Medium 2.58 1.79 1.69 0.02 0.60 0.69
Low 1.03 0.35 0.48 0.37 0.45 0.45

Table 2 provides the R2 statistics based on three model predictions. Before per-

forming any clustering procedures, our data presents similar predictable patterns cor-

responding to previous research using the entire sample (the first row, ”Global”), par-

ticularly noticeable signal similarities over the recent 20 years. On the contrary, the

”Overall” sample represents the consolidation of cluster-wise predictions, and almost

all the values slightly improve, which reflects the helpfulness of segmenting forecasts.

Subsequently, regardless of the techniques employed, the highly predictable portion

outperforms any other samples significantly (out-of-sample R2 values are all at least

over 1.3%). If we remove the observations from the relatively predictable leaves from

the entire dataset, the predictability will be reduced (the drop from ”Overall” to ”Oth-

ers”). The clusters with the lowest predictability consistently exhibit the worst per-

formance in the last line. Moreover, even though the magnitudes of improvements or

declines may vary across different methods, it does not affect that they exhibit consis-

tent trends. These phenomena can be further confirmed within the in-sample analysis.

of observations. We prioritize identifying highly predictable observations by looking for significant
jumps in the R2 values, while most stock returns cannot be predicted well.
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All the results allow us to detect the cross-sectional mosaics of return predictability

among stocks by different firm characteristics.

4.2 Time Series Regime Change

From our initial analysis of Table 1, we have observed evidence suggesting that

return predictability can be time-varying (e.g., Farmer et al., 2023). Building upon this

finding, we extend our analysis by introducing additional partitions along the time

dimensions. To ensure interoperability, we employ macroeconomic variables to di-

vide in time horizons. They can separate the entire period into multiple discontinuous

regimes, encouraging us to assess the predictability of stock returns across different

regimes without the need for rolling window analysis. By restricting the utilization

of macroeconomic variables for the first two splits15 and continuing to employ firm

characteristics for cross-sectional partitions, we create a comprehensive approach that

facilitates the implementation of a timing and stock selection framework. This ap-

proach allows us to concurrently identify the types of stocks that exhibit improved

predictability during specific time horizons.

Clustering Presentation. Because we utilize macroeconomic variables to detect time-

varying predictability instead of the previous rolling window strategy, there will be

only one tree-based clustering structure for the time series split by the entire 50-year

sample. Figure 7 consolidates each cluster’s quantitative measurements and visualizes

the decision tree structure. This tree eventually produces 33 leaves16 within different

predictive capacities. Similar to the cross-section, each leaf node in the tree provides

specific information: (1) The first row indicates the node index (including or excluding

the division number); (2) The final line displays the cluster-wise model R2 from Eq. (6);

(3) The middle part of the dividing leaf represents the variable used for partitions and

15We have attempted to incorporate all macroeconomic variables and firm characteristics into our
tree-based clustering algorithm. Regardless of the setups for parameters of trees, they all choose
macroeconomic variables for the first two layers’ partitions, indicating a preference for initially separat-
ing based on time series. To ensure that the frequency of regime changes is not excessive, we limit the
first two divisions to occur along the time dimension and retain others for subsequent cross-sectional
partitions.

16We limit the maximum tree depth under each regime to 5 (48 leaves at most) and the minimum leaf
size to 10,000 stock return observations.
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the selected threshold.

Specifically, the overall R2 of the entire sample is 1.35% before any segmentation.

After the first two splits, this number improves significantly in the higher dividend

yield and lower default yield period (X DY > 0.7 and X DFY ≤ 0.3, reaching 14.81%

at N6). Meanwhile, it slightly decreases in the regime with non-high dividend yield,

reducing to 1.18% at N2. Furthermore, further partitions based on cross-sectional di-

mensions can amplify the heterogeneity of stock return predictability. For example,

the leaf node N13 (labeled in red) has the highest R2 (21.53%), while the worst cluster

N43 (labeled in blue) shows a negative value (-13.12%). This span is more extensive

than only cross-sectional clustering results in section 4.1, which reflects that keeping

partitions on the cross-section after the time series can enlarge the distance to achieve

a more significant mosaic effect.

Figure 8 below presents the same information differently. The color switches re-

flect regime changes based on various combinations of macroeconomic variables, with

the color bar conveying messages of heterogeneity. The span is much larger than that

of the cross-sectional case. Under each regime, the further cross-sectional divisions by

firm characteristics widen the gaps across different sub-samples. Highly predictable

clusters consistently display higher predictability and profitability than those with the

lowest predictive ability. They always sandwich the time series heterogeneity (before

further cross-sectional clustering) between them. Besides, regime switches may be

triggered by several global events, including the Oil Crisis (1973, 1979), the Lehman

Brothers Bankruptcy (2008), and the Brexit Referendum (2016). Other events are more

likely to occur during periods of relatively lower predictability. For example, the

regime associated with a dividend yield opposite to the upper 30% level (shown in

orange) encompasses events such as Black Monday (1987), the Asian Financial Crisis

(1997 - 1998), the Internet Bubble (2000), the Euro Negative Interest Rate (2014), and so

on. These figures and statistics confirm that our algorithm can consistently differen-

tiate between predictable observations and poorly predicted stock returns across dif-

ferent dimensions, including cross-sectional and time series. It is essential to consider
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these factors together and their potential impact on the global economic environment.

Figure 8: Time Series Regimes (Macro Variables)

This figure shows macroeconomic variables’ detected time series regime switches (see Figure 7) from
1973 to 2022. Three different colors represent different regimes: non-high dividend yield (X DY ≤ 0.7 in
orange, 426 months), high dividend yield with low default yield (X DY > 0.7 & X DFY ≤ 0.3 in pink, 16
months), and high dividend yield with non-low default yield (X DY > 0.7 & X DFY > 0.3 in grey, 158
months), reflecting heterogeneous predictability based on their relative positions in the bottom color
bar. The shaded areas represent NBER recession periods, while the labeled texts show global events
that affect the world economy. Two vertical axes represent the highly (red) and less (white) predictable
clusters’ heterogeneous predictability and profitability after further cross-sectional partitions.

Compared to the cross-section, the mosaics of stock return predictability on time

series in Figure 9 appear messier. The vertical axis still represents the months across

50 years, while not all clusters are visible along the horizontal dimension due to time

series partitions. By sorting the cluster-wise model R2 values for predictability in

ascending order and then aggregating monthly again, we can observe that the mo-

saics are layered. Although the color lengths may not convey as much information as

the cross-section, the discrepancies across regimes are undeniable. Most of the clus-

ters show low predictability in light yellow. Conversely, specific periods, like 1978

and 2016, exhibit darker colors, indicating higher predictive accuracy. The colors fre-

quently shift among these clusters, highlighting variations in different regimes. Fur-

thermore, we incorporate macroeconomic predictors and generate four heat maps by

bivariate-sorted deciles. It’s easy to identify the highly predictable periods from the
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Figure 9: Mosaics of Predictability (+ Time Series)

This heat map summarizes the predictability, R2 values (% in the color bar), for the panel of individ-
ual stock returns based on the tree-based clustering in Figure 7. The vertical axis represents months,
and colors from light to dark indicate ascending levels of return predictability of each cluster within
each month. The colors shown to differ over time correspond to the macroeconomic regimes detected.
Horizontally, the length of each color bin denotes the proportion of observations for each cluster.

top-left sub-figure and cross-section with high earnings-to-price, performance score,

and earning surprise. Before determining their precise interpretations, we could ob-

serve the mosaic patterns when adding in time series considerations.

Difference Among Clusters. Similar to the cross-section, we also detect single-leaf

statistics of the predictive abilities. By including information from time series parti-

tions, Table 3 also converts the tree structure shown in Figure 7 into the predictability
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Figure 10: Mosaics of Predictability by Predictors (+ Time Series)

We present four heat maps to summarize the average return predictability, R2 values (% in the color
bar), for the panel of individual stock returns corresponding to the tree-based clustering results from
Figure 7. Each sub-figure displays the average R2 values for the 10 × 10 groups by bivariate-sorted
deciles for different pairs of predictors. The empty grids with ”×” represent no observations falling in
those specific intervals.

rankings for each regime to identify heterogeneity.

In this table, the gaps between two-side extremes are more comprehensive than

the cross-sectional situation in Table 1, where the highest value is over 20% (N13 with

21.53%) and the lowest one is negative (N43 with -13.12%). Vertically, each regime
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has its wideness of predictability, which differs enormously. Besides, arranging the

R2 statistics in descending order within each group makes the mosaics of stock return

predictability across the clusters more obvious. While the forecast-implied portfolio

average returns do not consistently decrease across different categories as in the pre-

vious analysis, there is still a slight positive relationship between average returns and

R2 values.

Table 3: Cluster-Wise Performance (+ Time Series)

This table shows the performance of the tree-based cluster model based on time-series and cross-
sectional splits in Figure 7. The in-sample return predictability, R2 (in %), are calculated by Eq. (6).
”# obs” represents the stock returns count for each cluster. ”Avg” and ”SR” denote the monthly aver-
age return (in %) and annualized Sharpe ratio for both cluster-wise equal-weighted and value-weighted
forecast-implied portfolios, respectively. Each regime of values is arranged in the descending order of
R2 from left to right.

Regime I N44 N38 N45 N46 N41 N35 N33 N37 N39 N47 N34 N40 N42 N36 N32 N43

# obs 39,868 10,713 14,272 48,123 23,028 26,078 13,843 55,141 26,423 45,511 423,779 339,143 70,263 270,289 762,250 17,163
R2 10.01 6.12 5.30 4.60 4.51 3.47 2.55 2.40 2.02 1.91 1.81 1.67 1.50 1.33 0.85 -13.12
AvgEW 2.88 3.66 2.25 2.51 1.33 1.93 2.05 2.54 1.70 1.29 2.22 1.24 1.19 1.57 0.91 0.95
SREW 2.67 2.06 1.85 1.76 1.20 0.82 0.93 1.55 1.54 0.89 1.23 1.33 1.03 1.38 1.04 0.91
AvgVW 1.63 3.27 1.38 1.94 1.12 1.97 1.77 1.41 0.80 1.18 1.97 0.78 1.00 0.96 0.78 0.63
SRVW 1.45 1.84 1.00 1.56 0.76 0.81 0.67 1.10 0.78 0.88 1.00 0.82 0.78 0.87 0.89 0.35

Regime II N13 N25 N49 N96 N97

# obs 11,785 13,623 10,093 10,643 15,287
R2 21.53 17.91 16.07 15.37 11.20
AvgEW 4.46 3.89 3.96 3.98 3.68
SREW 2.71 2.42 2.18 2.63 2.38
AvgVW 3.22 2.66 2.88 2.70 2.43
SRVW 2.76 2.44 2.13 2.13 2.51

Regime III N63 N59 N62 N114 N61 N117 N121 N115 N120 N113 N116 N112

# obs 14,069 12,037 15,462 12,945 17,552 14,652 19,549 48,111 73,898 99,165 31,901 290,629
R2 10.06 6.09 6.06 5.84 5.68 5.49 5.43 3.70 3.65 3.39 3.22 2.21
AvgEW 4.80 2.81 3.26 2.70 3.29 3.77 2.49 2.71 2.46 2.38 2.80 1.73
SREW 1.93 1.53 1.77 1.27 1.70 1.99 1.64 1.59 1.79 1.32 1.59 1.49
AvgVW 3.23 2.33 2.03 2.24 2.11 3.13 1.75 1.70 1.92 1.43 2.21 1.22
SRVW 1.55 1.23 1.26 1.01 1.58 1.57 1.32 1.26 1.71 1.04 1.25 1.18

Aggregate Evaluations. We base our time series segmentation on the entire 50-year

sample and no longer separate in-sample and out-of-sample statistics. The first two

splits by aggregate predictors separate the whole period into three regimes, allowing

us to detect predictability within each one. By balancing the proportion of observa-

tions with R2 values, we aggregate the clusters into several sub-samples and report

the predictability in Table 4.

When comparing performance without cross-sectional clustering, most aggrega-

tion clustering results can improve the accuracy of predictions. Filtering out large-cap
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Table 4: Evaluating Return Predictability (+ Time Series)

This table reports the return predictability, R2s (in %), based on different predictive methods under
various regimes. We present the full-sample results based on the tree-based cluster model incorporating
both time series and cross-sectional splits. Under each regime, we present five samples: Global (no
cross-sectional clustering, with Ridge results in brackets), Overall (aggregation clustering results), High,
Medium, and Low, determined by the predictive rankings within the tree clusters.

Sample A: All Stocks Sample B: Large-Cap

Regime I (1.18): 1{X DY ≤ 0.7}
OLS Lasso Ridge OLS Lasso Ridge

Overall 1.60 0.96 1.57 1.62 1.10 1.60
High 10.00 9.38 10.10 6.43 6.82 6.72
Medium 1.92 1.21 1.88 2.19 1.58 2.17
Low 0.33 -0.08 0.32 0.66 0.25 0.63

Regime II (14.81): 1{X DY > 0.7}1{X DFY ≤ 0.3}
OLS Lasso Ridge OLS Lasso Ridge

Overall 16.50 12.14 14.18 21.29 16.38 18.46
High 21.96 15.54 18.23 25.87 19.26 21.64
Medium 16.94 13.01 14.75 19.21 15.47 16.99
Low 11.44 7.40 9.75 19.64 14.34 17.34

Regime III (2.98): 1{X DY > 0.7}1{X DFY > 0.3}
OLS Lasso Ridge OLS Lasso Ridge

Overall 3.61 2.64 3.44 3.55 2.64 3.36
High 10.07 9.85 9.88 6.94 6.98 6.86
Medium 4.15 3.25 3.96 4.11 3.42 3.92
Low 2.22 1.08 2.09 2.85 1.67 2.66

stocks also reveals specific predictability trends in different market conditions. Across

these three regimes, each sub-sample in the second period (X DY > 0.7 and X DFY ≤

0.3) performs significantly better than the others. Regardless of the techniques and

data portions used, declining trends remain stable in the last three rows within each

period. The highly predictable sub-sample consistently achieves the largest R2 values,

while the lowest performs worse than all other samples, including the value without

further cross-sectional clustering (”Global”). Despite differing magnitudes, the im-

provement and decline patterns across different methods exhibit similarities. These

phenomena help us further understand the mosaics of full-sample stock return pre-

dictability or heterogeneity among stocks in different characteristics and market con-

ditions.
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4.3 Calendar Months Structural Break

In addition to using macroeconomic information for regime changes, we incor-

porate contemporary methodologies for time series segmentation. This approach in-

volves directly examining structural breaks based on calendar months (e.g., Smith and

Timmermann, 2021). It can be conducted without imposing restrictions on variables,

and the aim is still to assess whether dividing continuous periods can capture the het-

erogeneity of stock return predictability.

Figure 11: Time Series Regimes (Calendar Months)

This figure shows the detected time series regime switches by calendar months from 1973 to 2022.
There are a total of eight continuous colors that represent different regimes, reflecting heterogeneous
predictability based on their relative positions in the bottom color bar. The shaded areas represent NBER
recession periods, while the labeled texts show global events that affect the world economy. Two vertical
axes represent the highly (black) and less (white) predictable clusters’ heterogeneous predictability and
profitability after further cross-sectional partitions.

Figure 11 shows that the predictability of stock returns varies across different time

horizons, even though the span is minor than using macroeconomic variables. For ex-

ample, the predictability is relatively highest from September 1978 to August 1983

(7.77%, labeled in purple), whereas it is only 1.51% from February 1994 to March 2003

(labeled in red). The occurrences during this period, such as the Asian Financial Cri-

sis (1997 - 1998), the Internet Bubble (2000), and the 9/11 terrorist attacks (2001), may
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have contributed to the challenges of predicting stock returns. Similar incidents like

the Oil Crisis (1979), the Lehman Brothers Bankruptcy (2008), and the Brexit Referen-

dum (2016) also trigger regime changes to other predictability levels. Additionally, the

heterogeneity gap will be more pronounced if we continue to segment in cross-section

under each time series period. Different regimes’ predictive abilities and investment

performance are still in the middle compared with relatively high (black) and low

(white) predictable sub-samples. The trends remain similar across various periods to

some extent. These findings again confirm our assumptions regarding the heteroge-

neous predictability of stock returns, highlighting their mosaic nature.

4.4 Heterogeneous Predictability Interpretations

In summarizing the analysis and reviewing the tree structures across both cross-

sectional and time-series dimensions, we have identified significant disparities in pre-

dictability results across different sample intervals.

Upon examining the time series dimension, we have observed that the interac-

tions between characteristics and macroeconomic variables vary significantly across

three different regimes. Unsurprisingly, the most and least predictable clusters emerge

from regimes characterized by high and low predictability (Regime II and I as defined

in Table 3 and 4), respectively. Stock returns with higher predictability tend to occur

in periods of higher dividend yield (X DY > 0.7). Delving deeper into this subset,

the regime with lower default yield (X DFY ≤ 0.3) demonstrates greater predictability

than the opposite. These two periods outperform those when the dividend yield is

non-high (Regime I).

Furthermore, incorporating the cross-sectional considerations, highly predictable

market conditions prioritize stocks with higher performance scores (PSCORE > 0.7) or

greater momentum (MOM1M > 0.7). Conversely, observations lacking high earnings-to-

price ratios (EP≤ 0.7) and earnings surprises (SUE≤ 0.7) are typically categorized into

medium or low predictability sub-samples.

In addition, by exclusively focusing on the cross-sectional divisions and disre-

garding the time series factors, the highly predictable leaf consistently converges on
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the similar splitting candidate: stocks with lower dollar trading volumes (DOLVOL

≤ 0.3) and larger unexpected earnings (SUE > 0.7). For the other components in those

four clustering structures, the first two trees select observations with high earnings-

to-price ratios (EP > 0.7), while the latter two prefer stocks with high cash flows (CFP

> 0.7), all of which represent high-value stocks. Oppositely, several characteristics

commonly appear in less predictable clusters across different sample periods, such as

non-high unexpected earnings (SUE ≤ 0.7), lower volatility (SVAR ≤ 0.7), or being in

the top 30% of dollar trading volumes (DOLVOL > 0.3). Some of these findings are

consistent with the results obtained from time-based splitting.

All these results confirm that stock return predictability can be viewed as a mo-

saic. The interactive paths of firm characteristics and/or aggregate predictors are con-

structive in interpreting clustering outputs.

5 Economic Gains on Cluster-wise Models

The previous discussions have mainly concentrated on predicting stock returns.

This section will broaden our perspective on their relationship: whether highly pre-

dictable stock returns can lead to higher economic gains. It is crucial to distinguish

between high stock return predictability and high actual returns. The former evalu-

ates the accuracy of the prediction, while the latter assesses the profitability that can

be gained from investing in specific stocks.

Following the same aggregation strategy as Table 2, we categorize stocks into

deciles based on Ridge predictions17 and construct equal-weighted, value-weighted

long-short portfolios, and forecast-implied portfolios based on all observations. The

investment performance is detailed in Table 5.

The first row of all the panels demonstrates the predictive facts for our entire data

set (”Global”). For example, Panel A shows an out-of-sample Sharpe ratio of 0.76 and

a market alpha of 1.16%. These numbers slightly improve when we aggregate clus-

tering results (”Overall” with 1.22 and 2.17%). Portfolios constructed from high pre-

17This is to differentiate our paper from other machine learning literature and maintain consistency
with the same model used for tree-based clustering.
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Table 5: Forecast-Implied Investment Performance (Cross Section)

This table reports the baseline investment performance for value-weighted, equal-weighted, and
forecast-implied portfolios. We present in-sample (1973 - 2002) and out-of-sample (2003 - 2022, up-
dated every five years) results. We provide six samples: Global (no clustering), Overall (aggregation
clustering results), High, Others (Medium + Low), Medium, and Low, determined by the predictive
rankings within the tree clusters. Four columns in each panel display monthly average return (Avg,
in %), annualized Sharpe ratio (SR), market alpha (in %), and maximum draw-down (MDD, in %),
respectively.

In-Sample (1973-2002) Out-of-Sample (2003-2022)

Panel A: Value-weighted Long-short Portfolio

Avg SR Alpha MDD Avg SR Alpha MDD

Global 3.48 2.40 3.55∗∗∗ 26.18 0.90 0.76 1.16∗∗∗ 38.41
Overall 4.85 2.77 4.94∗∗∗ 42.19 2.00 1.22 2.17∗∗∗ 34.10

High 6.81 2.28 6.55∗∗∗ 42.29 3.52 1.15 2.95∗∗∗ 61.33
Others 4.38 2.54 4.50∗∗∗ 40.05 1.90 1.16 2.05∗∗∗ 35.35
Medium 5.81 3.30 5.89∗∗∗ 22.33 2.62 1.43 2.67∗∗∗ 22.35
Low 2.58 1.63 2.68∗∗∗ 41.44 1.03 0.66 1.31∗∗∗ 42.13

Panel B: Equal-weighted Long-short Portfolio

Avg SR Alpha MDD Avg SR Alpha MDD

Global 5.13 3.50 5.19∗∗∗ 50.05 2.64 2.15 2.75∗∗∗ 26.64
Overall 6.21 5.57 6.24∗∗∗ 22.82 3.72 2.98 3.85∗∗∗ 19.95

High 7.69 2.49 7.47∗∗∗ 37.82 5.11 1.57 4.68∗∗∗ 54.75
Others 5.75 4.60 5.78∗∗∗ 27.79 3.50 2.65 3.60∗∗∗ 24.68
Medium 7.34 6.12 7.34∗∗∗ 19.39 5.07 3.06 5.00∗∗∗ 8.32
Low 3.03 2.34 3.11∗∗∗ 54.83 1.50 1.18 1.77∗∗∗ 38.11

Panel C: Forecast-implied Portfolio

Avg SR Alpha MDD Avg SR Alpha MDD

Global 2.10 1.94 1.95∗∗∗ 18.13 1.43 1.15 0.77∗∗∗ 44.44
Overall 3.07 2.88 2.95∗∗∗ 9.95 1.84 1.46 1.26∗∗∗ 44.74

High 4.48 1.77 4.01∗∗∗ 28.06 3.16 1.59 2.29∗∗∗ 42.44
Others 2.76 2.64 2.69∗∗∗ 21.16 1.68 1.37 1.16∗∗∗ 45.17
Medium 3.23 2.97 3.21∗∗∗ 23.08 1.90 1.17 1.17∗∗∗ 44.54
Low 1.24 1.08 0.98∗∗∗ 24.19 1.23 1.04 0.74∗∗∗ 46.72

dictability stock returns consistently yield superior profitability. For instance, the av-

erage return and market alpha display multiplicative improvements compared to the

overall sample, reaching 3.52% and 2.95% in the out-of-sample. Although highly pre-

dictable stock returns can generate more economic gains, they also come with higher

risks. Lower Sharpe ratios and higher maximum draw-downs both reflect the evi-

dence of higher volatility for highly predictable clusters. On the other hand, clusters
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with the lowest predictability consistently perform the worst in terms of profitability,

with more than half the average return (1.03%), Sharpe ratio (0.66), and market al-

phas (1.31%) compared to the others. This trend is consistent across equal-weighted

long-short portfolios. However, if we apply a long-short strategy based on all of the

observations (Panel C), the forecast-implied portfolios consistently show that highly

predictable stocks can bring us more profits than all other sub-samples.

Nonetheless, all evaluations can demonstrate that those highly predictable obser-

vations dominate the economic profitability of the entire sample. Long-short portfolios

are more sensitive to those extreme situations. The mosaics of stock return predictabil-

ity significantly influence investment gains. Removing highly predictable observa-

tions from the sample may substantially reduce the profits that investors can achieve.

Using a similar segmentation mechanism as in the cross-sectional analysis, we

gather sub-sample information according to time series divisions and present the eco-

nomic gains in Table 6.18 Surprisingly, the relationship between return predictability

and profitability improves when considering time series information in addition to

cross-sectional partitions. This inclusion makes the trend more stable and precise. The

clusters with higher predictability consistently show the highest profits and the low-

est volatility compared to others, especially for large-cap sub-samples. For example,

in Panel A, the Sharpe ratio of the highly predictable sub-sample reaches 4.63 with an

average return of 4.15%. In contrast, the lowest predictability clusters achieve only

half or less of these values (1.20 for ”SR” and 1.66% for ”Avg”).19 There are also sim-

ilar situations for market alphas and maximum draw-downs. The large-cap samples

present relatively worse numbers but stable trends.

Therefore, when we integrate the evidence from cross-sectional and time series

analysis, stocks with greater predictability of returns can lead to higher economic

gains. By utilizing tree-based clustering techniques, these strategies can inform in-

18Because the periods are no longer continuous, we use the minimum value of monthly portfolio
return as the maximum draw-down rather than the way calculated in the cross-section. A negative
value means all the portfolio returns are positive.

19It is possible that ”Others” and ”Medium” possess higher Sharpe ratio compared with highly pre-
dictable sub-sample due to more observations, resulting in less volatility. The average returns have
already indicated our estimated trend.
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Table 6: Forecast-Implied Investment Performance (+ Time Series)

This table reports the investment performance for value-weighted, equal-weighted, and forecast-
implied portfolios from 1973 to 2022. The data is split based on time series and cross-sectional dimen-
sions and covers two blocks (All stocks and Large-Cap). We present six samples: Global (no clustering),
Overall (aggregation clustering results), High, Others (Medium + Low), Medium, and Low, determined
by the predictive rankings within the tree clusters. Four columns in each panel display monthly aver-
age return (Avg, in %), annualized Sharpe ratio (SR), market alpha (in %), and monthly maximum
draw-down (MDD, in %), respectively.

Sample A: All Stocks Sample B: Large-Cap

Panel A: Value-weighted Long-short Portfolio

Avg SR Alpha MDD Avg SR Alpha MDD

Global 2.29 1.94 2.37∗∗∗ 16.59 1.65 1.50 1.70∗∗∗ 15.44
Overall 3.82 2.29 3.90∗∗∗ 17.57 2.08 1.58 2.14∗∗∗ 13.72

High 4.15 4.63 4.17∗∗∗ 1.34 3.08 5.55 3.04∗∗∗ 0.19
Others 3.85 2.28 3.92∗∗∗ 17.57 2.10 1.60 2.15∗∗∗ 13.72
Medium 4.72 2.31 4.84∗∗∗ 25.47 2.80 1.49 2.93∗∗∗ 31.65
Low 1.66 1.20 1.71∗∗∗ 17.80 1.22 1.01 1.26∗∗∗ 19.19

Panel B: Equal-weighted Long-short Portfolio

Avg SR Alpha MDD Avg SR Alpha MDD

Global 4.56 3.55 4.67∗∗∗ 24.02 2.22 1.85 2.34∗∗∗ 28.92
Overall 5.51 4.50 5.55∗∗∗ 14.08 2.67 2.04 2.79∗∗∗ 18.72

High 6.44 10.93 6.43∗∗∗ -2.25 3.62 9.54 3.61∗∗∗ -1.63
Others 5.49 4.46 5.52∗∗∗ 14.08 2.66 2.02 2.77∗∗∗ 18.72
Medium 6.49 4.67 6.54∗∗∗ 15.58 3.40 1.88 3.56∗∗∗ 32.85
Low 3.11 3.37 3.08∗∗∗ 8.40 1.75 1.84 1.83∗∗∗ 8.74

Panel C: Forecast-implied Portfolio

Avg SR Alpha MDD Avg SR Alpha MDD

Global 2.21 1.74 2.19∗∗∗ 23.81 1.47 1.22 1.36∗∗∗ 18.61
Overall 2.81 2.06 2.77∗∗∗ 19.61 1.87 1.48 1.74∗∗∗ 15.93

High 4.68 3.01 4.58∗∗∗ 2.14 3.26 2.42 3.16∗∗∗ 4.43
Others 2.81 2.06 2.77∗∗∗ 19.61 1.86 1.48 1.74∗∗∗ 15.93
Medium 3.14 2.12 3.14∗∗∗ 22.08 2.17 1.49 2.09∗∗∗ 19.51
Low 1.64 1.65 1.61∗∗∗ 16.46 1.22 1.10 1.06∗∗∗ 14.64

vestors about specific time periods and types of stocks that are likely to generate higher

profits.

In general, the predictability of stock returns demonstrates a certain level of time-

liness in both the cross-sectional and time series dimensions. It’s important to continu-

ously update clustering results in a rolling manner for the cross-section without regime

changes by macroeconomic predictors or calendar months. The consistent features or
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determinations within the same periods underscore the universality of predictability.

We can develop more robust and rational investment strategies by considering the

mosaics of stock return predictability.

6 Conclusion

What types of stocks exhibit higher return predictability, and under which time

regimes? Answering this important question leads to discovering ”mosaics of pre-

dictability” and adds to our understanding of asset return predictability in multiple

ways. For example, we provide a systematic framework for studying the heterogene-

ity of individual asset return predictability, complementing the focus of extant litera-

ture on average return predictability. Second, we generalize studies on heterogeneous

predictability such as ”pockets of predictability” (Farmer et al., 2023) that show the

time-varying return predictability of market returns to accommodate an unbalanced

panel of individual asset returns influenced by different macroeconomic regimes. In

both innovations, we utilize a sparse and interpretable AI methodology to accommo-

date high-dimensional characteristics and time-series predictors and their interactions

for the first time.

More specifically, we construct a tree-based clustering algorithm to distinguish

between highly predictable and less predictable ones. The conceptual framework

speaks to what observation units are more predictable and when. In an empirical

application to U.S. equities, we find supportive evidence that some characteristics-

managed (dollar trading volumes, unexpected earnings, earnings-to-price, cashflow-

to-price) and/or macro-based (dividend yield and default yield) clusters are more pre-

dictable than others. We then explore the return heterogeneity between these clusters

and exploit the predictability for cluster-wise predictive models. We find that hetero-

geneous predictability models outperform models under homogeneous predictability.

Finally, we show that highly predictable clusters have better investment performance

than less predictable clusters, linking return predictability to investment gains, which

is of great practical relevance.
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Appendix

I. Panel Regression Tree Algorithm

Section 2.3 and 2.4 present the step-by-step tree growing examples, while this

section illustrates the complete growing algorithm in pseudo-codes.

Algorithm Panel Regression Tree

1: procedure PANEL REGRESSION TREE
2: Input: Asset returns ri,t, firm characteristics zi,t−1, aggregate predictors xt−1, and tree parameters.
3: Output: A tree architecture with many split rules.
4: for i from 1 to num iter do ▷ Loop over number of iterations
5: if current depth ≥ dmax then
6: return.
7: else
8: Search the tree, find all potential leaf nodes N
9: for each leaf node N in N do ▷ Loop over all current leaf nodes

10: for each split candidate c̃p,k,N in CN do
11: Partition data temporally in N according to c̃p,k,N .
12: if Left or right child node cannot satisfy minimal leaf size then
13: continue.
14: else
15: Obtain cluster-wise return predictions as in (1).
16: Calculate the cluster-based R2

j by (6).
17: end if
18: end for
19: end for
20: Find the best leaf node and split rule that maximizes split criteria for this iteration

c̃i = maxN∈N ,c̃p,k,N∈CN
|R2

left − R2
right|

21: Compare globally for this iteration’s split candidates among all leaf nodes.
22: Split the node selected at the i-th split rule of the tree c̃i.
23: end if
24: end for
25: return
26: end procedure
Note: p, k, N in c̃p,k,N represent the p-th variable with the k-th value used for the N -th leaf node (Figure
2).
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II. Additional Empirical Results

II..1 Cross Section

Figure A.1: Cluster-Wise Relationships

This figure shows the cluster-wise relationships between predictability and profitability corresponding
to Table 1. Four sub-figures represent each sample period for cross-sectional partitions. The horizontal
axis shows the cluster-wised predictability (R2), while two vertical axes represent the forecast-implied
portfolio investment performance by average returns (red) and Sharpe ratios (blue), respectively.
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Figure A.3: Mosaics of Predictability by Predictors (Cross Section, 1978 - 2007)

We present four heat maps to summarize the average return predictability, R2 values (% in the color
bar), for the panel of individual stock returns corresponding to the tree-based clustering results from
Figure A.2. The first three illustrate the average R2 values for groups categorized by various years and
deciles based on different characteristics (earning surprise, earnings-to-price, and market equity value).
The last one displays the average R2 values for the 10 × 10 groups by bivariate-sorted deciles for the
top two characteristics.
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Figure A.4: Mosaics of Predictability (Cross Section, 1978 - 2007)

This heat map summarizes the predictability, R2 values (% in the color bar), for the panel of individual
stock returns by the tree-based clustering in Figure A.2. The vertical axis represents months, and colors
from light to dark indicate ascending levels of return predictability of each cluster within each month.
Horizontally, the length of each color bin corresponds to the proportion of observations for each cluster.
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Figure A.6: Mosaics of Predictability by Predictors (Cross Section, 1983 - 2012)

We present four heat maps to summarize the average return predictability, R2 values (% in the color
bar), for the panel of individual stock returns corresponding to the tree-based clustering results from
Figure A.5. The first three illustrate the average R2 values for groups categorized by various years and
deciles based on different characteristics (dollar trading volumes, earning surprise, and market equity
value). The last one displays the average R2 values for the 10 × 10 groups by bivariate-sorted deciles
for the top two characteristics.

7



Figure A.7: Mosaics of Predictability (Cross Section, 1983 - 2012)

This heat map summarizes the predictability, R2 values (% in the color bar), for the panel of individual
stock returns by the tree-based clustering in Figure A.5. The vertical axis represents months, and colors
from light to dark indicate ascending levels of return predictability of each cluster within each month.
Horizontally, the length of each color bin corresponds to the proportion of observations for each cluster.
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Figure A.9: Mosaics of Predictability by Predictors (Cross Section, 1988 - 2017)

We present four heat maps to summarize the average return predictability, R2 values (% in the color
bar), for the panel of individual stock returns corresponding to the tree-based clustering results from
Figure A.8. The first three illustrate the average R2 values for groups categorized by various years and
deciles based on different characteristics (earning surprise, cashflow-to-price, and market equity value).
The last one displays the average R2 values for the 10 × 10 groups by bivariate-sorted deciles for the
top two characteristics.
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Figure A.10: Mosaics of Predictability (Cross Section, 1988 - 2017)

This heat map summarizes the predictability, R2 values (% in the color bar), for the panel of individual
stock returns by the tree-based clustering in Figure A.8. The vertical axis represents months, and colors
from light to dark indicate ascending levels of return predictability of each cluster within each month.
Horizontally, the length of each color bin corresponds to the proportion of observations for each cluster.
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II..2 Structural Break
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Table A.1: Cluster-Wise Performance (+ Structural Break)

This table shows the performance of the tree-based cluster model based on time series and cross-
sectional splits. The in-sample return predictability, R2 (in %), are calculated by Eq. (6). ”# obs” repre-
sents the stock returns count for each cluster. ”Avg” and ”SR” denote the monthly average return (in %)
and annualized Sharpe ratio for both cluster-wise equal-weighted and value-weighted forecast-implied
portfolios, respectively. Each regime of values is arranged in the descending order of R2 from left to
right.

197301-197808 N7 N13 N4 N24 N10 N23 N25 N22

# obs 12,226 10,162 19,378 10,510 16,928 17,589 16,196 154,574
R2 17.74 12.21 10.72 10.64 10.37 9.74 7.78 5.45
AvgEW 4.56 4.92 3.50 4.64 3.30 2.89 4.20 2.63
SREW 1.85 2.37 1.99 2.45 2.35 1.90 2.00 1.73
AvgVW 3.68 4.04 2.64 3.83 2.63 2.42 3.31 1.73
SRVW 1.72 2.33 1.69 2.27 2.29 1.86 2.05 1.72

197809-198308 N15 N14 N19 N10 N11 N17 N18 N6 N16

# obs 13,557 15,559 12,481 11,996 10,110 21,263 32,685 14,071 121,639
R2 16.47 13.24 12.01 11.41 9.95 9.25 9.17 8.15 6.13
AvgEW 4.39 4.10 3.50 3.89 3.95 2.41 3.56 2.72 3.04
SREW 2.70 2.72 2.49 2.57 2.14 1.97 2.40 2.27 2.15
AvgVW 2.93 2.29 3.43 3.15 2.41 1.85 3.56 1.90 1.94
SRVW 2.09 1.82 2.30 2.33 1.67 1.76 2.30 1.65 1.92

198309-198811 N6 N15 N8 N28 N19 N21 N29 N18 N20 N23 N22

# obs 15,518 11,784 17,468 11,025 36,119 31,553 24,599 10,731 160,530 32,398 10,938
R2 10.09 8.88 8.30 7.99 6.67 6.32 5.49 4.11 2.76 1.47 -17.47
AvgEW 2.56 1.93 3.08 1.65 2.52 2.78 1.54 2.64 1.73 1.65 1.16
SREW 1.51 1.36 2.24 1.25 2.09 1.84 1.18 1.87 1.66 1.62 0.87
AvgVW 1.86 1.69 2.74 1.35 2.16 2.46 1.25 2.53 1.61 1.35 0.91
SRVW 1.19 1.25 2.15 1.09 1.94 1.57 1.00 1.89 1.43 1.30 0.69

198812-199401 N7 N10 N19 N25 N18 N24 N17 N11 N13 N16

# obs 20,042 11,744 10,046 24,347 34,340 34,971 174,594 15,504 11,322 17,921
R2 7.86 7.52 6.11 5.78 3.65 3.58 2.54 2.30 1.52 0.54
AvgEW 3.06 4.35 3.24 2.55 1.69 1.69 2.36 2.51 1.76 1.05
SREW 2.81 2.21 2.39 2.53 2.16 2.03 2.31 2.13 2.34 2.48
AvgVW 1.85 3.46 2.11 2.14 1.31 1.16 1.78 2.24 1.15 0.90
SRVW 1.80 1.99 1.91 1.91 1.57 1.64 1.62 1.85 0.81 1.38

199402-200303 N25 N7 N19 N10 N24 N22 N18 N16 N13 N23 N17

# obs 15,624 11,677 12,760 10,860 31,969 14,217 133,885 103,370 17,637 13,083 346,011
R2 8.10 7.78 7.44 6.75 5.00 4.64 3.48 2.99 2.38 2.18 1.26
AvgEW 4.76 5.45 4.29 4.12 5.45 3.84 4.01 2.12 2.32 2.16 1.15
SREW 1.68 1.53 1.46 1.18 2.23 2.29 2.78 2.12 0.92 1.41 2.25
AvgVW 5.05 5.42 4.54 1.88 4.84 3.68 3.92 1.67 1.65 0.59 0.75
SRVW 1.68 1.73 1.50 0.62 1.82 2.18 2.22 1.46 0.70 0.30 0.99

200304-200808 N13 N11 N20 N12 N17 N19 N7 N21 N16 N18

# obs 10,609 18,850 16,496 10,342 12,399 52,976 16,343 36,374 30,241 99,296
R2 11.92 10.75 7.30 7.20 7.17 4.66 4.49 4.29 3.87 2.33
AvgEW 3.05 2.87 1.75 3.49 1.94 1.64 2.85 1.92 2.19 1.26
SREW 1.69 2.73 2.78 1.61 1.55 1.97 1.89 1.71 2.13 1.78
AvgVW 2.31 1.35 1.05 2.65 1.69 1.41 2.27 0.97 1.07 0.67
SRVW 1.19 1.38 1.67 1.44 1.34 1.77 1.55 1.37 1.30 1.10

200809-201610 N14 N22 N26 N23 N15 N21 N19 N27 N24 N17 N20 N18 N16 N25

# obs 10,353 10,281 21,702 10,257 12,484 12,017 12,665 32,954 18,353 49,049 41,055 12,769 119,805 10,301
R2 10.09 9.34 7.68 7.00 6.91 6.55 6.42 5.77 4.47 4.42 4.41 3.75 2.62 2.34
AvgEW 4.39 2.61 3.27 2.05 3.57 2.35 3.62 2.51 3.03 2.07 1.60 2.77 1.60 1.96
SREW 2.75 1.76 1.49 2.09 1.82 1.36 1.84 1.35 2.00 1.55 1.23 1.63 1.27 1.48
AvgVW 3.69 1.85 2.50 1.64 2.38 1.45 3.56 1.84 2.70 1.49 1.21 2.55 1.38 2.01
SRVW 2.41 1.26 1.15 1.58 1.53 1.12 1.69 1.19 1.72 1.34 0.96 1.52 1.15 1.37

201611-202212 N13 N12 N14 N22 N18 N31 N23 N16 N19 N30 N10 N17

# obs 18,405 14,318 10,215 13,970 12,873 23,753 16,030 20,948 17,459 11,861 12,948 107,026
R2 15.92 9.75 9.28 9.21 8.04 7.43 6.21 5.59 4.94 4.67 4.42 2.82
AvgEW 2.06 1.91 2.57 4.21 1.90 2.73 3.43 2.50 1.72 2.83 3.11 2.34
SREW 1.40 1.62 1.25 1.74 1.66 1.75 1.68 1.71 1.48 1.48 1.94 1.58
AvgVW 2.06 1.48 2.28 2.46 1.64 2.57 2.03 2.81 1.66 1.90 1.42 1.75
SRVW 1.26 1.31 1.15 1.13 1.56 1.70 1.41 2.04 1.44 1.01 1.27 1.26
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Table A.2: Evaluating Return Predictability (+ Structural Break)

This table reports the return predictability, R2s (in %), based on different predictive methods under
various regimes. We present the full-sample results based on the tree-based cluster model incorporating
both structural breaks and cross-sectional splits. Under each regime, we present four samples: Overall,
High, Medium, and Low, determined by the predictive rankings within the tree clusters.

Sample A: All Stocks Sample B: Large-Cap

197301-197808 OLS Lasso Ridge OLS Lasso Ridge

Overall 8.51 6.68 8.10 6.77 5.20 6.45
High 12.92 10.83 12.39 7.84 7.13 7.87
Medium 8.75 7.00 8.46 9.01 7.55 8.76
Low 5.56 3.89 5.21 6.05 4.27 5.64

197809-198308 OLS Lasso Ridge OLS Lasso Ridge

Overall 8.35 7.12 7.92 11.04 9.46 10.47
High 13.38 11.99 12.82 13.23 11.47 12.58
Medium 9.47 7.74 9.07 11.20 9.00 10.57
Low 6.35 5.37 5.96 8.37 7.21 7.94

198309-198811 OLS Lasso Ridge OLS Lasso Ridge

Overall 3.67 1.71 3.36 5.31 2.36 4.64
High 10.21 6.31 8.58 10.77 6.67 9.05
Medium 6.97 4.48 6.44 7.20 3.89 6.33
Low 1.68 0.09 1.54 0.42 -1.55 0.49

198812-199401 OLS Lasso Ridge OLS Lasso Ridge

Overall 4.21 3.68 4.13 5.35 4.18 5.22
High 8.65 7.73 8.54 7.87 6.04 7.67
Medium 7.27 5.97 7.23 10.27 8.79 10.25
Low 3.40 2.99 3.32 4.08 3.06 3.95

199402-200303 OLS Lasso Ridge OLS Lasso Ridge

Overall 3.83 2.75 3.63 3.60 2.99 3.41
High 8.15 8.12 8.14 9.42 9.37 9.41
Medium 7.76 6.75 7.50 7.57 7.35 7.52
Low 3.00 1.86 2.80 1.89 1.12 1.64

200304-200808 OLS Lasso Ridge OLS Lasso Ridge

Overall 6.58 4.88 6.13 6.16 4.65 5.73
High 12.79 11.80 12.41 10.16 9.18 9.63
Medium 9.00 7.26 8.62 8.34 7.26 8.36
Low 4.95 3.14 4.48 5.42 3.79 4.96

200809-201610 OLS Lasso Ridge OLS Lasso Ridge

Overall 5.10 3.06 4.84 6.85 4.40 6.52
High 9.60 7.11 9.05 11.80 8.07 10.79
Medium 6.57 4.32 6.35 9.84 6.59 9.68
Low 3.82 1.95 3.57 5.36 3.30 5.01

201611-202212 OLS Lasso Ridge OLS Lasso Ridge

Overall 4.54 3.34 4.25 5.83 4.70 5.64
High 9.81 8.78 9.60 10.75 9.30 10.34
Medium 5.58 4.41 5.32 5.69 4.49 5.43
Low 3.00 1.75 2.68 3.56 2.66 3.53
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III. Predictor Descriptions

Table A.3: Macroeconomic Variables

No. Variable Name Description

1 X TBL 3-month treasury bill rate
2 X INFL Inflation
3 X TMS Term spread
4 X DFY Default yield
5 X DY Dividend yield of S&P 500
6 X SVAR Rolling 12-month market excess return volatility
7 X NI Net equity issuance of S&P 500
8 X LIQ Rolling 12-month Pastor-Stambaugh illiquidity

Table A.4: Equity Characteristics

No. Acronym Description Category

1 abr Cumulative abnormal returns around
earnings announcement dates

Momentum

2 acc Operating Accruals Investment

3 adm Advertising Expense-to-market Intangibles

4 agr Asset growth Investment

5 alm Quarterly Asset Liquidity Intangibles

6 ato Asset Turnover Profitability

7 baspread Bid-ask spread rolling 3m Liquidity

8 beta Beta rolling 3m Volatility

9 bm Book-to-market equity Value

10 bm ia Industry-adjusted book to market Value

11 cash Cash holdings Value

12 cashdebt Cash to debt Value

13 cfp Cashflow-to-price Value

14 chpm Industry-adjusted change in profit margin Profitability

15 chtx Change in tax expense Momentum

16 cinvest Corporate investment Investment

17 depr Depreciation / PPandE Momentum

18 dolvol Dollar trading volume Liquidity

19 dy Dividend yield Value

20 ep Earnings-to-price Value

21 gma Gross profitability Investment

22 grltnoa Growth in long-term net operating assets Investment

23 herf Industry sales concentration Intangibles
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Table A.4: Equity Characteristics (Continued)

No. Acronym Description Category

24 hire Employee growth rate Intangibles

25 ill Illiquidity rolling 3m Liquidity

26 lev Leverage Value

27 lgr Growth in long-term debt Investment

28 maxret Maximum daily returns rolling 3m Volatility

29 me Market equity Size

30 me ia Industry-adjusted size Size

31 mom12m Momentum rolling 12m Momentum

32 mom1m Momentum Momentum

33 mom36m Momentum rolling 36m Momentum

34 mom60m Momentum rolling 60m Momentum

35 mom6m Momentum rolling 6m Momentum

36 ni Net Stock Issues Investment

37 nincr Number of earnings increases Momentum

38 noa (Changes in) Net Operating Assets Investment

39 op Operating profitability Profitability

40 pctacc Percent operating accruals Investment

41 pm Profit margin Profitability

42 pscore Performance Score Profitability

43 rd sale R&D to sales Intangibles

44 rdm R&D Expense-to-market Intangibles

45 rna Quarterly Return on Net Operating Assets,
Quarterly Asset Turnover

Profitability

46 Roa1 Return on Assets Profitability

47 roe Return on Equity Profitability

48 rsup Revenue surprise Momentum

49 rvar capm Residual variance - CAPM rolling 3m Volatility

50 svar Return variance rolling 3m Volatility

51 seas1a Seasonality Intangibles

52 sgr Sales growth Value

53 sp Sales-to-price Value

54 std dolvol Std of dollar trading volume rolling 3m Volatility

55 std turn Std. of Share turnover rolling 3m Volatility

56 sue Unexpected quarterly earnings Momentum

57 turn Shares turnover Liquidity

58 zerotrade Number of zero-trading days rolling 3m Liquidity
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