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ABSTRACT 

I examine the costs and real effects of medical data breaches using a stacked difference-in-

differences research design. I find that data breaches increase the cost of healthcare financing 

and examine three mechanisms that link data breaches to increased costs. Data breaches 

increase issuer credit risk, and hacks, specifically, decrease hospital revenues because patients 

substitute breached hospital services for the services of non-breached hospitals nearby. This 

substitution does not hurt the patients of breached hospitals but leads to worse outcomes for 

patients of nearby hospitals. Interestingly, although only hacks have an impact on hospital 

revenues, investors do not require an incremental premium for investing in bonds of hacked 

issuers. Lastly, I find evidence that the pricing of breached bonds is influenced by investor 

attention towards breaches. Altogether, my results suggest that investors are potentially 

uninformed regarding the nuances of different types of breaches and how the market responds 

to breaches may not necessarily reflect how the events actually affect breached entities. 
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“The most significant and consequential cyberattack in American history began Feb. 

21 against UnitedHealth Group’s Change Healthcare, crippling financial operations 

for hospitals, insurers, pharmacies, and medical groups nationwide.” 

- Jakob Emerson and Rylee Wilson, Becker’s Health IT, 2024 

 

1. Introduction 

 Hospitals are crucial organizations in modern life. From aiding in 99% of births to caring for over 

35% of deaths in the United States, the institutions offer a wide array of preventative and emergency care 

services to patients in all stages of life (MacDorman and Declercq, 2019; CDC, 2020). Furthermore, 

hospitals are major sources of revenue and employment in the local economy by doubling local business 

revenue and helping generate two outside jobs for every hospital position (AHA, 2022). Given the sensitive 

nature of the data that hospitals hold and the reach of hospitals’ role in society, it is no surprise that they are 

targets of an ever-growing number of cyberattacks that threaten the economic and nonpecuniary benefits 

that hospitals offer society. For example, the 2021 ransomware attack on the non-profit Scripps Health 

system in San Diego reduced patient access to medical care during the breach and lost the hospital system 

over $100 million, primarily through litigation and lost revenue (Burky, 2023). Despite the potential for the 

events to adversely affect wider society, little is known about how the average breach actually affects 

hospitals or their stakeholders. In this paper, I examine how data breaches affect the healthcare market by 

identifying how they influence both hospital financing and patient outcomes. 

 Hospital data breaches serve as a unique setting to study how much data breaches cost in both 

financial and societal terms. First, healthcare data breaches are subject to federal Health Insurance 

Portability and Protection (HIPAA) reporting requirements and, consequently, are much less likely to suffer 

from sample selection bias than breaches of publicly traded firms. As such, a study of hospital breaches is 

not constrained to just hacks or events that happen after a state passes its own data breach notification laws 

(e.g., Huang and Wang, 2021; Jamilov et al., 2021; Kamiya et al., 2021). Relatedly, information about 

breached entities is cleanly identified and is simple to match to external databases because the processes 

following health-related data breaches are federally regulated. Lastly, the information environment 

surrounding health-related breaches uniquely contrasts that of corporate breaches. Whereas information 

about health breaches is released quickly, hospital performance and patient outcome data is sometimes 

released with significant delay, potentially taking one to two years for investors to gain access to the 
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information. These unique characteristics allow me to include every type of internal and external health-

related data breach, cleanly match them to issuer- and hospital-level data, and test the role of information 

asymmetry in the pricing of data breaches (Amir et al., 2018). If breaches lead to adverse financial or patient 

outcomes, then investors should price any associated risks into the cost of hospital financing and breached 

entities should have worse prospects than non-breached ones. However, any pricing effects may be delayed 

if relevant information takes time for investors to process or if investors do not understand the information.  

 My primary identification strategy exploits the staggered timing of 82 data breaches on U.S. 

hospitals and compares breached hospitals to non-breached hospitals within the same state and year. 

Because recent research suggests that staggered difference-in-differences specifications may suffer from 

biases arising from heterogeneous treatment effects over time, I employ a stacked difference-in-differences 

specification to overcome possible heterogeneity in my estimation of the average treatment effect on the 

treated over time (Baker et al., 2022). In contrast to studies of corporate data breaches, my sample of events 

includes the near universe of breaches of hospitals that either issue bonds or report their performance to the 

Centers for Medicare and Medicaid Services (CMS) (Kamiya et al. 2021). Furthermore, I find that the 

propensity for a hospital to be breached is not strongly correlated with observable characteristics that may 

influence the likelihood of a breach. Consequently, my identification strategy allows me to identify the 

impact of data breaches on hospital outcomes using over 80 quasi-natural experiments.  

 I begin my primary analysis by examining the relationship between data breaches and hospital 

financing costs and find that breached hospitals suffer higher costs on new issues. Specifically, breached 

hospitals face offer yields (spreads over maturity-matched after-tax Treasury rates) that are 39.1 (65.0) basis 

points (bps) higher after a breach. This represents a 12.0% (21.1%) increase in financing costs, over $2 

million annually, after a data breach. The cyber risk premium is 50% greater than the effect of Medicaid 

expansion on rural hospital yields and twice as large as the effect of opioid abuse on general obligation 

bond yields (Cornaggia et al., 2021; Gao et al., 2022). Timing tests further indicate that the bond costs of 

breached and non-breached issuers exhibit parallel trends before a breach, and the increase in financing 

costs is delayed until investors can determine the financial repercussions of a breach for the issuer. These 

results are robust to the inclusion of county-level control variables; alternative econometric and sample 

construction specifications, such as using the staggered difference-in-differences estimator proposed by 

Borusyak et al. (2023); coarsened exact matching on bond characteristics; and constructing the control 
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group with only non-breached hospitals in the same county as the breached hospital. My results suggest 

that the market prices cyber risk and the premium is economically significant.  

 Credit rating agencies appear to have the same reservations towards breached issuers as investors 

do. Credit rating agencies reduce the ratings of new offers by breached issues by about 2.5 notches post-

breach. Given that the average bond rating in my sample is BBB on an S&P scale, a data breach would 

downgrade the average breached hospital’s bond to BB+, from investment grade to non-investment grade, 

holding all else equal. Furthermore, the downgrades appear to be concentrated in the year of a breach 

announcement and the years after hospital performance data is released. This result is consistent with real-

world rating downgrades post-breach and the practical emphasis that agencies place on the potential 

governance and cash flow implications of breaches (Mitchell, 2021; Muolo, 2022). As such, credit ratings 

appear to be one channel through which data breaches influence issuer financing costs. 

 The term structure of the hospital bond market reveals how investors think cyber risk may threaten 

hospital performance, but it is unclear if investors view cyber risk as more of a short-term or long-term risk. 

Whereas anecdotal and research evidence show the effects of breaches are concentrated in the near term, 

cybersecurity experts expect breaches to worsen over time and have lingering consequences for breached 

entities (Cavusoglu et al., 2004; Huang and Wang, 2021; Kamiya et al., 2021; Brooks, 2022; Crosignani et 

al., 2023; Osborne, 2023). Defining short-term bonds as those with maturities less than 3 years, long-term 

bonds as maturities greater than 10 years, and mid-term bonds with maturities between the other two, I find 

that investors require a premium for investing in breached bonds of all maturities relative to non-breached 

bonds, and the increase in the yield and spread curves for breached bonds is statistically flat across 

maturities. This pattern contrasts risks that exist in only one subset of bonds (i.e., climate risk) and suggests 

that investors are uncertain regarding the future economic prospects of breached hospitals and that any 

immediate effects of breaches may be as bad as the long-term consequences (Grigoris, 2020; Painter, 2022).  

 I next address the role of information asymmetry in the pricing of data breaches by considering the 

incremental effect of hacks on breached hospitals’ financing costs. Although previous empirical findings 

show that the market should require the greatest premium for investing in hacked entities, some evidence 

suggests that the market does not respond any differently to hacks than it would other manifestations of 

cyber risk, especially if investors are not fully informed regarding cyber risk (e.g., Campbell et al., 2003; 

Hovav and D’Arcy, 2003; Cavusoglu et al., 2004; Kannan et al., 2007; Kvochko and Pant, 2015; Ablan et 
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al., 2016; Huang and Wang, 2021; Kamiya et al., 2021; Mayer et al., 2021; Florakis et al., 2023). My 

identification strategy and sample of data breaches provides the opportunity to uniquely contribute to this 

debate with a stacked triple-differences test and a sample of all types of data breaches that does not suffer 

from sample selection bias. Interestingly, I find that the market does not require an incremental premium 

for investing in hacked hospitals. Instead, the new models imply that breached issuers suffer new offer 

yields (tax-adjusted spreads) that are 66.9 bps (109.1 bps) higher after a breach. This updated estimate 

reflects a 20.0% (35.4%) increase in new offer yields (tax-adjusted spreads), relative to the mean, post-

breach. I proceed to examine whether this unexpected result is potentially influenced by investor 

information regarding the relative importance of hacks and stakeholder attention to breaches. 

 To do so, I first consider breaches’ effect on hospital health as an additional channel through which 

they influence yields. If data breaches are costly events for hospitals, then they should be adversely 

associated with cash flow generating activity and balance sheet performance. Furthermore, hacked hospitals 

should have the worst outcomes if hacks are truly the worst events (Campbell et al., 2003; Kamiya et al., 

2021). Using a triple-differences empirical design, I find that hacks are, indeed, the worst type of breach 

for a hospital. Hacked hospitals suffer a 6% loss in total patient revenue after a data breach, driven by a 

10% (5%) decrease in inpatient (outpatient) revenue. Interestingly, data breaches are not associated with 

any adverse changes in breached hospital balance sheet accounts, but hospitals increase their amount of 

fixed equipment by 14% following breaches, consistent with prior evidence that breached hospitals increase 

their information technology (IT) spending in the period afterwards (Choi et al., 2020). However, I do not 

find that breaches are associated with any average decrease in cash flow. These findings contrast my market-

based results that show investors care only about the occurrence of any breach but not incrementally about 

hacks. One possible reason investors may not require any incremental premium for hacks is because 

municipal bond investors, primarily retail investors, are limited in their information towards the nuances of 

cyber risk and apply equal weights to all events reported under HIPAA (Ablan et al., 2016; Mayer et al., 

2021; MSRB, 2022). Alternatively, investors may be responding to changes in patient outcomes, which 

could ultimately manifest in worse hospital outcomes if providers prolong periods of lesser care. 

 Following Jencks et al. (2009) and Aghamolla et al. (2023), I use hospital-level data on 30-day 

patient readmission rates and patient surveys regarding their perception of care to examine if investors 

require higher yields due to worsened patient outcomes. Conditional on admission to a breached hospital, 
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patients receive the same quality of care they would expect to receive at a non-breached hospital, and patient 

care improves at breached hospitals. I theorize that the improvement in treated hospital care comes at the 

cost of neighboring hospitals’ ability to care of patients who substitute away from breached hospital 

services. To test this theory, I use a control group that is comprised of only hospitals in the same county as 

the breached hospital and find that breached hospitals have lower readmission rates across every category 

than their counterfactuals, except after hacks. As further evidence, I show that non-breached (breached) 

admission rates for the conditions increase (decrease) post-breach. Patients choose to substitute breached 

medical services for those at non-breached hospitals, which hurts neighboring hospitals’ quality of care. 

These results are consistent with a case study of the 2021 Scripps Health ransomware breach that shows 

patients substituted breached emergency medical services with those of non-breached hospitals in the 

surrounding area (Dameff et al., 2023). As such, investors’ bond market response to breaches is unlikely a 

response to changes in care and more likely driven by the final factor I consider. 

 Lastly, I identify the role that investor and patient attention to news plays in mitigating information 

asymmetry surrounding hospital data breaches. Motivated by Da et al. (2011), I use Google Trends search 

volume index (SVI) of news articles that include the phrase “data breach” to proxy for attention around 

hospital data breaches. I collect SVI on news articles to better account for both the release of information 

related to cyber risk and potential stakeholder attention to data breaches. I repeat both my main financing 

test and the test of hospital cash flow generating activity and find that hospital financing costs increase, and 

hospital revenues decrease, as attention to breaches increases. In other words, when stakeholder attention 

to data breaches increases, the market’s cyber risk premium begins to better reflect how patients and hospital 

revenues respond to data breaches. Although investors are likely ignorant to the differences in types of 

breaches, investor inattention also seems to play a major role in the mispricing of hacks. 

 My paper makes several contributions to the literature. First, it adds to a recent literature on hospital 

financing costs and, to the best of my knowledge, is the first to discuss the financial and real implications 

of cyber risk for hospitals (e.g., Cornaggia et al., 2021; Cornaggia et al., 2022; Gao et al., 2022; Aghamolla 

et al., 2023). I show that data breaches are associated with increased financing costs, large losses in hospital 

revenue, credit downgrades, and worsened patient outcomes for nearby hospitals. As such, my results have 

managerial and policy implications for municipalities. Hospitals would likely benefit from incorporating 
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stronger data protection policies, such as keeping an offline backup of their systems, improving employee 

data practices, or retaining executives and directors with cyber risk experience.  

 Relatedly, my paper also contributes to a recent literature on the repercussions of cyber risk for the 

stakeholders of targets (e.g., Ashraf, 2022; Crosigniani, 2023; Osborne, 2023). Although I do not show that 

breaches have an impact on the patients of breached hospitals, I provide evidence that patients substitute 

the services of breached hospitals for those of non-breached hospitals, ultimately harming the substituted 

hospitals. Similar to the effect observed in Dameoff et al.’s (2023) case study, hospital breaches seem to 

have a net negative effect on society by harming other hospitals’ abilities to provide appropriate care. 

 Lastly, my study adds to the broad literature on the relevance of mandatory disclosures (e.g., 

Griffin, 2003; Lerman and Livnat, 2010; Christensen et al., 2017; Noh et al., 2019; Cabezon, 2023). Because 

of my paper’s unique setting, I am able to test how markets incrementally respond to hacks over other types 

of breaches when clear, federally regulated information about the events is produced quickly by targets who 

cannot indefinitely delay their reports (Campbell et al., 2003; Amir et al., 2018; Kamiya et al., 2021). My 

study produces two novel findings. First, hacks, on average, are not incrementally priced in the municipal 

bond market. Second, this mispricing is likely due to a combination of investor information regarding the 

relative importance of hacks and investor inattention. 

 The rest of my paper proceeds as follows. Section 2 describes HIPAA’s notification laws and my 

data, and Section 3 outlines my identification strategy and results. Section 4 provides robustness tests. 

Section 5 concludes and highlights policy recommendations for government data security. 

2. Data and Summary Statistics 

2.1. HIPAA Notification Requirements 

 Passed in 1996, HIPAA is a broad-reaching federal regulation that was designed to modernize how 

the healthcare industry approaches medical information in a modern age. Although the act addresses a 

plethora of closely related subjects, such as health insurance and medical savings accounts, HIPAA is now 

largely synonymous with a patient’s right to privacy regarding his or her medical history. Many 

organizations and providers, from individual doctors to insurance companies, in the healthcare industry are 

covered by HIPAA and must stringently protect patients’ protected health information (PHI). Specifically, 

PHI is anything in a patient’s medical record that (1) was recorded during the provision of a medical service 
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or created during the course of medical research and (2) an external party can use to identify a patient. 

Regarding the latter, the act explicitly defines 18 categories of identifiers that must be present with health-

related information in order for any information to be protected under HIPAA.1 The U.S. Department of 

Health and Human Services (HHS) enforces HIPAA and can assign both criminal and civil penalties to 

those who violate a patient’s rights. Penalties for violating HIPAA vary with both the intent behind a breach 

and the severity of a breach, potentially resulting in up to 10 years in prison, a $1.5 million dollar fine, or a 

provider’s exclusion from participating in Medicare.2 

 HIPAA introduced guidance regarding data breach notifications in April 2009, codified its data 

breach notification rule (45 CFR §§ 164.400-414) in August 2009, and began to enforce the rule in 

September 2009. Under the notification rule, a covered entity is to assume that the use or disclosure of PHI 

is a breach if the security or privacy of the information is compromised unless the entity is able to 

demonstrate that there is a low probability the PHI was actually compromised. Covered entities may use at 

least four factors to determine if a breach compromised the integrity of PHI, including: the extent of PHI 

involved, the identity of the unauthorized person who accessed PHI, whether the unauthorized person 

actually acquired or viewed PHI, and the extent to which the covered entity has mitigated the risk of a 

breach of PHI.3 If a covered entity finds that a data breach of PHI has occurred, then the entity must notify 

several parties of the breach in a timely manner. The breached entity is required to notify the affected 

individuals via written notice sent by physical mail or email (if the victims have previously agreed to receive 

electronic communications) no later than 60 days following the entity’s discovery of the breach. HIPAA 

requires the notifications to include details describing the breach, the types of information revealed in the 

 
1 These 18 identifiers include names, addresses, ages and dates, phone numbers, fax numbers, email addresses, Social 

Security Numbers, medical record numbers, health plan beneficiary numbers, account numbers, certificate numbers, 

vehicle identification numbers and license plate numbers, device identifiers and serial numbers, website URLs, IP 

addresses, biometric identifiers, full-face photos, and any other unique identifier or code that can identify the person 

to whom a medical record refers. De-identified medical data, by definition, is not considered PHI. 
2 There are numerous resources that describe HIPAA, PHI, and the penalties associated with violations in deeper 

detail. However, for a brief primer on the regulation, see the CDC’s “Health Insurance Portability and Accountability 

Act of 1996 (HIPAA)”, U.C. Berkeley’s “HIPAA PHI: Definition of PHI and List of 18 Identifiers”, and the AMA’s 

“HIPAA Violations & Enforcement” online articles. Note that the 2009 data breach notification law is different from 

the 2003 Security Rule, which established standards to protect electronic PHI. See “The Security Rule”, U.S. 

Department of Health and Human Services, and the Code of Federal Regulations 45, Parts 160 and 164. 
3 There are three exceptions to what HIPAA considers a breach. First, there is no breach if a member acting under the 

authority of a covered entity unintentionally acquires, accesses, or uses PHI in good faith or within the scope of 

authority. Second, there is no breach if a member of a covered entity inadvertently discloses PHI to another member 

of the same covered entity (or associated entity) who is also authorized to access PHI. Lastly, there is no breach if a 

covered entity has a good faith belief that an unauthorized individual who accessed PHI is unable to retain the PHI. 
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breach, the steps affected individuals should take to protect themselves from harm, what the covered entity 

is doing to investigate the breach and mitigate the potential harm arising from the event, what the covered 

entity is doing to prevent further breaches, and contact information for the covered entity. If the covered 

entity does not have sufficient or up-to-date information for at least 10 individuals, the entity must post an 

equivalent notice on its website’s homepage for 90 days or in print at a newspaper or over broadcast media 

where the individuals are likely to reside. Covered entities must also notify the Secretary of HHS through 

a standardized online form (OMB 0945-0001), which will then post information about the breach on HHS’s 

website.4 If a breach involves the loss of 500 or more individuals’ records, covered entities must additionally 

notify “prominent” media outlets via press releases or other means of mass communication, and HHS will 

conduct further investigation into the breach.5 

 HIPAA’s PHI breach notification law is, arguably, the most stringent data breach notification law 

in the United States because of its strict notification requirements. Although the majority of states passed 

their own data breach notification laws by 2009, states may differ in both what they consider a breach and 

how they require breached entities to respond. As such, many corporations have significant leeway in 

choosing what and when to disclose about their data breaches under state regulations. Furthermore, the U.S. 

Securities and Exchange Commission, despite issuing guidance regarding the disclosure of cybersecurity 

risk in 2011, did not officially adopt any requirements for publicly traded companies to disclose events until 

2023. The ambiguity surrounding data breach notification laws for non-PHI has allowed firms to either 

avoid notifying stakeholders of breaches, time their notifications in such a way as to minimize the disruption 

caused by the breaches, or even trade on inside information regarding breaches while the firm waits to 

disclose information (Amir et al., 2018; Lin et al., 2020; Kamiya et al., 2021). However, breaches of PHI 

are not afforded such opportunities because of HIPAA’s notification requirements. Any covered entity 

located anywhere in the United States who experiences a breach of PHI must follow HIPAA’s notification 

requirements or be severely punished by HHS. 

 As is standard in the cyber risk literature, I use the Privacy Rights Clearinghouse (PRC) dataset to 

collect my sample of breaches (Huang and Wang, 2021; Kamiya et al., 2021; Florakis et al., 2023). As 

 
4 Covered entities may report breaches to the Secretary of HHS involving less than 500 patients’ records on an annual 

basis but are still required to notify the individuals within 60 days of discovery. Breaches involving 500 or more 

records must be reported to the Secretary within 60 days of discovery. 
5 See “Breach Notification Rule”, U.S. Department of Health and Human Services, and the Code of Federal 

Regulations 74 FR 42767. 
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described in prior literature, PRC collects information on data breaches that are publicly disclosed through 

government agencies, including HHS. I begin by identifying breached medical providers.6 However, I do 

not subset my events to include just entities that were hacked or events that involved malicious external 

actors, as Kamiya et al (2021) propose, because of HIPAA’s 2009 data breach notification requirements. 

Restricting my sample to include medical events in and after 2009 ensures that my sample does not suffer 

from selection bias because I employ the near universe of mandatorily reported medical breaches. 

2.2. Bonds and Hospitals 

 I use data from additional sources throughout my analysis. First, I collect municipal healthcare 

bonds from Mergent for the period 2006 to 2022.7 In addition to bond Yield, I additionally proxy for the 

risk premiums investors demand for investing in municipal bonds with after-tax spreads over Treasuries 

(Cornaggia et al., 2022). I first compute a bond’s spread as the difference between municipal bond yields 

and maturity-matched Treasury bond yields, using linear interpolation of Treasury yields when an exact 

match is unavailable. Then, I compute Adjusted Spread as the after-tax spread over Treasuries by using the 

highest marginal tax rates for a given year.8 Following Aghamolla et al. (2023), I further collect hospital 

performance data from various CMS programs. Additionally, I obtain patients’ 30-day readmission rates 

from the Health Care Reporting Information Systems (HCRIS) and patient satisfaction surveys come from 

the Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) over 2015 to 2022. 

Hospital financial and balance sheet data come from Care Compare over the period 2011 to 2019. Note that 

Care Compare is updated with a significant delay, sometimes taking up to two years to reflect a hospital’s 

financials.9 I discuss this unique attribute of Care Compare’s data and exploit it in my analysis later. 

 I further restrict my sample of breaches to those that I can match to the issuers of municipal health-

related bonds or hospital performance data. To identify “breached” bonds, I match the names of breached 

medical providers in the dataset to the names of every bond issuer in the same state and assign a variable 

Breach that equals one to each bond associated with a matched issuer.10 Because medical data breaches are 

 
6 The PRC database identifies all breached healthcare entities with the Type of Organization flag “MED”.  
7 I assume healthcare-related bonds are those with use of proceeds codes “OHCA”, “HOEQ”, “HOSP”, and “NURS”. 
8 State tax rates come from https://www.taxpolicycenter.org/statistics/historical-highest-marginal-income-tax-rates. 
9 See https://data.cms.gov/provider-data/topics/hospitals/measures-and-current-data-collection-periods. 
10 There is large variation in the names provided by Mergent. To standardize the list of potential names and aid in 

matching across datasets, I match each name Mergent provides to each other name associated with the same 5-digit 
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reported in a standardized manner, matching medical breaches to breached hospital outcomes is much 

simpler and cleaner than in studies of corporate data breaches. I identify exact matches between the 

hospitals in the PRC and CMS datasets and, similarly, assign a Breach value of 1 to all hospitals in which 

I can find a match. Control observations are all non-breached bonds and non-breached hospitals in the same 

state as a breached entity, and I assign all such observations a Breach value of 0. These restrictions provide 

a total of 82 unique breaches. Nineteen are matched to bond issuers, and 63 are matched to hospitals from 

CMS. For my analyses, I keep all rated bonds issued and all hospital observations within a seven-year 

window around a breach (i.e., three years before and three years after).  

 Lastly, I collect county-level data from two sources. First, I hand-collect each issuer’s location 

through an iterative process because Mergent does not include the county location of issuers. I gather an 

issuer’s county either from searching MSRB’s Electronic Municipal Market Access (EMMA) system, 

scraping it directly from the name of the issuer, or searching for the name of the project through online 

search engines. If I cannot identify an issuer’s county through any of the aforementioned steps, I assume 

that an issuer is located in the state capital and its county is the primary county in which the capital is 

located. Second, I collect county characteristics, Population, Employment, and Per Capita Income, from 

the Bureau of Economic Analysis. I match the economic data to bond issuers on county name, state name, 

and year but use lagged county characteristics in my analysis to avoid possibly endogenous controls.  

2.3. Descriptive Statistics and Determinants of Breaches 

 Table 1 presents summary statistics for the main variables in this study. Panels A, B, C, and D 

present statistics related to my overall sample of bonds, hospital financials, patient 30-day readmission 

rates, and patient experience surveys, respectively. Table A1 in the appendix describes variable definitions. 

 
CUSIP number. I use 5-digit CUSIP instead of 6-digit CUSIP to broaden my matches across issuers that are clearly 

related but received different CUSIP numbers in the application process. For example, the issuers “MONTGOMERY 

ALA MED CLINIC BRD 1976 EAST HEALTHCARE FAC REV” and “MONTGOMERY ALA MED CLINIC BRD 

HEALTH CARE FAC REV” have the 6-digit CUSIPS 61305R and 613058, respectively. Matching names based on 

the 6-digit CUSIP could cause me to assign treatment status to one set of bonds but not the other, although the issuers 

are clearly the same entity. However, matching on the 5-digit CUSIP 61305 avoids this mis-assignment problem. 

Furthermore, I assume that each alternative spelling of a name associated with the same 5- or 6-digit CUSIP belongs 

to the same underlying issuer. Additionally, Mergent sometimes lists cities and counties as the issuers of medical 

bonds instead of the name of the associated project. Consequently, using only names of breached medical providers 

would cause me to exclude valuable variation if one of these unnamed providers was breached. As such, I further 

include the sample of county and city events of Osborne (2024) to identify more issuers of hacked medical bonds, but 

my main results are robust to their exclusion.  
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I winsorize all continuous variables at the 1st and 99th percentiles. My total sample includes 11,987 

healthcare bonds, about 65k hospital-years of financial data, and about 10k hospital years of patient data. 

Breached hospitals issue about 7.8% of the healthcare bonds, while hacks comprise about half of the events 

associated with breached issuers. The average bond in my sample has an initial offer yield of 3.3%, matures 

a little past 12 years after issuance, and provides a hospital $8.83 million in funding. The median total issue 

size is about $75.8 million. About 17% of bonds are funded via counties’ general obligations, but the 

majority (83%) are funded via hospital revenues. The average bond is rated about BBB. Overall, my sample 

of hospital bonds largely reflects the samples of Cornaggia et al. (2022) and Gao et al. (2022); and my 

sample of hospital and patient data is similar to Aghamolla et al. (2023).  

 I preface my primary analysis by examining the determinants of hospital data breaches in Table 2. 

I use a linear probability model to estimate the likelihood that a hospital is breached in any given year by 

conditioning on several factors. I include several lagged, logged independent variables to capture 

observable characteristics that may influence the propensity a hospital is breached. For example, the 

variables Total Revenue, Total Assets, Total Liabilities, and Cash Holdings all measure a hospital’s size, 

potentially available (i.e., stealable) funds, or ability to pay hackers’ ransoms. They also capture a hospital’s 

potential defenses and data security practices under the assumption that larger hospitals with better cash 

flow could have more resources to devote to stronger data practices. The variable Full-Time Employees 

captures how a hospital’s labor force may influence a data breach. Lastly, the variable Beds is the number 

of beds a hospital has and proxies for both the size of a hospital and its potential reputation. Model 1 

includes hospital and year fixed effects to control for unobserved time series factors, such as the 

macroeconomic environment, and cross-sectional factors, such as a hospital’s culture towards technological 

progress that may influence a hospital’s propensity to be breached. Model 2 replaces the hospital and year 

fixed effects with county-year fixed effects to account for any role a hospital’s local economic environment 

could have on data breaches or employees’ data security practices.  

 No one factor is a consistently strong predictor of hospital data breaches. In fact, the only variable 

with any association with data breaches is Cash Holdings, which positively predicts the events only in the 

model that controls for local economic conditions. According to Model 2, a 1% increase in a hospital’s 

stored cash increases the likelihood of a data breach by 0.05%. No other factor, including hospital revenues 

or the number of employees, appears to be relevant for the likelihood that a hospital reports a breach to 
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HIPAA. Overall, hospital data breaches appear to be randomly assigned, so I assume that data breaches are 

exogenous shocks to hospitals for the purposes of my following analyses (e.g., Amir et al., 2018; Kamiya 

et al., 2021; Ashraf, 2022; Crosignani et al, 2023). Nonetheless, I choose to follow the municipal bond 

literature and control for a county’s lagged population, per capita income, and employment in my bond 

analyses to account for how these characteristics may affect investors’ responses to a breach (Cornaggia et 

al., 2018; Gustafson et al., 2023). Similarly, I follow Aghamolla et al. (2023) and control for a hospital’s 

lagged total income, bed days, cash holdings, liabilities, and total patient revenue in my hospital analyses. 

3. Empirical Strategy and Results 

 In this section, I examine how data breaches affect hospital financing costs and identify the channels 

through which the events influence investors. I also document the real effects of breaches.  

3.1. Identification Strategy 

 My primary model is the following stacked difference-in-differences regression specification with 

three years of pre-breach and three years of post-breach data (i.e., a seven-year window): 

𝑦𝑖,𝑡 = 𝛽1𝐵𝑟𝑒𝑎𝑐ℎ𝑖 × 𝑃𝑜𝑠𝑡𝑡 + 𝛽2𝐵𝑟𝑒𝑎𝑐ℎ𝑖 + 𝛽3𝑃𝑜𝑠𝑡𝑡 + 𝛾′𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖,𝑡 +𝜔𝑠,𝑒 + 𝜑𝑡,𝑒 + 𝜀𝑖,𝑡 . (1) 

My primary dependent variables include Yield and Adjusted Spread for the municipal financing models. 

The coefficient β1 estimates the impact of data breaches on hospital outcomes and is my coefficient of 

interest. Breach is an indicator that equals one if a bond is issued by a breached entity and zero otherwise. 

Post is an indicator that equals one if a bond is issued after a data breach. Following the municipal bond 

literature, I include several bond and county characteristics as controls. The continuous bond characteristics 

I include are a bond’s coupon rate, maturity, inverse maturity, and corresponding maturity-matched 

Treasury yield (which is excluded from the Adjusted Spread model). I also control for whether an 

observation is a callable, negotiated, or general obligation bond with respective indicator variables. I also 

include the prior year’s population, per capita income, and employment of the issuer’s county to account 

for any potential differences between breach and non-breach counties and to control for factors that may 

affect an issuer’s ability to repay its debts (Cornaggia et al., 2021; Cornaggia et al., 2022). I do not include 

a bond’s rating in my primary analysis because it would be an endogenous control variable, as I hypothesize 

that credit risk is one of the channels through which data breaches influence the cost of capital. 
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I use a stacked difference-in-differences specification because standard staggered difference-in-

differences models may be subject to biases arising from heterogenous treatment effects over time. In fact, 

estimates of the average treatment effect on the treated (ATT) produced via staggered difference-in-

differences estimators may even have the opposite sign of the true treatment effect. I overcome this 

challenge by implementing the stacked difference-in-differences estimator (Cengiz et al., 2019). Following 

Baker et al. (2022), I structure my data in such a way to create an event-specific dataset for each treatment 

group and its clean control group to represent a singular “experiment” for each breach. Treated hospitals 

are those that experience a data breach, and treated bonds are any bonds issued by a breached hospital. 

Control hospitals are those that are never breached but are in the same state as the breached ones. Next, I 

“stack” all the breach-specific datasets together. Even though each event happens at a different time, the 

stacked dataset aligns all the breach-specific datasets together in event-time because I take a sample of 

bonds within a seven-year window of each event. As such, I essentially have 82 quasi-natural experiments 

from which to estimate the impact of data breaches on several hospital outcomes.11 

Alongside the stacked difference-in-differences design, I include issuer-event (ωs,e) and year-event 

(φt,e) fixed effects in my primary model to further ensure my comparisons of treatment and control outcomes 

are within the same issuer-experiment and year-experiment. I choose to cluster standard errors at the issuer-

level to account for residuals being correlated within a hospital over time. 

My identification strategy exploits variation from multiple sources. First, it relies upon a clean 

shock to treatment group outcomes. With the inclusion of year fixed effects, my model differences out any 

unobserved cross-sectional factors that might affect both treatment and control groups simultaneously 

(Cornaggia et al., 2022). This first difference helps ensure that my estimate of the average treatment effect 

on the treated, β1, is not biased by any omitted variables – such as a general macroeconomic conditions or 

annual trends in cyberattacks – that might be relevant to either group’s outcomes post-breach. Furthermore, 

with the inclusion of issuer fixed effects, my model differences out any unobserved time-invariant hospital-

specific factors, such as a hospital’s governance structure or workplace culture towards data security, that 

may endogenously affect a hospital’s financing. Used together, the fixed effects reveal how the cost of 

financing changes for breached entities after a data breach.  

 
11 Specifically, I have 19 events that I match to issuers in Mergent and 63 that I match to hospitals in CMS’s databases. 

Although the number of data breach events is seemingly small, the numbers parallel studies that use changes in state-

level laws that affect a large number of corporations in a limited number of states (Serfling, 2016). 
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Second, my identification strategy exploits the staggered nature of data breaches. Breaches affect 

hospitals between 2005 and 2016, allowing me to capture all relevant events over the sample period and 

mitigate concerns that a singular contemporaneous trend might confound the treatment assignment. 

Treatment hospitals enter my sample three years before they suffer a data breach and exit three years 

afterwards, so I observe both their pre- and post-breach financing costs. I assign the breach date of the 

treated hospital to all non-treated hospitals in the same state because control hospitals do not experience 

their own data breaches. This allows me to observe all pre- and post-breach outcomes for treated and control 

hospitals over the same seven-year window centered on the treated hospital’s breach. Given that I choose 

plausible counterfactuals for treated hospitals and control for characteristics that are related to the issuers’ 

ability to repay their debts, this difference-in-differences research design forms a quasi-natural experiment 

that allows me to uniquely identify the effect data breaches have on hospitals’ cost of capital. 

3.2. Impact of Breaches on Hospital Financing 

I begin by quantifying how data breaches impact hospital financing costs using the dependent 

variables Yield and Adjusted Spread in Table 3. I find that financing costs increase for hospitals after a data 

breach. Model 1 shows that treated issuers’ initial offer yields are 47.8 bps higher after a breach. With the 

inclusion of bond- and county-level controls in Model 2, I find that issuer yields increase 44.3 bps after a 

breach. Economically, this translates to a 14.2% increase in annual borrowing costs – about $2.75 million 

for the median issuer.12 This result holds when using Adjusted Spread as the dependent variable as well. 

Model 4 shows that tax-adjusted spreads for medical bond issuers increase 74.9 bps (25.1%, relative to the 

mean value) after a breach. The cyber risk premium is 50% greater than the effect of Medicaid expansion 

on rural hospital yields and twice as large as the effect of opioid abuse on general obligation bond yields 

(Cornaggia et al., 2021; Gao et al., 2022). 

My identification strategy and interpretation of the stacked difference-in-differences estimator 

relies on the parallel trends and exogeneity assumptions of any standard difference-in-differences test. I 

first test the parallel trends assumption for each of my dependent variables with a dynamic analysis in 

Figure 1. Specifically, I replace Post in Eqn. (1) with six indicator variables to capture the subperiods 

surrounding the year of a breach and, following econometric tradition, use the year immediately before the 

 
12 I utilize the modified duration approach to calculate the increase in borrowing costs for breached issuers. $2.75 M 

= $75.8 M (median annual issuance) × 8.367 (median duration) × (0.0044/(1 + 0.0327/2)). 
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event as the reference period. Given that all of the coefficients for the pre-periods are statistically indifferent 

from zero, I find no evidence that treatment and control bonds follow different trends before a hospital is 

breached. The relationship between data breaches and financing costs exists solely after a breach. However, 

the post-event timing is especially interesting because it contrasts the more immediate timing of when 

cyberattacks impact corporate outcomes (e.g., Akey et al., 2021; Huang and Wang, 2021; Kamiya et al., 

2021; Crosignani et al., 2023). Despite HIPAA requiring hospitals to report breaches within 60 days, the 

market takes about two years to positively adjust its risk premium for breached hospitals. Intriguingly, the 

market’s delay roughly corresponds to how long hospitals may take to fully report their financial and 

operational data to CMS (i.e., one-and-a-half to two years). Such a delay implies that there is significant 

information asymmetry between issuers and investors in the period immediately after a breach, and 

investors seem to not respond to the average breach until after they can gauge its financial implications.13 I 

explore the potential roles of information asymmetry surrounding hospital outcomes in later tests. 

Additionally, endogeneity is unlikely to be a major concern for my use of the stacked difference-

in-differences estimator. First, breaches are always unexpected shocks and, many times, undefendable 

events for even the largest, best-equipped corporations (Kamiya et al., 2021; Crosignani et al., 2023). It is 

unreasonable to assume that hospitals, who are less prepared for data breaches with their security resources, 

or their investors, would be in a better position to respond to breaches before an announcement than 

corporations. Second, there is no reason for the municipal bond market to price a treated hospital’s bonds 

as if a breach already occurred before the issuer notifies the public of the breach, especially because 

breached entities have incentive to conceal details until they are legally obligated to report them (Amir et 

al., 2018). Lastly, although I cannot deny that some events are potentially nonrandom, I previously show in 

Table 2 that there is no consistently strong predictor of hospital data breaches, including cash-flow-related 

 
13 One could argue that the market’s delayed response is rather the result of delayed data breach notifications by CMS. 

Theoretically, investors may not receive information about a breach less than a year after the event if (1) the breach 

affects less than 500 individuals, (2) they themselves are not affected by the breach, and (3) neither the breached party 

nor the affected individuals notify the broader public or a news source. If all three of the conditions are met, then 

investors could have no information about potential data breaches until one year has past (i.e., the maximum time a 

breached hospital has to report an event). Combined with delayed reporting of financial data, investors would still 

have no picture of how a breach influenced hospital health until one to two years after a breach. However, this scenario 

does not explain the pattern exhibited in Figure 1. In untabulated tests, I examine whether breaches that affect more 

than 500 records exhibit the same timing as breaches that affect less than 500 records because markets should respond 

more quickly to information about the former group, given HIPAA’s reporting requirements. I find that investors 

quickly respond to breaches that affect less than 500 records, suggesting that they do not have to wait long to 

incorporate new information about the breaches or for CMS to disseminate information about the breach. 
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variables and hospital size. It is likely safe to assume that hospital data breaches are the random result of 

either hackers succeeding in breaching a target’s defenses or employees failing to practice proper data 

protection protocols. Nonetheless, my models control for a handful of characteristics that may be 

theoretically associated with the propensity an event may occur, thereby reducing the influence of any 

potentially observable or unobservable confounding factors. As such, β1 is the difference-in-differences 

estimator and may be interpreted as the average treatment effect on the treated. 

3.2. Connection between Breaches and Increased Costs 

 Both cybersecurity experts and the finance literature suggest that data breaches can affect victims 

by increasing their exposure to certain types of risk, and this subsection aims to identify the channels that 

link data breaches to increased bond premiums (e.g., Campbell et al., 2003; Tanimura and Wehrly, 2015; 

Amir et al., 2018; Akey et al., 2021; Huang and Wang, 2021; Kamiya et al., 2021; Ashraf, 2022). In doing 

so, I present evidence that investors are not fully informed in their pricing decisions.  

3.2.1. Credit Risk and the Term Structure of Cyber Risk 

 The connection between issuer credit risk and data breaches is straightforward theoretically. Data 

breaches could increase issuers’ credit risk if the events hinder hospitals from promptly repaying their debts. 

If there is an association between data breaches and credit risk, then breached issuers should have lower 

credit ratings on new bond issues after their first data breach, relative to non-breached issuers (Kamiya et 

al., 2021). To test this hypothesis, I conduct a timing test of bond ratings (Max Rating) in the same stacked 

difference-in-differences framework and present the results of my rating timing analysis in Figure 2. 

 Data breaches are associated with significant bond ratings cuts. Although treated hospitals have 

higher ratings than control hospitals before a breach, I find that credit rating agencies reduce the ratings of 

new issues by breached issuers by about 2.5 notches post-breach. Furthermore, the rating reduction is 

constant for the duration of the post-period. Given that the average bond rating in my sample is BBB on an 

S&P scale, a data breach would downgrade the average hospital’s bond to BB+, holding all else equal. In 

other words, the average hospital with investment-grade bonds should expect to see its bonds drop to non-

investment grade after a data breach. Interestingly, the statistical significance of the post-period downgrade 

appears to be concentrated in the year of a breach announcement and the years after hospital performance 

data is released (i.e., years 2+). This result is consistent with the magnitude of real-world rating downgrades 
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post-breach and anecdotal evidence that rating agencies emphasize the potential governance and cash flow 

implications of hospital data breaches (Mitchell, 2021; Muolo, 2022). As such, credit ratings appear to be 

one channel through which data breaches influence issuer financing costs. 

 Furthermore, the term structure of the hospital bond market reveals whether investors view cyber 

risk as more of a short-term or a long-term risk for hospital performance. If investors believe that hospitals 

will suffer more in the short-term but eventually recover, then they should require greater premiums for 

short-term bonds than they do bonds of longer maturities. The same is true for their reservations of long-

term risk, as well. However, empirical research and anecdotal evidence are unclear regarding the nature of 

cyber risk. On one hand, there is evidence that most Internet users are not prepared for an immediate breach 

and the effects are concentrated in the near term (Cavusoglu et al., 2004; Kamiya et al., 2021). On the other 

hand, cybersecurity experts expect data breaches to worsen over time, and some research shows that 

breaches have lingering consequences for victims (Huang and Wang, 2021; Brooks, 2022; Crosignani et 

al., 2023; Osborne, 2023). The hospital bond market provides a unique setting to contribute to this debate 

by providing an opportunity to evaluate how significant information asymmetry of underlying issuer health 

affects investor expectations of cyber risk over different time horizons.  

 Defining short-term bonds as those with maturities less than 3 years, long-term bonds as maturities 

greater than 10 years (Long-Term), and mid-term bonds with maturities between the other two (Mid-Term), 

I employ another stacked triple difference-in-differences style test to evaluate the term structure of treated 

hospital bonds. I separately interact two additional indicators for mid-term and long-term bonds with 

BreachPost. The first additional triple interaction is BreachPostMid-Term, and the second is 

BreachPostLong-Term. Because I include the term BreachPost, each of the respective pairings 

associated with all the interaction terms, and the level effects, I can interpret the coefficients associated with 

both of the triple interactions as the additional premium required for investing in bonds of the associated 

maturity bin over short-term bonds. I present the term structure estimation in Table 4 for my main two 

dependent variables of interest using the same control variables from prior models. 

 Investors require a premium for bonds of all maturities, as indicated by the coefficients on 

BreachPost in Models 1 and 2 (0.414 bps and 0.703 bps, respectively). However, neither coefficient 

associated with the triple interaction terms is statistically significant, implying that investors do not 

differentiate between short-, mid-, or long-term bonds.  
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 To validate this finding, I plot the term structure of treated hospital bonds in Figure 3. To do so, I 

subset the data on all bonds issued after a breach occurs, interact the variable Breach with a set of yearly 

timing variables that indicate when a bond matures, and include the same controls as before. The breached 

hospitals’ yield and tax-adjusted spread curves show that the premiums for breached bonds are significantly 

different than the premiums of non-breached bonds across most maturities, but both curves appear relatively 

flat across maturities. Sixteen (out of 19) of the coefficients for Yield indicate a premium between 0.25 and 

0.50 bps over control bonds with a similar maturity, and the same pattern exists for the Adjusted Spread 

curve. Investors do not seem to be concerned about how cyber risk will influence issuers within a certain 

horizon, contrasting risks that exist in only one subset of bonds, such as climate risk (Painter, 2022).  

 The interpretation underlying these results is intuitive. This pattern suggests that investors are 

uncertain regarding the future economic prospects of breached hospitals and that the immediate aftermath 

of a breach may be as bad as its long-term consequences (Grigoris, 2020). Stated differently, investors 

weigh the immediate repercussions of a breach with as much importance as they do the longer-term effects 

of the breach, but there is too much uncertainty to know when the effects will culminate. The results also 

imply that investors do not believe hospital cyber defense will ever completely mitigate cyber risk, a thought 

consistent with those of cybersecurity professionals.14 

 It is easy to reconcile such a response of uncertainty. First, history shows that victims of data 

breaches take time to respond to the events. Whereas some companies emerge seemingly unscathed 

immediately after a breach, others take years.15 Because there is so much uncertainty regarding how and 

when the consequences will manifest, investors discount all such probable outcomes into the bonds of all 

maturities. Secondly, investors may not be not fully informed about hospital data breaches and simply treat 

all breaches the same (i.e., information asymmetry exists). In this scenario, investors will still purchase the 

treated hospital bonds at a discount because they recognize that a potential threat to cash flows has occurred, 

but they will not discriminate based on the details of a breach (Ablan et al., 2016; Mayer et al., 2021).  

 

 
14 See “Three Reasons Why the Cybersecurity Industry May Never Catch up to Cybercrime,” Forbes, August 31, 

2017. 
15 For example, Target took almost five years to pay the final financial loss from litigation related to its 2013 data 

breach. See “Target to Pay $18.5 Million to 47 States in Security Breach Settlement”, New York Times, May 23, 2017. 
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3.2.2. Hacks and the Role of Information Asymmetry 

 I begin to address the role of information asymmetry in the pricing of data breaches by considering 

the incremental effect of hacks on breached hospitals’ financing costs. Ex ante, it is unclear theoretically 

whether the hospital bond market should require a larger premium for hacked issuers. On one hand, there 

are numerous empirical findings that suggest hacks are the worst type of realized cyber risk because they 

are associated with greater financial losses than other realizations of cyber risk and are, arguably, more 

likely to be covered in the news because of the reputational damage they cause (e.g., Campbell et al., 2003; 

Hovav and D’Arcy, 2003; Cavusoglu et al., 2004; Huang and Wang, 2021; Kamiya et al., 2021; Florakis et 

al., 2023). If investors incorporate all relevant information about breaches into financing costs, then they 

should require an additional premium for investing in the bonds of hacked issuers.16 As alluded to before, 

though, some evidence suggests that the market may not respond differently to hacks than it would other 

breaches. If investors do not have cyber risk expertise, understand that different types of breaches have 

varying levels of repercussions, or just not pay attention to news, then they may not respond incrementally 

to hacks (e.g., Kannan et al., 2007; Kvochko and Pant, 2015; Ablan et al., 2016; Mayer et al., 2021).  

 My identification strategy and sample of data breaches provides the opportunity to uniquely 

contribute to this debate with a stacked triple-differences test and a sample of all types of data breaches that 

does not suffer from sample selection bias. The stacked triple-differences test builds upon Eqn. (1) by 

interacting an additional variable Hack, an indicator that equals one for events that are reported as hacks by 

external parties and zero otherwise, and the existing interaction terms. I include each of the level terms and 

their interaction pairs to interpret the coefficient on the triple interaction as the difference-in-difference-in-

differences estimator and present the results of the stacked triple-differences test in Table 4.  

Contrary to expectations, the coefficient on the triple-differences estimator is not statistically 

significant in any model, implying that investors do not require incrementally larger premiums after hacks. 

Instead, the coefficient on Breach×Post increases in economic magnitude and statistical significance across 

each model. Models 2 and 4 now imply that hospitals’ initial offer yields (tax-adjusted spreads) increase 

66.9 (109.1) bps after a breach. Relative to the mean values, the updated estimates reflect a 20.0% (35.4%) 

increase in yields (tax-adjusted spreads) post-breach. Yet, the insignificant triple-differences coefficient 

 
16 It is important to note that breached medical providers detail whether they are hacked by an external party in their 

required reports.  
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may indicate an appropriate response from investors if information indicates that hospital fundamentals are 

not affected after a hack. I explore two reasons, information about hospital health and investor attention, 

behind the insignificant relation between financing costs and hacks in later tests.  

3.2.3. Hospital Health: Cash Flow Risk 

 Next, I examine the connection between data breaches and hospital health. The first aspect of 

hospital health I consider is hospital cash flows. If data breaches are costly events for hospitals, then they 

should be associated with losses in revenue, increases in liabilities, or selloffs of assets; and the worst 

outcomes should be reserved for hacked hospitals (Campbell et al., 2003; Kamiya et al., 2021).  

 I utilize a stacked triple-differences methodology where my triple interaction is between the 

independent variables Breach, Post, and Hack to test the relation between hospital cash flows and data 

breaches. Because this is a hospital-level test, my dependent variables of interest are now (total) Patient 

Revenue, Outpatient Revenue, Inpatient Revenue, and Bed Utilization; and each dependent variable is 

transformed by the natural logarithm of one plus the underlying data. I follow Aghamolla et al. (2023) and 

include the lagged hospital-level variables log Hospital Income, log Bed Days, Cash Holdings, log 

Liabilities, and Total Patient Revenue as controls. These control variables should mitigate the effect that 

characteristics like hospital size, access to funding, or cash levels might have on the Breach treatment effect. 

Furthermore, I include data breaches only between the years of 2015 and 2017, due to data constraints from 

CMS, to ensure that I have a full three years of pre- and post-breach outcomes and hospital-event and year-

event fixed effects to parallel my bond-level tests (Baker et al., 2023). I present the results of my first test 

of hospital health post-breach in Panel A of Table 6. 

 Hacks are, indeed, the worst type of breach for a hospital to experience. Hacked hospitals suffer a 

6% loss in total patient revenue after a data breach, and this effect is primarily driven by a 10% (5%) 

decrease in inpatient (outpatient) revenue. Additionally, hacked hospitals see a 2.3% decrease in their bed 

utilization rates post-breach, implying these hospitals generate less revenue on inpatient services and use 

fewer beds post-breach. Interestingly, I do not find that non-hack data breaches are associated with any 

average decrease in cash flow. These findings are directly opposite those of the bond-level tests that show 

investors care about the presence of any type of data breach but do not incrementally price the presence of 

a hack. There is a connection between data breaches and hospital cash flow risk, but the effect exists only 

in the subset of treated hospitals for which the market does not require incremental premiums. If bond prices 
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reflect the discounted future cash flows of affected hospitals, it would seem that what investors think will 

happen does not fully reflect what actually does.  

 Why might investors not require an incremental premium for investing in bonds issued by a hacked 

hospital when only hacks threaten hospital cash flows? Investors may be limited in their information 

regarding the differences between hacks and non-hacks. Municipal bond investors, primarily retail 

investors, are likely uninformed regarding the nuances of cyber risk and apply equal weight to any cyber 

event reported under HIPAA (Ablan et al., 2016; Mayer et al., 2021; MSRB, 2022). Alternatively, investors 

may be responding to changes in patient outcomes, which could adversely affect future hospital cash flows 

if providers prolong periods of lesser care. The evidence thus far points more towards the former 

explanation, but I rule out the alternative in later tests that examine patient outcomes. 

3.2.4. Hospital Health: Fundamental Risk 

 The second aspect of hospital health that I consider is the balance sheet (i.e., fundamental risk). If 

breaches increase fundamental risk, then treated hospitals should present with symptoms of corporate 

failure after a breach. Following Aghamolla et al. (2023), my dependent variables that measure hospital 

health are (total) Assets, Liabilities, Cash, and Fixed Equipment. Each dependent variable is scaled by the 

hospital’s lagged Total Revenue and transformed by the natural logarithm of one plus the underlying data. 

I employ another stacked triple-differences methodology and present the results in Panel B of Table 6.  

 As with the cash flow-related tests, non-hacks are not associated with any adverse average changes 

in hospital balance sheets. Hacks are associated with decreases in hospital assets, but the relationship is 

statistically insignificant. Instead, hospitals increase their fixed equipment by 14% after any type of breach. 

This increase is consistent with prior evidence that breached hospitals increase their IT spending after a 

data breach to improve security (Choi et al., 2020). Although there is evidence that hacks negatively impact 

hospital cash flows, data breaches, on average, do not appear to harm hospital balance sheets. 

3.3. Data Breaches and Patient Outcomes 

 I next examine whether investors require premiums for breached hospital bonds because of how 

data breaches affect patient care. Hypothetically, if data breaches adversely impact patient care, then 

patients should provide negative reports about their care and have worse outcomes than the patients of non-

breached providers. The worst outcomes should be reserved for hospitals that are hacked. To test these 
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hypotheses, I utilize a similar triple-differences framework with the same hospital-level controls as before. 

I include hospital-event and year-event fixed effects to parallel my bond-level tests (Baker et al., 2023). 

However, I must further restrict my sample of data breaches to include only those between the years of 

2017 and 2018, due to data constraints from CMS’s patient survey data, to ensure that I have a balanced 

panel of pre- and post-breach outcomes. 

 Like Aghamolla et al. (2023), I measure the patient care experience by first using patient survey 

data with seven proxies. The seven dependent variables I use are Recommend “Yes”, Room Always Clean, 

Doc Comm Always Clear, Nurse Comm Always Clear, Recovery Info Always Clear, Room Always Quiet, 

and Rate “9-10”. The variables are the percentage of patients who positively affirm their hospital’s level 

of care in each of the respective categories. I present the results of my analysis of survey results in Table 7. 

I find that there is no association between data breaches and how patients rate their hospital care experience. 

Patients of treated hospitals report no differences in their quality of care across any dimension post-breach 

than patients of the same hospital before a breach. 

 However, patient survey data can be skewed by a plethora of unmeasurable factors. To mediate this 

concern and address whether patient care changes post-breach, I employ additional data from CMS that 

measures 30-day readmission rates for four of the most frequent ailments of emergency department patients. 

The diagnoses include pneumonia (PN), heart failure (HF), heart attack (acute myocardial infarction, AMI), 

and chronic obstructive pulmonary disease (COPD). If hospitals’ level of care suffers because of breaches, 

then their readmission rates should increase, indicating that care providers were unable to properly treat the 

underlying ailment during a patient’s first visit (Jencks et al., 2009). Following Aghamolla et al. (2023), I 

examine both the level and log-transformed hospital readmission rates in Table 8. 

 Panel A of Table 8 presents results based on my main sample specification with the control hospitals 

being all non-breached hospitals in the same state as a breached entity. I find exactly the opposite effect of 

what would be expected if data breaches adversely affect patient care. In fact, treated hospitals’ readmission 

rates for heart failure and COPD patients decrease by 11.6% and 15.9%, respectively, after a breach. Under 

the traditional interpretation of these results, it would seem that data breaches actually improve patient care; 

but that initially seems implausible given that I previously find patients of treated hospitals report no 

statistically meaningful change in care post-breach. However, the quality of breached hospitals’ services 
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could improve relative to those of non-breached hospitals if future patients choose to substitute away from 

the services of the breached providers, thereby increasing the provider-to-patient ratio.  

 I formally test my substitution hypothesis in Panel B of Table 8 where I restrict the control hospitals 

to include only non-breached hospitals in the same county as a breached hospital. Anecdotes suggest that 

readmission rates for competing hospitals should increase when a sudden substitution of healthcare services 

occurs (Burky, 2023). As such, the negative effect on treated hospitals’ readmission rates should be even 

greater when treated hospitals are compared to their close competitors. I find that the 30-day readmission 

rates for pneumonia, heart attacks, and COPD decrease on average 14.4%, 30.2, and 29.2% after a data 

breach, respectively. Additionally, hacked hospitals experience economically meaningful increases in their 

readmissions for each condition when compared to the outcomes of non-breached hospitals within the same 

county, implying that hacks lead to subpar qualities of care.  

 To further validate the substitution hypothesis, I compare the total number of patients admitted by 

treated and neighboring control hospitals for each condition in the years around a breach in Figure 4. 

Leading up to the data breach, treated hospitals serve a larger number of patients for each condition, on 

average, than control hospitals. However, there is a large drop in the number of patients that treated hospitals 

admit in the period after a breach that roughly corresponds with the increase in the number of patients that 

control hospitals admit in the same period. The substitution effect leads control hospitals to eventually serve 

a greater number of patients, on average, than the breached hospitals. These results are consistent with the 

2021 Scripps Health ransomware breach that shows patients substituted breached emergency medical 

services with those of non-breached hospitals in the surrounding area (Dameff et al., 2023). 

 Altogether, patient care at treated hospitals does not seem to directly suffer post-breach, except 

after a hack. Conditional on admittance to a hospital, patients report the same average level of care before 

and after an event. However, new patients appear to substitute breached medical services for those at non-

breached hospitals, likely thinking that their care would be lesser at a breached hospital. This substitution 

appears to adversely affect nearby hospitals’ level of care and own readmission rates.17 Investors may 

require greater premiums for breached hospital bonds out of concern that breaches will lead to lesser care, 

 
17 Burky (2023) states that the Scripps ransomware hack necessitated a crisis-level response from non-breached 

emergency departments in the surrounding area to keep up with substituted patient demand. 
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but their reservations are seemingly misplaced. Changes in patient care do not fully explain investors’ 

response to data breaches, especially since they do not respond to the worst types of events. 

3.4. The Role of Attention 

 Lastly, I identify the role of investor and patient attention to news in mitigating information 

asymmetry surrounding hospital data breaches. If attention mitigates information asymmetry around 

breaches, my previous results should be weaker when attention on data breaches is greater. Alternatively, 

attention could accentuate misinformation and information asymmetry. Motivated by Da et al. (2011), I use 

Google Trends SVI of news articles that include the phrase “data breach” to proxy for attention around 

hospital data breaches. I base my collection of SVI on news articles to better account for both the release 

of information related to cyber risk and potential stakeholder attention to data breaches, but my results are 

qualitatively similar if base SVI on standard search queries. I collect SVI at the state-level for each issuer 

and hospital for a seven-year window surrounding their breaches, average the SVI to the yearly-level for 

each state-event, and identify whether an observation is associated with a high (low) SVI. I assume that 

SVI is high (low) if it is greater (lower) than the median SVI for the overall sample.  

 I repeat both the financing and hospital cash flow tests of Tables 4 and 6 in Panels A and B of Table 

9, respectively. I find that the effects of data breaches are much greater when there is more attention on data 

breaches. For example, the effect of hacks on total patient revenue in high-SVI periods is over twice as 

large as the effect in low-SVI periods. Furthermore, hospital financing costs increase almost exclusively in 

high-SVI periods, implying there is a dimension of investor attention on breaches at play. As stakeholder 

attention to data breaches increases, both investors and patients penalize breached hospitals more.  

 Building on the evidence presented earlier in my paper and by Ablan et al. (2016) and Mayer et al. 

(2021), it is likely safe to assume that municipal bond market investors do not fully understand the 

differences between hacks and non-hacks. However, attention certainly plays a strong role in how 

stakeholders respond to the events. Intriguingly, though, stakeholder attention does not seem to align what 

investors believe will happen to breached issuers with what actually happens to them post-breach. If 

anything, attention simply accentuates investor misunderstanding surrounding data breaches. 

4. Robustness Tests 
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 In this section, I briefly address three potential concerns with my methodology. The first concern 

centers on the robustness of the stacked difference-in-differences methodology. The second and third 

concerns pertain to my construction of counterfactual observations. I address each criticism by reproducing 

the main results from Table 3 using alternative econometric or sample specifications.  

4.1. Alternative Approach to Dealing with Heterogeneous Treatment Effects  

 The first criticism I address focuses on limitations potentially imposed by the stacked difference-

in-differences estimator. Although the model is designed to be robust to heterogenous treatment effects over 

a sample period, the stacked difference-in-differences estimator may be considered less flexible than other 

alternatives to the staggered difference-in-differences estimator (Baker et al., 2022). As such, I ensure 

robustness to the methodology proposed by Borusyak et al. (2023) and use a similar set of control variables 

to my main specification and control bonds from never treated issuers over the entire sample period.  

I present the results in Panel A of Table 10 and find that my main results hold. Models 1-4 all 

produce coefficients of the ATT that are both statistically significant and similar in magnitude to those 

produced by the stacked difference-in-differences estimator. According to the imputation estimator 

proposed by Borusyak et al. (2023), data breaches increase the new offer yields of breached hospitals by 

almost 42 bps and tax-adjusted spreads by about 82 bps, or 12.8% and 26.6% relative to the mean of each 

variable, respectively. My main result is robust to alternative econometric methodologies. 

4.2. Sample Construction and Alternative Counterfactuals 

It could be that my results are driven by my sample construction choices (i.e., using all non-treated 

issuers in the same state as a breached issuer could be too broad of a control group). As such, I employ two 

alternative approaches to constructing my controls.  

First, I identify control observations by matching treated bonds to control observations on bond 

characteristics using coarsened exact matching. This approach may help difference out the effect that any 

observable bond characteristic may have on the outcome and may control for any systemic differences 

between treated and non-treated issuers. I match each treated bond to a control bond issued within the same 

year and that has the same categorical characteristics (i.e., callable, negotiated, etc.). I split the continuous 

bond-level control variables from Table 3, county population, and county employment into four bins and 

further match the treated observations to the control observations within the same bin. I repeat my main 
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analysis using the coarsened exact matched sample in Panel B of Table 10. Although the matched sample 

produces estimates of the ATT that are larger than the baseline coefficients in Table 3 without control 

variables, the coefficients are similar in magnitude when the models are estimated with control variables.  

Second, instead of using all non-breached issuers within a state as controls, I use only non-breached 

neighboring issuers within the same county. This difference in the construction of the control group may 

better account for the influence of any unobserved factors, such as geography or demographic differences 

that may be associated with a population’s response to a breach, on the cost of hospital financing. If breaches 

truly affect hospital financing and societal outcomes, then the effect should exist when contrasting breached 

issuers with their geographical neighbors. I present the results of my second alternative approach to 

constructing the counterfactuals in Panel C of Table 10. The sample size decreases to a total of 2.8k bonds, 

but the main results still hold. The estimated coefficients are larger than those presented in Table 3 but are 

more comparable to those presented in Table 5. Furthermore, the results are largely in line with both those 

presented in Table 3 and the other robustness tests. My methodology is robust to alternative sample 

specifications. 

5. Conclusion  

 Although cyberattacks and data breaches are known to be costly events for victims, little is known 

about how the events affect stakeholders of breached entities. Likewise, most of the extant empirical 

research assumes that market participants know both the extent and nature of data breaches when examining 

how they affect real and financial outcomes. Because of the strict medical data breach reporting 

requirements but delayed reporting of hospital finances, the hospital bond market provides a unique 

opportunity to identify how data breaches affect non-breached stakeholders and how information 

asymmetry about data breaches influences the stakeholder response.  

 Using the universe of medical data breaches, this paper is the first to examine how data breaches 

affect hospital financing and patient outcomes. I find that breaches increase the cost of hospital bonds and 

are associated with increases in a hospital’s credit and cash flow risk. Although breaches do not adversely 

affect patient outcomes of breached hospitals, patients still substitute their demand of breached hospital 

services for the services of non-breached hospitals, degrading the quality of services and patient care that 

those competing hospitals provide. I further find that hacks are the most adverse type of breach for hospitals, 

but investors do not incrementally respond to hacks relative to other types of breaches. Investors seem 
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uninformed regarding the nuances of different types of breaches, and attention on data breaches accentuates 

or eliminates their response to the events. Whereas investors hardly require any premium for investing in 

breached hospital bonds when a breach occurs in a period of lesser attention, both patients and investors 

heavily penalize breached hospitals when breaches occur in periods of greater attention.  

 My study has important implications for researchers, policymakers, and patients. First, my bond-

level results imply that investors may not fully grasp the importance or relevance of different types of data 

breaches and how the events affect underlying cash flows. This lack of understanding leads some hospitals 

to pay more for their debt than they likely should. Second, my hospital-level results imply that data breaches 

have adverse consequences for local non-breached hospitals. Although breaches do not affect the outcomes 

of breached hospitals, patients appear to move to competing hospitals, a response which could easily lead 

to crisis-level scenarios where healthcare providers are unable to properly serve a larger influx of patients. 

To alleviate these concerns, policymakers could require stronger IT standards for hospitals to minimize the 

number of hacks from occurring. Additionally, policymakers could implement regulations and programs 

that aid hospitals’ post-hack recovery, increase investor awareness of cyber risk, or implement programs to 

quickly restore public trust in breached hospitals.  
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Table A1 

Variable Definitions 

This table provides the definitions for the main variables used in this study. Variables used as controls are indicated 

by a checkmark in the second column. All continuous variables are winsorized in the analysis, and variables 

denominated in dollars are inflation-adjusted to 2009 dollars.  

 

Variable Definition 

Adjusted Spread Yield divided by 1 minus the highest state-level marginal tax rate for each year in 

my sample, less the corresponding Treasury Yield 

Always Clean The proportion of patients who report that their room was always clean 

Amount The bond issue amount 

Assets A hospital’s total reported assets 

Bed Days A hospital’s number of beds multiplied by the number of days in a year 

Bed Utilization A hospital’s total number of discharges divided by Bed Days 

Breach An indicator that equals 1 if an observation is from a breached entity, 0 otherwise 

Callable An indicator that equals 1 if a bond is callable, 0 otherwise 

Cash A hospital’s total cash in hand or in banks 

Coupon A bond’s coupon amount from SDC 

Doctor Always Clear The proportion of patients who report their doctors always communicated clearly 

Employment The county employment level from the BEA’s CAIN30 dataset 

Fixed Equipment A hospital’s reported value of fixed assets 

GO Bond An indicator that equals 1 if a bond is a general obligation bond 

Hospital Income A hospital’s total income 

Liabilities A hospital’s total current and long-term liabilities 

Inpatient Revenue A hospital’s revenue from inpatient services 

Inverse Maturity One divided by Maturity 

Maturity The difference between a bond’s maturity and settlement dates 

Max Rating A factor variable defined from 1 to 21 for the highest credit rating assigned to a 

bond; lower numbers are higher rated bonds 

Negotiated An indicator that equals 1 if a bond is negotiated, 0 otherwise 

Nurse Always Clear The proportion of patients who report their nurses always communicated clearly 

Outpatient Revenue A hospital’s revenue from outpatient services 

Per Capita Income County-level per capita income from the BEA’s CAIN30 dataset 

Population The county population level from the BEA’s CAIN30 dataset 

Post An indicator that equals 1 if an observation is in a year after an attack, 0 otherwise 

Rate “9-10” The proportion of patients who report they would rate a hospital a “9” or “10” 

Recommend “Yes” The proportion of patients who report they would recommend a hospital 

Recov Info Always Clear The proportion of patients who report their recovery information was always clear 

Room Always Quiet The proportion of patients who report their room was always queit 

SVI The log of the yearly mean of the Google Trends score for the phrase “data breach” 

within a hospital’s state 

Tax Exempt An indicator that equals 1 if a bond is tax exempt, 0 otherwise 

Treasury Yield The maturity-matched yield on Treasury bonds, linearly interpolated for missing 

maturities 

Yield A bond’s initial offer yield from SDC 
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Figure 1 

Analysis of Parallel Trends 
This figure presents stacked difference-in-difference coefficient estimates of my two main dependent variables on a 

set of timing variables interacted with Breach. The timing indicators are defined relative to the year of breach, where 

Breach is year t. Following econometric tradition, I exclude the period t-1 in my estimation. I use the variables Coupon, 

Maturity, Inverse Maturity, Logged Issue Size, Callable, Negotiated, GO Bond, Tax Exempt, lag Population, lag Per 

Capita Income, and lag Employment as control variables. The model with Yield as a dependent variable includes the 

corresponding Treasury Yield as a control. The coefficients for the controls and level effects are omitted for brevity. I 

include issuer-event and year-event fixed effects in each model (Baker et al., 2022). Standard errors are clustered by 

issuer in all models, and the bars represent the 95% confidence interval. All variables are defined in the appendix.  
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Figure 2 

The Timing of Bond Downgrades 
This figure presents stacked difference-in-difference coefficient estimates of my max rating variables on a set of timing 

variables interacted with Breach. The timing indicators are defined relative to the year of breach, where Breach is year 

t. Following econometric tradition, I exclude the period t-1 in my estimation. I estimate one model without controls 

and one model with controls. I use the corresponding Treasury Yield and the variables Coupon, Maturity, Inverse 

Maturity, Logged Issue Size, Callable, Negotiated, GO Bond, Tax Exempt, lag Population, lag Per Capita Income, 

and lag Employment as control variables. The coefficients for the controls and level effects are omitted for brevity. I 

compute the post-breach effect on bond ratings by averaging the four post-breach timing coefficients and testing its 

statistical significance using a Wald chi-squared test. I include issuer-event and year-event fixed effects in each model 

(Baker et al., 2022). Standard errors are clustered by issuer in all models, and the bars represent the 95% confidence 

interval. All variables are defined in the appendix.  
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Figure 3 

Yield and Spread Curves of Treated Bonds 
This figure presents the yield and spread curves of breached hospital bonds after a data breach for bonds that mature 

2 to 25 years in the future. The point estimate for each maturity is based on a stacked difference-in-difference 

coefficient estimate of my two main dependent variables on a set of maturity timing variables interacted with Breach. 

I use the variables Coupon, Maturity, Inverse Maturity, Logged Issue Size, Callable, Negotiated, GO Bond, Tax 

Exempt, lag Population, lag Per Capita Income, and lag Employment as control variables. The model estimating the 

yield curve includes the corresponding Treasury Yield as a control. The coefficients for the controls and level effects 

are omitted for brevity. I include issuer-event and year-event fixed effects in each model (Baker et al., 2022). Standard 

errors are clustered by issuer in all models, and the bars represent the 95% confidence interval. I do not present the 

estimates for bonds with maturities longer than 25 years because there are few observations with maturities longer 

than 25 years. All variables are defined in the appendix.  
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Figure 4 

Treated and Control Hospital Admissions for Health Conditions around Data Breaches 
This figure compares the average number of patients that treated and control hospitals serve in the years around a 

breach for my four main patient health outcomes (i.e., admissions for AMI, COPD, HF, and PN). Control hospitals 

are non-breached hospitals in the same county as a breached hospital. All variables are defined in the appendix.  
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Table 1 

Descriptive Statistics for Municipal Bonds and Hospitals 
This table presents summary statistics for my main sample of breached entities and their counterfactuals. Panel A 

presents statistics for my overall sample of bonds, and Panel B presents statistics related to hospital financial and balance 

sheet outcomes. Panel C describes 30-day patient readmission rates for my main patient outcomes, and Panel D 

overviews patients’ self-reported care measures. Panel C presents statistics for my main sample of stacked county data. 

Each panel also names the source of the data. All continuous data are winsorized at the one percent levels. 

 

Panel A: Overall Sample of Bonds (Mergent) 

 N Mean SD Pctl(25) Median Pctl(75) 

Yield (%) 11,987 3.11 1.28 2.19 3.09 3.93 

Adj Spread (%) 11,987 2.98 1.45 1.92 2.92 3.84 

Issue Size (1,000s) 11,987 141,029.30 157,009.10 27,595.00 84,745.00 200,000.00 

Bond Size (1,000s) 11,971 8,644.62 16,956.25 915 2,720.00 7,775.00 

Coupon (%) 11,987 4.35 1 4 5 5 

Maturity (Years) 11,987 11.91 7.36 6.34 10.42 15.78 

Max Rating 11,987 9.1 4.58 5 8 14 

GO 11,987 0.14 0.35 0 0 0 

Callable 11,987 0.53 0.5 0 1 1 

Negotiated 11,987 0.87 0.34 1 1 1 

Tax Exempt 11,987 0.97 0.18 1 1 1 

Populationt-1 (1,000s) 11,987 1,008.22 819.03 435.49 799.68 1,485.22 

Per Capita Incomet-1 (1,000s) 11,987 44 9.61 37.94 41.89 48.87 

Employmentt-1 (1,000s) 11,987 647.42 511.82 252.14 752.77 841.53 

Panel B: Hospital Financials (CMS Care Compare) 

log Total Revenue (TR) 65,240 19.38 1.62 18.1 19.49 20.69 

log Outpatient Revenue 65,280 18.33 2.15 17.23 18.82 19.85 

log Inpatient Revenue 70,223 18.49 1.89 17.21 18.62 20.01 

log Hospital Income 49,216 15.59 1.74 14.49 15.67 16.84 

log Assets/TRt-1 64,793 0.38 0.36 0.16 0.28 0.46 

log Liabilities/TRt-1 64,434 0.21 0.29 0.07 0.15 0.27 

log Cash/TRt-1 63,772 0.04 0.09 0.0001 0.01 0.05 

log Fixed Equipment/TRt-1 38,878 0.06 0.11 0.01 0.02 0.06 

log Bed Days 74,181 10.54 1.1 9.69 10.64 11.39 

Bed Utilization (%) 74,044 0.44 0.23 0.27 0.44 0.6 

Panel C: Patient 30-Day Readmission Rates (CMS HCRIS) 

Pneumonia 10,535 0.12 0.13 0.03 0.07 0.16 

Heart Failure 9,572 0.2 0.2 0.05 0.11 0.28 

Heart Attacks 5,670 0.16 0.15 0.05 0.1 0.21 

COPD 9,670 0.19 0.18 0.06 0.11 0.26 
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Table 1 

(Continued) 

Panel D: Patient Satisfaction of Care (CMS HCAHPS) 

Recommend "Yes" (%) 8,173 70.08 10.1 64 70 77 

Always Clean (%) 8,173 17.89 4.42 15 18 21 

Doctor Always Clear (%) 8,173 80.06 6.02 76 80 84 

Nurse Always Clear (%) 8,173 78.6 5.86 75 79 82 

Recov Info Always Clear (%) 8,173 86.07 4.08 84 87 89 

Room Always Quiet (%) 8,173 59.2 11.22 51 58 67 

Rate "9-10" (%) 8,173 70.66 9.08 65 71 77 
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Table 2 

The Determinants of Hospital Data Breaches 
This table analyzes which characteristics are associated with hospital data breaches using a linear 

probability model. The dependent variable is a binary indicator that equals one if a hospitals’ data are 

breached in a given year and zero otherwise, and all independent variables are both lagged and 

logged. Model 1 uses hospital and year fixed effects, and Model 2 replaces the fixed effects with 

county-year fixed effects to capture any effect the hospital’s local economic environment has on its 

propensity to be breached. Standard errors are clustered by hospital in both models , and t-statistics 

are presented in parentheses. All variables are defined in the appendix. *, **, *** indicates 

significance at 10%, 5%, and 1% levels, respectively. 

 

 Dependent Variable: 1(Breach) 

 (1) (2) 

Total Revenue 0.001 -0.001 

 (0.563) (-0.573) 

Total Assets 0.001 0.001 

 (0.738) (0.648) 

Total Liabilities 0.0001 0.0003 

 (0.388) (0.697) 

Cash Holdings 0.0001 0.001** 

 (0.653) (2.536) 

Full-Time Employees -0.001 0.002 

 (-1.024) (1.485) 

Beds -0.0004 -0.0004 

 (-0.445) (-0.462) 

Hospital FEs Yes No 

Year FEs Yes No 

County-Year FEs No Yes 

Observations 26,670 26,670 

Adj R2 -0.007 -0.064 
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Table 3 

Impact of Data Breaches on Cost of Hospital Financing 
This table presents stacked triple difference-in-difference coefficient estimates of my two main 

dependent variables on Breach, Post, Hack, interactions between each pair of the variable, and 

an interaction between Breach, Post, and Hack. Each model includes Coupon, Maturity, Inverse 

Maturity, Logged Issue Size, Callable, Negotiated, GO Bond, Tax Exempt, lag Population, lag 

Per Capita Income, and lag Employment as control variables. Model 2 also includes the 

corresponding Treasury Yield as a control. The coefficients for the controls are omitted for 

brevity. I include issuer-event and year-event fixed effects in the models (Baker et al., 2022). 

Standard errors are clustered by issuer in all models , and t-statistics are presented in parentheses. 

All variables are defined in the appendix. *, **, *** indicates significance at 10%, 5%, and 1% 

levels, respectively. 

 

 Dependent Variable 

 Yield Adjusted Spread 

 (1) (2) (3) (4) 

BreachPost 0.478** 0.443** 0.480 0.749*** 

 (1.98) (2.48) (1.38) (2.65) 

Controls No Yes No Yes 

IssuerEvent FEs Yes Yes Yes Yes 

YearEvent FEs Yes Yes Yes Yes 

Observations 11,987 11,987 11,987 11,987 

Adj R2 0.472 0.893 0.476 0.789 
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Table 4 

Term Structure of Breached Hospital Bonds 
This table presents stacked difference-in-difference coefficient estimates of my two main dependent 

variables on Breach, Post, Mid-Term, Long-Term, and interactions between each of the terms. Each 

model includes Coupon, Maturity, Inverse Maturity, Logged Issue Size, Max Rating, Callable, 

Negotiated, GO Bond, Tax Exempt, lag Population, lag Per Capita Income, and lag Employment as 

control variables. Model 1 also includes the corresponding Treasury Yield as a control. The 

coefficients for the controls are omitted for brevity. I include issuer-event and year-event fixed 

effects in the models (Baker et al., 2022). Standard errors are clustered by issuer in all models, and 

t-statistics are presented in parentheses. All variables are defined in the appendix. *, **, *** 

indicates significance at 10%, 5%, and 1% levels, respectively. 

 

 Dependent Variable 

 Yield Adjusted Spread 

 (1) (2) 

BreachPost 0.443* 0.735** 

 (1.94) (2.20) 

BreachPostMid-Term 0.100 0.204 

 (0.455) (0.712) 

BreachPostLong-Term -0.039 -0.061 

 (-0.308) (-0.394) 

Controls Yes Yes 

IssuerEvent FEs Yes Yes 

YearEvent FEs Yes Yes 

Observations 11,987 11,987 

Adj R2 0.893 0.792 
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Table 5 

The Incremental Effect of External Hacks on Hospital Financing 
This table presents stacked triple difference-in-difference coefficient estimates of my two main 

dependent variables on Breach, Post, and an interaction between Breach and Post. Each model 

includes Coupon, Maturity, Inverse Maturity, Logged Issue Size, Callable, Negotiated, GO 

Bond, Tax Exempt, lag Population, lag Per Capita Income, and lag Employment as control 

variables. Model 2 also includes the corresponding Treasury Yield as a control. The coefficients 

for the controls are omitted for brevity. I include issuer-event and year-event fixed effects in the 

models (Baker et al., 2022). Standard errors are clustered by issuer in all models, and t-statistics 

are presented in parentheses. All variables are defined in the appendix. *, **, *** indicates 

significance at 10%, 5%, and 1% levels, respectively. 

 

 Dependent Variable 

 Yield Adjusted Spread 

 (1) (2) (3) (4) 

BreachPostHack -0.297 -0.261 -0.835 -0.449 

 (-0.663) (-0.702) (-1.27) (-0.746) 

BreachPost 0.655** 0.584* 0.978* 0.992** 

 (2.29) (1.87) (1.89) (1.99) 

Controls No Yes No Yes 

IssuerEvent FEs Yes Yes Yes Yes 

YearEvent FEs Yes Yes Yes Yes 

Observations 11,987 11,987 11,987 11,987 

Adj R2 0.472 0.893 0.476 0.789 
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Table 6 

Cash Flow and Fundamental Risk: Data Breaches and Hospital Health 
This table presents stacked triple difference-in-difference coefficient estimates of several variables that measure 

hospital fundamental outcomes on Breach, Post, Hack, and interactions between each of the terms. I include events 

between the years of 2015 and 2017 to ensure I have three years of pre- and post-breach outcomes. Each outcome is 

transformed by one plus the natural logarithm of the underlying variable. Panel A presents the effect of data breaches 

on hospital cash flow generating activity, and Panel B presents the effect of breaches on the hospital balance sheet. 

Each outcome variable in Panel B is further scaled by the lagged total hospital revenue. Following Aghamolla et al. 

(2023), I include the lagged variables log Hospital Income, log Bed Days, Cash Holdings, log Liabilities, and Total 

Patient Revenue as controls. I compute the total effect of interaction terms and test for the sum’s significance using a 

Wald chi-squared test. The coefficients for the controls are omitted for brevity. I include hospital-event and year-event 

fixed effects in the models (Baker et al., 2022). Standard errors are clustered by issuer in all models, and t-statistics 

are presented in parentheses. All variables are defined in the appendix. *, **, *** indicates significance at 10%, 5%, 

and 1% levels, respectively. 

 

 logarithm of 1 + Dependent Variable 

Panel A: Hospital Cash Flow Generating Activity 

 Patient Revenue Outpatient Revenue Inpatient Revenue Bed Utilization 

 (1) (2) (3) (4) 

BreachPostHack -0.060* -0.015 -0.101** -0.023* 

 (-1.684) (-0.294) (-2.342) (-1.683) 

BreachPost -0.009 -0.017 0.019 0.022* 

 (-0.300) (-0.409) (0.614) (1.962) 

Total Effect -0.068 -0.032 -0.082 0.002 

P-Value <0.001 0.152 0.001 0.842 

Controls Yes Yes Yes Yes 

HospitalEvent FEs Yes Yes Yes Yes 

YearEvent FEs Yes Yes Yes Yes 

Observations 44,665 44,663 44,665 44,645 

Adj R2 0.990 0.982 0.990 0.935 

Panel B: Hospital Balance Sheet 

 Assets/TR Liabilities/TR Cash/TR Fixed Equipment/TR 

 (1) (2) (3) (4) 

BreachPostHack -0.014 -0.007 0.0003 -0.058 

 (-0.593) (-0.859) (0.234) (-1.492) 

BreachPost 0.005 0.009 0.001 0.008* 

 (0.378) (1.226) (0.535) (1.710) 

Total Effect -0.009 0.001 0.001 -0.049 

P-Value 0.476 0.681 0.251 0.122 

Controls Yes Yes Yes Yes 

HospitalEvent FEs Yes Yes Yes Yes 

YearEvent FEs Yes Yes Yes Yes 

Observations 44,661 44,442 44,650 27,273 

Adj R2 0.956 0.973 0.997 0.907 
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Table 7 

Data Breaches and Patient Care Experience 
This table presents stacked triple difference-in-difference coefficient estimates of several variables that measure how 

patients rate their experience while admitted to a hospital on Breach, Post, Hack, and interactions between each of the 

terms. I include events between the years of 2017 and 2018 to ensure I have at least two years of pre- and post-breach 

outcomes. Each outcome measures how patients perceive their experience at a hospital. Following Aghamolla et al. 

(2022), I include the lagged variables log Hospital Income, log Bed Days, Cash Holdings, log Liabilities, and Total 

Patient Revenue as controls. I compute the total effect of interaction terms and test for the sum’s significance using a 

Wald chi-squared test. The coefficients for the controls are omitted for brevity. I include hospital-event and year-event 

fixed effects in the models (Baker et al., 2022). Standard errors are clustered by hospital in all models, and t-statistics 

are presented in parentheses. All variables are defined in the appendix. *, **, *** indicates significance at 10%, 5%, 

and 1% levels, respectively. 

 

 Dependent Variable 

 
Recommend 

“Yes” 

Room  

Always 

Clean 

Doc Comm 

Always  

Clear 

Nurse Comm 

Always  

Clear 

Recovery Info 

Always  

Clear 

Room  

Always 

Quiet 

Rate 

“9-10” 

 (1) (2) (3) (4) (5) (6) (7) 

BreachPostHack -1.369 -1.015 -1.065 -0.124 0.467 -1.650 -1.972 

 (-0.546) (-0.866) (-0.699) (-0.074) (0.351) (-0.846) (-1.287) 

BreachPost 0.612 0.979 0.746 -0.348 0.761 0.844 0.602 

 (0.716) (1.120) (1.398) (-0.750) (0.889) (0.924) (0.839) 

Total Effect -0.757 -0.036 -0.319 -0.472 1.228 -0.806 -1.369 

P-Value 0.694 0.970 0.798 0.695 0.117 0.573 0.367 

Controls Yes Yes Yes Yes Yes Yes Yes 

HospitalEvent FEs Yes Yes Yes Yes Yes Yes Yes 

YearEvent FEs Yes Yes Yes Yes Yes Yes Yes 

Observations 5,861 5,861 5,861 5,861 5,861 5,861 5,861 

Adj R2 0.876 0.643 0.819 0.821 0.698 0.881 0.848 
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Table 8 

Data Breaches and Patient Readmission Rates 
This table presents stacked triple difference-in-difference coefficient estimates of several variables that measure 

patient readmission rates for various diagnoses on Breach, Post, Hack, and interactions between each of the terms. I 

include events between the years of 2017 and 2018 to ensure I have two years of pre- and post-breach outcomes. Each 

outcome measures common measures of patient care quality, namely, the 30-day readmission rates for pneumonia 

(PN), heart failure (HF), heart attacks (AMI), and chronic obstructive pulmonary disease (COPD). The outcomes in 

Models 1-4 are transformed by the natural logarithm, and the outcomes in Models 5-8 are in percentage points. 

Following Aghamolla et al. (2023), I include the lagged variables log Hospital Income, log Bed Days, Cash Holdings, 

log Liabilities, and Total Patient Revenue as controls. I compute the total effect of interaction terms and test for the 

sum’s significance using a Wald chi-squared test. Panel A (B) presents results based on a control group that is 

comprised of all non-breached hospitals in the same state (county) as the breached hospital. The coefficients for the 

controls are omitted for brevity. I include hospital-event and year-event fixed effects in the models (Baker et al., 2022). 

Standard errors are clustered by hospital in all models, and t-statistics are presented in parentheses. All variables are 

defined in the appendix. *, **, *** indicates significance at 10%, 5%, and 1% levels, respectively. 

 

 Dependent Variable 

Panel A: Control Group of All Non-Breached Hospitals in Same State 

 log(PN) log(HF) log(AMI) log(COPD) PN HF AMI COPD 

 (1) (2) (3) (4) (5) (6) (7) (8) 

BreachPostHack -0.056 0.143 -0.067 0.116 -0.003 0.055*** -0.011 0.021 

 (-0.835) (1.62) (-0.583) (1.43) (-0.413) (2.81) (-0.601) (1.16) 

BreachPost -0.017 -0.116** -0.094 -0.159** -0.002 -0.031*** -0.003 -0.022 

 (-0.337) (-2.57) (-1.18) (-2.22) (-0.430) (-3.20) (-0.176) (-1.27) 

Total Effect -0.073 0.027 -0.161 -0.043 -0.005 0.025 -0.014 -0.001 

P-Value 0.063 0.586 0.005 0.227 0.377 0.048 0.041 0.970 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

HospitalEvent FEs Yes Yes Yes Yes Yes Yes Yes Yes 

YearEvent FEs Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 8,401 7,815 5,308 7,888 8,401 7,815 5,308 7,888 

Adj R2 0.983 0.985 0.975 0.978 0.943 0.954 0.931 0.943 

Panel B: Control Group of Non-Breached Hospitals in Same County 

BreachPostHack 0.148 -0.043 0.347*** 0.216** 0.026* 0.060* 0.055*** 0.050** 

 (1.25) (-0.444) (3.50) (2.27) (1.77) (1.75) (4.23) (2.03) 

BreachPost -0.144* -0.116 -0.302*** -0.292*** -0.009 -0.023 -0.040*** -0.038* 

 (-1.83) (-1.61) (-3.37) (-4.18) (-0.983) (-0.974) (-3.55) (-1.98) 

Total Effect 0.003 -0.160 0.045 -0.076 0.018 0.036 0.015 0.012 

P-Value 0.959 <0.001 0.002 0.156 0.057 0.089 <0.001 0.515 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

HospitalEvent FEs Yes Yes Yes Yes Yes Yes Yes Yes 

YearEvent FEs Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 1,173 1,162 946 1,138 1,173 1,162 946 1,138 

Adj R2 0.995 0.995 0.996 0.993 0.968 0.966 0.989 0.972 
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Table 9 

Yields and Hospital Financials around Periods of Interest in Data Breaches 
This table presents stacked triple difference-in-difference coefficient estimates of several variables that measure the 

issuer cost of debt outcomes from Table 4 and hospital financial outcomes from Panel A of Table 7 on Breach, Post, 

and Hack and interactions between each of the terms. The Low Attention (left) half of the table is based on a sample 

split of observations with less than the median search volume index (SVI), and the High Attention (right) half of the 

table is the complement. The variable SVI is the average yearly Google Trends search volume index for the phrase 

“data breach” in the hospitals’ respective states. I restrict base SVI on news articles to account for the spread of 

information regarding breaches and, therefore, the potential attention given to events. Following Aghamolla et al. 

(2023), I include the lagged variables log Hospital Income, log Bed Days, Cash Holdings, log Liabilities, and Total 

Patient Revenue as controls. The coefficients for the controls are omitted for brevity. I include hospital-event and year-

event fixed effects in the models (Baker et al., 2022). Standard errors are clustered by issuer in all models, and t-

statistics are presented in parentheses. All variables are defined in the appendix. *, **, *** indicates significance at 

10%, 5%, and 1% levels, respectively. 

 

 Low Attention High Attention 

Panel A: Hospital Financials 

 logarithm of 1 + Dependent Variable 

 Pat  

Rev 

Outpat 

Rev 

Inpat  

Rev 

Bed  

Util 

Pat  

Rev 

Outpat  

Rev 

Inpat  

Rev 

Bed  

Util 

 (1) (2) (3) (4) (5) (6) (7) (8) 

BreachPostHack -0.062** -0.011 -0.095* -0.018 -0.127** -0.068 -0.135*** -0.003 

 (-2.30) (-0.310) (-1.85) (-1.21) (-2.10) (-0.593) (-4.07) (-0.137) 

BreachPost -0.006 -0.011 0.018 0.016 -0.013 -0.046 0.022 0.015 

 (-0.235) (-0.387) (0.430) (1.51) (-0.233) (-0.459) (0.800) (0.878) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

HospitalEvent FEs Yes Yes Yes Yes Yes Yes Yes Yes 

YearEvent FEs Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 18,489 18,487 18,489 18,468 18,672 18,672 18,672 18,664 

Adj R2 0.992 0.986 0.990 0.951 0.990 0.983 0.991 0.938 

Panel B: Issuer Cost of Debt 

 Yield Adjusted Spread Yield Adjusted Spread 

 (1) (2) (3) (4) (5) (6) (7) (8) 

BreachPost 0.448 0.403 0.366 0.713* 0.214 0.737*** 0.474* 1.23*** 

 (0.669) (1.56) (0.477) (1.77) (1.47) (3.28) (1.98) (3.34) 

Controls No Yes No Yes No Yes No Yes 

HospitalEvent FEs Yes Yes Yes Yes Yes Yes Yes Yes 

YearEvent FEs Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 5,466 5,466 5,466 5,466 6,466 6,466 6,466 6,466 

Adj R2 0.534 0.933 0.597 0.853 0.355 0.847 0.316 0.727 
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Table 10 

Robustness of Financing Tests 
This table presents robustness tests for my main results in Table 3. I use a stacked difference-in-

difference estimation in each model outside of those in Panel A, and the columns represent 

coefficient estimates of my three main dependent variables on Breach, Post, and an interaction 

between Breach and Post. Each model includes Coupon, Maturity, Inverse Maturity, Logged Issue 

Size, Callable, Negotiated, GO Bond, Tax Exempt, lag Population, lag Per Capita Income, and 

lag Employment as control variables. Models 1 and 2 also includes the corresponding Treasury 

Yield as a control. The coefficients for the controls are omitted for brevity. I include state-event 

and year-event fixed effects in the models (Baker et al., 2022). Panel A presents my main financing 

test models using an alternative methodology (Borusyak et al., 2021) over the same sample period 

as my primary sample. Panel B presents the main results based on a coarsened exact matched 

sample. I split the continuous bond characteristics, county population, and county employment  

into four bins and match breached bonds to control bonds to those that are issued within the same 

year and bin and that have the same binary characteristics. Panel C presents the main results when 

using only non-breached issuers in the same county as the breached hospital as the control group. 

Standard errors are clustered by issuer in all models and presented in parentheses. All variables 

are defined in the appendix. *, **, *** indicates significance at 10%, 5%, and 1% levels, 

respectively. 

 

 Dependent Variable 

 Yield Adjusted Spread 

 (1) (2) (3) (4) 

Panel A: Alternative Estimator (Boruysyak et al., 2023) 

BreachPost 0.364*** 0.419*** 0.821*** 0.821*** 

 (5.02) (4.60) (6.93) (6.64) 

Controls No Yes No Yes 

Issuer FEs Yes Yes Yes Yes 

Year FEs Yes Yes Yes Yes 

Observations 16,416 16,416 16,416 16,416 

Panel B: Coarsened Exact Matched Sample 

BreachPost 0.805** 0.536*** 1.16** 0.966*** 

 (2.31) (4.29) (2.13) (3.69) 

Controls No Yes No Yes 

IssuerEvent FEs Yes Yes Yes Yes 

YearEvent FEs Yes Yes Yes Yes 

Observations 970 970 970 970 

Adj R2 0.323 0.913 0.377 0.814 

Panel C: Control Group of Non-Breached Issuers in Same County 

BreachPost 0.641** 0.513* 0.988* 0.829** 

 (2.32) (1.90) (1.82) (2.08) 

Controls No Yes No Yes 

IssuerEvent FEs Yes Yes Yes Yes 

YearEvent FEs Yes Yes Yes Yes 

Observations 2,810 2,810 2,810 2,810 

Adj R2 0.424 0.843 0.360 0.723 

 


