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Abstract

This paper explores the role of memory in shaping belief formation of financial

market participants. We estimate a structural machine learning model of memory-

based belief formation applied to consensus earnings forecasts of sell-side stock analysts.

The estimated model reveals significant recall distortions compared to a benchmark

model trained to fit realized earnings revisions. Specifically, analysts over-recall distant

historical episodes most of the time, when recent events are more useful for forming

forecasts than those in the distant past, but under-recall them during crisis times, when

history helps to interpret unusual events. We document two potential driving forces

behind these distortions. First, analyst memory overweights the importance of past

earnings and past forecasts. Second, analysts are more likely to selectively forget past

positive events. Our model of analyst recalls strongly predicts their earnings forecast

revisions and errors, as well as stock returns, which suggests that distorted recalls

might contribute to mispricing of assets in financial markets.
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1 Introduction

“In response to current events, people often reach for historical analogies, and this occasion

was no exception. The trick is to choose the right analogy.” - Bernanke (2015)

Belief formation is crucial to asset pricing, as people make investment decisions based on

their beliefs about the future state of firms and the economy. But how do people form these

beliefs? Psychology literature suggests that memory plays a central role in belief formation,

as current events often trigger the retrieval of similar past experiences, which then serve as

references for current beliefs (Kahana, 2012). To connect memory with financial markets,

a growing body of studies has developed theories (Mullainathan, 2002; Bordalo, Gennaioli

and Shleifer, 2020; Wachter and Kahana, 2024) and provided evidence through surveys and

lab experiments (Bordalo et al., 2022; Jiang et al., 2023; Enke, Schwerter and Zimmermann,

2024; Gödker, Jiao and Smeets, 2022; Graeber, Roth and Zimmermann, 2024). However,

there remains little empirical evidence directly from financial market data that shows how

memory shapes the belief formation of market participants and impacts asset pricing.1

To fill this gap, we provide new empirical evidence through two essential components

of memory studies: mental context and recall. Mental context represents agents’ current

perception of a firm’s state (e.g., as promising or struggling). Recall represents a past firm

event similar to the current one, triggered by the mental context. Both components are

essential but latent, so we develop a novel empirical approach to extract them by estimating

a structural memory model applied to consensus analyst earnings forecasts.2

Our empirical approach involves two steps. In the first step, we estimate analyst mental

context using a structural memory model. At its core is a seminal machine learning memory

model - Long Short-Term Memory (LSTM), which simulates analysts’ memory systems.3

LSTM is a neural network with a dynamic memory cell and control gates that regulate

the cell’s updating processes. This structure allows the memory cell to store long-term

1Jiang et al. (2023) use survey and transaction data to show that memory influences investors’ trading.
Charles (2024) studies how memory-based attention impacts stock prices around earnings announcements.

2We study analyst forecasts as they are often used as proxies for investor beliefs (Brunnermeier et al.,
2021).

3The theoretical foundation of LSTM dates back to Hochreiter and Schmidhuber (1997). With advances
in computational power, it gained widespread application in empirical data tasks from the 2010s. LSTM
achieves notable success in fields such as natural language processing and time series prediction, where it
captures sequential dependencies effectively. This capability has also paved the way for more advanced
generative AI models. Additionally, LSTM closely resembles state-of-the-art memory models in psychology
(Kahana, 2012) that underpin Wachter and Kahana (2024)’s theoretical work in finance. These models have
not been tested with empirical data.
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generalized information about a firm, such as whether analysts perceive it as promising or

struggling over time. Then, in our structural memory model, analyst belief formation involves

three stages. First, analysts observe external features (e.g., GDP growth and debt-to-asset

ratio). Second, they process these features along with past experiences and the current

memory cell to form a mental context through their memory system (LSTM). Finally, they

update their forecasts for the firm’s future cash flows based on this mental context.

In this three-stage belief formation process, we observe external features and analyst

forecasts in the data, then we can estimate the model to infer latent analyst mental context.

For our empirical analysis, we use monthly data from 1990 to 2020, covering around 1,500

firms. For external features, we use a high-dimensional set of public signals including firm

characteristics and macroeconomic variables. For analyst beliefs, we use consensus analyst

forecasts for firms’ one-year-ahead earnings per share (EPS).4

In the second step of our empirical approach, we extract analyst recalls cued by the

estimated mental context. Specifically, for each past experience, we assess the probability

that analysts retrieve it from their memory database, which includes all firms in history

and in the same industry as the current firm. The closer the mental context of a past

experience to that of the current event, the higher its probability of being recalled, following

the standard methods in psychology and economics literature (Kahana, 2012; Bordalo et al.,

2023).

Our novel empirical approach offers three key advantages. First, with its embedded

dynamic memory and mental context structure, our approach can capture and test well-

established facts of human memory documented in psychology and finance (Kahana, 2012;

Wachter and Kahana, 2024; Charles, 2024): recency, temporal contiguity, and semantic sim-

ilarity.5 In contrast, other memory frameworks (e.g., Bordalo, Gennaioli and Shleifer, 2020)

that define recalls with static external features cannot fully capture these facts. Second,

financial market participants often face high-dimensional, non-stationary variables with non-

linear interactions. LSTM, as a machine learning method, is designed for such challenges,

making it more suitable than parsimonious memory models (Wachter and Kahana, 2024; Bor-

dalo, Gennaioli and Shleifer, 2020). Third, unlike surveys and experiments limited to specific

settings (e.g., Enke, Schwerter and Zimmermann, 2024; Bordalo et al., 2022), our approach

4We focus on consensus analyst forecasts to avoid noise in individual forecasts, such that we mainly study
the collective memory for each firm in this paper.

5Recency: people tend to refer to recently experienced events when retrieving memories; temporal con-
tiguity: people recall events that occurred close in time to the recalled event; semantic similarity: people
access events most similar to their current experiences.
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estimates analyst recalls for each firm across decades. This provides large cross-sectional

samples over extended periods, which are essential for empirical asset pricing studies.

We next provide novel and unique empirical evidence demonstrating how memory shapes

the belief formation in financial markets across four dimensions: the extracted analyst recalls,

the distortions in these recalls, the driving factors behind these distortions, and the asset

pricing implications of both the analyst recalls and distortions.

First, the extracted analyst recalls validate our empirical approach, as key principles

of human memory, such as the recency effect and temporal contiguity effect, significantly

appear in analyst recalls. Specifically, analysts generally focus on recent episodes and tend to

recall events that occurred close together in time. However, past experiences can sometimes

outweigh recent episodes; for instance, during the COVID pandemic in 2020, analysts paid

more attention on the 2008 global financial crisis than on recent quarters. Our approach

proposes new disciplines for rigorously modeling the impact of past experiences over different

time periods.6

While forming beliefs based on recalls can be rational, deviations from full rationality

occur if analysts recall wrong historical episodes. To examine the potential distortions in

analyst recalls, we define a benchmark memory model by training the LSTM on realized

earnings revisions rather than consensus forecast revisions.7 Using this trained benchmark

model, we then derive benchmark recalls cued by its mental context. Analyst recalls show

significant distortions compared to these benchmark recalls. First, most of the time, ana-

lysts over-recall distant episodes, favoring long-term memory even when recent events are

more relevant for optimal forecasts. Second, during crises, when historical episodes offer

particularly valuable insights, analysts under-recall these episodes.

Why are analyst recalls distorted? We identify two main drivers: encoding errors and

selective forgetting, both rooted in psychology and economics literature. First, we find that

analysts do not encode external features into their memory optimally. By decomposing the

memory cells and mental context for both analysts and the benchmark, we compute variable

importance using 12-month rolling window regressions of memory cells and mental context on

external features. Then the variable importance is the reduction in R2 when features are set

to zero one at a time in the regressions. This decomposition reveals two key findings. First,

6This finding challenges the constant-gain framework, which assumes a monotonically declining impact
of past experiences over time. The literature on experience effect and extrapolation (Malmendier and Nagel,
2011; Nagel and Xu, 2022; Barberis et al., 2015) commonly relies on this framework.

7This benchmark model generates optimal forecasts, with predictive power for realized earnings revisions
comparable to other non-memory baseline models, such as logistic regression.
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analyst memory cells and mental context overweight past earnings and forecasts, whereas

the benchmark mainly focuses on other firm characteristics. Second, analysts fail to adjust

feature weights in their mental context sufficiently during crises. This results in under-

recalling distant yet useful episodes, leading to underreaction in their earnings forecasts.

These findings provide a memory-based foundation and empirical evidence for the literature

on encoding errors (e.g., Woodford, 2020; Frydman and Nunnari, 2021; Frydman and Jin,

2022; Drugowitsch et al., 2016).

In addition to encoding errors, we document that selective forgetting also distorts analyst

recalls away from the optimal benchmark. In a counterfactual analysis, we remove the

forget gate from our LSTM models for both the analysts and the benchmark. Then we

elicit counterfactual recalls cued by mental context without selective forgetting. Removing

selective forgetting would improve analyst forecasts, as the predictive power of their recalls

for realized earnings revisions increases by 68%. Conversely, without selective forgetting, the

benchmark recalls’ performance in predicting realized earnings revisions declines by 40%.

This evidence suggests that analysts do not use the selective forgetting channel effectively,

contributing to recall distortions. Specifically, without selective forgetting, analyst recalls

align more closely with the optimal benchmark recalls, exhibiting a stronger recency effect

and focusing more on positive events.

Next, we show that analyst recalls and recall distortions have substantial predictive power

for asset pricing by presenting four significant implications.8 First, we document that our

model of analyst recalls predicts future stock returns. In response to current events, when

analysts recall positive (negative) events, they tend to form optimistic (pessimistic) beliefs,

resulting in positive (negative) stock returns. We quantify recall positivity or negativity

using the recalled revision. This is defined as the forecast revision that analysts should make

(the difference between realized EPS and the lagged forecast) if the corresponding actual

EPS is known, or as the consensus analyst forecast revision from the recalled episode if the

actual EPS has not yet been announced. We then sort stocks into portfolios based on the

analyst recalled revisions. Analysts significantly revise down forecasts for firms in the low

recalled revisions group and revise up forecasts for firms in the high group. The long-short

portfolio yields a significant positive monthly risk-adjusted return of 0.41%.

8We present the asset pricing implications through out-of-sample tests. For asset pricing quantities at time
t, our memory-based variables are predictions from memory models trained solely on information available
prior to t and are measured independently of future stock prices or returns. Our results thus support the
common assumption in asset pricing literature that analyst forecasts represent investor beliefs (Brunnermeier
et al., 2021).
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Second, we demonstrate that memory can serve as a powerful microfoundation for dis-

agreement. Assuming analysts share a common memory database, disagreement arises from

randomness in the cued recall process. When analysts retrieve different past experiences with

varied future prospects (measured by recalled revisions), they form differing beliefs, leading

to abnormal trading volume. We regress the disagreement (Diether, Malloy and Scherbina,

2002), and abnormal trading volume (Cookson and Niessner, 2020) on the dispersion of

analyst recalls (defined as the weighted standard deviation of analyst recalled revisions).

Regression results indicate that the dispersion of analyst recalls significantly captures both

disagreement and trading volume in financial markets.

Third, we examine the economic impact of distorted analyst recalls, defined as the dif-

ference between analyst and benchmark recalled revisions. We show that recall distortion

is a powerful predictor of forecast errors and contributes to asset mispricing. A regression

of analyst EPS forecast errors on recall distortion yields a significantly positive coefficient,

indicating that overly positive (negative) recalls lead to over-optimistic (over-pessimistic)

forecasts. Even when competing with other predictors of forecast errors (Coibion and Gorod-

nichenko, 2015; Bordalo et al., 2024), recall distortion remains significant. Taking this a step

further, if investors follow analyst beliefs and deviate from rational beliefs as captured by our

benchmark recalls, recall distortion should reflect market mispricing. In a rational market,

we would expect a reversal of the abnormal returns caused by recall distortion. To test this,

we sort stocks into quintile portfolios by recall distortion. The first quintile contains stocks

with overly positive analyst recalls and the fifth quintile contains those with overly negative

recalls. Initially, a long-short strategy yields negative returns, reaching a cumulative return

low of -0.5% within two months. Subsequently, the rational market corrects the mispricing,

leading to a reversal, and the effects of recall distortion vanish within six months.

Fourth, our models of analyst and benchmark recalls offer new insights into asset pricing

anomalies, particularly short-term reversal, where a stock’s prior-month return is negatively

associated with its next-month return. Our memory framework suggests that when investors

pay excessive (insufficient) attention to the prior month, they are more (less) likely to mirror

their previous actions. For instance, if investors pushed up a stock’s price last month, they

are more (less) likely to continue doing so. This memory-based attention can offset (amplify)

short-term reversal. Using analyst recalls as a proxy for memory-based investor attention,

we define biased attention as the difference in probabilities of recalling last month between

analysts and the benchmark. Double-sorted portfolios—first by investor biased attention,

then by prior-month returns—reveal that, in the group of stocks receiving excessive attention,
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the short-term reversal strategy9 yields a monthly risk-adjusted return of -0.58%, indicating

a momentum pattern instead. Conversely, short-term reversal is amplified in the group of

stocks where investors are inattentive to the prior month’s situation. The double-sorted

long-short strategy between these groups earns a monthly risk-adjusted return of 1.12%,

over three times the magnitude of the standard short-term reversal strategy. Additionally,

we observe a reversal in cumulative returns within five months, as the strategy exploits

investor belief distortions that are eventually corrected by the market.

The contribution of this paper to the literature is three-fold. First, it contributes to the

literature on applications of human memory in economics and finance. Existing research pri-

marily develops theories connecting memory and financial markets (Bordalo, Gennaioli and

Shleifer, 2020; Wachter and Kahana, 2024; Nagel and Xu, 2022; Bordalo et al., 2023). We are

the first to empirically extract firm-specific recalls over decades by estimating a structural

memory-based model. Unlike survey- or experiment-based methods (Bordalo et al., 2022;

Jiang et al., 2023; Enke, Schwerter and Zimmermann, 2024; Gödker, Jiao and Smeets, 2022;

Graeber, Roth and Zimmermann, 2024), our approach yields such a large panel of recalls

suited for empirical asset pricing. We provide new insights into memory’s role in belief for-

mation, offering empirical evidence that aligns with established memory principles (Kahana,

2012; Charles, 2024), as well as key memory channels such as encoding of external features

(Woodford, 2020; Frydman and Nunnari, 2021; Frydman and Jin, 2022; Drugowitsch et al.,

2016) and selective forgetting (Walters and Fernbach, 2021; Gödker, Jiao and Smeets, 2022).

However, these important channels and facts cannot be identified in other memory frame-

works that lack dynamic memory structures (Bordalo, Gennaioli and Shleifer, 2020; Charles

and Sui, 2024). Additionally, we introduce a novel memory-based framework to model the

impact of past experiences, expanding beyond the commonly applied constant-gain approach

(Malmendier and Nagel, 2011; Barberis et al., 2015; Nagel and Xu, 2022).10

Second, this paper advances asset pricing research by providing new evidence on how

memory-based belief formation shapes asset pricing dynamics. Belief formation is central to

asset prices (Brunnermeier et al., 2021), and our memory-based approach offers new insights

into return predictability (Barberis, Shleifer and Vishny, 1998; Bordalo et al., 2019, 2024;

Cui, De la O and Myers, 2024), disagreement and trading volume (Hong and Stein, 2007;

9We implement the short-term reversal strategy by sorting stocks into terciles on their prior-month
returns, then buying stocks in the first tercile (past losers) and selling stocks in the top tercile (past winners).

10This paper also contributes to the literature on experience effects by allowing for the study of multi-
ple types of experiences in high-dimensional settings, providing a richer foundation than the reduced-form
methods that typically examine single experiences (Malmendier and Nagel, 2011, 2016).
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Atmaz and Basak, 2018; Cookson and Niessner, 2020; Liao, Peng and Zhu, 2022), as well as

mispricing and asset pricing anomalies (Barberis, 2018; De la O, Han and Myers, 2023; Da,

Liu and Schaumburg, 2014; Lehmann, 1990; Jegadeesh, 1990; Bouchaud et al., 2019).

Third, this paper adds to the growing literature applying machine learning in finance

and economics. Much research leverages machine learning’s predictive power to forecast

stock returns and economic outcomes like EPS, GDP growth, and inflation (Gu, Kelly and

Xiu, 2020; Chen, Pelger and Zhu, 2023; van Binsbergen, Han and Lopez-Lira, 2023; Bianchi,

Ludvigson and Ma, 2022; Chen, Kelly and Xiu, 2024; Lopez-Lira and Tang, 2023). Though

this predictive power often operates as a black-box. This paper instead opens the black-

box, using models rooted in neuroscience and psychology to capture how beliefs form among

financial market participants. It also inspires a new research avenue of applying machine

learning in behavioral finance. While similar concepts are emerging, such as Barberis and

Jin (2023)’s theoretical application of reinforcement learning to investor behavior, we are the

first to apply such approaches to empirical data.

The remainder of the paper is organized as follows. Section 2 presents a framework of

memory-based belief formation. Section 3 introduces the details about the structural ma-

chine learning memory model applied to consensus analyst earnings forecasts. Section 4

explores estimated analyst recalls and examines their relationship with beliefs and investor

trading. Section 5 investigates recall distortions, underlying drivers, and asset pricing impli-

cations. Finally, Section 6 concludes.

2 Cued Recall and Belief Formation

We present how cued recall shapes beliefs in financial markets. At time t, the analyst

evaluates how she should change her belief Fi,trEPSi,t`ls about firm i’s future earnings

per share (available at time t` l) which is denoted as EPSi,t`l, from her last period’s belief

Fi,t´1rEPSi,t`ls. Let ∆Fi,t “ Fi,trEPSi,t`ls´Fi,t´1rEPSi,t`ls denote the change in her belief,

i.e., forecast revision.11 The process of forming ∆Fi,t involves two steps. First, she retrieves

similar experiences from her memory database through the cued recall process, where each

experience is represented as a tuple of firm and time, i.e., (firm, month). Second, she

projects her beliefs about the current prospects of a firm based on the retrieved experiences.

For example, when forming beliefs about firm i in month t, the analyst’s retrieved experience

11We focus on the change in belief to study how analysts react to new information.
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may be firm j in month τ (prior to month t), then her belief about firm i is influenced by

her belief about firm j in month τ . We next formalize these steps, following the approach

outlined in Bordalo et al. (2023) and Jiang et al. (2023).

2.1 Step 1: Cued Recall

Cued recall is the process of searching for similar past experiences from the contents of

memory. Context is commonly used as a retrieval cue. We take the agent’s internal mental

state as the context (e.g., her perceived state of firms or the economy), following Wachter and

Kahana (2024). In this setting, the human memory system processes external features and

transforms them into an internal mental context, allowing the same set of external features

to be interpreted differently by the same person as her memory evolves. Thus, the mental

context defined in this paper is dynamic, in contrast to another strand of research which

uses static external features as context.12 The dynamic structure of context can produce

fundamental principles of human memory, such as the temporal contiguity effect, which

states that people tend to recall events that happen contiguously in time. The temporal

contiguity effect plays an important role in explaining certain investor behaviors (Wachter

and Kahana, 2024)13 and it has been supported by the empirical evidence in a specific setting

of earnings announcements (Charles, 2024). However, the memory models that take static

external features are not able to capture the temporal contiguity effect (Bordalo, Gennaioli

and Shleifer, 2020). We formally define context and introduce its dynamics in Section 3. For

simplicity, we broadly define context in this section as a representation of relevant information

about each experience. We denote the context for each firm j at time τ as a K-dimensional

vector cj,τ .

The past experiences are retrieved in the process of cued recall according to their simi-

larity to the current event. When the past experience is more similar to the current event,

it is more likely to be retrieved. We measure the similarity between two experiences pi, tq

12For example, Bordalo, Gennaioli and Shleifer (2020) use environmental features such as location as
context to define cued recall in a setting of economic decision making and Jiang et al. (2023) show that
today’s return acts as a powerful context cue for investors’ recall.

13For example, in their theoretical work, Wachter and Kahana (2024) provides a memory explanation for
the narratives that depression would come right after seeing the financial crisis. Specifically, they show that
in investor memory, the Great Depression in 1930 came right after the stock market crash of 1929. Then the
re-appearance of a financial crisis today retrieves their memory of the crisis in 1929, as well as the memory
of the depression since the state of financial crises and depressions are associated in time in their memory,
then the temporal contiguity effect elicits all events happened around 1929, even though the features of crisis
and depression are assumed orthogonal.
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and pj, τq by the similarity function S, following standard methods in the memory literature

(Kahana, 2012)14

Spcj,τ , ci,tq “ exp p´}cj,τ ´ ci,t}2q . (2.1)

Two experiences are similar to each other if the Euclidean distance between their corre-

sponding context vectors is small. The similarity reaches a maximum of 1 when two context

vectors are exactly the same. Then, when encountering event pi, tq, each past experience

pj, τq may be retrieved with a probability proportional to the similarity between pi, tq and

pj, τq, i.e.,

ppcj,τ q 9 Spcj,τ , ci,tq. (2.2)

2.2 Step 2: Belief Projection

In the second step, analysts revise their forecasts based on their retrieved experience. This

process is similar to the step of “simulation” in Bordalo et al. (2022). We model the an-

alysts mostly rely on the experience that first gets retrieved.15 Specifically, when forming

forecast revision ∆Fi,t for firm i in month t, suppose one analyst k retrieves experience pj, τq

that is sampled from the probability distribution (2.2). Then her forecast revision ∆F k
i,t is

positively associated with her recalled revision. Due to equivalence under a positive linear

transformation, we represent forecast revision ∆F k
i,t as:

∆F k
i,t “ rrj,τ , (2.3)

and rrj,τ is the recalled revision, defined as

rrj,τ “

$

&

%

EPSj,τ`l ´ Fj,τ´1rEPSj,τ`ls if τ ` l ă t

Fj,τ rEPSj,τ`ls ´ Fj,τ´1rEPSj,τ`ls if τ ` l ě t
(2.4)

where EPSj,τ`l denotes the realized EPS at time τ ` l and Fj,τ´1rEPSj,τ`ls denotes the

analyst forecast at time τ ´ 1. Intuitively, we model that the analyst formulates the forecast

revisions at time t, by learning from what revisions she should have made in the recalled

14In general, the similarity function can be defined as

Spcj,τ , ci,tq “ exp p´ξ}cj,τ ´ ci,t}γq ,

where γ is the distance metric, with γ “ 2 denotes the Euclidean norm, and ξ ě 0 measures how quickly
similarity decays with the distance. In our empirical tests, we take the most common case where γ “ 2 and
ξ “ 1.

15This framework uses a single recall as a baseline. It can be easily extended to multiple recalls, such as a
similarity-weighted average of all past experiences (Bordalo et al., 2023), or more complex cases where the
probability of retrieving an experience depends on prior recalls (Kahana, 2012).
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episode if the realized earnings are available at time t. Otherwise, she takes her own forecast

revision as the reference. When rrj,τ ą 0, the analyst recalls a positive event, as either

she revised up her forecasts, or she learns she should revise up her forecast in the recalled

episode. If rrj,τ ă 0, she recalls a negative event.

To study the impact of memory on the aggregate market, we further assume an infinite

number of analysts, and they share the same memory database. Specifically, when forming

forecast revision for firm i at time t, the analysts sample from the memory database Mi,t

which consists of past experiences that are associated with all the firms in the same industry16

as firm i before time t. Formally, Mi,t ” tpj, τqu, @j, τ, such that Industrypjq “ Industrypiq

and τ ă t. Then the probability distribution (2.2) is refined as17

ppcj,τ q “
Spcj,τ , ci,tq

ř

pm,sqPMi,t
Spcm,s, ci,tq

. (2.5)

The consensus forecast revision ∆Fi,t is an average of individual forecast revisions ∆F k
i,t,

∆Fi,t “
ÿ

pj,τqPMi,t

ppcj,τ q ˆ ∆F k
i,t “

ÿ

pj,τqPMi,t

ppcj,τ q ˆ rrj,τ , (2.6)

For the view of an aggregate market or a representative analyst, Equation (2.6) also reconciles

with the idea of availability heuristic (Tversky and Kahneman, 1974) that people will be

biased towards the instances that are easier to recall. Experience that is more similar to the

current episode has more weight in formulating today’s consensus forecast revisions in our

setting.

3 Estimation of Mental Context and Recall

In this section, we introduce a machine learning approach to estimating mental context and

recalls from a structural memory-based model using empirical data. In the framework of

belief formation based on cued recall, it is context that shapes the analyst recalls. Thus, we

first introduce mental context in a dynamic memory structure, the long short-term memory

16The industries are defined as in Fama-French 49 industry portfolios.
17In practice, the number of analysts covering a firm is limited. We restrict the size of memory database

Mi,t to five by selecting the five past experiences with highest similarity. This choice aligns with typical
scenarios where around five analysts cover a firm. Additionally, Miller (1956) highlighted that the capacity
for processing information is limited to approximately 7 items due to constraints in working memory. Sim-
ilarly, Earhard (1967) and Roberts (1972) show that the number of recalls cannot increase without limit,
contradicting the typical assumption of rational investors. Our results remain robust to variations in the
size of the memory database, as demonstrated in Appendix A6.
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model (LSTM). Then, we develop LSTM to fit the analysts’ belief formation process. Lastly,

we introduce the data and the model training process.

3.1 The Structure of LSTM

LSTM is a type of neural network with a chain-like structure designed for dealing with se-

quence data. Its theoretical foundation was first introduced by Hochreiter and Schmidhuber

(1997) in machine learning literature. The core components of a typical LSTM unit include

a memory cell, represented by m P RK , which stores information over long time periods,

and a context state, represented by c P RK . Additionally, three gates - forget, input, and

output - regulate the flow of information by determining what to retain, update, and output

from the memory cell. K represents the dimension of memory space in the model. The

external features, denoted as X P RJ , where J represents the number of features, are fed

into the LSTM at each time step. The external features X interacts with the memory cell

and gates. This structure allows LSTM to effectively learn patterns in sequence data and

capture dependencies across time.

The external features X are observable, while both memory cell m and mental context c

are latent and need to be estimated. To better conceptualize the idea of memory cell m and

mental context c in the setting of analysts forming beliefs, we show some examples. One can

think of the mental context c as analysts’ perceived current state of the firm. This is the short-

term generalized information from the past experiences and current inputs, for example,

whether analysts think this is a promising or a struggling firm currently. The memory cell m

stores the relatively long-term generalized information, for instance, whether analysts think

this has been a promising or a struggling firm for a while. Another way of conceptualizing

the mental context c and memory cell m is that c stands for the high-frequency regime of the

firm while m stands for the low-frequency regime of the firm. External features X include

public information such as macroeconomic conditions and firm fundamentals.

Figure 1 illustrates the structure of one LSTM unit. The three gates are shown in orange

boxes, each regulated by a sigmoid activation function. The sigmoid function, denoted as

σ, applies an element-wise operation that outputs values between zero and one, thereby

controlling how much information passes through the gates. The operators “ˆ” and “`”

shown in pink circles are the element-wise multiplication and addition, respectively. “Tanh”

in yellow boxes refers to the hyperbolic tangent activation function.18

18The incorporation of these activation functions (tanh and sigmoid) has several advantages: first, they
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Figure 1: The Structure of a LSTM Unit

The memory process takes the following steps. First, the forget gate determines the

amount of information to retain in the memory cell, this serves as the channel of selective

forgetting. Specifically, an output of zero from the sigmoid function indicates that the

information should be completely erased, whereas an output of one signals that it should be

fully retained,

forgett “ σpW f
c ct´1 ` W f

xXt ` wf
0 q. (3.1)

The output of the sigmoid function is determined by the linear combination of current

external features Xt and previous hidden mental context ct´1. Including both Xt and ct´1

is important. For example, in a natural language processing setting, the same word “apple”

(Xt) can refer to either the fruit or the technology company, depending on the previous

semantic context ct´1. Similarly, an 11% revenue growth rate might signal a company’s

rapid recovery from difficulties, or it can indicate a high-growth company’s shift towards

gradual mediocrity. The interpretation depends on the previous context - state of the firm.

Second, the input gate determines the extent to which new information is stored in the

memory cell. If the sigmoid function outputs zero, the information is deemed irrelevant and

introduce the non-linearity to the structure so that it fits more closely to empirical economic and financial
data (Teräsvirta, 2006); second, they further standardize the variables, thus reduce the impact of outliers;
third, they improve the accuracy and efficiency of model estimation (Dubey, Singh and Chaudhuri, 2022;
Jagtap, Kawaguchi and Karniadakis, 2020).
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is not stored; conversely, an output of one indicates that the information is fully stored in

the memory cell. Before being stored, the information undergoes transformation by the tanh

function, which scales it to a range between -1 and 1, denoted as x̃t:

x̃t “ tanhpW x̃
c ct´1 ` W x̃

xXt ` wx̃
0q (3.2)

inputt “ σpW i
cct´1 ` W i

xXt ` wi
0q. (3.3)

Third, the memory cell is updated according to the outputs of the forget and input gates

as follows:

mt “ forgett ˆ mt´1 ` inputt ˆ x̃t, (3.4)

by erasing contents from the memory cell and adding in new valuable information to it.19

Finally, the output gate determines which information should be elicited from the updated

memory cell:

outt “ σpW o
c ct´1 ` W o

xXt ` wo
0q. (3.5)

Then, the final output, the current mental context ct, is chosen by the output gate from the

updated memory cell through the tanh function:

ct “ outt ˆ tanhpmtq. (3.6)

In LSTM, context vector ct is dynamic and evolving endogenously according to the feature

and memory stimuli, it goes beyond just the static features of the physical environment.

The whole structure of LSTM is recurrent, as each LSTM unit is connected over time. The

information obtained and updated in the memory cell and mental context from the previous

period will be used for the next period’s information processing and updates of memory cells

and mental context. We show this recurrent structure in Section 3.3.

Next, we discuss why LSTM is a good model for studying belief formation processes in

financial markets.

3.2 Why LSTM?

The benefit of applying LSTM to study belief formation processes in financial markets is

twofold. First, LSTM is a valid model of human memory and provides a structural form to

19The structure of LSTM is almost the same as the memory model proposed by Wachter and Kahana
(2024), the only difference is that LSTM has the channel of selective forgetting forget, while in Wachter
and Kahana (2024), the memory cell perfectly inherits, i.e., forget “ 1. We examine and document the
importance of this channel in Section 5.3.2.
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study the memory process. As suggested by the memory literature with ample experimental

and field evidence (Howard and Kahana, 2002; Kahana, 1996; Wachter and Kahana, 2024),

a valid model of human memory should incorporate the three basic laws and well-established

facts of human memory system: recency, temporal contiguity, and semantic similarity. Re-

cency means that people refer to recently experienced events when accessing memory. Tem-

poral contiguity means that people tend to recall an event that occurred contiguously in

time to presently-recalled events. Semantic similarity means that people are more likely to

access the events that are most similar to that they are experiencing. LSTM adapts the

state-of-the-art memory model in finance (Wachter and Kahana, 2024) in two ways. First,

the mental context c is evolving according to the association of external feature stimuli, inner

memory process and previous mental context. c generally has an autoregressive structure

(which is embedded in the autoregressive structure of the memory cell m). Second, incor-

porating a memory cell helps store past information and generate long-term dependency.

According to Howard and Kahana (2002), the autoregressive structure of mental context c

theoretically supports the production of three major laws of human memory. This struc-

ture facilitates recency, while the combination of autoregressive context and memory cell

establishes a channel for temporal contiguity. Semantic similarity naturally arises from the

definition of contextually cued recalls (see Section 2). Beyond Wachter and Kahana (2024),

LSTM first has the advantage of admitting more flexible functional forms. For example,

Wachter and Kahana (2024) only model the input features as basis vectors which is imprac-

tical for empirical analysis in a high-dimensional environment, but our framework is suitable

for any types of inputs. Furthermore, LSTM contains more structural memory channels

which allow for the comprehensive counterfactual analysis (see Section 5.3.2). For instance,

forget gate controls explicitly the content to fade away from the memory cell, which is not

embedded in the model of Wachter and Kahana (2024). However, there is experimental and

field evidence showing that selective forgetting can lead to investor’s biased beliefs (Walters

and Fernbach, 2021; Gödker, Jiao and Smeets, 2022).

Second, analysts need to deal with high-dimensional and non-stationary financial vari-

ables that may involve complicated functional forms. LSTM has the advantages that most

machine learning techniques possess in dealing with these difficulties. as machine learning

methods are good at feature selection and dimension reduction (Nagel, 2021). For instance,

in the memory model of Bordalo, Gennaioli and Shleifer (2020), context consists of all kinds

of external environmental variables which are equally weighted, and then it is used to get

the cued recall for decision-making. However, it is obvious that not all the features are used
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by analysts equally for their decision-making and belief formation. Without knowing which

features are redundant and filtering them out, we encounter big noises in understanding

analyst beliefs. LSTM presents a solution to this problem, as the three gates in LSTM can

filter out the redundant information and features. We show in Section 5.3.1 that analysts

put different weights on external features in their memory cell and the feature importance

is time-varying. Additionally, LSTM can capture underlying dynamics from non-stationary

variables. For example, Chen, Pelger and Zhu (2023) provides evidence that LSTM can

successfully extract hidden states from the non-stationary and cyclical dynamics of macroe-

conomic variables. Similarly, Bianchi, Ludvigson and Ma (2022) uses LSTM to provide an

unbiased benchmark for forecasts of GDP growth and inflation.

In machine learning and neuroscience, LSTM is recognized as a relatively simple yet

fundamental model. While more complex models exist, we apply LSTM in this paper to

demonstrate that the memory mechanisms it captures show strong predictive and explana-

tory power for analyst beliefs and asset pricing patterns. Our approach can also be adapted

to explore other specific memory or neuroscientific channels by replacing the basic LSTM

model with more advanced models, such as those introduced by Vaswani et al. (2017), We-

ston, Chopra and Bordes (2014), and Graves et al. (2016)

3.3 LSTM and Analyst Belief Formation

Now we adapt LSTM to the setting of analyst belief formation.

LSTM LSTM LSTM LSTM

Logistic Logistic Logistic Logistic

m0

c0

m1

c1

m2

c2

. . .

. . .

X1 X2 X3 Xt

c1 c2 c3 ct

∆F d
1 ∆F d

2 ∆F d
3 ∆F d

t

Figure 2: Whole Structure
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Figure 2 presents the whole structure of how the analysts form beliefs for one firm as time

progresses from left to right. For simplicity, the subscript i representing the firm is omitted

in the figures. For example, Xi,t is shown as Xt. In this structure, Xi,t P RM denotes the

public signals (external features) that the analysts use to form EPS forecast revisions at time

t for firm i. We introduce the details of Xi,t in Section 3.4. ∆F d
i,t denotes the direction of

revision on EPS forecasts at time t for firm i:

∆F d
i,t “

$

’

’

’

&

’

’

’

%

´1 if Fi,trEPSi,t`ls ă Fi,t´1rEPSi,t`ls,

0 if Fi,trEPSi,t`ls “ Fi,t´1rEPSi,t`ls,

1 if Fi,trEPSi,t`ls ą Fi,t´1rEPSi,t`ls,

(3.7)

where Fi,trEPSi,t`ls is the time t analyst forecast of firm i’s future earnings per share EPSi,t`l

that is available at time t ` l, and Fi,t´1rEPSi,t`ls is the time t ´ 1 analyst EPS forecast.

∆F d
i,t “ ´1, if the analysts revise down the forecasts from last period; ∆F d

i,t “ 1, if the

analysts revise up the forecasts; and ∆F d
i,t “ 0, if the analysts do not change the forecasts.20

The LSTM units in the whole structure is recurrent. The memory cell and the mental

context at period t ´ 1 are used as the input of the LSTM cell at period t. After receiving

new information Xi,t, the analysts update memory cell mi,t and mental context ct according

to the last period’s memory cell and mental context mi,t´1 and ci,t´1. Then the analysts

decode the mental context vectors ci,t and decide the direction of forecast revision ∆F d
i,t by

a logistic function of ci,t.

Both external features Xi,t and the direction of forecast revisions ∆F d
i,t are observable,

thus we can estimate the analyst memory cell mi,t and mental context ci,t by feeding external

features Xi,t into the whole structure and fitting revision directions ∆F d
i,t.

Additionally, we provide a benchmark memory by training LSTM to fit the direction of

realized EPS revisions which are analogously defined as shown in Equation (3.7):

∆REd
i,t “

$

’

’

’

&

’

’

’

%

´1 if EPSi,t`l ă Fi,t´1rEPSi,t`ls,

0 if EPSi,t`l “ Fi,t´1rEPSi,t`ls,

1 if EPSi,t`l ą Fi,t´1rEPSi,t`ls.

(3.8)

By comparing Fi,t´1rEPSi,t`ls with EPSi,t`l, ∆REd
i,t is interpreted as the correct forecast

revisions that the analysts should have made conditional on their forecasts in the preceding

20Note, ∆F d
i,t is different from ∆Fi,t defined in Section 2, as ∆F d

i,t is the direction of forecast revisions.
We opt to fit the LSTM model to directions of forecast revisions, since the training efficiency on continuous
forecast revisions is compromised by their relatively small magnitudes.
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period. This trained benchmark memory model provides real-time, unbiased forecasts for

realized earnings revisions, following the concept of machine learning benchmark forecasts

proposed by van Binsbergen, Han and Lopez-Lira (2023). We later demonstrate that this

benchmark memory model serves as a reference for rational market beliefs. It not only

captures biased analyst beliefs but also predicts asset mispricing in financial markets.

Finally, from the estimated mental context ci,t, we identify cued recalls (firm j in month

τ) based on the probability distribution (2.5). We have two sets of recalls: one is cued by the

mental context estimated by training LSTM on the directions of analyst forecast revisions

∆F d, which we define as analyst recalls. The other is cued by the mental context estimated

by training LSTM on the directions of realized EPS revisions ∆REd, which we define as

benchmark recalls. Benchmark recalls represent the historical episodes analysts should have

focused on to make accurate forecast revisions.

3.4 Data

We use an extensive set of monthly public signals as external features X, following van

Binsbergen, Han and Lopez-Lira (2023). This includes financial ratios from WRDS,21 other

firm-specific fundamentals from COMPUSTAT, macroeconomic variables from the Federal

Reserve Bank of Philadelphia, and earnings-related variables from I/B/E/S. Table A1 pro-

vides the full list of 79 external features. The sample period spans from January 1990 to

December 2020. To reduce the impact of extreme data points, all variables are winsorized

at the 2.5% level in cross-section at each time point. For detailed explanations and data

processing, refer to van Binsbergen, Han and Lopez-Lira (2023). To avoid look-ahead bias,

all variables in Xi,t are publicly announced and available to analysts before month t, with

most released during month t´ 1. On average, the sample contains around 1,500 firms each

month.

We obtain the analyst forecasts for the one-year-ahead EPS from I/B/E/S, and take the

mean of individual analyst forecasts as the consensus forecasts to avoid noise in individual an-

alyst forecasts. Specifically, in Equations (3.7) and (3.8), Fi,trEPSi,τ`ls and Fi,t´1rEPSi,τ`ls

are the consensus analyst forecasts. Thus, we study the collective memory for each firm.

Our framework and empirical methods can be applied to study other cash flows such as

long-term earnings growth or dividends.

21https://wrds-www.wharton.upenn.edu/pages/grid-items/financial-ratios-firm-level/

https://wrds-www.wharton.upenn.edu/pages/grid-items/financial-ratios-firm-level/
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3.5 Training, Validation, and Testing

We pool all the firms and the entire market history together to train a single and unified

memory model.22

We design the model training process, sample splitting, and performance evaluation

following Gu, Kelly and Xiu (2020). Details are provided in Appendix A2. The base training

sample spans January 1990 to December 2004, while the validation sample covers January

2005 to December 2006.23 The validation sample is used to determine the hyperparameter

K, the dimension of memory cell and mental context vectors. We select the optimal K as

K “ 10 based on performance in the validation sample. The test sample spans January 2007

to December 2020.

Beyond the base training sample, we employ the recursive scheme (expanding window)

to train the rest of the samples and evaluate the performance, following Gu, Kelly and

Xiu (2020). Specifically, after selecting the optimal hyperparameter K, we first train the

model on data from January 1990 to December 2004 and conduct out-of-sample analysis

for 2005. Then, we expand the training sample to include data from 2005, re-train the

model starting from the previous version, and perform out-of-sample analysis for 2006. This

process is repeated annually until 2020. This recursive scheme offers two key advantages.

First, it allows the model to adapt to the changing economic and financial environment,

improving estimate accuracy. Second, it simulates analysts’ evolving cognition, capturing

how they update their recognition process with new information. This reflects how analysts’

perceptions of a firm’s state at a specific historical moment can shift as they review that

event again later, with more experience and an evolving understanding.

Table 1 presents the out-of-sample performance of the analyst LSTM model and the

benchmark LSTM model, covering both the validation and test samples from 2005 to 2020.

For comparison, we also include a baseline logistic regression, which directly regresses ∆F d
i,t

and ∆REd
i,t on Xi,t, using the same recursive scheme and dataset as the LSTM models.

For predicting analyst forecast revisions (∆F d), the analyst LSTM model significantly out-

performs the baseline logistic regression, with a prediction accuracy gap of over 8%, and

performs notably better than the benchmark LSTM model. For realized earnings revisions

(∆REd), the benchmark LSTM model and logistic regression show similar performance, both

22This can be viewed as a memory model for a representative analyst.
23All variables are standardized as recommended in the literature: each variable is adjusted by subtracting

the mean and dividing by the standard deviation calculated from the base training sample. These mean and
standard deviation values are then applied to the validation and test samples.
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substantially outperforming the analyst LSTM model.24 These results yield two main find-

ings. First, the superior performance of the analyst LSTM model over logistic regression in

predicting analyst beliefs, alongside the benchmark LSTM model’s comparable performance

to logistic regression for realized earnings revisions, supports our later finding that analysts

are more influenced by long-term memory and experiences than optimal. This highlights the

importance of memory channels in modeling analyst belief formation. Second, the bench-

mark LSTM model demonstrates that memory models can achieve optimal forecast revisions,

with predictive power as strong as non-memory models like logistic regression, while the ana-

lyst LSTM model underperforms. This suggests that, despite the memory model’s accuracy

potential, analysts may form their memory suboptimally, with certain memory processes not

functioning as effectively as they could. We explore this further in Sections 5.3.1 and 5.3.2.

Table 1: Out-of-sample prediction accuracy of LSTM and logistic regression

Model Analyst Forecast Revision (∆F d) Realized Earnings Revision (∆REd)

LSTM (Analyst) 56.68% 35.31%

LSTM (Benchmark) 37.37% 59.52%

Logistic 48.21% 58.46%

This table shows the average out-of-sample prediction accuracy of LSTM and logistic regression for both the analyst
forecast revisions (∆F d, see (3.7)) and realized earnings revisions (∆REd, see (3.8)) over the year 2005 to 2020. We
apply the recursive scheme to evaluate the out-of-sample performance.

4 Analyst Recalls, Beliefs, and Trading

In this section, we demonstrate analyst recalls using the mental context estimated by the

LSTM model, as outlined in Section 3.3. As a validation, we show that our model of analyst

recalls has stronger predictive power for analyst EPS forecast revisions than other memory

frameworks. We then present evidence that the estimated analyst recalls also capture investor

beliefs, as they strongly predict stock returns and trading volume in financial markets.

4.1 Analyst Recalls

We first demonstrate the analyst recalls cued by the mental context c estimated from the

LSTM model, which we refer to as LSTM recalls.

24For in-sample performance, LSTM outperforms logistic regression by around 10% for both analyst fore-
cast revisions and realized earnings revisions.
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Figure 3: The analyst LSTM recalls cued by the mental context estimated from LSTM

Figure 3 displays the analyst LSTM recalls. The darker blue gradients indicate that, at

the current time x (corresponding to the columns), experiences from time y (corresponding

to the rows) are more likely to be recalled by analysts. Specifically, at each time x, we

identify the top 5 historical episodes most likely to be retrieved by analysts for each firm in

our sample, using the similarity function (2.1) and probability distribution (2.5). Figure 3

then shows the count of historical episodes from time y that analysts recall when analyzing

all firms at the current time x.25

25In all figures related to recalls, we present results using the top 5 recalls. The relative frequencies shown
are consistent regardless of the number of recalls selected. We provide robustness checks using the top 1 and



21

The findings are summarized as follows. First, we observe the well-established facts of

human memory: the recency effect and the temporal contiguity effect. Specifically, analysts

tend to focus on recent episodes, typically the last quarter or the same quarter in the previous

year. They also tend to recall episodes that occurred closely in time.26

Figure 4: The analyst recalls during COVID

Second, consistent with the theoretical memory literature (Wachter and Kahana, 2024)

and the experience effect literature (Malmendier and Nagel, 2011), we find that long-term

memory and distant experiences are generally significant, sometimes even more so during

certain periods. For example, during the COVID-19 pandemic in 2020, analysts frequently

top 10 recalls in Appendix A6.
26We formally examine the existence and significance of the temporal contiguity effect with a simulation

study that is designed to deal with the nature of similarity between two adjacent vectors of economic and
financial variables (external features) in time in Appendix A3.
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recalled the 2008 global financial crisis (GFC), and its impact even overshadowed more re-

cent episodes. Specifically, Figure 4 illustrates these recalls in 2020. In the second quarter of

2020, analysts recalled the market crash period of the GFC. By the third quarter, rather than

simply shifting their recall forward by one quarter, analysts quickly shifted their attention

to the GFC recovery period, which aligns with the timing of enforcement of the economic

stimulus policies. By the fourth quarter of 2020, analysts seldom recalled the GFC, consid-

ering the COVID pandemic unprecedented and concentrating instead on recent events. This

overall recall pattern aligns with survey evidence in (Jiang et al., 2023), which shows that

investors are more likely to recall both recent and salient episodes.

Figure 5: The Frequency of time difference between recall and recalled experience

Additionally, for each period, we calculate the frequency of the time difference between

when a recall occurs and when the recalled experience took place. Figure 5 presents the

average results for all periods from 2005 to 2020, along with specific averages for the 2008

GFC and the COVID-19 pandemic. Consistent with assumptions in the experience effect and

extrapolation literature (Malmendier and Nagel, 2011; Nagel and Xu, 2022; Barberis et al.,

2015), we find that, on average, the impact of past experiences decreases as the time difference

grows. However, this assumption does not hold during certain periods. For instance, during

the COVID-19 pandemic, the impact of the 2008 GFC remains prominent, as shown by

the 11th point on the orange line. These findings, derived through our neuroscience-based

approach, suggest a more robust framework for modeling the impact of past experiences
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across different periods. Our estimated analyst recalls also address an essential question

from the extrapolation literature: “How far back do people look when forming beliefs?”

(Barberis, 2018).

For comparison, we present recalls cued directly by external features X, which we term

as naive recalls, in Appendix A4. Specifically, we evaluate the similarity between the current

event (firm i, month t) and a past experience (firm j, month τ) as follows:

S “ exp p´}Xj,τ ´ Xi,t}2q , (4.1)

where we use the set of external features X for firm i in month t to find the most similar sets

of historical external features. This follows the memory framework proposed by Bordalo,

Gennaioli and Shleifer (2020), which implicitly assumes that all external features are equally

important and time-invariant—assumptions that may not hold for analysts, as discussed in

Section 5.3.1.

Naive recalls are more concentrated, with recalls clustering around a few specific historical

moments at each point in time. They also exhibit a stronger recency effect, as the impact

of long-term memory (distant episodes) is negligible except for the COVID pandemic. In

contrast, LSTM recalls are more distracted, with analysts recalling episodes that occurred

close together in time, and displaying additional temporal linkages such as cyclicality. It is

the temporal contiguity effect that contributes to these temporal linkages in recalls. Without

a dynamic memory structure like LSTM, which processes external features over time, recalls

based solely on external features cannot replicate this well-established principle of human

memory. In the next section, we demonstrate that LSTM recalls indeed outperform naive

recalls in capturing analyst beliefs.

4.2 Recall and Beliefs

To assess the impact of recalls on current analyst beliefs, we examine the predictive power

of predicted analyst recalls on analyst forecast revisions. To obtain the predicted analyst

recalls for firm i in month t, we proceed as follows: first, we use the LSTM model trained on

data prior to month t. Then, we take the external features Xi,t (consisting of public signals

available before month t, as defined in Section 3.4), along with the previous mental context

ci,t´1 and memory cell mi,t´1 as inputs for the LSTM model. This generates the predicted

current mental context ci,t, which we then use to obtain recalls cued by ci,t, representing the

predicted analyst recalls.
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We examine the link between recalls and current beliefs shown in Equation (2.6) empir-

ically with the following predictive regression,

∆Fi,t “ β ˆ RRi,t ` εi,t, (4.2)

where ∆Fi,t is the analyst consensus EPS forecast revisions scaled by the stock price Pi,t´1

at t ´ 1,

∆Fi,t “
Fi,trEPSi,t`ls ´ Fi,t´1rEPSi,t`ls

Pi,t´1

. (4.3)

RRi,t denotes the average recalled revisions. We analyze two specifications of RRi,t: RRA
i,t

from the predicted analyst recalls by LSTM and RRN
i,t from the external features cued recalls,

RRA
i,t “

ÿ

pj,τqPMi,t

ppcj,τ q ˆ rrj,τ{Pj,τ´1 (4.4)

RRN
i,t “

ÿ

pj,τqPMi,t

ppXj,τ q ˆ rrj,τ{Pj,τ´1, (4.5)

where rrj,τ denotes the recalled revision in the specific recalled episode pj, τq defined in

Equation (2.4). The probability of any past experience being retrieved is proportional to

the similarity function (2.1) for RRA
i,t, and proportional to the similarity function (4.1) for

RRN
i,t.

Table 2 presents the regression results. Column (1) shows that analyst LSTM recalled

revisions significantly predict their forecast revisions, while Column (2) indicates that naive

recalled revisions lack similar predictive power. The strong performance of the LSTM re-

called revisions suggests that our model of analyst recalls based on LSTM effectively cap-

tures key aspects of analyst belief formation processes. In Column (4)-(6), we include three

control variables: lagged forecast revision pFi,t´1rEPSi,t`ls ´ Fi,t´2rEPSi,t`lsq{Pi,t´1, lagged

earnings growth (the difference between the realized earnings for the last fiscal year and

the realized earnings for the fiscal year before last, scaled by stock price Pi,t´1), and lagged

forecast (Fi,t´1rEPSi,t`ls{Pi,t´1). All three control variables are statistically significant and

contribute additional predictive power. However, their inclusion neither reduces the predic-

tive ability of the LSTM recalled revisions nor improves the performance of the naive recalled

revisions. Thus, the addition of control variables does not alter our main findings.

4.3 Recall and Trading Activities

We have shown that analyst recalls capture their beliefs. These recalls are measured inde-

pendently of future stock prices or returns. The literature often takes analyst forecasts as
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Table 2: Analyst forecast revisions and recalled revisions

Forecast Revisions (∆Fi,t)

(1) (2) (3) (4) (5) (6)

LSTM recalled revision RRA 0.059*** 0.060*** 0.061*** 0.061***

(0.015) (0.013) (0.013) (0.011)

Naive recalled revision RRN 0.006 -0.005 0.010 -0.001

(0.013) (0.012) (0.012) (0.011)

Lagged forecast revision 0.127** 0.139*** 0.127**

(0.043) (0.043) (0.043)

Lagged earnings growth 0.013** 0.014** 0.013**

(0.005) (0.005) (0.005)

Lagged forecast -4.682*** -4.557*** -4.679***

(0.782) (0.709) (0.756)

Firm fixed effect Yes Yes Yes Yes Yes Yes

Month fixed effects Yes Yes Yes Yes Yes Yes

Observations 277,410 277,410 277,410 277,410 277,410 277,410

R-squared 0.053 0.047 0.053 0.070 0.064 0.070

Within R-squared 0.006 0.000 0.006 0.025 0.018 0.025

This table presents results for regressions of the form

∆Fi,t “ β ˆ RRi,t ` θ ˆ Zi,t ` γi ` ηt ` εi,t,

where ∆Fi,t “ pFi,trEPSi,t`ls ´ Fi,t´1rEPSi,t`lsq{Pi,t´1 denotes analysts forecast revisions scaled by the
stock price pi,t´1 and RRi,t denotes the recalled revisions. We analyze two specifications of RRi,t, RRA

i,t and

RRN
i,t. RRA

i,t denotes the analyst LSTM recalled revisions when cued by the mental context c that is estimated

from LSTM RRA
i,t “

ř

pj,τqPMi,t
ppcj,τ q ˚ rrj,τ {Pj,τ´1, with the probability distribution is proportional to the

similarity function (2.1). RRN
i,t denotes the naive recalled revisions when cued by the external features X,

RRN
i,t “

ř

pj,τqPMi,t
ppXj,τ q ˚ rrj,τ {Pj,τ´1, with the probability distribution is proportional to the similarity

function (4.1). Columns (1) to (3) report the results without control variables while Columns (4) to (6) report
the results with control variables: lagged forecast revision pFi,t´1rEPSi,t`ls´Fi,t´2rEPSi,t`lsq{Pi,t´1, lagged
earnings growth (the difference between the realized earnings for the last fiscal year and the realized earnings
for the fiscal year before last, scaled by stock price Pi,t´1), and lagged forecast (Fi,t´1rEPSi,t`ls{Pi,t´1).
The sample period is from January 2007 to December 2020. Standard errors are clustered at both the
industry and year level, and reported in parentheses. ***, **, and * denote significance at 1%, 5%, and 10%,
respectively.

proxies for investor beliefs (Brunnermeier et al., 2021).27 If analyst beliefs can indeed repre-

sent investor beliefs, we should expect our model of analyst recalls to also capture trading

activities in financial markets. Therefore, we examine whether our predicted analyst recalls

are associated with stock returns and trading volume.

27For example, van Binsbergen, Han and Lopez-Lira (2023) and Bouchaud et al. (2019) provide empirical
evidence that investors tend to follow analyst expectations.
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4.3.1 Recall and Stock Returns

First, we link our predicted analyst recalled revisions RRA with stock returns by generating

long-short portfolios and examining whether these portfolios yield excess returns. We hy-

pothesize that positive (negative) recalled revisions predict future market optimism, leading

to positive (negative) short-term stock returns. We drop stocks with prices lower than $5
each month to alleviate the impact of small and illiquid stocks and the noise of the market

microstructure. Our sample thus contains on average around 1,360 stocks in each month.

Table 3: Portfolios sorted on the analyst recalled revisions

1 2 3 4 5 5-1

Panel A: Risk-adjusted Returns

Mean -0.06 0.17 0.13 0.26 0.35 0.41

t-stat -0.64 1.68 1.46 2.84 3.11 3.01

Panel B: Forecast Revisions

Mean -0.14 -0.04 -0.01 0.04 0.17 0.31

t-stat -3.04 -1.52 -0.29 3.43 5.14 7.27

This table reports the time-series average of risk-adjusted returns based on the Carhart
four factor model (Carhart, 1997) (Panel A) and analyst forecast revisions ∆F (Panel
B) on value-weighted portfolios formed on the quintiles of the analyst recalled revisions
(RRA). The returns are in percentage. The sample period is from January 2007 to
December 2020. Standard errors are adjusted for heteroskedasticity and autocorrela-
tions up to 12 lags.

We report the value-weighted risk-adjusted returns of portfolios sorted on the quintiles of

analyst recalled revisions RRA, relative to the Carhart four-factor model Carhart (1997) in

Panel A of Table 3. A long-short portfolio yields a monthly return spread of 0.41% per month

with t-statistic above 3. In Panel B of Table 3, we find that the analysts revise down their

forecasts for firms in the low recalled revisions group (the first quintile) but revise up their

forecasts for firms in the high recalled revisions group (the fifth quintile). The difference in

the revisions between the long leg group and the short leg group is significant with t-statistic

of 7.27. Additionally, we show the returns on the long-short strategy based on the analyst

recalled revisions RRA can not be explained by leading asset pricing models in Table A9.

These findings provide evidence supporting our hypothesis that analyst recalls can predict

market beliefs and thus exhibit return predictability.
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4.3.2 Recall, Disagreement and Trading Volume

Beyond return predictability, investor disagreement and trading volume are also central to

asset pricing studies. However, less is known empirically about why there is disagreement

among investors and thus trading volume. Literature on disagreement typically identifies two

main sources: different information sets, and different models applied to the same information

set (Hong and Stein, 2007; Malmendier and Nagel, 2011; Cookson and Niessner, 2020). We

provide a new memory-based explanation for disagreement other than these two sources. The

idea is that even with the same model and the same information set (memory database),

different agents may retrieve distinct past experiences due to the inherent randomness in the

process of cued recall.28

In our memory-based framework, disagreement arises under two conditions: (1) there is

randomness in the process of cued recall, meaning that analysts may retrieve different past

experiences from the same memory database; (2) these diverse past experiences must vary

in status, so that analysts retrieving different experiences will learn distinct signals.

To illustrate the idea, let’s consider three cases. Suppose analysts are now thinking of the

current event (firm i, month t). In the first case, firm j in month τ is extremely similar to

pi, tq, then every analyst would recall pj, τq, and form beliefs ∆Fi,t according to the recalled

revision rrj,τ , resulting in no disagreement. In the second and third cases, both pj1, τ1q and

pj2, τ2q are similar to pi, tq, and each has a 50% chance of being retrieved. In the second case,

rrj1,τ1 “ rrj2,τ2 , so regardless of which experience is recalled, analysts form the same beliefs

for pi, tq, and there is no disagreement. In the third case, however, rrj1,τ1 is positive and

rrj2,τ2 is negative. Here, the 50% of analysts who recall pj1, τ1q form optimistic beliefs for

pi, tq, while the other 50% who recall pj2, τ2q form pessimistic beliefs, leading to disagreement

between the two groups. These cases highlight the importance of both conditions: the first

case emphasizes the role of randomness in recall, the second demonstrates why variability in

recalled experiences is necessary, and the third shows that disagreement emerges when both

conditions are met.

If investor beliefs align closely with analyst beliefs, then disagreement among analysts

should reflect disagreement among investors, leading to higher trading volume (Atmaz and

Basak, 2018; Shalen, 1993). Therefore, we hypothesize that the dispersion of analyst recalls

28Memory can also contribute to disagreement by creating unique information sets for each agent. Based
on personal past experiences, agents form different memory databases, leading to distinct information sets
or perceptions of the current event (Bordalo et al., 2022).
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should positively predict both disagreement and trading volume in the market.Specifically,

we empirically test this hypothesis using the following regression specifications:

Disagreementi,t “ β ˆ σprrqi,t ` εi,t, (4.6)

and

AbVoli,t “ β ˆ σprrqi,t ` εi,t, (4.7)

where σprrqi,t is the weighted standard deviation of the recalled revisions for firm i in month

t,29

σprrqi,t “

d

ÿ

pj,τqPMi,t

ppcj,τ q ˆ
`

rrj,τ{Pj,τ´1 ´ RRA
i,t

˘2
. (4.8)

The standard deviation measures the dispersion of recalled revisions, capturing the second

condition for our memory-based disagreement. To account for the first condition, randomness

in the cued recall process, we refine this measure by incorporating weights based on the

probability of each past experience being recalled.

Following Diether, Malloy and Scherbina (2002), we take the analyst forecast dispersion as

our disagreement measure Disagreementi,t, which is the standard deviation of each individual

analyst earnings forecast for firm i in month t scaled by the last period’s stock price. AbVol

denotes the abnormal log trading volume for firm i in month t, following Cookson and

Niessner (2020), it is the difference between the log volume in month t and the average log

volume from month t´ 12 to t´ 2. Following Cookson and Niessner (2020), we include both

firm and month fixed effects, and add a set of controls including the lagged abnormal trading

volume, return and volatility to the regressions.

Table 4 reports the results testing the link between recalls, disagreement, and trading

volume. Columns (1)-(3) show that the dispersion of recalled revisions positively and signifi-

cantly predicts disagreement, though some samples are lost because calculating Disagreementi,t

requires at least two analysts making forecasts for the firm in that period. Columns (4)-(6)

provide evidence that the dispersion of recalled revisions also significantly predicts trading

volume. These findings support our hypothesis that the dispersion of analyst recalled revi-

sions positively predicts both disagreement and trading volume in the market. They further

suggest that memory provides a powerful microfoundation for disagreement.

29Similar to the measure of average recalled revisions RRA
i,t, σprrqi,t is our model predicted variable, as it

is also derived using information before month t, so the regressions (4.6) and (4.7) are also predictive.



29

Table 4: Dispersion of recalled revisions, disagreement, and trading volume

Disagreementi,t Abnormal volume AbVoli,t

(1) (2) (3) (4) (5) (6)

σprrqi,t 0.019*** 0.017*** 0.008*** 0.089*** 0.089*** 0.038**

(0.004) (0.003) (0.002) (0.028) (0.027) (0.014)

σprrqi,t´1 0.014*** 0.006** 0.001 -0.004

(0.003) (0.002) (0.017) (0.019)

Disagreementi,t´1 0.540***

(0.017)

AbVoli,t´1 0.539***

(0.010)

Reti,t´1 -0.009*** -0.010*** -0.012*** -0.044 -0.044 -0.086**

(0.002) (0.002) (0.002) (0.052) (0.052) (0.035)

Reti,t´2 -0.008*** -0.008*** -0.004*** -0.028 -0.028 0.004

(0.001) (0.001) (0.001) (0.039) (0.039) (0.019)

Reti,t´3 -0.008*** -0.007*** -0.004*** 0.033 0.033 0.055**

(0.001) (0.001) (0.001) (0.044) (0.044) (0.025)

σpRetqi,t´1 0.078*** 0.077*** 0.039*** -0.133 -0.133 -0.573***

(0.012) (0.012) (0.006) (0.160) (0.160) (0.110)

Firm fixed effect Yes Yes Yes Yes Yes Yes

Month fixed effects Yes Yes Yes Yes Yes Yes

Observations 101,438 101,438 59,160 194,444 194,444 194,444

R-squared 0.435 0.437 0.609 0.175 0.175 0.412

This table presents results for regressions of the form

Disagreementi,t “ β ˆ σprrqi,t ` θ ˆ Zi,t ` γi ` ηt ` εi,t,

and
AbVoli,t “ β ˆ σprrqi,t ` θ ˆ Zi,t ` γi ` ηt ` εi,t,

where σprrqi,t is the weighted standard deviation of recalled revisions for firm i in month t as shown in
Equation (4.8); Disagreementi,t measures disagreement, following Diether, Malloy and Scherbina (2002) it
is the analyst forecast dispersion - the standard deviation of each individual analyst earnings forecast scaled
by the last period’s stock price; AbVol is the abnormal log trading volume for firm i in month t, following
Cookson and Niessner (2020), it is the difference between the log volume in month t and the average log
volume from month t´12 to t´2. Recalls are found based on the similarity measure shown in (2.1). Reti,t´1,
Reti,t´2, Reti,t´3 are the lagged monthly stock return for firm i. σpRetqi,t´1 is the standard deviation of
stock return for firm i within a 12-month rolling window t´11 to t. The sample period is from January 2007
to December 2020. The reported recall dispersion coefficients are presented as the true values multiplied by
1000 for display convenience. Standard errors are clustered at both the industry and year level, and reported
in parentheses. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.

5 Analyst Recall Distortions

Forming beliefs based on the recalled episodes may be rational. Deviation from full ratio-

nality comes from the possibility that the recalls are distorted, i.e., analysts do not retrieve
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the right historical episodes. In this section, we demonstrate that analyst recalls are indeed

distorted, and then discuss the asset pricing implications and driving factors behind these

recall distortions.

5.1 Recall Distortions

We first define benchmark recalls, which are the episodes analysts should recall to form

accurate beliefs. To determine these, we train the same LSTM memory model on realized

earnings revisions (∆REd) instead of analyst consensus forecast revisions (∆F d), allowing us

to obtain the benchmark mental context. We then follow a similar memory retrieval process

as used for analysts, using the benchmark mental context vectors as the cue to generate the

benchmark recalls.

Figure 6 presents the difference between the benchmark recalls and analyst recalls. His-

torical times that are more likely to be recalled by the benchmark are shaded in darker blue,

while those more likely to be recalled by analysts are shaded in darker red. Specifically, at

each time x (corresponding to the columns), we compute the top 5 historical episodes most

likely to be retrieved by analysts and the benchmark for each firm. Figure 6 then displays the

difference in the number of episodes from time y (corresponding to the rows) that analysts

recall versus the benchmark recalls across all firms at current time x.

Compared with analyst recalls, benchmark recalls in each period are more concentrated.

Generally, the benchmark focuses more on recent episodes, with distant past experiences

largely deemed irrelevant, while analysts are more influenced by long-term memory. Fur-

thermore, analyst recalls sometimes are wrong. For instance, from 2010 to 2014, analysts

frequently recalled episodes from the boom period before 2008, while the benchmark recalls

seldom referenced that period. Another example is during the COVID-19 pandemic, when

the benchmark was highly focused on the 2008 GFC, whereas analyst recalls were more

dispersed.

Additionally, analysts exhibit weaker recency effects during regular periods and stronger

recency effects during crises, compared with the benchmark. This suggests that analysts

do not fully respond to environmental changes. In regular times, environmental shifts are

represented by new input features, prompting the optimal benchmark to quickly adjust

to recent, similar scenarios. In contrast, analysts tend to focus on distant episodes that

are less relevant to the current situation. During crises, when macroeconomic conditions

change dramatically, the benchmark rapidly shifts focus, whereas analysts react insufficiently,
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remaining anchored in recent experiences. This underreaction in recalls is consistent with

analysts’ underreaction in their EPS forecasts, as shown in Section 5.3.1. Moreover, the gap

between analyst and benchmark recalls provides a memory-based measure of inattention,

aligning with the concept of measuring inattention as deviation from an optimal action

(Gabaix, 2019).

Figure 6: The difference between the analyst recalls and benchmark recalls

We further develop a formal statistical test to examine whether the analyst recalls are

different from the benchmark recalls. We define the recall distortion as:

∆Ri,t “ RRA
i,t ´ RRB

i,t (5.1)
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where RRA
i,t denotes the analyst recalled revisions and RRB

i,t denotes the benchmark recalled

revisions, as defined in Equation (4.4) based on different mental context vectors for analysts

and the benchmark. The null hypothesis that analyst recalls are no different from benchmark

recalls corresponds to a mean recall distortion ∆R of zero, i.e., ∆R “ 0. A paired t-test

yields a t-statistic of -4.83,30 indicating that, overall, analyst recalls are significantly different

from benchmark recalls. In other words, analyst recalls are indeed distorted.

5.2 Recall Distortions and Asset Pricing Implications

We document that the analysts incorrectly retrieve past experiences. Additionally, we show

in Table 1 that our benchmark memory model has significantly stronger predictive power

for realized earnings revisions. In this section, we present the economic consequences of

deviating from the benchmark memory model. First, we show that the biased analyst recalls

relative to the benchmark recalls can predict the errors in analyst beliefs (forecast errors),

and then the stock returns. Second, we connect the errors in analyst recalls to asset pricing

anomalies.

5.2.1 Forecast Error

We document in Table 2 that our predicted analyst recalls are strong predictors of market

beliefs, but these recalls are biased against the proposed benchmark recalls. If indeed, our

proposed benchmark recalls can predict future realized earnings, we should expect the biased

analyst recalls to predict analyst forecast errors. To test this, we first run the following

predictive regression:

ei,t “ β ˆ ∆Ri,t ` εi,t, (5.2)

where the forecast error ei,t is defined as the difference between the consensus forecasts and

realized earnings, scaled by the stock price Pi,t´1, ei,t “ pFi,trEPSi,t`ls ´ EPSi,t`lq{Pi,t´1.

This regression is predictive because the forecast error ei,t is only available at time t ` l,

and the part of ei,t, Fi,trEPSi,t`ls is the consensus forecast made at time t, while we get the

regressor ∆Ri,t using all the information before t, the same as how we compute the recalled

revisions RRi,t in Equation (4.4).

To further examine whether the biased analyst recalls serve as a powerful predictor of

forecast errors, we compete the predicted recall distortion with other well-known predictors of

30We cluster the standard errors at both the industry and year levels.
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forecast errors documented in literature (Coibion and Gorodnichenko, 2015; Bouchaud et al.,

2019; Bordalo et al., 2024). Specifically, we include the following controls as introduced in

regression (4.2): the lagged forecast revision pFi,t´1rEPSi,t`ls ´ Fi,t´2rEPSi,t`lsq{Pi,t´1,
31

lagged earnings growth (the difference between the realized earnings for the last fiscal year

and the realized earnings for the fiscal year before last, scaled by stock price Pi,t´1), and

lagged forecast (Fi,t´1rEPSi,t`ls{Pi,t´1).

We additionally consider two other predictive regression specifications. First, we focus on

the magnitude and explore whether the more severe recall distortion predicts larger forecast

errors, then thus we take the absolute values for both the regressor ∆R and dependent

variable e:

|ei,t| “ β ˆ |∆Ri,t| ` εi,t. (5.3)

Second, instead of focusing on the magnitude, we check the direction of the errors. Specif-

ically, we define forecast direction errors edi,t as an ordinal variable with 5 different values

´2,´1, 0, 1, 2:

edi,t “ signp∆F d
i,tq ´ signp∆REd

i,tq, (5.4)

then we run an ordered logit model to estimate the impact of recall distortion on forecast

direction errors.32

Table 5 reports the estimation results of the three regressions. In all three regressions, we

find a strongly significant positive relationship between recall distortion and forecast errors.

Columns (3) and (4) demonstrate that larger recall errors predict larger forecast errors, while

31For example, Bordalo et al. (2019) run the following forecast error predictability regression:

EPSi,t`l ´ Fi,trEPSi,t`ls “ β0 ` β1pFi,trEPSi,t`ls ´ Fi,t´1rEPSi,t`lsq ` β2Fi,t´1rEPSi,t`ls ` εi,t,

thus one of their predictors, forecast revision Fi,trEPSi,t`ls ´ Fi,t´1rEPSi,t`ls is known only at time t. We
aim to predict the forecast errors using all the information before time t, thus we take the lagged forecast
revision as the control instead of the current forecast revision.

32The ordered logit model can be written as

ed˚
i,t “ β ˆ ∆Ri,t ` εi,t

edi,t “

$

’

’

’

’

&

’

’

’

’

%

´2 ∆F d˚
i,t ď µ´2

´1 µ´1 ă ed˚
i,t ď µ´2

0 µ0 ă ed˚
i,t ď µ´1

1 µ0 ă ed˚
i,t ď µ1

2 µ1 ă ed˚
i,t

(5.5)

where ed˚
i,t P p´8,8q represents a latent variable that captures the degree of over-optimism in analyst

beliefs, expressed in real numbers. Four cut-off points, µ´2, µ´1, µ0, and µ1, are estimated alongside other
parameters.
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Table 5: The analyst forecast errors and recall distortion

Forecast error ei,t Forecast error |ei,t| Forecast direction error edi,t

(1) (2) (3) (4) (5) (6)

Linear Linear Linear Linear Ologit Ologit

∆Ri,t 0.041*** 0.039*** 0.024*** 0.023***

(0.009) (0.009) (0.003) (0.003)

|∆Ri,t| 0.125*** 0.094***

(0.025) (0.019)

Lagged forecast revision 0.008 0.032** -0.020**

(0.019) (0.014) (0.008)

Lagged earnings growth -0.004 0.010** -0.002

(0.002) (0.003) (0.001)

Lagged forecast -1.255** 2.679*** -0.389*

(0.501) (0.543) (0.226)

Firm fixed effect Yes Yes Yes Yes No No

Month fixed effects Yes Yes Yes Yes No No

Observations 277,410 277,410 277,410 277,410 277,487 277,487

R-squared 0.139 0.145 0.267 0.301

This table presents results for regressions of the form

ei,t “ β ˆ ∆Ri,t ` θ ˆ Zi,t ` γi ` ηtεi,t

in Columns (1) - (4) and the form

Prpedi,t “ jq “ Φ pκj ´ β ˆ ∆Ri,tq ´ Φ pκj´1 ´ β ˆ ∆Ri,tq

in Columns (5)-(6). The dependent variable ei,t is analyst forecast error, and edi,t P t´2,´1, 0, 1, 2u is the
direction of analyst forecast error for firm i at time t. The independent variable ∆Ri,t is analyst recall
distortion which is predicted by the model with all the information available before time t as defined in
Equation (5.1). We add three controls in Column (2), (4) and (6): lagged forecast revision pFi,t´1rEPSi,t`ls´

Fi,t´2rEPSi,t`lsq{Pi,t´1, lagged earnings growth (the difference between the realized earnings for the last
fiscal year and the realized earnings for the fiscal year before last, scaled by stock price Pi,t´1), and lagged
forecast (Fi,t´1rEPSi,t`ls{Pi,t´1). The sample period is from January 2007 to December 2020. Standard
errors are clustered at both the industry and year level, and reported in parentheses. ***, **, and * denote
significance at 1%, 5%, and 10%, respectively.

Columns (5) and (6) show that analysts form over-optimistic (or over-pessimistic) beliefs

when recalling overly positive (or negative) episodes. Columns (1) and (2) combine the

specifications from Columns (3) to (6), and indicate that analyst recall distortion consistently

predicts forecast errors. Furthermore, Columns (2), (4), and (6) demonstrate that even when

competing with other forecast error predictors, recall distortion remains significant, and the

magnitude of the coefficients remains relatively unchanged.
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5.2.2 Subsequent Stock Returns

The asset pricing results in Section 2.1 provide evidence that analyst recalls effectively predict

investor beliefs. If our proposed benchmark recalls serve as an unbiased reference for rational

beliefs, which investors deviate from, a rational market should correct the mistake, thus we

should observe a reversal in portfolio returns generated by the analyst recall distortion.

To test the prediction, we sort stocks into quintile portfolios based on our predicted recall

distortion ∆R. The first quintile group consists of stocks with overly positive analyst recalls

relative to the benchmark recalls (with average ∆R equals to 2.80), while the fifth quintile

group contains stocks with overly negative analyst recalls (with average ∆R equals to -4.74).

We long stocks in the fifth quintile group and short stocks in the first quintile group. We

present the value-weighted cumulative returns of this long-short strategy in Figure 7, the

shaded region shows the 95% confidence intervals. Table 6 reports the gaps in the average

analyst forecast revisions between the fifth quintile group and the first quintile group in the

months after the portfolio formation. In addition to the prediction of a return reversal for this

long-short portfolio, as indicated in Table 6, we should observe a negative initial return for

the long-short portfolio as the gap in analyst forecast revisions is extremely negative at the

beginning. Then the portfolio return may not reverse immediately, as in the second month,

the gap in analyst forecast revisions is still negative. Then the gap gradually vanishes.

Table 6: Analyst forecast revisions after the portfolio formation

Month 1 2 3 4 5 6

Mean -18.12 -2.42 2.69 -3.81 -1.38 1.08

t-stat -6.73 -1.52 1.54 -1.12 1.20 0.57

This table reports reports the gaps in the average analyst forecast revisions ∆F between
the fifth quintile group and the first quintile group in the months after the portfolio for-
mation Standard errors are adjusted for heteroskedasticity and autocorrelations up to 12
lags.

Figure 7 provides supporting evidence for all these predictions as the cumulative returns

of the long-short strategy are negative in the first months and reach a maximum of -0.51%

around two months after portfolio formation. Then the returns quickly reverse and remain

stable around zero after six months.
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Figure 7: The cumulative returns on long-short portfolio sorted on recall distortion

5.2.3 Memory-Based Attention and the Short-Term Reversal

So far we have been focusing on one property of the recalls, positive or negative, measured

by the forecast revisions and the realized revisions in the recalled episodes. However, we can

learn more about the connection between analyst recalls and financial markets by examining

other characteristics of the recalls. For instance, the temporal aspects of the analyst recalls

help identify the specific historical moments that analysts are paying attention to today.

Taking it a step further, the same temporal aspects of the benchmark recalls can serve as

a reference point, indicating whether analysts exhibit excessive or insufficient attention to

specific historical moments. This can help us better understand asset pricing anomalies that

are linked to temporal characteristics, such as the short-term reversal.

Short-term reversal describes the phenomenon that a stock’s return over the last month

is negatively associated with its subsequent return (Lehmann, 1990; Jegadeesh, 1990). The

link between recall and short-term reversal is as follows. When investors exhibit excessive

(insufficient) attention to the prior month, they are more (less) likely to follow their last

month’s actions. For example, when investors push up the stock price last month and they

pay excessive attention to last month, they will tend to push up the stock price again this

month, this would offset the short-term reversal effect. Then if analyst beliefs are repre-

sentative of investor beliefs, we hypothesize that when analysts pay excessive (insufficient)

attention to last month, the short-term reversal effect will be weaker (stronger). In addition,
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such biased attention reflects investor belief distortion, as it contrasts with the benchmark

recalls. Consequently, in a rational market, we should observe a reversal of the hypothesized

pattern in the following months.

We first follow Jegadeesh (1990) and re-examine the standard short-term reversal strategy

in our sample. We sort stocks into teriles33 on their prior-month returns, then long stocks in

the first tercile group (past losers) and short stocks in the third tercile group (past winners).

Our sample period is from January 2007 to December 2020. Table 7 reports the performance

of the standard short-term reversal strategy. The equal-weighted raw return is 0.48% per

month which is lower than the monthly raw return of 2.49% (sample period of 1934-1987)

and 0.67% (sample period of 1982-2009) documented in Jegadeesh (1990) and Da, Liu and

Schaumburg (2014), respectively. The risk-adjusted return based on the Fama-French three-

factor model (FF3) is 0.34% per month, and it is similar to the FF3 alpha of 0.33% shown

in Da, Liu and Schaumburg (2014).

Table 7: Performance of the standard short-term reversal trading strategy

Excess Return CAPM FF3 Carhart

Coef t-stat Coef t-stat Coef t-stat Coef t-stat

Intercept 0.48 4.12 0.29 2.09 0.34 2.16 0.34 2.16

MKT-Rf 0.25 4.11 0.22 3.69 0.22 3.70

SMB 0.07 0.84 0.07 0.78

HML 0.07 0.64 0.07 0.82

MOM -0.01 -0.13

This table presents the equal-weighted raw returns and risk-adjusted returns of the standard short-
term reversal trading strategy. The strategy sorts stocks into terciles according to prior-month
returns, then long past losers and short past winners. The risk-adjusted returns are based on the
CAPM, the Fama-French three-factor model (FF3) (Fama and French, 1993), and the Carhart four-
factor model Carhart (1997). The sample period spans January 2007 to December 2020. Standard
errors are adjusted for heteroskedasticity and autocorrelations up to 12 lags.

We define analyst memory-based attention to the last month as follows:

aAi,t “
ÿ

pj,τqPMi,t

ppcj,τ q ˆ 1τ“t´1, (5.6)

33Jegadeesh (1990) sort stocks into decile portfolios, however, the equal-weighted risk-adjusted returns of
the long-short strategy based on decile portfolios are not statistically significant in our sample, for instance,
the CAPM alpha is 0.29% with t-statistic of 1.11. Sorting stocks into tercile portfolios can further ensure
that we have enough stock in each portfolio when performing the double sort on memory-based attention
and prior-month returns.
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where aAi,t evaluates the likelihood that analysts recall episodes from the previous month.

We define benchmark memory-based attention to the last month, aBi,t, analogously by using

the mental context predicted by the benchmark memory model. Analyst biased attention is

then defined as the difference between analyst attention and benchmark attention, ∆ai,t “

aAi,t´aBi,t. ∆a is positive when analysts pay excessive attention to the last month and negative

when they pay insufficient attention to it.

To examine the link between analyst biased attention to the last month and short-term

reversal, we first sort stocks into terciles based on ∆a. The median values of ∆a for the first,

second, and third terciles are 0.18, -0.11, and -0.30, respectively, indicating that analysts

pay excessive attention to the last month in the first tercile group and insufficient attention

in the second and third tercile groups. Next, within each ∆a tercile, we further sort firms

into terciles based on prior-month returns, with the first tercile containing stocks with low

prior-month returns and the third tercile containing stocks with high prior-month returns.

Table 8: Portfolios sorted on biased investor memory-based attention and short-term reversal

Short-term reversal

Attention 1 2 3 3-1

1 0.80 0.69 0.22 -0.58

t-stat 3.11 4.15 0.92 -1.79

2 0.39 0.45 0.73 0.34

t-stat 3.70 5.34 6.04 2.39

3 0.35 0.38 0.86 0.51

t-stat 2.16 3.33 5.04 2.11

3-1 -0.44 -0.32 0.65 1.09

t-stat -1.56 -1.96 2.96 3.88

This table reports the time-series average of risk-adjusted returns (in percent) on equal-
weighted portfolios sorted first on biased investor memory-based attention to prior month
∆a then on short-term reversal. The risk-adjusted returns are based on the Carhart four-
factor model Carhart (1997). The sample period is January 2007 to December 2020. Stan-
dard errors are adjusted for heteroskedasticity and autocorrelations up to 12 lags.

Table 8 presents risk-adjusted returns based on the Carhart four-factor model (Carhart,

1997) for these equal-weighted double-sorted portfolios. We find that the monthly alpha of

the short-term reversal strategy is -0.58% for stocks where analysts exhibited the most ex-

cessive attention to prior-month information.The memory effect entirely overrides the short-

term reversal effect. It creates a momentum effect: stocks with higher returns last month
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continue to earn higher returns this month. Because investors overly believe that current

market conditions mirror those of the previous month and replicate last month’s trading

behavior. On the contrary, the monthly alpha of the short-term reversal strategy is 0.51%

with t-statistic of 2.11 for the stocks that analysts are inattentive to last month’s situation.

Compared to the standard short-term reversal strategy with an alpha of 0.34%, the reversal

effect is amplified by excluding stocks most likely to exhibit momentum. The difference in

short-term reversal performance between the two ∆a groups is highly significant; the double-

sorted long-short portfolio earns a 1.09% risk-adjusted return per month, with a t-statistic

of 3.88, more than tripling the standard short-term reversal strategy’s risk-adjusted return.

Figure 8 further shows that the biased attention measure ∆a captures investor belief distor-

tion, as the cumulative returns of the double-sorted long-short portfolio reverse within just

5 months.

Figure 8: The cumulative returns on double-sorted long-short portfolio on biased investor
memory-based attention and short-term reversal

5.3 Driving Factors of Analyst Recall Distortions

So far, we have examined the economic consequences of analyst recall distortions through

several asset pricing tests. But why do analysts make these suboptimal recalls? To explore

this question, we propose two potential driving forces: first, analysts do not optimally encode

external features into their memory; second, analysts mistakenly forget certain episodes.
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5.3.1 Encoding Errors

We investigate the first potential driving force by examining the focus of the analyst, the

benchmark memory cell, and the mental context. Both the memory cell and mental context

play essential roles in memory models, e.g., acting as cues for recall. Understanding how these

elements manifest in empirical data provides insights into underlying memory mechanisms

and can guide future memory modeling. We are the first to explore this.

Both memory cells and mental context are latent in LSTM, so we interpret these com-

ponents by examining how their variable importance, denoted ωj,t for each external feature

j at time t, changes over time, following Gu, Kelly and Xiu (2020) and Kelly, Pruitt and

Su (2019). To derive ωj,t, we follow these steps. First, for each of the K dimensions of

the memory cell (m) and mental context (c), we perform a linear regression on all external

features using a 12-month rolling window. Next, we set feature j to zero, keeping the other

features and coefficients unchanged, and calculate the reduction in R2. We then compute

the average reduction in R2 across all K dimensions as ωj,t. To better illustrate variable

importance, we categorize the 79 external features into four groups and calculate the sum of

ωj,t for all features j within each group, referred to as group variable importance.34 The four

groups are (1) firm characteristics other than earnings-related variable ωC
t (Part 1 and Part

2 of Table A1 except for the monthly stock return and P/E ratio related variables such as

pe exi, pe inc, peg trailing, capei); (2) macroeconomics conditions ωM
t (Part 3 of Table A1);

(3) market conditions ωR
t (the firms’ stock return over the previous month); (4) historical

earnings and forecasts ωF
t (Part 4 of Table A1 and pe exi, pe inc, peg trailing, capei).

Figures 9a - 9d present time-series plots of the group variable importance for the bench-

mark, analyst mental context, and memory cells. The findings are three-fold. First, variable

importance is time-varying across both analysts and the benchmark. For example, during

recessions, macroeconomic variables become more important, while firm characteristics and

historical earnings and forecasts become less relevant. This pattern aligns with the intu-

ition that recessions have market-wide, systematic effects. It also supports the prediction of

limited attention theory (Kacperczyk, Van Nieuwerburgh and Veldkamp, 2016), which sug-

gests that investors allocate more attention to aggregate news during downturns.35 However,

34Focusing on group variable importance, rather than individual variables, also addresses concerns about
the instability of interpreting machine learning inputs when inputs are highly correlated (Mullainathan and
Spiess, 2017).

35Kwan, Liu and Matthies (2022) shows that institutional investors focus on aggregate news during eco-
nomic downturns, as evidenced by daily internet news reading data.
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Figure 9: Decomposition of the mental context and memory cells

(a) Benchmark - Context (b) Benchmark - Memory

(c) Analyst - Context (d) Analyst - Memory

this behavior may not indicate bias, as the optimal benchmark similarly shifts attention to

macroeconomic news in downturns.

Second, we observe that variable importance for the mental context is more volatile than

that for the memory cell. his aligns with the interpretation that mental context represents

short-term generalized information, capturing the perceived high-frequency dynamics of the

firm, while the memory cell stores long-term generalized information, reflecting the perceived

firm’s low-frequency regime.

Third, the analyst and the benchmark focus on different aspects, i.e., for the benchmark,

firm characteristics play the most important role in both the mental context and memory cell,

but for analysts, they overweight the importance of the historical earnings-related variables.

The finding that analysts do not put proper weights on external features in their memory

provides empirical evidence and memory foundation for the models of encoding errors (early

noise). The literature on encoding errors examines the economic impact of noisy internal

representation of the presented data (e.g., Woodford, 2020; Frydman and Nunnari, 2021;

Frydman and Jin, 2022; Drugowitsch et al., 2016). The evidence that analysts overweight
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their own past forecasting decisions reconciles with the sticky expectation (Coibion and

Gorodnichenko, 2015; Bouchaud et al., 2019), the self-herding bias (Hirshleifer et al., 2019),

and the confirmation bias (Lord, Ross and Lepper, 1979; Barberis, 2003). Additionally, the

reliance on past earnings growth is consistent with fundamental extrapolation (Barberis,

Shleifer and Vishny, 1998; Barberis et al., 2015). The observed time-varying variable impor-

tance and distinct weighting of external features in analyst memory contrast with the model

of Bordalo, Gennaioli and Shleifer (2020), which assumes all external features are equally

important and time-invariant in the recall process. This evidence supports our choice of a

dynamic memory and mental context model to describe analyst behavior.

The differences in the composition of analyst and benchmark mental context and memory

cells suggest that distortions in analyst recalls may arise because analysts do not process

and encode information as efficiently as the optimal benchmark.

By examining the differences in decomposition between the analyst and benchmark men-

tal contexts, we can analyze how analysts perceive and react to changes in the external

economic environment compared to the optimal benchmark. To do this, we use a double-

differential approach.

Specifically, first, we define ∆ω as the time-series changes in variable importance,

∆ωt “

d

`

ωF
t ´ ωF

t´1

˘2
`

`

ωM
t ´ ωM

t´1

˘2
`

`

ωR
t ´ ωR

t´1

˘2
`

`

ωC
t ´ ωC

t´1

˘2

4

where ωF
t , ω

M
t , ωR

t , ω
C
t represent the group variable importance of historical earnings and

forecasts, macroeconomic conditions, market conditions, and firm characteristics, respec-

tively, as shown in Figure 9a for the benchmark (∆ωbt) and Figure 9c for the analysts

(∆ωat).

Second, we define the difference between the analyst and the benchmark time-series

changes in variable importance as ∆2ωt,

∆2ωt “ ∆ωb
t ´ ∆ωa

t (5.7)

which represents the extent to which analysts perceive changes in the external economic

environment differently from the benchmark. When analysts deviate from the benchmark

perception, i.e., ∆2ωt ‰ 0, they do not respond to changes optimally. We interpret this

difference as a misreaction in perception. Specifically, when ∆2ωt ą 0, analysts underreact

to external changes, and when ∆2ωt ă 0, they overreact. Figure 10 illustrates the timing

and magnitude of these deviations.
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Figure 10: Difference in perceived changes in external economic environment between the
analysts and the benchmark

Figure 10 shows that during normal periods, analysts’ perceptions of external economic

changes are generally aligned with the benchmark. However, during crises, their percep-

tions diverge. In the 2008 GFC, the difference in perceived changes in variable importance

was initially negative but later turned positive, indicating that analysts first overreacted

to economic environment changes and then underreacted. Similarly, during the COVID-

19 pandemic, analysts significantly underreacted to this systematic change, failing to fully

recognize the crisis’s potential severity. This observation reconciles the findings in Landier

and Thesmar (2020) that analyst consensus forecasts show a smooth downward trend that

contrasts with the dramatic stock price movement in response to the salient COVID-19 cri-

sis. This pattern suggests underreaction in analyst forecasts both in the short-term and the

long-term expectations.

We further investigate how encoding errors bias analyst recalls and beliefs by examining

the impact of misreaction in perceptions. Specifically, we link misreaction in perceptions to

misreaction in analyst forecasts and the recency effect observed in their recalls.

First, we define the analysts’ misreaction in forecasts ∆Reacti,t, following Coibion and

Gorodnichenko (2015), it captures the relation between the forecast errors and forecast
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revisions:

∆Reacti,t “

$

’

’

&

’

’

%

signp∆Fi,t ´ ∆REi,tq if ∆Fi,t ą 0

signp∆REi,t ´ ∆Fi,tq if ∆Fi,t ă 0

´1 if ∆Fi,t “ 0

where ∆Fi,t “ pFi,trEPSi,t`ls ´Fi,t´1rEPSi,t`lsq{Pi,t´1 denotes the analyst forecast revisions

and ∆REi,t “ pEPSi,t`l ´Fi,t´1rEPSi,t`lsq{Pi,t´1 denotes the realized EPS revisions. When

analysts revise their forecasts upwards (∆Fi,t ą 0), if ∆Fi,t ´∆REi,t ă 0, this indicates that

the analyst forecast Fi,trEPSi,t`ls at time t lies between the realized EPS (EPSi,t`l) and the

lagged forecast Fi,t´1rEPSi,t`ls from t ´ 1. This suggests that analysts have insufficiently

revised their forecasts upwards, indicating underreaction. Conversely, if ∆Fi,t ´ ∆REi,t ą 0

when forecasts are revised upwards, this reflects overreaction. Underreaction and overreac-

tion are similarly defined when analysts revise their forecasts downwards (∆Fi,t ă 0). If

analysts do not revise their forecasts (∆Fi,t “ 0) but the actual EPS differs from the lagged

forecast, this suggests that analysts should have revised their forecasts, indicating an under-

reaction. In summary, ∆Reacti,t “ ´1 indicates analyst underreaction in forecasts, while

∆Reacti,t “ 1 indicates overreaction. We exclude cases where signp∆Fi,tq ‰ signp∆REi,tq,

as this suggests analysts revised their forecasts in the wrong direction. Misreaction is best

defined when forecast revisions align with the correct direction.36 To make it align with mis-

reaction in analyst perceptions ∆2ωt which is a time-series variable at a monthly frequency,

we take the average of ∆Reacti,t across firms for each month:

∆Reactt “

ř

i∆Reacti,t
# of firms at month t

(5.8)

The second measure is the biased recency effect shown in analyst recalls, which captures

the extent to which analysts recall recent episodes over distant ones relative to the benchmark

recalls. Being analogous to the analyst memory-based attention to last month defined in

(5.6), we define the analyst recency effect as how likely analyst recalls fall into the last 12

months,37

RecencyAi,t “
ÿ

pj,τqPMi,t

ppcj,τ q ˆ 1t´τď12. (5.9)

We similarily define the benchmark recency effect as RecencyBi,t by pusing the mental context

predicted by the benchmark memory model. Then we define the time-series biased analyst

36Coibion and Gorodnichenko (2015), Bordalo et al. (2019), and Bouchaud et al. (2019) do not exclude
these cases and include them in regression analysis. We provide robustness checks in Appendix A6.

37We can alternatively define the recency effect as how likely the recalls fall into the past three years or
five years, but the following patterns and conclusions remain unchanged as shown in Appendix A6.
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recency effect relative to the benchmark as the average difference between the benchmark

recency effect and analyst recency effect across firms for each month:

∆Recencyt “

ř

i RecencyBi,t ´ RecencyAi,t
# of firms at month t

(5.10)

Table 9: Misreaction in analyst perceptions, forecasts and recency effect

Misreaction
Biased Recency Effect

Normal Crisis

(1) (2) (3)

∆2ω -0.010** 0.017** -0.018***

(0.005) (0.008) (0.004)

Observations 180 144 36

R-squared 0.028 0.039 0.223

This table presents the OLS regression results of the misreaction in analyst forecasts and biased recency effect
on the analysts’ misreaction in perception of changes inexternal economic environment. The independent
variable, ∆2ωt, is defined in Equation (5.7). The dependent variables, misreaction ∆Reactt and biased
recency effect ∆Recencyt are defined in Equations (5.8), (5.10), respectively. The sample period is from
January 2007 to December 2020, with 2008, 2009, and 2020 are classified as crisis periods, while the remaining
years are considered normal periods. The reported t-statistics are robust to heteroskedasticity.

Table 9 presents OLS regression results examining the relationship between misreaction

in analyst forecasts, the biased recency effect, and analysts’ misreaction to changes in the

external economic environment. Column (1) shows that the analysts’ misreaction in their

forecasts are associated with their differing perceptions of changes in the external economic

environment relative to the optimal benchmark. Specifically, when analysts’ perceptions

underreact (∆2ωt ą 0), their forecasts also tend to underreact relative to true EPS. As part

of their encoding errors, when analysts are slow to adjust the weights of external variables

in the encoding process, they develop distorted perceptions, leading to misreactions in their

forecasts.

This finding is also consistent with our observations on the biased analyst recency effect.

In Columns (2) and (3) of Table 9, we find that during normal times, analysts think the

recent episodes are less important when they underreact in perceptions of changes in the

external economic environment. However during crisis times, analysts pay more attention to

recent episodes as their perceptions underreact further. This result suggests that the patterns

shown in Figure 6, where analysts tend to underweight recent periods during normal times
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but overemphasize them during crisis periods, may stem from analysts’ insufficient reaction

to external economic changes.

5.3.2 Selective Forgetting

For the second potential driving force, we study the role of selective forgetting in the analyst

and the benchmark belief formation processes. Literature has shown that forgetting affects

investors’ decision-making in surveys and experiments. For instance, Walters and Fernbach

(2021) and Gödker, Jiao and Smeets (2022) argue that selective forgetting, as a memory bias,

leads investors to have distorted recalls, fostering overconfidence and biased beliefs.38 In this

section, we provide more comprehensive and empirical evidence of selective forgetting’s role

in belief formation.
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Figure 11: The Structure of LSTM without Forget Gate

Specifically, we perform a counterfactual analysis by blocking the channel of selective

forgetting in the original model. Then we examine how analyst recalls change and whether

the changes improve their EPS forecasts without selective forgetting. In the full LSTM, the

38Walters and Fernbach (2021) provide evidence of selective forgetting, showing that participants are more
likely to forget consequential losing trades than winning trades and thus recall losing trades less readily than
winning ones. Gödker, Jiao and Smeets (2022) report similar findings, with individuals over-remembering
positive investment outcomes and under-remembering negative ones.
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forget gate determines what content to erase from the memory cell. Here, we remove the

forget gate, as illustrated in Figure 11. In this modified memory structure, the memory cell

updates only by inputting new information, without selective forgetting:

mt “ mt´1 ` inputt ˆ x̃t, (5.11)

meaning we set forget “ 1 in the memory cell updating process in the full LSTM (3.4). In

this configuration, analysts can no longer selectively forget information. However, this does

not imply full retention of past information. Instead, they remain subject to limited memory

capacity and passive forgetting, as new information gradually overrides older content. We

then take the originally trained full LSTM for analysts and the benchmark, replacing the

memory update process (3.4) with the version without the forget gate (5.11), while keeping

all other components and parameters unchanged. This modification allows us to extract the

new mental context and recalls, which we define as counterfactual recalls.

Figure 12 shows the difference between analyst recalls with selective forgetting (as pre-

sented in Section 4.1) and the counterfactual recalls obtained by blocking the forget gate.

Analogous to the comparison between analyst recalls and benchmark recalls in Figure 6, the

darker blue areas highlight historical moments that analysts under-recall, while the darker

red areas indicate episodes that analysts over-recall relative to the counterfactual. From

Figure 12, we find that without the channel of selective forgetting, analysts would have re-

calls that are more similar to the benchmark recalls as shown in Figure 6. For example,

without selective forgetting, recalls exhibit a stronger recency effect, generally resembling

the benchmark recalls. These counterfactual recalls place greater emphasis on recent events,

particularly those occurring within the past 12 months.

We formally test the differences in recalls with and without selective forgetting in Table

10, yielding the following findings. First, in Panel A, we observe that recalls without selective

forgetting display a stronger recency effect Recency (5.9), with the magnitude doubling from

0.052 to 0.104. Additionally, the average recalled revisions RR (4.4) increase from -0.707 to -

0.625. This difference of 0.082 is statistically significant (with a t-statistic of 6.69), indicating

that recalls are more positive without selective forgetting.



48

Figure 12: The difference between the analyst recalls and counterfactual recalls

Second, we find that the recalls without selective forgetting are more similar to the

benchmark recalls. Specifically, without selective forgetting, the analyst recalled revisions

is -0.625, which is closer to the benchmark recalled revision of -0.434 than the recalls with

selective forgetting. Additionally, the recency effect in the recalls without selective forgetting

is 0.104, which is more aligned with the recency effect of 0.177 implied by the benchmark

recall, compared with the recalls with selective forgetting. This evidence suggests that

selective forgetting contributes to analyst recall distortions, distorting analysts away from

optimal forecasting decisions. In Appendix Table A3, we demonstrate that removing selective

forgetting enhances the predictive power of recalled revisions for realized earnings revisions,
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with the within R2 for analyst models increasing by 68%.

Table 10: Paired t-tests between LSTM models with and without selective forgetting

Model Recency Effect Recalled Revisions

(1) (2)

Panel A: Analysts

LSTM with forget gate 0.052 -0.707

LSTM without forget gate 0.104 -0.625

Difference 0.051 0.082

t-statistics (4.75) (6.69)

Panel B: Benchmark

LSTM with forget gate 0.177 -0.434

LSTM without forget gate 0.160 -0.488

Difference -0.017 -0.054

t-statistics (-4.72) (-4.27)

This table presents results of the paired t-tests for recency effect (Recency (5.9)) and recalled revisions (RR
(4.4)) between the full LSTM model and the LSTM model without the forget gate (counterfactual). Panel
A reports the results for the analyst recalls and panel B reports the results for the benchmark recalls. The
sample period is from January 2007 to December 2020. Standard errors are clustered at both the industry
and year level.

Third, selective forgetting affects analysts and the benchmark differently. Panel B of

Table 10 shows that, without selective forgetting, the benchmark recalls become more pes-

simistic and exhibit a reduced recency effect, which is in sharp contrast with its impact

on analysts. While analysts would improve their forecasts without selective forgetting, the

benchmark’s performance worsens. Table A3 indicates that removing selective forgetting

reduces the predictive power of the benchmark model, with the within R2 dropping by 40%.

This suggests that selective forgetting is not inherently a source of biased beliefs; rather, it

has the potential to support optimal belief formation. However, analysts do not utilize this

mechanism optimally, leading to distortions in their recalls.

In summary, we find that selective forgetting plays an important role in analyst be-

lief formation processes, but it distorts analyst memory and recalls away from the optimal

benchmark.
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6 Conclusion

This paper is the first to extract mental context and recalls in financial markets for a large

cross-section of firms over several decades. We achieve this by empirically estimating a

structural, memory-based model of analyst EPS forecast revisions. Using this extensive

panel, we provide novel evidence linking memory and recall with belief formation in financial

markets. Specifically, we find that well-established memory principles, such as the recency

and temporal contiguity effects, play a significant role in shaping analyst recalls and beliefs.

Our analysis reveals that analyst recalls deviate from an optimal benchmark memory model,

which would make optimal earnings forecast revisions. Analysts rely too heavily on long-

term memory and underreact to economic changes, over-recalling episodes in distant past

during normal periods while under-recalling them in crises. These distortions arise from

suboptimal encoding and selective forgetting in analysts’ memory systems. Our model of

analyst recalls and distortions significantly predicts key patterns in asset pricing, including

stock returns, trading volume, forecast errors, mispricing, and anomalies such as short-term

reversal.

Our detailed investigation of analyst memory, especially the recalls, offers new insights

for theoretical modeling and empirical research on memory in financial markets. Addition-

ally, our approach is well-suited for complex real-world scenarios where agents need to deal

with high-dimensional and non-stationary conditions with non-linear interactions between

variables. Our approach can be easily applied to explore the impact of memory in other

settings, for example, CEO’s memory and firm decisions. Once having high-quality data

on individuals, it would be interesting and easy to extend our framework to study the het-

erogeneity in agents’ memory or other cognitive systems and the associated asset pricing

implications, by leveraging the solid neuroscientific foundations of certain machine learning

models.
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Appendix

Appendix A1 External Features

The following table reports all 79 public signals as external features X. For detailed data

processing, such as imputation, see van Binsbergen, Han and Lopez-Lira (2023).

Table A1: Input Features

Part 1. Firm Fundamentals´WRDS Financial Ratios

Variable Definition Variable Definition

Accrual Accruals/Average As-

sets

adv sale Advertising Ex-

penses/Sales

aftret eq After-tax Return on

Average Common Eq-

uity

aftret equity After-tax Return on

Total Stockholders Eq-

uity

aftret invcapx After-tax Return on In-

vested Capital

at turn Asset turnover

bm Book/Market capei Shillers Cyclically Ad-

justed P/E ratio

capital ratio Capitalization Ratio cash debt Cash Flow/Total Debt

cash lt Cash Balance/Total Li-

abilities

cash ratio Cash Ratio

cfm Cash Flow Margin curr debt Current Liabili-

ties/Total Liabilities

curr ratio Current Ratio debt asset Total Debt/Total As-

sets

debt at Total Debt/Total As-

sets

debt capital Total Debt/Capital

debt ebitda Total Debt/EBITDA debt invcap Long-term

Debt/Invested Capital

divyield Dividend Yield dltt be Long-term Debt/Book

Equity

dpr Dividend Payout Ratio efftax Effective Tax Rate

equity invcap Common Eq-

uity/Invested Capital

evm Enterprise Value Multi-

ple

fcf ocf Free Cash

Flow/Operating Cash

Flow

gpm Gross Profit Margin

GProf Gross Profit/Total As-

sets

int debt Interest/Average Long-

term Debt

int totdebt Interest/Average Total

Debt

intcov After-tax Interest Cov-

erage

intcov ratio Interest Coverage Ratio inv turn Inventory Turnover

invt act Inventory/Current As-

sets

lt ppent Total Liabilities/Total

Tangible Assets

npm Net Profit Margin ocf lct Operating CF/Current

Liabilities

opmad Operating Profit Mar-

gin After Depreciation

opmbd Operating Profit Mar-

gin Before Depreciation
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pay turn Payables Turnover pcf Price/Cash flow

pe exi P/E (Diluted, Excl.

EI)

pe inc P/E (Diluted, Incl. EI)

PEG trailing Trailing P/E to Growth

ratio

pretret earnat Pre-tax Return on To-

tal Earning Assets

pretret noa Pre-tax return on Net

Operating Assets

profit lct Profit Before Deprecia-

tion/Current Liabilities

ps Price/Sales ptb Price/Book

ptpm Pre-tax Profit Margin quick ratio Quick Ratio (Acid

Test)

RD SALE Research and Develop-

ment/Sales

rect act Receivables/Current

Assets

rect turn Receivables Turnover roa Return on Assets

roce Return on Capital Em-

ployed

roe Return on Equity

sale equity Sales/Stockholders Eq-

uity

sale invcap Sales/Invested Capital

sale nwc Sales/Working Capital short debt Short-Term

Debt/Total Debt

totdebt invcap Total Debt/Invested

Capital

Part 2. Other Firm Fundamentals

Variable Definition Variable Definition

asset g Growth Rate in Total

Assets

invest g Growth Rate in Capital

Expenditure

sales g Growth Rate in Sales return Monthly Stock Return

Part 3. Macroeconomic Variables

Variable Definition Variable Definition

con g Log Difference of Con-

sumption in Goods and

Services

IPT g Log Difference of In-

dustrial Production In-

dex

GDP g Log Difference of Real

GDP

unemployment Unemployment Rate

Part 4. Earnings-Related Variables

Variable Definition Variable Definition

Realized EP ANN Realized Annual Earn-

ings from Last Pe-

riod/Stock Price from

Last Month

Realized EP QTR Realized Quarter Earn-

ings from Last Pe-

riod/Stock Price from

Last Month

AF EP lag Mean Analyst Fore-

cast from Last Period

/Stock Price from Last

Month

NUMEST lag Number of Forecasts

from Last Period

Realized ANN g Growth Rate in Real-

ized Annual Earnings

Realized QTR g Growth Rate in Real-

ized Quarter Earnings

AF g lag Lag 1 Growth Rate in

Mean Analyst Forecast

Maturity Months to Fiscal End

Date/12
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Appendix A2 Model Training and Choice of Hyperparameters

The model training process is as follows: We use the Adam algorithm for stochastic gradient

optimization (Kingma and Ba, 2014) with default hyperparameters. To prevent overfitting,

we implement early stopping with a patience of 5. The batch size is set to 10,000, and the

loss function is the negative log-likelihood, as the final decision function is logistic regression.

The only hyperparameter that requires tuning is K, the dimension of the latent memory

cell and mental context vector. To determine the optimal K, we select a set of candidate

values, train the model on the training sample, and evaluate the model’s performance with

each candidate K on the validation sample.

Table A2: Model performance with different choices of the hyperparameter K

Part I. Analyst Forecast Revisions (∆F d)

K 5 10 15 20

Training 59.58% 61.42% 62.26% 62.04%

Validation 54.22% 55.45% 55.15% 54.72%

Part II. Realized Earnings Revisions (∆REd)

K 5 10 15 20

Training 68.68% 71.22% 72.33% 71.74%

Validation 59.58% 58.95% 57.73% 57.58%

This table presents the model performance for fitting and predicting the direction of analyst
forecast revision (∆F d, see (3.7)) and realized earnings revision (∆REd, see (3.8)) in the base
training and validation samples with different choices of dimension of the memory cells and
mental context vectors (K). The training sample is from January 1990 to December 2004. The
validation sample is from January 2005 to December 2006.

Table A2 presents the model’s performance in fitting and predicting the direction of

analyst forecast revisions (∆F d, see (3.7)) and realized earnings revisions (∆REd, see (3.8))

in the base training and validation samples, using various dimensions for the memory cells

and mental context vectors (K). Based on prediction accuracy in the validation sample,

K “ 10 is optimal for analyst forecast revisions (∆F d) and K “ 5 for realized earnings

revisions (∆REd), though the differences between models are marginal.

Given our primary interest in analyst beliefs, we select K “ 10 for both models of ana-

lyst forecast revisions (∆F d) and realized earnings revisions (∆REd) throughout the paper.

Using the same K for both models allows for a more consistent comparison between analyst

forecasts and benchmark beliefs, minimizing the influence of differing hyperparameters.
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Appendix A3 Temporal Contiguity

LSTM has a unique feature that it stores the long-term memory. Combined with the autore-

gressive structure of the context state, LSTM can demonstrate temporal contiguity — one

of the fundamental principles of the human memory system. Temporal contiguity refers to

the observation that, when people recall an event, they also tend to recall other temporally

successive events. In psychology experiments, Kahana (1996) first documents this tendency:

after recalling an item from a specific serial position, people often recall the next item from

a neighboring position. Two properties of the temporal contiguity effect are also noted: a

forward asymmetry, where recalls are more likely to proceed in a forward direction than a

backward one, and time-scale invariance, meaning the contiguity effect remains significant

even for events recalled from the distant past (a key reason for incorporating long-term

memory).

Beyond the psychology literature, Wachter and Kahana (2024) discuss the temporal con-

tiguity effect in a theoretical financial context, though they do not provide empirical evidence

on its significance or existence. In this section, we go further and present empirical evidence

demonstrating the importance of temporal contiguity in the belief formation processes of

analysts.

To provide clear empirical evidence of temporal contiguity, it is necessary to separate

the temporal contiguity effect from the intrinsic similarity (autoregressive) between adjacent

vectors of economic and financial variables over time. To achieve this, we design a simu-

lation study that eliminates correlations among input features by decomposing them into

orthogonal space. This simulation uses the same recursive model as outlined in Section 3.5,

while retaining the previously estimated parameters in the consensus forecast revisions ∆F d

model. This approach ensures that the findings from the simulation study directly reflect

the processes involved in analyst belief formation.

The design of the simulation study is as follows. In each round of the simulation, first,

we generate a set of input vectors:

Xsim
t “ E rXs ` 10ut ˆ σ pXq , t “ 1, 2, ..., T,

where E rXs and σ pXq represent the time-series mean and the standard deviation (the

square root of diagonal elements of the covariance matrix) of the original input features

X, respectively. The symbol “ˆ” denotes element-wise product operator. ut are randomly

drawn, mutually orthogonal vectors with L2 norms of 1. The inner product of any two
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simulated input vectors, Xsim
t , is a fixed number (the square of the L2 norm of the feature

expected value ∥E rXs∥2). This approach maximally removes correlations between input

features while keeping the simulated inputs close to the true distribution (the multiplier 10

on ut serves for this purpose as well).39 We simulate T “ 70 periods for Xsim
t .40

Second, in period T `1, we duplicate the simulated input vector from a randomly selected

period τ , so thatXsim
T`1 “ Xsim

τ . The index τ is randomly chosen from the interval p10, T´10q,

excluding the first and last 10 periods to minimize any potential influence from the primacy

and recency effects.

Third, we use the empirically estimated model to simulate all mental context tcsimt u
T`1
t“1

based on the set of simulated input features tXsim
t u

T`1
t“1 , then use cT`1 as the cue to search

for the recalls. Next, we study the similarity around τ to examine the temporal contiguity.41

The similarity of mental context Spcτ`l, cT`1q, as defined in (2.1) (with γ “ 2 and ξ “ 1),

serves as a measure of the likelihood that the episode in period τ ` l will be recalled when

using cT`1 as the cue.

If the temporal contiguity effect exists, it is expected to observe that similarity decreases

as the distance from K increases with a forward asymmetry. In other words, temporal

contiguity implies the following predictions:

@ 0 ă i ă j, Spcτ`i, cT`1q ą Spcτ`j, cT`1q,

@ 0 ă i ă j, Spcτ´i, cT`1q ą Spcτ´j, cT`1q,

@ i ą 0, Spcτ`i, cT`1q ą Spcτ`i, cT`1q. (6.1)

Figure A1 displays the estimated average temporal contiguity effect of our trained analyst

LSTM model using simulated data. The simulation is run 10000 times. The value Spcτ , cT`1q

is omitted from the figure, as it is the highest (confirming the model’s ability to retrieve the

correct recall) and is not directly relevant to examining temporal contiguity.

39Our simulation results are robust to the choice of inner product. If the simulated input vectors are made
completely orthogonal to each other (inner products equal to zero), i.e.,

Xsim
t “ 10ut,

the temporal contiguity effect still holds.
40Since the dimension of the original input features X is 79, we can only maximally generate 79 mutually

orthogonal vectors.
41The process is similar to the standard memory experiment that the participants are shown T different

words successively, and then asked to recall one of the word (the τ -th) they have studied. Next, the
participants are asked to make free recalls. See for example, Healey, Long and Kahana (2019).



56

Figure A1: The Temporal contiguity effect in the analyst LSTM model

The X-axis represents l, the positive or negative lag relative to τ , while the Y -axis shows

Spcτ`l, cT`1q, which is min-max normalized. The figure indicates that similarity is highest

immediately after recall (l “ 1) and decreases as the absolute value of the lag increases.

Additionally, the similarity is generally lower for negative lags compared to positive ones.

Overall, the similarity pattern in Figure A1 aligns with the conditions in (6.1) implied by

temporal contiguity. This finding supports that our LSTM model empirically demonstrates

the fundamental memory principle - the temporal contiguity effect. It also underscores

the importance of incorporating temporal contiguity in modeling analyst belief formation

processes. These findings highlight the need for a memory model, like LSTM, which can

effectively capture temporal contiguity to represent analyst beliefs accurately.

We argue that the LSTM model incorporates both long-term memory and an autore-

gressive context structure, and that these two channels should work together to produce

temporal contiguity. However, these channels may not always be active, as they can dimin-

ish depending on model parameters and the empirical data used for training. For example, if

the model parameters cause the forget gate to consistently clear the memory cell, effectively

blocking the long-term memory channel, the LSTM reduces to a Recurrent Neural Network

(RNN), which does not produce temporal contiguity. We examine this scenario next.

We present the simulation results for the temporal contiguity effect using an RNN model.
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The simulation design is analogous to that used for the LSTM model, with the only difference

that we now employ the trained RNN model in place of the LSTMx. The RNN model is also

recursively trained to fit the direction of consensus forecast revisions, ∆F d, as described in

Section 3.5.

Figure A2: Temporal Contiguity of RNN

Figure A2 reports that RNN does not produce the temporal contiguity effect. The

similarity is not consistent with the conditions (6.1) implied by the temporal contiguity effect.

However, as indicated in Figure A1, the temporal contiguity effect should be significant in

analyst beliefs. Howard and Kahana (2002) document that the channel of long-term memory

is essential in generating the temporal contiguity effect. Lack of this channel disables RNN to

produce the temporal contiguity effect. This also makes RNN inferior to model the analyst

belief formation processes, compared to LSTM.

In sum, our simulation study using the empirically estimated model indicates that both

long-term memory and autoregressive context structure are active and jointly contribute to

generating temporal contiguity within the investor belief formation processes.



58

Appendix A4 Naive Recalls

In this appendix, we first present the recalls when cued by the external features X. We

standardize the external features as described in Section 3.4 and refer to these recalls as

naive recalls. At each point in time x (shown in the columns), we calculate the top 5

historical episodes most likely to be retrieved for each firm in our sample, based on the

similarity function (4.1). Figure A3 displays the number of historical episodes from time y

(shown in the rows) that are retrieved when analyzing all firms at current time x.

Figure A3: The naive recalls that are cued by external features
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Appendix A5 Selective Forgetting

In this appendix, we examine the economic consequences of selective forgetting by comparing

the predictive power for realized EPS revisions between two sets of LSTM models: one with

the forget gate and one without.

Table A3: Realized EPS revision and recall revisions

∆REi,t`l

(1) (2) (3) (4)

Benchmark recalled revisions w/ forget RRB
i,t 0.284***

(0.081)

Benchmark recalled revisions w/o forget RR
B/F
i,t 0.319***

(0.065)

Analyst recalled revisions w/ forget RRA
i,t 0.110***

(0.017)

Analyst recalled revisions w/o forget RR
A/F
i,t 0.203***

(0.024)

Firm fixed effect Yes Yes Yes Yes

Month fixed effects Yes Yes Yes Yes

Observations 277,410 277,410 277,410 277,410

R-squared 0.239 0.233 0.262 0.267

Within R-squared 0.019 0.011 0.011 0.019

This table presents results for regressions of the form

∆REi,t`l “ β ˆ RRi,t ` θ ˆ Zi,t ` γi ` ηtεi,t.

The dependent variable ∆REi,t`l is firm i’s realized EPS revision which is available in month t ` l, i.e.,

∆REi,t`l “
EPSi,t`l´Fi,t´1rEPSi,t`ls

Pi,t´1
. Independent variables RRi,t denotes the recalled revisions, as defined in

(4.4). We analyze four specifications of RRi,t, RRB
i,t, R

B{F
i,t , RRA

i,t, and RR
A{F
i,t . RRB

i,t denotes the benchmark

LSTM recalled revisions, RR
B{F
i,t denotes the benchmark recalled beliefs generated by the counterfactual

LSTM model without the forget gate, and RRA
i,t and RR

A{F
i,t are the corresponding recalled revisions for

analysts. The sample period is from January 2007 to December 2020. Standard errors are clustered at both
the industry and year level, and reported in parentheses. ***, **, and * denote significance at 1%, 5%, and
10%, respectively.

We first assess the predictive power of the benchmark memory models, with and without

the forget gate. Table A3 presents the results. Comparing the within R2 in Columns (1)

and (2), we find that recalled revisions generated by the benchmark model with the forget

gate have greater predictive power than those from the counterfactual model without the

forget gate, although both coefficients are highly statistically significant. This suggests that

removing the forget gate impairs the belief formation process in the benchmark model and

that the benchmark effectively uses the forget gate to selectively disregard irrelevant episodes

in memory.
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However, this result does not hold for the analyst LSTM models. Comparing the within

R2 in Columns (3) and (4) of Table A3, we find that recalled revisions without selective

forgetting outperform those with selective forgetting in predicting realized EPS. This suggests

that selective forgetting can be detrimental, rather than beneficial, to analysts in their belief

formation processes.

For both analysts and the benchmark, selective forgetting is essential due to limited

memory capacity; otherwise, memory would be overwhelmed and past information would

be lost. Ideally, selective forgetting should remove unnecessary information while retaining

useful experiences. However, our findings indicate that while selective forgetting benefits

the benchmark model, it does not operate optimally for analysts. These results suggest

that selective forgetting distorts analyst memory and recalls, moving them further from the

optimal benchmark.
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Appendix A6 Robustness Checks

In the main analyses, we limit the memory database size Mi,t, denoted as N , to the five

most similar past experiences. In this appendix, we provide robustness checks for different

choices of N as well as additional necessary robustness checks.

Table A4 shows that recalled revisions positively predict forecast revisions without fixed

effects and across different choices of N .

Table A5 illustrates that the dispersion of recalled revisions positively predicts analyst

disagreement and abnormal trading volume, excluding crisis periods and across different

choices of N .

Table A6 confirms that recall distortion positively predicts analyst forecast errors using

different choices of N .

Table A7 tests the robustness of Table 9 using alternative measures of misreactions and

recency effects, while Table A8 provides robustness checks for Table 10 with alternative

measures of recency effects and recalled revisions.

Table A9 demonstrates that the returns on the long-short strategy based on analyst

recalled revisions RRA cannot be explained by leading asset pricing models.

Table A10 reports that the returns on the long-short strategy based on analyst recalled

revisions RRA remain effective across different sample periods and choices of N .

Table A11 presents the returns of double-sorted strategies on biased memory-based at-

tention and prior month stock returns, verifying its validity across different sample periods

and choices of N .

Figure A4 shows that the cumulative returns on the long-short portfolio sorted by recall

distortion are robust across varying sample periods and choices of N .

Figure A5 reports cumulative returns on the double-sorted portfolio based on biased

memory-based attention and prior month returns, consistent across different sample periods

and choices of N .

Figure A6 displays analyst recalls and their comparison to benchmark recalls across

different values of N .

Overall, these robustness checks confirm that our main results hold consistently across

varying values of N , time periods, model specifications, and measures.
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Table A4: Analyst forecast revisions and recalled revisions - robustness check

Forecast Revisions (∆Fi,t)

Without Fixed Effects Different Number of Recalls

N=1 N=3 N=10

(1) (2) (3) (4) (5) (6)

LSTM recalled revision RRA 0.078*** 0.073*** 0.017*** 0.043*** 0.093***

(0.019) (0.014) (0.005) (0.010) (0.014)

Naive recalled revision RRN 0.028* 0.007 0.012 0.004 -0.003

(0.016) (0.010) (0.008) (0.010) (0.012)

Lagged forecast revision 0.154*** 0.132*** 0.130*** 0.121**

(0.051) (0.042) (0.043) (0.043)

Lagged earnings growth 0.011** 0.013** 0.013** 0.013**

(0.005) (0.005) (0.005) (0.005)

Lagged forecast -2.328*** -4.611*** -4.648*** -4.730***

(0.615) (0.746) (0.750) (0.772)

Firm fixed effect No No No Yes Yes Yes

Month fixed effects No No No Yes Yes Yes

Observations 277,487 277,487 277,487 277,410 277,410 277,410

R-squared 0.012 0.002 0.025 0.067 0.069 0.073

Within R-squared 0.012 0.002 0.025 0.021 0.023 0.028

This table presents the robustness check results for Table 2 without fixed effects in Columns (1)-(3)
and using different number of the most similar past experiences (N) in Columns (4)-(6). The regressions
follow the form

∆Fi,t “ β ˆ RRi,t ` θ ˆ Zi,t ` γi ` ηt ` εi,t,

where ∆Fi,t “ pFi,trEPSi,t`ls ´ Fi,t´1rEPSi,t`lsq{Pi,t´1 denotes analysts forecast revisions scaled by the
stock price Pi,t´1 and RRi,t denotes the recalled revisions. We analyze two specifications of RRi,t, RRA

i,t and

RRN
i,t. RRA

i,t denotes the analyst LSTM recalled revisions when cued by the mental context c that is estimated

from LSTM RRA
i,t “

ř

pj,τqPMi,t
ppcj,τ q ˚ rrj,τ {Pj,τ´1, with the probability distribution is proportional to the

similarity function (2.1). RRN
i,t denotes the naive recalled revisions when cued by the external features X,

RRN
i,t “

ř

pj,τqPMi,t
ppXj,τ q ˚ rrj,τ {Pj,τ´1, with the probability distribution is proportional to the similarity

function (4.1). Columns (1) to (2) report the results without control variables while Columns (3) to (6) report
the results with control variables: lagged forecast revision pFi,t´1rEPSi,t`ls´Fi,t´2rEPSi,t`lsq{Pi,t´1, lagged
earnings growth (the difference between the realized earnings for the last fiscal year and the realized earnings
for the fiscal year before last, scaled by stock price Pi,t´1), and lagged forecast (Fi,t´1rEPSi,t`ls{Pi,t´1).
The sample period is from January 2007 to December 2020. Standard errors are clustered at both the
industry and year level, and reported in parentheses. ***, **, and * denote significance at 1%, 5%, and 10%,
respectively.
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Table A5: Dispersion of recalled revisions, disagreement, and trading volume - robustness
check

Disagreementi,t Abnormal volume AbVoli,t

Without Crisis N=3 N=10 Without Crisis N=3 N=10

(1) (2) (3) (4) (5) (6)

σprrqi,t 0.005* 0.008*** 0.009*** 0.057*** 0.036** 0.046***

(0.003) (0.002) (0.002) (0.018) (0.013) (0.012)

σprrqi,t´1 0.005** 0.009*** 0.006** -0.024 0.003 0.010

(0.002) (0.002) (0.002) (0.021) (0.019) (0.013)

Disagreementi,t´1 0.474*** 0.540*** 0.539***

(0.019) (0.017) (0.017)

AbVoli,t´1 0.521*** 0.539*** 0.539***

(0.008) (0.010) (0.010)

Reti,t´1 -0.009*** -0.012*** -0.012*** -0.096** -0.086** -0.086**

(0.001) (0.002) (0.002) (0.040) (0.035) (0.035)

Reti,t´2 -0.003*** -0.004*** -0.003*** -0.003 0.004 0.005

(0.001) (0.001) (0.001) (0.020) (0.019) (0.020)

Reti,t´3 -0.004*** -0.004*** -0.004*** 0.043 0.055** 0.055**

(0.001) (0.001) (0.001) (0.024) (0.025) (0.025)

σpRetqi,t´1 0.037*** 0.039*** 0.038*** -0.707*** -0.574*** -0.576***

(0.005) (0.006) (0.006) (0.107) (0.110) (0.110)

Firm fixed effect Yes Yes Yes Yes Yes Yes

Month fixed effects Yes Yes Yes Yes Yes Yes

Observations 46,461 59,160 59,160 158,424 194,444 194,444

R-squared 0.593 0.608 0.609 0.384 0.412 0.412

This table presents the robustness check results for Table 4 using different number of the most sim-
ilar past experiences. Columns (1) to (3) present the regression results of disagreement and columns (4)
to (6) present the regression results of trading volume. Columns (1) and (4) present the regression results
excluding the crisis periods, specifically the years 2007, 2008, and 2020. Columns (2) and (5) present the
regression results using three most similar past experiences (N “ 3). Columns (3) and (6) present the
regression results using ten most similar past experiences (N “ 10). The regressions follow the form

Disagreementi,t “ β ˆ σprrqi,t ` θ ˆ Zi,t ` γi ` ηt ` εi,t,

and
AbVoli,t “ β ˆ σprrqi,t ` θ ˆ Zi,t ` γi ` ηt ` εi,t,

where σprrqi,t is the weighted standard deviation of recalled revisions for firm i in month t as shown in
Equation (4.8); Disagreementi,t measures disagreement, following Diether, Malloy and Scherbina (2002) it
is the analyst forecast dispersion - the standard deviation of each individual analyst earnings forecast scaled
by the last period’s stock price; AbVol is the abnormal log trading volume for firm i in month t, following
Cookson and Niessner (2020), it is the difference between the log volume in month t and the average log
volume from month t´12 to t´2. Recalls are found based on the similarity measure shown in (2.1). Reti,t´1,
Reti,t´2, Reti,t´3 are the lagged monthly stock return for firm i. σpRetqi,t´1 is the standard deviation of
stock return for firm i within a 12-month rolling window t´11 to t. The sample period is from January 2007
to December 2020. The reported recall dispersion coefficients are presented as the true values multiplied by
1000 for display convenience. Standard errors are clustered at both the industry and year level, and reported
in parentheses. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.
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Table A6: The analyst forecast errors and recall distortion - robustness check

Forecast error ei,t Forecast error |ei,t| Forecast direction error edi,t

N=3 N=10 N=3 N=10 N=3 N=10

(1) (2) (3) (4) (5) (6)

Linear Linear Linear Linear Ologit Ologit

∆Ri,t 0.033*** 0.038*** 0.018*** 0.027***

(0.008) (0.007) (0.003) (0.004)

|∆Ri,t| 0.095*** 0.095***

(0.023) (0.019)

Lagged forecast revision -0.008 -0.007 -0.032** -0.032** 0.020** 0.020**

(0.019) (0.019) (0.014) (0.014) (0.008) (0.009)

Lagged earnings growth 0.004 0.004 -0.010** -0.010** 0.002 0.002

(0.002) (0.002) (0.003) (0.003) (0.001) (0.001)

Lagged forecast 1.252** 1.251** -2.679*** -2.677*** 0.390* 0.383*

(0.499) (0.502) (0.540) (0.552) (0.225) (0.226)

Firm fixed effect Yes Yes Yes Yes No No

Month fixed effects Yes Yes Yes Yes No No

Observations 277,410 277,410 277,410 277,410 277,487 277,487

R-squared 0.145 0.145 0.302 0.300

This table presents the robustness check results for Table 5 using different number of the most sim-
ilar past experiences. Columns (1), (3), and (5) present the regression results using three most similar past
experiences (N “ 3). Columns (2), (4), and (6) present the regression results using ten most similar past
experiences (N “ 10). The regressions follow the form

ei,t “ β ˆ ∆Ri,t ` θ ˆ Zi,t ` γi ` ηtεi,t

in columns (1) - (4) and the form

Prpedi,t “ jq “ Φ pκj ´ β ˆ ∆Ri,tq ´ Φ pκj´1 ´ β ˆ ∆Ri,tq

in columns (5)-(6). The dependent variable ei,t is analyst forecast error, and edi,t P t´2,´1, 0, 1, 2u is
the direction of analyst forecast error for firm i at time t. The independent variable ∆Ri,t is analyst
recall distortion which is predicted by the model with all the information available before time t as defined
in Equation (5.1). We also include three control variables: lagged forecast revision pFi,t´1rEPSi,t`ls ´

Fi,t´2rEPSi,t`lsq{Pi,t´1, lagged earnings growth (the difference between the realized earnings for the last
fiscal year and the realized earnings for the fiscal year before last, scaled by stock price Pi,t´1), and lagged
forecast (Fi,t´1rEPSi,t`ls{Pi,t´1). The sample period is from January 2007 to December 2020. Standard
errors are clustered at both the industry and year level, and reported in parentheses. ***, **, and * denote
significance at 1%, 5%, and 10%, respectively.
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Table A7: Misreaction in analyst perceptions, forecasts and recency effect - robustness check

Misreaction Biased Recency Effect

∆Reactt incl. ∆Reactt 24 months 36 months

signp∆Fi,tq ‰ signp∆REi,tq excl. ∆Fi,t “ 0 Normal Crisis Normal Crisis

(1) (2) (3) (4) (5) (6)

∆2ω -0.022*** -0.020*** 0.021** -0.019*** 0.020* -0.019***

(0.006) (0.006) (0.010) (0.004) (0.010) (0.004)

Observations 180 180 144 36 144 36

R-squared 0.099 0.163 0.033 0.251 0.024 0.295

This table presents the robustness check results for Table 9 with alternative measures of misreactions
and biased recency effects. The independent variable, ∆2ωt, is defined in Equation (5.7). The depen-
dent variables, misreaction ∆Reactt and biased recency effect ∆Recencyt are similar to the definition in
Equations (5.8), (5.10), respectively. We examine two variations of ∆Reactt: including the cases when
signp∆Fi,tq ‰ signp∆REi,tq in Column (1), and excluding the cases when ∆Fi,t “ 0 in Column (2). Columns
(3) and (4) measure recency effects by analysts’ recalls falling within the last 24 months. Columns (5) and
(6) measure recency effects by analysts’ recalls falling within the last 36 months. The sample period is
from January 2007 to December 2020, with 2008, 2009, and 2020 are classified as crisis periods, while the
remaining years are considered normal periods. The reported t-statistics are robust to heteroskedasticity.
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Table A8: Paired t-tests between LSTM models with and without selective forgetting -
robustness check

Model Recency Effect Recalled Revisions

24 months 36 months N=1 N=3 N=10

(1) (2) (3) (4) (5)

Panel A: Analysts

LSTM with forget gate 0.292 0.360 -0.687 -0.706 -0.708

LSTM without forget gate 0.446 0.520 -0.548 -0.604 -0.647

Difference 0.153 0.160 0.139 0.102 0.061

t-statistics (8.66) (9.28) (8.36) (7.56) (5.14)

Panel B: Benchmark

LSTM with forget gate 0.585 0.636 -0.330 -0.403 -0.467

LSTM without forget gate 0.570 0.620 -0.412 -0.460 -0.515

Difference -0.015 -0.017 -0.081 -0.057 -0.048

t-statistics (-1.72) (-1.81) (-5.56) (-3.91) (-4.06)

This table presents the robustness check results for Table 10 with alternative measures of recency effects and
recalled revisions. Columns (1) and (2) present the paired t-tests of recency effects (Recency (5.9)) for 24
motnhs and 36 months. Columns (3) to (5) present the t-tests of recalled revisions (RR (4.4)) using different
numbers of the most similar past experiences (N). Panel A reports the results for the analyst recalls between
the full LSTM model and the LSTM model without the forget gate (counterfactual) and panel B reports
the results for the benchmark recalls. The sample period is from January 2007 to December 2020. Standard
errors are clustered at both the industry and year level.
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Table A9: Time-series tests with common asset pricing models

CAPM FF3 Carhart

Coef t-stat Coef t-stat Coef t-stat

Intercept 0.55 2.97 0.41 2.55 0.41 3.01

MKT-Rf -0.16 -2.56 -0.10 -1.89 -0.05 -0.84

SMB -0.04 -0.36 -0.01 -0.11

HML -0.24 -3.28 -0.10 -1.88

MOM 0.21 2.89

This table presents the regression of returns (in percent) on the long-short portfolio sorted with
the analyst recalled revisions (RRA), on the CAPM, the Fama-French three-factor model (FF3)
(Fama and French, 1993), and the Carhart four-factor model Carhart (1997). The sample period
is from 2007 to 2020. Standard errors are adjusted for heteroskedasticity and autocorrelations
up to 12 lags.
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Table A10: Performance of long-short portfolios sorted on the analyst recalled revisions

CAPM FF3 Carhart

Panel A: Different sample periods

2007 - 2019 0.48 0.38 0.36

(2.91) (2.37) (3.09)

2010 - 2019 0.49 0.44 0.35

(2.81) (2.81) (2.09)

2010 - 2020 0.58 0.50 0.47

(3.65) (3.30) (2.76)

Panel B: Different number of past experiences in M

N “ 1 0.42 0.29 0.29

(3.10) (2.03) (2.54)

N “ 3 0.55 0.42 0.42

(3.35) (2.67) (3.44)

N “ 10 0.49 0.36 0.37

(2.44) (1.94) (2.79)

This table reports the robustness check for Table 3 under different sample periods (Panel A) and using different
number of the most similar past experiences (N) in memory database M to form the analyst recalled revisions
(RRA) (Panel B). The table shows the time-series average of risk-adjusted returns on value-weighted long-short
portfolios formed on the quintiles of the analyst recalled revisions (RRA). The risk-adjusted returns are based
on the CAPM, the Fama-French three-factor model (FF3) (Fama and French, 1993), and the Carhart four-factor
model Carhart (1997). The returns are in percentage. For Panel B, the sample period is from January 2007
to December 2020. Standard errors are adjusted for heteroskedasticity and autocorrelations up to 12 lags. The
t-statistics are reported in parentheses.
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Table A11: Performance of short-term reversal strategies in different groups of biased investor
memory-based attention

Attention 1 2 3 3-1

Panel A: Different sample periods

2007 - 2019 -0.59 0.36 0.55 1.14

(-1.74) (2.69) (2.38) (3.78)

2010 - 2019 -0.51 0.35 0.60 1.11

(-1.35) (2.22) (2.93) (2.88)

2010 - 2020 -0.53 0.32 0.53 1.07

(-1.52) (2.06) (2.51) (2.97)

Panel B: Different number of past experiences in M

N “ 3 -0.53 0.41 0.40 0.93

(-1.13) (2.64) (1.74) (2.16)

N “ 10 -0.35 0.38 0.43 0.77

(-1.12) (2.65) (1.80) (2.39)

This table reports the robustness check for Table 8 under different sample periods (Panel A) and using different
number of the most similar past experiences (N) in memory database M to form the biased investor memory-
based attention ∆a (Panel B). The table shows the performance of short-term reversal strategies in different
tercile groups of the biased investor memory-based attention ∆a. The risk-adjusted returns are based on the
Carhart four-factor model Carhart (1997). The returns are in percentage. For Panel B, the sample period is
from January 2007 to December 2020. Standard errors are adjusted for heteroskedasticity and autocorrelations
up to 12 lags. The t-statistics are reported in parentheses.
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Figure A4: The cumulative returns on long-short portfolio sorted on recall distortion -
robustness check
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Figure A5: The cumulative returns on double-sorted long-short portfolio on biased investor
memory-based attention and short-term reversal - robustness check
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Figure A6: Analyst recalls and comparison with benchmark recalls with N “ 1 and N “ 10

(a) Analyst recalls N “ 1 (b) Analyst recalls N “ 10

(c) Analyst vs Benchmark recalls N “ 1 (d) Analyst vs Benchmark recalls N “ 10
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