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Abstract
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1 Introduction

Investors demand compensation net of transaction costs to take on non-diversifiable
risks. Identifying priced risk exposures has been the largest collective effort in asset
pricing over the last forty years: Harvey, Liu, and Zhu (2016) review more than 300
candidate risk factors. However, these factors are typically designed and evaluated
overlooking transaction costs that investors would incur to trade them.

In practice, asset pricing factors require turnover to preserve the link between ex-
pected returns and conditioning information on firm characteristics. When researchers
identify characteristics that predict future returns, they construct factor portfolios that
exploit this conditioning information. Individual assets receive weights at time t that re-
flect characteristic realizations at t−1. In the next period, new characteristic realizations
require investors to revise weights on factor constituents.

Prior work assumes that investors always trade to perfectly realign factors and condi-
tioning information. The resulting factors are transaction-cost-unaware (TCU) because
they rebalance in full irrespective of how expensive this adjustment is. In this paper,
I argue that the TCU approach is only sensible absent transaction costs. Instead, I
take the perspective of investors who evaluate the benefits of realigning with condition-
ing information against the ensuing rebalancing costs. I propose transaction-cost-aware
(TCA) factors that address this rebalancing trade-off.

When new characteristic realizations become available, TCA factors target the im-
plied weights (to gain characteristic exposure) but rebalance only partially towards these
weights at a fixed trading intensity τ (to control transaction costs). Equivalently, a TCA
factor can be seen as a weighted average of its previous period allocation and the target
factor. For instance, at the end of period t − 1 an investor holding TCA momentum
shifts a share τ of her investment towards the target, that is the TCU momentum factor
UMDt. She instead leaves the remainder invested at her current allocation. The larger
the optimal trading intensity, the faster the investor adjusts towards the target factor.1

1Reducing the frequency at which factors reconstitute offers a heuristic alternative to contain transaction
costs. However, this cost-mitigation technique is fundamentally different in nature and outcome from
trading intensity optimization. Factors that reconstitute at low frequencies revise portfolio weights
according to a coarser information set that ignores higher frequency changes in characteristics. Con-
versely, TCA factors exploit all available information but control the speed at which portfolio weights
come to reflect new characteristic realizations. The latter approach is preferable for two main reasons.
First, TCA trading directly aligns with Fama’s (1991) efficiency argument, according to which investors
act on new information to the extent to which the marginal benefits outweigh marginal costs. Second,
rebalancing frequencies are chosen ad hoc while trading intensity is the outcome of a maximization
process.
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Both TCA and TCU factors can be evaluated on their net returns (which investors
earn after costs) or their gross returns (which include compensation that accrues to
liquidity providers). These two distinctions contextualize four approaches to asset pricing
inference.

The standard protocol in the literature tests gross TCU factors. Unfortunately, this
approach conflates net returns and transaction costs. Gross returns mask the cost of
trading as a positive contributor to factor performance. As a result of this, an important
contribution by Detzel, Novy-Marx, and Velikov (2023) shows that before-cost inference
favors factors with high turnover. Such factors carry a large transaction cost component
that is incorrectly accrued as a gain to the investor. Loosely speaking, neglecting the
cost of trading transforms the rebalancing trade-off into a rebalancing incentive.

Detzel et al. (2023) and Li, DeMiguel, and Martin-Utrera (2023) revise model selec-
tion using net TCU factors. However, resulting inferences are not necessarily informative
on whether the underlying characteristics are priced in the cross-section. I show that the
performance of net TCU factors is largely reflective of their construction inefficiencies.
When transaction costs are nonzero, these factors rebalance too aggressively. Suboptimal
construction compresses net risk-premia, biasing results against high-turnover factors.

The main focus of this paper is on net TCA factors. These factors are meaning-
ful for rational investors who also care about dimensions of risk other than variance.
When trading is costly, these investors acquire multi-factor exposure in a cost-efficient
way.2 Optimal trading intensities are factor-specific, and driven by three channels. First,
factors that trade on persistent characteristics command lower trading intensities. For
instance, size factors require less aggressive rebalancing than profitability factors: Firms
that are large today tend to stay large in the future, but current profitability does
not guarantee large earnings going forward. Second, characteristics that correlate pos-
itively with transaction costs drive down optimal trading intensities. This is the case
of momentum since recent underperformers tend to have larger bid-ask spreads. Lastly,
factors with slow-decaying risk-premia receive higher trading intensities because each
dollar spent in transaction costs buys a longer streak of high returns.

I judge TCA factors on two main criteria. First, models that replace TCU factors
with their TCA variations should come closer to spanning the feasible efficient frontier.
To this end, I use the squared Sharpe ratio criterion (Sh2) of Barillas and Shanken (2017)
as a model comparison tool after correcting factor returns for proportional transaction
2In this sense, TCA factors extend and generalize the insights of Gârleanu and Pedersen (2013). They
solve the optimal trading rule for an investor with mean-variance preferences that faces quadratic
transaction costs.
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costs.3 Their methodology ranks models on the squared Sharpe ratio achieved by a mean-
variance-efficient (MVE) combination of their factors. This metric quantifies how closely
the factors span the efficient frontier.4 I focus on the six factor models studied in Detzel
et al. (2023), which provide a representative account of low-dimensional specifications
used in asset pricing research. Second, each TCA factor should individually explain
differences in net average returns equally or better than its TCU counterpart. I examine
performance at the factor level through spanning regressions.

TCA factors improve the pricing ability of all models I consider. In terms of net
Sh2 ratios, TCA models perform 28% to 150% better than their TCU counterparts. Net
Sh2 improvements achieved when switching from TCU to TCA factors within a candi-
date model often overshadow net Sh2 differences across competing TCU models. I also
document that these reductions in net-of-cost pricing errors are statistically significant
and persist out-of-sample. Further, factor models that already employ prominent cost
mitigation heuristics still obtain meaningful net Sh2 improvements when factor trading
intensities are also optimized.

Spanning regressions confirm that TCA factors are also individually better suited
to explain differences in net asset returns. All eleven TCA factors I consider produce
positive net alphas when regressed on their TCU counterparts, and six of these alphas are
statistically significant. Conversely, TCU factors leave negative or insignificant intercepts
on the TCA versions.

TCA models’ success in describing net returns comes largely from improvements in
the factors that are most expensive to trade. This is exemplified by the momentum factor
under three scenarios: (i) with TCU construction and ignoring transaction costs; (ii) with
TCU construction and after costs; and (iii) with TCA construction and after costs. In
my sample, TCU momentum earns a gross premium of 0.64% per month, the highest
among the factors I consider. This large gross premium overestimates the performance
that investors realize in practice. Momentum also incurs the most transaction costs.
These expenses are particularly severe when trading the TCU factor, which requires 63
bps per month in trading costs. On a net basis, the premium on TCU momentum drops
3Proportional costs offer a conservative estimate of overall transaction costs. Investors experience
additional implementation frictions due to fixed costs, short-selling fees, price impact costs, and taxes
on dividends and capital gains. However, a more comprehensive gamut of trading frictions makes the
assumption of TCU trading relatively more restrictive. Expanding the set of frictions considered would
thus result in larger benefits from TCA factor construction. Li et al. (2023) prove that the maximum
squared Sharpe ratio criterion remains valid as a model comparison tool when transaction costs have
a proportional form.

4This approach provides a general model ranking tool, whose validity is not restricted to a specific
choice of test assets.
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from 0.64% to a negligible 0.01%. However, a large share of this performance drop comes
from inefficient rebalancing. Instead, TCA momentum only incurs 30 bps in monthly
transaction costs, less than half of the TCU version. Trading momentum at the optimal
intensity increases the factor’s net return 22-fold and its annualized net Sharpe ratio by
0.19. TCA construction also clarifies momentum’s importance in spanning the feasible
efficient frontier. Models I review imply MVE portfolios that load marginally on net
TCU momentum. Conversely, the weight on the net TCA version consistently exceeds
10%.

Model comparison in the TCU case does not reflect the true importance of high-
turnover factors. As a consequence, the Sh2 criterion ranks models differently within the
classes of TCA and TCU factors. To illustrate this, consider first TCU factor models.
Out of the six I review, the six-factor model of Barillas and Shanken (2018) (BS6)
dominates before costs. It has the highest Sh2 (2.25) and performs 8.4% better than the
second-best model. However, this superior performance is largely illusory. Five out of
six of the factors in the model reconstitute at a monthly frequency, and are therefore
expensive to trade. After accounting for transaction costs, BS6 ranks second-worst and
its Sh2 drops by 80%. Underperformance on a net basis is primarily due to construction
inefficiencies. Moving from TCU to TCA factors almost doubles the model’s net Sh2,
positioning it as the third-best performer among the six considered.

Related Literature: This paper contributes to an emerging literature on model com-
parison with transaction costs.5 My methodology directly optimizes factor construction
for the cost of trading. This is in contrast with prior work which corrects TCU factor re-
turns for transaction costs but restricts investors from explicitly optimizing factor design
by taking these costs into account. Chernov, Dahlquist, and Lochstoer (2024) show that
an out-of-sample MVE portfolio of G10 and emerging market currencies prices promi-
nent currency factors net of transaction costs. Dickerson and Nozawa (2024); Dickerson,
Nozawa, and Robotti (2023) draw net-of-cost comparisons between competing factor
models within the space of corporate bonds. This paper is most related to Detzel et al.
(2023) and Li et al. (2023) who study how successfully existing TCU factor models price
the cross-section of stock returns under different transaction cost functional forms.6 My
5Luttmer (1996) and Korsaye, Quaini, and Trojani (2021), among others, provide a theoretical charac-
terization of stochastic discount factors in the presence of transaction costs.

6A directly related literature reviews the performance of anomalies in the cross-section of stock returns
after correcting their returns for transaction costs. Novy-Marx and Velikov (2016) document that
most TCU anomalies do not survive this correction when traded individually. DeMiguel, Martin-
Utrera, Nogales, and Uppal (2020) find that transaction costs increase diversification benefits from
trading multiple anomalies jointly.
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empirical results also center around equities, but the TCA methodology can in principle
be applied to any asset class.

TCA factors advance work in this literature in three ways. First, they are closer
to practical implementation, in which investors actively optimize for frictions. Sec-
ond, my methodology resolves distortions in inference caused by inefficient rebalancing
and revives high-turnover factors. Third, TCA construction reinforces the linkage be-
tween empirical factor models and theoretical results that motivate them. According
to Arbitrage Pricing Theory (Ross, 1976), investment opportunities that survive arbi-
trage activity must reflect compensation for risk. In practice, rational arbitrageurs only
eliminate opportunities that are profitable after costs. Hedge funds employ sophisti-
cated execution algorithms because cost mitigation expands the set of profitable trading
opportunities. Therefore, the APT logic applies more closely to strategies that are im-
plemented efficiently in the face of transaction costs, such as TCA factors. Investment
opportunities that deliver positive gross alphas are not necessarily in violation of the
APT. Such trading strategies are unattractive for arbitrageurs if alphas turn negative
after costs, despite cost-aware execution.7 Conversely, the APT is silent about strate-
gies that earn negative net alphas when traded inefficiently. My methodology recognizes
that such investment opportunities may still expand the efficient frontier if they turn
profitable with cost-aware implementation.

I also document that factors that update conditioning characteristics infrequently
face significant turnover in intermediate months. For example, the five factors of Fama
and French (1993, 2015) reconstitute each June but incur between 35.9% and 64% of
their yearly transaction costs in the remaining eleven months. This additional turnover
is not accounted for in prior work and comes from two channels. First, research focuses
on long-short factors that can be conveniently interpreted as traded excess returns.
When factor legs earn uneven returns or corporate events occur, factors pick up a net
exposure to the risk-free rate and this interpretation breaks down.8 Therefore, factor
investors face transaction costs to maintain dollar neutrality, even absent changes in firm
characteristics. Second, researchers often restrict constituent weights better to identify
the association between firm characteristics and expected returns. For instance, Fama
and French assign equal weights to portfolios of small and large stocks within each leg
of their factors. Maintaining this constraint further increases turnover.
7Detzel et al. (2023) make a similar argument in the TCU setting. However, once investors are allowed
to optimize trading intensity, only those strategies that do not deliver positive net alphas at any trading
intensity remain consistent with the APT.

8Cash dividends decrease the invested amount in the factor leg they originate from. M&A transactions
also break dollar neutrality if the stocks of the target and acquirer are in opposite factor legs.
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More generally, I connect the factor literature to papers on cost-aware trading that
follow Gârleanu and Pedersen (2013). Gârleanu and Pedersen (2013) solve the dy-
namic optimal portfolio problem for myopic mean-variance investors that face quadratic
transaction costs. Collin-Dufresne, Daniel, and Sağlam (2020) extend the framework
to accommodate stochastic transaction costs, and show that investors should rebalance
more heavily when costs are low. Collin-Dufresne, Daniel, and Saglam (2022) character-
ize the optimal trading rule of non-myopic investors in a similar setting. Jensen, Kelly,
Malamud, and Pedersen (2022) propose a machine learning methodology to evaluate
investment strategies against their net returns for each level of risk.

Lastly, this paper relates to the literature on cost mitigation techniques and fac-
tor strategies (Arnott, Li, and Linnainmaa, 2024; Detzel et al., 2023; Novy-Marx and
Velikov, 2019; Rattray, Granger, Harvey, and Van Hemert, 2019). These approaches
apply heuristic adjustments to factor strategies that reduce their implementation costs.
I instead mitigate costs by optimizing the trade-off between risk and net returns directly.

The remainder of the paper is organized as follows. Section 2 documents the pitfalls
of TCU factor construction. Section 3 illustrates the TCA methodology. Sections 4 to
6 contain empirical results on model selection, spanning regressions, and additional cost
mitigation benefits. Section 7 concludes.

2 Distortions in inference with TCU factors

Figure 1 illustrates that the Sh2 criterion of Barillas and Shanken (2017) can produce
misleading results, both before and after costs, when applied to TCU factors. I compare
three models. The first two are the CAPM of Sharpe (1964) and Lintner (1975), and the
six-factor model of Fama and French (2018). The subscript c denotes that the model uses
cashflow profitability in place of accruals-based profitability to construct the profitability
factor. The third model is a variation of the FF6Fc specification that I design to have a
particularly high cost of trading: I term this high-cost model FF6FcHC .

FF6FcHC exploits the same characteristics as FF6F, but adds three adjustments that
deliberately inflate transaction costs. First, I reconstitute all factors in the model at the
end of each month, rather than each June. This modification amplifies turnover and
makes factors more expensive to trade. Second, I replace the size factor with one that
invests only in small stocks, which have larger bid-ask spreads than large stocks. Put
differently, I replace the FF6 size factor with the excess return on its long leg.9 Third, I
9Fama and French (2018) test the pricing ability of a similarly constructed measure of size.
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Figure 1: The effects of TCU construction. The above figure compares the performance
of three asset pricing models. All three models include traditional, TCU factors. The vertical
axis tracks the ex-post squared Sharpe ratio Sh2 achieved by each model between July 1972
and December 2022. The first model is the classic CAPM of Sharpe (1964) and Lintner (1975).
FF6c is the Fama and French (2018) six-factor model, where the subscript c denotes that the
profitability factor is constructed on cashflows rather than operating profits. FF6FcHC is a
variation of FF6Fc that requires larger transaction costs. It reconstitutes the FF6Fc factors
every month and restricts the asset universe to the 50% of constituents with the highest trans-
action costs. The left (blue) bars show squared Sharpe ratios before accounting for transaction
costs. The right (red) bars measure the Sh2 using factor returns corrected for transaction costs.

restrict the set of constituents to stocks that, conditionally on qualifying for investment
in a particular factor portfolio, are in the upper 50% of the transaction cost distribution.
I apply this last adjustment to all factors except the market.10

Before costs, FF6Fc improves the ex-post squared Sharpe ratio Sh2 by roughly 1.7
compared to the CAPM. This superior performance is not surprising. More than fifty
years’ worth of research in empirical asset pricing separates the two models. Further,
the FF6Fc specification nests the CAPM, complementing the market with five additional
factors. The CAPM’s Sh2 thus sets a lower bound for the more parameterized model.
10For instance, the high-cost value factor, HMLHC revises its composition at the end of each month,

taking equal long positions in the HSHC and HBHC portfolios. At the same time, the factor shorts
an equivalent dollar amount in the LSHC and LBHC portfolios. The HSHC portfolio is invested in
assets with high book-to-market and small market capitalization. Specifically, it only loads on the
50% of stocks with the highest transaction costs in the small size and high book-to-market segment
(in a value-weighted fashion). I form the HBHC , LSHC , and LBHC portfolios in a similar way.
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Moving from the FF6Fc model to its high-cost version is instead exceedingly hard to
justify from an economic standpoint. Yet, FF6FcHC delivers a comparable increase in
Sh2 with respect to its FF6Fc baseline. Accounting for transaction costs quickly resolves
this tension: the apparent pricing ability of FF6FcHC is entirely fictitious. Out of the
FF6FcHC , only the market is still profitable to trade net of costs. Therefore, FF6cHC

achieves the same net Sh2 as the CAPM, 0.18, which is 95% lower than its gross-of-cost
estimate. In practice, an investor trading an MVE portfolio of the FF6FcHC factors
would move farther away from the achievable efficient frontier compared to the baseline
FF6Fc model. Put differently, FF6FcHC only delivers a high Sharpe ratio before costs
because gross returns on its factors include a large transaction cost component. FF6FcHC

factors are thus informative about transaction costs investors might incur upon trading,
but fail to explain the cross-section of returns they can earn in practice. Nonetheless, a
researcher employing the Sh2 criterion would conclude that we should prefer FF6FcHC

as an asset pricing model.

Detzel et al. (2023) show a similar example, where a single factor based on low-
volatility and industry relative-reversals (LV-IRR) dominates before costs, but delivers
a negative net Sharpe ratio after correcting for transaction costs incurred. The main
difference is that high turnover in LV-IRR comes from the economics of the underlying
signal. Reversal factors are costly to trade because such signals rapidly revert to the
mean. The case at hand shows that distortions in inference can also arise entirely due to
construction choice. Figure 1 confirms that the FF6Fc factors do expand the available
efficient frontier, even after correcting for the cost of trading, when they are constructed
with the original methodology. The underperformance of FF6FcHC is thus not indicative
of scarce promise in the Fama and French (2018) characteristics. Rather, it is an artifact
of the construction methodology.11 This fact is made apparent by the lack of substantive
differences between the economic characteristics that drive FF6FcHC and FF6Fc. High
pairwise correlations between factors in the two models solidify this point. For instance,
the correlation between the two momentum factors, UMD and UMDHC , is 92% before
costs and 89% after costs.

This example shows that even inference based on net Sh2 can produce misleading
results when factor construction is not optimized. Discretionary choices can mask the
pricing ability of the underlying characteristics, which is ultimately what researchers
set out to demonstrate. In particular, the combined effect of net-of-cost inference and
11In this example, the construction of the FF6FcHC is deliberately suboptimal. In practice, academics

can achieve similar results indirectly. Factors that rebalance more frequently and use complex sorting
methodologies that overweight costly-to-trade assets are exposed to similar problems.
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TCU factors sets an unreasonably high bar to clear for characteristics with little persis-
tence. Asset pricing tests in the net TCU setting can suffer from low power and lead
to over-rejections. At the same time, discretionary choices of reconstitution frequencies
and other factor attributes can translate into large differences in performance, both be-
fore and after costs, that are uninformative about the pricing ability of the underlying
characteristics. This phenomenon results in a proliferation of factors that exhibit little
variation in terms of economic motivation and contributes to Cochrane’s (2011) “factor
zoo” problem.

3 TCA Factors

3.1 Trading partially toward the target

I consider an economy with N investable assets. Factors are characteristic-sorted port-
folios that load on the asset universe, following the Fama and French (1993) blueprint.
Each factor k is a fixed dollar portfolio that loads on stock i in month t with weight w∗

it,
where the factor subscript is suppressed for legibility. Trading is costly and investors
trade off the benefits of tracking the underlying characteristic closely against transaction
costs they incur upon rebalancing. They do so by choosing an unconditional, factor-
specific trading intensity τ ∈ (0, 1], so that dollar positions in each security satisfy:

xit(τ) = τ · w∗
it + (1− τ) · wi,t−1(τ)(1 + r̃it) (1)

At the end of each month, investors move a share τ of their holdings toward target
weights w∗

it. They retain the remainder invested at their current allocation wi,t−1(τ)(1+

r̃it), which reflects returns excluding dividends on each stock r̃it.12 Larger values of τ
imply a more aggressive rebalancing schedule. Normalizing to keep investment in each
portfolio leg constant yields the weights

wit(τ) =
xit(τ)

nit(τ)
, (2)

where the normalizer nit is
12I correct returns for M&A dividends, which are not included in the standard CRSP field. When M&A

transactions are settled in cash, investors receive cash directly in a brokerage account. I assume that
investors incur transaction costs when they re-invest such cash proceeds in the market, but not on
the cash dividend itself. Sabbatucci (2015) shows that M&A dividends are substantial, and amount
to 30% of total shareholder payout over the last 20 years.
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nit =
Nt∑
j=1

xjt(τ) 1{sign(xjt(τ)) = sign(xit(τ))} . (3)

Rebalancing is costly and investors incur transaction costs TCit(τ), which reflect their
trading intensity choice:

TCit(τ) =
∣∣∣wit(τ)− wi,t−1(τ)(1 + r̃it)

∣∣∣cit (4)

where cit is the proportional (one-way) cost of trading 1$ in stock i in month t. I estimate
cit from daily CRSP data following the guidelines of Abdi and Ranaldo (2017). If quote
data is available, cit is the quoted bid-ask spread scaled by twice the contemporaneous
mid-point and averaged over month t. Otherwise, I estimate cit with the CHL spread
estimator that Abdi and Ranaldo (2017) propose. I detail the estimation process in
Appendix A.

I compute net-of-cost factor returns f̃t similar to Detzel et al. (2023)

f̃t(τ) = ft(τ)− TCt(τ) (5)

where the gross return ft and transaction costs associated with the factor, TCt, are given
as follows:

ft(τ) =
N∑
i=1

wi,t−1(τ) rit

TCt =
N∑
i=1

TCit(τ)

(6)

When τ = 1, TCA weights reduce to target weights, and wit(1) = w∗
it. In other words,

factor portfolios rebalance fully toward target weights in each period. This case recovers
the setting in Detzel et al. (2023), in which investors incur transaction costs but cannot
adjust their trading accordingly. Further restricting cit = c = 0 nests the standard
case of frictionless trading, which is the de facto standard in the empirical asset pricing
literature. Conversely, as τ approaches zero, TCA factors move closer to “buy and hold”
portfolios, where trading only occurs to keep the invested amount constant.
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I evaluate competing factor models based on the maximum squared Sharpe ratio cri-
terion of Barillas and Shanken (2017), which has recently gained increasing popularity
in the asset pricing literature. Barillas and Shanken (2017) rank models on the squared
Sharpe ratio achieved by a mean-variance efficient combination of their factors, Sh2(f).
The methodology builds on Gibbons, Ross, and Shanken (1989), who show that aug-
menting a set of factors f with test assets R improves the achievable squared Sharpe
ratio by

αRΣ
−1αR = Sh2(R, f)− Sh2(f) (7)

where αR are the pricing errors from regressing R on f . When R includes all possi-
ble factors, Sh2(R, f) = Sh2(R) and minimizing pricing errors becomes equivalent to
maximizing Sh2(f).

Similar to Detzel et al. (2023), I maximize squared Sharpe ratios of the net factors.
In other words, I select the model that comes closest to spanning the mean-variance
frontier investors can achieve in practice, after accounting for transaction costs. However,
I substantially deviate from Detzel et al. (2023) in terms of the nature of the factors
considered. In this paper, I extend the factor space to all portfolios that can be generated
by trading toward a basis set of K target factors with the K-vector of factor-specific
trading intensities τ . For each model, I choose τ and factor weights θ to maximize

Sh2 = max
θ,τ


E
[
θ′ft(τ)− |θ|′TCt(τ)

]2
V
[
θ′ft(τ)− |θ|′TCt(τ)

]
 (8)

subject to 1′θ = 1 and τ ∈ (0, 1]K .

3.2 Choosing target weights

TCA factors require a choice of target weights w∗
it to trade toward. In an ideal scenario,

such weights would be informed by a theoretical model that maps economic characteris-
tics into risk-factor premia. In practice, the search for theoretically motivated linkages
between risk-factors and economic characteristics is still an ongoing effort. I thus set
target weights w∗

it so that all basis factors reconstitute at a monthly frequency. To do
so, I run characteristic sorts underlying each factor’s construction at the end of each
month, irrespective of the original reconstitution frequency. I use market information
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as of t to construct portfolio weights for the following period. Instead, I update ac-
counting characteristics at a six-month delay, in line with the original Fama and French
(1993) methodology. The motivation for choosing monthly reconstituted target weights
is threefold.

First, absent theoretical guidance, it is often unclear what lags of economic charac-
teristics are relevant for expected returns. Taking the example of the value effect first
illustrated by Basu (1983), what lag of book-to-market is most predictive of returns?
TCA factors allow to sidestep this issue. Equation (1) shows that TCA weights are an
exponentially-smoothed combination of past target weights. For a given level of trans-
action costs, the maximization problem (8) will suggest a lower trading intensity τ ∗HML

if past values of book-to-market are more predictive of expected returns than recent
realizations.

A second argument in favor of monthly reconstituted factors centers on the informa-
tion set available to investors. The choice of target weights I propose always trades on
the most recent information available on the underlying characteristic.

A third and more important reason to deviate from established conventions in the
literature relates to transaction costs. For the purpose of this discussion, it is useful to
distinguish between factor reconstitution and factor rebalancing. On each reconstitution
date, the econometrician defines the investable asset universe for each factor, she sorts
securities by the chosen characteristic(s) and assigns them to sub-portfolios formed at
the intersections of such sorts. I refer to intermediate dates, in which the econometrician
observes factor returns but no reconstitution takes place, as rebalancing dates.

Absent corporate events, portfolio assignments are only revised on reconstitution
dates. Reconstitution is generally the leading source of turnover in factor construction
because investors incur transaction costs to adjust their allocation. However, investors
also need to engage in costly trading on rebalancing dates. Rebalancing needs arise to
ensure that factor portfolios are well-defined excess returns and meet potential equal-
weight, value-weight, or rank-weight constraints imposed for identification.

I find that the Fama-French factors, despite reconstituting each June, still experience
significant turnover in other months due to rebalancing activity. While such turnover
is costly, it acts on stale information, since characteristics entering portfolio sorts are
only updated in June. Table 1 shows that non-June turnover and the transaction costs
incurred because of it are substantial for the Fama-French factors. An investor holding a
100$ position in the size factor SMB would have incurred 63 cents worth of rebalancing
costs each year due to turnover in months other than June. Such expenses would have
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Table 1: Non-June rebalancing. The table below quantifies turnover and transaction costs
incurred by the Fama-French factors in non-reconstitution months. I first compute transaction
costs (TC) and turnover (TO) at the month and factor level. Transaction costs are TCkt =∑Nt

i=1 |wikt − wi,k,t−1(1 + r̃ikt)|cikt and turnover is TCkt =
∑Nt

i=1 |wikt − wi,k,t−1(1 + r̃ikt)|/2.
Columns 3 and 5 respectively show the magnitudes of TC and TO in months other than June,
expressed in %. I first sum TC and TO incurred between July and May of each year and report
yearly averages. Columns 4 and 6 show shares of TC and TO incurred on rebalancing dates as
a % of the yearly total. The sample spans from 1972 to 2022.

Transaction Costs (TC) Turnover (TO)

Characteristic Non-June Level (%) Non-June Share (%) Non-June Level (%) Non-June Share (%)
SMB Size 0.63 64.0 51.1 60.4

HML Value 0.69 46.8 54.1 44.9

RMW Profitability 0.69 47.7 54.8 45.5

RMWc Cash Profitability 0.68 39.9 54.4 37.6

CMA Investment 0.69 35.9 54.8 32.4

amounted to 64% of the yearly transaction costs required to hold the size factor, with the
remainder being incurred on reconstitution dates. Point estimates for transaction costs
(TC) and turnover (TO) incurred when trading other factors are similar between July
and May. Factors instead differ more heavily in the portion of turnover and trading costs
originating on rebalancing dates as opposed to reconstitution dates. The investment
factor, CMA, experiences the lowest share of non-June transaction costs (turnover),
which is 35.9% (32.4%) of the yearly total. Such figures are nevertheless substantial,
and suggestive that holding the Fama-French factors is not a passive endeavor, even
absent reconstitution concerns.

Non-June rebalancing needs arise to keep the long and short ends of each factor
balanced. If either leg of factor k outperforms the other at month-end t, the factor
picks up a net exposure to the risk-free rate and loses its interpretation as a tradable
excess return over the following period. Each factor leg is in turn an equally-weighted
combination of sub-portfolios. For instance, the long leg of the value factor, HML, assigns
equal weights to the portfolios of small- and large-value stocks. Similarly, the growth
portfolio is an equally weighted mix of the small-growth and large-growth portfolios.
Correcting for differences in returns across portfolios in the same factor leg also requires
additional trading. Lastly, each of the constituent portfolios is a value-weighted portfolio.
Therefore corporate events and dividends affecting any of the constituents also induce
a rebalancing need. Taken together, these considerations suggest that reconstituting
target weights w∗

it at a frequency that matches observed returns may be beneficial, as it
reduces turnover that acts on stale information.
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4 Model Comparison

In this section, I run horse races between competing asset pricing models. I focus on the
six factor models covered in Detzel et al. (2023). These specifications have the benefit
of being low-dimensional and have high tenure in the literature. Table 2 summarizes
candidate models and factors. FF5 is the ubiquitous six-factor model of Fama and French
(2015), to which FF6 adds a momentum factor. I denote with a subscript c the versions
of the two models that replace accruals-based profitability with cash profitability. HXZ4
is the q-theory model of Hou, Xue, and Zhang (2015). Barillas and Shanken (2018) show
that a combination of FF6 and HXZ4 factors, together with the monthly updated value
factor of Asness and Frazzini (2013), achieves the largest Sh2 before costs. I denote their
model BS6.

I investigate the performance of each model (i) gross-of-cost using traditional (TCU
factors), (ii) net-of-cost, but still assuming TCU factor construction, and (iii) net-of-
cost with optimized trading intensity. I construct factors entering the first two sets
of models following the documentation provided on the authors’ webpages. I replicate
weights in each factor, stock, and month to obtain factor-level excess returns before and
after the cost of trading. I instead reconstitute all TCA versions of the factors on a
monthly basis, irrespective of the original reconstitution frequency. Appendix B reports
the construction methodology of characteristics entering TCA factors and replication
statistics for TCU factors.

4.1 Maximum Squared Sharpe Ratios

Figure 2 illustrates the benefits of rebalancing factors conservatively in the presence of
transaction costs. I show how models that trade toward TCA target weights fare net
of costs for each possible choice of trading intensity. To stack the deck against results,
I restrict factors to rebalance at the same intensity within each model. This restriction
sets a conservative benchmark: optimal trading intensities for individual factors are
likely heterogeneous, due to differences in turnover, return persistence, and the average
cost of trading constituents.

The relationship between trading intensity and net Sh2 is hump-shaped and appears
smooth across all models. Net Sh2 initially increases rapidly in τ , because factors gain
exposure to the underlying characteristics. Rebalancing benefits die down when trans-
action costs become more substantial, and net Sh2 peaks for values of τ between 20 and
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Table 2: Candidate factors. The table below summarises the candidate factors and models
that I evaluate in this section. FF5 and FF6 are the factor models of Fama and French (2015,1).
The subscript c denotes variations of the above models that replace the operating profitability
factor with a cashflow-based one. HXZ4 is the q-theory model of Hou et al. (2015). BS6 is the
empirically motivated model of Barillas and Shanken (2018). BS6 replaces the standard value
factor with a monthly-reconstituted version, which is due to Asness and Frazzini (2013).

Factor Characteristic Reconstitution FF5 FF5c FF6 FF6c HXZ4 BS6
MKT Market Monthly ✓ ✓ ✓ ✓ ✓ ✓

SMB Size June ✓ ✓ ✓ ✓ ✓

HML Value June ✓ ✓ ✓ ✓

RMW Profitability June ✓ ✓

RMWc Cash Profitability June ✓ ✓

CMA Investment June ✓ ✓ ✓ ✓

UMD Momentum Monthly ✓ ✓ ✓

ME Size Monthly ✓

IA Investment Monthly ✓ ✓

ROE Profitability Monthly ✓ ✓

HMLm Value Monthly ✓

30%, depending on the model. Net Sh2 declines past this level since excessive rebalancing
erodes compensation for increased risk exposure.

Strikingly, HXZ4 starts delivering higher net Sh2 than the baseline when τ is as low
as 4.6%. Put differently, when transaction costs are present, it is preferable to retain
95.4% of funds invested at the previous period allocation, rather than fully rebalance
the HXZ4 factors. A similar lower bound is consistent across models and all candidates
outperform their TCU counterparts at a 6.9% trading intensity.

Two main empirical findings emerge from Figure 2. First, TCA models outperform
TCU versions even without increasing model complexity. Since trading intensities are
fixed at this stage, net squared Sharpe ratios only optimize over factor weights in the
ex-post MVE portfolio. Put differently, TCA and TCU models have the same number
of estimated parameters in this setting. Therefore, Figure 2 dismisses potential concerns
that TCA factors may overfit in-sample with respect to their TCU baselines. Figure
2 also shows that performance gains from using TCA factors are remarkably robust to
trading intensity misspecification. Limiting rebalancing activity delivers benefits over
the baseline across all models and for a wide range of trading intensities. Even for the
MVE portfolio implied by the TCA FF5c model, which is the closest to its baseline, the
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tangency portfolio lies above its TCU benchmark for all trading intensities between 6%
and 78.9%.

FF6c HXZ4 BS6

FF5 FF5c FF6
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Figure 2: Benefits of conservative rebalancing. The figure graphs the relationship be-
tween trading intensity τ and net model performance. Each panel represents one of the candi-
date models. The continuous lines show the net Sh2 each model achieves when trading toward
its TCA target with intensity τ . Dashed lines represent instead the baseline net Sh2 which can
be achieved through TCU factors. The shaded region highlights the set of trading intensities
that deliver higher or equal Sh2 with respect to the baseline. The sample ranges between July
1972 and December 2022.

In the remainder of the paper, I relax the assumption of a common trading intensity
at the model level. Figure 3 quantifies improvements in the ability to span the achievable
efficient frontier when I allow each factor and model pair to rebalance at the optimal
trading intensity. TCA factors deliver net Sh2 that are 28% to 84% higher than their
TCU counterparts. The FF6c model dominates both with an optimal choice of τ and
when τ = 1. However, four out of five of the remaining TCA models have higher Sh2

than the TCU FF6c. Strikingly, investors would be better off pricing assets with any
of these four suboptimal models, but choosing trading intensity optimally, rather than
rebalancing naively and pricing assets with the best-performing TCU model. This point
underscores the pitfalls of factors that are constructed without recognizing that investors
alter their trading decisions when trading is costly.

While all TCA models perform better after costs, models where transaction costs
are a larger concern benefit most from an informed choice of trading intensity. HXZ4
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is the worst-performing TCU model, with a net Sh2 of 0.45. The empirical challenges
the model faces after fees are unsurprising since HXZ construct their factors using a
2x3x3 sorting methodology that magnifies turnover and amplifies the weight of small
stocks. However, a more conservative choice of trading intensity improves the model’s
performance by 78%, resulting in a net Sh2 of 0.79.

0.0

0.3

0.6

0.9

FF5 FF6 HXZ4 BS6 FF5c FF6c

Net Sh2 (TCA, τ = τ∗)
Net Sh2 (TCU, τ = 1)

Figure 3: Net-of-cost model comparison: TCA and TCU factors. The above figure
plots net model Sh2. The left bars (dark blue) show the performance of each model with
TCA factors. TCA factors trade toward monthly reconstituted target weights with optimized
trading intensity τ∗. The right bars (light blue) measure how close the same models come to
spanning the achievable efficient frontier when factors are TCU and trade with τ = 1. I sort
models by the Sh2 they achieve in their TCA version. The sample ranges between July 1972
and December 2022.

Additional performance benefits of TCA models stem from the inclusion of mo-
mentum, which is especially costly to trade due to its fleeting portfolio composition.
Momentum strategies suffer from large turnover because returns are typically less per-
sistent than accounting characteristics: stocks that have done well in recent times may
not continue their good runs in the future. Therefore, the BS6 factors, which include
momentum, benefit even more than HXZ4 factors from transaction-cost-aware trading,
with a performance improvement of approximately 84%. Further, adding momentum to
the FF5 model only increases Sh2 by 0.02 in the TCU case. Performance improvements
are even more modest when considering cash profitability versions of the two models.
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Figure 4: Model comparison: net TCA factors and gross TCU factors. The above
figure compares model Sh2 before costs and net of costs with TCA factors. The left bars (dark
red) show the performance of each model before costs, using gross TCU factors. The right bars
(dark blue) show the performance of each model with TCA factors. TCA factors trade toward
monthly reconstituted target weights with optimized trading intensity τ∗. Models are sorted
by their Sh2 with TCA factors. The sample ranges between July 1972 and December 2022.

However, TCA models do benefit from momentum exposure. The TCA versions of FF6
and FF6c outperform their less parametrized counterparts by 0.13 and 0.10 respectively.

Heterogeneous benefits from transaction-cost-aware trading translate into hetero-
geneity in the ranking of the models considered. HXZ4 and BS6 outperform FF5 and
FF6 in their TCA versions, while TCU models produce the opposite ranking. Similar to
Detzel et al. (2023), standard statistical tests of Sh2 differences cannot be applied to this
setting. Asymptotic results on Sh2 comparison rely on the delta method.13 However,
net Sh2 ratios are not differentiable in the presence of proportional transaction costs.
Equation 8 shows that the Sh2 depends on the absolute value of factor weights in the
MVE portfolio. Nonetheless, factor-level results, which are the object of section 5, show
that the HXZ4 and BS6 factors benefit most from transaction-cost-aware trading on an
individual basis. This finding is suggestive that differences in model rankings produced
by TCA factors are likely robust. Further, FF5 and FF5c are approximately nested in
their more parametrized FF6 and FF6c counterparts, provided factor trading intensities
13See Barillas and Shanken (2018) and Barillas, Kan, Robotti, and Shanken (2020).
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on common factors are close. Investors would thus prefer the larger model in each of the
two pairs, given their higher net Sh2, even absent a rigorous asymptotic theory.

Importantly, the two different rankings in Figure 3 suggest that model comparison ef-
forts after fees can be biased by the effects of discretionary construction choice. Inference
on asset pricing models should instead contrast performance after optimizing trading in-
tensity for transaction costs incurred in the process. This insight complements findings
in Detzel et al. (2023), who show that net and gross Sh2 produce different rankings if
factors are TCU. Figure 4 highlights that this phenomenon extends to TCA factors.
Both TCA Fama-French models incorporating cash profitability outperform BS6 after
fees, while the latter model dominates gross-of-cost.

Figure 4 also shows that before-cost model comparison dwarfs differences between
the models in the more realistic setting where investors experience transaction costs
and construct factors accordingly. Apparent differences in model performance largely
manifest due to arbitrary construction choices and when the cost of trading is overlooked.

4.2 Optimal trading intensities

Figure 5 shows how τ ∗ varies across TCA factors and candidate models. Optimal trading
intensities are far below 100%. Trading factors conservatively thus brings investors closer
to the achievable efficient frontier in the presence of transaction costs.

It is important to understand through which channels models benefit from optimiz-
ing trading intensity. Does the choice of τ ∗ reflect meaningful economic properties of the
underlying characteristics? Or is it an artifact of minor construction details and corre-
lation effects at the model level? Figure 5 can only offer partial insights on this point,
due to the narrow set of factors considered. However, results seem to point toward the
former interpretation. Estimated values of τ ∗ differ substantially between factors, but
competing models assign similar trading intensities to each individual factor. Optimal
trading intensities are also consistent within factor themes. The operating profitability
factor, RMW, constitutes the only outlier in this respect. Estimated τ ∗ appear instead
similar between size factors (SMB and ME), investment factors (CMA and IA), and
profitability factors (RMWc and ROE).

Factor-level regularities in optimal trading intensities are also desirable from an em-
pirical standpoint. Fixing factor-level trading intensities across models can be appealing,
provided that it carries minor implications in terms of performance. This restriction may
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be particularly convenient when comparing a large set of models, especially if one be-
lieves that none of the candidates are correctly specified.

Benefits from reducing trading intensity seem lowest for the operating profitability
factor, RMW, which rebalances roughly 70% of its allocation on a monthly basis. The
high τ ∗ for RMW is in contrast with what I find for its cash-based version. The optimal
trading intensity for RMWc is close to 25%, less than half of τ ∗RMW. This suggests that
turnover in the operating profitability factor is inflated by mean reversion in accruals.
Sloan (1996) finds that variation in operating profits coming from accruals is less per-
sistent than the cashflow component. The ROE factor of HMZ, which sorts stocks on
quarterly ROE, also trades substantially more slowly. More granular information about
profitability allows for gradual adjustments in factor composition which can be smoothed
over time.

The market and the two size factors, SMB and ME, require the least trading. Since
these factors are value-weighted and sorted on market equity, they are close to self-
rebalancing. Investors only need to adjust the composition of the market factor due
to corporate events and net issuance, which may translate into higher-than-average
transaction costs on the affected securities. In line with this intuition, τ ∗MKT ranges
between 2.1% (FF6) and 3.3% (FF5c). SMB and ME face additional turnover with
respect to the market due to migration, i.e. the rebalancing need that arises when
securities move between the equally-weighted sub-portfolios that constitute each factor.
The larger turnover aligns with even lower optimal trading intensities, which range
between 1.5% and 2%.

4.3 Ex-Post Optimal MVE Weights

In this section, I investigate how TCA models realize improvements over their TCU
counterparts. It is possible that transaction-cost-aware trading delivers similar improve-
ments for all factors, leaving their relative importance unchanged. Conversely, if any of
the candidate factors drive larger benefits from more conservative trading, their weights
in the MVE portfolios should increase. Table 3 shows that TCA models produce dif-
ferent ex-post efficient MVE portfolio weights with respect to both gross and net TCA
factors.

Ignoring transaction costs understates the relevance of the market factor with respect
to the TCA case in Panel C. Overinvestment in the market results in higher leverage
across all models. TCA models also attach higher weights to the size factor, with the
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Figure 5: Optimal trading intensities. The above figure shows estimated trading inten-
sities for each factor and model. The sample ranges between July 1972 and December 2022.
Optimal trading intensities are undetermined for factors that receive zero weight in a given
model. I therefore drop the corresponding model and factor pairs.

exception of ME in HXZ4. Figure 5 shows that market and size are the factors with the
slowest optimal trading, which aligns with their gain in relative importance in Panel C
of Table 3. Changes in weights are most striking for the BS6 model, which includes 5
monthly reconstituted factors out of 6. The weight on the investment factor increases
from 4% to 32% when moving from the optimal factor portfolio before costs to the
TCA case. This change comes at the expense of the value, profitability, and momentum
factors which are costlier to trade.

Contrasting Panels B and C of Table 3 shows how ex-post MVE weights differ be-
tween TCA and TCU factor models after transaction costs. Forcing τ = 1 results in an
overly conservative allocation. As spread factors are rebalanced more aggressively than
optimal, models reduce loadings on costlier-to-trade factors to compensate. Weights
on the market factor thus increase across all models with respect to the TCA case.
In turn, failing to account for transaction costs in factor design can dampen the rela-
tive importance of costlier-to-trade factors when performing inference net of transaction
costs. This effect is especially apparent with the momentum factor, UMD. TCU models
load only marginally on momentum, to the point that BS6 places zero weight on UMD,
effectively collapsing into a 5-factor model. This finding is consistent with the minor
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Table 3: Ex-post mean-variance efficient weights. The table below reports factor weights
in the ex-post efficient mean-variance portfolio. Panel A shows optimal loadings on TCU factors
in the standard asset pricing inference setting, in which the cost of trading is ignored. Panel B
reports factor weights in the Detzel et al. (2023) setting, in which TCU factors are evaluated
net of transaction costs. Panel C shows instead ex-post efficient weights on TCA factors.

Panel A: Gross TCU Factor Models

Model MKT SMB HML CMA RMW RMWc UMD ME IA ROE HMLm
FF5 18 9 -3 46 30

FF5c 17 13 -3 29 44

FF6 18 8 4 33 23 14

FF6c 17 11 2 23 37 10

HXZ4 15 15 36 34

BS6 14 10 19 4 27 26

Panel B: Net TCU Factor Models

Model MKT SMB HML CMA RMW RMWc UMD ME IA ROE HMLm
FF5 26 4 7 34 29

FF5c 22 10 4 18 46

FF6 25 4 9 29 26 7

FF6c 22 10 5 16 44 3

HXZ4 27 6 38 29

BS6 24 8 0 30 32 6

Panel C: Net TCA Factor Models (τ∗)

Model MKT SMB HML CMA RMW RMWc UMD ME IA ROE HMLm
FF5 22 11 0 42 25

FF5c 19 15 0 26 40

FF6 20 9 11 26 18 16

FF6c 18 13 5 20 34 10

HXZ4 21 13 43 23

BS6 20 11 10 32 17 10

differences in Sh2 observed in Figure 3 between both TCU versions of the FF5 and FF6
models. Momentum plays a much larger role in TCA factor models, in which weights
on the factor more than double, and become sometimes larger than in the before-cost
benchmark.

TCA models exhibit sparsity with respect to the gross-of-cost benchmark: HML
washes out of the TCA versions of FF5 and FF5c. The net-of-cost maximum Sharpe
ratio criterion introduces additional sparsity with respect to the TCU case because
transaction costs in equation (8) effectively act as a LASSO penalty. The exclusion
of HML reflects the extended drawdown that value suffers in the recent sample. On
top of its poor recent performance, HML is positively correlated with the investment
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and profitability factors and provides scarce diversification benefits. However, HML
resurfaces in models that also include a momentum factor. Asness and Frazzini (2013)
show that trading value and momentum jointly is beneficial in light of their negative
correlation.14

4.4 Out-of-Sample Results

Standard model comparison tests such as those of Gibbons et al. (1989) and Barillas
et al. (2020) cannot be applied with proportional transaction costs. In this section, I
turn to the bootstrap approach of Fama and French (2018) and Detzel et al. (2023) to
draw a statistical comparison between models that employ TCA and TCU factors.

I obtain 10,000 simulations of in-sample (IS) and out-of-sample (OS) net Sh2 of each
model as follows. First, I partition the 606 available months between July 1972 and
December 2022 into consecutive pairs: (1,2), (3,4), ..., (605,606). In each simulation
run, I sample 303 pairs with replacement. I then randomly assign one month within
each sampled pair to the IS period and its partner month to the OS period. If any given
pair is sampled more than once, I keep the same assignment of months within the pair
to the IS and OS periods. This ensures that no overlap exists between the IS and OS
samples. I then obtain factor weights θ and trading intensity τ that maximize the IS
net Sh2 for each TCA factor model specification. In the OS period, I use the estimated
parameters to back out the OS net Sh2. I repeat the same procedure for TCU models,
setting τ to 1 for all factors and optimizing net Sh2 only with respect to factor weights
in the IS period.

Table 4 compares the net TCA and net TCU versions of each model. TCA models
outperform in close to 100% of the IS simulations. In line with previous results, the BS6
model benefits most from TCA construction, with HXZ4 closely following. Their IS net
Sh2s improve by 120% and 91%, respectively. However, the absolute magnitudes of IS
net Sh2 should be interpreted with care: Ex-post Sh2 estimates suffer from a well-known
small-sample bias (Barillas et al., 2020; Fama and French, 2018; Jobson and Korkie,
1980). With the benefit of hindsight, models overweight factors whose realized returns
14In Detzel et al. (2023), HML drops out from all models after accounting for transaction costs in the

TCU setting they consider. This is in contrast with my findings. The higher relative importance of
HML in Panel B of Figure 3 with respect to Detzel et al. (2023) reflects the joint effect of (i) differences
in the stock-level estimator for cit, which has lower bias and higher correlation with TAQ effective
spreads (ii) costs incurred by infrequently reconstituted factors on rebalancing dates, which Detzel
et al. (2023) neglect, and (iii) differences in the sample considered, which includes one additional year
in this paper.
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are large compared to expected returns. This issue is even more pronounced in the IS
bootstrap since only half of the sample is available for estimation.

The OS net Sh2s are substantially lower, reflecting that investors would have only
been able to realize part of the paper performance of the models. The IS bias is larger
for TCA models in light of their additional flexibility. However, OS results confirm that
TCA models robustly outperform their TCU counterparts and that improvements are
more substantial for models with high-turnover factors.

Table 4: Bootstrap model comparisons between TCA and TCU factor models. The
table below presents net-of-cost bootstrap comparisons between TCA and TCU versions of each
candidate model based on 10,000 simulation runs. I first partition the 606 sample months, July
1972 to December 2022, into adjacent pairs: (1,2), (3,4), ..., (605, 606). Each simulation run
then draws 303 pairs with replacement and randomly assigns one month within each pair to
the in-sample (IS) period and the partner month to the out-of-sample (OS) period. If the same
pair is sampled more than once, I keep the same IS/OS split within this pair. The first and
second columns report the average net Sh2 estimated for each model across IS simulation runs,
respectively in its TCU and TCA versions. The third column, “TCA Best” presents the share
of IS simulation runs in which the TCA model outperforms the TCU version, expressed in %.
The last three columns present analogous results for OS simulations.

In-Sample Out-of-Sample

TCU Sh2 TCA Sh2 TCA Best TCU Sh2 TCA Sh2 TCA Best

HXZ4 0.70 1.34 100.0 0.35 0.65 90.1

BS6 0.81 1.78 100.0 0.30 0.66 92.5

FF5 0.70 1.13 98.8 0.31 0.34 64.2

FF5c 0.95 1.64 99.6 0.51 0.67 76.5

FF6 0.78 1.59 100.0 0.30 0.51 84.5

FF6c 1.01 2.03 100.0 0.48 0.77 85.2

Panel B shows that FF6c is still the dominant model OS, confirming previous results.
However, it is now only selected in 40.8% of the simulation runs. Conversely, the relative
strength of FF5c and HXZ4 improves in the OS bootstrap. These results are suggestive
that part of the IS outperformance of the larger FF6c and BS6 models is due to the small-
sample bias discussed earlier.15 In addition, including momentum in OS simulations is
less beneficial, due to the large 2009 crash in this strategy (Daniel and Moskowitz, 2016).
Simulation runs in which the crash is (is not) in the IS period underinvest (overinvest)
15Barillas et al. (2020) show that the small-sample bias in model Sh2 increases with the number of

factors.
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in momentum. Both effects help FF5 and HXZ4 to close the distance with factor models
that include a momentum factor.

Table 5: Bootstrap model comparisons for TCA factor models. The table below
presents net-of-cost bootstrap comparisons between candidate models that use TCA factors.
All figures reported are based on 10,000 simulation runs. I first partition the 606 sample months,
July 1972 to December 2022, into adjacent pairs: (1,2), (3,4), ..., (605, 606). Each simulation
run then draws 303 pairs with replacement and randomly assigns one month within each pair to
the in-sample (IS) period and the partner month to the out-of-sample (OS) period. If the same
pair is sampled more than once, I keep the same IS/OS split within this pair. The first and
second columns report the average net Sh2 estimated for each model. Columns 2 to 6 report
the % of simulation runs in which the row model outperforms the column model. The last
column shows the % of simulation runs in which the corresponding model dominates. Panel A
presents results for IS simulation, while Panel B for OS simulations.

Panel A: In-Sample TCA Bootstrap Results

Probability that the Row Model outperforms
the Column Model (%)

Average Sh2 BS6 FF5 FF5c FF6 FF6c Best

HXZ4 1.34 2.2 74.1 26.2 26.0 6.1 0.9

BS6 1.78 97.8 63.6 77.0 25.1 23.9

FF5 1.13 2.2 1.3 1.2 0.1 0.0

FF5c 1.64 36.4 98.7 55.1 1.9 1.5

FF6 1.59 23.0 98.8 44.9 2.5 1.3

FF6c 2.03 74.9 99.9 98.1 97.5 72.4

Panel B: Out-of-Sample TCA Bootstrap Results

Probability that the Row Model outperforms
the Column Model (%)

Average Sh2 BS6 FF5 FF5c FF6 FF6c Best

HXZ4 0.65 44.6 87.3 47.7 67.9 36.2 22.8

BS6 0.66 88.6 50.0 79.7 33.0 17.2

FF5 0.34 11.3 3.6 18.4 5.5 0.3

FF5c 0.67 50.0 96.4 72.0 28.8 17.4

FF6 0.51 20.3 81.6 28.0 8.0 1.5

FF6c 0.77 67.0 94.5 71.2 92.0 40.8

Table 5 in Appendix C shows bootstrap simulations comparing TCU models. Similar
to Detzel et al. (2023), who focus on model comparison in the TCU setting, I find that
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FF6c is the best-performing model IS, but FF5c marginally wins out OS. This suggests
that trading momentum is less beneficial still in the OS feasible portfolio of investors
who do not optimize trading intensity. This is in part because conservative trading
mitigates crash risk in the TCA momentum factor. Setting τ = 0.225, which is close to
the optimal trading intensity for UMD in the FF6, FF6c, and BS6 models, results in a
kurtosis of about 9.36. The classic UMD factor with τ = 1 has a substantially larger
kurtosis of 13.38.

Overall, keeping the set of candidate characteristic-based factors constant, factor
models with cost-aware construction substantially outperform TCU ones. Differences in
performance across TCA factor models are less evident. Therefore, bootstrap simula-
tions seem to confirm that cost-aware construction can dominate OS gains from careful
model selection.

5 Rebalancing Trade-off

In earlier sections, I relate improvements in pricing ability delivered by TCA factors to
a reduction in transaction costs. The premise is that, if characteristic C is priced in the
cross-section of expected returns, investors face a trade-off between securing high expo-
sure to C and containing transaction costs incurred in the process. However, competing
channels may also contribute to pushing optimal trading intensities below 100%. In
this section, I discuss other factors that may result in conservative trading and present
evidence that transaction costs are the main driver of trading intensities.

Target factor weights are often empirically motivated, and likely not efficient even
absent transaction costs. Optimizing trading intensity may therefore improve the ef-
ficiency of individual factors, both before and after the cost of trading. This is in
stark contrast with the literature on dynamic price impact, where the aim portfolio is a
weighted average of current and future expected MVE portfolios, which are efficient by
construction (Collin-Dufresne et al., 2020; Gârleanu and Pedersen, 2013; Jensen et al.,
2022). First, recent characteristic realizations may be noisy measures of their system-
atic components. Conservative trading attaches larger weights to lagged characteristic
values and may produce more efficient factors absent transaction cost considerations.
In this vein, Novy-Marx (2012) argues that momentum is largely driven by returns 12
to 7 months before portfolio formation, while more recent performance seems less in-
formative. Further, Daniel, Mota, Rottke, and Santos (2020) show that characteristic
sorts also pick up systematic components that contribute to portfolio variance, but do
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not represent priced variation in before-cost expected returns. Ehsani and Linnainmaa
(2022); Fama and French (2020) propose related procedures to isolate priced variation
and improve factor efficiency. If lagged characteristic realizations are less correlated with
unpriced systematic components, reducing trading intensity may again prove beneficial
irrespective of the cost of trading. While desirable, the above effects are unrelated to
the transaction cost channel explored in this paper.
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Figure 6: Optimal trading intensities with and without transaction costs. The above
figure shows how transaction costs affect optimal trading intensity for each factor and model. I
denote τnoTC the optimal trading intensity absent transaction costs, i.e. when cit = c = 0 (when
trading is costly). The optimal trading intensity when trading is costly, which is displayed in
figure 5, is instead τ∗. The vertical axis shows the differences between τnoTC and τ∗. The sample
ranges between July 1972 and December 2022. Optimal trading intensities are undetermined
for factors that receive 0 weight in a given model. I therefore drop the corresponding model
and factor pairs.

Figure 6 disentangles before-cost efficiency and the effect of transaction costs. I
compute the difference in optimal trading intensity with and without transaction costs
for each factor and model. When the cost of trading is set to zero, investors rebalance
factors more aggressively, and optimal trading intensities approach 100% for the wide
majority of models and factors. These findings substantiate that transaction costs are
the leading driver of conservative trading.

The market and size factors represent the only partial exceptions. Turnover in such
factors is strongly reflective of net issuance, as discussed in section 4.3. Conservative
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trading in MKT, SMB, and ME aligns with a large literature on equity issuance and
stock returns. Loughran and Ritter (1995); Ritter (1991); Spiess and Affleck-Graves
(1995); Stigler (1963), among others, show that firms tend to underperform following
both seasoned and initial equity offerings. Under this view, delaying rebalancing can
reduce the net issuance exposure of the market and size factors, and result in higher
excess returns gross and net of the cost of trading. Daniel and Titman (2006,1) show
that net issuance is a strong negative predictor of stock returns, suggesting that priced
systematic variation rather than noise or unpriced variation may contribute to slower
trading in market and size factors.16

Table 6: Individual factor premia. The table below zeroes in on individual factors. I
report average monthly premia, µ, in % points, the associated t-statistics t, and the average
transaction costs incurred per month, TC. Factor premia that are significant at the 5% level
are in bold. I compare factors under three scenarios. Columns 1 and 4 refer to TCU factors
evaluated before accounting for the cost of trading. Columns 2 and 5 relate to the same set of
factors, after correcting excess returns for the cost of trading shown in column 7. Columns 3,
6, and 8 present matching results for TCA factors. Lastly, column 9 shows the difference in
annualized net Sh between TCA factors and traditional TCU factors.

µ (%) t TC (%)

TCU Gross TCU Net TCA Net TCU Gross TCU Net TCA Net TCU TCA Net ∆Sh
MKT 0.58 0.56 0.60 3.09 3.01 3.46 0.02 0.01 0.07

SMB 0.14 0.05 0.14 1.12 0.43 1.44 0.09 0.03 0.14

HML 0.37 0.24 0.24 2.96 1.90 1.91 0.13 0.06 0.00

RMW 0.32 0.18 0.19 3.29 1.88 1.88 0.13 0.16 0.00

RMWc 0.41 0.25 0.25 4.99 3.01 2.99 0.16 0.16 0.00

CMA 0.30 0.13 0.20 3.72 1.59 2.41 0.17 0.14 0.12

UMD 0.64 0.01 0.23 3.66 0.07 1.40 0.63 0.30 0.19

ME 0.2 0.08 0.16 1.94 0.60 1.32 0.17 0.05 0.11

IA 0.36 0.14 0.27 4.14 1.58 3.12 0.22 0.14 0.22

ROE 0.56 0.21 0.24 5.24 1.97 2.19 0.35 0.25 0.03

HMLm 0.38 0.10 0.24 2.43 0.64 1.91 0.28 0.06 0.18

Trading partially toward target weights could also translate into higher pricing ability
because it optimizes before-cost diversification between the factors. Table 6 presents
evidence suggesting that this channel is not the main driver of my results. For each
candidate factor, I compare the individual performance of its TCA and TCU versions.
Individual comparisons shut down the diversification channel and quantify cost savings
that TCA construction can achieve when trading factors in isolation.

All TCA factors have higher or equal premia with respect to the net TCU case.
Only three of the eleven factors are 5% significant when τ = 1. After optimizing trading
16Baker and Wurgler (2000) demonstrate that the equity share in new issues negatively predicts market

returns more specifically.
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Table 7: Spanning regressions. The table below reports coefficient estimates and associated
t-statistics for spanning regressions. Statistically significant coefficients at the 5% level are
shown in bold. For each factor candidate, I regress the net returns on the TCA version on
the net returns earned by its TCU counterpart, and vice versa. Columns 2 and 3 investigate
whether TCU factors span TCA factors. The dependent and independent variables are reversed
in columns 4 and 5. Regression intercepts (α) are in basis points per month.

Net TCA on Net TCU Net TCU on Net TCA

Characteristic α (bps) β α (bps) β

MKT Market 0.09 0.91 -0.07 1.06

(2.58) (124.06) (-1.94) (124.06)
SMB Size 0.11 0.6 -0.08 0.96

(1.71) (28.67) (-1.02) (28.67)
HML Value 0.01 0.93 0.01 0.96

(0.33) (71.68) (0.31) (71.68)
RMW Profitability 0.00 1.00 0.00 0.95

(0.21) (112.36) (0.19) (112.36)
RMWc Cash Profitability 0.01 0.97 0.01 0.95

(0.37) (81.32) (0.51) (81.32)
CMA Investment 0.08 0.92 -0.05 0.95

(2.6) (64.96) (-1.86) (64.96)
UMD Momentum 0.22 0.88 −0.23 1.05

(4.86) (85.74) (-4.65) (85.74)
ME Size (monthly) 0.09 0.98 −0.09 0.98

(3.53) (116.93) (-3.33) (116.93)
IA Investment (monthly) 0.14 0.92 −0.12 0.96

(4.73) (66.62) (-3.87) (66.62)
ROE Profitability (monthly) 0.03 1.00 -0.01 0.92

(1.04) (80.00) (-0.42) (80.00)
HMLm Value (monthly) 0.17 0.72 −0.17 1.12

(3.02) (50.07) (-2.43) (50.07)

intensities, t-statistics on the monthly premia generally increase, and both investment
factors become significant at the 5% level. TCA factors are also substantially cheaper
to trade, except the profitability factors.17 Lastly, net (annualized) Sh are also larger or
17Figure 5 shows that the optimal trading intensity for the TCA RMW is close to 70%. Additional

turnover due to monthly reconstitution of the target weights thus overstates the reduction in trans-
action costs from less aggressive trading.
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equal for all TCA factors. These findings suggest that TCA factors deliver improvements
over TCU factors through cost reduction.

Table 6 allows for qualitative comparisons, but offers limited insights in terms of
inference. Differences in net Sh are not differentiable due to transaction costs, and
cannot be tested directly. To address this problem, I run spanning regressions of TCA
factors against their TCU counterparts. Table 7 shows that TCA factors deliver positive
alphas over traditional TCU factors. These alphas are statistically significant at the 1%
level for six out of the eleven factors, and particularly large for those that reconstitute
at a monthly frequency in their original formulation. Conversely, TCU versions of the
UMD, ME, IA, and HMLm factors do not span their TCA counterparts, and deliver
significant negative alpha at the 5% or 1% level. This reinforces that optimizing trading
intensity delivers significant benefits when transaction costs are present, over and above
the effects of diversification. All betas are large and statistically significant, suggesting
that the risk exposures of the two sets of factors are similar in nature.

6 Additional Cost Mitigation

Previous results highlight how TCA construction can substantially reduce transaction
costs incurred when trading academic factors, and how cost savings translate into im-
provements in the factor models that investors can construct in practice. In this section,
I evaluate how optimizing trading intensity fares when compared to two prominent cost
mitigation approaches in the literature: “banding” and “netting”. The banding strategy
of Novy-Marx and Velikov (2019) reduces turnover by combining factor portfolios with
buy-and-hold spreads. Factors that employ banding require more extreme characteristic
realizations to enter active positions in stocks than to unwind these positions. Netting
arises naturally for sophisticated investors, who can trade factor constituents directly.
Such investors can net out offsetting trades across long and short legs of different fac-
tors. DeMiguel et al. (2020) term “trading diversification” the reduction in transaction
costs that arises when netting is possible. Detzel et al. (2023) find that both of these
strategies help mitigate transaction costs.

There are two important caveats when comparing TCA construction with netting
and banding. First, the three cost mitigation approaches are complementary. TCA fac-
tors can accommodate additional cost mitigation by applying netting and banding to
their target portfolios. Second, while in principle the size of the banding buy-and-hold
spread can be optimized, Detzel et al. (2023) set an ex-ante a 20% buy-and-hold spread
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for all factors. Conversely, TCA factors are the outcome of the maximization problem
(8), which optimizes factors directly while accounting for their transaction costs. This
approach aligns closely with the market efficiency argument of Fama (1991). Under this
revised version of the efficient market hypothesis, investors exploit available informa-
tion to the full extent to which this is beneficial after accounting for the trading costs
they incur. Accordingly, my methodology incorporates information on characteristics
embedded in the TCA target while optimally accounting for transaction costs. Differ-
ent characteristics command different optimal trading intensities which in turn can be
related to characteristics’ cross-sectional and time-series properties.

6.1 Banding

I construct cost-mitigated factors that employ banding following Detzel et al. (2023).
I start with replications of the original TCU factors and apply a 20% buy-and-hold
spread to portfolio cutoffs. For instance, standard academic factors are long stocks in
the top 30% of the underlying characteristic’s distribution and short those that land in
the bottom 30%. Conversely, the cost-mitigated factors only enter long (short) positions
when characteristics cross the top (bottom) 20% and maintain these positions until
characteristics fall out of the top (bottom) 40%.

I also combine banding and TCA construction to evaluate the joint benefits of the
two methodologies. To this end, I first apply banding to the monthly reconstituted TCA
targets. I then solve problem (8) again using the updated targets.18

Figure 7 compares the net Sh2 achieved by candidate models in four scenarios: (i)
with their original TCU design, (ii) with TCU design and banding, (iii) with TCA
construction but without banding and, (iv) with both TCA construction and banding.
An individual comparison between banding and TCA construction shows that the latter
methodology delivers larger improvements in net Sh2, with the only exception of BS6.
In addition, incremental benefits materialize when the two methodologies are applied
jointly. Synergies are particularly apparent in the case of the FF5 and FF5c models. All
factors in these models reconstitute at a yearly frequency and benefit little from banding
in isolation. However, TCA construction allows the investor to reconstitute these factors
on a monthly basis, while keeping transaction costs in check. This also increases the
scope for banding, as turnover in the target portfolio increases.
18Detzel et al. (2023) apply banding only to monthly reconstituted factors. Since all TCA factors

reconstitute at a monthly frequency, I also implement buy-and-hold spreads on the TCU factors that
reconstitute less frequently to set a higher hurdle for my methodology.
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Figure 7: Robustness to banding. The figure compares annualized net Sh2 that candidate
models achieve under four different scenarios. Starting from the left, the first set of bars (light
blue) shows the pricing ability of models including traditional TCU factors, which rebalance
fully in each period. The second set of bars (orange) adds banding. The remaining sets of bars
show the net Sh2 of TCA factor models, respectively without and with banding (dark blue and
purple). The sample ranges between July 1972 and December 2022.

6.2 Trading Diversification

TCA factors introduced in section 3 are appropriate to represent the opportunity set of
investors that trade factors individually. For instance, small investors may be unable to
trade factor constituents directly but can gain exposure to individual factors through
a combination of ETFs and active factor funds. TCA factors capture the returns such
investors can achieve if funds optimize execution and fully pass down the cost of trading,
either in the form of investment fees or tracking error.

The above argument suggests that TCA factors presented so far may not be appro-
priate to capture the cost of capital of sophisticated investors. Such investors would
trade factor constituents directly, realize the proceeds from trading diversification, and
potentially act as investment intermediaries for less sophisticated agents.

Similar to Detzel et al. (2023), I characterize transaction costs incurred when trading
K factors jointly when investors can benefit from trading diversification. The main
difference with their approach is that I also allow these investors to optimize rebalancing
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intensities at the factor level. In this setting, investors have further incentives to adjust
trading intensities so that rebalancing trades in a given factor line up more closely with
offsetting trades in the remaining ones. This intuition suggests that cost-saving synergies
should also emerge when combining netting and TCA construction. Transaction costs
in this case take the form:

TCTD
t (τ, θ) =

K∑
k=1

Nt∑
i=1

∣∣∣ θk [wikt(τk)− wi,k,t−1(τk) (1 + rit − dit)]
∣∣∣ cit. (9)

By Jensen’s inequality, TCTD
t (τ, θ) sets a lower bound to the cost of trading TCA

factors individually.

TCTD
t (τ, θ) =

K∑
k=1

Nt∑
i=1

∣∣∣ θk [wikt(τk)− wi,k,t−1(τk) (1 + rit − dit)]
∣∣∣ cit

≤
K∑
k=1

|θk|
Nt∑
i=1

∣∣∣wikt(τk)− wi,k,t−1(τk) (1 + rit − dit)
∣∣∣ cit

= |θ|′TCt(τ)

(10)

I solve again for optimal trading intensities and weights in the ex-post mean-variance
efficient portfolio under the assumption that investors can benefit from trading diversi-
fication.

Sh2
TD = max

θ,τ


E
[
θ′ft(τ)− TCTD

t (τ, θ)
]2

V
[
θ′ft(τ)− TCTD

t (τ, θ)
]
 (11)

Figure 8 compares the net Sh2 candidate models achieve in four scenarios: (i) with
TCU factors and without trading diversification, (ii) with TCU factors and trading
diversification, (ii) with TCA factors but without trading diversification, and (iii) with
both trading diversification and TCA factors. In the HXZ4 and BS6 models, which
include factors that are more expensive to trade, the benefits of transaction-cost-aware
trading overstate the effects of trading diversification. In the remaining models, the
individual impact of TCA construction is comparable to the cost savings from trading
diversification. In particular, the FF6c model, which remains the best performing in all
four cases, has a virtually equivalent Sh2 for investors that are restricted from either
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transaction-cost-aware trading or trading diversification. This observation helps put
into perspective the advantages that asset managers can deliver to less sophisticated
investors, who may be unable to trade the entire set of factor constituents on the margin.
Such advantages may come in the form of cost reduction, rather than through risk-
adjusted gross returns - the channel that is typically the object of interest in the mutual
fund literature.
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Figure 8: Robustness to trading diversification. The figure compares annualized net Sh2

that candidate models achieve under four different scenarios. Starting from the left, the first set
of bars (light blue) shows the pricing ability of models including traditional TCU factors, which
rebalance fully in each period. The second set of bars (orange) adds trading diversification.
The remaining sets of bars show the net Sh2 of TCA factor models, respectively without and
with trading diversification (dark blue and purple). The sample ranges between July 1972 and
December 2022.

The joint effect of trading diversification and transaction-cost-aware trading further
improves the efficient frontier investors can achieve after costs. The dominant model,
FF6c, undergoes a 101% Sh2 with respect to the baseline without transaction-cost-aware
trading and trading diversification and performs 42.6% better than the TCA version
without TD. The ranking between models also varies from the TCA case without trad-
ing diversification. Netting out rebalancing trades across factors naturally favors more
parametrized models, since the additional factors introduce additional and potentially
offsetting trading motives in the set of constituents. While the FF6c model still dom-
inates the other five candidates, the relative performance of factor models depends on
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the cost mitigation solutions available to investors. When considering a broader set of
models, the tangency portfolio more sophisticated investors can achieve may not only
lie higher in the mean-variance plane but may also comprise of a different set of risk-
factors. In a similar vein, Li et al. (2023) show that investors with different levels of
risk-aversion should benchmark against different factor models when price impact is a
concern. Recognizing the effects of transaction costs questions the adequacy of “one-
size-fits-all” approaches to factor models.

To qualify asymmetries in relative performance, the FF6 model now outperforms the
HXZ4 specification and has a Sh2 of 1.16, which is equivalent to the Sh2 of the BS6
model. The FF5c model still outperforms FF6, but only marginally: the distance in
Sh2 between the two shrinks from 0.15 to a mere 0.01. The three models that include
the momentum factor - FF6, FF6c, and BS6 - benefit most from trading diversification,
as UMD is negatively correlated with the value factor. In my sample, the correlation
between momentum and the monthly reconstituted value factor of Asness and Frazzini
(2013) is -63%. Overall, the BS6 model is again the one that sees the largest overall
performance gains. Its Sh2 increases by a factor of 2.5 when investors optimize trading
intensity and can net out offsetting trades.

7 Conclusion

I show that traditional asset pricing factors are suboptimal if investors incur proportional
transaction costs. The cost of trading alters the opportunity set in a fundamental fashion,
because it introduces a trade-off between securing risk-factor exposures and controlling
rebalancing costs. Factors that are designed while overlooking transaction costs fail
to recognize this trade-off, and are unlikely to span the achievable efficient frontier. I
instead propose that factors should be constructed in a transaction-cost-aware fashion,
evaluating their risk-premia against the necessary cost of trading. I term TCA factors
the class of factors incorporating these insights and show that TCA factor models can
better characterize the achievable tangency portfolio. Given target weights that provide
exposure to a particular characteristic, TCA factors rebalance at the optimal intensity
to capture its potential premium, while containing the cost of trading.

TCA factors showcase that factor design is a first-order concern when trading is
costly, and meaningful construction can trump the benefits of adopting potentially more
parametrized asset pricing models. Out of the set of factor models considered, TCA
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versions deliver up to 150% larger net squared Sharpe ratios compared to the TCU
benchmark.

More importantly, I suggest that discretionary construction choices can bias asset
pricing inference. After recognizing the cost of trading, models differ in their relative
performance depending on whether trading intensity is optimized or not. This is because,
in turn, factors differ in turnover, return persistence, and average cost of constituents.
When rebalancing is too aggressive, transaction costs can mask factor premia and dilute
the efficiency gains such factors deliver when they are included in asset pricing models.
The effect is particularly apparent with the momentum factor. Due to its high cost of
trading, momentum plays a marginal role in the ex-post efficient mean-variance portfolio
when it is constructed in a TCU way. I find instead that a more conservative rebalancing
schedule attributes far greater importance to the momentum factor.

This paper offers a general cautionary note against neglecting frictions in empirical
asset pricing research. Investment decisions that are optimal absent frictions may signifi-
cantly underperform after considering implementation concerns. Consequently, investors
modify their optimal allocations to account for friction-induced distortions. Efforts to
characterize the opportunity set that either ignore frictions entirely, or restrict investors
from optimizing accordingly, may produce misleading results.
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Online Appendix for “Transaction-cost-aware Factors”

A Stock level transaction costs

Measuring the cost of trading factors requires proportional cost estimates at the stock
and month level. Chung and Zhang (2014) suggest that daily quoted spreads provide re-
liable estimates of high-frequency effective spreads. Abdi and Ranaldo (2017) show that
CRSP quoted spreads outperform other more sophisticated estimators and recommend
adopting the Chung and Zhang (2014) estimator when quote data is available.1

I estimate cit from CRSP, using daily quoted bid-ask spreads, if available. In the
absence of valid quotes, I employ the CHL estimator of Abdi and Ranaldo (2017). I
then fill cit for stock and months that still have missing values based on the methodology
proposed in Novy-Marx and Velikov (2016).

A.1 Quoted Spreads

I construct quoted spread estimates following Chung and Zhang (2014). I discard days
with non-positive close, bid, or ask prices. I further ensure that bid-ask spreads are
non-negative for each observation. The relative bid-ask half-spreads citd are:

cQitd =
Aitd −Bitd

2Mitd

(12)

where Aitd and Bitd are the closing ask and bid prices quoted on day d of month t for
stock i. I denote Mitd = (Aitd + Bitd)/2 the prevailing end-of-day mid-quote. Following
Chung and Zhang (2014), I then take cQit as the average of cQitd estimates over month t,
after discarding days with half-spreads exceeding 25% of the mid-quote.
1Abdi and Ranaldo (2017) find that the monthly CRSP quoted spread estimator achieves a 96% corre-
lation with TAQ effective spreads and the same mean (0.82%) between October 2003 and December
2015. For comparison, the Gibbs estimator of Hasbrouck (2009), which has seen frequent application
in the literature, delivers a correlation of only 40% with the TAQ effective spread, and overestimates
its mean by 1.31%.
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A.2 CHL Estimator

I compute a second set of effective spread estimates, cCHL
it , using the methodology pro-

posed by Abdi and Ranaldo (2017). I use the 2-day corrected version of the estimator, as
per the authors’ recommendations. I discard observations with non-positive close, high,
or low prices, and stock-months with less than 12 valid observations. The proportional
cost estimator is then

cCHL
it =

1

2Dt

Dt∑
d=1

√
max{(pitd − ηitd)(pitd − ηi,t,d+1), 0} (13)

where pitd and ηitd are respectively the log closing price and the log mid-range ηitd =

(log(Hitd) + log(Litd))/2 on day d. If the leading midrange ηi,t,d+1 is missing, I use the
prevailing log midpoint instead, as proposed by Abdi and Ranaldo (2017).

A.3 Imputation

I set cit to cQit , if available, and use the CHL estimator cCHL
it otherwise. This procedure

still leaves missing observations for 2.9% of stock months.2 I fill these observations with
the non-parametric methodology proposed in Novy-Marx and Velikov (2016). I impute
missing cit with the cQit of stock j that minimizes the distance

√
(rankMEit − rankMEjt)2 + (rankFF3IVOLit − rankFF3IVOLjt)2 (14)

where ME is market equity and FF3IVOL is the idiosyncratic volatility from FF3
time-series regressions estimated over three months of daily data.3

2In my main sample, which runs from July 1972 to December 2022, 84.6% of observations have valid
cQit . Further, an additional 12.4% of observations have a missing quoted spread estimate, but a valid
CHL estimate is instead available.

3Stock j must be a common stock and must be trading regularly on NYSE, NASDAQ or AMEX.
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B Factor construction and replication

B.1 TCU factors

I replicate before-cost returns on TCU factors according to the instructions available on
the authors’ webpages. Price and market equity data are from CRSP, while accounting
signals are available on the annual and quarterly Compustat releases.

Table A.1: Replication Quality. The table below reports replication statistics. The sample
ranges from July 1972 to December 2022. Columns 2 and 3 show the average monthly premium
µ on the original factor and the replicated estimate µr, in percentage points. Column 4 reports
the correlation between the two time-series. Column 5 shows the R2 from time-series regressions
of the original factors on the replicated ones. I report t-statistics in brackets.

µ (%) µr (%) ρ R2

MKT 0.57 0.57 1 1
(3.06) (3.07) (4281.1)

SMB 0.16 0.14 1 0.99
(1.33) (1.12) (261.69)

HML 0.33 0.37 0.99 0.99
(2.62) (2.94) (220.4)

RMW 0.3 0.32 0.99 0.98
(3.23) (3.31) (180.9)

CMA 0.33 0.3 0.98 0.96
(4.04) (3.71) (125.92)

UMD 0.63 0.65 1 0.99
(3.53) (3.68) (317.82)

ME 0.24 0.24 0.98 0.96
(1.91) (1.9) (122.48)

IA 0.39 0.37 0.97 0.93
(4.68) (4.18) (91.48)

ROE 0.53 0.56 0.98 0.95
(4.99) (5.28) (111.55)

HMLm 0.35 0.38 0.96 0.93
(2.3) (2.42) (89.07)

The replication methodology for the Fama-French factors follows Fama and French
(2018) for RMWc and the documentation on Kenneth French’s website (https://
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mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html) for the
remaining factors. I instead follow the notes on Lu Zhang’s web page (http://global
-q.org/) for the HXZ4 factors and Asness and Frazzini (2013) for HMLm.4 Table A.1
reports replication statistics.

B.2 Characteristic signals in cost-aware factors

TCA factors target characteristic-sorted portfolios that reconstitute every month. Re-
strictions on the available asset universe, the sorting methodology, and the characteristics
entering each sort match the original TCU factors. However, I revise the computation of
characteristics that do not update at a monthly frequency in the original papers. Sorts in
month t use contemporaneous market data. I instead update annual accounting charac-
teristics at a six-month lag. Stocks with valid characteristics and fiscal year end at t− 6

enter the asset universe at the end of month t, and stocks without valid data for months
between t − 18 and t − 6 drop out. For characteristics based on quarterly accounting
data, I use information as of the most recent public quarterly earnings announcement
date, as in Hou et al. (2015).

• Market equity (ME) - Price times share outstanding, summed across all firm se-
curities. Market equity must be positive to be considered nonmissing. In the sort
for month t, size is the contemporaneous ME.

• Book equity (BE) - I compute book equity following Fama and French. Book equity
is stockholder equity, minus the book value of preferred stock, plus balance sheet
deferred taxes (if available), minus investment tax credit (if available). Stockholder
equity is the first available value out of (i) shareholder equity, (ii) common equity
plus the book value of preferred stocks, and (iii) total assets minus total liabilities.
The book value of preferred stock is the redemption, liquidation, or par value, in
this order of preference. Investment tax credit is deferred taxes and investment
tax credit, or deferred taxes plus investment tax credit, in this order of preference.
Investment tax credit only enters the book value computation up to the 1992 fiscal
year. Book equity must be positive to be considered nonmissing.

• Book-to-market (BM) - In the sort for month t, book-to-market is the ratio of BE
at the last available fiscal year end between t− 18 and t− 6 and ME at t.

• Operating profitability (OP) - Operating profitability is operating profits divided
by BE plus minority interest (if available). Operating profits are the difference
between total revenue and the sum of cost of goods sold, interest expenses, and

4Before-cost HMLm returns are available at https://www.aqr.com/Insights/Datasets.
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selling, general, and administrative expenses. In the sort for month t, I take OP
at the latest available fiscal year end between t− 18 and t− 6. I annualize OP in
cases where firms alter their fiscal year ends, and discard firm-years in which the
gap between a fiscal year end and the following exceeds 24 months.

• Investment (INV and I/A) - Investment is the growth rate of total assets. In the
sort for month t, I take INV at the latest available fiscal year end between t− 18

and t − 6. I annualize INV in cases where firms alter their fiscal year ends and
discard firm-years if the gap between a fiscal year end and the following exceeds
24 months. I/A is the negative of INV.

• Return on equity (ROE) - Return on equity is quarterly income before extraordi-
nary items over BE lagged one quarter. In the sort for month t, quarterly income
is considered nonmissing if the relative fiscal quarter end is within six months of t.
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C Additional Results

Table A.2: Bootstrap model comparisons for TCU factor models. The table below
presents net-of-cost bootstrap comparisons between candidate models that use TCU factors.
All figures reported are based on 10,000 simulation runs. I first partition the 606 sample months,
July 1972 to December 2022, into adjacent pairs: (1,2), (3,4), ..., (605, 606). Each simulation
run then draws 303 pairs with replacement and randomly assigns one month within each pair to
the in-sample (IS) period and the partner month to the out-of-sample (OS) period. If the same
pair is sampled more than once, I keep the same IS/OS split within this pair. The first and
second columns report the average net Sh2 estimated for each model. Columns 2 to 6 report
the % of simulation runs in which the row model outperforms the column model. The last
column shows the % of simulation runs in which the corresponding model dominates. Panel A
presents results for IS simulation, while Panel B for OS simulations.

Panel A: In-Sample TCU Bootstrap Results

Probability that the Row Model outperforms
the Column Model (%)

Average Sh2 BS6 FF5 FF5c FF6 FF6c Best

HXZ4 0.70 4.3 50.1 22.3 39.5 16.1 1.6

BS6 0.81 64.5 31.6 53.9 23.6 21.9

FF5 0.70 35.5 2.5 16.3 1.4 0.4

FF5c 0.95 68.4 97.9 81.7 21.8 16.4

FF6 0.78 46.1 83.7 18.3 2.6 1.3

FF6c 1.01 76.4 98.6 78.2 97.5 58.4

Panel B: Out-of-Sample TCU Bootstrap Results

Probability that the Row Model outperforms
the Column Model (%)

Average Sh2 BS6 FF5 FF5c FF6 FF6c Best

HXZ4 0.35 63.8 59.6 27.1 60.6 29.4 20.2

BS6 0.30 50.9 18.5 51.5 18.4 5.6

FF5 0.31 49.1 5.7 46.6 11.2 2.1

FF5c 0.51 81.5 94.3 91.2 53.0 38.4

FF6 0.30 48.5 53.4 8.8 5.6 2.0

FF6c 0.48 81.6 88.8 47.0 94.4 31.7
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