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1. Introduction

Technological innovation is a crucial driver of long-term growth and value creation (Aghion

and Howitt, 1990; Kogan et al., 2017). The 21st century has witnessed several milestones in

the technological revolution that significantly impact human life and work. The COVID-19

mRNA vaccine marks the first successful large-scale use of mRNA in vaccine production,

playing a pivotal role in addressing the crisis. The rapid advancement of artificial intelligence

also presents numerous new opportunities for our future. The provision of new scientific

knowledge is a fundamental source of novel ideas for industrial innovation (Sorenson and

Fleming, 2004; Ahmadpoor and Jones, 2017; Krieger, Schnitzer, and Watzinger, 2022). In

recent decades, university science has increased considerably, while firms have reduced their

investment in upstream research, focusing more on the development and commercialization

of scientific discoveries (Arora, Belenzon, and Sheer, 2021; Arora et al., 2021). Translating

academic science into commercialized innovative products requires the ability to absorb

knowledge embedded in academic research (Cockburn and Henderson, 1998; Rosenberg,

2010). In this new innovation ecosystem, corporate scientists play a crucial bridging role

in fostering industrial inventiveness by absorbing knowledge from academic science while

pursuing corporate innovation goals. Therefore, the importance of corporate scientists in

driving firm value in the modern innovation system remains a question of great interest to

both scholars and policymakers.

Despite the importance of this topic, there are limited studies that comprehensively

examine how firms’ investments in scientific human capital (shortened as SHC ) drive firm

growth. One reason for this gap is the challenge of measuring corporate scientific human

capital (SHC). To address this, I leverage a publication database and a text-embedding

large language processing tool to construct a measure of SHC for public firms in the U.S. I

investigate whether scientific human capital contributes to firm value and innovation, and if

so, how it plays a role.
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I utilize exogenous shocks from scientific breakthroughs in public science within a stacked

difference-in-differences framework. This approach allows me to leverage positive shocks

to the innovation opportunities encountered by corporate scientists, highlighting their role

in driving firm value. The exogenous shocks include three major 21st-century scientific

breakthroughs: Human Genome Project; Deep Learning; and Gene Editing. These events

were selected based on an editorial article in Nature1, which summarizes groundbreaking

innovations of the 21st century. The publication years of key academic papers behind these

breakthroughs are used as the breakthrough years. These three scientific breakthroughs,

originating from academia, are largely unforeseen by companies, thus presenting increased

positive innovation and investment opportunities for affected firms while having no immediate

impact on unaffected companies.

I classify firms into treated and control groups based on their significant exposure to a

given scientific breakthrough. To measure the level of impact, I examine the most valuable

patents of each company in the three years preceding the breakthrough. The patent value

is determined using the method outlined by Kogan et al. (2017). The relevance of these

patents to the scientific breakthrough is assessed by calculating the cosine similarity between

the patent abstracts and the representative paper abstract of the scientific breakthrough,

utilizing a text-embedding large language processing tool. Each patent is assigned a relevance

score, and a company’s relevance to each event is determined by the average similarity score

of its most valuable patents prior to the event. Among all firms with patents filed within

three years before the breakthrough year, the top 20% are classified as treated firms for a

given event, while the remaining firms serve as control firms.

Firms whose core technology areas are related to these scientific breakthroughs are

expected to experience enhanced performance post-breakthrough compared to those focusing

on unrelated technology areas. Using a stacked difference-in-difference approach, I find

that treated firms exhibit better operating profitability, and increased sales in the five years

1See https://www.nature.com/articles/d41586-023-04021-2
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following the occurrence of a scientific breakthrough compared to control firms. Given that the

three breakthrough events occur at different times, the stacked Difference-in-Differences (DID)

approach mitigates concerns about biased estimates due to treatment effect heterogeneity,

as raised in the traditional Difference-in-Differences setting (Baker, Larcker, and Wang,

2022). Moreover, the effect is economically significant. For example, treated firms’ operating

profitability increases by 2.7% more compared to control firms. Pre-trend tests reveal no

significant pre-existing trends, confirming that the three scientific breakthroughs have a

positive impact on relevant companies.

After identifying the affected firms, I examine the core question: what role does scientific

human capital play in driving innovation and long-term growth among these firms? I expect

that a treated firm’s performance is better when it possesses a higher level of scientific human

capital prior to the scientific breakthroughs. The prediction is based on the idea that firms

with more scientific human capital have a higher absorptive ability for the cutting-edge

knowledge embedded in the breakthroughs (Cockburn and Henderson, 1998; Rosenberg,

2010), thereby transferring the knowledge to their products in a more effective and efficient

way. To explore the question, I construct a measure of corporate scientific human capital.

From the OpenAlex database2, I collect papers published by corporate scientists and their

affiliations. Corporate scientists are defined as those who have published academic articles

affiliated with a company. The primary scientific human capital used in the analysis is based

on the historical publication record of employees affiliated with a firm. It is constructed

as follows: first, the annual publication stock is obtained by counting the total number of

scientific papers published by all employees affiliated with firm i in year t up to year t; second,

the scientific human capital measure SHC is calculated by summing the annual publication

stock within the window [−3,−1] centered on the breakthrough year. To test robustness,

two additional measures are constructed: corporate scientists affiliated with the firm six to

2OpenAlex offers an increasingly widely used industry-standard scientific knowledge base, covering 258
million papers up to 2024. https://docs.openalex.org/.
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eight years before the shock, and the closeness of scientists’ expertise to the breakthrough,

using textual information from publication abstracts and the abstract of the paper signifying

the breakthrough.

In a stacked triple difference-in-differences (DID) setting, the findings reveal that firms

with higher levels of scientific human capital experience greater profitability and market value

in the five years following scientific breakthroughs compared to other firms. To address the

potential concern that investment in scientific human capital may be correlated with firm size,

I control for firm size in all specifications. The results remain robust with control variables

and multiple layers of fixed effects, underscoring the critical role of corporate scientific human

capital in driving firm growth post-scientific breakthroughs.

Next, I conduct several tests to examine the channels through which scientific human

capital impacts firm value post-breakthrough. The first is the knowledge spillover effect,

where companies with high scientific human capital quickly absorb new knowledge (Cockburn

and Henderson, 1998; Rosenberg, 2010). Scientists in these companies are expected to

engage in more patenting activities and collaborate with inventors, fostering new ideas and

producing impactful patents. The findings support this channel. First, I show that firms with

a high stock of scientific human capital publish more impactful papers after the scientific

breakthrough than peer firms, indicating a faster accumulation of scientific human capital and

more improvement in absorptive ability to the new scientific knowledge embedded in scientific

breakthroughs. Secondly, I show that treated firms with high scientific human capital have

a higher proportion of scientist-inventors in their patents, produce higher quality patents,

and are more likely to be among the first to cite the knowledge related to the scientific

breakthroughs. These results provide evidence of the role of corporate scientists in increasing

firm value by facilitating the transfer of scientific knowledge into the innovation process.

The second channel is the attraction effect for star scientists. According to anecdotal

evidence and the findings of Ahmed (2022), support for publication is a key factor for scientists
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joining a company. A firm’s stock of scientific human capital can be a proxy for its culture of

supporting scientific publications and basic research. Therefore, I conjecture that companies

with a higher stock of scientific human capital are more attractive to star scientists. My results

confirm this hypothesis, showing that treated firms with higher levels of scientific human

capital prior to scientific breakthroughs attract more star scientists post-breakthrough than

their peer firms. This attraction effect complements the spillover effect, further strengthening

firms’ ability to absorb and transfer new scientific knowledge into better innovation outcomes.

The study contributes to labor and finance literature that highlights the role played by

skilled labor in fostering firm growth and value creation. Existing studies mainly focus on

general skilled labor, such as employees with STEM majors or advanced skills. For example,

Shen (2021) utilizes the friction of skilled labor mobility during the Green Card application

process to study the effect of skilled labor mobility on firm valuation. Babina et al. (2024)

exploits the job posting and resume data to identify firms’ demands on different skills as a

proxy for AI investment and study its impact on firm growth. This study focuses on a special

group of high-skill labor, corporate scientists, to examine the impact of top-tier scientific

human capital in fostering corporate growth.

This paper also contributes to the understanding of corporate innovation in an economcy

that increasingly relies on human capital and intangible capital. Previous research has

examined various factors influencing corporate innovation, including corporate governance

(Aghion, Van Reenen, and Zingales, 2013; Bena and Li, 2014; Brav et al., 2018), regulatory

changes (Acharya, Baghai, and Subramanian, 2014, ), financing policies (Acharya and Xu,

2017; Azoulay et al., 2019), and corporate culture (Li et al., 2021; Tian and Wang, 2014;

Derrien, Kecskés, and Nguyen, 2023). This study adds to the strain of literature examining

the effect of corporate culture on innovation by providing evidence that a culture that supports

corporate research and scientific publication promotes corporate innovation, especially during

scientific breakthroughs.
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Lastly, I make a data contribution by using bibliometric and textual analysis to propose

a new scientific human capital measure by identifying corporate scientists and connecting

their publications with scientific breakthroughs. Previous studies have used bibliometric

data to measure corporate investment in research (Arora, Belenzon, and Sheer, 2021; Arora

et al., 2021), link university publications with patenting (Babina et al., 2023; Myers and

Lanahan, 2022), A recent study (Arora et al., 2023) constructs a measure of firms’ exposure

to public science by connecting university publications, PhD dissertations, and firm patenting.

There are some similarities between this paper and my study, as we both explore the effect

of public science on industrial innovation output. However, there are some key differences

between the two studies: First, my research focuses on highlighting the role of corporate

scientists in driving firm innovation in response to unexpected scientific breakthroughs,

whereas Arora et al. (2023) primarily examine how firms react to shocks from public science.

Second, I concentrate exclusively on prominent scientific revolutions in the 21st century, while

their study covers more minor scientific discoveries across various sub-fields. By identifying

corporate scientists and tracking their publication and patenting activities, I am able to

investigate the underexplored roles of corporate scientists in advancing firm growth and

innovation.

2. Empirical strategy and data

2.1. Scientific breakthrough

Studying the role of scientific human capital in propelling firm growth at the time of

scientific breakthroughs requires shocks to firms’ exposure to these breakthroughs. I select

the most prominent scientific breakthroughs in the 21st century as documented in an editorial

article in Nature3. The article refers to the most extraordinary events of scientific disruption

in the past two decades, including the Human Genome Project, the discovery of the Higgs

3See https://www.nature.com/articles/d41586-023-04021-2.
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boson, gene editing and CRISPR technology, the first detection of gravitational waves, and

AI and machine learning. Among these scientific breakthrough events, the discovery of the

Higgs boson and the detection of gravitational waves belong to the field of theoretical physics

and do not have a direct impact on industrial innovation on a large scale soon. Therefore, I

keep the rest of the three events as the shocks of scientific breakthroughs throughout the

study. A shared characteristic of the three remaining events is that they are all initiated by

researchers in public research institutions instead of the private sector. They can serve as a

quasi-exogenous shock to firms as firms cannot predict the timing of the breakthrough ex

ante.

I define the breakthrough year of the three events as the year the paper that signifies the

breakthrough is published. According to the editorial article in Nature, the accomplishment of

the Human Genome Project is signified by the paper titled “Initial sequencing and analysis of

the human genome” published in Science in 2001, a landmark paper that presented the draft

sequence of the human genome, organized by the International Human Genome Sequencing

Consortium. The second event, Deep Learning and Neural Networks, is marked by the finding

in the paper “A fast learning algorithm for deep belief nets”, published in Neural Computation

in 2006 by one of the ”Godfathers of AI,” Geoffrey E. Hinton and co-authors. The paper was

seen as a breakthrough that rekindled interest in neural nets and started the movement of

”deep learning”4. The third event, the discovery of Gene Editing technology, is disclosed in a

paper titled “A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial

Immunity,” published in Science in 2012. Two co-authors of the paper, Jennifer Doudna and

Emmanuelle Charpentier, were granted the Nobel Prize in 2020 because of their extraordinary

contribution to demonstrating the CRISPR-Cas9 system’s potential as a programmable tool

for precise gene editing with wide applications in medicine and agriculture.

4See https://www.skynettoday.com/overviews/neural-net-history.
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2.2. Identification strategy

My identification strategy exploits the unpredictable nature of revolutionary scientific

discoveries that have a significant impact on industrial innovation. Firms, especially those

that rely on the development of scientific technology, can benefit from the emergence of new

technology, which can increase productivity or spur the innovation of new products. Even

though firms may have some awareness of ongoing scientific developments, predicting the

exact timing of a scientific revolution is still challenging. Therefore, I consider the three

academic discoveries—Human Genome Project, Deep Learning and Neural Networks, and

Gene Editing and CRISPR technology—as three quasi-exogenous events for existing publicly

listed corporations.

Given that there are three events occurring in different years, I first use a stacked difference-

in-difference design following Gormley and Matsa (2011), comparing treated firms that operate

in areas closely related to the forthcoming scientific breakthrough with control firms that do

not operate in areas related to the scientific breakthrough before the breakthrough year. To

reduce the estimation bias caused by noisy control firms, I only choose control firms that

have never been classified as treated firms in any of the three events, following the literature

(Baker, Larcker, and Wang, 2022; Gormley and Matsa, 2011). After classifying treated firms

and control firms, I run the following stacked difference-in-difference regression:

Yi,c,t = β0 + β1 · Exposure to Sci-Breakthroughj,c,t + αi,c + θt,c + ϵi,j,c,t, (1)

where Y is one of the firm outcome variables of interest for firm i and year t, and Exposure to

Sci-Breakthrough is an indicator that equals 1 if firm i is classified as a treated firm in event

cohort c in year t. I examine the window of five years before the breakthrough year and five

years after the breakthrough years, [−5, 5]. The firm outcome variables include measures of

firm performance, Operating Performance, and Log Sales, as well as measures of innovation
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outcomes, the number of patents granted Patent Count, the citations received Citation, and

the patent value measure Log Patent Value. To account for fixed differences between firms

across events, I incorporate the firm-event fixed effect, denoted as αi,c. Year-event fixed

effects are also included to control for any secular time trends, denoted as θt,c. Standard

errors at the industry level to address the potential covariance among firm-level variables

over time within the same four-digit SIC code.

Next, I examine the second research question: the role played by scientific human capital

in the face of scientific breakthroughs. Firms that invest more in basic science research within

their core business can benefit more from largely unexpected scientific breakthroughs, as

they have the absorptive capability and first-mover advantage in transferring new technology

into their product and process innovations. Thus, firms with more related scientific human

capital in-house prior to the shock should benefit more from the new scientific breakthrough.

I run the following stacked triple difference-in-difference regression to test the hypothesis,

including an interaction term between the high scientific human capital indicator HighSHC

and the Exposure to Sci-Breakthrough:

Yi,c,t = β0 ++β1Exposure to Sci-Breakthroughc,t · HighSHCi,c,t−3:t−1

+ β2Exposure to Sci-Breakthroughc,t + β3HighSHCi,c,t−3:t−1

+ αi,c + θt,c + ϵi,c,t

(2)

Where Yi,c,t includes an array of firm-level outcome variables of interest. HighSHCi,c,t−3:t−1

represents indicating whether firm i belongs to the group with high scientific human capital. I

measure scientific human capital SHC based on the publication relevance with the forthcoming

breakthroughs of employees who were hired by firm i between years t− 3 and t− 1. I also

use the publication relevance of employees who were hired by firm i between years t− 8 and

t− 6 as a robustness test. The firm-event fixed effects, denoted as αi,c, and the year-event

fixed effects, denoted as θt,c, are included. Standard errors at the industry level to address
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the potential covariance among firm-level variables over time within the same four-digit SIC

code. More details about the SHC measure are in section 2.3.1.

2.3. Data and variable construction

Treated and control firms. A firm is classified as a treated firm if its patents with the top

10 highest market value for the [t− 3, t− 1] period have textual similarity to the scientific

breakthroughs, ranking in the top 20% among all firms with patents filed during the time

window [t − 3, t − 1]. The control firms are composed of the firms ranking in the bottom

80% in terms of technology similarity to the scientific breakthrough, as well as firms without

any patents filed in the three years prior to the scientific breakthrough. I only keep control

firms that have never been classified as treated firms in any of the three events to mitigate

the estimation bias caused by noisy control firms (Baker, Larcker, and Wang, 2022). To

obtain the textual similarity between two texts, I utilize the text embedding feature of the

natural language processing tool Instructor-xl, which can convert text to a vector. Then I

calculate the cosine similarity between the vector embedding of each selected patent abstract

and the text describing the content of the scientific breakthrough. The firm-level technology

similarity in each event is obtained by taking the average of the patent similarity scores of

the selected representative patents for firm i as shown below:

Technology Similarityi,c =
1

N

∑
t∈T

cosine similarity between patentt,i,c and scientific breakthroughc

where Patentt,i,c refers to patents filed by firm i within the past three years [t−3, t−1] that

relate to scientific breakthrough c and rank in the top 10 in market value among all patents filed

in the same year. N = max[30, total number of patents filed by firm i during [t− 3, t− 1]].

Figure 1 displays the ratio of firms that are classified as treated firms within each industry,

where the ratio is greater than 10% in at least one of the events. As indicated in the figure,
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the most shocked industries in the DNA event are Drugs, Healthcare, Business Services, and

Laboratory Equipment. Almost 60% of firms in the Drug industry are classified as treated

firms. For the Deep Learning event, the most shocked industries include Healthcare, Business

Services, Computer Software, Electronics and Equipment, and Finance. The Agriculture,

Healthcare, and Drugs industries are the three most influenced industries in the Gene

Editing event. The figure demonstrates that the classification is generally consistent with our

conception of the three scientific breakthroughs.

Scientific publication data. The publication data used in this study is downloaded

from the website OpenAlex, a non-profit organization that collects and publishes the entire

database of research papers, book chapters, and other publications covering the whole world

(Priem, Piwowar, and Orr, 2022). I keep the publication types including journal articles and

proceeding articles that have at least one author affiliated with a company in the U.S. and

were published between 1996 and 2017, as 1996 is the fifth year before the first breakthrough

event and 2017 is the fifth year after the last breakthrough event. In order to match firms

covered by the OpenAlex database with those covered by the Compustat database, I conduct

a name match between the names on the publication affiliations and U.S. publicly listed

firms. The affiliation of authors is sometimes not the parent firm name. Also, ownership

changes can affect the actual parent firm to which a firm belongs. To increase the accuracy of

matching between the two databases, I use the data covering the subsidiary-parent relation

and ownership relation shared by Arora, Belenzon, and Sheer (2021). In this way, I obtain

a dataset of U.S. firm names with Compustat identifiers, including all the corresponding

subsidiaries and acquired firms. Finally, I conduct the name match between the affiliation

names from the OpenAlex database and the U.S. public firms (including historical parent

firm names and all the subsidiary and acquired firm names) and set up a threshold of 70 to

keep likely successful matches. For those with a score of 100, I classify them as successful

matches. For those below 100 and above 70, I manually check if they are a successful match.
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Finally, I obtain about 1,386 firms that have ever published one paper from 1996 to 2017.

2.3.1. Publication-based measure. To measure scientific human capital prior to each

scientific breakthrough, I first construct a dataset that tracks the employment history of

publishing employees. An author affiliated with a firm who publishes a paper in a given

year is considered an employee of that firm for that year. It is acknowledged that publishing

employees may not publish annually. It is assumed that an employee does not leave the firm

during years without publication, provided the author does not publish with another firm in

the interim. If an author publishes for a different firm, the first year of publication for that

new firm is considered the year of departure from the previous firm. Subsequently, I collect

the employment records of individuals hired by a firm and gather their historical publications

up to the year preceding the breakthrough. Then I calculate the annual publication stock

using the total number of scientific papers published by all employees (affiliated with firm i

in year t) until year t. The measure of scientific human capital SHC is defined as the sum

of the annual publication stock within the window [−3,−1] centered on the breakthrough

year. This is the main measure I use throughout the analysis. I also construct other scientific

human capital measures based on a window outside our sample period and a relevant scientific

human capital measure based on the closeness of scientists’ expertise to a breakthrough using

textual information in the publication abstracts and the abstract of a scientific paper. More

details are described in Appendix A.

To evaluate the impactfulness of a paper, I create a measure termed Impactful Paper.

This measure relies on the bibliometric database OpenAlex, which utilizes a state-of-the-art

natural language model to classify each paper into 252 subfields and 4,516 topics. A paper

is classified as impactful if it ranks among the top 5% in terms of citations received within

five years of publication, relative to papers in the same subfield published in the same year.

Additionally, an alternative proxy is constructed using a 10% threshold for impactfulness.

The Impactful Paper is used to identify star scientists. A scientist is classified as a Star
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Scientist if more than 50 percent of the papers they have published before a given year t are

categorized as Impactful Paper.

Patent data. The patent data utilized in this study is sourced from PatentsView, a

comprehensive patent database that offers detailed records for approximately seven million

patents. This dataset is extracted from the bulk data files of the United States Patent and

Trademark Office (USPTO). The dataset encompasses a range of information including patent

application dates, grant dates, inventors, assignees, textual content of patents, citations of

prior art, and technology classifications, from 1976 to the present. Disambiguation algorithms

are employed to assign unique identifiers to patent inventors and assignees, thereby facilitating

the tracking of inventors’ activities and employment history over time. The Patent-CRSP

matching methodology adheres to the approach outlined in Stoffman, Woeppel, and Yavuz

(2022). Patent abstract information is employed to assess firms’ exposure to scientific

breakthroughs and the extent to which their patents rely on scientific knowledge embedded

in these breakthroughs. Additionally, citations of prior art are utilized to construct an annual

citation network among patents, which is subsequently used to develop an impactful patent

identifier.

2.3.2. Patent quantity and quality measure. The patent quantity measure, Patent

Count, is calculated as the sum of patents granted to firm i in year t. To assess patent quality,

I employ several proxies. The first proxy, Citations is the cumulative sum of citations received

by all patents filed by firm i prior to year t for that year t. The second proxy, Log Patent

Value, is the aggregate patent value, as defined by Kogan et al. (2017), for all patents granted

in year t. The third proxy, Impactful Patent, is the number of impactful patents granted to

firm i in year t. An impactful patent is defined as one that ranks in the top 5% in terms of

forward citations received within five years of being granted, relative to patents filed in the

same year.
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2.3.3. Patent reliance on science measure. To evaluate the relationship between patents

and scientific knowledge, I use two variables: Reliance on Science and First to Cite Science.

Leveraging the capabilities of generative AI in text summarization and classification, models

such as ChatGPT have increasingly been employed in the literature to extract textual

information from corporate disclosures (Jha et al., 2024; Kim, Muhn, and Nikolaev, 2024).

The measure Reliance on Science is designed to assess the degree to which patents depend

on scientific knowledge. For example, in the context of Deep Learning, I utilize the state-of-

the-art generative AI model GPT-3.5-turbo developed by OpenAI. For each patent abstract

and its assignee firm’s name, the following prompt is used:

”Based on the given patent abstract and its assignee firm’s name, please answer the

following questions successively. Q1. Does the patent rely on the knowledge of machine

learning? Answer choices: Heavily, Mildly, NA. Q2. How important is the patent for the

products of the assignee firm? Answer choices: Super, Mild, Little. Q3. Briefly explain your

choice to Q1 and Q2 in less than 50 words.”

Responses are manually reviewed to ensure reliability, and the prompt is adjusted accord-

ingly. For each patent, responses to Q1 are scored as 1 (Heavily), 0.5 (Mildly), or 0 (NA),

and responses to Q2 are scored as 1 (Super), 0.5 (Mild), or 0 (Little). The final score for each

patent is calculated by multiplying the score from Q1 by the score from Q2. The firm-level

measure Reliance on Science is obtained by summing the final scores for all patents within

the firm for each year. Detailed information about the prompt design is provided in the

appendix.

Another measure of patent reliance on science, First to Cite Science, is based on whether a

patent is among the first to cite related papers. A paper is considered related if it is referenced

in the event paper ’s list of citations and was published after 1996, or if it directly cites the

event paper. A patent is classified as among the first to cite a related scientific paper if it

cites the paper within the first three years of its publication. The patent-to-paper citation
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data is sourced from Marx and Fuegi (2020, 2022)5. The firm-level measure is calculated as

the count of patents classified as among the first to cite a related scientific paper.

2.3.4. Other Firm-Level Variables. Firm outcome and control variables are obtained

from Compustat. The firm performance outcome variables examined include Operating

Profitability, Log Sales, and Market Value. Operating Profitability is calculated by dividing

operating income before depreciation (Compustat item oibdp) by total assets (at). Market

Value is derived by subtracting the book value of common equity (ceq) from total assets (at)

and adding the market value of common equity, which is computed as the product of the

closing price (prccc) and the number of shares outstanding (csho). To address the potential

concern that larger firms may invest more in basic research, which could confound the effect

of the scientific human capital measure, I include a control for the interaction between firm

size and a dummy variable indicating treated firms in the post-breakthrough period.

2.4. Summary Statistics

After excluding firms without at least one observation in both the pre-event and post-event

periods, the final sample comprises 38,588 observations covering 2,244 firms across the three

events. Panel A of Table 1 presents the descriptive statistics for the main variables used in

the analysis. Panel B illustrates the distribution of treated and control firms for each event.

Across the three events, the ratio of treated firms to control firms is approximately 20%.

Panel C displays the proportion of publishing and non-publishing firms within the treated

and control groups. Approximately 40% of treated firms publish papers, compared to 26% of

control firms. Both groups exhibit a significant proportion of firms that have published at

least one paper.

[Insert Table 1 Here]

5See https://relianceonscience.org/patent-to-paper-citations
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3. Scientific human capital, scientific breakthrough, and firm per-

formance

An important driver of firm growth is product innovation. Innovative ideas typically

rely on either the redeployment of existing knowledge or the exploration of new knowledge.

Existing knowledge is public and accessible to all, making it difficult to distinguish a firm’s

products from those of its competitors. In contrast, new knowledge represents an opportunity

for firms to pioneer entirely new areas. Products based on new knowledge have the potential

to be more disruptive and revolutionary (Ahmadpoor and Jones, 2017; Krieger, Schnitzer,

and Watzinger, 2022). Therefore, the ability to absorb and convert new knowledge into

novel products is crucial for firm growth. A key measure of a firm’s capacity to absorb

new knowledge is the stock of related scientific human capital, particularly in areas with

intensive scientific knowledge. This section leverages three significant scientific revolutions of

the 21st century—the Human Genome Project, Deep Learning and Neural Networks, and

Gene Editing technology—to examine the impact of investment in scientific human capital

on firm growth during these breakthrough periods.

3.1. Scientific breakthrough and firm performance

Before examining the role of scientific human capital, I first assess whether these break-

throughs bring positive opportunities to firms operating in affected areas and quantify the

overall effect of the three scientific breakthroughs on firm value. I perform the regression

analysis using the stacked difference-in-differences (DD) setting as specified in equation (1),

with results presented in Table 2. The explanatory variables include Operating Profitability,

and Log Sales. It is anticipated that affected firms’ performance will improve due to increased

productivity and more impactful innovation resulting from new opportunities associated with

new knowledge.

Panel A displays the results for firm performance. Columns (1) and (3) control for
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firm fixed effects and year fixed effects, while columns (2) and (4) include firm-event and

year-event fixed effects. The coefficients on Exposure to Sci-Breakthrough indicate that

treated firms experience approximately 2.7% increase in Operating Profitability following the

scientific breakthrough compared to control firms. This magnitude is significant given that

the mean Operating Profitability is around 2.9%. Furthermore, the difference in Log Sales

between treated and control firms is more pronounced in the five years following the scientific

breakthrough. Specifically, firms operating in areas related to the breakthrough exhibit

an 11.4% higher sales growth compared to firms in unrelated areas. These results suggest

that firms engaged in fields related to scientific breakthroughs achieve superior innovation

outcomes due to the new opportunities provided by scientific advancements.

To further support this conjecture, I test the impact of scientific breakthroughs on

firm innovation outcomes using the same stacked DD setting, as shown in Panel B of

Table 2. The dependent variables include Patent Count, Citations, and Log Patent Value.

Given the truncation and skewed nature of patent and citation count variables, I employ

Poisson regression for settings where Patent Count and Citations are the dependent variables.

Columns (1) and (2) in Panel B show a positive and statistically insignificant coefficient for

Exposure to Sci-Breakthrough, suggesting that treated firms do not have more patents granted

in the five years following the scientific breakthrough compared to control firms. However,

columns (2) through (6) indicate that the quality of patents for treated firms improves more

than for control firms post-breakthrough, with coefficients that are positive and significant at

the 5% level across all specifications. These results provide evidence that firms operating in

areas related to scientific breakthroughs demonstrate superior innovation quality compared

to peer firms in unrelated areas.

One potential concern is that firms in related areas might experience other growth

opportunities unrelated to the scientific breakthrough, which could confound the observed

results. To address this, I test for pre-trends in the differences between treated and control
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firms prior to the scientific breakthrough. Specifically, I test the following specifications:

Yi,c,t = β0 + β1 · Pre1Treatedi,c + β2 · Pre2Treatedi,c + β3 · Pre3Treatedi,c + β4 · Pre4Treatedi,c

+ β5 · EventYearTreatedi,c + β6 · Post1Treatedi,c + β7 · Post2Treatedi,c

+ β8 · Post3Treatedi,c + β9 · Post4Treatedi,c + β10 · Post5Treatedi,c

+ αi,c + θt,c + ϵi,c,t,

(3)

where Yi,c,t includes an array of firm-level variables of interest. Pre1Treatedi,c to Pre4Treatedi,c

are dummy variables that are equal to one for treated firm i of event c for the first to fourth

year before a scientific breakthrough occurs and zero otherwise. EventYearTreatedi,c is a

dummy variable that is equal to one for treated firm i of event c for the occurrence year of a

scientific breakthrough and zero otherwise. Post1Treatedi,cPost1Treatedi,c to Post5Treatedi,c

are dummy variables that are equal to one for treated firm i of event c for the first to five

year after a scientific breakthrough occurs and zero otherwise.

Figure 2 illustrates the difference in Operating Profitability and Log Sales between treated

firms and control firms over the [-5, 5] window surrounding a scientific breakthrough event.

Subfigure (a) indicates that, in the years prior to the event, the differences in Operating

Profitability between the two groups remain stable and statistically insignificant, suggesting

the absence of clear pre-trends. However, subsequent to the scientific breakthrough, the

differences between treated and control firms become positive and statistically significant.

Subfigure (b) demonstrates that, in the three years preceding the event, the differences in Log

Sales between the two groups remain stable. Following the scientific breakthrough, however,

the differences between treated and control firms increase substantially and are statistically

significant.

The results presented in Table 2 and depicted in Figure 2 support the hypothesis that

firms operating in areas related to scientific breakthroughs achieve higher profits and better
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innovation outcomes compared to control firms when these breakthroughs occur. This

evidence suggests that scientific breakthroughs act as positive shocks to firms operating

within overlapping technological fields.

[Insert Table 2 Here]

[Insert Figure 2 Here]

3.2. Does Scientific Human Capital play a role?

Next, I examine the role of scientific human capital in facilitating knowledge transfer and

the creation of high-quality innovations in response to scientific breakthroughs. Scientific

breakthroughs often introduce cutting-edge knowledge that is challenging to absorb and

incorporate into new products. Engagement in basic scientific research enhances a firm’s

absorptive capacity, enabling it to better integrate new knowledge into its innovation processes

(Rosenberg, 2010; Cockburn and Henderson, 1998). Consequently, I predict that firms with a

higher stock of related scientific human capital will benefit more from scientific breakthroughs

over the five years following the breakthrough compared to firms with a lower stock of

scientific human capital. To test this prediction, I include an interaction term between

Exposure to Sci-Breakthrough and the scientific human capital measure SHC in a stacked

triple difference-in-differences (DDD) regression, as outlined in equation (2). Given that

the scientific human capital measure may be highly correlated with firm size—since larger

firms are generally believed to have more resources and a greater ability to diversify the risks

associated with investment in basic science research —I control for the potential confounding

effect of firm size by including an interaction term between firm size in the year prior to the

breakthrough and the Exposure to Sci-Breakthrough variable.

Table 3 presents the results on firm performance, with dependent variables including

Operating Profitability, Log Sales, and Log Market Value. The scientific human capital measure

(SHC ) takes the value of one if a firm ranks in the top 10% among all firms in a scientific
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breakthrough cohort, and zero otherwise. In columns (1), (3), and (5), I control for firm fixed

effects and year fixed effects to account for unobserved firm characteristics and time-series

trends in firm outcomes. In columns (2), (4), and (6), I include event-firm and event-year

fixed effects to control for unobserved firm characteristics specific to each event and any

secular time trends. The coefficients remain stable across different fixed effect specifications.

The interaction between SHC and Exposure to Sci-Breakthrough is positive and significant at

the 5% level in almost all columns, except for Sales in column (4). The magnitude of the

effect is substantial; for instance, treated firms with high SHC experience a 32% increase in

market value in the five years following the scientific breakthrough, compared to their peers.

The results hold with alternative scientific human capital measures, which are reported in

Appendix B. These results indicate that treated firms with a greater stock of scientific human

capital exhibit significantly higher growth and profitability over the five years following the

scientific breakthrough, relative to both treated firms with lower scientific human capital and

all control firms.

[Insert Table 3 Here]

The pre-trend of the effect of scientific human capital. To further demonstrate the

argument that scientific breakthroughs provide unique opportunities for corporate scientists

to leverage their knowledge and integrate it into the innovation process, it is necessary to

address the hypothesis of a pre-trend in the difference in operating profitability and market

valuation between treated firms with high scientific human capital and their peers. Specifically,

if the difference in profitability between treated firms with high SHC and their peers does

not exhibit a distinct upward jump immediately following the breakthrough year, it would

undermine the argument that scientific human capital plays a critical role in driving firm

growth post-breakthrough. This is because the role of corporate scientists, who serve as a

bridge between cutting-edge scientific knowledge and industry innovation, should be most

evident when new scientific knowledge becomes available for exploitation.
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To test this, I plot the average difference in market value between treated firms with high

SHC and those with low SHC over the [-5,5] window around the three scientific breakthroughs.

This is illustrated in subfigures (a) and (b) in Figure 3, along with 95% confidence intervals.

As illustrated in subfigure (a), there is no pre-trend in market value between treated

firms with high SHC and those with low SHC, as the coefficients for the pre-trend dummies

remain stable. A noticeable increase occurs at year zero, the breakthrough year, with positive

coefficients for the post-trend dummies. Following the breakthrough, firms with high SHC

tend to experience a more substantial increase in market value compared to their peers. This

difference persists up to the fifth year. For comparison, subfigure (b) displays the pre-trend

pattern for the peer group, showing the difference in market value between control firms with

high SHC and and low SHC. There is no discernible jump around the breakthrough year for

this group.

The patterns in Figure 3 reinforce the argument that scientific breakthroughs are periods

when investments in scientific human capital yield substantial rewards and create significant

growth opportunities for firms.

[Insert Figure 3 Here]

4. What role does scientific human capital play?

The previous chapter establishes that firms with more scientific human capital in related

areas derive greater benefits from scientific breakthroughs. In this chapter, I explore the role

of scientists in treated firms in driving innovation and growth.

4.1. Knowledge spillover channel

The three events I examine are science-intensive and demand advanced knowledge and

skills to keep pace with the latest academic findings and translate them into products. Firms

with a higher stock of relevant scientific human capital at the time of these breakthroughs are

21



better positioned to rapidly absorb new knowledge and capitalize on first-mover advantages

in the development of innovative products.

4.1.1. Accumulation of scientific human capital. A firm that prioritizes basic science

encourages its corporate scientists to publish research, which is crucial for the ongoing

accumulation of scientific human capital among these scientists. Publications not only reflect

the personal reputation of scientists but also serve as a measure of their ability to absorb

cutting-edge knowledge. Given that scientific breakthroughs create opportunities to explore

new areas, corporate scientists are likely to publish more impactful papers following these

breakthroughs, which represents an enhancement in scientific human capital beneficial to the

firm. Consequently, I expect that treated firms with higher levels of scientific human capital

will produce more impactful papers compared to their peers.

Table 4 presents the results. The variables Log Impactful Papers 1 and Log Impactful

Papers 2 serve as proxies for the overall publication quality of firms. The coefficients align

with our expectations, revealing a positive and significant interaction between Exposure to

Sci-Breakthrough and SHC. Treated firms are observed to publish approximately 10% more

impactful papers than their peer firms in the five years following a scientific breakthrough. This

supports the notion that firms with a greater stock of scientific human capital demonstrate a

more pronounced enhancement in their ability to absorb scientific knowledge compared to

peer firms.

[Insert Table 4 Here]

4.1.2. Scientist engagement in patenting activities. Corporate scientists are defined

as those scientists affiliated with firms within the sample who have published at least one

scholarly paper. When new innovation opportunities emerge from scientific breakthroughs,

these scientists represent a critical linkage between academic knowledge and firm-level

product innovation. Consequently, it is anticipated that these scientists will exhibit increased
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engagement in patenting activities following scientific breakthroughs in firms with high SHC,

compared to firms with low SHC and control firms.

To assess scientist engagement in patenting activities, a name-matching process is con-

ducted between author names in the OpenAlex database and inventor names in the USPTO

patent database. Initially, a dataset of inventor employment history is constructed using the

filing year and the assignee firm information, with the earliest (latest) patent filed by an

inventor indicating the first (last) year of employment at the firm. Similarly, a dataset of

scientist employment history is compiled using publication years to determine the first and

last year of employment.

Subsequently, groups of inventors who file patents in a given year and scientists employed

by the same firm in that year are identified within the matched sample used in previous

analyses. The fuzzy similarity score between inventor and scientist names in each group is

calculated, retaining matches with a score of 80 or above, using the commonly employed

name-matching package, fuzzywuzzy. Matches with a score of 100 are considered successful by

default; for scores below 100, manual verification is conducted to confirm successful matches.

The firm-level measure, the scientist-inventor Ratio, is derived by averaging the scientist-

inventor ratio across all patents granted to a firm in a given year. Table 5 presents the results

where Scientist-Inventor Ratio serves as the dependent variable. The hypothesis is tested

using a triple-stacked Difference-in-Differences (DID) approach as specified in equation (2).

The interaction term between Exposure to Sci-Breakthrough and SHC consistently shows a

positive coefficient across specifications. Firms with higher stock of scientific human capital

exhibit a 0.017 higher Scientist-Inventor Ratio compared to peer firms. This magnitude

is significant given that the mean Scientist-Inventor Ratio is approximately 0.014. These

findings align with the hypothesis that firms with greater scientific human capital experience

higher engagement of scientists in patenting activities, providing direct evidence of the

knowledge spillover channel.
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[Insert Table 5 Here]

4.1.3. Patent Quantity and Quality. If scientists serve as intermediaries between academic

knowledge and industrial innovation, one would expect to observe enhanced innovation

outcomes for firms possessing greater scientific human capital. To assess patent outcomes,

multiple metrics are employed as detailed in section 3. An additional variable utilized in this

analysis is the number of impactful patents granted in a given year, labeled Impactful Patent.

Table 6 presents the results. Given the skewed and truncated nature of patent count

and citation measures, Poisson regression is employed for the analysis of these variables.

Across all specifications in Table 6, the coefficient of the interaction term between Exposure

to Sci-Breakthrough and SHC is positive and statistically significant, even after accounting

for various fixed effects and control variables. The magnitude of the effect is substantial. For

instance, firms with high scientific human capital that are exposed to scientific breakthroughs

exhibit a 27% higher patent value over the subsequent five years compared to peer firms.

To test the pre-trend of the effect on patent quality, I plot the average difference in

Impactful Patent between treated firms with high SHC and those with low SHC over the

[-5,5] window around the three scientific breakthroughs. This is illustrated in subfigures (c)

and (d) in Figure 3, along with 95% confidence intervals.

As shown in subfigure (c), there is no pre-trend in the number of Impactful Patent granted

between treated firms with high SHC and those with low SHC, as the coefficients for the

pre-trend dummies remain stable. A noticeable increase occurs at year zero, the breakthrough

year, with positive coefficients for the post-trend dummies. Following the breakthrough, firms

with high SHC tend to experience a more substantial increase in market value compared

to their peers. This difference persists up to the fifth year. For comparison, subfigure (b)

displays the pre-trend pattern for the peer group, showing the difference in Impactful Patent

count between control firms with high SHC and low SHC. There is no discernible jump

around the breakthrough year for this group.
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These findings provide further evidence that enhanced innovation outcomes can be a

significant driver of firm growth for those firms with substantial scientific human capital.

[Insert Table 6 Here]

4.1.4. Patent Reliance on Science. A direct approach to evaluate whether firms with

greater SHC excel in integrating new knowledge from scientific breakthroughs into their

product innovation is to assess the level of reliance on science in their patents. Additionally,

firms with substantial SHC are expected to gain a first-mover advantage in absorbing new

knowledge. Therefore, I examine the following hypotheses: 1) Firms with higher SHC are

more likely to have a greater number of patents that are among the first to cite relevant

scientific papers. 2) Firms with higher SHC are likely to produce patents that demonstrate a

greater reliance on the scientific knowledge derived from scientific breakthroughs.

The variable First to Cite Science measures a firm’s capacity to rapidly incorporate

scientific knowledge into its innovation processes. In contrast, the variable Reliance on

Science serves as a textual-based proxy that quantifies the degree of relatedness between a

firm’s patent portfolio in a given year and the scientific knowledge associated with a specific

breakthrough event. Detailed definitions of these variables are provided in section 2.3.3.

Table 7 presents the results pertaining to these hypotheses. The first two columns offer

evidence supporting the knowledge spillover channel, as firms with greater SHC are more

likely to be among the first to cite relevant scientific literature in their patents. Columns (3)

and (4) provide weaker evidence for this argument. Overall, the results in Table 7 contribute

further evidence supporting the knowledge spillover channel.

[Insert Table 7 Here]

4.2. Attracting star scientist

Another channel through which investment in scientific human capital can contribute to

firm growth is by enhancing the firm’s ability to attract distinguished scientists and inventors,
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owing to its reputation. Firms that cultivate a robust and supportive culture of basic science

and academic publishing are likely to gain a significant advantage in recruiting star scientists

in fields related to scientific breakthroughs (Ahmed, 2022). Therefore, it is hypothesized that

firms with greater investments in scientific human capital prior to a breakthrough are better

positioned to attract star scientists.

Table 8 presents results testing this hypothesis. The dependent variables include Number

of Scientists and Number of Star Scientists. Columns (1) and (2) show a positive coefficient

for the interaction term between Exposure to Sci-Breakthrough and SHC, though this result

is only weakly significant at the 10% level. Columns (3) and (4) demonstrate that firms with

a high stock of scientific human capital are more likely to hire star scientists, as indicated by

the positive and statistically significant coefficient for the interaction term. Specifically, firms

with greater SHC hire 1.3 more star scientists than their peer firms in the five years following

a scientific breakthrough. This effect is notable given that the mean number of star scientists

among all firms is 1.11. The results in Table 8 suggest that while treated firms with more

SHC do not necessarily hire more scientists overall compared to their peers, they are indeed

more successful in attracting star scientists.

[Insert Table 8 Here]

5. Conclusion

In this study, I investigate how scientific human capital enhances the value creation of

publicly listed companies in the context of emerging scientific breakthroughs. I utilize three

prominent scientific breakthroughs originating from universities in the 21st century—Human

Genome Project, Deep Learning and Neural Networks, and Gene Editing—as exogenous

shocks to firms operating in related fields. This provides a unique setting to examine the

role of scientific human capital in driving firm growth, as these breakthrough events serve as

unexpected shocks that offer new sources of scientific knowledge requiring academic expertise
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for absorption and integration into the innovation process.

I argue and demonstrate that firms experiencing these scientific breakthroughs and

possessing higher levels of scientific human capital exhibit greater improvements in operating

performance and market valuation compared to peer firms with lower levels of scientific

human capital or those unaffected by the breakthroughs.

Further analysis into the role of scientific human capital reinforces the knowledge spillover

channel, wherein corporate scientists absorb and incorporate new knowledge from scientific

breakthroughs into the innovation process. I find that firms with high scientific human

capital are more likely to publish impactful papers following a breakthrough compared to

their peers. This finding supports the hypothesis that firms with substantial scientific human

capital are better equipped to absorb and utilize scientific knowledge from basic science

in the five years following new scientific breakthroughs. My findings regarding innovation

output also align with the knowledge spillover channel. Specifically, for firms with higher

stocks of scientific human capital, I observe: (1) increased engagement of corporate scientists

in patenting activities, (2) higher quality of innovation, and (3) a faster incorporation of

scientific knowledge into patents, resulting in a greater number of patents based on this

knowledge in the five years subsequent to scientific breakthroughs.

Additionally, my results indicate that firms with higher stocks of scientific human capital

are more successful in attracting star scientists in the five years following scientific break-

throughs. This finding complements the knowledge spillover channel, as the influx of star

scientists further enhances the firm’s capacity to integrate cutting-edge scientific knowledge

into the innovation process.

My findings underscore the critical role of corporate scientists in advancing firm innova-

tion in response to related scientific breakthroughs. They have significant implications for

corporate policy concerning investments in research and development. Given the ongoing

trend of specialization between universities, which focus on basic research, and firms, which
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commercialize this research, the role of corporate scientists is particularly significant. They

bridge the gap by translating scientific discoveries from academic institutions into product

innovations within the private sector. The evidence presented in this study highlights this

bridging role of corporate scientists effectively.

28



References

Acharya, V., and Z. Xu. 2017. Financial dependence and innovation: The case of public
versus private firms. Journal of Financial Economics 124:223–43.

Acharya, V. V., R. P. Baghai, and K. V. Subramanian. 2014. Wrongful discharge laws and
innovation. The Review of Financial Studies 27:301–46.

Aghion, P., and P. Howitt. 1990. A model of growth through creative destruction.

Aghion, P., J. Van Reenen, and L. Zingales. 2013. Innovation and institutional ownership.
American economic review 103:277–304.

Ahmadpoor, M., and B. F. Jones. 2017. The dual frontier: Patented inventions and prior
scientific advance. Science 357:583–7.

Ahmed, N. 2022. Scientific labor market and firm-level appropriation strategy in artificial
intelligence research. Working Paper, MIT Sloan Working Paper.

Arora, A., S. Belenzon, L. C. Cioaca, L. Sheer, and H. Zhang. 2023. The effect of public
science on corporate r&d. Working Paper, National Bureau of Economic Research.

Arora, A., S. Belenzon, K. Kosenko, J. Suh, and Y. Yafeh. 2021. The rise of scientific research
in corporate america. Working Paper, National Bureau of Economic Research.

Arora, A., S. Belenzon, and L. Sheer. 2021. Knowledge spillovers and corporate investment
in scientific research. American Economic Review 111:871–98.

Azoulay, P., J. S. Graff Zivin, D. Li, and B. N. Sampat. 2019. Public r&d investments and
private-sector patenting: evidence from nih funding rules. The Review of economic studies
86:117–52.

Babina, T., A. Fedyk, A. He, and J. Hodson. 2024. Artificial intelligence, firm growth, and
product innovation. Journal of Financial Economics 151:103745–.

Babina, T., A. X. He, S. T. Howell, E. R. Perlman, and J. Staudt. 2023. Cutting the
innovation engine: how federal funding shocks affect university patenting, entrepreneurship,
and publications. The Quarterly Journal of Economics 138:895–954.

Baker, A. C., D. F. Larcker, and C. C. Wang. 2022. How much should we trust staggered
difference-in-differences estimates? Journal of Financial Economics 144:370–95.

Bena, J., and K. Li. 2014. Corporate innovations and mergers and acquisitions. The Journal
of Finance 69:1923–60.

Brav, A., W. Jiang, S. Ma, and X. Tian. 2018. How does hedge fund activism reshape
corporate innovation? Journal of Financial Economics 130:237–64.

29



Cockburn, I. M., and R. M. Henderson. 1998. Absorptive capacity, coauthoring behavior, and
the organization of research in drug discovery. The journal of industrial economics 46:157–82.

Derrien, F., A. Kecskés, and P.-A. Nguyen. 2023. Labor force demographics and corporate
innovation. The Review of Financial Studies 36:2797–838.

Gormley, T. A., and D. A. Matsa. 2011. Growing out of trouble? corporate responses to
liability risk. The Review of Financial Studies 24:2781–821.

Jha, M., J. Qian, M. Weber, and B. Yang. 2024. Chatgpt and corporate policies. Working
Paper, National Bureau of Economic Research.

Kim, A., M. Muhn, and V. V. Nikolaev. 2024. Bloated disclosures: can chatgpt help investors
process information? Chicago Booth Research Paper 2023–59.

Kogan, L., D. Papanikolaou, A. Seru, and N. Stoffman. 2017. Technological innovation,
resource allocation, and growth. The quarterly journal of economics 132:665–712.

Krieger, J. L., M. Schnitzer, and M. Watzinger. 2022. Standing on the shoulders of science.
Strategic Management Journal .

Li, K., F. Mai, R. Shen, and X. Yan. 2021. Measuring corporate culture using machine
learning. The Review of Financial Studies 34:3265–315.

Marx, M., and A. Fuegi. 2020. Reliance on science: Worldwide front-page patent citations to
scientific articles. Strategic Management Journal 41:1572–94.

———. 2022. Reliance on science by inventors: Hybrid extraction of in-text patent-to-article
citations. Journal of Economics & Management Strategy 31:369–92.

Myers, K. R., and L. Lanahan. 2022. Estimating spillovers from publicly funded r&d: Evidence
from the us department of energy. American Economic Review 112:2393–423.

Priem, J., H. Piwowar, and R. Orr. 2022. Openalex: A fully-open index of scholarly works,
authors, venues, institutions, and concepts. arXiv preprint arXiv:2205.01833 .

Rosenberg, N. 2010. Why do firms do basic research (with their own money)? In Studies
on science and the innovation process: Selected works of Nathan Rosenberg, 225–34. World
Scientific.

Shen, M. 2021. Skilled labor mobility and firm value: Evidence from green card allocations.
The Review of Financial Studies 34:4663–700.

Sorenson, O., and L. Fleming. 2004. Science and the diffusion of knowledge. Research policy
33:1615–34.

Stoffman, N., M. Woeppel, and M. D. Yavuz. 2022. Small innovators: No risk, no return.
Journal of Accounting and Economics 74:101492–.

30



Tian, X., and T. Y. Wang. 2014. Tolerance for failure and corporate innovation. The Review
of Financial Studies 27:211–55.

31



Figure 1. Affected sectors in three scientific breakthroughs

This figure presents the most affected sectors for each scientific breakthrough. For each sector (based

on the Fama-French 48 industry classification approach), I calculate the fraction of firms classified

as treated firms. The figure highlights sectors with a fraction greater than 10% in at least one of

the three breakthrough events: the Human Genome Project, Deep Learning, and Gene Editing.
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Figure 2. Testing for pre-trends: Profitability and Patent Quality

This figure plots difference-in-difference estimates of the effects of scientific breakthroughs on firm

performance, Operating Profitability and Log Sales. Treated firms are those ranking in the top 20%

in terms of technology similarity of firms’ core area to a scientific breakthrough; control firms are

the remaining 80% and firms without patents filed in the sample period. I include data from an

11-year window centered on the year in which the representative paper of a scientific breakthrough

is published. The coefficients are estimated using OLS, as described in Section 3.1. The vertical

lines represent 95% confidence intervals. Variables are defined in Appendix A.

(a) Operating Profitability

(b) Sales
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Figure 3. Testing for pre-trends: High vs. Low Scientific Human Capital

This figure plots estimates of the effects of scientific human capital HighSHC on firm valuation

Market Value and innovation quality Impactful Patent within treated firms (subfigures (a) and

(c)) and control firms (subfigures (b) and (d)), respectively. Treated firms are those ranking in the

top 20% in terms of technology similarity of firms’ core areas to a scientific breakthrough; control

firms are the remaining 80% and firms without patents filed in the sample period. HighSHC is

a dummy variable that indicates whether a firm possesses high scientific human capital prior to

scientific breakthroughs. I include data from an 11-year window centered on the year in which the

representative paper of a scientific breakthrough is published. The coefficient on Market Value is

estimated using OLS, and the coefficient on Impactful Patent is estimated using Poisson regression.

The vertical lines represent 95% confidence intervals. Variables are defined in Appendix A.

(a) Market Value: Treated Firms (b) Market Value: Control Firms

(c) Impactful Patent Count: Treated Firms (d) Impactful Patent Count: Control Firms
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Table 1. Summary statistics

Panel A summarizes the descriptive statistics of the key variables used in the analysis. The sample
contains 38,588 firm-year observations representing 2,244 firms between 1996 and 2017. Panel B
reports the number of treated firms and the number of control firms in each breakthrough event.
Treated firms are those ranking in the top 20% in terms of technology similarity of firms’ core areas
to a scientific breakthrough; control firms are the remaining 80% and firms without patents filed in
the sample period. The three scientific breakthrough events include Human Genome Project in 2001,
Deep Learning in 2006, and Gene Editing in 2012. Details about scientific breakthrough events are
described in section 2.3.1. Panel C reports the number of publishing firms and non-publishing firms
in the treated group and control group. Variables are defined in Appendix A.

Panel A: Summary statistics for key variables

N Mean SD p10 Median p90

Size ($M) 38,588 5,973.464 21,618.943 27.000 395.000 10,820.000
Operating Profitability 38,588 0.029 0.278 -0.254 0.103 0.221
Sales ($M) 38,588 4,870.901 18,487.477 14.000 424.000 9,545.000
Market Value ($M) 38,588 6.985 2.243 4.142 6.838 10.093
Patent Count 38,588 28.501 109.123 0.000 2.000 47.000
Impactful Patent 38,588 0.405 2.314 0.000 0.000 1.000
Scientist Count 38,588 15.080 72.358 0.000 0.000 19.000
Star Scientist Count 38,588 1.111 7.684 0.000 0.000 1.000
Impactful Paper 1 38,588 3.426 16.974 0.000 0.000 3.000
Impactful Paper 2 38,588 6.165 30.410 0.000 0.000 7.000
Reliance on Science 38,588 0.282 5.578 0.000 0.000 0.000
First to cite Science 38,588 0.060 1.239 0.000 0.000 0.000
Scientist-Inventor Ratio 38,588 0.014 0.071 0.000 0.000 0.000
Scientific Human Capital (SHC) 38,588 0.550 0.931 0.000 0.000 2.269
HighSHC 38,588 0.118 0.323 0.000 0.000 1.000
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(continued)

Panel B: The number of treated firms and control firms in each event year

Event Year Scientific Breakthrough No. of treated firms No. of control firms

2001 Human Genome Project 273 1207
2006 Deep Learning and Neural Networks 242 1059
2012 Gene Editing 191 866

Panel C: The number of publishing firms and non-publishing firms in each event year

Publish Do not Publish Total

Count % Count % Count %

Treated 285 40% 421 60% 706 100%
Control 823 26% 2309 74% 3132 100%
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Table 2. Scientific Breakthrough and Firm Performance

This table reports the results from the regression that examines the firm performance after scientific
breakthroughs in a stacked difference-in-difference framework. The classification of treated and
control firms is described in section 2.3. Exposure to SciBreak is a dummy variable that is equal
to one for treated firm-year observations in the 5 years after a scientific breakthrough and zero
otherwise. The dependent variables in panel A include Operating Performance and Log Sales. Panel
B reports the results of innovation outcome, including Patent Count, Citations, and Log Patent
Value. In columns (1), (3) and (5), I control for the firm fixed effects and year fixed effects, In
columns (2), (4) and (6), I control for firm × event and year × fixed effects. Standard errors are
clustered at the industry level. t-statistics are presented in parentheses. ***, **, * denote statistical
significance at the 0.01, 0.05, and 0.10 levels, respectively. Variables are defined in Appendix A.

Panel A: Scientific breakthrough and firm performance
(1) (2) (3) (4)
Operating Profitability Log Sales

Exposure to SciBreak 0.0273*** 0.0277*** 0.114*** 0.124***
(3.58) (3.88) (3.86) (3.53)

Firm × Event FEs No Yes No Yes
Year × Event FEs No Yes No Yes
Firm FE Yes No Yes No
Year FE Yes No Yes No
R-squared 0.699 0.734 0.952 0.965
Observations 38,588 38,588 38,588 38,588

Panel B: Scientific breakthrough and innovation outcome
(1) (2) (3) (4) (5) (6)
Patent Count Citations Log Patent Value

Exposure to SciBreak 0.168 0.170 0.275** 0.278** 0.170** 0.181**
(1.44) (1.42) (2.45) (2.39) (2.48) (2.48)

Firm × Event FEs No Yes No Yes No Yes
Year × Event FEs No Yes No Yes No Yes
Firm FE Yes No Yes No Yes No
Year FE Yes No Yes No Yes No
R-squared 0.837 0.868
Observations 38,419 38,167 37,993 37,701 38,588 38,588
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Table 3. Triple-difference Estimates of the Effects on Firm Performance: The Role of SHC

This table reports the results from the regression that examines the firm operating performance after
scientific breakthroughs in a stacked triple difference-in-difference framework. The classification of
treated and control firms is described in section 2.3. Exposure to SciBreak × HighSHC is a dummy
variable that is equal to one for treated firm-year observations with high scientific human capital
SHC in the 5 years after a scientific breakthrough and zero otherwise. The dependent variables
include Operating Performance, Log Sales and Market Value. In columns (1), (3) and (5), I control
for the firm fixed effects and year fixed effects, In columns (2), (4) and (6), I control for firm ×
event and year × fixed effects. Standard errors are clustered at the industry level. t-statistics are
presented in parentheses. ***, **, * denote statistical significance at the 0.01, 0.05, and 0.10 levels,
respectively. Variables are defined in Appendix A.

(1) (2) (3) (4) (5) (6)
Operating Profitability Log Sales Market Value

Exposure to SciBreak × HighSHC 0.0536*** 0.0586*** 0.172*** 0.173** 0.305*** 0.279***
(3.43) (3.38) (2.68) (1.97) (4.40) (3.54)

Controls Yes Yes Yes Yes Yes Yes
Firm × Event FEs No Yes No Yes No Yes
Year × Event FEs No Yes No Yes No Yes
Firm FE Yes No Yes No Yes No
Year FE Yes No Yes No Yes No
R-squared 0.702 0.734 0.954 0.965 0.940 0.952
Observations 38588 38588 38588 38588 38588 38588
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Table 4. Triple-difference Estimates of the Effects on Corporate Publication

This table reports the results from the regression that examines the firm publication after scientific
breakthroughs in a stacked triple difference-in-difference framework. The classification of treated
and control firms is described in section 2.3. Exposure to SciBreak × HighSHC is a dummy variable
that is equal to one for treated firm-year observations with high scientific human capital SHC in
the 5 years after a scientific breakthrough and zero otherwise. The dependent variables include Log
Impactful Paper 1 and Log Impactful Paper 2. In columns (1) and (3), I control for the firm fixed
effects and year fixed effects, in Column (2) and (4), I control for firm × event and year × fixed
effects. Standard errors are clustered at the industry level. t-statistics are presented in parentheses.
***, **, * denote statistical significance at the 0.01, 0.05, and 0.10 levels, respectively. Variables are
defined in Appendix A.

(1) (2) (3) (4)
Log Impactful Paper 1 Log Impactful Paper 2

Exposure to SciBreak × HighSHC 0.0897** 0.103** 0.0806* 0.0953**
(2.12) (2.55) (1.90) (2.34)

Controls Yes Yes Yes Yes
Firm × Event FEs No Yes No Yes
Year × Event FEs No Yes No Yes
Firm FE Yes No Yes No
Year FE Yes No Yes No
R-squared 0.957 0.979 0.951 0.976
Observations 38,588 38,588 38,588 38,588
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Table 5. Triple-difference Estimates of the Effects on Scientist Engagement in Patenting

This table reports the results from the regression that examines scientist engagement in patenting
after scientific breakthroughs in a stacked triple difference-in-difference framework. The classification
of treated and control firms is described in section 2.3. Exposure to SciBreak × HighSHC is a
dummy variable that is equal to one for treated firm-year observations with high scientific human
capital SHC in the 5 years after a scientific breakthrough and zero otherwise. The dependent
variable is Scientist-Inventor Ratio. In column (1), I control for the firm fixed effects and year
fixed effects, In column (2), I control for firm × event and year × fixed effects. Standard errors are
clustered at the industry level. t-statistics are presented in parentheses. ***, **, * denote statistical
significance at the 0.01, 0.05, and 0.10 levels, respectively. Variables are defined in Appendix A.

(1) (2)
Scientist-Inventor Ratio

Exposure to SciBreak × HighSHC 0.0173*** 0.0185***
(2.93) (3.23)

Controls Yes Yes
Firm × Event FEs No Yes
Year × Event FEs No Yes
Firm FE Yes No
Year FE Yes No
R-squared 0.529 0.557
Observations 38,588 38,588
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Table 6. Triple-difference Estimates of the Effects on Firm Innovation

This table reports the results from the regression that examines the firm innovation performance after scientific breakthroughs
in a stacked triple difference-in-difference framework. The classification of treated and control firms is described in section 2.3.
Exposure to SciBreak × HighSHC is a dummy variable that is equal to one for treated firm-year observations with high scientific
human capital SHC in the 5 years after a scientific breakthrough and zero otherwise. The dependent variables include Patent
Count, Log Patent Value, Impactful Patent and Citation. In columns (1), (3), (5), and (7), I control for the firm fixed effects and
year fixed effects, In columns (2), (4), (6) and (8), I control for firm × event and year × fixed effects. Standard errors are clustered
at the industry level. t-statistics are presented in parentheses. ***, **, * denote statistical significance at the 0.01, 0.05, and 0.10
levels, respectively. Variables are defined in Appendix A.

(1) (2) (3) (4) (5) (6) (7) (8)
Patent Count Log Patent Value Impactful Patent Citations

Exposure to SciBreak × HighSHC 0.401** 0.386** 0.252** 0.246** 0.755** 0.673** 0.534*** 0.531***
(2.00) (2.03) (2.22) (1.98) (2.50) (2.26) (2.97) (2.93)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm × Event FEs No Yes No Yes No Yes No Yes
Year × Event FEs No Yes No Yes No Yes No Yes
Firm FE Yes No Yes No Yes No Yes No
Year FE Yes No Yes No Yes No Yes No
R-squared 0.839 0.868
Observations 38419 38167 38588 38588 15680 12834 37993 37701
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Table 7. Triple-difference Estimates of the Effects on Patent Reliance on Science

This table reports the results from the regression that examines the level of reliance on science in
firm patents after scientific breakthroughs, using a stacked triple difference-in-difference framework.
The classification of treated and control firms is described in section 2.3. Exposure to SciBreak ×
HighSHC is a dummy variable that is equal to one for treated firm-year observations with high
scientific human capital SHC in the 5 years after a scientific breakthrough and zero otherwise. The
dependent variables include First to Cite Science and Reliance on Science. In columns (1) and (3),
I control for the firm fixed effects and year fixed effects, in Column (2) and (4), I control for firm ×
event and year × fixed effects. Standard errors are clustered at the industry level. t-statistics are
presented in parentheses. ***, **, * denote statistical significance at the 0.01, 0.05, and 0.10 levels,
respectively. Variables are defined in Appendix A.

(1) (2) (3) (4)
First to cite Science Reliance on Science

Exposure to SciBreak × HighSHC 0.0362** 0.0484*** 0.304* 0.284
(2.01) (2.64) (1.73) (1.52)

Controls Yes Yes Yes Yes
Firm × Event FEs No Yes No Yes
Year × Event FEs No Yes No Yes
Firm FE Yes No Yes No
Year FE Yes No Yes No
R-squared 0.435 0.621 0.435 0.779
Observations 38,588 38,588 38,588 38,588
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Table 8. Triple-difference Estimates of the Effects on New Scientist Hiring

This table reports the results from the regression that examines the recruitment of scientists after
scientific breakthroughs, using a stacked triple difference-in-difference framework. The classification
of treated and control firms is described in section 2.3. Exposure to SciBreak × HighSHC is a
dummy variable that is equal to one for treated firm-year observations with high scientific human
capital SHC in the 5 years after a scientific breakthrough and zero otherwise. The dependent
variables include Number of Scientists and Number of Star Scientists. In columns (1) and (3), I
control for the firm fixed effects and year fixed effects, in Column (2) and (4), I control for firm ×
event and year × fixed effects. Standard errors are clustered at the industry level. t-statistics are
presented in parentheses. ***, **, * denote statistical significance at the 0.01, 0.05, and 0.10 levels,
respectively. Variables are defined in Appendix A.

(1) (2) (3) (4)
Scientist Count Star Scientist Count

Exposure to SciBreak × HighSHC 13.00* 13.21* 1.381** 1.395**
(1.87) (1.83) (2.09) (2.05)

Controls Yes Yes Yes Yes
Firm × Event FEs No Yes No Yes
Year × Event FEs No Yes No Yes
Firm FE Yes No Yes No
Year FE Yes No Yes No
R-squared 0.917 0.944 0.901 0.928
Observations 38,588 38,588 38,588 38,588
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Appendix A: Definitions of Variables

Variable Definition

First to cite Science A patent is considered among the first to cite a related scientific paper if
it references the scientific paper within three years of its publication date.
A paper is classified as a related paper if it is cited in the event paper
published after 1990 or if it cites an event paper. The variable First to
Cite Science represents the total number of patents granted to firm i in
year t that are among the first to cite scientific papers.

Sales Compustat item Sales for firm i in year t..

Market Value Equal to the total assets (at), subtract the book value of common equity
(ceq) and add the market value of common equity (calculated as prccc
times csho).

HighSHC A dummy variable that equals 1 if the firm ranks in the top 10% in terms
of scientific human capital measure SHC in a scientific breakthrough event,
and 0 otherwise.

HighSHC Far A dummy variable that equals 1 if the firm ranks in the top 10% in terms
of scientific human capital measure SHC Far in a scientific breakthrough
event and 0 otherwise.

HighSHC Relevant A dummy variable that equals 1 if the firm ranks in the top 10% in terms
of the scientific human capital measure SHC Relevant, and 0 otherwise.

Impactful Paper 1 A paper is classified as an impactful paper if it ranks among the top 10%
in terms of citations received within five years of publication, relative
to other papers in the same subfield published in the same year. The
subfield classification is determined according to the bibliometric database
OpenAlex.

Impactful Paper 2 A paper is classified as an impactful paper if it ranks among the top 5%
in terms of citations received within five years of publication, relative
to other papers in the same subfield published in the same year. The
subfield classification is determined according to the bibliometric database
OpenAlex.

Impactful Patent The number of impactful patents granted to firm i in year t. A patent
is claassified as impactful patent if it ranks in the top 5% in terms of
forward citations received within five years of being granted, relative to
other patents filed in the same year.

Scientist Count An employee is identified as a scientist of firm i in year t if the individual
has published papers affiliated with firm i in year t, or if the individual
has published papers both before and after year t. Scientist Count is the
sum of all scientists in firm i in year t.
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(continued)
Variable Definition

Star Scientist Count A scientist is classified as a star scientist if more than 50% of the
papers they have published before year t are classified as Impactful
Paper 1.

Operating Profitability Divide the operating income before depreciation (Compustat item
oibdp) by total assets (at).

Patent Count The number of patents granted to firm i in year t.

Reliance on Science A textual-based measure of a patent reliance on science as described
in section 4.1.4.

SHC The general scientific human capital measure. It is constructed as
follows: 1. Obtain the annual publication stock using the total number
of scientific papers published by all employees (affiliated with firm i in
year t) until year t. 2. The SHC is obtained by taking the sum of the
annual publication stock within the window [−3,−1] centered on the
breakthrough year.

SHC Far SHC Far is obtained by taking the sum of the annual publication
stock within the window [−8,−6] centered on the breakthrough year.

SHC Relevant The relevant scientific human capital measure. It is constructed as fol-
lows: 1. Obtain expertise similarity to a breakthrough at the employee
level using the maximum similarity score between the abstracts of an
employee’s historical publication and the abstract of the breakthrough
paper. 2. The annual publication relevance score is obtained by taking
the sum of the expertise similarity among all employees (affiliated with
firm i in year t). 3. SHC Relevant is computed by taking the sum
of the annual publication relevance score within the window [−3,−1]
centered on the breakthrough year.

Scientist-Inventor Ratio The average scientist-inventor ratio among all patents granted to a
firm in a year. The scientist-inventors are identified by conducting the
name match between inventor names and author names for the same
firm in a year, as described in section 4.1.3.

Size Total book assets (Compustat item at) of firm i in year t.
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Appendix B: Additional Results

Table B.1. Scientific Human Capital and Firm Performance: Alternative SHC measures

This table reports the results from the regression that examines the firm operating performance
after scientific breakthroughs in a stacked triple difference-in-difference framework. HighSHC Far
is a dummy variable that indicates whether a firm is endowed with high scientific human capital
measured in a window [−8,−6] relative to the event year. and zero otherwise. HighSHC Relevant
is a dummy variable that indicates whether a firm is endowed with high relevant scientific human
capital measured in a window [−3,−1] relative to the event year. and zero otherwise. The dependent
variables include Operating Performance, Log Sales and Market Value. In columns (1), (3) and (5), I
control for the firm fixed effects and year fixed effects, In columns (2), (4) and (6), I control for firm
× event and year × fixed effects. Standard errors are clustered at the industry level. t-statistics are
presented in parentheses. ***, **, * denote statistical significance at the 0.01, 0.05, and 0.10 levels,
respectively. Variables are defined in Appendix A.

Panel A: Scientific human capital based on early years
(1) (2) (3) (4) (5) (6)
Operating Profitability Log Sales Market Value

Exposure to SciBreak × 0.0530** 0.0526** 0.316*** 0.262*** 0.321*** 0.270***
HighSHC Far (2.41) (2.07) (4.13) (3.22) (4.52) (3.76)

Controls Yes Yes Yes Yes Yes Yes
Firm × Event FEs No Yes No Yes No Yes
Year × Event FEs No Yes No Yes No Yes
Firm FE Yes No Yes No Yes No
Year FE Yes No Yes No Yes No
R-squared 0.702 0.734 0.954 0.965 0.940 0.952
Observations 38,588 38,588 38,588 38,588 38,588 38,588

Panel B: Scientific human capital based on expertise similarity to scientific breakthroughs
(1) (2) (3) (4) (5) (6)
Operating Profitability Log Sales Market Value

Exposure to SciBreak × 0.0519*** 0.0548*** 0.173*** 0.116* 0.336*** 0.284***
HighSHC Relevant (3.51) (3.31) (2.82) (1.90) (4.35) (3.72)

Controls Yes Yes Yes Yes Yes Yes
Firm × Event FEs No Yes No Yes No Yes
Year × Event FEs No Yes No Yes No Yes
Firm FE Yes No Yes No Yes No
Year FE Yes No Yes No Yes No
R-squared 0.702 0.734 0.954 0.965 0.940 0.952
Observations 38,588 38,588 38,588 38,588 38,588 38,588
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