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Abstract

This study examines how banks incorporate firms’ exposure to physical and trans-

ition risks, along with their interactions, when making lending decisions. Utilizing

detailed firm-bank matched data from Denmark—which covers a wide range of firms,

with a special focus on SMEs, and banks of various sizes—we find that banks gen-

erally reduce the growth of credit for firms exposed to higher physical and transition

risks. We also find a nuanced response to the interaction of physical and transition

risks from banks, which seem to favor firms with slightly lower combined risks. Addi-

tionally, small firms and those with high leverage and capital intensity are particularly

impacted, experiencing a notable decline in credit growth. Lastly, the results primarily

stem from the impact on the supply side of credit rather than the demand side.
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1 Introduction

Over the past decades, central banks and financial regulators have increasingly recognized

climate-related risks—both physical and transition risks—as significant sources of financial

instability (Carney, 2015; ECB, 2021a,b; Fed, 2021). Consequently, they have mandated

banks to integrate these risks into their risk management frameworks and disclose related

information. Furthermore, some central banks have initiated the development of climate

stress tests to evaluate banks’ vulnerability to adverse climate-related events and scenarios.

These regulatory interventions have heightened the awareness and perceptions of climate

risks among banks and investors (Krueger et al., 2020).

Existing empirical literature on banking provides some evidence that large global banks

have begun to respond to physical risks (Meisenzahl, 2023; Faiella and Natoli, 2019a) and

transition risks (Kacperczyk and Peydró, 2022; Reghezza et al., 2022), typically through

their syndicated loans to large publicly listed firms. However, there is limited knowledge

about whether and how banks, particularly small and regional banks, adjust their lending

to small and medium-sized enterprises (SMEs) and privately held firms. It is possible that

small banks could fill the gap if large banks reallocate credit away from polluting and risky

firms.

Moreover, existing studies often examine banks’ responses to physical and transition

risks separately, despite the fact that these risks are interconnected and may compound

each other. Therefore, it is essential to develop a comprehensive understanding of banks’

lending practices under the influence of both physical and transition risks, considering their

interactions. This calls for the use of comprehensive bank-firm linked data encompassing all

firm sizes and bank sizes (De Haas, 2023; Hoffner and Steffen, 2022).

In this paper, we examine whether and to what extent banks integrate both physical

and transition risks, as well as their interactions, into their lending practices, using a com-

prehensive sample, that not only include listed and large firms but also SMEs as well as

banks of all sizes. Focusing on bank lending, particularly to private firms and SMEs, is cru-

cial for transforming the global economy to net zero, as this transition requires substantial

investment to support sustainability efforts. Approximately 70 percent of this investment

is estimated to come from private sources.1 Given that private firms typically rely heav-

ily on bank credit, banks can significantly influence these firms’ sustainability practices by

adjusting their access to finance.

1According to the International Energy Agency (IEA), a successful transition to net zero by 2050 will
require additional global investments amounting to 0.6 to 1 percent of annual global GDP over the next two
decades, totaling a cumulative 12trillionto20 trillion. Thirty percent of this investment is expected to come
from public sources, while 70 percent is anticipated to come from private sources (IEA, 2021).
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We focus on the two types of climate risks that banks are indirectly exposed to through

their lending activities: (i) physical risks, resulting from damages due to increasing extreme

climate events, and (ii) transition risks, associated with the implementation of unexpected

climate policies aimed at reducing emissions from high-emitting firms. Both physical and

transition risks can be transmitted to banks’ own risk profiles through their loan portfolios.

For instance, physical hazards translate into credit risks for banks when borrowers cannot

repay loans (the income effect) or when banks cannot fully recover the value of loans in

the event of default due to diminished collateral value (the wealth effect) (BIS, 2021; ECB,

2021b). Existing studies often examine physical and transition risks separately despite their

interrelated nature and the potential for compounded risks. For example, increasing the

frequency or intensity of extreme weather events (rising physical risks) could prompt the

implementation of stringent policies to limit carbon emissions (higher transition risks). Ad-

ditionally, climate-related scenario analyses for banks are gradually evolving to include both

physical and transition risks, underscoring the importance of evaluating banks’ responses to

these intertwined risks together.2

We examine this question within the context of Denmark, utilizing credit registers to

access account-specific information for all bank loan relationships among Danish firms, a

majority of which are privately held SMEs, across various bank-size distributions.3 Denmark

serves as an intriguing case study due to its notable disparities in both physical and transition

risks. With a coastline spanning 4,545 miles and the highest elevation points reaching 170

meters, Denmark faces escalating risks from storms and coastal flooding as sea levels rise

and precipitation patterns evolve. At the same time Numerous investments, including firm

factories and residential properties, are situated in flood-prone areas.4 Consequently, the

heightened physical risks stemming from flooding and extreme precipitation events are likely

to capture the attention of banks. Regarding transition risks, both the Danish government

and the European Union have implemented proactive measures aimed at reducing emissions

and enhancing energy efficiency over recent decades. Consequently, those firms with high

emission intensities face heightened susceptibility to climate policy uncertainties, which are

more likely to influence banks’ lending behaviors.

2For example, the Network for Greening the Financial System (NGFS) has designed four scenarios con-
sisting of varying levels of physical and transition risks that are widely adopted by central banks. The four
scenarios are: 1) low physical and low transition risks (orderly scenario); 2) low physical and high transition
risks (disorderly scenario); 3) high physical and low transition risks (hothouse world scenario); and 4) high
physical and high transition risks (too little, too late scenario).

3According to the OECD, SMEs represented 98.7% of all enterprises and accounted for 39.1% of all
full-time employees in Denmark in 2019.

4For instance, Danmarks Nationalbank estimates that between 0.9% to 1.2% of Danish homes are cur-
rently exposed to flood risks, a figure projected to nearly double by 2071 (Mirone and Poeschl, 2021).
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We map firms’ exposure to physical and transition risks at a high level of granularity.

Specifically, to construct firms’ physical risks exposure, we leverage the firms’ exact loca-

tions at parish level over time and link them with forward-looking projected flood risk maps

aggregated at the parish level and historical extreme weather (we focus on extreme precip-

itation as it is more likely to lead to floods) aggregated at the parish level across time.5 Our

assumption is that the occurrence of past extreme precipitation events and future flood risks

is more likely to raise the attention of banks in Denmark and prompt updates in their beliefs

about climate physical risks across locations over time. Firms’ exposure to transition risks

is then calculated as the interaction between firm-level emission intensity and the environ-

mental tax, enabling us to measure banks’ response to the vulnerability of brown firms to

tighter environmental regulations over time.

The main identification strategy to tease out the impact of physical risks on bank lending

is based on the assumption that the occurrence of abnormal extreme precipitation variations

and floods is largely driven by nature and largely exogenous (Dell et al., 2014). As it is

more difficult for banks and firms to anticipate climate events, physical risks are less likely

to be correlated with unobserved idiosyncratic shocks to the firms or banks that could affect

banks’ lending decisions. However, one concern is that firms could adapt to physical risks

by relocating their factories away from high physical risk zones (e.g., some areas close to the

coast) or avoiding building new offices in those areas, which could be correlated with banks’

credit allocation. To eliminate this concern, we include the refinement where we exclude

those firms that relocate in order to compare the credit outcomes for firms that stay in

the same locations. To address the concerns that certain areas (e.g., capital city) are more

productive than other areas as firms tend to concentrate geographically around those areas,

which could be related to credit allocation, we include location (parish) fixed effects in our

specifications to control for any unobserved location-specific factors that affect banks’ credit

decisions.

Contrary to physical risks, our measure of transition risks is potentially more endogenous,

given that its variation is firm-by-year. For instance, firms with high emission intensity to

start with might seek to reduce the emissions intensity by investing in green projects after

receiving the credits, which may bias the estimation. To reduce this reverse causality issue

in the regression analysis, we include a refinement with a base-year approach, i.e., measuring

emission intensity in the first year in which a firm in the sample is observed. As the physical

risks are aggregated at the parish-time level, while transition risks are measured at the firm-

5A parish refers to a small administrative region encompassing multiple villages or localities in Denmark,
with origins dating back to the Middle Ages. The establishment of these parishes was formalized in 1841,
and since then, their boundaries have been minimal alterations. Currently, Denmark comprises a total of
2,141 parishes.
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time level, we use different sets of controls and a comprehensive set of fixed effects to tease

out the effects of physical and transition risks. As a result, the source of identification varies

depending on the set of fixed effects and controls we included.

In baseline empirical analysis where we estimate the static effects of physical and trans-

ition risks on credit allocation, we find evidence that, on average, banks decrease the growth

of credits allocated to firms exposed to higher physical and transition risks after controlling

for other firm and bank characteristics, while modestly, consistent with the results found in

the global syndicated loan market (Kacperczyk and Peydró, 2022; Reghezza et al., 2022). In

addition, we find a nuanced response to the interaction of physical and transition risks from

banks, which seem to favor firms with slightly lower combined risks. We also find significant

heterogeneity across firms, summarized as follows: 1) smaller firms show heightened sensit-

ivity to physical risks and the combined effect of physical and transition risks. 2) banks are

more restrictive in lending to highly leveraged firms exposed to physical risks, likely due to

these firms’ limited financial buffer to absorb shocks from climate-related disasters. 3) banks

are less inclined to increase lending growth or initiate new loans for high capital-intensive

firms facing significant physical risks. Furthermore, when exploring the underlying mechan-

isms, we emphasize that our results are primarily driven by changes in credit supply from

the banks, which can stem from financial considerations, as banks perceive firms facing high

climate risks as experiencing greater financial stress and credit risks. Lastly, we use a simple

model of bank portfolio choice to rationalize our empirical finding.

Our study contributes to the empirical sustainable banking literature by providing evid-

ence for banks’ response to climate risks based on a unique sample consisting of all firm-size

and bank-size distribution, which allows us to assess how smaller banks adjust lending to

smaller firms in response to climate risks. We also shed light on how banks incorporate

both types of climate risks, physical and transition risks (and their interactions), providing a

more complete evaluation of climate risks. Our results are consistent with the finding using

global syndicating loans (Kacperczyk and Peydró, 2022; Mueller and Sfrappini, 2022), and

respond to the concerns raised by policymakers regarding the potential financial stability

issues imposed by climate risks (ECB, 2021b; Fed, 2021).

Although our findings provide evidence that banks have incorporated both physical and

transition climate risks into their lending practices to SMEs, our study does not directly

evaluate the actual impact of these practices on emission reductions (Hartzmark and Suss-

man, 2019) or green innovations (Accetturo et al., 2022). Additionally, despite our efforts to

disentangle the supply and demand factors influencing credit supply, we recognize the inher-

ent challenges in clearly separating these effects. Therefore, we advocate for further research

to explore the underlying mechanisms driving banks’ motivations for green lending. Such
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investigations are crucial for understanding how financial institutions can more effectively

support the green transition and contribute to broader sustainability goals.

The remainder of this paper is structured as follows. Data and summary statistics are

presented in Section 4, followed by the empirical strategy in Section 5. Empirical results

are presented in Section 6. Finally, we rationalize our empirical results in a simple model in

Section 7 and conclude our paper in Section 8.

2 Related Literature

This paper contributes to four strands of research. Existing studies tend to estimate the

implications of physical risks and transition risks separately. The first strand of study we

add to is on the implications of transition risks in financial markets, specifically in the credit

market. A large amount of literature in this line of work has focused on whether and how

transition risks, commonly using different measures of carbon emissions or environmental

policies as proxies, are priced in the financial market (Altavilla et al., 2023). Previous

literature has found support that investors collectively value sustainability (Starks, 2023;

Hartzmark and Sussman, 2019; Baker et al., 2022b; Krueger et al., 2020; Heeb et al., 2023;

Ilhan et al., 2023; Flammer, 2015). For instance, in the equity market, there is evidence

for the presence of either a carbon or a pollution premium, i.e., investors asking for higher

returns to compensate for carbon (Bolton and Kacperczyk, 2021, 2023; Pástor et al., 2022;

Bolton et al., 2022) or pollution (Hsu et al., 2023) risk exposure. Similar evidence is found

in the options market (Ilhan et al., 2021) and the real estate market (Bernstein et al., 2022;

Giglio et al., 2021; Eichholtz et al., 2013, 2010; Baldauf et al., 2020). In the bond market,

Seltzer et al. (2022); Baker et al. (2022a); Köuml;lbel and Lambillon (2022); Zerbib (2019)

document a premium for green bonds while Larcker and Watts (2020); Flammer (2021) find

no difference in yields.

In contrast to the vast growing literature in other markets, there are relatively fewer

studies in the bank credit market. Most of the research in this line of work focuses on the

asset pricing perspective of transition risks and is based on syndicated loans, which only

account for a small share of the total credit market. So far, researchers have found mixed

evidence. There is positive evidence that banks price stringent environmental regulations

(Fard et al., 2020), environmental concerns such as hazardous chemicals, substantial emis-

sions (Chava, 2014), or higher carbon emissions (Ehlers et al., 2022; Altavilla et al., 2023),

and price firms’ holdings of fossil fuel reserves after 2015 (Delis et al., 2018). Moreover, green

banks rewarded cheaper loans to green firms after 2015 (Degryse et al., 2023), and there is

assortative firm-bank matching based on their ESG profiles (Houston and Shan, 2022). In
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contrast, other researchers do not find evidence that banks in the syndicated loan market

price this risk of stranded assets held by fossil fuel firms (Beyene et al., 2021) and flood

risk (Schubert, 2021). Antoniou et al. (2020) document that in contrast with the program

intentions of the EU Emission Trading System (EU ETS), there is a significant decline in

loan spreads among those participating firms. Huang et al. (2021) find state-owned banks

failed to price in environmental policy exposure while joint-equity commercial banks manage

better. Some scholars also shed light on the channels. Banks’ behaviors are driven by local

beliefs and regulatory enforcement (Erten and Ongena, 2023), or financial risks associated

with regulation and banks’ preferences for sustainable lending (Mueller and Sfrappini, 2022).

This paper is closer to the studies that investigate the implications of transition risks

on banks’ credit supply (quantity adjustment). We believe that compared with pricing, the

quantity of loans, or where the credit goes, has a more direct impact on firms’ investment

decisions and their stances towards sustainability (Takahashi and Shino, 2023). However,

there is surprisingly much less research in this area. A few notable exceptions are Kacperczyk

and Peydró (2022) and Reghezza et al. (2022), which find banks allocate fewer credits to

large corporations with higher carbon emissions in the syndicated loan market and Mueller

and Sfrappini (2022) find that the effects depend on the borrower’s region. In contrast,

Giannetti et al. (2023) find evidence of greenwashing within the European banking sector

and show banks continue to lend to brown borrowers. Unlike most of the studies that focus

on syndicated loans for publicly listed firms, we contribute to the literature by analyzing

climate risks in bank credit supply based on a more representative sample of firms and

banks’ entire loan portfolios over a longer period.6

Secondly, our study contributes to prior research on the implications of natural disasters

and physical climate change risks on the bank credit market. Similarly, a large literature

focuses on the pricing of physical risks, proxied by indicators such as weather-related natural

disasters, in different markets and has offered mixed evidence. Prior studies find that sea-

level rise (SLR) exposure risks are priced in the bond market (Goldsmith-Pinkham et al.,

2015), and in the real estate market (Bernstein et al., 2019; Baldauf et al., 2020; Nguyen

et al., 2022). In the bank credit market, Javadi and Masum (2021) find firms with higher

exposure to drought risk pay higher spreads on their bank loans while Schubert (2021) and

Garbarino and Guin (2021) do not find that banks fully price the flood risks and track the

impact of floods ex-post closely. There are also mixed results regarding how physical risks

affect credit supply. Meisenzahl (2023) and Aslan et al. (2022) suggest that banks reduce

6The few exceptions are Takahashi and Shino (2023), who use bank-firm matched data of Japanese listed
firms to link GHG emissions and credit supply, and Giannetti et al. (2023); Sastry et al. (2024), who use
euro-area credit registry to study the credibility of the sustainability disclosure and voluntary lender net
zero commitments.
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lending to areas more impacted by climate change after 2015. Similarly, Faiella and Natoli

(2019b) find that the amount of loans granted to firms depends negatively on their flood risk

exposure. However, there is also evidence that when local demand increases after natural

disasters, multi-market banks reallocate capital (Cortés and Strahan, 2017) and increase

recovery lending to firms inside affected counties (Koetter et al., 2020; Ivanov et al., 2022).

Previous studies also suggest a cross-country lending channel: domestic banks increase cross-

border lending to firms in countries with lighter environmental policies when facing stringent

regulations in their home country (Benincasa et al., 2022; Laeven and Popov, 2023). Our

study contributes to the literature by using a more granular measure of physical risks and

combines both types of climate risks to have a more complete evaluation of the risks posed

by climate change.

Thirdly, our study responds to the call for a better understanding of the climate risk

implications for the banking industry and the behavior of banks. Previous studies found

that banks exposed to higher climate risks make faster adjustments to their optimal capital

structure (Bakkar, 2023), and raise deposit rates of bank branches both in affected and in

adjacent unaffected counties, (Barth et al., 2024), make worse performance (Li and Pan,

2022) and adversely impacts overall liquidity creation (Lee et al., 2022). In addition, there

are concerns that climate risks negatively affect the financial stability of banks (Noth and

Schüwer, 2023; Jung et al., 2023) and the entire financial system (Chabot and Bertrand,

2023; Battiston et al., 2021). We contribute to the literature by examining whether banks

factor in these risks in their lending decisions and address the concerns raised by central

banks that banks may not internalize those risks, which adversely impact financial stability

(ECB, 2021a,b; Fed, 2021). Our results show evidence that banks are responding to the

increasing climate risks by adjusting the supply of loans, confirming the evidence found by

researchers such as Kacperczyk and Peydró (2022) and Mueller and Sfrappini (2022). This

study also opens future research avenues regarding banks’ role in green transition (Degryse

et al., 2021; Lee et al., 2024).

Lastly, this paper broadly relates to the extensive literature on the implications of climate

risks on firm performance and behaviors. Physical risks induced by climate change, such as

sea level rise (SLR), drought, and floods are examined by Huang et al. (2018, 2022); Kling

et al. (2021); Pankratz et al. (2019); Hong et al. (2019); Huynh et al. (2020); Ginglinger and

Moreau (2023); Elnahas et al. (2018) and the effects of transition risks using proxies such

as firms’ GHG emissions, carbon emissions, and ESG scores are explored by Nguyen (2018);

Reboredo and Ugolini (2022); Bolton and Kacperczyk (2021); Krueger (2015); Ardia et al.

(2022). Overall, previous study finds that climate risks adversely impact firm performance

and increase operational, financial, and default risks. Our results add to the literature
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Figure 1: Illustration

and suggest one channel that climate risks may negatively affect firms: the bank financing

channel. Firms with higher exposure to climate risks may face more challenges in accessing

bank finance, using a more complete evaluation of both types of climate risks.

3 Theoretical Mechanisms

In this section, we conceptually show how physical and transition risks may impact banks’

provision of credit to their client firms. Given that we can only observe equilibrium out-

comes—specifically, the quantity of credits banks extend to firms, and the total amount of

credits received by firms—both the supply side (banks) and the demand side (firms) may in-

fluence total credit provisions. Since factors on both sides could exert conflicting influences,

the net effects are uncertain ex-ante. The anticipated sign could be positive, negative, or

inconclusive, as shown in Figure 1. The following section will examine the potential impacts

of climate risks on credit outcomes and the various factors or theoretical mechanisms on the

supply and demand sides that could drive these results.

Climate risks may negatively relate to credit outcomes. On the one hand, from the supply

side, banks have both financial and non-financial incentives to reduce lending to firms with

high exposure to climate risks, aligning with the ”values” versus ”value” considerations

defined by Starks (2023).7 Financially, it is optimal for banks to adopt ”green” policies

7Starks (2023) group different motivations of sustainable investment into: 1) values: examples include
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from a risk and return perspective as it is associated with the probability of default and

the loss given the default. In a theoretical Modigliani–Miller world without any frictions

(Modigliani and Miller, 1958), banks should not be concerned about their clients’ exposure

to climate risks if they can financially price in these risks and be fully insured. However,

due to market frictions, banks must consider climate risks related to firms’ default risks

(Huang et al., 2018; Kabir et al., 2021). Existing credit risk models may fail to account

for tail-risk events, such as sudden and unexpected environmental policy changes (transition

risks) or acute natural disasters (physical risks) (Schubert, 2021; Huang et al., 2021; Beyene

et al., 2021; Garbarino and Guin, 2021). Consequently, banks might directly reduce or

cease lending to firms with high exposure to these physical and transition risks due to the

financial consideration of credit risks. Besides financial incentives, banks may have other

non-pecuniary considerations. For example, implementing green lending policies can signal

a positive response to increasing climate concerns from the public and activist shareholders.

Additionally, a bank’s leadership team or loan officers may prefer supporting businesses that

reflect their values (Bu et al., 2023).

On the other side, from the demand side, both physical and transition risks may have

adverse effects on the fundamental operations of businesses, leading to decreased productivity

and, consequently, depressing firm investment and a reduction in credit demand (Huang

et al., 2018; Kacperczyk and Peydró, 2022; Bolton et al., 2019).

Furthermore, banks might be concerned about these compounded physical and transition

risks. Although physical risks and transition risks differ in nature, the first one is primarily

associated with the geographical locations of firms, while the latter is more closely correl-

ated with emissions, regulatory changes, and policy uncertainties. So, certain firms may be

more materially affected by physical risks, while others may be more materially impacted

by transition risks. However, the two risks can interact and amplify each other, leading to

compounded effects that exacerbate the overall risk profile of firms. For example, a com-

pany facing physical risks such as flooding may also encounter challenges in complying with

increasing regulations to reduce carbon emissions. Consequently, banks might be concerned

about these compounded risks and choose to divest from firms that are exposed to both high

physical and transition risks.

Those discussions of existing theories point to the following hypothesis.

H1A: Banks extend fewer credits to firms with high exposure to physical risks and trans-

ition risks, especially those firms with compounding of both risks.

non-pecuniary preferences or reasons of the firm’s leadership, a desire not to support businesses associated
with objectionable products or conduct, or a desire to support businesses that reflect their religious values;
and 2) value: a firm’s financial risk and return opportunities.
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At the same time, contrary forces might drive banks to increase lending to firms with

high exposure to climate risks. On the demand side, empirical evidence suggests that firms

tend to seek more credit following natural disasters, likely due to the need for financing post-

disaster recovery efforts (Cortés and Strahan, 2017; Koetter et al., 2020; Ivanov et al., 2022).

Additionally, firms might pursue extra credit to fund adaptation and mitigation investments.

From the credit supply perspective, studies have shown that green investment has lower risk

and higher profitability, resulting in higher realized returns for investors (Hartzmark and

Sussman, 2019; Albuquerque et al., 2019), so it could be profitable for banks to assist high-

risk firms in financing green investments to reduce their emissions intensity or flood risks.

Moreover, since firms with high climate risk exposure are associated with high credit risks,

banks might be motivated to engage with and support these firms in mitigating risks by

maintaining a consistent flow of credit.

This discussion of existing theories leads us to formulate the following hypothesis.

H1B: Banks extend more credits to firms with high exposure to physical risks and trans-

ition risks, particularly those engaging in climate adaptation and mitigation activities.

On the other hand, several contrasting reasons may lead banks to maintain their prac-

tices. Banks are large and sophisticated institutions that face significant adjustment costs

when adopting environmental strategies in lending. For example, they need to adjust their

existing organizational structures, build new systems, train current employees, or hire new

experts. Additionally, compared to selling a stock in the capital markets—where most in-

formation is publicly available—there is higher information asymmetry in the loan market.

It is more costly to obtain and screen environmental-related information for their clients. As

a result, profit-driven banks may adhere to their traditional practices and will only adopt

green behaviors if the returns outweigh the costs. Furthermore, banks with legacy posi-

tions in older, ”brown” firms may be reluctant to provide credit to newer, greener firms as

the entry of green firms devaluates legacy positions with incumbent clients (Degryse et al.,

2020). As a result, despite banks increasingly marketing themselves as ”green,” studies have

questioned the credibility of their sustainability claims (Giannetti et al., 2023; Sastry et al.,

2024) and concerns about greenwashing in the banking industry (EBA, 2023).

These theoretical mechanisms point to the following hypothesis.

H1C: Banks do not adjust credits to firms with high exposure to physical risks and trans-

ition risks and keep business as usual.

Testing these opposing hypotheses allows us to assess the strategies that banks use to

incorporate climate risks in lending. Evidence supporting the H1A hypothesis would point

to divesting strategies (Kacperczyk and Peydró, 2022; Degryse et al., 2023) while H1B is

consistent with engagement strategies that banks facilitate the browner firms to be greener
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Figure 2: Hypothesis and Theoretical Mechanism

(Broccardo et al., 2022). Evidence supporting H1C will indicate that they don’t adjust their

behavior in response to climate risks.8 Testing these opposing hypotheses also enables us to

assess the relative importance of alternative theoretical mechanisms on both the firm and

bank side.

Figure 2 summarizes the potential direction of the credit adjustment due to increasing

climate risks we could test and the theoretical mechanism on the demand and supply side.

Note that despite our attempt to enumerate as many factors as possible that affect both

the demand and supply side, the points discussed are non-exhaustive and non-mutually

inconclusive. In the empirical section, we will attempt to test a few theoretical mechanisms

on both the firm and bank side and examine which side drives the estimated outcomes.

4 Data

Our analysis is based on several administrative registers containing banks’, firms’, and work-

ers’ information collected by Statistics Denmark and merged with external data to map

non-financial firms’ exposures to physical and transition risks. The final dataset matches the

8There is also evidence of greenwashing activities that show those banks which marketing themselves
as ”green” banks do not do as they state (Sastry et al., 2024; Giannetti et al., 2023). However, we cannot
directly test the greenwashing hypothesis in this study because we cannot identify the name of the individual
bank in the sample due to data confidentiality.
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universe of bank loans that linked Danish banks and firms. This section provides a detailed

description of different data sources and descriptive statistics.

4.1 Danish Administration Data

4.1.1 Employer-employee data

The starting point is to construct matched employer-employee data based on several registers

administered by Statistics Denmark. Firm-level information is collected from general firm

statistics (FIRM) and firm-level accounting statistics (FIRE). FIRM covers the universe of

private-sector firms over the years from 1995-2019 and contains detailed information on firm

characteristics, such as firm size, age, capital, revenue, location, and industry affiliation.

FIRE contains detailed accounting information at the firm level, particularly information

on firms’ energy purchases for heating and production, which will allow us to measure the

transition risks, as we will explain below.9 To further link with employers’ information, we

exploit the Integrated Database for Labor Market Research (IDA), which covers the detailed

demographic and employment information for all individuals employed in the recorded pop-

ulation of Danish firms at the firm and plant level. Using the Firm-Integrated Database for

Labor Market Research (FIDA), every worker in IDA can be linked to every firm in FIRM

and FIRE data using a unique identifier, which enables us to create an employer-employee

matched data covering a representative sample of private-sector firms as well as their work-

ers. The combined data allow us to construct several firm and worker characteristics at the

firm and bank level, such as size, location, industry, revenue, and average workers’ work

experience, that will be used as important controls in our regressions.

4.1.2 Credit data

To link firms with banks, we exploit a unique database based on tax records that report the

account-level data for the universe of bank loan relationships available at Statistics Denmark.

Every year, all Danish entities that have extended credit during the previous 12 months are

requested to report to the Danish Tax Authority (SKAT), including the account’s number,

type, and balance, together with its ownership status and the sum of interest payments on

December 31st of each year. Since these reports are used to calculate tax obligations, the data

is of high quality. We use the part of this dataset that covers firms (URTEVIRK), where the

majority of the banks are domestic banks. Using unique banks’ and firms’ identifiers, we can

link each loan account to the corresponding banks and borrowing firms, which further enables

9We deflate all monetary values using the GDP deflator provided by Statistics Denmark (pris112) with
2015 as the base year.
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us to merge credit information with employer-employee matched data.10 With the resulting

dataset, we are able to observe the bank loans with the characteristics of the corresponding

banks and firms. Following Hviid et al. (2022); Renkin and Züllig (2021), we collapse the

raw data at the firm-bank-account-year level to the firm-bank-year level by taking the sum

of the loan account balance and interest payments.

4.1.3 Sample constructions

To arrive at our final sample, we restrict the data in different ways. At the bank level, we

drop micro banks with less than 50 employees as a large number of those micro banks only

account for a small share of total lending while a few big banks dominate a significant share

of the lending market. We drop those micro banks with less than 50 employees and focus

on the medium and large banks to have a cleaner sample.11 At the firm level, we drop firms

with fewer than 10 employees from FIRM and FIRE registers as accounting information

for micro firms may not be completely reliable. We also exclude firms operating in the

financial industry, as these companies tend to be different from typical firms due to their

significantly higher leverage levels. To account for possible measurement errors, we also

dropped a few observations with negative values for account balance and interest payment.

Figure C.1 shows the number of firms and banks in the final sample over the sample period.

The banking sector has been consolidating in the aftermath of the 2007-2008 global financial

crisis (GFC), with the number of banks steadily declining since 2008.

The descriptive statistics at the firm level for the sample are presented in Table A1.

4.2 Exposure to climate risks

The literature widely classifies exposure to climate-related risks into two categories: (1)

physical risks, arising from extreme weather events; and (2) transition risks, resulting from

policy and regulatory changes aimed at high-emitting firms to mitigate climate change (ECB,

10Specifically, on the bank side, using unique bank ID variables (op se nr), we can link the credit data
to the employer-employee data to obtain firm and worker information at the bank level, including the total
number of employees in the bank, affiliated industry, and locations, etc. We validate the credit data by
tabulating some key descriptive statistics. We detect that the majority of the observations are ordinary
debt in a bank and are associated with two-digit NACE sector code 64 (Financial service activities, except
insurance and pension funding) after matching credit data with employer-employee data. We drop those
observations if the bank ID is outside of the financial industry in the final sample, as financial firms leverage
differently. On the borrowing firm side, we match employer-employee data with credit data using the unique
firm identifiers (cvrnrs) to obtain the characteristics of the borrowing firms.

11There are over 200 micro banks but only account for less than 3% total lending in total. However, the
7 largest banks together account for over half of total lending.
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2021b; TCFD, 2017; NGFS, 2021).12 Banks are primarily exposed to physical and transition

risks indirectly, through the firms to which they lend, rather than through direct exposure

at their office locations (Faiella and Natoli, 2019b). This section details our methodology for

measuring these two key variables: firms’ exposure to physical risks and transition risks. A

notable limitation is the unavailability of the specific data that banks use to assess climate

risks. Nonetheless, we rely on publicly available information and firm-level data that are

accessible to banks. Furthermore, we show that our measurements of climate risks are

associated with lower firm profitability and a higher probability of firms exiting the sample,

which correlates with a higher default rate—a significant concern for banks.

4.2.1 Physical risks data

To measure firms’ exposure to physical risks, we construct a risk indicator that varies over

time at the local parish level - a granular geographic unit in Denmark, by combining flood

risk data and extreme weather data. In the following section, we will document the two data

sources and the methodology to map firms’ exposure to physical risks.

Extreme weather data Using weather data to measure exposure to climate change is

widely adopted in the existing literature due to its exogenous variations within a specific

area over time (Hsiang, 2016; Lemoine, 2018; Dell et al., 2014). While many studies focus

on average weather characteristics, such as temperature and precipitation, we argue that

extreme weather occurrences provide a more direct measure of the physical risks induced by

climate change and, therefore, better reflect banks’ perceptions or beliefs regarding climate

risks. To capture this, we constructed a dataset that measures the frequency and intensity

of weather anomalies using raw observation data from over 200 weather stations operated

by the Danish Meteorological Institute (DMI).13

Given that extreme precipitation is closely correlated with flooding, our primary analysis

focuses on extreme precipitation episodes. Rather than using a fixed threshold to define

absolute extreme precipitation, we assume a moving distribution that varies across stations

each month. This approach addresses the concern that some locations or seasons experience

higher rainfall and volatility, and firms may already anticipate and adapt to these. Instead,

we construct relative extreme precipitation based on the difference between a given daily

12Transition risks can also include technological risks and shifts in consumer demand that lead to stranded
assets. However, following the literature, we primarily focus on policy risks, as the other two are more
challenging to quantify.

13Some raw weather data are observed hourly, while others are recorded every 10 minutes. We first
aggregated the raw data daily and constructed the daily weather anomalies, similar to Felbermayr et al.
(2022).
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precipitation value and the historical long-run mean value observed at the same station and

month, standardized by its volatility. Specifically, we calculate a daily extreme precipitation

indicator, νprecip
c,m,d,t, as follows:

νprecip
c,m,d,t =

xprecip
c,m,d,t − xprecip

c,m

σprecip
c,m

where c denotes the climate station, m the month, d the day, and t the year. The indic-

ator is calculated by subtracting the monthly average precipitation, xprecip
c,m , from the daily

precipitation, xprecip
c,m,d,t, and dividing the difference by the corresponding monthly standard de-

viation, σprecip
c,m . This indicator captures both positive and negative precipitation anomalies.

However, since only positive precipitation anomalies may lead to floods, we define extreme

precipitation events as νprecip
c,m,d,t > 2.14

We then count the occurrence of such extreme events for each parish p in year t, denoting

it as freqp,t.
15 The intensity of events, intensityp,t, for parish p in year t, is calculated as the

average of νprecip
c,m,d,t for extreme precipitation events (i.e., νprecip

c,m,d,t > 2) occurring that year. We

find that the extreme precipitation events across parishes and years have a mean frequency

of 16.44 (std. dev. = 5.68) and a mean intensity of 3.45 (std. dev. = 0.52). As expected,

both the mean frequency and mean intensity of these events have increased over the sample

period.

Projected flood risks data We focus on flood risks as they constitute one of the primary

physical threats for countries with extensive coastlines and low altitudes, such as Denmark.

Flood risk data is sourced from the Technical University of Denmark (DTU) and the Danish

Meteorological Institute (DMI), which project flood occurrences and magnitudes across Den-

mark at a resolution of 200×200 meter grid cells. These projections are based on geographic

features, climate data, water level statistics, and sea level estimates (?). For our baseline

scenario, we aggregate this detailed data to the parish level by calculating the proportion

of each parish exposed to 100-year flood events over a 20-year horizon, as illustrated in

Figure C.2.16

Importantly, the flood risk data incorporates both historical and forward-looking per-

spectives. The simulations utilize historical data and future climate scenarios, providing a

comprehensive view that can better inform banks’ risk perceptions.

14Notably, when we set the indicator threshold below -2, we did not identify any drought events in our
data over the sample period.

15In some parishes without a weather measurement station, each parish is assigned to the closest weather
station. Using the detailed locations of the stations, we map each climate station to the neighboring parishes
using the geo-weighting indicator described in the ??.

16A 100-year flood event or return period indicates that a storm of this magnitude is expected to occur,
on average, once every 100 years. Further details are provided in ?.
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The flood risks map reflects, in short, whether a given parish is likely to be flooded

given its geography. However, since the flood risk data is static and only has cross-sectional

variation, we then interact it with historical extreme precipitation event data to add a

dimension of time variation in our data (i.e., I in the equation below). The idea is that if a

parish gets extreme rain and at the same time is classified as very likely to be flooded given

its geography, then we assume that the parish is likely flooded.

Physical risks indicator The main variable of interest to proxy physical risks is Physical risksp,t,

constructed using a distance-weighted sum of extreme precipitation and flood exposures in

surrounding locations.17 This method has become standard to measure the proximity of a

given location to other locations and has its roots in agglomeration economies.18

Specifically, Physical risksp,t for each parish p and year t is calculated as:

Physical risksp,t =
∑
r ̸=p

Ir,te
−δxp,r

The variable Physical risksp, t aggregates heavy precipitation and flood exposure for all

parishes r, incorporating distances to parish p as weights. This indicator not only assesses

climate physical risks for a specific parish p at time t but also considers neighboring parishes

r. The variable xp, r represents the Euclidean distance in kilometers between parishes p and

r. The parameter δ serves as a decay parameter, reflecting the extent to which the effects

of a climate event propagate to neighboring parishes, ranging from 0 to 1. We initially set

δ to 0.06, a value deemed reasonable from an economic standpoint, serving as our baseline

measure. In subsequent analysis, we demonstrate the robustness of our results to varying

decay parameter values. The weight for each parish r is computed as e−δxp,r , where e−δxp,r

is a function of the decay parameter δ and the distance x in kilometers between parish p

and r. Appendix C illustrates the variations in weight functions e−δxp,r for different values

of δ. The variable Ip,t represents physical risks as the product of extreme precipitation and

flood risks. As we can observe the firms’ headquarters location at the parish level, we then

overlap the firms’ location map with the physical risks map and obtain the firms’ exposure

to physical risks.

There are three major advantages of using this measure. First, it incorporates the geo-

graphical spillover effects of extreme climate events. Those events often have consequences

beyond the boundaries of one specific parish and can affect neighboring areas, depending

on the magnitude of the events. Moreover, banks with client firms in neighboring areas

17We focus on anomalous precipitation in the main analysis as heavy rainfall weather is more likely to
increase flood risks. In the refinement, we also use alternative definitions to proxy physical risks.

18See De Borger et al. (2019) as one example using a similar method with Danish data.
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may also update their beliefs about climate risks and change their behaviors, even when not

directly affected. This method can, therefore, reflect banks’ perceptions of climate change.

Second, it measures risk exposure at a much smaller geographical area, i.e., for over 2000

Danish parishes, which is an improvement in the measure of precision compared with ex-

isting studies. For example, the grid-cells data provided by Felbermayr et al. (2022) cover

only 50 units in Denmark while The Emergency Events Database (EM-DAT) often misses

the specific geo-locations for the events in the case of Denmark. Third, it aggregates the

risks at a level that can be safely considered exogenous to banks’ and firms’ decisions, as the

parish-level aggregation dates back to the Middle Ages.

?? visually depicts substantial variations in physical risks across different geographical

locations in the year 2019, with the west coast and southern part of Zealand experiencing

higher physical risks compared to other areas.

4.2.2 Transition risks data

Certain firms and industries with high emission intensities face elevated transition risks due to

the targeting of climate mitigation policies and regulations (Gu and Hale, 2023). To quantify

firm-level transition risk exposure, we initially identify polluting firms with high emission

intensities. This is achieved by gathering firm-level energy purchases from the FIRE register,

which is the expenses for energy purchases (for heating and production) and expenses for

electricity, oil, gas, and district heating.19 This data enables us to quantify scope 2 emissions

at the firm level over an extensive sample period. However, we also acknowledge there are

two concerns arise using this measure: 1) we cannot differentiate renewable energy sources.

Nonetheless, data from the IEA indicate that coal, oil, and gas collectively constitute over

half of the total energy supply in 2022, as depicted in Figure C.5. 2) we cannot access direct

greenhouse gas (GHG) emissions (scope 1 emissions) at the firm level. Consequently, we

include on scope 1 emissions at the industry level in our refinement.20

Next, we normalize these emissions by the firm-level value added to account for differences

in firm size.21 Specifically, the emission intensity for firm i in industry j at time t is calculated

19The variable is named ”KENE” in the FIRE register. Notice that it excludes fuel expenses for registered
motor vehicles used for external transport and deductible energy taxes. The amount is documented in
1,000 DKK. Further details on the KENE variable can be accessed at https://www.dst.dk/extranet/

staticsites/TIMES3/html/ca145bb4-4483-4607-9e60-57af2fb4c8b2.htm.
20Scope 1 emissions refer to emissions directly owned or controlled by the company, such as fuel combustion

in factories. Scope 2 emissions include emissions indirectly caused by companies through energy purchases,
such as electricity generation. Scope 3 emissions include indirect emissions produced throughout the reporting
company’s value chain, encompassing both upstream and downstream emissions.

21This is captured by the variable GF V TV in the FIRM register. Further inform-
ation can be accessed at https://www.dst.dk/da/TilSalg/Forskningsservice/Dokumentation/

hoejkvalitetsvariable/firmastatistik/gf-vtv.
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as follows:

Emission intensityijt =
Energy consumptionijt

Value addedijt

Here, all monetary values are adjusted using the GDP deflator, with 2015 as the base year.

Consequently, emission intensity measures a firm’s total energy consumption scaled by its

value added for each year. We aggregate the mean emission intensity at the industry level

and depict the distribution of emission intensity across industries in 2019, as illustrated in

Figure C.4. Notably, the manufacturing and transport sectors exhibit significantly higher

emission intensities, while the information, communication, and technical service sectors

display relatively lower emission intensities.

To measure a climate-related policy stringency, we then use annual public environment-

related tax at a 2-digit sector level from StatBank Denmark as a proxy.22 This measure

reflects industry-specific real costs or risks linked to the environment.23 We acknowledge

the challenge that transition risks are also associated with future climate policies, making

them hard to measure, especially due to their dependence on specific climate scenarios.

Nevertheless, our measure capture those industries that pay higher environmental policy-

related costs over time and assume those are likely confront greater policy risks in the future.

To address the issue of some industries being larger and contribute to higher environmental

tax, we adjust the total environmental tax for each industry by its value added. This helps

to balance out differences in industry size and tax revenue generation.

Specifically, Enviromental taxjt is calculated as:

Enviromental taxjt =
Total environmental taxjt

Value addedjt

for firm i, industry j, year t. The distribution of environmental tax data across industries

in 2019 is depicted in Figure C.6. Notably, the transport, electricity, and construction

sectors exhibit comparatively higher environmental tax costs compared to other industries.

In the robustness check, we also explore alternative measures for policy stringency, including

changes in past climate policies within Denmark and the EU, as well as an index measure of

climate policy uncertainties. However, since the environmental tax data offers more detailed

variations at both the industry and year levels, we utilize it as our baseline analysis.

22The detailed database can be found at https://www.statbank.dk/statbank5a/SelectVarVal/

Define.asp?MainTable=MRS1&PLanguage=1&PXSId=0&wsid=cftree
23We acknowledge that environmental policies do not perfectly reflect climate change mitigation policies.

However, environmental taxes are an essential policy tool to curb emissions. By using environmental taxes
as a measure of policy stringency, we can evaluate the environmental policy-related costs imposed on each
industry over time.
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As a result, the main proxy for firms’ exposure to transition risks for each firm i in the in-

dustry j at time t is Transition risksijt, which an interaction term between firm-level emission

intensity Emission intensityijt and industry-level energy tax Enviromental taxjt, in order to

capture firms’ vulnerability to the increasing stringency of climate-related policies targeted

at firms that are more emission-intensive. Specifically, Transition risksijt is calculated as:

Transition risksijt = Emission intensityijt × Enviromental taxjt

for firm i, industry j, year t.

5 Empirical Strategy and Identification

5.1 Empirical specification and identification

In this section, we provide the main empirical specification and identification strategy to

investigate the effects of physical and transition risks on bank credit supply. On the one

hand, the main identification strategy to tease out the impact of physical risks on bank

lending is based on the assumption that the occurrence of abnormal extreme precipitation

variations and projected flood risks within narrowly defined geographic units over time is

largely driven by nature and largely exogenous (Dell et al., 2014). On the other hand,

transition risks, measured as the interaction of firms’ emission intensity and exposure to

future climate policy risks proxies by incurred environmental taxes, are firm-specific and less

exogenous to the lending outcomes. We include a comprehensive set of firm and bank-level

confounding factors that control for credit supply and demand and granular fixed effects to

account for potential unobserved trends and factors, such as industry-year, bank-year, and

bank-firm unobserved trends and characters. By controlling for these variables, we can more

carefully examine the effects of transition risks on credit outcomes.

We analyze both the intensive and extensive margins of the credit outcomes, primarily

using OLS regression models (linear probability models for the extensive margins). Since

credit outcomes are measured annually, we lag all climate risk variables by one year. This

accounts for the possibility that extreme events and environmental tax changes may occur

late in the year, and credit decisions typically experience substantial lags. We also consider

firm and bank-level controls, such as size, profit, etc., all lagged by one year for the same

reason to avoid reverse causality. Standard errors are clustered at the firm level to account

for potential serial correlation within the same firm, and the results are robust to other

clustering levels, including at both the firm and bank levels (multi-way clustering), where we

allow correlations within both firm and bank. Control variables, summarized in Table A1,
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generally have expected effects and vary in statistical significance, which is unsurprising

given that different specifications include different sets of fixed effects. We report the main

variables of interest for brevity in the main analysis.

The dependent variable measures both the intensive and extensive margins. 1) intensive

margins: the loan growth rate of firm i received from bank b in a given year t, conditional on

firm bank relations being present in both prior and current year, for the intensive margins.

This refers to the changes in the volume or amount of loan balance. To incorporate the 0 in

the loan outstanding balance, we calculate the growth rate as

(loanibt − loanibt−1)

(0.5× loanibt + 0.5× loanibt−1)
× 100%

2) extensive margins: new loans indicator, which is a 0/1 dummy variable indicating whether

a given firm i received new loans from a given bank b in a given year, conditional on firm

bank relations being present in both prior and current year. It is calculated as 1 when the

loan growth rate is positive, implying whether a firm gets any new credit at all, as opposed

to how much credit it gets.

As discussed, physical risks are aggregated at the parish-time level, while transition risks

are measured at the firm-time level, we include different sets of controls and a comprehensive

set of fixed effects to tease out the effects of physical and transition risks. As a result, the

source of identification varies depending on the set of fixed effects and controls we included.

For illustration purposes, we carefully write out each specification and discuss how we gauge

the effects of climate risks in each empirical specification in the following section. We start

with parsimonious specification, where only the physical and transition risks variables and

firm, bank, and time-fixed effects are included.

The regression for the main effects of physical risks and transition risks are as follows:

Lendingibt =β1Physical riskspt−1 + β2Transition risksit−1 + αi + αb + αt + ϵibt (1)

where dependent variable Lendingibt, is either the loan growth between year t-1 and t

for a firm i from bank b, as a measure of the intensive margin of credit supply, or extensive

margin equivalent, calculated as a dummy equal to 1 if the loan growth rate is positive. This

measure can be interpreted as the likelihood of the firm i getting access to new loans from

firm b in a given year t.

The primary independent variables are denoted as Physical riskspt−1 and Transition risksit−1.

The first variable is a proxy for physical risks that varies by parish and time, which captures

the exposure of extreme precipitation and flood risks, while the second one measures firms’
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vulnerability to climate regulatory risks, as described in Section 4.2, varying by firm and

time. As both physical risks and transition risks are measured on different scales, we stand-

ardize climate risk variables in the regressions for a meaningful comparison of their relative

magnitudes and impacts, despite the differences in their scales and units.

In the simple specification above in Equation (1), we only include the most essential

fixed effects αi, αb, and αt to absorb all common trends and fluctuations, time-invariant

characteristics at firm and bank level. αi is a vector of firm fixed effects that captures any

unobservable firm-specific factors that are relatively stable over time, such as firm business

model, culture, managerial quality, or risk appetite. Similarly, αb is a vector of bank fixed

effects that captures any unobservable bank-specific time-invariant characteristics such as

bank risk appetite and culture. αt is time-fixed effects that absorb all the time-varying

trends or shocks to business cycles, for example, macroeconomic variables such as GDP,

unemployment rate, inflation, or policy rate. Finally, ϵibt is the idiosyncratic error term.

Identification thus rests on exploiting two sources. Firstly, the credit differences within a

given firm (borrower) with the change of exposure to climate risks over time borrowing from

a given bank (lender), as shown in Figure C.8. The second source of identification relies

on the differences between the high-climate-risk borrowers relative to the low-climate-risk

borrowers borrowing from a given bank in a given year, as shown in Figure C.9. Thus, the

main coefficients of interest β1 and β2, measure whether a bank is more or less likely to

extend a loan (for extensive margin) or increase the loan amount (for intensive margin) to a

firm with a change of exposure to climate risks over time, as well as for the credit differences

of two comparable firms with different climate risks profile in a given year. The expected

sign of β1 and β1 is not clear ex-ante, as there are both positive and negative forces that drive

the bank and firm side, as explained in Section 3. A negative coefficient of β1 and β2 would

indicate that an increase in a given firm’s exposure to physical risks or transition risks over

time or an increase in a firm’s risk exposure relative to other firms is associated with lower

credit outcomes. This is consistent with the divesting hypothesis H1A, which indicates that

banks may perceive both physical and transition risks as additional costs/risks that may

affect them through their client firms and divest from those firms. However, a positive or

null coefficient will be consistent with the engagement or no adjustment hypothesis (H1B or

H1C).

We then add firm-level and bank-level control variables to absorb those time-varying

characters that capture firm credit demand and bank credit supply that might be correlated

with climate risk variables as well as lending outcomes, as shown in Equation (2). Vector

Xit denotes a set of firm-level variables that could have an impact on bank lending, such

as firm size, leverage ratio, and ROA. The vector Zit includes bank-level character variables

22



such as bank size.

Lendingibt =β1Physical riskspt−1 + β2Transition risksit−1 +X ′
it−1γ1 + Z ′

bt−1γ2 + αi + αb + αt + ϵibt

(2)

In order to incorporate the unobserved geographic-specific features that are stable over

time, such as productivity and firm size differences across locations, which may affect credit

allocation and bias the estimation, we add location (parish) fixed effects. Parish fixed effect

also helps to address the endogeneity caused by firms that might anticipate that some areas

are likely to be exposed to higher physical risks, e.g., areas close to the sea, and avoid building

factories in those areas or relocating from the high to low-risk zones. The identification thus

comes from the evolution of lending from a given bank b to a given firm i in the same location

p over time.

Lendingibt =β1Physical riskspt−1 + β2Transition risksit−1 +X ′
it−1γ1 + Z ′

bt−1γ2 + αi + αb + αt+

αp + ϵibt

(3)

Similarly, we further saturate the model by adding industry-fixed effects αi to account

for time-invariant industry-specific industry characters that may be correlated with both

climate risk factors and credit outcomes. This also addresses the endogeneity concerns

raised by firms that move out from the brown into relatively clean industries. Therefore, the

expected magnitude of the coefficients is likely to be lower compared with Equation (2) as

we control for firms that move in and out of industry and locations and only compare the

credit allocation within location and industry. The identification relies on the evolution of

lending from a given bank b to a given firm i in the same location p and same industry j over

time. The identification here thus relies on the assumption that the change of the physical

risks in a given location and transition risks in a given firm over time are more likely to

be exogenous as it is more challenging to predict relative to the current level of physical or

transition risks exposure. The empirical specifications are expressed below:

Lendingibt =β1Physical riskspt−1 + β2Transition risksit−1 +X ′
it−1γ1 + Z ′

bt−1γ2 + αi + αb + αt+

αp + αj + ϵibt

(4)
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We further advance the model by adding a host of high-dimensional fixed effects. To

absorb any time-varying factors common to all firms in a particular industry, such as the

industry business cycle, we include a matrix of 2-digit industry and time dummies. We also

include bank-time fixed effects that control for credit supply and thus remove the bias that

could result from these unobserved, bank-specific factors that vary over time, such as banks’

financial health, internal policies regarding loan approval processes, changing regulatory

environment, etc. Note that we could not add bank-level control variables Z ′
bt−1 in this

case as they are absorbed by bank time fixed effects. Individual bank, industry, and time

fixed effects are also absorbed by higher dimensional fixed effects. However, we cannot add

parish-time fixed effects and firm-time fixed effects as they will absorb the variations of the

main variables of our interests.

Lendingibt =β1Physical riskspt−1 + β2Transition risksit−1 +X ′
it−1γ1 + αi+

αp + αjt + αbt + ϵibt
(5)

Thanks to the granularity of the data, we can observe bank-firm lending relationships

that allow us to incorporate firm-bank fixed effects to control for the endogenous matching

between firm and bank that may affect credit allocation, e.g., relationship lending. This

teases out the differences across different banks lending to the same firm in a given year

and, therefore, biases the outcomes and ensures the identification relies on the same firm

bank group. The identification thus comes from the differences in lending outcomes for the

same firm and bank pair, while the borrower firm has a change in the exposure to climate

risks over time, as shown in Figure C.8. In addition, adding bank-time and bank-firm fixed

effects allows us to control the credit demand in the spirit of Khwaja and Mian (2008) and

Jiménez et al. (2012). However, we cannot add firm-time fixed effects as this will absorb the

variations in transition risks that are measured at the firm time level, but we include as much

firm-level control as reasonable as possible to proxy for credit demand. We acknowledge that

including many fixed effects could attenuate the estimated impacts of physical and transition

risks. Hence, the estimated effects are the lower bounds of the impact.

Lendingibt =β1Physical riskspt−1 + β2Transition risksit−1 +X ′
it−1γ1+

αp + αjt + αbt + αbf + ϵibt
(6)
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5.2 Threats to identification

Despite our efforts to add a host of fixed effects and a comprehensive set of control variables

to address the endogeneity concerns, other potential threats to identification can still arise.

One concern is that certain areas exhibit higher precipitation and volatility than others.

Consequently, the same volume of precipitation in one place may appear normal and an

anomaly in another, even if observed simultaneously. Therefore, firms may adapt their

behavior to mitigate the adverse effects of extreme precipitation in advance through strategic

location choices, infrastructure upgrades, building floodwalls, etc. However, our measure of

extreme precipitation is calculated as the relative precipitation shocks based on the difference

between a given daily precipitation value and the historical mean value observed in the

same station and month, standardized by its volatility.24 By construction, the variations in

relative precipitation shocks come from within location variation. As a result, predicting and

consequently adapting to future extreme precipitation deviations from the local historical

mean is challenging. Therefore, one may expect that relative extreme precipitation will be

more likely to shock both firms and banks and raise their attention to climate risks and

less likely to be correlated with unobserved idiosyncratic factors that affect banks’ lending

decisions. With respect to the exposure to future flood risks, with the variation largely

coming from across locations, we expect that firms are likely to adapt and mitigate the risks

by relocating their factories away from high flood risk zones (e.g., some areas close to the

coast) or avoiding building new offices in those areas, which could be correlated with banks’

credit allocation. To eliminate this concern, we include the refinement where we exclude

those firms that relocate in order to compare the credit outcomes for firms that stay in the

same locations. In addition, we add location (parish) fixed effects in our specifications to

control for any unobserved location-specific factors that affect banks’ credit decisions. This

also addresses the concerns that certain areas (e.g., capital city) are more productive than

others as firms tend to concentrate geographically around those areas, which could be related

to credit allocation.

Another concern is that our measure of transition risks varies from year to year and firm

to firm, which are likely to be endogenous. One example is that firms with high emission

intensity might seek to reduce emissions by investing in green projects after receiving bank

loans, which may bias the estimation. To reduce this reverse causality issue in the regres-

sion analysis, we include a refinement where we measure transition risks with a base-year

approach, i.e., measuring emission intensity in the first year in which a firm in the sample is

24By construction, we allow for different precipitation distributions for a given station each month.
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observed. Specifically, transition risks are measured as: Transition risksijt is calculated as:

Transition risksijt = Emission intensityij0 × Enviromental taxjt

for firm i, industry j, year t.

6 Empirical Results

6.1 Main results

6.1.1 Intensive margin of lending

The main estimation results for the effects of physical and transition risks on the intensive

margins of the lending, i.e., the loan growth rate in percentage points, are reported in Table 1.

Only the estimated coefficients for physical and transition risks are reported for brevity. We

begin by estimating a parsimonious model in Equation (1), then gradually building towards

more saturated specifications as shown from Equation (2) to Equation (6).

In column 1 of Table 1, we estimate a simple model where we only include a set of

dummy variables, namely firm, bank, and year dummies, which allows us to control for the

most important unobserved time-invariant common factors and trends at firm and bank

level, such as firm-specific heterogeneity, and bank-specific heterogeneity that affects credit

demand and supply, as well as time trends such as business. The estimates reported in

column 1 highlight two main findings. First, on average, higher physical risks are associated

with lower credit growth. Banks significantly allocate fewer credits to those firms located in

high-physical-risk zones than they do in low-physical-risk zones in the same year. In addition,

banks reallocate credits away from those firms located in areas with increasing physical risks

over time. The coefficient of -1.368 indicates that a one standard deviation increase in the

physical risk of a firm’s location—given that the mean and standard deviation of physical

risk are 0.99 and 1.162 respectively (see Table A1), which implies that if the mean average

goes from 0.99 to 2.152 (0.99+1.162=2.152) - results in about 1.4 percentage points reduction

in credit growth in terms of absolute change. This reduction per standard deviation change

of physical risks represents a 10% change relative to the sample mean loan growth (-1.4%/-

14%)= 10%), which represents a sizable reallocation of lending relative to the sample mean.

However, in terms of standard deviation change of loan growth, this reduction represents

only about 0.1 (=(-1.4-(-14))/117=0.1) standard deviation away from the sample mean of

loan growth, indicating a mild effect relative to the overall variability.

Second, higher firm-specific transition risks are also related to lower credit growth. An
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increase in the same firm’s exposure to transition risks over time or an increase in a firm’s

transition risk exposure relative to other firms in the same year is associated with lower

credit growth. The magnitude of the measured coefficient suggests that if a firm’s transition

risks exposure increases by one standard deviation over time or compared with another

comparable firm, which implies a considerable jump from an average of 28.72 to 191.038

(28.72+ 162.32 = 191.038), the credit growth of the firm received from banks reduce by

about 2.2 percentage points. This is about 0.1 (=(-2.2-(-14))/117 = 0.1) standard deviation

from the sample mean of loan growth, which indicates while there is a measurable impact of

transition risks, the effect is yet relatively modest.

We then advance the model with important control variables for firms and banks to

absorb those time-varying confounding factors that affect both credit outcomes and climate

risks in column 2. We further saturate the model with parish fixed effects to account for

the unobserved geographic-specific features in column 3 and industry fixed effects to absorb

time-invariant unobserved industry-specific trends in column 4. In column 5, we include

high-dimensional fixed effects to absorb any time-varying factors common to all firms in a

particular industry (industry-time fixed effects) and any time-varying shocks to bank credit

supply (bank-time fixed effects). Lastly, we add granular firm-bank fixed effects to address

the endogenous matching between firm and bank and the effect of existing relationships

between firms and banks in column 6. As we saturate the model with more restrictions,

the estimated coefficients β1 and β2 overall decline, but the coefficients remain negative and

significant. Overall, our evidence indicates that increased physical and transition risks are

linked to reduced credit growth. However, the observed effect is relatively modest relative

to the sample mean of loan growth, given the substantial variability.
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Table 1: Climate Risks and Loan Growth (Intensive Margin)

Loan Growth

(1) (2) (3) (4) (5) (6)

Physical Risks -1.368*** -1.483*** -1.274*** -1.276*** -1.283*** -1.143**

(0.489) (0.490) (0.491) (0.491) (0.489) (0.540)

Transition Risks -2.208*** -2.203*** -2.100*** -2.146*** -1.783*** -1.632***

(0.598) (0.574) (0.547) (0.562) (0.441) (0.427)

Firm Fixed Effects Yes Yes Yes Yes Yes

Time Fixed Effects Yes Yes Yes Yes

Bank Fixed Effects Yes Yes Yes Yes

Parish Fixed Effects Yes Yes Yes Yes

2-digit Industry Fixed Effects Yes

2-digit Industry-Time Fixed Effects Yes Yes

Bank-Time Fixed Effects Yes Yes

Bank-Firm Fixed Effected Yes

Firm Variables Yes Yes Yes Yes Yes

Bank Variables Yes Yes Yes Yes Yes

Mean Y -14.078 -14.069 -14.137 -14.141 -14.130 -11.318

R-sq 0.086 0.087 0.097 0.097 0.123 0.190

N 189,200 189,142 187,764 187,760 187,700 179,374

Notes: The table presents the estimation results for the effects of physical and transition risks on loan

growth from OLS regressions. The dependent variable is the loan growth in percentage points of firm i

received from bank b in a given year t, conditional on firm bank relations being present in both prior

and current year, calculated as (loanibt−loanibt−1)
(0.5×loanibt+0.5×loanibt−1)

× 100%. The main independent variables are

physical risks indicators and transition risk indicators. All RHS variables are lagged by one year. All

regressions include fixed effects as specified. The sample starts in 2003 and ends in 20l9. The detailed

firm-level and bank-level control variable definitions are described in Table A1. Robust standard errors

clustered at the firm level are reported in parentheses in all columns. Significance levels: ***1%, **5%,

*10%.

6.1.2 Extensive margin of lending

We present the estimation results for the extensive margin, defined as the probability of

receiving new loans, in Table 2. New loans are represented by a dummy variable set to 1

if the loan growth rate is positive, indicating the likelihood of firm i receiving new credit

from bank b in a given year t. Similar to the loan growth rate analysis, we begin with a

simple model shown in column 1 (Equation (1)), then include additional controls in column 2

(Equation (2)), and incorporate granular fixed effects from column 3 to column 6, as specified

from Equation (3) to Equation (6).
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The estimates reported in Table 2 indicate that only higher physical risks are related to

a lower likelihood of receiving new credits, but the results are not significant anymore after

adding granular firm-bank fixed effects. This shift indicates that the observed relationship

is likely to be confounded by other factors specific to the firm-bank relationship, such as

historical lending behavior, the quality, and history of the firm’s relationship with a particular

bank, which is more influential in the decision to extend credit than the physical risks

alone. Additionally, although the coefficients for transition risks are negative, they are not

significantly associated with the probability of the firm receiving new credits in any of the

specifications. This suggests that banks may not necessarily cut off initial credit and stop

lending loans regardless of increased transition risk. That could be due to relationship

lending, i.e., they might prioritize maintaining existing relationships with firms by offering

new loans, regardless of their climate risk exposure. Instead, they could regulate the growth

of the credit, as shown in Table 1, or ask for more collateral, set stricter lending terms, or

adjust the interest rate to manage overall climate risk exposure.

All in all, we find evidence indicating that physical and transition risks impact lending

primarily on the intensive margin rather than the extensive margin. Specifically, firms facing

increased physical or transition risks over time experience reduced credit growth, suggesting

that banks are cutting the growth of credit extended to these firms due to perceived or actual

increases in risk. However, this effect is relatively modest. On the extensive margin, the

evidence is limited. Overall, this implies that banks are more likely to adjust the amount

of credit they extend rather than their decision to provide credit altogether. Our findings

modestly support the divesting hypothesis H1A, which suggests that banks divest from firms

with high exposure to physical or transition risks.
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Table 2: Climate Risks and New Loans (Extensive Margin)

New Loans

(1) (2) (3) (4) (5) (6)

Physical Risks -0.004** -0.005** -0.004** -0.004** -0.003* -0.003

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Transition Risks -0.001 -0.001 -0.001 -0.001 -0.002 -0.002

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Firm Fixed Effects Yes Yes Yes Yes Yes

Time Fixed Effects Yes Yes Yes Yes

Bank Fixed Effects Yes Yes Yes Yes

Parish Fixed Effects Yes Yes Yes Yes

2-digit Industry Fixed Effects Yes

2-digit Industry-Time Fixed Effects Yes Yes

Bank-Time Fixed Effects Yes Yes

Bank-Firm Fixed Effected Yes

Firm Variables Yes Yes Yes Yes Yes

Bank Variables Yes Yes Yes

Mean Y 0.390 0.390 0.390 0.390 0.390 0.390

R-sq 0.139 0.141 0.148 0.148 0.171 0.265

N 209,659 209,659 209,659 209,659 209,659 209,659

Notes: The table presents the estimation results for the effects of physical and transition risks on new

loan initiation from OLS regressions (linear probability model). The dependent variable is a new loans

indicator, which is a 0/1 dummy variable indicating whether a given firm i received new loans from a

given bank b in a given year. It is calculated as 1 when the loan growth rate is positive, implying whether

a firm gets any new credit at all, as opposed to how much credit it gets. The main independent variables

are physical risk indicators and transition risk indicators. All RHS variables are lagged by one year. All

regressions include fixed effects as specified. The sample starts in 2003 and ends in 20l9. The detailed

firm-level and bank-level control variable definitions are described in Table A1. Robust standard errors

clustered at the firm level are reported in parentheses in all columns. Significance levels: ***1%, **5%,

*10%.

6.1.3 Other outcomes: firm-bank relationships and interest rates

We further explore other outcomes of bank lending, including how banks may adjust firm-

bank relationships and interest rates as a response to firms’ exposure to physical risks and

transition risks, as shown in Table 3. We comprehensively incorporate fixed effects into the

model, including firm, parish, industry-time, and bank-time fixed effects, as presented in

Equation (5). First, we investigate the effects of entering into new relationships in column 1,

where ”enter” is a dummy variable set to 1 if a firm and bank establish a relationship for the
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first time. Similarly, in column 2, ”exit” is a dummy variable set to 1 if a previously existing

firm-bank relationship discontinues. The evidence shows that banks are cautious about

entering into new relationships with firms exposed to high transition risks. Additionally, if

the physical risk associated with existing clients becomes too significant, banks may choose

to exit those relationships. At first glance, this might appear to be contrary to the previous

findings, where we find banks continue lending to existing clients despite the heightened

risk, likely to maintain existing relationships due to the value of the established relationship

and the information advantage they possess. However, this analysis focuses on forming new

relationships and suggests that banks are more cautious when it comes to initiating new

relationships or continuing with firms where the risks have become too high.

We then proceed by evaluating the price of the loans in column 3. To calculate the interest

rate, we acknowledge that one limitation is that loan maturity and the contractual interest

rate are not systematically reported as they are not tax-relevant variables in the credit data.

As a result, following Jensen and Johannesen (2017), we calculate the effective interest rate

for a firm i borrowing from bank b in year t as Interest rateibt =
Interest paymentibt

0.5(Loansibt+Loansib,t−1)
×100. It

is essentially calculated as the sum of interest payments made in year t divided by the average

outstanding loan balance at the end of the current and previous years, where the implicit

assumption is that loan balances evolve linearly over the year. Nevertheless, it captures the

average rate a firm pays on its outstanding loans over a given period and offers a measure

of the accrued cost of loans. Column 3 shows that the cost of loans does not significantly

exhibit a direct correlation with physical and transition risks despite the estimated sign being

positive. This finding suggests while banks may be cautious in forming new relationships,

this does not seem to be incorporated in adjusting the pricing of existing loans.
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Table 3: Climate Risks and Bank Lending: Relationship Lending and Interest Rate

Enter Exit Interest Rate

(1) (2) (3)

Physical Risks 0.000 0.003** 0.003

(0.001) (0.001) (0.018)

Transition Risks -0.001*** 0.000 0.008

0.000 (0.001) (0.012)

Firm Fixed Effects Yes Yes Yes

Parish Fixed Effects Yes Yes Yes

2-digit Industry-Time Fixed Effects Yes Yes Yes

Bank-Time Fixed Effects Yes Yes Yes

Firm Variables Yes Yes Yes

Mean Y 0.215 0.217 4.754

R-sq 0.510 0.493 0.437

N 305,194 305,194 188,147

Notes: The table presents the estimation results for the effects of physical and transition risks on rela-

tionship changes and interest rate from OLS regressions. We comprehensively incorporate fixed effects

into the model, including firm, parish, industry-time, and bank-time fixed effects, as presented in Equa-

tion (5). In column 1, the dependent variable is a dummy variable ”enter” set to 1 if a firm and bank

establish a relationship for the first time. In column 2, ”exit” is a dummy variable set to 1 if a previously

existing firm-bank relationship discontinues. The dependent variable in column 3 is the effective interest

rate, calculated as Interest rateibt = Interest paymentibt
0.5(Loansibt+Loansib,t−1)

× 100, which measures the average rate a

firm pays on its outstanding loans over a given period. The main independent variables are physical

risk indicators and transition risk indicators. All RHS variables are lagged by one year. All regressions

include fixed effects as specified. The sample starts in 2003 and ends in 20l9. The detailed firm-level and

bank-level control variable definitions are described in Table A1. Robust standard errors clustered at the

firm level are reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.

6.1.4 Alternative tests

In the appendix, we present several alternative tests. In Table A2, we use different measures

of loan growth: column 1 utilizes the log of the loan amount (log(loanibt)), and column 2

employs the log difference of the loan amount in percentage points, calculated as log(loanibt)−
log(loanibt−1)×100. Due to the presence of zero values in the loan account balances, taking the

logarithm results in these observations being treated as missing data, reducing the number

of observations in the estimation. In column 3, we focus on positive loan growth, setting

negative loan growth to zero. This adjustment addresses the concern that our baseline

measure of loan growth captures both the amount of the new loan origination and the
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repayment speed of existing loans, leading to both positive and negative growth, depending

on the balance between these two components. While this comprehensive measure provides

insights into how climate risks may impact both the amount of extending new loans and

adjusting old loan repayments, we also consider the scenario where only positive loan growth

is analyzed, effectively ignoring the existing loan repayment. The results indicate that most

of the point estimates for β1 and β2 remain negative, although some estimates show a loss

of significance.

6.2 Response to the tail of physical and transition risks

As the impacts of climate risks are primarily related to the extreme ends of the risk dis-

tribution—often referred to as the ”tail risks”—rather than the average modest risks, we,

therefore, proceed by focusing on these tails rather than the whole distribution. Since banks

may prioritize managing tail risks, they are likely to be more responsive to firms that exhibit

extremely high-risk profiles and reallocate credits away from those firms into low-risk firms.

Specifically, we focus on both the left-hand tail (extreme low values) and the right-hand tail

(extreme high values) of the risk distribution for physical and transition risks. We define

a high physical risk dummy variable (High PR) and a high transition risk dummy variable

(High TR). These dummy variables are set to 1 if the respective risk indicator for physical

or transition risks falls into the top 75th quantile of the distribution in a given year. The

low physical risk dummy variable (Low PR) and low transition risk dummy variable (Low

TR) are then defined as 1 if the risk falls into the bottom 25th quantile of the distribution

in a given year. We then investigate how banks respond to the tail risks and decompose the

credit allocation among different groups using the following specifications:

Lendingibt =β1High PRit−1 + β2High TRit−1 + β3Low PRit−1 + β4Low TRit−1

+X ′
it−1γ1 + Z ′

bt−1γ2 + FEs+ ϵibt

for firm i, bank b, year t, and parish p.

The estimated results for the model above are presented in Table 4. In columns 1-2, the

dependent variable is the loan growth in percentage points as intensive margin, calculated as
(loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
×100%. The dependent variable in columns 3-4 measures the extensive

margin, which is a 0/1 dummy variable indicating whether a given firm received new loans

from a given bank b in a given year. The signs of the point estimates for the high physical

risk (PR) dummy and high transition risk (TR) dummy are negative, whereas those for low

PR and high TR are positive. This pattern suggests a reallocation of credit away from firms
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with extremely high-risk profiles towards those with lower-risk profiles, compared to firms

with medium-risk exposure, both at intensive and extensive margins. However, it should be

noted that the magnitude of these effects is relatively modest.

Table 4: Climate Risks and Lending: Response to the Tail Risks

Loan Growth New Loans

(1) (2) (3) (4)

High PR -1.401* -1.583* -0.005 -0.005

(0.846) (0.855) (0.003) (0.003)

High TR -3.094*** -2.713*** -0.007* -0.008**

(0.994) (1.018) (0.004) (0.004)

Low PR 2.210*** 1.860** 0.009*** 0.008**

(0.773) (0.785) (0.003) (0.003)

Low TR 0.057 0.106 -0.001 0.001

(1.162) (1.218) (0.004) (0.004)

Firm Fixed Effects Yes Yes Yes Yes

Time Fixed Effects Yes Yes

Bank Fixed Effects Yes Yes

Parish Fixed Effects Yes Yes

2-digit Industry Fixed Effects

2-digit Industry-Time Fixed Effects Yes Yes

Bank-Time Fixed Effects Yes Yes

Firm Variables Yes Yes Yes Yes

Bank Variables Yes Yes

Mean Y -14.069 -14.130 0.383 0.383

R-sq 0.087 0.123 0.140 0.171

N 189,142 187,700 220,890 219,167

Notes: The table presents the estimation results for banks’ lending response to the tail physical and

transition risks from OLS regressions, with extreme risks defined based on a moving distribution. In

columns 1-2, the dependent variable is the loan growth in percentage points of firm i received from bank

b in a given year t, calculated as (loanibt−loanibt−1)
(0.5×loanibt+0.5×loanibt−1)

× 100%. The dependent variable in columns

3-4 is a 0/1 dummy variable indicating whether a given firm received new loans from a given bank b in

a given year. High PR and Low TR are set to 1 if the respective risk indicator for physical or transition

risks falls into the top 75th quantile of the distribution in a given year. Low PR and Low TR are then

defined as one if the risk falls into the bottom 25th quantile of the distribution in a given year. The

main independent variables are the four dummies, indicating the extremely high and low physical and

transition risks. All RHS variables are lagged by one year. All regressions include fixed effects and control

variables as specified. The sample starts in 2003 and ends in 20l9. The detailed firm-level and bank-level

control variable definitions are described in Table A1. Robust standard errors clustered at the firm level

are reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.
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The analysis above assumes that the climate risk distribution shifts over time and uses

a moving threshold to define extreme values across time. We also use a fixed threshold

based on the risk distribution for the entire sample to define extreme values, assuming that

the distribution is stable over the sample period. The results are robust to this alternative

definition, as shown in Table A4.

6.3 The role of interactions of physical and transition risks

Physical and transition risks are often intertwined or interact with one another in complex

ways (ECB, 2021b). This interaction can occur because, for example, increasing physical

risks, such as those associated with extreme weather events, can trigger more stringent

policies and, therefore, higher transition risks. In the previous section, we found that both

physical and transition risks affect lending, primarily on the intensive margin, with lim-

ited evidence on the extensive margin. Physical risks, such as those from natural disasters

and extreme weather, are mostly location-dependent, while transition risks are industry or

firm-specific. Consequently, firms may face varying degrees of exposure depending on their

geographic location or industry sector. The combination of the high (low) physical risks and

transition risks exposure can be plotted into a 2×2 matrix, as shown in Figure C.10. Some

firms may concurrently face both types of risks, such as companies operating in emission-

intensive industries while also being located in regions prone to flooding or other physical

hazards. This interaction of high physical and transition risks presents a compounded chal-

lenge for these dual-risk firms. Banks might, therefore, exercise greater caution in extending

credit to these firms, curbing loan growth, or posing tighter lending conditions as those firms

carry a higher overall risk profile, and banks tend to minimize exposure to the compounding

of risks (Dunz et al., 2023).

To further investigate how banks respond to the interaction of the high (low) physical

risks and transition risks exposure and reallocate credits among different groups, we estimate

the following specifications:

Lendingibt =β1Low PRit−1 × Low TRit−1 + β2High PRit−1 × Low TRit−1 + β3Low PRit−1

× High TRit−1 + β4High PRit−1 × High TRit−1 +X ′
it−1γ1 + Z ′

bt−1γ2 + FEs+ ϵibt

for firm i, bank b, year t, and parish p.

The main variables of interest in our analysis are the four interaction dummies that

capture the combined effects of high (low) physical and transition risks, as defined in Sec-

tion 6.2. These interaction effects are represented by the coefficients β1 through β4. Ac-

cording to Table A3, the positive estimated coefficients for β1, specifically for the interaction
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term Low PRit− 1 × Low TRit− 1, across columns 1 to 4, suggest a slight positive credit

reallocation towards firms with extremely low compounded risks. For firms with dual high-

risk exposures, we observe a negative impact on credit growth and the initiation of new

loans, although these findings are not statistically significant. This indicates a nuanced re-

sponse from banks, which appear to slightly favor firms with lower combined risks while not

significantly altering their credit policies towards high-risk firms.

6.4 Heterogeneity analysis

We then proceed with the heterogeneity section and ask what factors might amplify the

effect of physical and transition risks on lending patterns. Identifying these would also help

us understand how different characteristics influence the sensitivity of banks to climate-

related risks and shed light on some microeconomic mechanisms that could plausibly be

behind the observed reallocation of credits, as we outlined in Section 3.

Firm size We begin by examining the heterogeneous effects across different firm sizes.

As smaller firms are more informational opaqued, risky, and more likely to be financially

constrained (Hadlock and Pierce, 2010). It is natural to hypothesize that small-sized firms

may be more negatively affected when banks decide on the direction of relocating credits. To

test this, we categorize firms into small, medium, and large groups, with large firms defined

as having more than 250 full-time equivalent workers and small firms as those with fewer

than 20 employees. We present a modified version of Equation (2), which includes a triple

interaction with size dummy variables, as well as the relevant double interactions. As shown

in column 1 of the estimation results in Table A6, small firms appear particularly sensitive

to physical risks and the combined effect of physical and transition risks. In contrast, large

firms exhibit a nuanced positive response in loan growth to increased physical risks, as shown

in column 5. These results are robust across various model specifications, including different

controls and fixed effects.

Financial leverage Firms with high leverage are likely to face more significant financial

constraints and risk profiles, which can then influence bank lending decisions (Jiménez et al.,

2014; Laeven and Popov, 2023). In light of this, we examine the role of financial leverage in

the observed reallocation of credits in response to heightened climate physical and transition

risks. To address this, we present findings in Columns 1 and 2 of Table A7, where we incor-

porate this factor into our analysis by augmenting the model from Equation (2). Specifically,

we include a triple interaction term that combines a dummy variable for high financial lever-

age with the key variables of interest alongside the double interaction terms. The significant
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negative coefficient for the interaction between physical risks and high leverage dummy in

columns 1 and 2 indicates that highly leveraged firms experience a more pronounced reduc-

tion in loan growth and new loans when exposed to physical risks. Banks appear to be more

restrictive in lending to highly leveraged firms facing physical risks, perhaps due to their

lack of financial cushion and lower financial flexibility to absorb adverse shocks related to

climate disasters. Furthermore, banks are more concerned when financial risks and physical

and transition risks are compounded, as indicated by a significant negative coefficient for

the triple interaction.

Capital intensity Capital intensity plays different roles in affecting the bank lending de-

cision. On the one hand, those firms with high capital intensity have significant investments

in physical assets, which may be directly affected by climate-related physical risks (e.g.,

damage from extreme weather and flooding). On the other hand, firms with high capital

intensity may have more assets that can serve as collateral, potentially providing a buffer

against risks. To test the role of capital intensity, we include a triple interaction term that

combines a dummy variable for high capital intensity, which is 1 if the share of fixed assets

as a fraction of total assets is above 50% quantiles, with the physical and transition risks

variables, alongside the double interaction terms. The evidence presented in columns 3 and 4

of Table A7 indicates that banks are likely to reduce lending growth and less likely to initiate

new loans to those high capital-intensive firms exposed to high physical risks. The evidence

is concerned with the notion that banks are more concerned about the direct exposure of

tangible assets, i.e., machines and factories, to physical risks. Given that capital intensity

varies significantly across industries, we also illustrate these variations in Figure C.11. It can

be inferred that industries with fewer physical assets, like the information and communic-

ation sector, R&D sector, and wholesale, are generally less susceptible to disruptions from

weather or natural disasters. In contrast, industries such as manufacturing and transport,

which have a higher proportion of physical assets, are more vulnerable to climate shocks.

6.5 Mechanisms

Since the observed credit outcomes represent the equilibrium between bank lending and firm

borrowing, we explore whether our results are primarily driven by supply-side or demand-

side effects and examine the motivations behind these behaviors. On the demand side, firms

facing high climate risks might request less credit from banks. Prior studies, such as those

by Huang et al. (2018); Kacperczyk and Peydró (2022); Bolton et al. (2019), have shown

that firms often deleverage and initiate divestment in response to uncertainties and external

shocks, resulting in reduced credit demand. On the supply side, banks may choose to offer
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less credit to firms with high climate risks due to the increased perceived risk of default or

other non-financial considerations. In our analysis, we acknowledge the inherent challenge

of distinctly separating supply-side effects from demand-side factors, as discussed in the

empirical banking literature (Khwaja and Mian, 2008; Jiménez et al., 2020; Degryse et al.,

2019). Nonetheless, we endeavor to empirically examine both the demand and supply sides

to have an understanding of the primary driver behind the observed credit outcomes.

6.5.1 Climate risks and credit demand

We begin by examining the effects of climate risks on lending outcomes for a subset of firms

that exhibit positive credit demand. The rationale behind this approach is that if the negative

effects of climate risks on loan growth persist even among firms with high credit demand, it

would suggest that the demand effect is not the primary driver. Typically, The estimation

results testing the credit demand channel are presented in Table 5. We re-estimate the

baseline regression from Equation (5) using a different sample of firms that serve as proxies

for positive credit demand. In columns 1-2, we focus on firms with positive investment

growth and employment growth, using these metrics as proxies for growing firms. Column

3 includes firms with positive fixed asset growth as an indicator of funding needs for capital

expenditure, and column 4 uses a sample of firms with positive sales growth to measure the

demand for working capital. We acknowledge that an ample credit supply can stimulate firm

growth and, in turn, create credit demand. Nevertheless, these proxies, such as sales growth,

originate from the firm’s internal activities and reflect a firm’s inherent demand for resources

and can, therefore, serve as indicators of credit demand. The evidence that negative effects

persist among firms with substantial credit demand supports our hypothesis that these effects

may primarily be attributed to the supply side rather than a lack of demand.
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Table 5: Climate Risks and Credit Demand: Firms with Positive Credit Demand

Loan Growth

Included Sample Positive Invest-

ment Growth

Positive Employ-

ment Growth

Positive Fixed

Assets Growth

Positive Sale

Growth

(1) (2) (3) (4)

Physical Risks -1.596* -0.156 -1.032 -1.562**

(0.877) (0.769) (0.847) (0.754)

Transition Risks -2.597*** -1.056 -1.957** -1.071

(0.950) (0.961) (0.986) (0.920)

Firm Fixed Effects Yes Yes Yes Yes

Parish Fixed Effects Yes Yes Yes Yes

2-digit Industry-Time Fixed Effects Yes Yes Yes Yes

Bank-Time Fixed Effects Yes Yes Yes Yes

Firm Variables Yes Yes Yes Yes

Mean Y -7.689 -7.721 -5.641 -10.947

R-sq 0.222 0.19 0.212 0.184

N 76,128 91,536 75,520 97,882

Notes: The table presents the estimation results for Equation (5) to test for the credit demand effect,

conditional on those firms with positive credit demand. The dependent variable is the loan growth in

percentage points of firm i received from bank b in a given year t, calculated as (loanibt−loanibt−1)
(0.5×loanibt+0.5×loanibt−1)

×
100%, for the intensive margin. Firms with positive credit demands tend to be those experiencing growth

and requiring substantial funding for capital expenditures or working capital. In columns 1-2, we focus on

firms with positive investment and employment growth as proxies for growing firms. Column 3 includes

firms with positive fixed asset growth as an indicator of funding needs for capital expenditure, while

column 4 uses a sample of firms with positive sales growth to measure the demand for working capital.

All RHS variables are lagged by one year. All regressions include fixed effects as specified. The sample

starts in 2003 and ends in 20l9. The detailed firm-level and bank-level control variable definitions are

described in Table A1. Robust standard errors clustered at the firm level are reported in parentheses in

all columns. Significance levels: ***1%, **5%, *10%.

To examine whether climate risks directly impact firm growth and reduce investment

demand, we conduct an auxiliary regression, as detailed in Equation (7). This regression

analyzes the relationship between climate risk variables and a range of firm-level indicators

that reflect credit demand. Specifically, we use investment growth and employment growth as

proxies for credit demand from expanding firms. Additionally, we consider fixed asset growth

as an indicator of funding needs for capital expenditure and sales growth as a measure of

demand for working capital.

Credit Demandit =β1Physical riskspt−1 + β2Transition risksit−1 +X ′
it−1γ1 + αi + αp + αjt + ϵit

(7)

A significant negative coefficient would suggest that higher climate risks are associated
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with reduced credit demand, implying that credit demand factors could be driving the ob-

served results. However, our analysis does not find evidence supporting this credit demand

channel. The coefficients presented in columns 1 through 4 indicate that climate risks are

not positively correlated with any of the firm-level proxies for credit demand. This lack of

correlation further suggests that other factors, possibly related to supply-side constraints or

banks’ risk perceptions, may be more influential in the observed credit reallocation in the

context of climate risks.

Table 6: Climate Risks and Credit Demand Proxies

Investment

Growth

Employment

Growth

Fixed Assets

Growth Sale Growth

(1) (2) (3) (4)

Physical Risks -1.529 0.003 0.001 -0.161

(1.145) (0.002) (0.204) (0.163)

Transition Risks -0.242 0.000 0.012 -0.002

(0.236) (0.001) (0.025) (0.003)

Firm Fixed Effects Yes Yes Yes Yes

Parish Fixed Effects Yes Yes Yes Yes

2-digit Industry-Time Fixed Effects Yes Yes Yes Yes

Firm Variables Yes Yes Yes Yes

Mean Y 1.525 0.305 1.878 0.305

R-sq 0.204 0.201 0.25 0.339

N 204,175 218,934 217,494 218,807

Notes: The table presents the estimation results for the climate risks variables and proxies for credit

demand, as shown in Equation (7). Columns 1 and 2 use investment growth and employment growth

as dependent variables, respectively, to serve as proxies for credit demand from expanding firms. The

dependent variable in column 3 is fixed asset growth, as a measure of needs for capital expenditure, while

column 4 uses sales growth to measure the demand for working capital. All RHS variables are lagged by

one year. All regressions include fixed effects as specified. The sample starts in 2003 and ends in 20l9.

The detailed firm-level variable definitions are described in Table A1. Robust standard errors clustered

at the firm level are reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.

6.5.2 Climate risks and credit supply

In our baseline analysis, as shown from Equation (2) to Equation (6), we incorporate several

key firm-level control variables, such as firm size and Return on Assets (ROA), to account

for variations in credit demand. Additionally, we include a comprehensive set of fixed effects,

such as firm, industry-year, and firm-bank fixed effects, to control for unobserved charac-

teristics that may influence credit demand, whether specific to the firm, the industry-year

context, or the firm-bank relationship. However, one concern is that it may not fully capture

all relevant unobserved credit demand factors. Given the detailed nature of our data, we
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can introduce even more granular, high-dimensional fixed effects to better proxy for local

credit demand variations within a size group for specific industries and geographic locations,

in the spirit of (Degryse et al., 2019). The underlying hypothesis is that firms of similar

size, operating within the same industry and geographic location, are expected to exhibit

comparable credit demands within a given year. By grouping firms with these common

characteristics, we can reduce the variability in credit demand that is not related to supply-

side factors. However, one caveat of using too many fixed effects is that it may also absorb

significant variations of interest, so we estimate a lower bound. Nevertheless, we present

the results in Table A8, where we saturate the model with Industry-Location-Size Fixed

Effects (ILS) in column 1, Industry-Location-Time Fixed Effects (ILT) in column 2, and

Industry-Location-Size-Time Fixed Effects (ILST) in column 3. The evidence indicates a

robust negative relationship between transition risks and loan growth. As firms’ exposure to

transition risks increases, banks tend to reduce their lending, leading to lower loan growth,

while the effects of physical risks disappear.

Credit risks channel So far, our empirical evidence appears to suggest that the observed

outcomes are driven mainly by a shift in the credit supply from banks rather than a change

in credit demand from firms in response to increasing climate risks. This further raises

the question: why are banks supplying less credit to firms that are exposed to higher cli-

mate risks? To explore this issue, we consider several potential reasons. On the one hand,

banks might consider the financial aspect and perceive higher climate risks as increasing

the likelihood of defaults, leading to more cautious lending practices. On the other hand,

non-financial factors, such as growing climate concerns among the public and pressure from

activist shareholders, could also influence their lending decisions.

In the following section, we attempt to empirically test the financial insensitive (credit

risks) channel by directly examining whether exposure to climate risks is associated with

increased credit risk for firms. Specifically, we assess whether climate risks correlate with

higher probabilities of firm default or bankruptcy, as well as a higher likelihood of being

financially stressed. To measure actual default rates, we use a proxy based on firms’ exits

from the sample. This exit variable is a binary indicator that equals one if a firm exits

the sample, thereby providing an upper bound estimate of default likelihood. Figure C.12

in the appendix details the number of firms that left the sample over the study period,

highlighting a notable surge during the global financial crisis of 2007-2009, which aligns with

expected economic stress periods. In Table 7, column 1 presents the results from regressing

the exit variable on climate risk exposure. The coefficients are not statistically significant,

suggesting that the effect of climate risks on firm default rates is not robustly established.
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We also use additional proxies for a firm’s credit risks. Column 2 uses a dummy variable

indicating negative EBIT (Earnings Before Interest and Taxes) as a proxy for credit risk. A

negative EBIT suggests higher financial difficulties, which may increase credit risk. Column

3 employs a dummy variable for high financial stress, defined as 1 if a firm has a low-interest

coverage ratio (ICR).25 The positive coefficients for transition risk in both columns 2 and 3

suggest firms exposed to higher transition risks are more likely to experience negative EBIT

and high financial stress, which are perceived as having higher credit risks and are relevant

in a bank’s conventional credit risks assessment matrix.

Overall, our evidence suggests that the observed reduction in credit is likely to be driven

by banks’ responses to increasing climate risks, and this could be due to the financial con-

sideration that banks perceived those firms exposed to high climate risks experience higher

financial stress indicators and higher credit risks. Unfortunately, we cannot empirically eval-

uate non-financial incentives in this paper, as this would require data from surveys. Further

research is therefore needed to explore banks’ motivations in shifting their lending behaviors.

25The ICR, calculated as EBIT divided by interest expenses, measures a firm’s ability to meet its interest
obligations. A lower ICR indicates higher credit risk and financial stress.
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Table 7: Climate Risks and Credit Risks Channel

Exit Low EBIT Financial Distress

(1) (2) (3)

Physical Risks 0.000 0.000 0.003

(0.001) (0.002) (0.003)

Transition Risks 0.000 0.003* 0.002*

0.000 (0.001) (0.001)

Firm Fixed Effects Yes Yes Yes

Parish Fixed Effects Yes Yes Yes

2-digit Industry-Time Fixed Effects Yes Yes Yes

Firm Variables Yes Yes Yes

Mean Y 0.017 0.220 0.489

R-sq 0.431 0.369 0.449

N 219,185 219,185 219,185

Notes: The table presents the estimation results to test for the credit risks channel. The dependent

variable in column 1 is the firms’ likelihood to exit the sample as a proxy for the probabilities of firm

default or bankruptcy. The dependent variable in column 2 is a dummy indicating negative EBIT. The

dependent variable in column 3 is a dummy for a high financial stress level, defined as 1 if a firm has a

low-interest coverage ratio (ICR), calculated as EBIT divided by interest expenses to measure how well

a firm can pay the interest due on outstanding debt. All RHS variables are lagged by one year. All

regressions include fixed effects as specified. The sample starts in 2003 and ends in 20l9. The detailed

firm-level variable definitions are described in Table A1. Robust standard errors clustered at the firm

level are reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.

7 A Simple Model of Bank Portfolio Choice for Green

and Brown Firm

Our findings overall support the divesting hypothesis H1A, which suggests that banks divest

from firms with high exposure to physical or transition risks. To rationalize this empirical

finding that banks allocate fewer credits and divest from firms exposed to high physical and

transition risks due to financial and non-financial motivations, we present a simple partial

equilibrium model that analyzes the optimal portfolio allocation for a bank that can lend to

a green firm (lower exposure to physical risks, transition risks, or interaction of both risks) or

a brown firm (higher exposure firms) or invest in a risk-free asset. As climate risks can affect

both the mean return and volatility of the firm’s profitability (Huang et al., 2018; Pham

et al., 2023; Bonato et al., 2023), we assume that banks perceive that the green firm has a

higher expected return and lower volatility than the brown firm. We also incorporate a green

preference parameter for the bank’s non-financial motives in prioritizing green investments
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(Pedersen et al., 2021).

Specifically, we consider that a bank can adjust the weight/share of total loan lending to

a green firm (wg), a brown firm (wg), and a risk-free asset (wf ), with the expected returns

denoted as µg, µb, and rf respectively. The volatility for green and brown firms is σg and

σb, with ρ representing the correlation coefficient between the returns of the green and

brown firms. We assume that µg > µb while σg <σb. The bank’s risk aversion parameter is

denoted as λ, and α represents the green preference parameter, where a higher value of α

indicates a stronger preference for the green firm (we assume α ≥ 0). Using a simple mean-

variance framework, the bank’s objective is to maximize the portfolio’s expected return while

minimizing risk and incorporating the preference for green investments. The utility function

of the bank is given by:

U = wTµ− λ

2
wTΣw + αwg

s.t.

wg + wb + wf = 1

wg, wb, wf ≥ 0

As shown in the proof Appendix A, we can then solve the closed-form solutions for the

optional weight for allocating to green firm (wg) and brown firm (wb):

wg =
σ2
b (µg − rf )− ρσgσb(µb − rf ) + ασ2

b

λ(σ2
gσ

2
b − ρ2σ2

gσ
2
b )

wb =
σ2
g(µb − rf )− ρσgσb(µg − rf )

λ(σ2
gσ

2
b − ρ2σ2

gσ
2
b )

To directly compare wg and wb, we calculate the difference wg − wb:

wg − wb =
σ2
b (µg − rf )− σ2

g(µb − rf ) + ασ2
b + ρσgσb(µg − µb)

λ(σ2
gσ

2
b − ρ2σ2

gσ
2
b )

Given the assumption that µg > µb, the weight allocated to the green firm (wg) is higher

than the weight allocated to the brown firm (wb) as the term σ2
b (µg−rf ) in the numerator of

wg increases the weight of the green firm more than the corresponding term σ2
g(µb−rf ) in the

numerator of wb. Furthermore, given that green firms are perceived to have lower volatility

(σg < σb), this further reduces the denominator λ(σ2
gσ

2
b − ρ2σ2

gσ
2
b ), and increase wg. Lastly,

the parameter α directly increases wg, showing the bank’s preference for green investments.

As a result, the bank’s optimal portfolio allocation will tilt a higher share of loans to green

firms than to brown firms due to the financial attractiveness of the green firms from a risk
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and return perspective, as well as ethical preferences for sustainable investments.

8 Conclusion

Existing research on banking has highlighted that large global banks are beginning to con-

sider physical and transition risks, typically through syndicated loans to large publicly listed

firms (Meisenzahl, 2023; Faiella and Natoli, 2019a; Kacperczyk and Peydró, 2022; Reghezza

et al., 2022). However, there is limited understanding of how smaller and regional banks

adjust their lending practices, particularly concerning small and medium-sized enterprises

(SMEs) and privately held firms. Furthermore, current studies often isolate the impacts

of physical and transition risks despite their interconnected nature and potential for com-

pounding effects.

In this paper, we examine whether and to what extent banks integrate both physical and

transition risks, along with their interactions, into their lending decisions, using comprehens-

ive firm-bank matched data from Denmark, which includes a diverse range of firms, with

a particular focus on SMEs, and banks of varying sizes. We find evidence that banks are

more likely to decrease the amount of credit they provide to high-exposure firms rather than

stop lending to them completely. The overall effect on credit growth is modest, with limited

evidence affecting the extensive margin. We also find a nuanced response to the interaction

of physical and transition risks from banks, which seem to favor firms with slightly lower

combined risks. We further explore the heterogeneity of observed credit allocation among

different characters, summarized as follows: 1) smaller firms show heightened sensitivity to

physical risks and the combined effect of physical and transition risks. 2) banks are more

restrictive in lending to highly leveraged firms exposed to physical risks, likely due to these

firms’ limited financial buffer to absorb shocks from climate-related disasters. 3) banks are

less inclined to increase lending growth or initiate new loans for high capital-intensive firms

facing significant physical risks. Furthermore, we empirically examine both the credit de-

mand and supply sides and find that the observed reduction in credit is likely to be driven

by banks’ reactions to rising climate risks, which can stem from financial considerations,

as banks perceive firms facing high climate risks as experiencing greater financial stress

and credit risks. Lastly, we use a simple model of bank portfolio choice to rationalize our

empirical finding.

Our study contributes to the empirical sustainable banking literature by providing evid-

ence for banks’ response to climate risks based on a unique sample consisting of all firm-size

and bank-size distribution, which allows us to assess how smaller banks adjust lending to

smaller firms in response to climate risks. We also shed light on how banks incorporate
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both types of climate risks, physical and transition risks (and their interactions), providing a

more complete evaluation of climate risks. Our results are consistent with the finding using

global syndicating loans (Kacperczyk and Peydró, 2022; Mueller and Sfrappini, 2022), and

respond to the concerns raised by policymakers regarding the potential financial stability

issues imposed by climate risks (ECB, 2021b; Fed, 2021).

46



References

Accetturo, A., Barboni, G., Cascarano, M., Garcia-Appendini, E., and Tomasi, M. (2022). Credit

supply and green investments. University of Warwick, Centre for Competitive Advantage in the

Global Econo.

Albuquerque, R., Koskinen, Y., and Zhang, C. (2019). Corporate social responsibility and firm

risk: Theory and empirical evidence. Management science, 65(10):4451–4469.

Altavilla, C., Boucinha, M., Pagano, M., and Polo, A. (2023). Climate risk, bank lending and

monetary policy. Bank Lending and Monetary Policy (October 18, 2023).

Antoniou, F., Delis, M. D., Ongena, S. R. G., and Tsoumas, C. (2020). Pollution permits and

financing costs. SSRN Electronic Journal.

Ardia, D., Bluteau, K., Boudt, K., and Inghelbrecht, K. (2022). Climate change concerns and the

performance of green vs. brown stocks. Management Science.

Aslan, C., Bulut, E., Cepni, O., and Yilmaz, M. H. (2022). Does climate change affect bank lending

behavior? Economics Letters, 220:110859.

Baker, M., Bergstresser, D., Serafeim, G., and Wurgler, J. (2022a). The pricing and ownership of

us green bonds.

Baker, M., Egan, M. L., and Sarkar, S. K. (2022b). How do investors value esg?

Bakkar, Y. (2023). Climate risk and bank capital structure. Available at SSRN 4523842.

Baldauf, M., Garlappi, L., and Yannelis, C. (2020). Does Climate Change Affect Real Estate

Prices? Only If You Believe In It. The Review of Financial Studies, 33(3):1256–1295.

Barth, J. R., Hu, Q., Sickles, R., Sun, Y., and Yu, X. (2024). Direct and indirect impacts of natural

disasters on banks: A spatial framework. Journal of Financial Stability, 70:101194.

Battiston, S., Dafermos, Y., and Monasterolo, I. (2021). Climate risks and financial stability.

Benincasa, E., Kabas, G., and Ongena, S. (2022). “There Is No Planet B”, But for Banks “There

Are Countries B to Z”: Domestic Climate Policy and Cross-Border Lending.

Bernstein, A., Billings, S. B., Gustafson, M. T., and Lewis, R. (2022). Partisan residential sorting

on climate change risk. Journal of Financial Economics, 146(3):989–1015.

Bernstein, A., Gustafson, M. T., and Lewis, R. (2019). Disaster on the horizon: The price effect of

47



sea level rise. Journal of Financial Economics, 134(2):253–272.

Beyene, W., De Greiff, K., Delis, M. D., and Ongena, S. (2021). Too-big-to-strand? bond versus

bank financing in the transition to a low-carbon economy.

BIS (2021). Climate-related risk drivers and their transmission channels.

Bolton, P., Halem, Z., and Kacperczyk, M. (2022). The financial cost of carbon. Journal of Applied

Corporate Finance, 34(2):17–29.

Bolton, P. and Kacperczyk, M. (2021). Do investors care about carbon risk? Journal of financial

economics, 142(2):517–549.

Bolton, P. and Kacperczyk, M. (2023). Global pricing of carbon-transition risk. The Journal of

Finance, 78(6):3677–3754.

Bolton, P., Wang, N., and Yang, J. (2019). Investment under uncertainty with financial constraints.

Journal of Economic Theory, 184:104912.

Bonato, M., Cepni, O., Gupta, R., and Pierdzioch, C. (2023). Climate risks and state-level stock

market realized volatility. Journal of Financial Markets, 66:100854.

Broccardo, E., Hart, O., and Zingales, L. (2022). Exit versus voice. Journal of Political Economy,

130(12):3101–3145.

Bu, D., Keloharju, M., Liao, Y., and Ongena, S. R. G. (2023). Value-Driven Bankers and the

Granting of Credit to Green Firms. SSRN Electronic Journal.

Carney, M. (2015). Breaking the tragedy of the horizon–climate change and financial stability.

Speech given at Lloyd’s of London, 29:220–230.

Chabot, M. and Bertrand, J.-L. (2023). Climate risks and financial stability: Evidence from the

european financial system. Journal of Financial Stability, 69:101190.

Chava, S. (2014). Environmental externalities and cost of capital. Management science, 60(9):2223–

2247.

Cortés, K. R. and Strahan, P. E. (2017). Tracing out capital flows: How financially integrated

banks respond to natural disasters. Journal of Financial Economics, 125(1):182–199.

De Borger, B., Mulalic, I., and Rouwendal, J. (2019). Productivity effects of an exogenous im-

provement in transport infrastructure: accessibility and the great belt bridge.

De Haas, R. (2023). Sustainable banking. Available at SSRN 4620166.

48
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APPENDIX

A Additional proof

To maximize the utility function subject to the constraints, we set up the Lagrangian func-

tion:

L = wgµg+wbµb+(1−wg−wb)rf−
λ

2

(
w2

gσ
2
g + w2

bσ
2
b + 2wgwbρσgσb

)
+αwg+γ(wg+wb+wf−1)

We can then solve for the optimal weights by taking the partial derivatives and differen-

tiate L with respect to wg, wb, and γ.

∂L
∂wg

= µg − rf − λ(wgσ
2
g + wbρσgσb) + α + γ = 0

∂L
∂wb

= µb − rf − λ(wbσ
2
b + wgρσgσb) + γ = 0

∂L
∂γ

= wg + wb + wf − 1 = 0

Solving for the equations:

First, we can isolate γ:

γ = λ(wgσ
2
g + wbρσgσb)− µg + rf − α

γ = λ(wbσ
2
b + wgρσgσb)− µb + rf

Equate the two expressions for γ:

λ(wgσ
2
g + wbρσgσb)− µg + rf − α = λ(wbσ

2
b + wgρσgσb)− µb + rf

Simplify and solve for wg and wb:

λwgσ
2
g + λwbρσgσb − µg + rf − α = λwbσ

2
b + λwgρσgσb − µb + rf

Rearranging terms:

λwg(σ
2
g − ρσgσb) = λwb(σ

2
b − ρσgσb) + µg − µb + α
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Isolate wg:

wg =
λwb(σ

2
b − ρσgσb) + µg − µb + α

λ(σ2
g − ρσgσb)

Substitute wg back into the budget constraint wg + wb + wf = 1:

λwb(σ
2
b − ρσgσb) + µg − µb + α

λ(σ2
g − ρσgσb)

+ wb + wf = 1

After solving the above equation for wg and wb, we get the closed-form solutions:

wg =
σ2
b (µg − rf )− ρσgσb(µb − rf ) + ασ2

b

λ(σ2
gσ

2
b − ρ2σ2

gσ
2
b )

wb =
σ2
g(µb − rf )− ρσgσb(µg − rf )

λ(σ2
gσ

2
b − ρ2σ2

gσ
2
b )
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B Additional tables

Table A2: Climate Risks and Loan Growth: Alternative Measures of Loan Growth

Log(loans) Logarithmic Growth Positive Loan Growth

(1) (2) (3)

Physical Risks -0.025* -2.163** -0.266

(0.014) (0.951) (0.268)

Transition Risks -0.010 -3.009** -0.876***

(0.011) (1.284) (0.223)

Firm Fixed Effects Yes Yes Yes

Time Fixed Effects Yes Yes Yes

Bank Fixed Effects Yes Yes Yes

Parish Fixed Effects Yes Yes Yes

2-digit Industry Fixed Effects Yes Yes Yes

Firm Variables Yes Yes Yes

Bank Variables Yes Yes Yes

Mean Y 12.888 13.037 38.314

R-sq 0.565 0.089 0.155

N 162,871 150,699 187,760

Notes: The table presents the estimation results for the effects of physical and transition risks on al-

ternative growth measures from OLS regressions. The dependent variable in column 1 is the log of loan

amounts log(loanibt). In column 2, the dependent variable is the logarithmic growth of loans in percent-

age points, calculated as log(loanibt) − log(loanibt−1) × 100. Due to the presence of zero values in the

loan account balances, taking the logarithm results in these observations being treated as missing data,

reducing the number of observations in the estimation. In column 3, we focus on positive loan growth,

setting negative loan growth to zero. The main independent variables are physical risks indicators and

transition risks indicators. All RHS variables are lagged by one year. All regressions include fixed effects

as specified. The sample starts in 2003 and ends in 20l9. The detailed firm-level and bank-level control

variable definitions are described in Table A1. Robust standard errors clustered at the firm level are

reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.
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Table A3: Climate Risks and Lending: Interactions of Physical and Transition Risks

Loan Growth New Loans

(1) (2) (3) (4)

Low PR x Low TR 2.749* 2.741* 0.009* 0.009*

(1.460) (1.475) (0.005) (0.006)

High PR x Low TR -2.133 -1.717 -0.003 0.000

(1.599) (1.635) (0.006) (0.006)

Low PR x High TR 1.713 1.369 0.009* 0.006

(1.356) (1.356) (0.005) (0.006)

High PR x High TR -1.844 -1.464 -0.007 -0.006

(1.413) (1.412) (0.006) (0.006)

Firm Fixed Effects Yes Yes Yes Yes

Time Fixed Effects Yes Yes

Bank Fixed Effects Yes Yes

Parish Fixed Effects Yes Yes

2-digit Industry Fixed Effects

2-digit Industry-Time Fixed Effects Yes Yes

Bank-Time Fixed Effects Yes Yes

Firm Variables Yes Yes Yes Yes

Bank Variables Yes Yes

Mean Y -14.069 -14.130 0.383 0.383

R-sq 0.087 0.123 0.140 0.171

N 189,142 187,700 220,890 219,167

Notes: The table presents the estimation results for banks’ lending response to high (low) physical

risks and transition risks exposure from OLS regressions, with extreme risks defined based on a moving

distribution over time. In columns 1-2, the dependent variable is the loan growth in percentage points

of firm i received from bank b in a given year t, calculated as (loanibt−loanibt−1)
(0.5×loanibt+0.5×loanibt−1)

× 100%. The

dependent variable in columns 3-4 is a 0/1 dummy variable indicating whether a given firm received new

loans from a given bank b in a given year. High PR and Low TR are set to 1 if the respective risk indicator

for physical or transition risks falls into the top 75th quantile of the distribution in a given year. Low

PR and Low TR are then defined as one if the risk falls into the bottom 25th quantile of the distribution

in a given year. The main independent variables are the four dummies, indicating the extremely high

and low physical and transition risks. All RHS variables are lagged by one year. All regressions include

fixed effects and control variables as specified. The sample starts in 2003 and ends in 20l9. The detailed

firm-level and bank-level control variable definitions are described in Table A1. Robust standard errors

clustered at the firm level are reported in parentheses in all columns. Significance levels: ***1%, **5%,

*10%.
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Table A4: Climate Risks and Lending: Response to the Tail Risks, Fixed Distribution

Loan Growth New Loans

(1) (2) (3) (4)

High PR -2.207** -1.977** -0.005 -0.004

(0.969) (0.973) (0.004) (0.004)

High TR -2.907*** -2.660** -0.005 -0.007

(1.018) (1.095) (0.004) (0.004)

Low PR 0.023 0.097 0.002 0.002

(0.992) (1.017) (0.004) (0.004)

Low TR 0.952 0.79 -0.003 -0.002

(1.001) (1.042) (0.004) (0.004)

Firm Fixed Effects Yes Yes Yes Yes

Time Fixed Effects Yes Yes

Bank Fixed Effects Yes Yes

Parish Fixed Effects Yes Yes

2-digit Industry Fixed Effects

2-digit Industry-Time Fixed Effects Yes Yes

Bank-Time Fixed Effects Yes Yes

Firm Variables Yes Yes Yes Yes

Bank Variables Yes Yes

Mean Y -14.069 -14.130 0.383 0.383

R-sq 0.087 0.123 0.140 0.171

N 189,142 187,700 220,890 219,167

Notes: The table presents the estimation results for banks’ lending response to the tail physical and

transition risks from OLS regressions, with the tail risks defined based on a fixed distribution. In columns

1-2, the dependent variable is the loan growth in percentage points of firm i received from bank b in a

given year t, calculated as (loanibt−loanibt−1)
(0.5×loanibt+0.5×loanibt−1)

× 100%. The dependent variable in columns 3-4 is a

0/1 dummy variable indicating whether a given firm received new loans from a given bank b in a given

year. High PR and Low TR are set to 1 if the respective risk indicator for physical or transition risks

falls into the top 75th quantile of the distribution for the entire sample. Low PR and Low TR are then

defined as one if the risk falls into the bottom 25th quantile of the distribution for the entire sample.

The main independent variables are the four dummies, indicating the extremely high and low physical

and transition risks. All RHS variables are lagged by one year. All regressions include fixed effects and

control variables as specified. The sample starts in 2003 and ends in 20l9. The detailed firm-level and

bank-level control variable definitions are described in Table A1. Robust standard errors clustered at the

firm level are reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.
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Table A5: Climate Risks and Lending: Response to the Tail Risks

Loan Growth New Loans

(1) (2) (3) (4)

High PR -1.401* -1.583* -0.005 -0.005

(0.846) (0.855) (0.003) (0.003)

High TR -3.094*** -2.713*** -0.007* -0.008**

(0.994) (1.018) (0.004) (0.004)

Low PR 2.210*** 1.860** 0.009*** 0.008**

(0.773) (0.785) (0.003) (0.003)

Low TR 0.057 0.106 -0.001 0.001

(1.162) (1.218) (0.004) (0.004)

Firm Fixed Effects Yes Yes Yes Yes

Time Fixed Effects Yes Yes

Bank Fixed Effects Yes Yes

Parish Fixed Effects Yes Yes

2-digit Industry Fixed Effects

2-digit Industry-Time Fixed Effects Yes Yes

Bank-Time Fixed Effects Yes Yes

Firm Variables Yes Yes Yes Yes

Bank Variables Yes Yes

Mean Y -14.069 -14.130 0.383 0.383

R-sq 0.087 0.123 0.140 0.171

N 189,142 187,700 220,890 219,167

Notes: The table presents the estimation results for banks’ lending response to the tail physical and

transition risks from OLS regressions, with extreme risks defined based on a moving distribution. In

columns 1-2, the dependent variable is the loan growth in percentage points of firm i received from bank

b in a given year t, calculated as (loanibt−loanibt−1)
(0.5×loanibt+0.5×loanibt−1)

× 100%. The dependent variable in columns

3-4 is a 0/1 dummy variable indicating whether a given firm received new loans from a given bank b in

a given year. High PR and Low TR are set to 1 if the respective risk indicator for physical or transition

risks falls into the top 75th quantile of the distribution in a given year. Low PR and Low TR are then

defined as one if the risk falls into the bottom 25th quantile of the distribution in a given year. The

main independent variables are the four dummies, indicating the extremely high and low physical and

transition risks. All RHS variables are lagged by one year. All regressions include fixed effects and control

variables as specified. The sample starts in 2003 and ends in 20l9. The detailed firm-level and bank-level

control variable definitions are described in Table A1. Robust standard errors clustered at the firm level

are reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.

61



Table A6: Climate Risks and Lending: Firm Size Heterogeneity

Loan Growth New Loans Loan Growth New Loans Loan Growth New Loans

(1) (2) (3) (4) (5) (6)

Physical Risks -1.333** -0.004** -1.422*** -0.005** -1.586*** -0.005***

(0.518) (0.002) (0.535) (0.002) (0.500) (0.002)

Transition Risks -2.236*** -0.001 -2.238*** -0.001 -2.237*** (0.001)

(0.529) (0.001) (0.537) (0.001) (0.550) (0.001)

Physical Risks x Transition Risks -0.544 -0.001 -2.950** -0.002 -1.803 0.000

(1.324) (0.001) (1.437) (0.001) (1.229) (0.003)

Small x Physical Risks -1.127* -0.004

(0.649) (0.002)

Small x Transition Risks 0.353 0.001

(0.571) (0.002)

Small x Physical Risks x Transition Risks -3.944** -0.003

(1.859) (0.006)

Medium x Physical Risks -0.312 0.001

(0.572) (0.002)

Medium x Transition Risks -0.446 -0.005*

(1.068) (0.003)

Medium x Physical Risks x Transition Risks 2.217 0.003

(2.213) (0.005)

Large x Physical Risks 4.361* 0.007

(2.236) (0.008)

Large x Transition Risks -1.491 0.004

(4.545) (0.006)

Large x Physical Risks x Transition Risks 2.325 -0.010

(3.724) (0.016)

Firm Fixed Effects Yes Yes Yes Yes Yes Yes

Time Fixed Effects Yes Yes Yes Yes Yes Yes

Bank Fixed Effects Yes Yes Yes Yes Yes Yes

Firm Variables Yes Yes Yes Yes Yes Yes

Bank Variables Yes Yes Yes Yes Yes Yes

Mean Y -13.969 0.384 -13.969 0.384 -13.969 0.384

R-sq 0.088 0.141 0.088 0.141 0.088 0.141

N 183,479 214,263 183,479 214,263 183,479 214,263

Notes: The table presents the estimation results for the sensitivity of firm size heterogeneity on banks’

lending response to climate risks. In column 1,3,5, the dependent variable is the loan growth in percentage

points of firm i received from bank b in a given year t, calculated as (loanibt−loanibt−1)
(0.5×loanibt+0.5×loanibt−1)

× 100%,

for the intensive margin. The dependent variable in column 2,4,6 is a 0/1 dummy variable indicating

whether a given firm received new loans from a given bank b in a given year for the extensive margin.

Large firms are defined as having more than 250 full-time equivalent workers; small firms are defined

as those with fewer than 20 employees; medium firms are classified as firms in between. All regressions

include fixed effects and control variables as specified. The sample starts in 2003 and ends in 20l9. The

detailed firm-level and bank-level control variable definitions are described in Table A1. Robust standard

errors clustered at the firm level are reported in parentheses in all columns. Significance levels: ***1%,

**5%, *10%.

62



Table A7: Climate Risks and Lending: Financial Leverage and Capital Intensity

Loan Growth New Loans Loan Growth New Loans

(1) (2) (3) (4)

Physical Risks -1.186** -0.004* -1.165** -0.004*

(0.526) (0.002) (0.528) (0.002)

Transition Risks -2.147*** -0.001 -2.222*** -0.001

(0.557) (0.001) (0.549) (0.001)

Physical Risks x Transition Risks 1.875 -0.001 -1.238 -0.002

(1.181) (0.001) (1.876) (0.001)

High Leverage x Physical Risks -1.422*** -0.005**

(0.540) (0.002)

High Leverage x Transition Risks 0.971 -0.004

(0.908) (0.003)

High Leverage x Physical Risks x Transition Risks -5.574*** -0.002

(1.808) (0.004)

High Capital Intensity x Physical Risks -1.615*** -0.006***

(0.608) (0.002)

High Capital Intensity x Transition Risks 1.841* 0.002

(1.082) (0.004)

High Capital Intensity x Physical Risks x Transition Risks -0.242 0.003

(2.249) (0.004)

Firm Fixed Effects Yes Yes Yes Yes

Time Fixed Effects Yes Yes Yes Yes

Bank Fixed Effects Yes Yes Yes Yes

Firm Variables Yes Yes Yes Yes

Bank Variables Yes Yes Yes Yes

Mean Y -13.969 0.384 -13.97 0.384

R-sq 0.088 0.141 0.088 0.141

N 183,479 214,263 183,457 214,229

Notes: The table presents the estimation results for the sensitivity of financial leverage and capital

intensity heterogeneity on banks’ lending response to climate risks. In column 1 and 3, the dependent

variable is the loan growth in percentage points of firm i received from bank b in a given year t, calculated

as (loanibt−loanibt−1)
(0.5×loanibt+0.5×loanibt−1)

× 100%, for the intensive margin. The dependent variable in column 2 and

4 is a 0/1 dummy variable indicating whether a given firm received new loans from a given bank b in

a given year for the extensive margin. High financial leveraged firms are defined if the leverage ratio is

above 50% quantiles, while high capital intensity is defined if the share of fixed assets as a fraction of total

assets is above 50% quantiles. All regressions include fixed effects and control variables as specified. The

sample starts in 2003 and ends in 20l9. The detailed firm-level and bank-level control variable definitions

are described in Table A1. Robust standard errors clustered at the firm level are reported in parentheses

in all columns. Significance levels: ***1%, **5%, *10%.
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Table A8: Climate Risks and Loan Growth: Adding ILST Fixed Effects

Loan Growth

(1) (2) (3)

Physical Risks -0.557 -0.807 -0.975

(0.533) (0.769) (0.964)

Transition Risks -1.352*** -1.534*** -1.681**

(0.393) (0.456) (0.839)

Parish Fixed Effects Yes Yes

2-digit Industry-Time Fixed Effects Yes

Bank-Time Fixed Effects Yes Yes Yes

Bank-Firm Fixed Effected Yes Yes Yes

Industry-Location-Size Fixed Effects (ILS) Yes

Industry-Location-Time Fixed Effects (ILT) Yes

Industry-Location-Size-Time Fixed Effects (ILST) Yes

Firm Variables Yes Yes Yes

Mean Y -10.315 -10.421 -10.556

R-sq 0.217 0.304 0.396

N 206,903 198,441 182,448

Notes: The table presents the estimation results for the climate risks and loan growth with granular

high-dimensional fixed effects. The dependent variable is the loan growth in percentage points of firm i

received from bank b in a given year t, calculated as (loanibt−loanibt−1)
(0.5×loanibt+0.5×loanibt−1)

× 100%, for the intensive

margin. We saturate the model with Industry-Location-Size Fixed Effects (ILS) in column 1, Industry-

Location-Time Fixed Effects (ILT) in column 2, and Industry-Location-Size-Time Fixed Effects (ILST)

in column 3. All regressions include fixed effects and control variables as specified. The sample starts in

2003 and ends in 20l9. The detailed firm-level and bank-level control variable definitions are described in

Table A1. Robust standard errors clustered at the firm level are reported in parentheses in all columns.

Significance levels: ***1%, **5%, *10%.
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Figure C.1: Number of Firms and Banks
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C Additional figures

Figure C.2: Share of Flood Risks by Parish

Notes: Based on flood risks in 20 years under IPCC RCP 4.5 scenario with a 100-year return period

aggregated at the parish level. The grey outlines are the boundaries for each small administrative

district. Source: author’s calculations, data provided by DTU management
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Figure C.3: The Weight Functions e−δxp,r for Different Values of δ
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Figure C.4: Emission Intensity Across Industry, 2019
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Figure C.5: Energy Mix in Denmark, 2022

Source: IEA and author’s own calculation

Figure C.6: Environmental Tax Across Industry (Scaled), 2019
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Figure C.7: Physical Risk Indicator by Parish over Time

(a) Physical risk indicator, 2009 (b) Change from 2009 to 2019

Notes: Physical risk indicator is an interaction between projected flood risks and historical extreme precip-
itation event intensity at the parish level, using distance weighted sum with decay parameter δ equals 0.06.
Flood risk measures the share of the parish that is exposed to 100-year-year flood events on the 20-year
horizon under the IPCC RCP 4.5 scenario; extreme precipitation is based on weather data from DMI.

Figure C.11: Share of Tangible Assets Across Industries
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69



Figure C.8: Sources of Identification: Variation Across Time

Figure C.9: Sources of Identification: Variation Across Firm
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Figure C.10: Interaction of Physical and Transition Exposure

Figure C.12: Number of Firms that Exit the Sample
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