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ABSTRACT

Cross-sectional anomalies and time-series market returns are jointly determined in

equilibrium, suggesting a necessity to unify the two central literatures for more

general understanding of asset pricing. Examining 44 non-U.S. countries, we find

that representative cross-sectional anomalies are mostly insignificant at the country

level, but become significant once aggregated to the supranational level. After ag-

gregation, supposedly “market-neutral” long-minus-short anomaly returns predict

developed-market returns, while “market-exposed” long-or-short anomaly returns

predict emerging-market returns. Furthermore, characteristics—foundational to

cross-sectional predictability—become useful in time-series predictability to some

extent after supranational aggregation as well. We rationalize international anomaly-

market links by decomposing them into novel measures of foundational market effi-

ciency concepts, including inter-temporal, systematic importance of mispricing, rel-

ative importance of price randomness, and asymmetric mispricing correction speed.

The first and the latter two factors shape the links differently across markets of dif-

ferent maturity. We address data-mining in testing international anomaly-market

linkages by assuming anomalies and their market-return predictability are both

data-mined domestically.
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I. Introduction

In financial research, the quest for decoding the predictability of stock returns stands at

the frontier. Within the vast expanse of this literature, two predominant strands emerge:

The first is primarily concerned with the prediction of cross-sectional stock returns, or in

simpler terms, the identification of anomalies (e.g., McLean and Pontiff (2016), Hou, Xue,

and Zhang (2020)). The second strand utilizes a range of economic and financial variables

to predict time-series market excess returns (e.g., Nelson (1976), Campbell (1987), Fama

and French (1988, 1989), Pástor and Stambaugh (2009)). Following the debate between

Engelberg et al. (2023) and Dong et al. (2022) on U.S.-based domestic evidence, there

has been a surge in interest in studying whether and how these two strands of literature

can be linked together.1 The answer to this question is pivotal as it sits at the potential

turning point of unifying two central stands of asset pricing literature. Given asset prices

are jointly determined in equilibrium in the cross section at the stock level and in the

time series at the macro level, the unification of these two fields is a necessary step for a

more general understanding of asset pricing and market efficiency.2

In this paper, we examine the links between anomalies and market returns by in-

vestigating a large set of representative anomalies and their relation with market excess

returns, using data from 44 countries, and across major alternative databases. Our in-

vestigation is characterized by several novel insights and methodologies. First, we aggre-

gate data across countries using market capitalization weighting to form “supranational”

level anomalies and market excess returns. Our findings reveal that these supranational

anomalies, which capture the mispricing forces operating over and beyond the borders of

countries, exhibit predictive patterns for market returns that significantly diverge from

those observed using conventional country-level analyses. This finding suggests the im-

portance of macro-, supranational-level, as opposed to micro-, country-level, inefficiency

in generating both anomalies and their links with the time-series macro-level market

returns, implying the superiority of considering supranational-level factors in develop-

ing international asset pricing models. Second, we reveal that anomaly-market links are

drastically different across developed markets vs. emerging markets–markets of differ-

ent maturity. Long-short anomaly returns, which are supposed to be “market-neutral”,

predict the market returns of the former while long or short anomaly returns predict

the market returns of the latter markets. Third, to understand international anomaly-

market links, we extend the theoretical framework of Dong et al. (2022) and, in particular,

1One year after the publication of both papers, the collective Google cites have reached 160. Engel-

berg et al. (2023) also won JFQA’s William Sharpe Best Paper Award.

2The necessity of this unification is analogous to the attempt in physics to unify quantum mechanics

governing the micro world and general relativity governing the macro world, as there should be a general

rule governing both micro and macro worlds.
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propose a novel decomposition of the anomaly-market linkage to extract cross-country

differences in market efficiency along three foundational dimensions: the inter-temporal

systematic importance of mispricing, the relative importance of price randomness, and

asymmetric mispricing correction speed. Fourth, following Engelberg et al. (2023), we

use market-wide anomaly characteristics to predict market returns and find that anomaly

characteristics can work at some extent after supranational aggregation. We explain the

difference between the predictive power of anomaly characteristics and anomaly returns in

the context of our framework. Fifth, we propose a novel approach to account for the data

mining concerns stemming from U.S. domestic data and show that our findings remain

even if we assume anomalies and their predictive power of market excess return are both

data-mined domestically. Finally, we provide the first international trading evidence, as

well as other results, to support the channels underlying our findings.

Our tests focus on 100 anomalies, primarily derived from Dong et al. (2022), which

discovers that these anomaly returns can predict the U.S. market return.3 We build

anomalies in two ways. The first way is a conventional, country-level approach, predom-

inantly used by prior literature, where anomalies are constructed within each country.

The second way is a supranational level approach, where we aggregate the returns of each

anomaly across all countries in a selected country set using each country’s lagged market

capitalization as the weight. Our study constitutes four sets of results.

In the first set of results, we start by verifying the replicability of anomalies abroad.

Our results show that only a small portion (17.49%) of anomalies can be successfully

replicated in each foreign country on average based on the 10% significance level. To the

extent that anomalies may capture mispricing, our finding suggests that anomalies are

very noisy proxies abroad for mispricing at the country level. However, after we aggre-

gate the anomalies at the supranational level by favoring the systematically important

countries through value weighting, replication rates substantially increase. In some cases,

most anomalies can be replicated.

We then examine the predictive ability of these anomaly returns on market excess

returns at both the country and supranational levels, connecting cross-sectional pre-

dictability with time-series market return predictability internationally. To alleviate the

issue of short time series in international data, we consider both out-of-sample (OOS)

and in-sample (IS) tests, the latter of which can be more powerful in small samples

(Inoue and Kilian (2005)). We primarily employ the simple predictor average shrinkage

method introduced in Dong et al. (2022), as it is the only method applicable for both out-

of-sample (OOS) and in-sample (IS) tests in a high-dimensional setting for aggregating

information across anomalies. The method is theoretically and empirically demonstrated

3In Internet Appendix Table A4, we check robustness using the 153 anomalies from Jensen et al.

(2023).
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to be the most robust method, under many reasonable conditions, for diversifying away

idiosyncratic noise and avoiding overfitting (e.g., Yuan and Zhou (2022); DeMiguel et al.

(2009)). Notwithstanding, we also employ a range of shrinkage techniques, including

forecast-combination and machine learning, and obtain robust results.

We find strikingly different patterns for supranational vs. country-level tests. In

out-of-sample (OOS) tests, the minimal significance of anomaly returns observed at the

country level may imply that anomaly returns at this level may also be ineffective in

forecasting country-specific market returns. In fact, the OOS statistics R2
OS indicate that

there is only moderate economic significance for developed countries like G6 (G7 countries

excluding the US) under one shrinkage method, with the maximum R2
OS reaching 1.40%.

In sharp contrast, at the supranational level, the OOS R2
OS, ranging from 0.91% to 6.92%,

are all sizable and statistically significant under all six shrinkage methods, exceeding the

0.5% threshold for economic significance (Campbell and Thompson (2008)). For IS tests,

although country-level predictability becomes stronger, it remains much weaker than

supranational-level predictability.

Overall, our first set of results advocates a supranational perspective on anomalies and

their linkage to market returns, departing from prior literature’s conventional country-

level perspective. The strong supranational performance is the result of several reasons.

First, the mispricing that is not only relevant for the cross section but also for the ag-

gregate time series, henceforth referred to as the intertemporal, systematic important

mispricing, is more likely to originate from economically more important countries. As

Samuelson’s Dictum dictates, the informational inefficiency is stronger at the more macro

level (see, e.g., Xiao et al. (2022), Xiao et al. (2023)). Second, value-weighted aggrega-

tion diversifies the noise at the country level and is more likely to capture systematically

important intertemporal mispricing that affects all countries.

In the second set of results, we extend the framework of Dong et al. (2022) to provide

novel insights into the relation between anomalies and market returns in the interna-

tional setting.4 Their framework outlines a data-generating process (DGP) to illustrate

the predictive capability of a representative long-short anomaly portfolio return. We first

identify a richer set of mechanisms embedded in their framework that can generate a

linkage between anomaly and market returns in the international setting than in the U.S.

setting. The first mechanism is mispricing correction persistence (MCP), where long and

short legs (extreme deciles) of anomalies capture salient mispricing that is persistently

corrected over extended periods of time. The second mechanism is the inter-temporally

systematic importance of the mispricing (ISIoM), in the sense that the correction of mis-

rpicing begins from the most salient, mispriced segment of the market–represented by

4This approach is more consistent with an interpretation that anomalies reflect mispricing. Whether

our findings can be explained in a risk-based framework is an interesting topic for future research.
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anomaly long or short legs–and gradually extends to the broad markets, consistent with

the view of prominent asset managers.5 These MCP and ISIoM mechanisms allow both

anomaly long and short legs to predict the market return. However, Dong et al. (2022)

show that overpricing appears to dominate underpricing in MCP and ISIoM in the U.S.

market such that only short-leg anomaly returns can predict the market return. It is

unclear whether overpricing dominance applies to the international markets. The third

mechanism explains why, counter-intuitively, the “supposedly market-neutral” long-short

anomaly return can be more powerful than the long or short anomaly return in predicting

the market return. This paradox arises because the U.S. market return encompasses a

significant martingale component, consistent with the conventional belief that the U.S.

market is informationally very efficient. Thus, exactly because the market is hard to

predict, the “market-neutral” long-short anomaly return helps filter out the noise intro-

duced by the unpredictable component. However, noise reduction comes with a cost:

long-short cancels out the MCP and ISIoM in both the short and long legs to some de-

gree. Consequently, whether long-short works better than long and short depends on the

interplay between the asymmetry of MCP and ISIoM vs. the relative importance of noise

in different country markets.

We then extend the data-generating framework to allow for heterogeneity around the

world. Central to our analysis is the decomposition of the “beta”, the predictive coefficient

of a representative long-short anomaly return. This decomposition yields three critical

components that reflect market efficiency along distinctive foundational notions. The first

component is β̃S, the coefficient of using the short-leg anomaly return to predict market

excess return. It reflects the inter-temporally systematic importance of the mispricing

(ISIoM) captured in the anomaly’s short leg. Under the assumption persistent mispricing

dominates transient mispricing, a more positive β̃S signifies greater inter-temporal sys-

tematic importance in the sense that the overpricing within the short-leg segment of the

market is informative about the overpricing in the aggregate market. In the international

context, the systematic importance of mispricing captured by anomaly long- or short-leg

returns differs across supranations.6 The second component is the “autocovariance ratio”,

measured as the autocovariance difference between the long- and the short-leg return, di-

vided by the autocovariance of the short-leg return. This ratio measures the asymmetry of

MCP, which reflects the asymmetry in the speed of mispricing correction in a country. A

negative value indicates overpricing is more slowly corrected than underpricing, which we

5For example, in the same year when Dong et al. (2022) was published, the legendary asset manager

Jeremy Grantham of GMO published a note stating that “at the end of the great bubbles [in history] it

seems as if the confidence termites attack the most speculative and vulnerable first and work their way

up, sometimes quite slowly, to the blue chips.”

6The systematic importance also differs across anomalies. See Dong et al. (2024) for a detailed

discussion.
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refer to as overpricing dominance. We find the ratio is negative for almost all countries,

suggesting that persistent bubbles are a more important mispricing concept in almost

all countries than persistent underpricing. This persistence-based notion of overpricing

dominance, which is informative about the horizon of bubbles, complements prior studies

focusing on the magnitude of overpricing and is critical for understanding market ineffi-

ciencies and bubbles (e.g., Hong et al. (2000), Stambaugh, Yu, and Yuan (2012, 2015),

Avramov et al. (2013), Baba Yara et al. (2020)). The third component is the “variance

ratio”, measured as the variance of the short-leg return divided by the variance of the

long-short portfolio return. We demonstrate analytically that a higher variance ratio in-

dicates a higher importance of the unpredictable component of a country’s stock market

prices relative to the country’s persistent, and thus predictable, overpricing component.

To the extent that price following a random walk is a foundational notion of market

efficiency, the variance ratio can be interpreted as a market-level measure of the relative

importance of price randomness of a country. Under the null random walk hypothesis, in

a market where all information is efficiently priced, we shall expect all variability in the

price to be unpredictable and none of it comes from mispricing correction.

Finally, we apply our decomposition to understanding how heterogeneity in market

efficiency across different supranations shapes the linkage between anomalies and market

returns. We triple-sort countries into supranations based on the above three components.

We then use the supranational-aggregated anomaly returns to predict the corresponding

market returns. We find that the supranation with high (low) values of all three compo-

nents, denoted as HHH (LLL), achieves the highest (lowest) OOS R2
OS as high (low) as

6.47 (-0.44), while the supranations with high values in two or one of the three components

obtain OOS R2
OS values that lie in between the HHH and LLL supranations.

In our third set of results, we delve deeper into the concept of supranational anomalies

more thoroughly by adopting a widely recognized division of the global market into two

distinct, non-overlapping groups: developed and emerging markets. This division is par-

ticularly relevant and economically meaningful in our context, as the two supranations

exhibit very different market maturity, which implies distinct values of the three compo-

nents of market efficiency based on our decomposition. Through this decomposition, we

uncover novel insights on how market maturity impacts the anomaly-market linkage.

We first examine the three-factor alpha of DLRZ100 anomalies in these two markets.

Existing works such as Jacobs (2016) use developed and emerging markets to proxy for

markets with different maturity and show that mature (i.e., developed) markets surpris-

ingly have equal or more significant mispricing than immature (i.e., emerging) markets.

On the surface, our results at the country level appear to be consistent with his conclu-

sion. Indeed, the three-factor alpha of the Emerging countries is smaller than that of the

Developed countries. However, when analyzed at the supranations level, both the three-

factor alpha in the Emerging supranation substantially rises, becoming 32% higher than
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that observed in the Developed supranation. This finding suggests that prior research

that uses a country-level analysis may have underestimated the macro, supranational-

level inefficiencies captured by emerging-market anomaly returns. The stark contrast

between the supranational and country-level analyses underscores the value of adopting

a supranational perspective to better understand anomalies and their linkage with the

market return.

We then examine anomaly returns’ predictability on their corresponding supranational

market returns. Counter-intuitively, the Emerging long-short anomaly returns, despite

being more significant than the Developed ones at the supranational level, lag far behind

the Developed supranation in forecasting market returns. However, a different pattern

emerges if we examine the long and short anomaly returns separately. Both long- and

short Emerging supranational anomaly returns strongly predict emerging-market returns,

generating OOS R2
OS of 3.60 and 3.69, respectively.

Next, we turn to the decomposition to understand the difference between developed

and emerging markets. We find that β̃S is significantly smaller whereas the value of

autocovariance ratio and the variance ratio are significantly higher in the Developed

supranation than those in the Emerging supranation. This suggests that although the

persistent overpricing captured by anomalies is systematically more important for the

Emerging supranation than in the Developed supranation, the speed of mispricing cor-

rection is much less asymmetric in the Emerging supranation. In other words, both

underpricing and overpricing are corrected slowly in emerging markets. Consequently,

the noise-reduction mechanism of the long-short return in the emerging supranation

is not very effective. Furthermore, the relative importance of price randomness is low

in the emerging supranation, further reducing the effectiveness of the noise-reduction

mechanism of the long-short return. However, unlike the Developed supranation, both

underpricing and overpricing captured by anomaly legs are inter-temporally, systemati-

cally important in the Emerging supranation. Taken together, while the inter-temporal

systematic importance of both overpricing and underpricing is stronger in less mature

markets, strengthening the predictive ability of both long and short-leg anomaly returns

on market returns, the less asymmetric speed in mispricing correction and the lower the

relative importance of price randomness weakens the linkage between long-minus-short

anomaly returns and market returns for less matured markets.

In the fourth set of results, we take the angle of Engelberg et al. (2023) and examine

whether the market-wide anomaly characteristics predict market returns internationally.

Given that characteristics are the central cross-sectional return predictors, Engelberg

et al. (2023) is well justified to examine the relation between characteristics and the

market return. To understand the predictive power of characteristics, we further extend

the data-generating framework. We show that characteristics introduce noise into time-

series prediction primarily due to a time-varying component unrelated to mispricing.
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The impact of this noise is exacerbated by the persistence nature of characteristics. The

persistence of characteristics may also capture a persistent difference in cross-sectional

returns, allowing them to be strong cross-sectional return predictors while being not useful

for the time-series prediction. In addition, we show anomaly characteristics become useful

in time-series predictability to some extent after supranational aggregation. Our findings

suggest that although anomaly characteristics could introduce more noise compared to

anomaly returns, supranational aggregation may still help mitigate them to some extent.

In the fifth set of results, we address data mining concerns, which are prevalent in the

cross-sectional literature (e.g., Harvey et al. (2016), Hou et al. (2020)). In the new liter-

ature bridging cross-sectional and time-series return predictability, there is a lack of any

approach to address date mining. We develop a novel approach to address such concerns

in this setting. Our approach allows to address two central data-mining concerns simul-

taneously or separately. First, anomalies are discovered in the US market. Second the

linkage between anomalies and the market return is also discovered in the US. market. In

the first version of our approach, we remove the components of supranational predictors

that co-move with their US counterparts, effectively treating domestic anomalies as com-

pletely data-mined ones. In the second, stronger version, we also remove the components

of supranational market excess returns that co-move with the US market excess return.

Given that our first set of results suggest that systematically important supranations

are likely to be the important contributors to the anomaly-market linkage, removing the

systematic important U.S. market return introduces a very strong adjustment. It essen-

tially assumes that the existence of U.S. anomalies and their linkage with the U.S. market

return are both data-mined. Even after both adjustments, we still observe that anomaly

returns can predict market returns abroad.

In the last set of results, we provide international evidence to support other testable

restrictions on the unique limits of arbitrage that generate the anomaly-market return

linkage. First, employing proprietary data, we provide the first comprehensive analysis

on the relation between anomaly returns and short selling at the market level in interna-

tional markets. Short selling is an archetypal form of arbitrage and particularly relevant

given overpricing dominance is one central mechanism underlying our findings. We find

that increase in supranational long-short anomaly returns predicts increase in market-

wide short selling in that supranation. The results support that high cross-sectional

anomaly returns foreshadow market-wide arbitrageurs’ correction of overpricing. Second,

we classify anomalies into subgroups using three proxies for limits of arbitrage: bid-ask

spread, idiosyncratic volatility, and market capitalization. We find that the long-short

returns of anomalies with relatively stronger (weak) limits of arbitrage in their short legs

than in their long legs display more (less) out-of-sample predictive ability for the market

return. Third, we segment the sample periods based on different friction measures. We
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find significant increases in out-of-sample market return predictability during periods of

heightened friction.

Literature and Contribution Our study contributes to a nascent but fast-growing

literature seeking to bridge or unify the cross-sectional anomaly literature and the time-

series market return predictability literature. Originating from a debate between Engel-

berg et al. (2023) and Dong et al. (2022), our study introduces fresh perspectives and

insights on this endeavour, resolving various puzzles on several aspects.

First, by contrasting results aggregated at the supranational level with those ob-

tained at the country level, we provide a novel perspective for future research to explore

anomalies and their relationship with market returns abroad. First, our supranational

aggregation highlights the critical role of systematically important mispricing across in-

dividual countries and the potential for noise diversification across nations. Second, the

supranational aggregation approach also yields new insights that were previously con-

sidered puzzling in the cross-sectional anomaly literature. For instance, the difference

between our supranational-level results and Jacobs (2016)’s result on the developed- vs.

emerging-market anomalies challenges the prior literature’s view on how market maturity

is related to anomalies. The high replication rate of anomalies internationally reported

in Jensen et al. (2023) is also largely attributable to supranational aggregation. Third,

the anomaly literature has predominantly focused on equal-weighted anomaly returns.

This focus overlooks the economic significance of mispricing and conflicts with the reality

that all asset pricing models use value-weighted factors and prioritize explaining away

the alphas of larger firms (e.g., Fama and French (1996)). Extending this equal-weighting

logic to the international literature, a great number of studies draw their inferences by

averaging anomaly results equally across countries, obscuring systematically important

international economic forces and counter-intuitively assuming each country is equally

important. We posit that the supranational aggregation approach offers a fresh perspec-

tive on numerous questions previously explored (and dismissed for lack of significance)

in the international literature.

Second, we extend the data-generating framework of Dong et al. (2022), and pro-

vide both theoretical explanations and empirical evidence on why anomaly returns can

be connected to market returns in different fashions in international markets, enrich-

ing the comprehension of anomaly-market linkages. We propose a decomposition that

introduces a novel and straightforward way to use anomalies to evaluate international

differences in market-level price efficiency across three foundational dimensions: inter-

temporal, systematic importance of mispricing, relative importance of price randomness,

and asymmetric mispricing correction speed. These anomaly-based efficiency measures

are straightforward to compute for international markets, where high-quality earnings

data have only become available in the recent decade. Our three market efficiency prox-
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ies also complement the widely-used measures from seminal papers, such as the price

informativeness measure of Bai et al. (2016), the variance ratio of Lo and MacKinlay

(1988), and the governance measure of Gompers et al. (2003).

Third, by examining evidence abroad, we contribute to the ongoing debate between

using anomaly characteristics (Engelberg et al. (2023)), versus anomaly returns (Dong

et al. (2022)). In the cross-sectional return predictability literature, the rivalry between

characteristics and betas has been a central topic (see Daniel and Titman (1997) and the

subsequent extensive body of research). In contrast, within the nascent field of anomaly-

market linkage, the current debate centers around characteristics vs. returns. On the one

hand, we offer insights into why characteristics might not perform as effectively as returns

in forecasting time-series market returns, yet still hold considerable value in predicting

cross-sectional returns. On the other hand, we also show that characteristics display some

market return predictability through supranational aggregation.

Fourth, by investigating the anomaly-market relationship in international contexts, we

offer out-of-sample evidence that addresses data mining concerns associated with findings

in the U.S. market. Methodologically, we introduce a novel approach to alleviate data

mining concerns in testing anomaly-market links.

II. Intuition on Predictability

In this section, we employ a stylized data-generating framework to provide intuition on

how long-short anomaly portfolio returns and aggregate anomaly characteristics predict

the market return.

A. Data-Generating Process

Assume that the prices for the long and short legs of a representative anomaly portfolio

are exposed to a common martingale component with period t increment ft, while the

long-leg (short-leg) price contains a stationary component uL,t ≤ 0 (uS,t ≥ 0) reflecting the

level of underpricing (overpricing), independent from the common martingale component.

The loading for the long leg on ft is kL and for the short leg on ft is kS.
kL
kS

= k which varies

across countries. The notion of mispricing inherently implies the existence of a stationary

component within the price structure, premised on the idea that any deviation due to

mispricing is temporary and eventually corrected, even though the adjustment towards

equilibrium may span multiple periods. The log return (in terms of price changes) in

each leg is then given by

rl,t = klft +∆ul,t for l = L, S, (1)
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where rL,t (rS,t) is the long-leg (short-leg) return, ∆ul,t is the change in mispricing, and

cov(ft,∆uL,t) = cov(ft,∆uS,t) = 0. Using equation (1), the long-short anomaly portfolio

return rLS,t can be expressed as

rLS,t = (kL − kS)ft +∆uL,t −∆uS,t. (2)

For expositional ease, assume that the long and short legs together comprise the market.

rM,t =
1

2
[(kL + kS)ft +∆uL,t +∆uS,t], (3)

where rM,t is the market return.7

According to the Wold representation theorem, the stationary component in each leg

related to mispricing (i.e., the pricing error) can be generally expressed as

ul,t =
∞∑
j=0

ψl,jvl,t−j for l = L, S, (4)

where ψl,0 = 1, vL,t ≤ 0 (vS,t ≥ 0) is a serially uncorrelated underpricing (overpricing)

shock, var(vl,t) ≥ 0,
∑∞

j=1 ψ
2
l,j < ∞ (square summability), and ψl,j ≥ 0 for j ≥ 1 (to

ensure that uL,t ≤ 0 and uS,t ≥ 0). For simplicity, we assume that vL,t and vS,t are

uncorrelated. When var(vL,t) = var(vS,t) = 0, there is no mispricing and hence the

market return in equation (3) reduces to rM,t = ft.

Equation (4) provides a comprehensive representation for the mispricing component

in each leg, as any stationary autoregressive moving-average (ARMA) process can be

expressed via the infinite-order moving average(MA) process. The equation expresses

the current-period level of mispricing upon both current and past mispricing shocks.

The MA process can be interpreted as an impulse-response function: ψl,j is the response

(ceteris paribus) of ul,t+j for j ≥ 0 to a period t unit mispricing shock.

Taking the first difference of equation (4), we derive a formula for the change in

mispricing as follows,

∆ul,t =
∞∑
j=0

ψ̃l,jvl,t−j for l = L, S, (5)

7Following much of the cross-sectional literature, the anomaly portfolios in Section IV are based on

stocks sorted into decile portfolios, and each long-short anomaly portfolio goes long (short) the tenth

(first) decile portfolio.
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where ψ̃l,0 = ψl,0 = 1 and ψ̃l,j = ψl,j − ψl,j−1 for j ≥ 1. To simplify the exposition, we

consider the mispricing correction assumption

ψ̃l,j = ψl,j − ψl,j−1 ≤ 0 for j ≥ 1, (6)

which suggests that due to sufficiently active arbitrage, the mispricing stemming from a

mispricing shock at period t will not increase in any subsequent period.

B. Mispricing Correction Persistence

Consider a predictive regression accessing the relationship between the current long-

or short-leg return of the anomaly portfolio and the next period’s market return:

rM,t+1 = αl + βlrl,t + εl,t+1 for l = S, L, (7)

where εl,t+1 is a zero-mean, serially uncorrelated disturbance term. Using equations (1)

and (3), the standardized slope coefficient in equation (7) is given by

β̃l =
0.5cov(∆ul,t+1,∆ul,t)

[k2l var(ft) + var(∆ul,t)]
0.5 for l = L, S. (8)

Equation (8) indicates that the predictive ability of the long- or short-leg return depends

on cov(∆ul,t+1,∆ul,t). Based on equation (5), the latter is given by

cov(∆ul,t+1,∆ul,t) =

[
(ψl,1 − 1) +

∞∑
j=1

(ψl,j − ψl,j−1)(ψl,j+1 − ψl,j)

]
var(vl,t) for l = L, S.

(9)

Our international empirical results generally indicate that β̃l > 0, so that cov(∆ul,t+1,∆ul,t) >

0, especially for the short leg. This means that mispricing in a country usually take more

than one month to correct, resulting in violation of both semi-strong and weak forms of

market efficiency.

To understand the conditions that produce cov(∆ul,t+1,∆ul,t) > 0, we can use equa-

tion (5) to write the changes in the level of mispricing for the current and next period

as

∆ul,t = vl,t +
∞∑
j=1

(ψl,j − ψl,j−1)vl,t−j for l = L, S, (10)

∆ul,t+1 = vl,t+1 + (ψl,1 − 1)vl,t +
∞∑
j=2

(ψl,j − ψl,j−1)vl,t+1−j for l = L, S, (11)
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respectively. Equations (10) and (11) show how a new (i.e., period t) pricing shock affects

the current and future changes in mispricing in opposite directions. Take an overpricing

shock (vS,t > 0) as an example. According to equation (10), such a shock at vS,t amplifies

the current overpricing, resulting in a positive change in overpricing for the period t.

Subsequently, the overpricing initiated by the period t shock is corrected in proportion

to ψS,1 − 1 ≤ 0 in period t+ 1, corresponding to a nonpositive change in overpricing, as

indicated by (11). Thus, the consecutive changes in mispricing due to a new overpricing

shock can generate negative serial dependence in the short-leg return. In contrast, old

pricing shocks (vS,t−j for j ≥ 1) can produce positive serial dependence in the short-leg

return. According to equations (10) and (11), the changes in overpricing corresponding

to these old shocks are nonpositive in consecutive periods; for example, the overpricing

associated with vS,t−1 is corrected in proportion to ψS,1 − 1 ≤ 0 in t and ψS,2 − ψS,1 ≤ 0

in t+ 1.

To sum up, the autocovariance between consecutive changes in mispricing, cov(∆uS,t+1,∆uS,t),

is determined by two opposing effects: (i) the extent to which the overpricing associated

with a new shock is corrected in the next period, and (ii) the extent to which the overpric-

ing associated with old overpricing shocks is corrected in the current and next periods.

These two effects are evident in the expression in brackets in equation (9), which ac-

counts for all of the consecutive pairs of return responses to new and old overpricing

shocks. The first term, ψS,1 − 1, is the product of the period t and period t + 1 re-

turn responses to a new unit overpricing shock, which captures the potential reversal

due to the immediate correction of the overpricing induced by the new shock. The

second term,
∑∞

j=1(ψS,j − ψS,j−1)(ψS,j+1 − ψS,j) ≥ 0, reflects the potential momentum

due to the persistent correction of the overpricing induced by old shocks. For example,

(ψS,1 − 1)(ψS,2 − ψS,1) is the product of the period t and period t+ 1 overpricing correc-

tions corresponding to a period t− 1 unit overpricing shock, (ψS,2 − ψS,1)(ψS,3 − ψS,2) is

the product of the period t and period t + 1 overpricing corrections corresponding to a

period t− 2 unit overpricing shock, and so forth.8

In order to have cov(∆uS,t+1,∆uS,t) > 0, the return momentum generated by the

correction of the overpricing induced by old shocks needs to outweigh the magnitude of

the return reversal generated by the immediate correction of the overpricing induced by

a new shock. When the momentum effect dominates the return reversal effect, MCP is

sufficiently strong that cov(∆uS,t+1,∆uS,t) > 0 in equation (9) and β̃S > 0 in equation

8As ψS,1 decreases, the degree of overpricing correction in the period immediately after the shock

increases, so that the magnitude of the reversal effect increases. In the extreme, ψS,1 = 0, which implies

that ψS,j = 0 for j ≥ 2, so that the overpricing shock fully corrects in one period and ψS,1 − 1 = −1. In

this case, the second term in brackets is zero and cov(∆uS,t+1,∆uS,t) = −var(vS,t) in equation (9).
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(8). This condition can be expressed as follows,

∞∑
j=1

(ψS,j − ψS,j−1)(ψS,j+1 − ψS,j) > −(ψS,1 − 1). (12)

An analogous condition to equation (12) applies to cov(∆uL,t+1,∆uL,t) and β̃L. Equation

(12) is consistent with various theoretical models that can explain strong MCP.9

Next, consider a predictive regression based on the long-short anomaly portfolio re-

turn:

rM,t+1 = αLS + βLSrLS,t + εLS,t+1. (13)

The standardized slope coefficient in equation (13) is given by

β̃LS =
0.5[cov(∆uL,t+1,∆uL,t)− cov(∆uS,t+1,∆uS,t)]

[(kL − kS)2var(ft) + var(∆uL,t) + var(∆uS,t)]
0.5 . (14)

Empirically, we find that for β̃LS < 0, which holds when

cov(∆uS,t+1,∆uS,t) > cov(∆uL,t+1,∆uL,t), (15)

in other words, when the MCP for overpricing exceeds underpricing. Our finding that

long-short anomaly portfolio returns negatively predict the market return using the global

data is consistent with the U.S. evidence in Dong et al. (2022). It is also in line with

the relative importance of overpricing in the U.S. market where Hong, Lim, and Stein

(2000), Stambaugh, Yu, and Yuan (2012, 2015), and Avramov et al. (2013) find that the

short legs of anomaly portfolios are largely responsible for the profitability of long-short

anomaly portfolio returns.

C. Noise Reduction

In our setup, the long-short anomaly portfolio return, which is designed to be “market

neutral”, can produce a better predictive signal for predicting the market return than the

short-leg return To see this, for simplicity, we assume in this and the next subsection that

β̃L = 0, which is in line with the relatively weak predictive ability of long-leg returns. In

9Andrei and Cujean (2017) show that when information about mispricing spreads among traders at

an accelerated rate, immediate correction of a current pricing error is dominated by the corrections of

previous pricing errors, resulting in return momentum. From a behavioral perspective, Chan, Jegadeesh,

and Lakonishok (1996), Daniel, Hirshleifer, and Subrahmanyam (1998), Hong and Stein (1999), and Da,

Gurun, and Warachka (2014) explain return momentum as underreaction to news. Gârleanu and Peder-

sen (2013, 2016) and Dong, Kang, and Peress (2020) show that various considerations lead arbitrageurs

to slowly allocate capital to correct mispricing.
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this case, cov(∆uL,t+1,∆uL,t) = 0, so equation (14) becomes

β̃LS
∣∣
β̃L=0

=
−0.5cov(∆uS,t+1,∆uS,t)

[(kL − kS)2var(ft) + var(∆uL,t) + var(∆uS,t)]
0.5 . (16)

The magnitude of β̃LS in equation (16) is greater than that of β̃S in equation (8) when

var(rLS,t) < var(rS,t), or equivalently, k
2
Svar(ft) > var(∆uL,t) + (kL − kS)

2var(ft). (17)

Intuitively, when k is close to 1 (kL − kS is close to 0), using rL,t − rS,t in lieu of rS,t

as the predictor in the predictive regression nearly removes the common unpredictable

component ft, thereby filtering noise from the predictor to provide a sharper predictive

signal for the market return. Thus, the natural design of “market neutral” actually

improves predictability by mitigating the unpredictable component ft. Consistent with

this intuition, we empirically find that var(rLS,t) is considerably smaller than var(rS,t).

D. Predictability Decomposition

Global data enables us to identify the variations in predictability across different

markets, with empirical evidence indicating superior predictive performance of long-short

anomaly returns in developed markets compared to emerging ones. To better understand

the driving force behind the diversity of international market excess return predictability,

we decompose the predictive coefficients derived above. We start with the negative ratio

of the standardized slope coefficient of the representative long-short anomaly return to the

standardized slope coefficient of its short-leg return based on (8) and (14). To expedite

exposition, we set kS = 1:

− β̃LS
β̃S

= −cov(∆uL,t+1,∆uL,t)− cov(∆uS,t+1,∆uS,t)

cov(∆uS,t+1,∆uS,t)

[
var(ft) + var(∆uS,t)

(k − 1)2var(ft) + var(∆uL,t) + var(∆uS,t)

]0.5
(18)

We define

autocovariance ratio =
cov(∆uL,t+1,∆uL,t)− cov(∆uS,t+1,∆uS,t)

cov(∆uS,t+1,∆uS,t)
(19)

and

variance ratio =
var(ft) + var(∆uS,t)

(k − 1)2var(ft) + var(∆uL,t) + var(∆uS,t)
(20)

14



Empirically, the “autocovariance ratio” can be easily calculated as the difference be-

tween the auto-covariance of the long leg return and that of the short leg return, divided

by the auto-covariance of the short leg return. Accordingly, the “variance ratio” can also

be easily calculated as the ratio of the variance of the short leg to that of the long-short

leg. In other words, we can measure them as follows using information from anomaly

portfolio return,

Autocovariance ratio =
ACOV (L)− ACOV (S)

ACOV (S)
(21)

V ariance ratio =
V AR(S)

V AR(LS)
(22)

where ACOV (L) (ACOV (S)) stands for the auto-covariance of the long (short) leg

anomaly return series and the V AR(S) (ACOV (LS)) stands for the variance of the

short-leg (long-short) anomaly return series. 10

Taking one step further, the autocovariance ratio can indicate asymmetric mispricing

correction persistence between the long and the short leg. For example, when there are

reasons like short-selling constraints that impede the pace of correction on the short-leg

overpricing, we shall expect more persistent correction in the short leg (reflected in a high

ACOV (S)) when compared to the long leg. Thus, a more negative autocovariance ratio

suggests more asymmetry in the correction persistence between the long-leg underpricing

and the short-leg overpricing.

Moreover, we can rewrite equation (20) as

variance ratio =

var(ft)

var(∆uS,t)
+ 1

(k − 1)2 var(ft)

var(∆uS,t)
+

var(∆uL,t)
var(∆uS,t)

+ 1
, where k =

kL
kS

(23)

With var(∆uL,t) and var(∆uS,t) being comparable and k approximates to 1, the vari-

ance ratio can be a good proxy of the ratio var(ft)

var(∆uS,t)
. The ratio var(ft)

var(∆uS,t)
is an indicator

of the relative importance of price randomness, as higher var(ft) and lower var(∆uS,t)

10The anomaly we refer to in this data-generating process is a representative anomaly that captures

the systematic mispricing correction of a particular market. We propose that one should first aggregate

the information from a group of anomaly returns (e.g., taking the average of the group of anomaly

returns) to reduce the noise in individual anomalies. Then use the aggregated return to calculate the

autocovariance and variance ratio in the equation above.
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means pricing variability comes more from the unpredictable component ft instead of the

mispricing-related ∆uS,t.

To sum up, we can rewrite equation (18) as

− β̃LS
β̃S

= −Autocovariance ratio ∗ (V ariance ratio)0.5 (24)

The autocovariance ratio is indicative of asymmetric mispricing correction persistence

between long and short-leg returns. The variance ratio serves as an indicator of price

randomness, where there’s higher variability in the unpredictable martingale component,

as opposed to the mispricing-related component.

After moving the β̃S to the right-hand side and taking the logarithm version of (24),

we have11:

log(−β̃LS) = log(β̃S) + log(−autocovariance ratio) + log(sqrt variance ratio) (25)

Therefore, we posit that the efficacy of the long-short anomaly is maximized under

conditions when (1) there’s a high value of β̃S, representing a high degree of systematic

importance of overpricing, (2) there’s significant asymmetry in the MCP between the long

and the short leg, fostering a “return momentum effect” for prediction, and (3)“long-

minus-short” effectively mitigates the influence of the large unpredictable martingale

component.

So far, we successfully decoded the relationship between long-short anomaly portfolio

returns and the market excess return, as well as explained the heterogeneity of the pre-

dictive power across different markets. More importantly, through the comparison in the

predictive power of market excess return, we provide a novel and straightforward way to

extract market efficiency information along three dimensions.

E. Aggregate Anomaly Characteristics

Now let’s switch to the anomaly characteristics and explore the way they forecast

the market excess return. Suppose that the characteristic cl,t is related to the mispricing

component in each leg as follows:

cl,t = ϕl + ul,t + ηl,t for l = L, S. (26)

11Based on our data generating process, the signs of−β̃LS and autocovariance ratio are both negative.

Thus, we put a negative sign in front of them before taking the logarithm transition.
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Here, ϕl is the unconditional property of the long- and short-leg stocks. For example,

the long-leg stocks have a higher beta than the short-leg stocks. ul,t is the time-varying

overpricing or underpricing (For simplicity, we set the coefficient on ul,t in Equation (26)

to unity.). ϕl and ul,t both help identify the stocks with high and low returns in the

cross-section, supporting the usefulness of sorting based on characteristics for predicting

cross-sectional returns. ηl,t is the component that is unrelated to mispricing. It can be

related to fundamentals that are immediately priced in, thus connecting to the martingale

component ft in the return process outlined in equation (1). More broadly, ηl,t can also

relate to some characteristic-specific attributes and be serially correlated. For example,

given that many characteristics are observed at frequencies lower than a month, ηl,t

can reflect the persistent stale information that is already priced in. Aggregating the

characteristic based on Equation (26), we have

ct = 0.5(cL,t + cS,t) = 0.5(ϕL + uL,t + ηL,t + ϕS + uS,t + ηS,t). (27)

Because many characteristics are fairly persistent or nearly nonstationary, they are unfit

for time-series predictive regression (Engelberg et al. (2023)). We de-trend the series by

taking the first difference of Equation (27):

∆ct = 0.5(∆uL,t +∆uS,t +∆ηL,t +∆ηS,t). (28)

For the new DGP, the standardized slope coefficient for a predictive regression relating

the difference of the aggregate characteristic in Equation (28) to next period’s market

return can be rewritten as

β̃∆c =
0.5[cov(∆uL,t+1,∆uL,t) + cov(∆uS,t+1,∆uS,t)]

[var(∆uL,t) + var(∆uS,t) + var(∆ηL,t) + var(∆ηS,t)]
0.5 . (29)

In line with the relatively weak predictive ability of long-leg returns, as in Section II.C,

we assume that cov(∆uL,t+1,∆uL,t) = β̃L = 0. Equation (29) then becomes

β̃∆c

∣∣
β̃L=0

=
0.5cov(∆uS,t+1,∆uS,t)

[var(∆uL,t) + var(∆uS,t) + var(∆ηL,t) + var(∆ηS,t)]
0.5 . (30)

Comparing the standardized slope coefficient in Equation (30) to that in Equation (16)

that uses the long-short return as the predictor, the presence of var(∆ηL,t) and var(∆ηS,t)

in the denominator of Equation (30) adds noise to the predictive signal, which dilutes

the predictive signal in Equation (30) compared to that in Equation (16). As a result,

the long-short return is a less noisy predictor of the next period’s market return than the

aggregate characteristic.
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Furthermore, the persistence of the uninformative component of the characteristic can

be attributed to the difference in the nature of data between characteristics and returns.

For example, many characteristics update less frequently than returns or rely on over-

lapping data, such as in the case of volatility- and beta-based anomalies. Consequently,

a significant portion of the monthly change in the characteristic could stem from some

redundant overlapping information that is already priced in. Indeed, we verify that most

of the characteristics are still persistent even after first differencing, suggesting that ∆ηL,t

and ∆ηS,t could be positively autocorrelated. For simplicity, let’s assume that they follow

an AR1 process. Under this assumption, var(∆ηL,t) and var(∆ηS,t) increases with the

degree of autocorrelation in ∆ηL,t and ∆ηS,t. Intuitively, the more persistent the unin-

formative component of a characteristic is, the greater the noise it introduces. This is

because more persistent noise revert less, thereby resulting in a bigger variance.

Finally, our data-generating process also provides one reason why characteristics can

still be effective in predicting the cross-sectional returns, even with the presence of timing-

varying noise from ηl,t. Indeed, the stable time-invariant information ϕl and the time-

varying information ul,t both provide information about the cross-section of returns. How-

ever, the former is not useful for predicting the time-varying return. As a result, akin

to the firm fixed effect, the time-invariant (or, loosely speaking, the highly persistent)

informative component about returns can work very well in predicting the cross-sectional

difference in returns but not the month-to-month time variation in returns.

III. Methodology

This section describes the construction of forecasts and their evaluation using both

statistical and economic criteria. We start with introducing the out-of-sample forecast,

following Dong et al. (2022). Then we cover in-sample forecast as well to increase the

sample size and power. All the following descriptions are based on the case of predicting

the market excess return of a particular market (either a supranation or a country) using

predictors from the same market.

A. Forecast Construction

Assume that we have multiple predictors (in our context, 100 long-short anomaly

portfolio returns) to forecast the market excess return (rM,t). To generate r̂M,t+1|t, a

forecast of the month t+1 market excess return, we use all information available through

month t. All of our market excess return forecasts are out of sample, as we only use data

available through month t to forecast rM,t+1.

When it comes to the forecast of market excess return, the most popular benchmark

in the literature so far is the prevailing mean forecast, which implicitly assumes that the
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market excess return is unpredictable (apart from its mean value). The prevailing mean

forecast is simply the average of the market excess return observations available at the

time of forecast formation. The prevailing mean forecast is difficult to beat in practice

(e.g., Goyal and Welch (2008)) due to the inherently small predictable component in

the monthly market excess return (i.e., return data are quite noisy). Thus, successful

out-of-sample strategies effectively shrink the market excess return forecast toward the

prevailing mean benchmark to reduce the likelihood of overreacting to the noise in return

data.

We compare the prevailing mean benchmark to the six forecasts summarized below,

each of which incorporates the information in the group of predictors.

Predictor Average An alternative strategy for guarding against overfitting is to first com-

bine the predictors themselves into a small number of variables and then use the reduced

set of variables as predictors in a low-dimensional predictive regression. Intuitively, as

discussed in Section II, we consolidate the predictors to filter the noise in the individual

predictors. The predictor average forecast is based on OLS estimation of a univariate

predictive regression in which the lagged cross-sectional average of the predictors serves

as the explanatory variable.

Principal Component We can also combine the predictors by extracting the first principal

component from the set of predictors. The principal component forecast uses the lagged

principal component as the explanatory variable in a univariate predictive regression

estimated via OLS.

PLS The first principal component explains as much variation as possible in the predic-

tors themselves. However, from a forecasting standpoint, we are interested in explaining

the target variable. Instead of extracting a factor that explains as much of the varia-

tion in the predictors as possible, Kelly and Pruitt (2013, 2015) develop a three-pass

regression filter to construct a target-relevant factor from a set of predictors that is max-

imally correlated with the target variable. The lagged target-relevant factor then serves

as the explanatory variable in a univariate predictive regression estimated via OLS. The

three-pass regression filter is essentially a version of PLS.

Combination ENet When the number of predictors is large, the simple combination fore-

cast can be too conservative in the sense that it “overshrinks” the forecast toward the

prevailing mean, thereby neglecting too much of the relevant information in the predictor

variables. Using insights from Diebold and Shin (2019), Rapach and Zhou (2020) and

Han et al. (2021) employ the ENet to refine the simple combination forecast. Instead of

averaging across all of the individual univariate predictive regression forecasts, the com-

bination ENet (C-ENet) forecast takes the average of the individual forecasts selected by
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the ENet in a Granger and Ramanathan (1984) multiple regression relating the actual

market excess return to the individual univariate forecasts.

ENet The ENet forecast is based on the multiple predictive regression fitted via the ENet

instead of OLS. The ENet (Zou and Hastie (2005)) relies on penalized regression to guard

against overfitting. The ENet penalty term includes both ℓ1 (LASSO) and ℓ2 (ridge; Hoerl

and Kennard (1970)) components. The ℓ1 component permits shrinkage to zero, so that

the ENet performs variable selection. Based on Flynn, Hurvich, and Simonoff (2013), we

use the Hurvich and Tsai (1989) corrected version of the Akaike (1973) information crite-

rion to select the value of the regularization parameter governing the degree of shrinkage.

The ENet directly addresses overfitting by shrinking the slope coefficients of the fitted

model, which results in shrinking the forecast toward the prevailing mean benchmark.

Simple Combination Instead of OLS estimation of the multiple predictive regression, fore-

cast combination begins by computing a set of forecasts based on OLS estimation of

univariate predictive regressions that include each lagged predictor (in turn). The sim-

ple combination forecast is the arithmetic mean of the individual univariate forecasts.

Rapach, Strauss, and Zhou (2010) show that the simple combination forecast exerts a

strong shrinkage effect.

B. Forecast Evaluation—Statistical Accuracy

To measure the market excess return forecasts in terms of statistical accuracy, we

calculate MSFE. Denote the errors for the prevailing mean benchmark and a competing

forecast by

ê0,t|t−1 = rM,t − r̂PMM,t|t−1, (31)

ê1,t|t−1 = rM,t − r̂M,t|t−1, (32)

respectively, where r̂PMM,t|t−1 is the prevailing mean benchmark forecast and r̂M,t|t−1 gener-

ically denotes a competing forecast. The sample MSFE is given by

M̂SFEj =
1

T

T∑
t=1

ê2j,t|t−1 for j = 0, 1, (33)

where T is the number of out-of-sample observations. Following the Clark and West

(2007) procedure, we test for a difference in the population MSFEs, which can be conve-

niently implemented in a simple regression framework:

dt|t−1 +
(
r̂PMM,t|t−1 − r̂M,t|t−1

)2︸ ︷︷ ︸
ft|t−1

= µ+ εt, (34)
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where d̂t|t−1 = ê20,t|t−1−ê21,t|t−1 is the period t loss differential. The t-statistic corresponding

to the OLS estimate of µ in equation (34) is used to test

H0: MSFE0 ≤ MSFE1 (µ ≤ 0) versus HA: MSFE0 > MSFE1 (µ > 0), (35)

where MSFEj is the population MSFE for j = 0, 1.12 The t-statistic is computed using

a heteroskedasticity- and autocorrelation-consistent (HAC) standard error (Newey and

West (1987)).

It is common to report the Campbell and Thompson (2008) R2
OS statistic when com-

paring MSFEs for the prevailing mean benchmark and a competing market excess return

forecast:

R2
OS = 1− M̂SFE1

M̂SFE0

. (36)

Equation (36) gives the proportional reduction in the sample MSFE for the competing

forecast vis-à-vis the prevailing mean benchmark. Using the Clark and West (2007)

statistic to test equatiion (35) is tantamount to testing H0: R
2
OS ≤ 0 against HA: R

2
OS > 0

(in population). Because the predictable component in the monthly market excess return

is necessarily limited, the R2
OS statistic will be small. Nevertheless, based on the market

Sharpe ratio, Campbell and Thompson (2008) suggest that a monthly R2
OS statistic as

small as 0.5% can signal economic significance. As described in Section III.B, we also

assess the economic significance of market return forecasts more directly by measuring

their economic value to an investor.

In addition, we examine whether out-of-sample return predictability (as measured

by the R2
OS statistic) is related to market frictions. To the extent that greater frictions

exacerbate limits of arbitrage, we expect anomaly portfolio returns to generate stronger

out-of-sample gains during high-friction periods. To test whether out-of-sample return

predictability changes with the state of market frictions, we augment the Clark and West

(2007) framework in equation (34) as follows:

ft|t−1 = µ+ ξIt + εt, (37)

12The well-known Diebold and Mariano (1995) and West (1996) (DMW) procedure uses dt|t−1 instead

of ft|t−1 as the dependent variable in equation (34). Clark and McCracken (2001) and McCracken (2007)

show that the DMW test tends to be severely undersized when comparing forecasts from nested models

(as in our application), in which case it has little power to detect improvements in forecast accuracy. Clark

and West (2007) adjust the DMW test statistic so that its asymptotic distribution is well approximated

by the standard normal.
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where It is an indicator variable that equals one (zero) if market frictions are high (low).

We use the t-statistic corresponding to the OLS estimate of ξ in equation (37) to test

H0: R
2
OS,high ≤ R2

OS,low (ξ ≤ 0) versus HA: R
2
OS,high > R2

OS,low (ξ > 0), (38)

where R2
OS,high (R2

OS,low) is the value of the R2
OS statistic during periods of high (low)

market frictions. We again compute the t-statistic using a HAC standard error.

C. Forecast Evaluation—In-sample Insights

While out-of-sample testing is often regarded as more stringent, it might not be the

most reliable method for assessing the predictive capability of anomaly returns on an in-

ternational scale. There is a trade-off between the in-sample tests and out-of-sample tests

of predictability, as out-of-sample analysis is based on sample-splitting that involves a loss

of information and hence lower power in small samples (Inoue and Kilian (2005)). Given

that the average sample period for country-level analysis in our international prediction

tests spans only 354 months, it is necessary to consider in-sample prediction capabilities

as well. This approach is crucial that it maximizes the use of available data to provide

more comprehensive insights into the predictive strength of anomaly returns.

IV. Anomaly Construction

We construct 100 anomalies, hereafter referred to as DLRZ100, based on the works

of Dong et al. (2022) and substitute anomalies that lack international data.13 These

anomalies are derived using data from CRSP, Compustat NA, and Compustat Global, and

are cross-verified with major alternative databases including Datastream, Worldscope,

and IBES Global. DLRZ100 covers a variety of categories, including but not limited to

value versus growth, profitability, investment, issuance activity, momentum, and trading

frictions. Anomalies that are constructed as interactions of two distinct signals (as these

anomalies fundamentally rely on multiple anomalies) or indicator variables (such as IPO)

are not incorporated into DLRZ100.

We first construct DLRZ100 at the country level. Our sample is restricted to common

stocks traded on the main exchanges of their respective countries, with market equity

higher than the 20th percentile of NYSE. Additionally, We require these stocks to be

identified as primary stocks of the underlying company according to Compustat. The

assignment of stocks to different countries is based on the countries of the exchanges

13We substitute the 9 anomalies due to international data availability. All of our results hold if we

only use the 91 anomalies originated from Dong et al. (2022). We also use a set of 153 anomalies from

Jensen et al. (2023), hereafter JKP153, for robustness check in the appendix.
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where they are listed. For each anomaly of each country, we sort the stocks into decile

groups based on the related characteristics. Subsequently, we form the decile portfolio

returns using a value-weighting approach. The decile portfolios are ranked by relative

returns. In constructing the long-short anomaly returns, we long the tenth decile portfolio

return and short the first decile portfolio.14 To compute the market excess return for

a specific country, we value-weight the monthly excess returns of all primary common

stocks, whose underlying firms are incorporated in that country, from the country’s main

exchanges.15

Next, we aggregate each country-level anomaly return, as well as market excess return,

into the supranational level, incorporating all available countries in a given supranation.

The weight of each country is determined by its total market capitalization, thereby as-

signing greater weights to countries that hold systematic importance. We begin with

the following supranations abroad: G6, G19, and World. The G6(G19) supranation

comprises the countries of the G7(G20), excluding the United States. The World supra-

nation covers all non-US countries with sufficient data. The sample period spans 1986:01

to 2021:12. Table I reports summary statistics at the supranational level. We average the

supranational market capitalization and the supranational market excess return across

420 months, from January 1986 to December 2021. The supranational long-short anomaly

returns, are averaged first across DLRZ100 anomalies, then over time. The world supra-

nation incorporates all countries selected in the sample, and therefore the highest market

capitalization. All supranations have positive long-short anomaly portfolio returns on

average.

V. Supranational vs. Country-level Analysis

In this section, we delve into the performance of anomalies as well as their ability to

predict the market excess return, examining the performance at both aggregated supra-

national level and conventional country level.

A. Anomaly Replication

We start with evaluating the performance of the DLRZ100 anomalies at both the

country and supranational levels in Table II in terms of their raw returns, CAPM al-

phas, and Fama-French three-factor alphas. (We also calculate the replication rate for

the JKP153 anomaly set in Table A4 for robustness.) The ratios of long-short anomaly

14We obtain the direction of long vs short of each anomaly from the paper where it is initially

discovered to avoid look-ahead bias.

15The way we construct the country-level market excess return follows the same logic as Fama and

French (1993).
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Table I

Summary Statistics

This table reports the summary statistics for market capitalization, market excess re-
turn, and monthly portfolio returns of DLRZ100 at the supranational level, from 1986:01
to 2021:12. Both the supranational-level anomaly returns and market excess returns
are constructed as market-cap-weighted returns across all available countries within the
supranation. Row 2 shows the number of countries in each supranation. Row 3 shows the
number of months in each supranational sample. Row 4 shows the supranational market
capitalization (in billions) averaged across time. Row 5 shows the supranational market
excess return averaged across time. Row 6 shows the supranational anomaly return, av-
eraged first across anomalies, then over time.

supranation G6 G19 World

Number of countries 6 18 44
N 432 432 432
Average market capitalization 9967 15316 20327
Average market excess return 0.45% 0.50% 0.52%
Average long-short anomaly return 0.21% 0.25% 0.24%

returns (and CAPM alpha) that satisfy the 10% significance level at the country level

are computed and averaged across all available countries within each supranation. 16.

All replication rates experience a substantial increase when the country-level anomaly

portfolio returns are aggregated to the supranational level. Notably, as we aggregate all

available countries together to form the “World” supranation, the number of replicable

anomalies almost doubles when aggregated to the supranational level(increasing from

17.49% to 40.00% for raw returns, 23.20% to 44.00% for CAPM alphas, and 24.57% to

46.00% for three-factor alphas). The substantial increase is not driven by the few big

countries, as the replication rate of market-cap-weighted country level replication rate is

still much less than the supranational level replication rate. Even for the G6 supranation,

which already comprises the most systematically significant countries overseas, suprana-

tional aggregation enhances anomaly performance (rising from 21.36% to 33.00% for raw

returns, 34.55% to 39.00% for CAPM alphas, and 24.57% to 46.00% for three-factor al-

phas 35.55% to 37.00%). Overall, our results advocate for the study of international

anomalies at the supranational level, where noise from anomalies of each country is re-

duced and systematically important mispricing is captured at the more macro level. This

perspective may challenge the prevailing view in prior literature, which typically presents

evidence for anomalies at the level of individual countries.

16Since the international time-series data for anomaly returns are short, we propose that a 10%

significance level is an adequate criterion for assessing predictability.

24



Table II

Replication Rate at the Country vs. Supranational Level

This table presents the percentage of anomalies that can be replicated at a 90% confidence
interval at both the country level and supranation level based on the DLRZ100 anomaly
pool from 1986:01 to 2021:12. The country level replication rate is averaged across all
available countries within each supranation. The replication rates are computed using
both raw long-short anomaly returns (Panel A), their CAPM alpha (Panel B), and their
Fama-French three-factor alpha (Panel C). For each anomaly, the supranational-level
anomaly return is constructed as the market-cap-weighted average of all available country-
level anomaly returns within that supranation. The replication rates at the supranational
level are then calculated using the supranational-level anomaly return (Columns 3).

Country level Supranational level

Panel A: Raw Return

G6 21.36% 33.00%
G19 19.38% 38.00%
World 17.49% 40.00%

Panel B: CAPM alpha

G6 34.55% 39.00%
G19 26.34% 42.00%
World 23.20% 44.00%

Panel C: FF3 alpha

G6 35.55% 37.00%
G19 30.58% 39.00%
World 24.57% 46.00%

B. Market Excess Return Forecast

Next, we use long-short anomaly returns to forecast market excess return, connecting

cross-sectional predictability with time-series market return predictability internationally.

We use the first 10 years (1986:01 to 1995:12) of the full sample period as the initial in-

sample estimation period. The following five years (1996:01 to 2000:12) serve as the initial

holdout out-of-sample period for computing the C-ENet forecast so that the rest of the

samples (2001:01 to 2021:12) constitute the out-of-sample period for forecast evaluation.

Because the methods in Section III.A require non-missing predictor data (except for the

predictor average), for an anomaly with a missing return in a given month, we fill in

the missing return with the cross-sectional average for the available anomaly returns in

that month. Due to the short sample period of the international data, we conducted the

in-sample forecasts as well in the same setting and all the results hold.

Table III reports R2
OS statistics for monthly market excess return forecasts based on

the 100 long-short anomaly portfolio returns at both supranational and country levels
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using the set of countries in G6, G19, and World. For supranational prediction, both

the anomaly returns and market excess returns are constructed as market-cap-weighted

returns across all available countries, where the aggregated supranational anomaly port-

folio returns are used to predict its supranational market excess return. For country-level

prediction, each country’s anomaly returns are used to predict its own market return

first. Then the country level R2
OS is averaged across all available countries within each

supranation. In sharp contrast, the supranational forecasts outperform their country-

level counterparts significantly. All the supranational forecasts using the six shrinkage

methods generate sizable R2
OS greater than the Campbell and Thompson (2008) thresh-

old of 0.5%, indicating sufficient economic significance and improved accuracy than the

prevailing mean benchmark; all of them are statistically significant as well according to

the Clark and West (2007) statistics. Take the the predictor average method as an ex-

ample, the R2
OS are economically and statistically significant in all supranations, with

considerable R2
OS of 5.58%, 5.09%, and 5.13%, respectively. Conversely, without the

supranational aggregation, the country-level forecasts on average only show significance

in the G6, which consists of the top systematically important countries. Take the best-

performing method “Avg” as an example, the equal-weighted country level R2
OS is only

economically and moderately statistically significant in countries of G6 (1.40%) and not

even economically significant in countries of G19 (-0.75%) and World (-0.39%). 17 Beyond

the individual country level, supranational aggregation captures the crucial cross-country,

inter-temporal prediction power. This phenomenon occurs when the correction for certain

types of mispricing happens in some countries before others. In addition to the one-month

horizon forecast, we also perform out-of-sample predictions on multiperiod market excess

return, r
(h)
M,t = (1/h)

∑h
j=1 rM,t+(j−1). The results can be found in Table A2 in Appendix.

Moreover, we also checked our results by using JKP153 anomaly set (Table A4), and

building Dong et al. (2022)’s anomalies in Datastream and Worldscope database (Table

A3). The comprehensive set of JKP153 aims to encompass all anomalies documented in

cross-sectional literature. Our findings confirm that this “All Anomalies” collection also

forecasts international market returns, albeit with weaker statistical significance. The

results suggest that this “All Anomalies” set is effective but less precise in capturing the

17We also calculate the market-capitalization-weighted average R2
OS across all available countries

within each supranation. For example, using the “Avg” method, the R2
OS values for G6, G19, and the

World are 2.31%, 0.47% and 0.67%, respectively, with only the R2
OS for G6 being statistically significant.

This indicates that the outperformance at the supranational level is not merely driven by “big-country”

effects. Furthermore, the better performance of the market-cap-weighted average compared to the equal-

weighted average suggests that larger countries tend to capture systematically important mispricing,

which can also help to predict smaller countries after supranational aggregation. This cross-country

effect is not as apparent when using a simple equal-weighted or even a market-cap-weighted approach.
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systematically important mispricing concept in the theoretical framework of Dong et al.

(2022). For further details, see Dong et al. (2024).

One distinction between cross-sectional and time-series predictability lies in the nature

of the data utilized: the former derives from a return-predictor relationship extracted from

thousands of stock observations across the cross-section, whereas the latter relies on a few

hundred monthly observations over time. This distinction could result in reduced testing

power for time-series analyses, especially since international time-series data often start

much later than U.S. data, typically around 1990, resulting in much shorter samples. To

address concerns about the short sample size, we conduct in-sample prediction as shown

in Table A1, to enhance testing power. By applying the Predictor Average method

to aggregate the DLRZ100 anomalies, we observe strong predictability of supranational

long-short anomaly returns in the in-sample tests. Unlike out-of-sample (OOS) testing,

which estimates parameters using a subset of the full data in each recursive regression, in-

sample (IS) testing utilizes all available data in the full sample, offering increased power

in smaller samples (Inoue and Kilian (2005)).
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Table III

Supranational vs Country-Level Market Excess Return Forecast

This table reports Campbell and Thompson (2008) out-of-sample R2 (R2
OS) statistics in percentage for market excess return forecast using

DLRZ100 long-short anomaly portfolio returns. The out-of-sample period covers 2001:01 to 2021:12. For supranational prediction, both
the anomaly returns and market excess returns are constructed as market-cap-weighted returns across all available countries selected to
form the supranation. For country-level prediction, the average R2

OS is calculated for market excess return forecasts using the same set of
countries. Avg is a univariate predictive regression forecast based on the cross-sectional average of the 100 long-short anomaly portfolio
returns. PC (PLS) is a univariate predictive regression forecast based on the first principal component (target-relevant factor) extracted
from the 100 long-short anomaly portfolio returns. C-ENet is the arithmetic mean of the univariate predictive regression forecasts selected
by the elastic net in a Granger and Ramanathan (1984) regression. The ENet forecast is based on elastic net estimation of a multiple
predictive regression that includes all 100 of the long-short anomaly portfolio returns. Combine is the arithmetic mean of univariate
predictive regression forecasts based on the 100 individual long-short anomaly portfolio returns (in turn). Based on the Clark and West
(2007) test, ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively, for positive R2

OS statistics.

Supranational Country Level

Avg PC PLS C-Enet Enet Combine Avg PC PLS C-Enet Enet Combine

G6 5.58*** 2.72** 6.92*** 4.23** 2.15** 0.91** 1.4* 1.03 -1.16 -0.77 -1.67 0.46
G19 5.09*** 2.45** 7.46*** 3.46** 3.8** 0.79** -0.75 -1.54 -5.12 -0.71 -2.65 0.11
World 5.13*** 2.49* 7.22*** 1.89** 4.16** 0.79** -0.39 -0.65 -5.31 -0.53 -2.58 0.07
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Overall, we successfully extend the linkage between the cross-sectional return pre-

dictability and the time-series predictability abroad at the supranational level, instead

of the traditional country level. supranational aggregation helps to capture the inter-

temporal systematically important mispricing at the macro level and diversify noise from

anomalies of individual countries. The results also echo Samuelson’s Dictum that infor-

mational inefficiency is stronger at the broader macro level (Xiao et al. (2022), Xiao et al.

(2023)), providing insights to future studies on global market efficiency.

VI. Decoding Heterogeneity in Market

Predictability

In this section, we delve deeper into the driving force behind the heterogeneity in

market excess return predictability. We start by estimating the components’ variance in

anomaly legs and verifying the decomposition framework described in the data-generating

process in Section II.D, and enhance our examination with a distinct and economically

meaningful division of all countries into developed and emerging ones.

A. Analyzing Variability Components using System of Equations

Following Section II.D, we begin by evaluating the extent to which the “variance ratio”

serves as a proxy for the relative importance of price randomness (var(ft)/var(∆uS,t)) as

shown in Equation (23). It appears that this linear relationship is unverifiable since k,

var(ft), ∆uL,t, and ∆uS,t are all theoretical concepts that seem empirically unmeasurable.

However, we show that we can estimate the variability of the embedded components: k,

var(ft), var(∆uL,t) and var(∆uS,t) using a system of equations in different ways. Assuming

that the time series of the long-leg, short-leg, and long-short return of a representative

anomaly are stationary, the variance of them can be written as:

var(L) = k2var(ft) + var(∆uL,t) (39)

var(S) = var(ft) + var(∆uS,t) (40)

var(L− S) = (k − 1)2var(ft) + var(∆uL,t) + var(∆uS,t) (41)

First, we approximate var(∆uL,t)/var(∆uS,t) for all countries. ∆uL,t (∆uS,t) denotes

the change in underpricing (overpricing) in the long (short) leg return of the representative

anomaly. Hence, we use the ratio between the variance of the FF3 alpha of each leg, which

29



captures the portion of the returns that cannot be explained by the exposure to the risk

factors, to proxy var(∆uL,t)/var(∆uS,t):

var(∆uL,t)

var(∆uS,t)
=

var(αL)

var(αS)
(42)

where

rl,t = αl + βMrM,t + βSMBrSMB,t + βHMLrHML,t + ϵl,t for l = L, S (43)

Using equations (39), (40), (41), and (42), along with the averages of the long-short,

long-leg, and short-leg returns of the DLRZ100 anomaly as proxies for the representa-

tive anomaly’s corresponding components, we can solve for k, var(ft), var(∆uL,t), and

var(∆uS,t). Additionally, we calculate the correlation between the “variance ratio” and

var(ft)/var(∆uS,t). In Panel A of Table IV, we show the correlation estimation between

the two measures is nearly 1 (0.99), suggesting one could be a strong proxy of the other.

The summary statistics of the estimated parameters k, var(ft), var(∆uL,t) align with our

prior expectations: (1) k is a parameter close to 1. (2) Pricing variability is significantly

more attributable to the martingale component ft than to the serially correlated com-

ponent ∆uS,t, with var(ft)/var(∆uS,t) averaging 19.01 across all countries. Otherwise,

taking arbitrage would be very easy.

Next, we approximate k in the system of equations to estimate k, var(ft), var(∆uL,t),

and var(∆uS,t). The analytical solutions of var(ft), var(∆uL,t) and var(∆uS,t) are:

var(ft) =
var(L) + var(S)− var(L− S)

2k
(44)

var(∆uL,t) = var(L)− k

2
[var(L) + var(S)− var(L− S)] (45)

var(∆uS,t) = var(S)− 1

2k
[var(L) + var(S)− var(L− S)] (46)

We need a reasonable estimate for k to reach the analytical solutions above. We

start with an estimation process where we allow all possible values of k to be considered.

Specifically, to make sure var(∆uL,t), var(∆uS,t) > 0, k satisfies the following:

var(L) + var(S)− var(L− S)

2var(S)
< k <

2var(L)

var(L) + var(S)− var(L− S)
(47)
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We discretize k into a series of values with a small increment within the upper and

lower bounds for all countries. For each value of k, we can estimate the analytical solutions

of var(ft), var(∆uL,t), and var(∆uS,t), and thus estimate var(ft)

var(∆uS,t)
. We also restrict that

pricing variability regarding the change in underpricing cannot exceed that of overpricing

(var(∆uL,t) < var(∆uS,t)).
18 After gathering all possible values for var(ft)

var(∆uS,t)
in all

countries, we calculate the correlation between it and the “variance ratio”.

In addition, we also use two alternative ways to approximate k. The first method

estimates k using the ratio of the coefficient estimates from two regressions: the regression

of rL,t on rL+S,t and the regression rS,t on rL+S,t:

β̃L L+S =
k(k + 1)var(ft) + var(∆uL,t)

var(rL+S,t)
(48)

β̃S L+S =
(k + 1)var(ft) + var(∆uS,t)

var(rL+S,t)
(49)

where rL+S,t = rL,t + rS,t. The ratio between (48) and (49) is:

β̃L L+S

β̃S L+S

=
k(k + 1)var(ft) + var(∆uL,t)

(k + 1)var(ft) + var(∆uS,t)
(50)

Since most pricing variability should come from non-autocorrelated component ft,

var(ft) ≫ var(∆uL,t) and var(ft) ≫ var(∆uS,t). Hence,

β̃L L+S

β̃S L+S

≈ k (51)

In the second way, we estimate k as the square root of the ratio between var(L) and

var(S). Similarly, when var(ft) ≫ var(∆uL,t) and var(ft) ≫ var(∆uS,t), the ratio between

equation (39) and equation (40) becomes:

var(L)

var(S)
≈ k2 (52)

18Due to factors such as short-sale constraints Miller (1977), we should expect a higher magnitude

of overpricing than underpricing in general. In addition, the correction of overpricing shall be more

persistent than that of underpricing.
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Panel B and C show the estimation when we discretize k within its upper and lower

bound and when we approximate k using the two alternative methods, respectively. Our

findings also align with expectations. The correlation between the “variance ratio” and

var(ft)/var(∆uS,t) are high (0.86 in Panel B, and 0.98 and 0.99 in Panel C), suggesting

that the “variance ratio” is a good proxy for the relative importance of price randomness

across countries.

Overall, the consistency presented in Panels B and C of Table IV confirms that the

simple variance ratio effectively measures price randomness. Given its ease of estimation

and interpretation, we opt to employ this variance ratio in subsequent analyses to measure

price randomness. This decision is validated by the similarity of results when substituting

the variance ratio with var(ft)/var(∆uS,t), ensuring our methodology remains robust.

Table IV

Analysis on Estimation of Variability Components in Anomaly
Returns

This table displays the main findings of our estimation on the components of anomaly
return variability. Panel A approximates each country’s var(∆uL,t)/var(∆uS,t) using its
var(αL)/var(αS), where var(αL) (var(αS)) is the variance of the intercept from regressing
the average of the long leg of the DLRZ100 anomaly returns on the country level Fama-
French 3 factors. Panel B provides the estimation when k is discretized within its upper
and lower bounds. Panel C presents the estimation when k is approximated using the
ratio of regression coefficients (Method 1) and the square root of var(L)/var(S) (Method
2). Specifically, in Method 1, we approximate k as the ratio of the coefficient estimates
from two regressions: The first regression is the regression of the average of DZLR100
anomalies’ long legs (rL,t) on the sum of the average of DZLR100 anomalies’ long legs
and the average of DZLR100 anomalies’ short legs (rL+S,t). The second regression is
the regression of the average of DZLR100 anomalies’ short legs (rS,t) on the sum of the
average of DZLR100 anomalies’ long legs and the average of DZLR100 anomalies’ short
legs (rL+S,t).

Panel A: Approximate var(∆uL,t)/var(∆uS,t)

Correlation between var(ft)/var(∆uS,t) and the variance ratio 0.99

Mean SD Min Max

k 0.86635 0.05016 0.7393 0.96442

var(ft) 0.00689 0.00348 0.00318 0.02077

var(∆uL,t) 0.00033 0.00023 0.00008 0.00111

var(∆uS,t) 0.00046 0.00032 0.00010 0.00142

var(ft)/var(∆uS,t) 19.01245 10.03443 4.33219 53.70379

Panel B: Discretize k within the upper and lower bounds
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(Continued)

Correlation between var(ft)/var(∆uS,t) and the variance ratio 0.86

Mean SD Min Max

k 0.88754 0.05373 0.69766 1.0567

var(ft) 0.00669 0.00334 0.00303 0.02093

var(∆uL,t) 0.00020 0.00019 0.00000 0.00123

var(∆uS,t) 0.00065 0.00047 0.00009 0.00273

var(ft)/var(∆uS,t) 13.93493 8.17188 1.89536 57.86897

Panel C: Approximate k

Method 1

Correlation between var(ft)/var(∆uS,t) and the variance ratio 0.98

Mean SD Min Max

k 0.86148 0.05278 0.72010 0.96406

var(ft) 0.00693 0.00349 0.00319 0.02085

var(∆uL,t) 0.00036 0.00024 0.00008 0.00117

var(∆uS,t) 0.00042 0.00029 0.00009 0.00134

var(ft)/var(∆uS,t) 20.77069 10.61264 4.99982 56.26608

Method 2

Correlation between var(ft)/var(∆uS,t) and the variance ratio 0.99

Mean SD Min Max

k 0.86577 0.04976 0.73955 0.96450

var(ft) 0.00689 0.00348 0.00318 0.02077

var(∆uL,t) 0.00034 0.00022 0.00008 0.00111

var(∆uS,t) 0.00046 0.00032 0.00010 0.00142

var(ft)/var(∆uS,t) 19.33217 10.19884 4.19923 54.27266

B. Decomposition Analysis on Market Predictability

As discussed in Section II.D, the predictability of market excess returns by long-short

anomaly returns is driven by three primary components. The first one is the β̃S, the

predictive power of the short-leg return of a representative anomaly via overpricing cor-

rection persistence, measuring inter-temporal systematic importance of mispricing. The

second one is the autocovariance ratio, which proxies the level of asymmetric mispricing

correction speed between the short leg and the long leg. A higher level of asymmetry,
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proxied by a higher value of (more negative) autocovariance ratio, indicates overpricing

is more slowly corrected than underpricing. The third component is the variance ratio,

measuring the market-level relative importance of price randomness. A higher variance

ratio reflects more price variation coming from the unpredictable martingale component

rather than the mispricing-related component so that the noise cancellation works better

via “long-minus-short”. In this section, we show that the supranations formed by coun-

tries with higher values of the three components outperforms the supranations consisting

of countries with lower values of them.

Specifically, we triple-sort all countries based on their β̃S, autocovariance ratio, and

variance ratio. First, we aggregate the country-level DLRZ100 anomaly returns using the

Predictor Average method and then calculate each country’s β̃S, autocovariance ratio, and

variance ratio. Next, we equally divide the countries into top and bottom groups based

on their respective values of β̃S, autocovariance ratio, and variance ratio, each considered

separately. Finally, we form eight non-overlapping supranations based on the countries’

positions (either ’top’ or ’bottom’) in these divisions. We construct supranational-level

anomaly returns and market excess returns for the eight supranations.

Table VI shows the out-of-sample prediction results of the eight supranational mar-

ket excess returns using their supranational-level anomaly returns. Consistent with our

expectations, the best-performing supranation is constructed using countries fall in the

“top” groups of β̃S, autocovariance ratio, and variance ratio (the supranation marked as

”HHH” in Panel A). The second-tier supranations are those that satisfy two of the above

conditions(the supranations marked as ”HHL”, ”HLH”, and ”LHH” in Panel B) and the

third-tier supranations satisfy one of them (the supranations marked as ”HLL”, ”LHL”,

and ”LLH” in Panel C). The last tier has all of their components fall into the “bot-

tom” group. (the supranations m”LLL” Panel D). The average of the first tier achieves

the remarkable highest out-of-sample prediction performance with statistical significance

(6.47%), followed by the second tier (3.86%). In contrast, the third and the last tier do

not show any economic or statistical significance(-0.26% and -0.44%), even aggregated

into the supranational level. Overall, the prediction outcomes presented in Table VI

align with what is outlined in our framework in equation (25). Specifically, supranations

composed of countries with high values in the three components generally demonstrate

superior forecast performance.

C. Developed vs Emerging Markets Analysis

Now we perform a distinct and economically meaningful cut based on the level of

market maturity — by grouping countries into Developed and Emerging 19 to examine

19The countries classified as ’Developed’ are those whose equity markets are designated as ’Developed

Markets’ by MSCI. The remaining countries in our sample are classified as ’Emerging.
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Table VI

Supranational OOS prediction: Triple Sort by β̃S, the
autocovariance ratio, and the variance ratio

This table reports the Campbell and Thompson (2008) out-of-sample R2 (R2
OS) statis-

tics in percentage at the supranational level using DLRZ100 long-short anomaly port-
folio returns to predict market excess returns. Countries are divided into eight groups
based on their β̃S, autocovariance ratio, and variance ratio via independent triple sorting.
Long-short anomaly returns are aggregated using the Predictor Average method in each
country. We construct supranational-level anomaly returns and market excess returns
for the eight supranations in a value-weighting way, where countries with larger market
capitalization receive a higher weight. Using supranational anomaly returns. supranation
“H(L)H(L)H(L)” consists of countries that fall in the high(low) category of β̃S, high(low)
category of autocovariance ratio, and high(low) category of variance ratio. Based on the
Clark and West (2007) test, ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1%
levels, respectively, for positive R2

OS statistics observed in supranational-level prediction.

Panel A : All three components in the top group

HHH 1st tier average
6.47*** 6.47***

Panel B: Two of three components in the top group

HHL HLH LHH 2nd tier average
4.11** 1.96*** 5.52*** 3.86**

Panel C: One of three components in the top group

HLL LHL LLH 3rd tier average
0.06 1.75** -2.6 -0.26

Panel D: All three components in the bottom group

LLL 4th tier average
-0.44 -0.44

whether and why the 100 anomalies as well as their market excess return predictability

behave differently. First, we examine the mispricing level of DLRZ100 in the Developed

and the Emerging markets at both the country level and the supranational level following

Jacobs (2016), by regressing the averaged DLRZ100 anomaly returnS on global Fama-

French three factors. To make a fair comparison, we do the test for Developed markets

using two sample periods: 1986:01-2021:12 (to use all available data) and 1991:01-2021:12

(same sample period as the Emerging markets). In our country-level analysis, presented

in the second column of Panel A1 of Table VII, we see higher mispricing level from

developed markets in the overall level of mispricing between Developed and Emerging

countries as indicated by anomalies (0.313 vs. 0.235). However, the conclusion reverses

as we aggregate the anomalies to the supranational level to capture systematically im-

portant mispricing. We discover a notably higher level of mispricing, denoted by a higher
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alpha value, in the Emerging market (0.370) than in the Developed market (0.281). The

supranational aggregation effect is significantly smaller for Developed markets (-0.177)

than for Emerging markets. Our results suggest that the conventional way of studying

anomalies in individual countries may have underestimated the macro-level mispricing

information, therefore providing an incomplete picture of market inefficiencies of the

Emerging supranation.

Although the Emerging supranation has the most salient mispricing level, the predic-

tion power of their long-short anomaly portfolio returns is much lower than the Developed

supranation (1.26% vs. 3.24%). However, we model it in Section II.B that this result does

not undermine our economic rationale but rather enriches it, as the Emerging supranation

is embedded with almost symmetrical mispricing correction speed (MCS) in the long and

short leg of anomaly portfolio returns. The empirical evidence is provided in Panel B of

Table VII. We compare the predictive performance of long-short returns, long-leg excess

returns, and short-leg excess returns in the Developed and Emerging supranations. All

forecasts are performed using the Predictor Average method to guard against overfitting.

For the Developed supranation, the R2
OS by supranational short legs (1.4%; 1.57%) are

notably higher than the long-leg excess returns (0.32%; 0.93%), which is consistent with

stronger MCP for overpricing vis-à-vis underpricing explained in Section II.B. Comparing

the long-short and short-leg excess returns, the former (5.02%; 3.24%) outperforms the

latter (1.4%; 1.57%) sizably for forecasting the monthly market excess return, as the long-

short return filters the common component that is unrelated to the future market excess

return. Conversely, the Emerging supranation exhibits the much-better-performing long-

leg excess return (3.60%) and short-leg excess return (3.69%). There’s not a big difference

between the R2
OS statistics achieved by long-leg excess return and the one achieved by

short-leg excess return. This negligible discrepancy stems from the relatively symmetri-

cal speed of correction in the overpricing and underpricing of the Emerging supranation.

It is therefore reasonable that the long-short excess return (1.26%) does not perform as

effectively as the separate long- and short-leg excess return separately in this specific

supranation. While filtering out the common component that bears no relation to the fu-

ture market excess return, the long-short return also cancels out the mispricing correction

persistence that is embedded equivalently in both the long and the short leg.

Next, to obtain further insights, we analyze the values attributed to Developed and

Emerging markets regarding the three dimensions of market efficiency outlined in our ear-

lier decomposition framework in equation (25). We calculate log(β̃S), log(−autocovariance ratio),

and log(sqrt variance ratio) for all countries using the time series of the aggregated

DLRZ100 anomaly returns via the Predictor Average method. Intuitively, the three

log transformations are positively related to the predictive power of the short-leg re-

turn, the level of asymmetry, and the price informativeness. To better understand

the heterogeneity in predictability, we conduct a market-capitalization-weighted T-test
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Table VII

Developed markets vs. Emerging markets

This table displays the anomaly replication rates and Campbell and Thompson (2008)
out-of-sampleR2 (R2

OS) statistics in percentage using DLRZ100 anomaly portfolio returns.
Panel Apresent the global-three-factor alpha of DLRZ100 anomalies at both the country
level and supranational level. The sample period is 1986:01 to 2021:12 and 1991:01 to
2021:12 for the Developed markets, and 1991:01 to 2021:12 for the Emerging markets.
Panel B shows the out-of-sample R2 (R2

OS) statistics in percentage for the Developed
supranation and Emerging supranation at the supranational level. The out-of-sample
period covers 1996:01 to 2021:12 and 2001:01 to 2021:12 for the Developed supranation,
and 2001:01 to 2021:12 for the Emerging supranation. Columns 1, 2, and 3 show the pre-
diction performance of long minus short leg anomaly return, long leg anomaly return, and
short leg anomaly return based on DLRZ100 anomaly portfolio returns, respectively. All
columns perform the Predictor Average forecast, which is a univariate predictive regres-
sion forecast based on the cross-sectional average of the 100 long-short anomaly portfolio
returns. Based on the Clark and West (2007) test, ∗, ∗∗, and ∗∗∗ indicate significance at
the 10%, 5%, and 1% levels, respectively, for positive R2

OS statistics.

Panel A: Global FF3 alpha

Sample Period Equal Weighted
Country level

Supranational
level

Developed 1986:01 to 2021:12 0.313*** 0.271***
Developed 1991:01 to 2021:12 0.308*** 0.281***
Emerging 1991:01 to 2021:12 0.235*** 0.370***

(Developed - Emerging)
-0.177***Supranational Aggregation Effect

Panel B: OOS prediction

Sample Period LongShort Long Short

Developed 1986:01 to 2021:12 5.02*** 0.32 1.4*
Developed 1991:01 to 2021:12 3.24** 0.93 1.57
Emerging 1991:01 to 2021:12 1.26* 3.60** 3.69**

comparing Developed and Emerging countries’ log(β̃S), log(−autocovariance ratio), and

log(sqrt variance ratio).

The findings, presented in Table VIII, reveal that the Developed countries in gen-

eral exhibit lower predictive power of the short-leg return (−0.41∗∗∗), a higher degree of

asymmetric MCS (0.70∗∗∗), and a higher degree of market-level price randomness (0.18∗∗∗)

than the Emerging markets. On the one hand, the asymmetry between the speed of cor-

rection between overpricing and underpricing is low in Emerging markets. Thus, the

“long-minus-short” construction makes the MCP embedded in each leg cancel out each

other. In addition, emerging markets also experience a lower level of the relative im-
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portance of price randomness (denoted by a lower value of variance ratio), so not much

unpredictable component to cancel out via the “long-minus-short” construction when

compared to developed markets. On the other hand, a higher level of MCP, as denoted

by a higher β̃S and a lower value of autocovariance ratio, allows the emerging markets

to use the long- and the short-leg separately to predict the market excess return. There-

fore, long-short anomaly portfolio returns perform better in the market excess return

predictability in developed markets and long- and short-leg returns perform better in the

Emerging markets.

Table VIII

Developed vs. Emerging Difference in Decomposition

This table reports market-capitalization-weighted T-test comparing Developed and
Emerging countries’ log(β̃S), log(−autocovariance ratio), and log(sqrt variance ratio). ∗,
∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

log(β̃S) log(−autocov ratio) log(sqrt var ratio)

Developed vs. Emerging -0.41*** 0.70*** 0.18***

Collectively, our analyses above explore and decode the heterogeneity in the market

excess predictability across diverse markets. Aligning with the decomposition framework

detailed in Section II.D, we find that supranations characterized by higher inter-temporal,

systematic importance of mispricing (ISIoM), more asymmetric mispricing correction

speed, and greater relative importance of price randomness exhibit superior performance

in predicting market excess returns. In addition, our results indicate that long-short

anomaly returns significantly forecast market excess returns in the developed markets.

In contrast, both the long- and short-leg anomaly returns are significant predictors of

market excess returns in Emerging markets. This distinction is supported by the findings

that emerging markets generally exhibit higher ISIoM in both the long-leg underpricing

and the short-leg overpricing, less asymmetry in the speed of mispricing correction, and

lower relative importance of price randomness.

VII. Anomaly Characteristic Analysis

In this section, we check the market return predictability of the aggregate anomaly

characteristics. Following Engelberg et al. (2023), we construct market-wide anomaly

characteristics based on DLRZ100 anomalies and use them to forecast the next-month

market excess return at both the country level and the supranational level. For supra-

national prediction, both the anomaly characteristics and market excess returns are con-

structed in a market-capitalization-weighted way across all available countries selected
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to form the supranation. We do the Augmented Dickey-Fuller (1979) test for every

anomaly characteristic and adjust the nonstationarity following Engelberg et al. (2023).

We then use the Predictor Average method to aggregate the DLRZ100 adjusted anomaly

characteristics at both the country level and the supranational level. For supranational

prediction, both the anomaly characteristics and market excess returns are constructed

in a market-capitalization-weighted way across all available countries selected to form

the supranation. For country-level prediction, the average R2
OS is calculated for market

excess return forecasts using the same set of countries. The out-of-sample prediction

performance is shown in Table IX. Consistent with the finding of Engelberg et al. (2023),

all country-level anomaly characteristics fail to predict market excess return. With all

country-level R2
OS being negative, the country-level market-wide anomaly characteristics

even underperform the prevailing mean benchmark. However, after we aggregate the

anomaly characteristics into supranational level, they work much better. We observe

economically and statistically significant out-of-sample predictability in G6 (3.55%) and

Developed (3.28%), and economically significant out-of-sample predictability in Emerg-

ing (0.69%). Our findings suggest that although anomaly characteristics may introduce

more noise compared to anomaly returns, as indicated in Section II.E, supranational

aggregation may still help to mitigate them to some extent.

Table IX

OOS Prediction using Anomaly Characteristics

The table reports Campbell and Thompson (2008) R2 (R2
OS) statistics in percent for

market excess return forecasts based on DLRZ100 anomaly characteristics at both country
level and supranational level. We do the Augmented Dickey-Fuller (1979) test for every
anomaly characteristic and adjust the nonstationarity following Engelberg et al. (2023).
We then use the Predictor Average method to aggregate the DLRZ100 adjusted anomaly
characteristics at both the country level and the supranational level. For supranational
prediction, both the anomaly characteristics and market excess returns are constructed
in a market-capitalization-weighted way across all available countries selected to form the
supranation. For country-level prediction, the average R2

OS is calculated for market excess
return forecasts using the same set of countries. The out-of-sample period is 1996:01 to
2021:12 for G6, G19, and World, and 2001:01 to 2021:12 for Emerging. Based on the
Clark and West (2007) test, ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1%
level, respectively, for the positive R2

OS statistics.

Region Country Level Supranational Level

G6 -0.44 3.55***
G19 -1.02 -1.41
World -0.63 -1.03
Developed -0.36 2.28**
Emerging -0.77 0.69
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VIII. Allowing for Domestic Data Mining

Given the ongoing debates and attention surrounding the potential spuriousness of

anomalies (e.g., Harvey et al. (2016) and Hou et al. (2020)), we take measures to ensure

that our supranational out-of-sample time-series predictability is not driven by data min-

ing issue. To investigate the possibility of p-hacking in anomalies, a natural approach is to

examine their replicability beyond the initial sample where they were first discovered, for

example, in markets other than the U.S. (Lu et al. (2017)). Similarly, we also accounted

for the potential data mining on U.S. market return predictability. Thus, we construct

new predictors and target variables by removing the common component between the

U.S. and the G6, G19, and World supranation in the anomaly returns and market excess

returns respectively, via recursive regressions.

First, for each supranation j, we regress each of its anomaly i’s return (rji,t−1) and

market excess return (rjm,t−1) on the corresponding domestic peers and get the recursive

slope coefficient estimates β̂0 and β̂1:

rji,t−1 = β0 + β1
∗rUS

i,t−1 + ϵt−1 (53)

rjm,t−1 = β0 + β1
∗rUS

m,t−1 + ϵt−1 (54)

Next, we remove the comoving part between rji (rjm) and rUS
i (rUS

m ) that could suffer

from domestic data mining issues from the original supranational anomaly return (market

excess return):

r̃ji,t = rji,t − (β̂0 + β̂1
∗rUS

i,t ) (55)

r̃jm,t = rji,t − (β̂0 + β̂1
∗rUS

m,t) (56)

Table X shows the out-of-sample prediction results when data mining is allowed.

The left panel assumes anomalies are spurious, where we replace the rji by r̃ji as new

predictors. The right panel shows the results conditional on both the anomalies and their

market return predictability are outcomes of data mining, where we replace the rji by

r̃ji as new predictors, and rjm,t−1 by r̃jm,t as new target variables. We take the first five

years to conduct the first recursive regression so our out-of-sample period covers 2006:01

to 2021:12. All supranations remain economically significant according to Campbell and

Thompson (2008) in both panels; most of them are still statistically significant according

to Clark and West (2007) statistics.

To conclude, we employ a direct method to tackle the data-mining issue frequently

encountered in studies of financial anomalies. Our analysis demonstrates that our results
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remain robust even under the assumption that both the anomalies and their capability to

predict market returns have been identified through data mining within domestic markets.
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Table X

Supranational OOS prediction: Allowing for Domestic Data mining

This table reports the Campbell and Thompson (2008) out-of-sample R2 (R2
OS) statistics in percentage at the supranational level using

DLRZ100 long-short anomaly portfolio returns, assuming all the anomalies are data-mined in U.S. (Panel A), and both the anomalies and
their market return predictability are data-mined in U.S. (Panel B). The out-of-sample period covers 2006:01 to 2021:12. The supranational
predictors in both Panel A and Panel B are constructed as the residual from the recursive regression where each supranational anomaly
return is regressed on its contemptuous U.S. counterpart. The response variable in Panel A is the supranational market excess return. The
response variable in Panel B is constructed as the residual from the recursive regression where each supranational market excess return
is regressed on contemptuous U.S. market excess return. Avg is a univariate predictive regression forecast based on the cross-sectional
average of the 100 long-short anomaly portfolio returns. PC (PLS) is a univariate predictive regression forecast based on the first principal
component (target-relevant factor) extracted from the 100 long-short anomaly portfolio returns. C-ENet is the arithmetic mean of the
univariate predictive regression forecasts selected by the elastic net in a Granger and Ramanathan (1984) regression. The ENet forecast
is based on elastic net estimation of a multiple predictive regression that includes all 100 of the long-short anomaly portfolio returns.
Combine is the arithmetic mean of univariate predictive regression forecasts based on the 100 individual long-short anomaly portfolio
returns (in turn). Based on the Clark and West (2007) test, ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively,
for positive R2

OS statistics observed in supranational-level prediction.

Panel A: Assuming domestic anomaly returns are Panel B: Assuming both domestic anomaly returns and
data-mined their market return predictability are data-mined

Avg PC PLS C-Enet Enet Combine Avg PC PLS C-Enet Enet Combine

G6 3.17** 2.82* 4.22** 5.41** 0.80 0.87* 3.72** 3.09* 2.85** 4.79* -0.92 1.01*
G19 2.36** 2.53** 4.43** 1.01 2.07* 0.72** 2.23** 2.82** 2.58* 2.00 0.94 0.67*
World 2.48** 2.81* 4.27** 1.95 0.89 0.75* 2.7** 2.85* 3.04* -1.28 -0.78 0.74*
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IX. Systematical Asymmetric MCP across

Supranations

To further substantiate the correlation between the systematical asymmetric mispric-

ing correction persistence and market excess return predictability, we conduct a series of

tests based on supranational-level anomaly portfolio returns from different aspects.

A. Coefficient Analysis

As explained in Section II, the asymmetry in MCP contributes to stronger MCP for

overpricing vis-à-vis underpricing. Thus, a negative direction is expected on the predic-

tive capacity of long-short anomaly returns of the G6, G19, and World supranations. To

capture the information in all 100 of the supranational long-short anomaly portfolio re-

turns, we examine recursive estimates of the slope coefficients in the predictive regressions

underlying the predictor average forecasts.

The predictive regression underlying the predictor average forecast is given by

rM,t+1 = α + βr̄LS,t + εt+1, (57)

where r̄LS,t =
1
n

∑n
i=1 r

i
LS,t and riLS,t is the supranational long-short portfolio return for

the ith anomaly for i = 1, . . . , n (n = 100).

Figure 1. Recursive slope coefficient estimates. Solid lines depict standardized
recursive slope coefficient estimates used to compute the predictor average forecasts of
the supranational market excess return in G6, G19, and World supranations based on
DLRZ100 long-short anomaly portfolio returns. The sample period covers 2001:01 to
2021:12. Dashed lines denote 90% confidence intervals. Vertical bars indicate business-
cycle recessions as dated by the National Bureau of Economic Research.

The three panels of Figure 1 depict recursive estimates of the standardized slope coeffi-

cients in equation (57) for each supranation and their 90% confidence intervals when the
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explanatory variable is r̄LS,t.
20 The recursive estimates are negative for G6, G19, and

World supranations, consistent with stronger MCP for overpricing vis-à-vis underpric-

ing. As expected, the 90% confidence intervals tend to narrow as the estimation sample

lengthens. The recursive estimates become significant around the mid-2000s and remain

significant thereafter. The recursive estimates are quite stable in all panels of Figure 1

from the early to late 2000s. They then became larger in magnitude around the Global

Financial Crisis and concomitant Great Recession and remained relatively stable there-

after, suggesting that systematical asymmetric mispricing correction persistence has not

substantially diminished in importance since the mid-2000s.

B. Arbitrage Trading

Finally, we investigate whether long-short anomaly portfolio returns predict arbi-

trageurs’ trading activities in the broad market. We aggregate the long-short anomaly

portfolio returns at the supranational level and use the average of all DLRZ100 long-short

anomaly returns to construct predictors for our predictive regressions. Given that asym-

metric limits of arbitrage generate relatively strong overpricing correction persistence, we

expect an increase in long-short anomaly returns to lead to an increase in arbitrageurs’

short position; in other words, arbitrageurs’ trading activities are more likely to confirm

that shares were broadly overvalued. To measure arbitrageurs’ activities, we construct a

value-weighted short-selling indicator across all countries by aggregating the one-month

percentage change in short interest, defined as the total number of uncovered shares sold

short (sourced from Markit) divided by the total number of shares outstanding (from

Compustat), at the country level. This country-level short-selling measure is then aggre-

gated to the supranational level through market-cap weighting. The sample period covers

2002:01 to 2021:12. Both the dependent variables and the predictors are standardized

before estimating the predictive regressions.

Table XI reports monthly predictive regression results for supranational arbitrageurs’

short selling. The results support our conjecture. The coefficient estimates for pre-

dicting next-month short selling are significantly positive and economically substantial

across all supranations: a one-standard-deviation increase in the supranational long-short

anomaly return leads to a 0.21, 0.17, and 0.20 standard-deviation increase in the per-

centage change of arbitrageurs’ short interest for the G6, G19, and World supranations,

respectively. These findings align with the perspective that the arbitrageurs’ trading ac-

tivities are reflective of the ongoing mispricing correction process, particularly focusing

on the continuation of overvaluation corrections.

20The horizontal axes in Figure 1 correspond to the forecast month, so that the month t estimate is

based on data available through month t− 1.
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Table XI

Arbitrage Trading

This table reports ordinary least squares estimates of standardized slope coefficient es-
timates for univariate predictive regressions that use the predictor average strategy to
combine the information in DLRZ100 long-short portfolio returns to predict the monthly
percentage change in arbitrageurs’ short interest. The sample period covers 2002:05 to
2021:12. DLRZ100 anomalies include 91 anomalies that have the same concept as those
in Dong et al. (2022), and 9 anomalies replaced due to data availability. The predictor av-
erage uses the cross-sectional average of DLRZ100 long-short anomaly portfolio returns.
Both the predictors and dependent variables are standardized. ∗, ∗∗, and ∗∗∗ indicate
significance at the 10%, 5%, and 1% level, respectively.

Supranation G6 G19 World

Aribitrage Short Market Position 0.203** 0.163** 0.188**

C. Anomaly Subgroups

As documented in the work in the study by Dong et al. (2022) focused on the U.S.

market, asymmetric limits to arbitrage can generate asymmetric MCP. Greater arbitrage

limits facilitate larger initial mispricing and a more enduring correction process. Stocks

with larger bid-ask spreads, greater idiosyncratic volatility, and smaller market capital-

ization are typically viewed as having stronger limits of arbitrage. We, therefore, classify

anomalies according to bid-ask spread (BA), idiosyncratic volatility (IDIO), and market

capitalization (SIZE) , and compare the relative performance in the classified subgroups.

For a given supranation, month, and anomaly characteristic, we first sort stocks into

deciles as
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Table XII

R2
OS Statistics for Subgroups

This table reports Campbell and Thompson (2008) out-of-sample R2 (R2
OS) statistics in percent for market excess return forecasts based

on long-short anomaly portfolio returns for the subgroups of DLRZ100 long-short anomaly portfolio returns in the second column at
the supranational level. The out-of-sample period covers 2001:01 to 2021:12. For supranational-level prediction, both the supranational-
level anomaly returns and market excess returns are constructed as market-cap-weighted returns across all available countries within
the supranation. We form the anomaly subgroups BA-POS, IDIO-POS, and SIZE-POS (the left panel) and BA-NEG, IDIO-NEG, and
SIZE-NEG (the right panel). Avg is a univariate predictive regression forecast based on the cross-sectional average of the 100 long-short
anomaly portfolio returns. PC (PLS) is a univariate predictive regression forecast based on the first principal component (target-relevant
factor) extracted from the 100 long-short anomaly portfolio returns. C-ENet is the arithmetic mean of the univariate predictive regression
forecasts selected by the elastic net in a Granger and Ramanathan (1984) regression. The ENet forecast is based on elastic net estimation
of a multiple predictive regression that includes all 100 of the long-short anomaly portfolio returns. Combine is the arithmetic mean of
univariate predictive regression forecasts based on the 100 individual long-short anomaly portfolio returns (in turn). Based on the Clark
and West (2007) test, ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively, for positive R2

OS statistics observed
in supranational-level prediction.
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Positive Negative

Region Proxy avg pcr plsr cenet enet combine avg pcr plsr cenet enet combine

G6 BA 2.02** -0.28 -3.38 -0.24 -1.32 0.06 4.89*** 3.76** 8.02*** 1.77** 3.79** 1.27**
IDIO 1.41* -2.18 -4.85 -0.96 -0.92 -0.18 5.36*** 4.22** 7.32*** 2.2*** 3.42** 1.11**
SIZE 4.33*** 3.49** 6.05*** 3.09*** 3.29* 1.15** 3.28*** -0.11 -2.27 -1.52 -0.33 0.20

G19 BA 2.73** -0.27 -0.77 -0.33 0.16 0.12 3.61** 3.31** 8.18*** 2.18*** 4.54** 1.08***
IDIO 1.50** -1.57 -2.62 -0.81 -0.30 -0.08 4.52*** 3.96** 7.92*** 2.14** 4.84** 0.95**
SIZE 3.85*** 3.33** 6.62*** 2.44** 4.05** 0.99** 2.66*** -0.23 -0.10 -0.21 0.12 0.21

World BA 3.23** -0.26 -0.55 -0.38 0.20 0.14 3.50** 3.41** 7.78*** 1.62** 4.59** 1.11**
IDIO 1.21* -1.80 -2.78 -0.40 -1.03 -0.10 4.85*** 4.14** 7.96*** 2.37** 5.00** 1.00**
SIZE 4.27*** 3.62** 7.14*** 2.17** 3.77*** 1.07** 2.20** -0.36 -0.59 0.32 0.57 0.15
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described in Section IV and compute the average values for a given proxy for the stocks in

the long and short legs. We then compute the long-leg average value for the proxy minus

the short-leg average value for the proxy for each month. Finally, we compute the time-

series average of the differences for the in-sample period of each supranation (1986:01 to

2000:12). We denote the time-series averages for the differences for the bid-ask spread,

idiosyncratic volatility, and size proxies by DTSA-BA, DTSA-IDIO, and DTSA-SIZE, re-

spectively. We form the subgroups of anomalies for which DTSA-BA, DTSA-IDIO, and

DTSA-SIZE, respectively, are negative (positive). In line with our out-of-sample focus,

we exclude data from the forecast evaluation period when determining the subgroups.

We expect greater market return predictability based on negative DTSA-BA, negative

DTSA-IDIO, and positive DTSA-SIZE compared to positive DTSA-BA, positive DTSA-

IDIO, and negative DTSA-SIZE, respectively, as the former three subgroups represent

anomalies with asymmetrically stronger MCP in their short legs than their long legs.

Table XII reports R2
OS statistics for the different subgroups in each supranation using

the strategies designed to guard against overfitting. Although the bid-ask spread, id-

iosyncratic volatility, and size are quite noisy proxies for limits of arbitrage, the results

generally support the relevance of asymmetric limits of arbitrage and stronger MCP for

overpricing vis-à-vis underpricing. For example, in G6, nearly all of the six forecasts

for the subgroups of negative BA, negative IDIO, and positive SIZE are both econom-

ically and statistically significant. Almost every R2
OS statistics of them are particularly

large (e.g., 5.09%, 4.58%, and 4.09% under the predictor average method, respectively).

In contrast, for each forecasting strategy in G6, the R2
OS statistic for the positive BA,

positive IDIO, and negative SIZE subgroup is always lower than the one of their peer

subgroup. Only four are above the 0.5% threshold. The results for the subgroups of G19

and World deliver similar messages as G6, aligning with the intuition in Section II, with

relatively stronger limits of arbitrage in the short leg producing greater market return

predictability.

D. Market Frictions

In this section, we assess the influence of time-series market-level frictions on MCP.

Frictions such as limited risk-bearing capacity and transaction costs lead arbitrageurs to

adjust to mispricing gradually, resulting in MCP (Gârleanu and Pedersen (2013, 2016)).

Therefore, the long-short anomaly portfolio returns should contain more relevant infor-

mation for predicting the market excess return during times of high frictions, given our

predictability finding is driven by arbitrageurs slowly correcting mispricing in the presence

of asymmetric limits of arbitrage and stronger MCP for overpricing vis-à-vis underpric-

ing. We investigate this issue by testing for an increase in the R2
OS statistic during periods

of high friction using equation (37).
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The following proxies for market frictions from the literature are considered: (1) The

level of innovations to aggregate liquidity. We construct it based on Amihud (2002).

(2) Idiosyncratic volatility, which is widely believed to be a major implementation cost

of short arbitrage (e.g., Pontiff (2006)). We measure aggregate idiosyncratic risk for a

given month by first calculating the idiosyncratic volatility of individual stocks following

Ang et al. (2006) and then computing the value-weighted average of the idiosyncratic

volatilities for the individual stocks. Both proxies are initially constructed at the country

level and subsequently aggregated to the supranational level using market-cap weighting.

(3) Short fee (Asness et al. (2018)), which measures the cost of shorting stocks. We again

aggregate to the market level by computing the value-weighted average of short fees for

individual stocks.21 For all of the proxies, we separate high- and low-friction regimes

using the sample median in each supranation.

Table XIII reports differences in R2
OS statistics (in percentage points) between high-

and low-friction regimes for market excess return forecasts based on the 100 long-short

anomaly portfolio returns in G6, G19, and World supranations.In support of the rel-

evance of asymmetric limits of arbitrage and stronger MCP for overpricing relative to

underpricing, most of the R2
OS increased in the high-friction periods under the six meth-

ods for supranations. Some of these increases have considerable magnitudes, exceeding

10 percentage points at 1% significant level.

X. Conclusion

We find that anomalies and their prediction on market excess return can be extended

abroad at the supranational level, but not at the country level. Long-short anomaly

returns strongly predict market excess returns of the Developed supranation, while long

and short anomaly returns strongly predict market excess returns of the Developed supra-

nation. The results hold even after accounting for the possibility of data mining within

domestic markets. In contrast, aggregated anomaly characteristics have limited power in

predicting market excess returns, despite their perceived importance for cross-sectional

return predictability and asset pricing in previous literature. We provide rationales for

our findings, supporting that the predictive ability of long-short anomaly returns comes

from three dimensions: The first is the inter-temporally systematic importance of the

mispricing (ISIoM). The second is the asymmetry in the speed of overpricing correction

to underpricing correction. The third is the market-level relative importance of price

randomness , where higher randomness indicates there’s higher variability in the un-

predictable martingale component of stock returns as opposed to the mispricing-related

21The short fee is based on the cost-to-borrow score from Markit (https://ihsmarkit.com/index.

HTML), beginning in 2002:01.
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Table XIII

R2
OS Statistic Differences Between High-

and Low-Friction Regimes

This table reports percentage-point increases in Campbell and Thompson (2008) out-of-
sample R2 (R2

OS) statistics for market excess return forecasts using DLRZ100 long-short
anomaly portfolio returns at the supranational level. The out-of-sample period covers
2001:01 to 2021:12. The increase is computed between high and low-friction periods,
which are defined using the sample median of the variable in the second column. Avg
is a univariate predictive regression forecast based on the cross-sectional average of the
100 long-short anomaly portfolio returns. PC (PLS) is a univariate predictive regression
forecast based on the first principal component (target-relevant factor) extracted from the
100 long-short anomaly portfolio returns. C-ENet is the arithmetic mean of the univariate
predictive regression forecasts selected by the elastic net in a Granger and Ramanathan
(1984) regression. The ENet forecast is based on elastic net estimation of a multiple
predictive regression that includes all 100 of the long-short anomaly portfolio returns.
Combine is the arithmetic mean of univariate predictive regression forecasts based on
the 100 individual long-short anomaly portfolio returns (in turn). The Ens (ensemble)
forecast takes the average forecast on the above 6 methods. Based on the Clark and West
(2007) test, ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively,
for positive R2OS statistics observed in supranational level prediction.

Region Friction measures Avg PC PLS C-Enet Enet Combine

G6

Aggregate Liquidity 12.82*** 9.88*** 19.75*** 8.82*** 10.29*** 1.86
Liquidity Innovations 9.66*** 10.23*** 16.77*** 9.03*** 7.27** 1.59
IDIO 2.66*** 2.34* 7.65*** 1.16* 5.25** 0.61
Short Fee 11.32*** 10.79*** 24.59*** 7.34** 10.82*** 1.66

G19

Aggregate Liquidity 8.33*** 5.82** 14.07*** 6.18** 5.53** 1.15
Liquidity Innovations 2.01 4.54* 10.07*** 4.68* 5.67** 0.94
IDIO 2.47*** 3.85* 11.42*** 3.82** 3.73** 0.89
Short Fee 12.72*** 10.87*** 24.96*** 7.7*** 9.01*** 1.80

World

Aggregate Liquidity 10.56*** 6.07* 12.85*** 3.68 6.81** 1.19
Liquidity Innovations 1.57 5.06* 6.55*** 2.52 5.22* 0.79
IDIO 1.63*** 3.65* 8.43*** 3.16 6.38*** 0.79
Short Fee 7.47*** 5.53** 15.94*** 2.05 5.5** 0.90

component. In addition, we show evidence of global trading and pricing to support

the channel underlying our findings. To sum up, through exploring and providing a

comprehensive analysis of the linkage between the cross-sectional and time-series return

predictability aboard, we develop innovative methods and understandings towards the

importance of systematic and macro-level market efficiency.
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Amihud, Yakov, 2002, Illiquidity and stock returns: Cross-section and time-series effects,

Journal of Financial Economics 5, 31–56.

Andrei, Daniel, and Julien Cujean, 2017, Information percolation, momentum and rever-

sal, Journal of Financial Economics 123, 617–645.

Ang, Andrew, Robert J. Hodrick, Yuhang Xing, and Xiaoyan Zhang, 2006, The cross-

section of volatility and expected returns, Journal of Finance 61, 259–299.

Asness, Clifford, Andrea Frazzini, Ronen Israel, Tobias J. Moskowitz, and Lasse H. Ped-

ersen, 2018, Size matters, if you control your junk, Journal of Financial Economics

129, 479–509.

Avramov, Doron, Tarun Chordia, Gergana Jostova, and Alexander Philipov, 2013,

Anomalies and financial distress, Journal of Financial Economics 108, 139–159.

Baba Yara, Fahiz, Martijn Boons, and Andrea Tamoni, 2020, Persistent and transitory

components of characteristics: Implications for asset pricing, Martijn and Tamoni,

Andrea, Persistent and Transitory Components of Characteristics: Implications for

Asset Pricing (January 31, 2020) .

Bai, Jennie, Thomas Philippon, and Alexi Savov, 2016, Have financial markets become

more informative?, Journal of Financial Economics 122, 625–654.

Campbell, John Y., 1987, Stock returns and the term structure, Journal of Financial

Economics 18, 373–399.

Campbell, John Y., and Samuel B. Thompson, 2008, Predicting excess stock returns out

of sample: Can anything beat the historical average? Review of Financial Studies 21,

1509–1531.

Chan, Louis K. C., Narasimhan Jegadeesh, and Josef Lakonishok, 1996, Momentum

strategies, Journal of Finance 51, 1681–1713.

Clark, Todd E., and Michael W. McCracken, 2001, Tests of equal forecast accuracy and

encompassing for nested models, Journal of Econometrics 105, 85–110.

Clark, Todd E., and Kenneth D. West, 2007, Approximately normal tests for equal pre-

dictive accuracy in nested models, Journal of Econometrics 138, 291–311.

51



Da, Zhi, Umit G. Gurun, and Mitch Warachka, 2014, Frog in the pan: Continuous

information and momentum, Review of Financial Studies 27, 2171–2218.

Daniel, Kent, David Hirshleifer, and Avanidhar Subrahmanyam, 1998, Investor psychol-

ogy and security market under- and overreactions, Journal of Finance 53, 1839–1885.

Daniel, Kent, and Sheridan Titman, 1997, Evidence on the characteristics of cross sec-

tional variation in stock returns, the Journal of Finance 52, 1–33.

DeMiguel, Victor, Lorenzo Garlappi, and Raman Uppal, 2009, Optimal versus naive

diversification: How inefficient is the 1/n portfolio strategy?, The review of Financial

studies 22, 1915–1953.

Diebold, Francis X., and Roberto S. Mariano, 1995, Comparing predictive accuracy,

Journal of Business and Economic Statistics 13, 253–263.

Diebold, Francis X., and Minchul Shin, 2019, Machine learning for regularized survey fore-

cast combination: Partially-egalitarian Lasso and its derivatives, International Journal

of Forecasting 35, 1679–1691.

Dong, Xi, Namho Kang, and Joel Peress, 2020, Slow arbitrage: Fund flows and mispricing

in the frequency domain, Working paper, City University of New York, Baruch College,

Bentley University, and INSEAD.

Dong, Xi, Yan Li, Yanran Li, David E. Rapach, and Guofu Zhou, 2024, Anomalies and

the market return: Further evidence and discussion, Working paper, Baruch College,

Southwestern University of Finance and Economics, Federal Reserve Bank of Atlanta,

and Washington University in St. Louis.

Dong, Xi, Yan Li, David E. Rapach, and Guofu Zhou, 2022, Anomalies and the expected

market return, Journal of Finance 77, 639–681.

Engelberg, Joseph, R David McLean, Jeffrey Pontiff, and Matthew C Ringgenberg, 2023,

Do cross-sectional predictors contain systematic information?, Journal of Financial

and Quantitative Analysis 58, 1172–1201.

Fama, Eugene F., and Kenneth R. French, 1988, Dividend yields and expected stock

returns, Journal of Financial Economics 21, 3–25.

Fama, Eugene F., and Kenneth R. French, 1989, Business conditions and the expected

returns on stocks and bonds, Journal of Financial Economics 25, 23–49.

Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on

stocks and bonds, Journal of Financial Economics 33, 3–56.

52



Fama, Eugene F, and Kenneth R French, 1996, Multifactor explanations of asset pricing

anomalies, The journal of finance 51, 55–84.

Flynn, Cheryl J., Clifford M. Hurvich, and Jeffrey S. Simonoff, 2013, Efficiency for regu-

larization parameter selection in penalized likelihood estimation of misspecified models,

Journal of the American Statistical Association 108, 1031–1043.
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Appendix

A. Tables

Table A1

In-Sample Supranational Forecast

This table reports ordinary least squares estimates of standardized slope coefficient es-
timates and t-stat for univariate predictive regressions that use the Predictor Average
strategy to combine the information in supranational DLRZ100 long-short portfolio re-
turns to predict the market excess return of the same supranation. The Predictor Average
uses the cross-sectional average of DLRZ100 long-short anomaly portfolio returns. The
sample period covers 1986:01 to 2021:12. The dependent variable is also standardized.

G6 G19 World

Coefficient -0.19*** -0.19*** -0.20***
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Table A2

Supranational vs Country-Level R2
OS Statistics

This table reports Campbell and Thompson (2008) out-of-sample R2 (R2
OS) statistics in percentage, for multi-period market excess return

forecasts, using DLRZ100 long-short anomaly portfolio returns. The forecasts are examined at the supranational level. The out-of-
sample period covers 2001:01 to 2021:12. Both the anomaly returns and market excess returns are constructed as market-cap-weighted
returns across all available countries within the supranation. Avg is a univariate predictive regression forecast based on the cross-sectional
average of the 100 long-short anomaly portfolio returns. PC (PLS) is a univariate predictive regression forecast based on the first principal
component (target-relevant factor) extracted from the 100 long-short anomaly portfolio returns. C-ENet is the arithmetic mean of the
univariate predictive regression forecasts selected by the elastic net in a Granger and Ramanathan (1984) regression. The ENet forecast
is based on elastic net estimation of a multiple predictive regression that includes all 100 of the long-short anomaly portfolio returns.
Combine is the arithmetic mean of univariate predictive regression forecasts based on the 100 individual long-short anomaly portfolio
returns (in turn). Based on the Clark and West (2007) test, ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively,
for positive R2

OS statistics observed in supranational level prediction.
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Horizon Avg PC PLS C-Enet Enet Combine

G6 3-month 3.53** 3.21** 6.17*** 3.06** 4.02** 0.93**
6-month 4.94*** 3.67** 5.83*** 3.87** 1.29* 0.88**
9-month 1.86** 1.15** 0.37** 0 0.08 0.25
12-month 0.35 -0.01 -5.86 0.18 -2.36 -0.12

G19 3-month 2.66** 2.12* 5.29** 3.91** 3.52** 0.59*
6-month 3.64** 2.17* 3.73** 0.79 0.41 0.44
9-month 1.2* 0.39 -0.55 0 -0.42 0.01
12-month 0.3 -0.09 -5.03 0.02 -2.22 -0.22

World 3-month 3.08** 2.7* 5.78** 1.29* 3.82** 0.7*
6-month 4.02** 2.61** 4.25** 2.05* 2.69 0.55*
9-month 1.56** 0.88 0.22* -0.56 -0.43 0.09
12-month 0.72 0.48 -3.67 0 -0.67 -0.14
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Table A3

OOS Prediction using Datastream&Worldscope Database

This table reports Campbell and Thompson (2008) out-of-sample R2 (R2
OS) statistics

in percentage for market excess return forecasts using the long-short anomaly portfolio
returns, based on Dong et al. (2022), at the supranational level. The out-of-sample period
covers 2001:01 to 2021:12. For supranational-level prediction, both the supranational-
level anomaly returns and market excess returns are constructed as market-cap-weighted
returns across all available countries within the supranation, using data from Datastream
and Worldscope. The six shrinkage methods in Section III.A are applied. Based on the
Clark and West (2007) test, ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1%
levels, respectively, for positive R2

OS statistics observed in supranational level prediction.

Avg PC PLS C-Enet Enet Combine

G6 3.5** 2.86** 2.9** 1.69** 3.57* 0.85**
G19 2.73** 2.23** 1.61* 0.13 -0.1 0.61**
World 3.15** 2.42** 1.88** 2.69** -1.76 0.75**
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Table A4

Evaluating JKP153 Anomalies

This table displays the performance of the 153-anomaly portfolio returns based on Jensen
et al. (2023). Panel A presents the percentage of anomalies that can be replicated at
a 90% confidence interval at the supranation level for G6, G19, and World. Both the
supranational-level anomaly returns and market excess returns are constructed as market-
cap-weighted returns across all available countries within the supranation. The replication
rates at the supranational level are shown in Columns 2 and 4. Panel B reports Campbell
and Thompson (2008) out-of-sample R2 (R2

OS) statistics in percentage for market excess
return forecasts at the supranational level for the G6, G19, and the World supranations
using the six shrinkage methods in Section III.A. The out-of-sample period covers 2001:01
to 2021:12. Based on the Clark and West (2007) test, ∗, ∗∗, and ∗∗∗ indicate significance
at the 10%, 5%, and 1% levels, respectively, for positive R2

OS statistics.

Panel A: Replication Rate

Raw CAPM FF3

G6 46.41% 51.63% 50.33%
G19 57.52% 62.09% 59.48%
World 58.17% 66.67% 64.05%

Panel B: OOS prediction

Avg PC PLS C-Enet Enet Combine

G6 3.77*** 1.7** 4.14** 1.75* -0.31 0.67**
G19 3.41** 1.59** 3.78** 2.05** 0.14 0.53**
World 3.48** 1.49** 3.67** 1.38* -1.84 0.53**
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