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ABSTRACT

We model competition between banks and a bigtech platform that lend to a merchant

with private information and subject to moral hazard. By controlling access to a valu-

able marketplace for the merchant, the platform enforces partial loan repayments,

thus alleviating financing frictions, reducing the risk of strategic default, and con-

tributing to welfare positively. Credit markets become partially segmented, with the

platform targeting merchants of low and medium perceived credit quality. However,

conditional on observables, the platform lends to better borrowers than banks because

bad borrowers self-select into bank loans to avoid the platform’s enforcement, causing

negative welfare effects in equilibrium.
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1 INTRODUCTION

Traditionally, bigtech platforms have provided value to merchants by enabling them to
transact with buyers. For example, online marketplaces allow sellers to expand the ge-
ographical scope of their clientele, whereas payment platforms help merchants optimize
their cash and inventory management and improve customer experience. In recent years,
platforms, such as Amazon and Paypal, have also started lending to merchants who use
their marketplaces or payment services. Loans offered by these platforms have grown
at a dramatic pace. Globally, bigtech platforms increased credit more than fiftyfold from
2013 to 2019. In 2019, bigtech firms lent $572 billion, more than twice the amount of
non-mortgage credit extended by fintech firms (Cornelli et al., 2021).1

Empirically, platforms provide small unsecured loans to small and medium enter-
prises with short-term financing needs. Typically, platforms do not require informa-
tion from credit bureaus and, instead, rely on information about the merchant’s his-
tory of transactions. Finally, platforms often implement revenue-based repayment plans,
whereby borrowing merchants pledge a share of their sales on the marketplace as part of
the loan repayment.2

Because of these unique empirical patterns and the rapid growth of bigtech lending,
practitioners and regulators have been paying increasing attention to this phenomenon
and its implications for welfare (Adrian, 2021; BIS, 2019; de la Mano and Padilla, 2018;
Frost et al., 2019; Financial Stability Board, 2019; Petralia et al., 2019). By bundling tra-
ditional platform services with lending and by exploiting economies of scope, platforms
may improve access to credit, especially for small and medium enterprises. However,
by disrupting the activity of incumbent lenders, bigtech lenders may cause adverse wel-
fare effects. In this paper, we provide a model that rationalizes the observed empirical
patterns and we draw welfare implications of a platform entering into the credit market.

We consider a model in which a merchant obtains an uncollateralized loan from com-
petitive banks or a platform. The merchant has private information about future cash

1We adopt the distinctions between bigtech and fintech used by Frost et al. (2019) and Stulz (2019).
Bigtech firms are “technology companies with established presence in the market for digital services” (Frost
et al., 2019). In particular, “these companies are organized around two-sided platforms that include sup-
pliers of goods and purchasers of goods” Stulz (2019). Also Petralia et al. (2019) observe that bigtech firms
possess “large, developed customer networks established through, for example, e-commerce platforms or
messaging services.” A fintech firm, on the other hand, is defined as “a specialized firm that challenges a
specific product line of banks” (Stulz, 2019).

2For specific examples, please see: https://www.paypal.com/workingcapital/, https://get.doordash.c
om/en-us/products/capital, https://press.aboutamazon.com/2022/11/amazon-launches-new-mercha
nt-cash-advance-program-provided-by-parafin-doubling-down-on-its-support-for-small-and-medium-s
ized-businesses, https://pos.toasttab.com/products/capital.
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flows and is subject to moral hazard. The merchant obtains higher revenues from selling
goods through the platforms than through an outside option. The more the merchant
values doing business on the platforms, the higher the share of sales the merchant can
credibly pledge to the platform as loan repayment. As a result, the platform can relax
financial frictions for merchants who have low credit scores but obtain substantial value
from transacting on the platform.

We make three main contributions. First, we show that a platform not only provides
value by operating a two-sided market (Weyl, 2010; Armstrong, 2006; Rochet and Tirole,
2002; Jullien et al., 2021), but it can also alleviate financing frictions for platform users.
By controlling access to a valuable source of revenues for the borrower, the platform en-
forces partial loan repayment, reduces default risks, and improves financial inclusion for
unbanked merchants. Second, we uncover a mechanism whereby social welfare declines
when a lender with superior enforcement ability enters the credit market and directly
competes with incumbent lenders. The mechanism applies to any framework with pri-
vate information and limited commitment in which lenders possess heterogeneous en-
forcement ability.3 Third, we identify a novel equilibrium interaction between enforce-
ment and information in a model with credit competition. Because of the equilibrium
reaction of incumbent lenders, a lender with superior enforcement power may extract
smaller rents from enforcement when it has the option to acquire private information
about the borrower.

In our model, financing frictions arise from the merchant’s limited commitment and
private information. The merchant can borrow from the platform or from competitive
banks and she is privately informed about whether her future sales will be high or low.4

Moreover, the merchant cannot commit to repay the loan. In particular, the merchant has
the option to default on the loan balance, abscond with the net revenues, and forfeit the
continuation value of production. A merchant with low revenue is more likely to default
in equilibrium because her future revenues are insufficient to motivate her to repay the
loan. Lenders have a common prior about the merchant’s future revenues and we refer
to it as the merchant’s credit quality.

Unlike traditional lenders, the platform can alleviate financing frictions by exploiting
economies of scope between lending and the marketplace, thus enforcing loan repayment.
As an optimal response to the limited-commitment problem, the platform charges fees on

3For example, heterogeneous enforcement among lenders may originate also from different abilities to
extend trade credit (Burkart and Ellingsen, 2004; Petersen and Rajan, 1997), secure digital collateral (Gertler
et al., 2021), or provide warehouse banking (Donaldson et al., 2018).

4The platform’s potential borrowers are typically small businesses, for which uncertain cash flows rep-
resent an important source of credit risk.
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borrowing merchants and applies them toward loan repayment. These fees are collected
when transactions happen, but before the loan is due. We refer to them as repayment fees
and they are consistent with common practice in bigtech lending. By charging repayment
fees, the platform directly enforces a partial repayment from the merchant, even if the
latter intends to default. Furthermore, the platform indirectly improves the merchant’s
ex-post incentives to repay the loan and continue production, thus enforcing full repay-
ment. After paying the fees, the merchant is left with a smaller loan balance and, hence,
stronger incentives to repay and continue production. Therefore, because of repayment
fees, more income can be credibly pledged to the platform as a lender, thus reducing fi-
nancing frictions. The platform reduces financing frictions the most for merchants who
obtain the highest value from the platform’s services because these merchants are willing
to pay the highest repayment fees to maintain access to the platform’s marketplace or
payment system.

When the platform lends in competition with banks, it acquires an additional advan-
tage as a lender, which, however, causes negative welfare effects. In the market, the bor-
rower faces a menu of two contracts: a contract with repayment fees and high enforce-
ment offered by the platform, and a contract with no repayment fees and low enforce-
ment offered by banks. Whereas the high-revenue merchant is indifferent to the level of
enforcement, the low-revenue merchant self-selects into the contract offered by banks to
minimize fees paid ahead of default.5 In equilibrium, the platform benefits from advan-
tageous screening, whereas banks suffer from adverse screening. As a result, banks tighten
credit, causing negative welfare effects.

We solve for the mixed-strategy equilibrium in a discontinuous game6 and we ob-
tain a series of predictions. First, the model predicts credit markets become partially
segmented, with the platforms lending to worse borrowers than banks based on observ-
able characteristics. Because of its superior enforcement, the platform possesses a relative
advantage when lending to unreliable borrowers. Second, the model predicts that, condi-
tional on observable characteristics, the platform lends to a better pool of borrowers than
banks. Because of equilibrium screening, bad borrowers self-select into bank loans to
avoid pledging income to the platform before defaulting. Third, we derive predictions on
the welfare effects of platform lending. In terms of social welfare, the net effect depends

5The platform could offer the same menu of screening contracts. However, such a menu is not optimal.
Because low-revenue merchants would self-select into a low-enforcement, the platform would benefit from
pooling the two types into a high-enforcement contract with high repayment fees.

6Whereas mixed-strategy equilibria are common in the credit-competition literature (Broecker, 1990;
Hauswald and Marquez, 2003; He et al., 2023; von Thadden, 2004), the discontinuity in the lenders’ objective
function and resulting in a discontinuity in the set of equilibrium interest rates are novel features of our
framework. These features derive from the borrower’s incentives to strategically default.

4



on the credit quality of the merchant, the value of the platform’s service, and the cost of
capital of lenders. In terms of the merchant’s welfare, the model predicts that, whereas
unbanked borrowers benefit from the option to borrow from the platforms, borrowers
for which the platform competes with banks suffer from higher rates and more frequent
credit rationing. For the latter borrowers, banks tighten credit in response to the adverse
effects of equilibrium screening.

We also extend the model and allow the platform to acquire superior information
about the borrower’s future revenues at a cost, although infinitesimally small.7 We show
a platform with superior enforcement power does not necessarily benefit from possess-
ing superior information about the borrower. Because of banks’ equilibrium reaction,
the option to acquire information may lower the surplus the platform extracts through
better enforcement. Specifically, for some parameters, the platform earns lower equilib-
rium profits when it has the option to acquire information compared to our main model.
This result is new to the credit-competition literature in which lenders have the same
enforcement power. In the existing literature, a single lender always benefits from hav-
ing superior information about the borrower, like in models by Hauswald and Marquez
(2003) and He et al. (2023).

1.1 RELATED LITERATURE

So far, researchers have identified three advantages fintech and bigtech lenders possess
over banks: superior information (Buchak et al., 2018; He et al., 2023; Huang, 2021a;
Philippon, 2019; Di Maggio and Yao, 2021; Hu and Zryumov, 2022), less stringent reg-
ulation (Beaumont et al., 2021; Buchak et al., 2018; Gopal and Schnabl, 2022), and con-
venience (Fuster et al., 2019). Among those, our work is closely related to the recent
literature on payment platforms making loans because of their information advantages
(Parlour et al., 2020; Ghosh et al., 2021). However, we focus on a fourth advantage, which
is specific to bigtech platforms. According to our model, the bigtech platform’s advan-
tage can be primarily attributed to its control over a marketplace. Therefore, we establish
a complementarity between lending and operating a product market.

The platform’s advantage is thus similar to the advantage of warehouse banks (Don-
aldson et al., 2018) trade creditors (Biais and Gollier, 1997; Burkart and Ellingsen, 2004; Pe-

7Existing literature shows bigtech platforms may also possess information advantage over banks (Frost
et al., 2019) because, for example, platforms may use alternative data and methodologies to assess the
borrower’s future revenues and, hence, default risk. Because we focus on a platform lending to merchants,
we focus on information about the merchant. Kirpalani and Philippon (2020) study the equilibrium in the
platform’s marketplace when the platform acquires information about consumers’ tastes but does not lend
to merchants.
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tersen and Rajan, 1997), and institutions that lend against digital collateral (Gertler et al.,
2021). In particular, we micro-found the platform’s ability to enforce repayment from a
borrowing merchant as a function of the value that the platform provides to the merchant.
We analyze how lenders differential enforcement power affects equilibrium outcomes for
merchants with different credit risk. Unlike previous contributions, we focus specifically
on bigtech firms that, by simply controlling access to a marketplace or a payment system,
obtain a crucial advantage as a lender, even without superior information.

In papers related to ours, Huang (2021a) and Boualam and Yoo (2022) study fin-
tech lenders who can seize an exogenous fraction of the borrower’s cash flow. Huang
(2021a) characterizes the optimal information-acquisition strategy of a fintech lender that
competes with banks in a private-value setting in which banks lend against collateral.
We study competition for uncollateralized credit under a common-value setting, where
lenders have different enforcement powers. Boualam and Yoo (2022) study whether
banks and fintech lenders emerge as competitors or partners in equilibrium. Compared
to Boualam and Yoo (2022), we introduce credit risk and information asymmetry between
lenders and borrowers and we focus on the competition among different lenders. Com-
pared to both these papers, we identify a new channel whereby the platform could lower
equilibrium welfare when competing with banks because of its ability to enforce repay-
ments. We also show that, by acquiring private information in a common-value setting,
the platform may extract lower rents from enforcement in equilibrium.

Our model builds upon the credit market competition literature (Broecker, 1990). In-
stead of focusing on lenders who are differentially informed (Hauswald and Marquez,
2003; He et al., 2023; Goldstein et al., 2022), our competing lenders have different degrees
of enforcement power. The welfare effects of the platform’s better enforcement resem-
ble the effects of a winner’s curse among bidders in a common-value auction (Milgrom
and Weber, 1982; Engelbrecht-Wiggans et al., 1983; Hausch, 1987; Kagel and Levin, 1999).
However, the underlying mechanism is very different. Whereas a winner’s curse orig-
inates from asymmetric information among bidders, advantageous screening originates
because the platform and banks offer contracts that, in equilibrium, screen good and bad
borrowers. Banks are then adversely affected by this equilibrium screening and reduce
credit in response.

More broadly, our research is also related to the theoretical literature on two-sided
markets and lending with limited commitment. In particular, although we take fees as
given,8 our research highlights that a platform profits not only from designing a two-

8According to our conversations with practitioners, transaction fees and loan terms are typically set by
different divisions within a bigtech firm.
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sided market (Weyl, 2010; Armstrong, 2006; Rochet and Tirole, 2002; Jullien et al., 2021),
but also from financing the activity of market users. In contemporaneous work, Bouvard
et al. (2022) find that a platform can use credit contracts to indirectly discriminate plat-
form participants with different wealth. Huang (2021b) analyzes the synergy between
consumer lending and e-commerce. Similar to the limited-commitment literature (Al-
varez and Jermann, 2000; Kehoe and Levine, 1993; Kocherlakota, 1996; Ligon et al., 2002),
the borrower is motivated to (partially) repay the loan to maintain access to a valuable
market which, in our case, is the platform’s marketplace instead of the credit market.

The empirical literature studying lending by bigtech and fintech firms is expanding
rapidly. Liu et al. (2022) find evidence of advantageous selection for bigtech lenders,
whereas Frost et al. (2019), Hau et al. (2019), and Ouyang (2022) provide evidence that
bigtech firms expand credit access, consistent with our model that bigtechs are able to
reach borrowers who are under-served by traditional banks. Other authors focus on
fintech firms lending strategies to consumers (Di Maggio and Yao, 2021; Balyuk, 2022),
and the substitutability (Buchak et al., 2018; Eça et al., 2022; Gopal and Schnabl, 2022) or
complementarity (Beaumont et al., 2021) between bank and fintech loans. Fuster et al.
(2019) find fintech firms process mortgage applications faster but have higher default
rates. Agarwal et al. (2021) and Di Maggio and Yao (2021) analyze fintech firms using
alternative data to expand credits. Berg et al. (2020) show the alternative footprint data
complements the traditional credit bureau information for predicting defaults. Finally,
Dai et al. (2023) find fintech lenders can increase repayment likelihood on delinquent
loans. Several recent review articles has summarized the developments and the literature
on bigtech and fintech lending (Stulz, 2019; Petralia et al., 2019; Allen et al., 2020; Agarwal
and Zhang, 2020; Berg et al., 2021).

2 SET-UP

We consider three types of players: a merchant, competitive banks, and a monopolistic
platform. The merchant needs to borrow to produce and sell goods, banks provide financ-
ing, and the platform provides both financing and a marketplace for the merchant. The
merchant has the option to participate in the platform’s marketplace or sell through other
channels. The merchant is subject to moral hazard in the form of limited commitment
and has private information about her future revenues.
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EMPIRICAL CONTEXT AND MOTIVATION. Loans provided by bigtech platforms are
usually small and unsecured.9 Therefore, we assume the borrower has no assets to pledge
as collateral and can thus strategically default if the loan balance exceeds her continua-
tion value.10 Moreover, these loans are short-term, and full repayment is often expected
to happen within a year.11 Hence, we consider a two-period model in which the loan has
to be repaid at the end of the first period. The second period provides a micro-foundation
for the continuation value of the borrower.12 Furthermore, borrowers repay platform
loans with a fraction of their sales. We will show this contractual feature represents the
platform’s optimal response to the risk of strategic default. However, because of this
repayment fee, borrowers have an incentive to divert sales away from the platform. In
fact, lenders explicitly acknowledge this moral hazard issue.13 Hence, we formally con-
sider the merchants’ option to sell outside the platform, which limits the share of sales the
merchant can credibly pledge to the platform.

TIMING. We consider a model with three dates, t ∈ {0, 1, 2}, and two periods. Figure
1 shows the timeline of the model. The first period represents an initial phase when the
business borrows from external sources to start production or grow. The second period
represents the long-run state of the business. At date t = 0, the merchant applies for
financing. If the merchant obtains financing, she produces and sells goods between date
zero and date one. The merchant chooses whether to sell on the platform or elsewhere.
If she sells on the platform, she pays transaction fees over the course of the first period,
when revenues are realized. At date t = 1, the merchant decides whether to repay the
loan or default. If the merchant repays, she produces and sells in the second period. If
she defaults, she absconds with the after-fee cash flow generated in the first period and
forfeits production in the second period. We normalize all players’ discount rates to zero.

9For example, PayPal offers working capital loans ranging from $1,000 to $150,000 to first-time borrow-
ers and, according to Doordash, their typical loan ranges from $5,000 to $15,000. See https://www.paypal
.com/workingcapital/ and https://get.doordash.com/en-us/products/capital

10We focus on small businesses at the startup stage that need financing to acquire working capital or pay
current costs. These businesses often lack pledgeable collateral and represent the typical users of platforms’
loans, which are often marketed as working-capital loans. See, for example, https://www.paypal.com/w
orkingcapital/. Because these loans are uncollateralized, the limited-commitment problem is an important
source of financial frictions.

11In its website, Doordash states: “Based on your daily sales revenue, we estimate you will pay back the
cash advance within 1 year.” See: https://help.doordash.com/dashers/s/article/DoorDash-Capital-FAQ.

12One can extend this model to infinite-horizon without altering the main economic mechanism or the
predictions of the paper. To streamline the paper, we therefore focus on a simpler two-period framework.

13For example, PayPal states: “You cannot deliberately direct customers to use another payment method.
We’ll monitor accounts for unexpected drops in PayPal sales volume, and your loan will be in default if
you move your sales away from PayPal to avoid repayment.” See: https://www.paypal.com/workingca
pital/faq.
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t = 0 t = 1 t = 2

Merchant applies for a loan Merchant repays or defaults Players consume
Lenders make lending decisions
Merchant chooses selling venue

Merchant produces
Platform collects fees

If no default, merchant produces
Platform collects fees

Figure 1: Timeline of the model.

THE MERCHANT. The merchant requires one unit of capital at date t = 0 to start or
continue her business. If the merchant obtains financing at date zero, she can generate
revenues for the subsequent two periods. In the first period, revenues are either high, cH ,
or low cL, with cH > cL. In the second period, revenues are proportional to the first-period
revenues with a constant of proportionality equal to α > 0. Therefore, the long-term value
of the business is positively correlated with the first-period revenues.14 At date zero, the
merchant possesses private information about the revenues she will generate. We use
θ ∈ {H,L} to denote the merchant’s type, and we refer to a merchant as good (bad) if
her revenues are high (low) and θ = H (θ = L). The platform and banks do not know
the merchant’s type at date t = 0, and have common prior beliefs p := P (θ = H). We
denote the revenue generated by type θ merchants in period t as cθ,t. Hence, cθ,1 = cθ and
cθ,2 = αcθ. However, lenders observe revenues when they are realized over time. Beliefs
p measure the creditworthiness of the merchant.15 We refer to a merchant with a higher p
as having a higher credit quality.

As a seller, the merchant may sell goods either on the platform or elsewhere. On
the platform, a merchant of type θ pays a transaction fee f , thus netting (1 − f)cθ,t at
time t. If the merchant sells goods outside the platform, her revenues are equal to (1 −
η)cθ,t, where η ∈ [0, 1] is common knowledge among all players. We call η the merchant’s
relative revenues, because it measures the proportional increase in gross revenues when a

14One can interpret α as the present value of an infinite stream of revenues in a model in which the
player’s discount rate is r = α−1, the borrower produces for infinitely many periods after borrowing, and
the numeraire is the consumption at time one. In an infinite-horizon model, the continuation value of the
merchant would be proportional to their one-period sales, even in models with possible exclusions from
credit markets in the future as punishments for default, such as, Alvarez and Jermann (2000), Kehoe and
Levine (1993), Kocherlakota (1996), and Ligon et al. (2002). To streamline the exposition of the model, we
interpret our framework as a two-period model with no discounting.

15We assume the platform and banks have the same information about the merchant’s revenues to high-
light how the platform enforces revenue-based repayments by controlling access to the marketplace, and
not by possessing superior information about revenues.
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merchant sells on the platform.16 Relative revenues η potentially vary significantly across
different merchants and are therefore a key dimension of heterogeneity across merchants.
For instance, a local small business can derive substantial advantages from selling on an
online marketplace like Amazon and accessing a national market, thereby resulting in a
high η. Conversely, an internationally recognized brand, being less reliant on any specific
marketplace, tends to have a smaller η. As we show ahead, the advantage of the platform
as a lender is larger for borrowers with higher relative revenues.

The merchant is subject to moral hazard in the form of limited commitment. In partic-
ular, at date t = 1, after revenues are realized, the merchant decides whether to repay the
loan or default and cease production. The merchant will only repay if her continuation
value, which is the net sales in the second period, is larger than the loan balance due,
similar to models of credit with limited commitment (Alvarez and Jermann, 2000; Kehoe
and Levine, 1993; Kocherlakota, 1996; Ligon et al., 2002).

THE PLATFORM. The platform operates a marketplace where merchants sell goods. The
platform charges a transaction fee f ∈ [0, 1) on the merchant’s revenues to cover its op-
erating costs. Because we focus on the platform’s lending decisions, we leave f as ex-
ogenous.17 Transaction fees are allowed to be zero in our model, and the key mechanism
behind our results holds even with f = 0. We let f ∈ [0, 1) to be more general.

In response to borrowers’ moral hazard problem, the platform may want to imple-
ment a revenue-based repayment. Specifically, the platform can increase transaction fees
for borrowing merchants from f to f + fP , and apply the difference towards loan repay-
ment. We refer to fP as the repayment fees. Such repayment fees are collected at the time
of the transaction, and a merchant cannot abscond with them. A merchant can still de-
fault on the remaining balance. However, as we explain later, such repayment fees are
endogenously bounded by the merchant’s outside option.

To lend to merchants, the platform pays a cost of capital R̄ > 0. When a merchant
applies for a loan, the platform issues a credit decision (dP , RP , fP ) with dP ∈ {0, 1},

16By revealed preferences, merchants join marketplaces like Amazon and Doordash or payment services
like Paypal because they obtain higher profits compared to alternative options. In addition, Higgins (2022)
shows that using payment platforms also increases sales for local retail businesses. Dubey and Purnanan-
dam (2023) find the adoption of digital payment platforms spurs economic growth.

17In our framework, the platform sets merchants’ and buyers’ fees independently of its lending activity.
To the best of our knowledge, this is an accurate characterization of the current business model of big-tech
lenders. In particular, we assume the number of merchants who need to borrow capital is small relative to
the total number of participants. Therefore, a platform first optimally sets fees for merchants and buyers,
as in the models by Armstrong (2006), Rochet and Tirole (2002), and Weyl (2010). It then learns about the
merchant’s outside option and interaction benefits. Finally, a relatively small measure of merchants needs
to borrow to operate on the platform.
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RP , fP ∈ R. The credit decision specifies whether the platform agrees to lend to the
merchant (dP = 1) or not (dP = 0), the gross interest rate on the loan (RP ), and the
repayment fee charged to the merchant (fP ).

BANKS. Competitive banks provide loans to the merchant. Although we refer to these
lenders as banks, they may represent any traditional lenders that do not provide a market-
place. We allow banks to potentially charge a repayment fee fB as the merchant’s revenue
comes into her deposit account. Hence the difference between banks and the platform is
not technology or information. However, as we explain in the next section, because banks
do not control access to marketplace, the repayment fee is endogenously equal to 0.

Banks obtain funds at a cost of capital RD > 0. If a merchant applies for a loan at
a bank, the bank issues a credit decision (dB, RB, fB) with dB ∈ {0, 1} and RB, fB ∈ R,
specifying whether the banks agrees to lend (dB = 1) or not (dB = 0), the gross interest
rate (RB) and the repayment fee (fB).

MORAL HAZARD AND INCENTIVE COMPATIBILITY. Suppose that, at date t = 0, a
merchant of type θ borrowed from lender J ∈ {B,P} at rate RJ and with repayment fees
fJ . By date t = 1, the merchant has accumulated net revenues (1− f − fJ)cθ and she owes
balance RJ − fJcθ to the lender. The merchant then decides whether to repay the balance
and continue production in the second period, or default, cease future production, and
abscond with the revenues accumulated so far. The merchant chooses to repay the loan if
future net revenues, (1− f)αcθ, exceed the balance due, RJ − fJcθ; that is, when

((1− f)α + fJ)cθ ≥ RJ . (1)

Equation (1) is an incentive-compatibility condition that ensures a borrower of type θ
will not default. This condition imposes an upper bound on the interest rate RJ , which
increases with the repayment fees fJ . In other words, the repayment fee fJ not only
directly increases the amount that the lender can recover, it also indirectly increases the
amount repaid by reducing the borrower’s loan balances and incentive to default. We
thus make the following remark.

REMARK 1. By using repayment fees, a lender improves the merchant’s ex-post incen-
tives to repay the loan balance.

Although repayment fees reduce ex-post incentives to default, lenders cannot increase
the repayment fees without any limit. For the platform, fees must be sufficiently low that
a merchant prefers remaining on the platform and pay the additional fees rather than
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selling outside the platform. This limits the repayment fees that the platform can set.
Formally, the platform faces an additional incentive-compatibility constraint summarized
in Lemma 1.

LEMMA 1. A merchant of type θ ∈ {L,H} has no incentive to divert sales from the platform in
the first period if and only if

fP ≤ η − f. (2)

In setting incentive-compatible repayment fees, the platform accounts for potential
double deviations from a merchant who would strategically default after diverting sales.
However, the resulting incentive-compatibility condition (2) has a simple intuition: the
merchant does not divert sales in the first period if the cost of remaining on the platform
and paying the repayment fees fP cθ does not exceed the cost of diverting sales and giving
up the one-period net revenues (η − f)cθ.

Because banks do not provide a source of revenues for merchants’ revenue, they can-
not charge any repayment fees for loan repayment, and hence fB = 0,18 consistent with
empirically observed loan contracts between banks and merchants.19 In the rest of the
paper, we simplify banks’ credit decision to the choice of a pair (dB, RB).

PARAMETER ASSUMPTIONS. Finally, we focus on parameter values satisfying Assump-
tion 1 to ensure the model’s outcomes are not trivial.

ASSUMPTION 1. We impose the following restrictions on parameter values:

(1 + α)cH > R̄ ≥ RD > αcL (3)

α(1− f)cH > RD, η ≥ f (4)

We assume the platform has no advantage over banks in terms of cost of capital; that
is, R̄ ≥ RD. Our results demonstrate that a platform can profitably compete with banks
even if its cost of capital is larger than banks’ cost of capital. Next, we assume a good
merchant generates enough value over two periods to exceed the cost of capital of the

18If a bank sets fB > 0 by charging a fee on incoming deposits, a borrower could avoid this fee by
diverting income to another bank. If a merchant bears a cost γ per unit of revenue when switching banks,
the incentive-compatibility condition for fB would be fB ≤ γ. The key assumption for our mechanism is
that this cost, γ, is smaller than the cost of migrating off the platform, η − f . To streamline the model, we
set γ = 0.

19One important feature of bank lending is that banks often lend against physical collateral. Other papers
focused on collateral as a difference between bank lending and fintech lending (Huang, 2021a; Boualam and
Yoo, 2022). We focus on uncollateralized loans.
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platform. That is, (1 + α)cH > R̄. Without this assumption, the platform, and possibly
banks, would not lend in equilibrium.

For the financing frictions to be relevant in equilibrium, we assume bad merchants
always default when they borrow from banks, i.e., RD > αcL. Because RD is the lowest
rate banks could possibly offer and fB = 0, condition (1) is always violated when banks
are the lenders (J = B). Moreover, we assume a good merchant is sufficiently profitable
that she chooses not to default if banks lend at their cost of capital; that is, α(1−f)cH > RD.

We make no other parametric assumption when characterizing the equilibrium in the
credit market.20 In our graphical illustrations of the equilibrium, we focus on the two
dimensions of heterogeneity: merchant’s credit quality p and relative revenue η. As we
show ahead, the nature of the equilibrium and its welfare properties vary based on the
parameters values and we fully characterize the equilibrium for any set of parameters
satisfying Assumption 1.

2.1 BENCHMARK MODELS

We start by considering models in which only the banks or only the platform operates as
lenders. With no competition between banks and the platform, we identify the key fric-
tions and illustrate the relative advantages and disadvantages of borrowing from either
type of lender.

When banks are the only lenders, because banks are competitive, they earn zero profits
in equilibrium and charge the break-even rate RB = RD

p
. Banks agree to lend if a good

merchant is willing to borrow and repay the loan at the break-even rate RB. That is, if
p ≥ RD

α(1−f)cH
. When p < RD

α(1−f)cH
, banks refuse to lend because the break-even rate is so

high that even a good merchant would default. As expected, banks’ lending decisions
are based on the merchant’s credit quality p alone, and are independent of the merchant’s
relative revenues η. This is in contrast to the case when the platform lends.

2.1.1 PLATFORM AS THE ONLY LENDER

Suppose the platform is a monopolistic lender. The optimal contract it can offer to mer-
chants is a pooling contract with revenue-based repayment fees fP and interest rate RP .21

20In particular, we impose no restriction on the relative value of (1+α)cL and R̄ orRD. If (1+α)cL < RD,
it is socially inefficient to finance a bad merchant. On the other hand, if (1 +α)cL > R̄, it is socially efficient
to lend to the merchant, even if she borrowed from the platform.

21The platform could offer a menu of contracts to screen borrowers. Because repayment fees are relatively
more costly for bad merchants who intend to default, by the single-crossing property, any screening menu
would include a contract with lower repayment fees designed to attract the bad borrower. The menu
would also include another contract with higher repayment fees but a weakly lower rate designed to attract
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The platform chooses the revenue-based repayment fees fP and issues a credit deci-
sion (dP , RP ) to maximize its profit. Merchants of type θ repay their loans in full if
RP ≤ (α − (1 + α)f + fP )cθ. In particular, if RP ≤ (α − (1 + α)f + fP )cL, both types
of merchants repay their loan at t = 1 and continue production in the second period. If
instead RP ∈ ((α − (1 + α)f + fP )cL, (α − (1 + α)f + fP )cH ], only the good merchant
repays at t = 1 and continues production in the second period. Therefore, the platform
maximizes

max
fP ,RP ,dP∈{0,1}

dP {Rp − R̄+ (1 + α)[pcH + (1− p)cL]f} if RP ≤ (α− (1 + α)f + fP )cL

dP {pRP + (1− p)fP cL − R̄+ [(1 + α)pcH + (1− p)cL]f} if RP > (α− (1 + α)f + fP )cL

(5)

s.t. (2) and RP ≤ (α− (1 + α)f + fP )cH

Because the objective function in problem (5) is weakly increasing in fP , the incentive-
compatibility constraint on the repayment fee fP , (2), always binds.

Moreover, with no competition from banks, the platform chooses the interest rate on
the loan to maximize the expected surplus it extracts from the merchant. In particular,
the platform increases the interest rate until either the high-revenue merchant or the low-
revenue merchant is indifferent between repaying the loan or defaulting strategically. As
a result, the platform sets its interest rate either to (α− (1+α)f +η)cL or to (α− (1+α)f +

η)cH . If (1) binds for θ = L and the rate is (α− (1+α)f +η)cL, both types repay the loan in
full and the platform extracts surplus (α− (1 + α)f + η)cL from both types in addition to
transaction fees. If (1) binds for θ = H and the rate is (α− (1 + α)f + η)cH , only the high-
revenue merchant repays the loan and the platform extracts surplus (α− (1 + α)f + η)cH

from this merchant. However, the platform can extract only repayment fees (η − f)cL as
surplus from the low-revenue merchant. We describe the platform’s lending behavior in
Lemma 2.

LEMMA 2. When the platform is the only lender, a merchant receives funding if and only if

max{p(α + η)cH + (1− p)ηcL, (α + η)cL + (1 + α)p(cH − cL)f} − R̄ ≥ 0. (6)

the good borrower. However, this screening menu is dominated by a pooling contract with the highest
repayment fee and an optimally chosen interest rate. Because of the single-crossing property, repayment
fees are more costly for a bad borrower than for a good one. At the same time, repayment fees are most
valuable for the platform when it lends to a bad merchant who intends to default. As a result, the optimal
contract is a pooling contract with the highest level of enforcement.
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The monopolistic platform sets rate RP = (α− (1 + α)f + η)cH if

p ≥ αcL
(α− (1 + α)f + η)(cH − cL) + αcL

, (7)

and it sets rate RP = (α− (1 +α)f + η)cL otherwise. In particular, if it is efficient to finance bad
merchants with the platform’s capital, that is, if (1 + α)cL > R̄, then there exists η̂ ∈ (0, 1) such
that the platform lends regardless of credit quality for η ≥ η̂.

Lemma 2 is crucial to understanding the platform’s unique behavior and advantage as
a lender. Whereas banks account only for the merchant’s perceived quality in their credit
decision, the platform evaluates also the merchant’s relative revenue η when deciding
whether to lend or not. Everything else equal, a merchant who benefits more from selling
on the platform (that is, a merchant with higher η) is more profitable to lend to. In fact,
when (1 + α)cL > R̄ and η is large enough (η ≥ η̂), the platform lends to any merchant,
regardless of her credit quality.

Furthermore, conditional on lending, the platform lends at a low interest rate, RP =

(α−(1+α)f+η)cL, when the merchant’s credit quality is relatively low and condition (7) is
not satisfied. In this case, neither types of merchants default on. As a result, the platform
is able to reduce default risks conditional on observables and increase total output. Figure
2 provides an illustration of the equilibrium in this case.

2.2 DISCUSSION OF THE BENCHMARK MODELS

Before analyzing the equilibrium with competition, we discuss the sources of inefficient
credit allocation in the model. We then highlight how the platform is able to partially
alleviate these inefficiencies due to its control over a valuable marketplace.

FINANCING FRICTIONS AND CREDIT RATIONING. In a frictionless model with full
information and income pledgeability, banks should provide financing because their cost
of capital is lower. Banks finance good merchants because (1+α)cH > RD by Assumption
1. Moreover, if (1 + α)cL > RD, they should finance also bad merchants.

With asymmetric information, banks cannot condition credit on the merchant’s type.
Therefore, banks would lend if and only if

(1 + α)(pcH + (1− p)cL) ≥ RD. (8)

Banks would therefore implement a second-best allocation delivering the same social wel-
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f η̂ 1

1

η

p
Type L defaults No defaults

(a) (1 + α)cL ≥ R̄

f 1

1

η

p
Type L defaults

(b) (1 + α)cL < R̄

Figure 2: Equilibrium with the platform as a monopolistic lender. The shaded areas indicate the set of
merchants (with different combinations of relative revenues η and credit quality p) that receive financing
from the platform. In Figure 2(a), it is socially efficient to lend to bad merchants using the platform’s capital
((1 +α)cL ≥ R̄). In Figure 2(b), it is inefficient to do so ((1 +α)cL < R̄). In the light gray areas, the platform
lends at rate RP = (α − (1 + α)f + η)cH and bad merchants default. In the dark gray area, the platform
lends at rate RP = (α− (1 + α)f + η)cL and no merchant defaults.

fare as the constrained planner’s allocation.22 Furthermore, under limited commitment,
each type of merchant can at most pledge their first-period income to banks. Moreover,
under Assumption (1), a bad merchant chooses to default when borrowing from banks in
equilibrium.23 Hence, the set of merchants receiving financing is reduced to those satisfy-
ing pα(1− f)cH ≥ RD. Welfare declines in general due to credit rationing.

THE PLATFORM’S ADVANTAGE. The platform is subject to similar financing frictions
as banks: the platform does not possess better information about the merchant’s type,
and merchants may still default on their loans from the platform. However, unlike banks,
the platform controls access to a valuable source of revenues for merchants. It thus can
implement a revenue-based repayment plan by charging repayment fees fP = η − f to
partially alleviate the limited-commitment problem. Repayment fees allow merchants to
credibly pledge part of their revenues to the platform through a direct channel and an
indirect channel. First, even when a merchant defaults, the platform is able to directly
collect a partial repayment equal to fP cL. Second, the repayment fees indirectly improve
the merchant’s ex-post incentives to repay and continue production, by lowering the end-

22See Appendix A for the social planner’s solution in the second-best case.
23Default is an ex-post welfare loss, even if (1 + α)cL < RD. By defaulting, a merchant forfeits future

production opportunities after the capital investment is made.
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of-the-period balance. This leads to higher social welfare.
Both channels operate via the repayment fee fP . Since the repayment fee fP is limited

by the merchant’s relative revenue for being on the platform (η), the advantage of the
platform as a creditor is particularly strong among merchants with large η.24

Better enforcement allows the platform to expand credit and improve welfare com-
pared to banks. Consider the case when (1 + α)cL > R̄ and it is efficient to lend to bad
merchants. According to Lemma 2, if η is sufficiently large, a merchant receives financ-
ing regardless of her credit quality p. Moreover, for small p, no merchant will default.
For these merchants, the platform unambiguously improves social welfare compared to
banks. However, the platform’s allocation is less efficient than the planner’s if the cost of
capital of the platform exceeds the cost of capital of banks.

3 EQUILIBRIUM WITH COMPETITION

We now study the equilibrium and welfare implications when the platform competes
with banks in the credit market. The merchant may receive credit offers from several
banks and the platform. Unlike Section 2.1, where lenders use pure strategies, here the
equilibrium is characterized by mixed strategies in the region where banks and the plat-
form are competing directly. We start by further specifying the structure of the model at
date t = 0, when the merchant applies for financing and lenders compete.

3.1 COMPETITION BETWEEN THE PLATFORM AND BANKS

Consider date t = 0. First, competitive banks announce their lending mechanisms and
commit to them. A lending mechanism specifies the probability the bank offers a loan,
mB = P (dB = 1), and the distribution of the interest rate RB offered conditional on
extending a loan, FB(R) := P (RB ≤ R). The merchant then chooses the bank offering the
best mechanism for the merchant.25 We label this bank as the merchant’s preferred bank.

The platform also selects a lending mechanism in order to compete with the mer-
chant’s preferred bank. The platform’s lending mechanism specifies the platform’s lend-
ing probability mP = P (dP = 1), and the distribution of rates FP (R) := P (RP ≤ R)

24Because of the transaction fee f charged to all the merchants, the platform has another advantage
over banks which is internalizing the transaction fees the merchant generates over the course of the two
production periods. More broadly, a platform may internalize also the network externalities a marginal
merchant generates on buyers on the platform.

25We assume the merchant suffers a non-pecuniary cost when applying to multiple banks. Typically,
when multiple banks pull the credit report of the borrower, the perceived credit quality of the borrower
will be negatively affected in the future.
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the platform offers, conditional on lending. The platform also charges repayment fees fP
such that the merchant prefers to operate on the platform, i.e. satisfying condition (2).
The merchant simultaneously applies for a loan from her preferred bank and the plat-
form. The bank and the platform, therefore, issue their lending decisions, (dB, RB) and
(dP , RP ), at the same time.

MERCHANT’S STRATEGY If only one lender grants credit, the merchant borrows from
that lender regardless of the merchant’s type. If neither lender extends credit, the mer-
chant does not produce goods and generates zero value. If both lenders offer credit, the
merchant will choose her best option. However, good and bad merchants face different
incentives to repay the loan and may, therefore, choose differently.

In equilibrium, a good merchant who receives offers from both lenders chooses the
offer with the lowest rate. If a good merchant borrows from a bank at a rate greater than
α(1 − f)cH , she will default at date t = 1. Therefore, banks will never offer rates above
α(1 − f)cH and hence, FB(α(1 − f)cH) = 1. Moreover, without loss of generality, we set
FB(RD) = 0, because banks cannot lend below their cost of capital without experiencing
losses. If a good merchant borrows from the platform, she will default if the platform’s
rate exceeds (α−(1+α)f+η)cH . Hence, we have FP ((α−(1+α)f+η)cH) = 1. Given these
upper limits on the interest rates offered by banks and by the platform, a good merchant
who receives offers from both lenders chooses the offer with the lower rate.26

The expected profit of a good merchant facing lending mechanisms (mB, FB) and
(mP , FP ) is thus

U(mB,mP , FB, FP ) := [1− (1−mB)(1−mP )](1 + α)(1− f)cH︸ ︷︷ ︸
expected revenues

−mB(1−mP )

∫ (1−f)αcH

0
RdFB(R)︸ ︷︷ ︸

expected interest when only bank lends

− (1−mB)mP

∫ (α−(1+α)f+η)cH

0
RdFP (R)︸ ︷︷ ︸

expected interest when only platform lends

−mBmP

∫ (α−(1+α)f+η)cH

0

∫ α(1−f)cH

0
min{R,R′} dFB(R) dFP (R′)︸ ︷︷ ︸

expected interest when both lend

.

(9)

In equation (9), the good merchant receives financing and produces revenues for two
periods with probability 1−(1−mB)(1−mP ). With probabilitymB(1−mP ), the bank is the

26In what follows, we assume the good merchant selects the platform if both lenders offer the same
rate. This assumption is without loss of generality. In fact, if the merchant’s choice were endogenously
determined in case of indifference, in equilibrium we would observe the same outcome. Therefore, to
streamline the model and the exposition, we directly assume the good merchant borrows from the platform
if indifferent between the two offers.
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only lender and interest rates are drawn from the distribution FB. With probability (1 −
mB)mP , the platform is the only lender and interest rates are drawn from the distribution
FP . Finally, with probability mBmP , both lenders make an offer, with rates drawn from
the distributions FB(R) and FP (R). In this case, the borrower chooses the lender offering
the lowest rate.

Whereas a good merchant always chooses the lender offering the lowest rate, a bad
merchant takes into account the option value to default. When both lenders offer rates
above α(1− f)cL, the bad merchant always prefers borrowing from the bank and default-
ing. To see this, if the bad merchant borrows from the bank, the incentive compatibility
condition (1) for J = B is violated, so she always defaults and earns profits (1 − f)cL. If
the merchant borrows from the platform, regardless of whether she defaults, her profit is
less than (1−f)cL due to the platform’s enforcement power. BecauseRD > (1+α)cL from
Assumptions 1, banks always offer loans with RB > (1− f)αcL in equilibrium. Ahead, in
Lemma 3, we show also the platform, in equilibrium, sets RP > (1− f)αcL. This implies
that bad merchants always choose to borrow from the banks and default in equilibrium.

PLATFORM’S PROFIT Because the borrower’s choice and default decision depend on
the interest rate offered, we need to consider three different regions of interest rates when
analyzing the platform’s profit. When the platform offers very low interest rates, that is
R ≤ (1− f)αcL, both types of merchants would produce and pay transaction fees for two
periods. Furthermore, both types of merchants will borrow from the platform and not
default.27 The platform’s profit when lending at rate R ≤ (1− f)αcL is given by

l−P (R,mB, GB; p) := R− R̄ + (1 + α)[pcH + (1− p)cL]f,

where we explicitly denote the dependence of the platform’s profits on the merchant’s
credit quality p. This scenario could only be profitable for the platform if

(1− f)αcL ≥ R̄− (1 + α)[pcH + (1− p)cL]f.

In other words, the platform could lend below its cost of capital and still make profit if
the transaction fee f is high enough.

In the second scenario, when the platform offers an intermediate interest rate, that is
R ∈ ((1−f)αcL, (α− (1+α)f+η)cL], a bad merchant who borrows from the platform will
repay the balance and continue production in the second period. However, if a bank also
makes an offer, the bad borrower prefers to borrow from the bank and default after one

27Because RD > (1− f)αcL, banks always offer rates above (1− f)αcL in equilibrium.
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period. In this case, the platform’s expected profit at lending rate R ∈ ((1 − f)αcL, (α −
(1 + α)f + η)cL] is

l0P (R,mB, GB; p) := mBpGB(R)(R−R̄)+(1−mB)[R−R̄+(1−p)αcLf ]+[(1+α)pcH+(1−p)cL]f,

where
GB(R) := P (RB ≥ R) = 1− lim

ε→0+
FB(R− ε).

With probability mB, a bank lends and only good borrowers accept the platform’s offer,
provided RB ≥ R. The good merchant produces and pays transaction fees for two peri-
ods. If the merchant is bad, she borrows from banks and defaults, thus paying the transac-
tion fee only in the first period. With probability (1−mB), the bank denies credit and thus,
the merchant necessarily borrows from the platform. Because R ≤ (α − (1 + α)f + η)cL,
the rate is sufficiently low that both types of borrowers repay the loan balance. In this
case, both borrowers produce and pay transaction fees for two periods.

Finally, if the platform lends at a high rate, that is R ∈ ((α− (1 + α)f + η)cL, (α− (1 +

α)f + η)cH ], the rate is so high that a bad merchant defaults even when she borrows from
the platform. Hence, in this case, the platform’s expected profit is

l1P (R,mB, GB; p) := mBpGB(R)(R−R̄)+(1−mB)[pR+(1−p)(η−f)cL−R̄]+[(1+α)pcH+(1−p)cL]f.

Similar to the previous case, with probability mB a bank lends and the platform attracts
only good borrowers provided that RB ≥ R. With probability (1 −mB), the bank denies
credit. In this case, the good merchant fully repays the loan, but the bad merchant pays
only the repayment fees fP cL and defaults on the balance. Regardless of the lender, the
platform also collects revenues from transaction fees f in both periods from good mer-
chants and for one period from bad merchants.

To summarize, conditional on lending at rate R ≤ (α − (1 + α)f + η)cH , the expected
profits of the platform are

LP (R,mB, GB; p) :=


l−P (R,mB, GB; p) if R ≤ (1− f)αcL

l0P (R,mB, GB; p) if R ∈ ((1− f)αcL, (α− (1 + α)f + η)cL]

l1P (R,mB, GB; p) if R > (α− (1 + α)f + η)cL.

(10)

Unlike Section 2.1, where the platform earns zero profits when it does not lend, here
the platform enjoys a better outside option. If the platform does not lend, it still earns
transaction fees if a bank lends to the merchant, which happens with probability mB.
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Hence, the payoff of a platform that does not lend is mB[(1 + α)pcH + (1− p)cL]f instead
of zero.

BANK’S PROFIT On the bank side, conditional on lending at rate R ∈ [RD, (1 − f)αcH ],
a bank obtains the following expected profits:

LB(R,mP , GP ; p) := mP [pGP (R)(R−RD)−(1−p)GP ((1−f)αcL)RD]+(1−mP )(pR−RD),

(11)
where

GP (R) := P (RP > R) = 1− FP (R).

If the platform offers a loan, with probability p the merchant is good and borrows from
the bank only if RP > R. With probability 1 − p, the merchant is bad and she borrows
from the bank whenever the platform’s rate exceeds (1 − f)αcL. If the platform does not
offer a loan (with probability (1−mP )), the merchant necessarily borrows from the bank
and defaults at date t = 1. A bank that decides not to lend earns its outside option, which
is equal to zero.

Let ∆([0, X]) be the set of non-decreasing, right-continuous functions satisfyingF (x) =

0 for all x < 0 and F (x) = 1 for all x ≥ X for any F ∈ ∆([0, X]). We define equilibrium as
follows.

DEFINITION 1 (Equilibrium). An equilibrium is a set of lending probabilities (m∗P ,m
∗
B) ∈

[0, 1]2 and rate distributions by the platform and the banks F ∗P ∈ ∆([0, (α− (1+α)f+η)cH ]) and
F ∗B ∈ ∆([0, (1− f)αcH ]) with supports R∗P and R∗B and with G∗B(R) := 1− limε→0+ F

∗
B(R− ε)

and G∗P (R) := 1− F ∗P (R), such that:

1. The platform and competitive banks set rates optimally:

R∗P = arg max
R≤(α−(1+α)f+η)cH

LP (R,m∗B, G
∗
B; p)

R∗B = arg max
R∈[RD,(1−f)αcH ]

LB(R,m∗P , G
∗
P ; p)

s.t. LB(R,m∗P , G
∗
P ; p) ≤ 0.

2. Lenders extend credit optimally:

m∗P ∈ arg max
mP∈[0,1]

mPLP (R,m∗B, G
∗
B; p) ∀R ∈ R∗P

m∗B ∈ arg max
mB∈[0,1]

mBLB(R,m∗P , G
∗
P ; p) ∀R ∈ R∗B.
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3. Banks are competitive in the lending market; that is, no lending mechanism (FB,mB)

exists such that
∫ (1−f)αcH

0
LB(R,m∗P , G

∗
P ; p) dFB(R) > 0 and U(1,m∗P , FB, F

∗
P ) >

U(m∗B,m
∗
P , F

∗
B, F

∗
P ).

According to part 1, lenders select their rates in the set of best responses. Competitive
banks offer rates so that, at best, they break even. According to part 2, lenders decide
whether to lend or not optimally when comparing profits from lending activity with their
outside option. Hence, we have banks earn zero profits in equilibrium. That is,

m∗BLB(RB,m
∗
P , G

∗
P ; p) = 0 ∀RB ∈ R∗B. (12)

Part 3 of the definition specifies that banks offer competitive terms to merchants. In
particular, a bank cannot deviate from the equilibrium mechanism and obtain a strictly
positive profit while also increasing the good merchant’s utility. This condition ensures
banks offer the best terms for a good merchant that are compatible with the other equilib-
rium conditions.

Next, we provide a first characterization of the platform’s interest-rate strategy. In
particular, we show a platform never offers a rate equal to or below (1−f)αcL. Therefore,
the first case in equation (10) is not part of any equilibrium.

LEMMA 3. For any mB ∈ [0, 1] and R ≤ (1− f)αcL, LP (R,mB, GB; p) < LP ((α− (1 +α)f +

η)cL,mB, GB; p). Therefore, [0, (1− f)αcL] ∩ R∗P = ∅.

Thanks to Lemma 3, from now we focus on equilibria in which RP > (1 − f)αcL.
Thus, the bad merchant always prefers borrowing from banks and defaulting rather than
borrowing from the platform.

3.2 MARKET SEGMENTATION AND ADVANTAGEOUS SCREENING

We begin by exploring some general features of the equilibrium. Lemma 4 establishes
that, in equilibrium, the market will be partially segmented based on the merchant’s
credit quality. Merchants of high credit quality borrow exclusively from banks, whereas
merchants of low credit quality borrow exclusively from the platform.

LEMMA 4 (Partial Segmentation). If p < RD

(1−f)αcH
, banks do not lend to the merchant, but if

condition (6) holds, the platform lends as in Lemma 2. If p ≥ RD

R̄
, the merchant borrows exclusively

from banks that offer loans with probability 1 at rate RD

p
.

If the merchant’s credit quality is low, that is, p < RD

(1−f)αcH
, all banks refuse to lend

to the merchant because the credit risk is too high. Thus, the platform remains the only
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lender as long as condition (6) is satisfied. If the merchant’s credit quality is very high,
that is, p ≥ RD

R̄
, the platform cannot profitably compete with banks because banks are able

to offer very low interest rates to these borrowers. When banks offer loans at their most
competitive rate RD

p
, the platform could attract good borrowers by matching or undercut-

ting the banks’ interest rate. However, if p ≥ RD

R̄
, the platform’s cost of capital is equal to

or exceeds the banks’ competitive rate. Thus, the platform has no incentives to compete
with banks for borrowers of high credit quality.

Markets are only partially segmented because, as we show in Lemma 5, the platform
and banks compete for borrowers of intermediate credit quality, p ∈

[
RD

(1−f)αcH
, RD/R̄

)
.

LEMMA 5 (Mixed Strategies). If p ∈
[

RD

(1−f)αcH
, RD/R̄

)
, banks offer loans with probability

m∗B ∈ (0, 1) and the platform offers loans with probability m∗P ∈ (0, 1]. Moreover, the platform
offers rates ranging between minR∗P ≤ RD/p and maxR∗P ≥ (1− f)αcH . In particular, minR∗P

coincides either with RD/p or with (α − (1 + α)f + η)cL. Banks offer rates up to supR∗B =

(1− f)αcH .

The platform and banks compete for borrowers of intermediate credit quality, and any
equilibrium in this region is characterized by mixed strategies. Because of competition,
the platform lowers interest rates below its monopolistic rate (α − (1 + α)f + η)cH with
strictly positive probability.28 At the same time, compared with the bank-only benchmark
model, banks increase their rates up to their monopolistic rate (1 − f)αcH . Moreover,
banks also deny credit with positive probability 1−m∗B > 0.

By implementing revenue-based repayments through increased fees, the platform thus
benefits from a form of advantageous screening, whereby bad borrowers self-exclude from
borrowing from the platform when the bank credit is available. Banks, on the other hand,
suffer from adverse screening, worsening the adverse-selection problem. As a result, banks
ration credit more and increase rates relative to the benchmark model where banks are
the only type of lenders. Whereas a good borrower prefers the lender offering the lowest
rate, a bad borrower prefers banks in order to avoid the increased fees on the platform.

Interestingly, Lemma 4 shows that the platform tends to lend to merchants of lower
credit quality p. That is, based on public information, the platform provides credit to
merchants with worse credit credentials. However, once we condition on public infor-
mation about the merchant’s credit quality, the platform’s borrowers reveal themselves

28In the proof of Lemma 5, we show that

p(α+ η)cH + (1− p)ηcL > (α+ η)cL + (1 + α)p(cH − cL)f

when p ≥ RD

(1−f)αcH . For these parameters, if the platform were a monopolistic lender, it would lend at a
rate equal to (α− (1 + α)f + η)cH or not lend at all.
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to be of higher quality than banks’ borrowers, on average. We, therefore, summarize the
equilibrium prediction of the platform’s advantageous screening in the following remark.

REMARK 2. The platform lends to merchants with worse observable credit quality than
banks. However, conditional on observable characteristics, the platform lends to a better
pool of borrowers because of advantageous screening.

Furthermore, because of advantageous screening, a platform competing with banks
lends to a wider set of merchants than a monopolistic platform. Compared with the
benchmark model where the platform is the only lender, the platform now extends credit
to a merchant even if condition (6) is not satisfied, provided p ≥ RD

(1−f)αcH
. In this case,

the platform profits from advantageous screening at the expense of banks. We further
characterize the platform behavior in Lemma 6.

LEMMA 6 (The Platform’s Strategy). Consider a merchant characterized by p ∈
[

RD

(1−f)αcH
, RD

R̄

)
.

If p(α+ η)cH + (1− p)ηcL > R̄, the platform lends with probability m∗P = 1 and the highest rate
it offers is maxR∗P = (α − (1 + α)f + η)cH . If p(α + η)cH + (1 − p)ηcL ≤ R̄, the platform is
indifferent between offering a loan or not. Moreover, if R̄ > (α− (1 + α)f + η)cL, the platform’s
lowest rate is minR∗P = RD/p > (α − (1 + α)f + η)cL. If R̄ ≤ (α − (1 + α)f + η)cL and
RD/p ≤ (α− (1 + α)f + η)cL, minR∗P = RD/p.

In Lemma 6, we focus on merchants for which the platform and banks compete di-
rectly. These are merchants characterized by p ∈

[
RD

(1−f)αcH
, RD

R̄

)
. According to the Lemma,

if the platform can profitably lend to the merchant as a monopolistic lender, that is if
p(α + η)cH + (1 − p)ηcL > R̄, then the platform will continue lending with probability
1 when it faces competition from the banks. However, if the platform cannot profitably
lend as a monopolist lender, that is if p(α + η)cH + (1− p)ηcL ≤ R̄, the platform will now
lend when there are also banks making loans. This is because the platform is able to col-
lect rents at the expense of banks due to advantageous screening: the presence of banks
increases the quality of the platform’s borrower pool endogenously. In equilibrium, the
rents are enough to leave the platform indifferent between lending and not lending.

Next, we fully characterize the equilibrium in the region where the banks and the
platform compete, that is when p ∈

[
RD

(1−f)αcH
, RD

R̄

)
. Based on Lemma 5 and Lemma 6, we

distinguish three cases, with the second one including two sub-cases:

A: p(α + η)cH + (1− p)ηcL > R̄ > (α− (1 + α)f + η)cL, and p ∈
[

RD

(1−f)αcH
, RD

R̄

)
;

B: R̄ ≤ (α− (1 + α)f + η)cL and p ∈
[

RD

(1−f)αcH
, RD

R̄

)
B1: Like case B, but restricted to p ≥ RD

(α−(1+α)f+η)cL
;

24



f η̂ 1

1

pB

RD

R̄

A B2

B1

C

η

p
Platform Both Banks

(a) (1 + α)cL > R̄ > RD

f 1

1

pB

A

η

p
Platform Both

(b) (1 + α)cL < R̄ = RD

Figure 3: Equilibrium with competition. The figure illustrates when the platform, banks, or both lend to a
merchant for different combinations of relative revenues η and credit quality p. We define pB := RD

(1−f)αcH
as the credit quality cutoff below which banks do not lend. In Figure 3(a), it is efficient to lend to a bad
merchant and the platform’s cost of capital exceeds the banks’. In Figure 3(b), it is inefficient to lend to a
bad merchant and the platform’s cost of capital is equal to the banks’.

B2: Like case B, but restricted to p < RD

(α−(1+α)f+η)cL
;

C: p(α + η)cH + (1− p)ηcL ≤ R̄ and p ∈
[

RD

(1−f)αcH
, RD

R̄

)
.

Figure 3 provides a graphical illustration of the possible cases for different values of rela-
tive revenues η and credit quality p. Although the graphical illustration in the (η, p) space
may vary depending on the other parameters, cases A, B1, B2, and C cover all possible
combinations of parameters satisfying Assumption 1, and p ∈

[
RD

(1−f)αcH
, RD

R̄

)
(the region

where the two types of lenders directly compete in the credit market.)29 In particular, we
note that case C implies R̄ > RD and, hence, the platform’s cost of capital exceeds the
banks’. Case B requires R̄ < (1 + α)(1 − f)cL ≤ (1 + α)cL, which implies it is socially
efficient to finance bad merchants if they produce for two periods.

Next, we characterize the equilibrium for each case in detail and analyze the welfare
implication of the platform offering credits. A challenge in characterizing the equilibrium
is that the platform’s profit function is discontinuous in the interest rate offered. The
discontinuity originates from the bad merchant’s decision to default strategically when
the interest rate exceeds (α− (1 + α)f + η)cL.

29By the observation in footnote 28, case B implies R̄ < p(α+ η)cH + (1− p)ηcL, whereas case C implies
R̄ > (α− (1 + α)f + η)cL.
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3.3 EQUILIBRIUM WITH COMPETITION

To fully characterize the equilibrium with competition between banks and the platform,
we consider cases A, B, and C separately.

CASE A. The merchants in this region have relatively high credit quality and relative
revenue, hence the platform optimally lends with probability m∗P = 1. In other words,
there is no credit rationing and all the merchants receive credits. Compared with the
platform-only benchmark, competition from banks forces the platform to offer lower
rates. However, the monopolistic rate (α− (1 +α)f +η)cH remains a best response for the
platform.

Moreover, the platform never offers a contract that enforces full repayment from bad
merchants, because the merchants’ relative revenues η are too low compared to its cost of
capital. In general, the platform could either offer a high rate, in which case the bad type
of merchants will default, but the platform can earn high profit from the good type of
merchants, or the platform could offer a low rate, in which case both types of merchants
repay. In this region, to enforce full repayment, the platform needs to offer a very low
rate, and that is not profit maximizing given the mix of good and bad merchants.

Banks suffer from adverse screening in equilibrium; hence, they deny credit with pos-
itive probability 1 − m∗B ∈ (0, 1). They also offer rates up to their monopolistic rate
(1− f)αcH . The following proposition fully characterizes the equilibrium in this case.

PROPOSITION 1. Assume parameters satisfy case A. The equilibrium is characterized as follows:

1. The platform extends credit with probability m∗P = 1 and, conditional on making an offer, it
chooses a rate from R∗P = [RD/p, (1− f)αcH ] ∪ {(α − (1 + α)f + η)cH} so that P (RP >

R) = G∗P (R), where G∗P (·) is characterized by (24) in Appendix B.

2. Banks extend credit with probability m∗B ∈ (0, 1), where the expression is given by (22)
in Appendix B. Conditional on making an offer, they choose a rate from the support R∗B =

[RD/p, (1− f)αcH ] so that P (RB ≥ R) = G∗B(R), where the expression for G∗P (·) is given
by (23) in Appendix B.

In equilibrium, a good merchant never defaults and a bad merchant always defaults
on their remaining balances, regardless of who the lender is. Compared with the bench-
mark model where banks are the only type of lender, the merchant still receives credit
offers from at least one lender, but now she pays borrowing costs strictly exceedingRD/p.
Furthermore, banks now lend at their monopolistic rate (1 − f)αcH with positive proba-
bility. By lending at the monopolistic rate, banks obtain profits when the platform denies

26



credit to merchants or offers a higher rate. They use these profits to cover the losses they
experience from adverse screening in equilibrium.

CASE B. Merchants in this region have higher relative revenue than those in case A.
Similar to case A, the platform optimally lends with probabilitym∗P = 1, and all merchants
receive credit. However, unlike in case A, the platform may now offer a contract that
induces full repayment from even the bad merchants; that is, a contract with RP ≤ (α −
(1 + α)f + η)cL. As before, the platform could either offer a high rate with higher default
risks or offer a low rate with low default risks. The relative revenue η in this region is
high enough such that both strategies could be profit maximizing.

In particular, in case B1 when RD/p ≤ (α− (1 +α)f +η)cL, the lowest interest rate that
could be offered by banks is below (α − (1 + α)f + η)cL. To compete, the platform also
offers rates lower than (α − (1 + α)f + η)cL, as we formally showed in Lemma 5. When
the interest rate is lower than (α − (1 + α)f + η)cL, the bad merchant will repay in full if
she borrows from the platform. However, she will borrow from the platform only when
banks deny credit to her. Similar to what happens in the platform-only benchmark, the
platform reduces the default probability of bad merchants and increases output. In this
case, social welfare may increase because the bad borrower continues production in the
second period. The following proposition describes the equilibrium in case B1.

PROPOSITION 2. Assume parameters satisfy case B1 and define

T := min {(α− (1 + α)f + η)cL, (1− f)αcH}

U := min

{
(α− (1 + α)f + η)cL +

(1− p)αcL[(α− (1 + α)f + η)cL − R̄]

p(α− (1 + α)f + η)cH − (1− p)αcL − pR̄
, (1− f)αcH

}
.

The equilibrium is characterized as follows.

1. The platform extends credit with probability m∗P = 1 and, conditional on making an offer, it
offers rates in R∗P = [RD/p, T ]∪ [U, (1−f)αcH ]\{(1−f)αcH}∪{(α−(1+α)f+η)cH} so
that P (RP > R) = G∗P (R), where the expression for G∗P (R) is given by (28) in Appendix
B.

2. Banks extend credit with probability m∗B ∈ (0, 1), where its exact expression is given by
(25) in Appendix B. Conditional on making an offer, they choose a rate from the support
R∗B = [RD/p, T ) ∪ [U, (1 − f)αcH ] so that P (RB ≥ R) = G∗B(R), where G∗B(R) is
characterized by (30) and (31) in Appendix B.
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Notice that, in equilibrium, the platform’s optimal interest-rate strategy R∗P may con-
sist of two disconnected regions. The result is determined by the discontinuity of the
platform’s objective function at RP = (α − (1 + α)f + η)cL. By moving from a rate equal
to (α− (1 + α)f + η)cL to a marginally higher rate equal to (α− (1 + α)f + η)cL + ε for a
very small positive ε, the bad merchant switches from repaying the loan in full to default-
ing on the remaining balances. Hence, the platform’s profits change discontinuously and
decline by at least

(1− p)(1−m∗B)αcL − p[m∗BpG∗B((α− (1 + α)f + η)cL) + (1−m∗B)]ε,

which is strictly positive for a small ε. Therefore, profits decline if the platform offers a
rate that is marginally above (α − (1 + α)f + η)cL. As a result, the platform only offers
interest rates above (α − (1 + α)f + η)cL if such rates are sufficiently high to justify the
decline in profits due to worse enforcement. The lowest of such rates, if they exist, is
U ∈ ((α− (1 +α)f + η)cL, (1− f)αcH) such that, by offering interest rate U , the platform’s
profit is equal to its profit when offering (α− (1 + α)f + η)cL. That is,

l1P (U,m∗B, G
∗
B; p) = l0P ((α− (1 + α)f + η)cL,m

∗
B, G

∗
B; p).

Furthermore, if the parameter values are such that (α− (1 + α)f + η)cL < (1− f)αcH ,
the platform offers rate (α− (1 + α)f + η)cL with strictly positive probability

P (RP = (α− (1 + α)f + η)cL) = (1− p)RD

p

(
U − (α− (1 + α)f + η)cL

[(α− (1 + α)f + η)cL −RD](U −RD)

)
> 0,

and banks are thus deterred from offering rates in ((α− (1 + α)f + η)cL, U).
In case B2, when RD/p > (α − (1 + α)f + η)cL, the lowest interest rate that banks can

offer is above (α− (1 +α)f + η)cL. Hence, the platform does not necessarily need to offer
contracts with rates below (α − (1 + α)f + η)cL, which induce full repayment from bad
merchants. However, if RD/p is not much larger than (α − (1 + α)f + η)cL, the platform
may still choose to undercut banks by offering a rate exactly equal to (α− (1 +α)f + η)cL,
which is lower than RD/p, with positive probability. This could be profit-maximizing
because the bad merchants will repay in full when they borrow from the platform. The
following proposition describes the equilibrium in this case.

PROPOSITION 3. Assume parameters satisfy case B2. If

RD/p ≥ (α− (1 + α)f + η)cL
(α− (1 + α)f + η)cH − R̄− 1−p

p
αcL

R̄
(α−(1+α)f+η)cL

(α− (1 + α)f + η)cH − R̄− 1−p
p
αcL

, (13)
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the equilibrium is the same as in case A and it is described by Proposition 1. Otherwise, define

V := min

{
(1− f)αcH , (α− (1 + α)f + η)cL

(α− (1 + α)f + η)cH − R̄− 1−p
p
αcL

R̄
(α−(1+α)f+η)cL

(α− (1 + α)f + η)cH − R̄− 1−p
p
αcL

}
.

the equilibrium is characterized as follows.

1. The platform extends credit with probability m∗P = 1 and, conditional on making an offer, it
offers a rate from the support R∗P = [V, (1 − f)αcH ] ∪ {(α − (1 + α)f + η)cL, (α − (1 +

α)f + η)cH} so that P (RP > R) = G∗P (R), where G∗P (R) is given by (35) in Appendix B.

2. Banks extend credit with probability m∗B ∈ (0, 1), where the expression for m∗B is given by
(33). Conditional on making an offer, they choose a rate from the support R∗B = [V, (1 −
f)αcH ] so that, if V ∈ (RD/p, (1− f)αcH), P (RB ≥ R) = G∗B(R), where G∗B(R) is given
by (34) in Appendix B. If, instead, V = (1− f)αcH , then P (RB = (1− f)αcH) = 1.

To understand the platform’s equilibrium strategy, letRV be the lowest rate in [RD/p, (α−
(1 + α)f + η)cH ] such that by offering rate RV , the platform is earning as high of a profit
as when offering rate (α− (1 + α)f + η)cL. That is,

l1P (RV ,m∗B, G
∗
B; p) ≥ l0P ((α− (1 + α)f + η)cL,m

∗
B, G

∗
B; p).

Since RV > (α − (1 + α)f + η)cL, the platform receives lower profits from the good mer-
chants when it offers the lower interest rate (α− (1 +α)f + η)cL. However, at such a rate,
it induces full repayment from the bad merchants. The rate RV corresponds to the rate at
which the two effects exactly offset each other.

If RD/p ≥ RV , the lowest possible rate offered by banks is relatively high compared to
the rate at which the platform is willing to undercut. Then the platform prefers to match
banks’ rates rather than undercut them. This is the case when condition (13) is satisfied.
The equilibrium is then the same as in case A.

If instead RV ∈ (RD/p, (1 − f)αcH ], the platform earns higher profit by undercutting
the banks and offering rate (α − (1 + α)f + η)cL rather than by matching the banks’ rate
RD/p. Hence, the platform offers the lower rate (α− (1 + α)f + η)cL with positive proba-
bility equal to

P (RP = (α− (1 + α)f + η)cL) = 1− (1− p)RD/p

V −RD

> 0. (14)

where V is the lowest rate that banks are willing to lend at. Because of the platform’s
undercutting, banks can no longer break even by offering a rate equal to RD/p. So the

29



lowest rate that banks are willing to offer, V , is higher than RD/p.
Finally, if RV > (1− f)αcH , the platform always prefers to undercut banks rather than

compete with them. We thus set V = (1 − f)αcH . In this case, the platform offers only
contracts with a rate equal to either (α− (1 +α)f + η)cL or (α− (1 +α)f + η)cH , each with
positive probability.

CASE C. We now consider parameters satisfying case C. Merchants in case C have a
low credit quality and low relative revenues. With these parameters, the platform is un-
willing to lend to the merchant when it is the only lender in the market. However, as
shown in Lemma 6, the platform is now indifferent between lending and not lending in
equilibrium. Due to the effect of advantageous screening in equilibrium, the platform is
able to extract rents from banks to cover its cost of capital.

PROPOSITION 4 (Equilibrium in Case C). Assume parameters satisfy case C. The equilibrium
is characterized as follows.

1. If p(α + η)cH + (1− p)ηcL < R̄, the platform extends credit with probability m∗P ∈ (0, 1),
with the exact expression given by (38) in Appendix B. Conditional on making an offer, it
chooses a rate from the support R∗P = [RD/p, (1 − f)αcH ] so that P (RP > R) = G∗P (R),
where G∗P is given by (39) in Appendix B.

If p(α+η)cH+(1−p)ηcL = R̄, there are multiple equilibria indexed byQ ∈
[
0, (1−p)RD/p

(1−f)αcH−RD

]
whereby the platform extends credit with probability m∗P ∈ (0, 1], with the exact expression
given by (40) in Appendix B. Conditional on making an offer, it chooses a rate from the sup-
port R∗P = [RD/p, (1− f)αcH ] ∪ {(α − (1 + α)f + η)cH} so that P (RP > R) = G∗P (R),
where G∗P (R) is given by (41) in Appendix B.

2. Banks extend credit with probability m∗B ∈ (0, 1), where m∗B is given by (36) in Appendix
B. Conditional on making an offer, they choose a rate from the support R∗B = [RD/p, (1 −
f)αcH ] so that P (RB ≥ R) = G∗B(R), where G∗B(R) is given by (37) in Appendix B.

If p(α + η)cH + (1 − p)ηcL < R̄, the merchant is rationed with positive probability
(1 − m∗B)(1 − m∗P ) > 0, whereas if banks were the only lenders, the merchants would
always obtain financing. Furthermore, conditional on receiving a loan, the rate exceeds
RD/p with strictly positive probability. In this case, the platform lends solely because it
expects to profit from advantageous screening at the expense of banks. Therefore, the
platform never offers its monopolistic rate (α − (1 + α)f + η)cH because it is higher than
what banks would offer and the platform is unable to extract any rents from banks at that
rate.
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If p(α + η)cH + (1 − p)ηcL = R̄, multiple equilibria exist and they are indexed by Q.
In the knife-edge equilibrium with Q = (1−p)RD/p

(1−f)αcH−RD
, the merchant is not rationed, but

she is rationed in all the other equilibria with smaller values of Q. We obtain multiple
equilibria because the platform is indifferent between lending at the monopolistic rate
(α − (1 + α)f + η)cH and not lending. Therefore, a continuum combinations of Q =

P (RP = (α− (1 + α)f + η)cH) and m∗P = P (dP = 1) satisfy the equilibrium conditions.

3.4 ENFORCEMENT AND COMPETITION

In our model, banks are fully competitive and earn zero profits, hence the benefit of the
platform entering the credit market is not to increase competition. Moreover, the plat-
form’s cost of capital is weakly larger than banks, so the platform cannot compete on
costs. Existing literature assumes fintech lenders enter the credit market because of su-
perior information, regulatory advantage, or consumers’ taste. The platform from our
model does not benefit from any of these advantages. So, how can the bigtech platform
profitably compete with banks?

In addition to having a better enforcement power highlighted in Section 2, when the
platform directly competes with banks, it lends also for an additional reason: advanta-
geous screening. Case C is emblematic of how the platform enters the credit market to
take advantage of equilibrium screening. As a monopolist, the platform would not lend
when parameters satisfy case C. However, when the banks are present, the additional
rents accruing from equilibrium screening induce the platform to lend in competition
with banks.

With advantageous screening, the platform earns higher profits when banks lend more
because the platform can extract larger rents from them. In fact, in case C, the platform’s
expected profits when lending are given by

m∗B[p(1 + α)cH + (1− p)cL]f,

which is increasing in the probability that banks offer a loan. In contrast, in case A and
B, the platform’s profit is decreasing in the bank’s lending probability mB because fiercer
competition decreases how much surplus the platform can extract from the borrowers.
The difference in how banks and the platform interact across different regions is crucial
for understanding the role of the platform’s informational advantage, which we investi-
gate in Section 4.

In contrast to better enforcement, advantageous screening could lower equilibrium
welfare. Because the platform extracts rents from banks, banks lend more conservatively
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by denying credit with higher probability and by offering higher interest rates, as Lemma
5 shows. The equilibrium effects of the platform’s advantageous screening are similar to
the effect of a winner’s curse on banks. Whereas a winner’s curse originates from asym-
metric information among lenders or bidders (Milgrom and Weber, 1982; Engelbrecht-
Wiggans et al., 1983; Hausch, 1987; Kagel and Levin, 1999), in our model, advantageous
screening originates from the platform’s superior ability to enforce repayments from a
bad merchant. If the bad merchant prefers defaulting to repaying the loan, she chooses to
borrow from banks when possible. We formally explore the welfare implications of the
platform on credit markets in the next subsection.

3.5 WELFARE

We now evaluate how welfare changes when the platform enters the credit market in
competition with banks. Whereas lenders always improve welfare by providing credit
to a good merchant, denying credit to a bad merchant is efficient if (1 + α)cL < RD. To
properly evaluate the welfare effect of the platform in the credit market, we assess the
expected welfare based on public information about the merchant, thus not conditioning
on the merchant’s type. We then compare the expected welfare when the platform and
banks compete to the expected social welfare when banks are the only type of lenders. We
consider social welfare and the merchant’s welfare. Social welfare is the total expected
surplus generated in the market, which is equivalent to the sum of the expected profits of
the merchant and the platform (banks earn zero profits in equilibrium). The merchant’s
welfare is measured by her expected profits.

3.5.1 SOCIAL WELFARE

Changes in expected social welfare are determined by the combination of the positive
effects of the platform’s better enforcement on the one hand, and the negative effects of
the platform’s advantageous screening on the other.

If p < RD

(1−f)αcH
, the platform does not compete with banks and, therefore, there is

no advantageous screening. If condition (6) is satisfied and the platform lends, then the
expected social welfare increases because more cash flow is credibly pledged to the lender.
In this case, social welfare strictly increases and it is at least as large as

(1 + α)pcH + (1− p)cL − R̄ ≥ 0,

where the inequality follows from condition (6) and it is strict when (6) holds as a strict in-
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equality or when η < 1. The increase in social welfare is even larger if p < αcL
(α−(1+α)f+η)(cH−cL)+αcL

,
in which case the equilibrium interest rate is such that even the bad merchant does not
default and produces for two periods. The platform lowers the default probability of the
bad merchant and increases social welfare even more.

If p ≥ RD

(1−f)αcH
, expected social welfare is (1 + α)cH + cL − RD when banks are the

only lenders. In the region where p ≥ RD/R̄, the expected social welfare does not change
when the platform enters the credit market because the merchant would keep borrowing
exclusively from banks.

In the intermediate region with p ∈
[

RD

(1−f)αcH
, RD

R̄

)
, when the platform enters the credit

market, the change in the expected social welfare is given by

∆W (R̄) = − (1−m∗B)(1−m∗P )[(1 + α)pcH + (1− p)cL −RD]︸ ︷︷ ︸
credit rationing

−m∗P

[
(1−m∗B) +m∗Bp

∫ (α−(1+α)f+η)cH

RD/p

G∗B(R)dF ∗P (R)

]
(R̄−RD)︸ ︷︷ ︸

higher cost of capital

+ (1−m∗B)m∗P (1− p)F ∗P ((α− (1 + α)f + η)cL),︸ ︷︷ ︸
lower default risk

(15)

The change in social welfare depends on three components. First, social welfare declines
when credit is rationed in equilibrium. Without a platform, banks always lend to mer-
chants in this region. But, with competition from the platform, lenders may ration credit
with positive probability. Second, social welfare declines if R̄ > RD because merchants
are financed at a higher cost of capital. This happens when merchants borrow from the
platform instead of the banks. Third, social welfare increases when the platform offers
contracts satisfying the incentive-compatibility condition (1) for the bad merchant, who
will not default when borrowing from the platform. This happens when banks do not
lend and the platform offers a rate equal to or below (α− (1 + α)f + η)cL.

The following corollary establishes how social welfare changes when the platform
enters the credit market.

COROLLARY 1 (Social Welfare). Relative to the bank-only economy, when the platform com-
petes with the banks, social welfare changes as follows.

1. For merchants of high credit quality with p ≥ RD/R̄, expected social welfare remains un-
changed.

2. For merchants of low credit quality with p < RD

(1−f)αcH
, expected social welfare increases if
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(6) is satisfied. Otherwise, expected social welfare remains unchanged.

3. For merchants of intermediate credit quality with parameters satisfying case A, expected
social welfare declines if R̄ > RD. Otherwise, expected social welfare remains unchanged.

4. For merchants of intermediate credit quality with parameters satisfying B, the change in
expected social welfare depends on the platform’s cost of capital. In particular, there exists
R̄M ∈ [RD, RD/p) such that social welfare increases if R̄ < R̄M , social welfare remains
unchanged if R̄ = R̄M , and it declines if R̄ > R̄M .

5. For merchants of intermediate credit quality with parameters satisfying case C, expected
social welfare declines.

The first two parts of the corollary summarize our previous discussion. Social wel-
fare does not change when borrowers of high credit quality continue to borrow exclu-
sively from banks. Social welfare improves for previously unbanked borrowers because
the platform improves financial inclusions for merchants satisfying (6). In the remaining
parts of the corollary, we evaluate how social welfare changes when the platform directly
competes with banks in the credit market.

In case A, m∗P = 1 and F ∗P ((α − (1 + α)f + η)cL) = 0. Hence, the first and third effects
in equation (15) are zero. The change in social welfare depends entirely on the difference
between the platform’s and the bank’s cost of capital. In particular, the expected social
welfare does not change if the two lenders have the same cost of capital and the expected
social welfare declines if the platform’s cost of capital exceeds the bank’s.

In case B, m∗P = 1 and, hence, credit is not rationed. As shown in Propositions 2 and 3,
it is possible that F ∗P ((α− (1 + α)f + η)cL) > 0. In this case, with positive probability, the
bad merchant borrows from the platform and produces for two periods. Social welfare
depends on the trade-off between the positive effects of the platform’s better enforcement
on reducing credit risk and the negative effects of equilibrium screening on the cost of
capital. If R̄ is sufficiently close toRD, the positive effect of better enforcement dominates,
and expected social welfare increases. If R̄ is sufficiently high, the negative effects of
equilibrium screening prevail over the benefits of enforcement, and welfare declines.

Finally, in case C, we have F ∗P ((α− (1 + α)f + η)cL) = 0; that is, enforcement does not
improve when the platform enters the credit market. In addition, merchants are rationed
with positive probability under competition, and the platform’s cost of capital strictly
exceeds the banks’. Hence, for these parameters, social welfare declines unambiguously.
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3.5.2 THE MERCHANT’S WELFARE

To conclude, we evaluate how the expected merchant’s profits change when the platform
enters the credit market. From our discussion of social welfare, we can immediately ob-
serve that the merchant’s profits will not change if p ≥ RD/R̄ because, in this case, the
merchants keep borrowing from banks exclusively. Moreover, the expected merchant’s
profits increase if p < RD

(1−f)αcH
, provided (6) is satisfied. With the platform lending, mer-

chants obtain funding with positive probability, instead of zero, which is the case when
banks are the only lenders.

When the platform directly competes with banks for merchants with p ∈
[

RD

(1−f)αcH
, RD

R̄

)
we show in the next corollary that merchant’s welfare declines unambiguously. The corol-
lary also summarizes our discussion of the previous two cases.

COROLLARY 2 (Merchant’s Welfare). Relative to the bank-only economy, when the platform
competes with the banks, the merchant’s welfare changes as follows.

1. For merchants of high credit quality with p ≥ RD/R̄, the merchant’s expected welfare re-
mains unchanged.

2. For merchants of low credit quality with p < RD

(1−f)αcH
, the merchant’s expected welfare

increases if (6) is satisfied. Otherwise, the merchant’s expected welfare remains unchanged.

3. For merchants of intermediate credit quality with parameters satisfying p ∈
[

RD

(1−f)αcH
, RD

R̄

)
,

the merchant’s expected welfare declines.

Whereas the effects on social welfare depend on the platform’s cost of capital for mer-
chants of intermediate credit quality, the effects on the merchant’s welfare are unambigu-
ously negative. In cases A, B1, and C, good borrowers pay higher interest rates than
banks’ break-even rate, RD/p, which they would pay if banks were the only lenders. In
cases A and C, bad borrowers are also forced to repay (η − f)cL to the platform when
they cannot obtain financing from banks, which happens with strictly positive probabil-
ity (1 − m∗B) > 0. In case B1, a bad borrower produces for two periods after borrowing
from the platform at a rate RP ≤ (α − (1 + α)f + η)cL. However, by doing so, the bad
borrower still earns lower profits than she could have earned if she borrowed from banks
and defaulted. Moreover, in case C, all borrowers are rationed with positive probability.
Finally, in case B2, although, a good merchant obtains loans from the platform at a very
low interest rate (α − (1 + α)f + η)cL < RD/p with a positive probability, the platform
charges higher rates with sufficiently high probability that it more than offsets the benefits
of an occasionally lower rate. In conclusion, the merchant’s profit always declines.
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4 INFORMATION ACQUISITION

Bigtech platforms may have another advantage over banks because of their superior in-
formation. For example, a platform may observe the past history of transactions of the
merchant or of similar merchants and infer useful information about a borrower’s fu-
ture sales. In this section, we consider an extension of the model where the platform can
acquire superior information about the borrower’s type θ.

The platform and banks share a common prior p, but the platform can acquire an
informative signal of the borrower’s type at a cost. We think of p as the best assessment
of the merchant’s type based on standard credit-evaluation models, and we interpret the
platform’s signal-acquisition technology as an evaluation model relying on innovative
methodologies or alternative data. The effects discussed in Section 3 remain. Moreover,
we find that the ability to acquire information may actually hurt the platform’s profit in
certain cases, due to banks’ response in equilibrium. We briefly describe the setting and
the implications here. We leave the details regarding the equilibrium to Appendix C.

4.1 INFORMATION-ACQUISITION TECHNOLOGY

By paying a cost c > 0, the platform acquires a private signal s that is informative about
the borrower’s type θ. Similar to He et al. (2023), we assume the platform may observe
either a high or a low signal. That is, s ∈ {h, l}. The low signal fully reveals the borrower
is bad, whereas the high signal offers increased (although not conclusive) evidence that
the merchant is good. That is,

P (s = l|θ = H) = 0 and P (s = l|θ = L) > 0.

Let
ψ := p+ (1− p)P (s = h|θ = L)

be the probability the platform observes a high signal. Also, let

ph := P (θ = H|s = h) =
p

ψ

be the platform’s posterior belief about the probability that the merchant generates high
revenue after observing a high signal. When the platform observes a low signal, its pos-
terior belief is pl := P (θ = H|s = l) = 0.

The platform chooses whether to acquire the signal or not at a cost c > 0. We study the
equilibrium in the limit where c → 0. The merchant and banks do not observe whether
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the platform acquires information. We allow for mixed strategies, and a ∈ [0, 1] denotes
the probability the platform acquires information. We call a platform uninformed when it
does not acquire information. If the platform acquires information and observes a high
signal, we refer to it as optimistic. If it acquires information and observes a low signal,
we refer to it as pessimistic. We denote the three types of the platform with subscript
i ∈ {u, h, l} respectively and define pu := p.

The equilibrium response of banks depends on how the platform uses its superior
information. For certain types of merchants, the platform uses the additional information
to customize interest rates offered to both good and bad types of merchants. In this case,
the banks compete more aggressively and lends with higher probability compared to the
baseline case. For other types of merchants, the platform uses the additional information
to screen out bad merchants. In this case, banks suffer from winner’s curse and lend more
conservatively when the platform acquires information in equilibrium.

4.2 INFORMATION ACQUISITION AND COMPETITION

Like in Section 3, the equilibrium features mixed strategies in the credit decisions of the
lenders. The formal definition of the equilibrium is in Definition 2 of Appendix C.

Most of the results we obtained in Section 3 extends to this framework. First, Lemma
16 establishes the same results as Lemma 4, showing that the market is partially seg-
mented in the same way as in Section 3. Second, according to Lemma 17, banks deny
credit with positive probability and offer rates up to (1 − f)αcH , as in Section 3. More-
over, the uninformed platform and the optimistic platform combined offer rates span a set
similar to that in Lemma 5. However, the uninformed and optimistic platform may offer
rates over different supports. Importantly, the platform still benefits from advantageous
screening in equilibrium, and Remark 2 applies also to this extension of the model.

Next, we discuss the implications of the option to acquire information when the plat-
form and banks directly compete for merchants of intermediate quality p ∈

[
RD

(1−f)αcH
, RD

R̄

)
.

As we show ahead, social welfare and the platform’s profits may change in non-trivial
ways because of the banks’ equilibrium reaction to the platform’s information-acquisition
strategy.30 Based on the results in Appendix C, we distinguish three main cases, which
are analogous to those we studied in Section 3.

30When p ≥ RD/R̄, neither welfare nor the platform’s profits change with the option to acquire informa-
tion because banks remain the only lenders. When p < RD

(1−f)αcH , both welfare and the platform’s profits
increase with the option to acquire information provided the platform lends. In this case, information alle-
viates financing frictions between the borrower and the platform, which is the only lender for this merchant.
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CASE I.A: ph(α+ η)cH + (1− ph)ηcL > R̄ > (α− (1 + α)f + η)cL AND p ∈
[

RD

(1−f)αcH
, RD

R̄

)
.

In this case, the platform earns positive profits as a monopolist and always acquires in-
formation. However, depending on the platform’s cost of capital, the platform either
uses the information to screen out bad borrowers or to adjust interest rates and maximize
the surplus it extracts from the borrower. When the platform’s cost of capital R̄ exceeds
(α + η)cL, the platform denies credit upon receiving a low signal. When R̄ ≤ (α + η)cL,
the platform lends at interest rate RP = (α− (1 +α)f + η)cL upon observing a low signal,
satisfying the incentive-compatibility condition (1) for θ = L.

In the latter case, the platform charges higher rates after observing good signals in
order to extract more surplus from merchants with low risks of strategic default. The
platform charges lower rates after observing bad signals to discourage strategic default
from low-revenue merchants. Because the platform reduces the risk of strategic default,
welfare increases.

The banks’ lending probability and distribution of rate offers are identical to those of
case A in Section 3, when the platform has no option to acquire information. Moreover,
the optimistic platform offers interest rates from the same distribution as the uninformed
platform in case A of Section 3.

CASE I.B: R̄ ≤ (α− (1 +α)f + η)cL AND p ∈
[

RD

(1−f)αcH
, RD

R̄

)
. In this case, the merchant’s

relative revenues are sufficiently high that the platform is always willing to lend, regard-
less of its posterior. The platform acquires information with positive probability. When
it does acquire information, it always uses the information to customize interest rates
and maximize the surplus it extracts. In particular, a pessimistic platform offers interest
rates satisfying the incentive-compatibility condition (1) for θ = L, thus ensuring a bad
merchant always repays in full and improving welfare.

Interestingly, when the platform can acquire information, banks lend with higher prob-
ability compared to the analogous case B from Section 3.31 With better information, the
platform raises the interest rate charged to the good merchants to extract more surplus,
which increases the chance that a bank lends to a good merchant. As a result, banks lend
more aggressively to compete with the platform.

CASE I.C: ph(α + η)cH + (1 − ph)ηcL ≤ R̄, p ∈
[

RD

(1−f)αcH
, RD

R̄

)
In this case, the platform

acquires information with positive probability and lends only when it receives a high sig-
nal. Upon receiving a high signal, the platform lends with probability 1 and offers rates

31Case I.B in the superior information case does not overlap exactly with Case B in the common informa-
tion case. The comparison here applies only to the over-lapping region.
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with the same distribution as described in Proposition 4 of Section 3. The platform re-
mains uninformed with positive probability and, in this case, it denies credit. Overall, the
platform denies credit with higher probability compared to the baseline model, because
it can better screen out bad merchants.

If the platform were the only lender for a merchant in case I.C, it would deny credit
even after observing a high signal. However, similar to case C in Section 3, the platform
benefits from advantageous screening when competing with banks. The platform, there-
fore, lends with positive probability in equilibrium to extract advantageous-screening
rents.

In Case I.C, banks lend with lower probability when the platform has the ability to
acquire superior information compared to Case C from Section 3.32 This is because the
platform denies credit after observing a low signal, and banks suffer from winner’s curse.
As both the platform and banks scale back lending, credit is rationed more frequently
compared to the baseline case.

THE VALUE OF INFORMATION AND WELFARE. In existing literature, better informa-
tion increases the informed lender’s profit in equilibrium (Hauswald and Marquez, 2003;
He et al., 2020). Perhaps surprisingly, in our setting, the ability to acquire superior infor-
mation does not always increase the platform’s profit. In our model, because of banks’
equilibrium reaction to the platform information-acquisition strategy, the option to ac-
quire information may lower the rents the platform can extract through its superior en-
forcement power. In the next Corollary, we identify conditions under which the platform
earns lower profits when it has the option to acquire private information.

COROLLARY 3. If parameters satisfy case I.B with p < RD

(α−(1+α)f+η)cL
and V c > RD/p, where

V c is defined in Proposition 7 of Appendix C, or if parameters satisfy case I.C, then a platform with
the option to acquire private information earns lower profits than a platform that cannot acquire
private information.

The proof is in Appendix D.
In case I.B, the pessimistic platform offers lower rates than an optimistic platform to

incentivize full repayment and reduce strategic default. The optimistic platform, instead,
offers higher rates to extract more surplus from the borrowers. In response, banks expand
lending and compete more aggressively for the good merchant, which leads to lower
profits for the platform.

32Case I.C in the superior information case does not overlap exactly with Case C in the common infor-
mation case. The comparison here applies to the overlapping region.
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In case I.C, the platform lends solely to extract advantageous-screening rents at the
expense of banks. When the platform acquires superior information and denies credit to
bad borrowers, banks suffer from a more severe winner’s curse and lend more conserva-
tively. As a result, the platform extracts less advantageous-screening rents in equilibrium,
and its profits also decline.

The conditions considered in Corollary 3 are sufficient but not necessary for the plat-
form to earn lower profits when it can acquire better information. In general, the stan-
dard mechanism whereby a more informed lender can screen out bad borrowers and earn
higher profits (Hauswald and Marquez, 2003; He et al., 2020) exists also in our model for
certain sets of parameters. This standard mechanism may offset the negative effects of
information on profitability described above. For example, when parameters satisfy case
A, one can show this mechanism more than offsets the decline in rents from enforcement,
and the platform’s profits increase with the option to acquire information. In cases other
than A and those covered in Corollary 3, the net effect of information on profits depends
on parameter values.

Finally, the welfare effect of having better information is also ambiguous. On the one
hand, welfare may decline because less informed lenders reduce credit in response to
their winner’s curse, as in He et al. (2020). On the other hand, better information allows
the platform to customize interest rates and discourage a bad merchant from defaulting,
thus increasing welfare. The latter effect is unique to our setting because of the platform’s
better enforcement power, and it serves to alleviate financial frictions.

5 CONCLUSIONS

We study the equilibrium and welfare implications of a bigtech platform entering the
credit market and competing with banks. The unique feature of the platform is that it is
the monopolistic provider of a valuable marketplace. Because of its control to the mar-
ketplace, a platform can implement revenue based repayment plans and better enforce
loan repayments. For high-risk borrowers, the platform can incentivize full loan repay-
ment even though the same borrowers would default if they borrowed from banks. As
a result, the platform can profitably lend to small businesses of high credit risk, who are
traditionally denied credits by banks. When borrowing from the platform, these high-
risk merchants are more likely to remain in business and continue production. For such
merchants, the platform generally increases welfare.

We also find that when the platform competes directly with banks, the platform ben-
efits from advantageous screening. That is, conditional on the observable characteristics,
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the platform attracts a better pool of borrowers compared to the banks. As a result, banks
scale back lending and increase interest rates. Banks do so to cover the losses they incur
when the platform extracts advantageous-screening rents from them. Our theory predicts
that the platform lends to a worse pool of borrowers based on observable characteristic
than banks. But conditional on observables, the platform lends to a better pool of borrow-
ers than banks. Because banks are adversely affected by equilibrium screening, they lend
more conservately. Social welfare may thus decline when the platform enters the credit
market and competes with banks for merchants of intermediate credit quality.

To study the interaction effect between enforcement power and information advan-
tage, we extend the baseline model allowing the platform to acquire superior information
about the borrowers at a small cost. We find that the platform’s enforcement power and
information interact in equilibrium. In particular, conditional on having better enforce-
ment power, additional information advantage does not always increase the platform’s
profit. Depending on whether the platform uses the information to screen out bad mer-
chants or to tailor interest rates and optimize surplus extraction, banks may either de-
crease or increase lending in response. As a result of banks’ equilibrium reaction, the
rents the platform extracts from its superior enforcement may decline

There are many other features unique to platforms making loans. For example, there
might be synergies between lending and platform’s marketplace business through net-
work effects. It would also be interesting to explore how credit decisions feed back to
platform’s optimal fee design for different users. We leave these questions for future re-
search.
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A THE PLANNER’S ALLOCATION

We consider a social planner who maximizes social welfare while facing the same fric-
tions lenders face. The planner thus implements a second-best allocation. Specifically, the
planner lacks information about the merchant’s type, and the merchant can strategically
default.

The planner offers loans at rate RS . Because the interest rate RS represents a transfer
from the merchant to the planner, the planner selects a rate that maximizes the merchant’s
output by discouraging default among bad merchants. Any rate that satisfies (1 − f +

fS)cL ≥ RS is optimal. Without loss of generality, we assume that the planner setsRS = 0.
To finance the merchant, the planner obtain capital from banks, who has lower cost of
capital.

The planner lends with probability mS to maximize social welfare:

max
mS

mS {(1 + α) [pcH + (1− p)cL]−RD} .

Hence, the planner lends if

p ≥ pS :=
RD − (1 + α)cL
(1 + α)(cH − cL)

.

By setting RS = 0 and incentivizing production for two periods, the planner lends at
a financial loss to maximize the value of the merchant’s production and, consequently,
social welfare. In particular, if the parameter values are such that it is efficient to finance
the bad merchant, that is (1 + α)cL ≥ RD, the planner lends for any p ∈ [0, 1]. Figure 4
provides an illustration of the allocation selected by the social planner for different sets of
parameters.

B PROOFS FOR THE MAIN MODEL

B.1 PROOF OF LEMMA 1

To see condition (2) is the relevant incentive-compatibility constraint, we consider the
case when a merchant defaults and the case when a merchant does not default separately.

If a merchant defaults when she sells on the platform, that means condition (1) is
violated

[(1− f)α + fP ]cθ < RP . (16)
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Planner lends

(a) (1 + α)cL ≥ RD
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1
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η
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Planner lends

(b) (1 + α)cL < RD

Figure 4: Second-best allocation. The shaded areas indicate the set of merchants (with different combina-
tions of relative revenues η and credit quality p) that receive financing from the social planner. In Figure
4(a), it is socially efficient to lend to bad merchants ((1 +α)cL ≥ RD). In Figure 4(b), it is inefficient to do so
((1 + α)cL < RD).

Then it must be the case that

α(1− f)cθ < RP , (17)

which means the same merchant also defaults if she sells outside the platform. In this
case, an incentive-compatibility condition on fP imposes that the cost of selling on the
platform, (f + fP )cθ, does not exceed the cost of selling outside the platform, ηcθ, leading
to condition (2).

If a merchant does not default when selling on the platform, i.e., condition (1) is satis-
fied, she may still default when she decides to sell outside the platform if α(1−f)cθ < RP .
In this case, an incentive-compatibility condition imposes that the net revenues from stay-
ing on the platform and not defaulting, (1 + α)(1− f)cθ −RP , should exceed the net rev-
enues of leaving the platform and defaulting, (1− η)cθ; that is, (α− (1 + α)f + η)cθ ≤ RP .
However, this condition is redundant once we impose conditions (1) and (2).

B.2 PROOF OF LEMMA 2

From the optimization problem (5), we have that the platform offers loans either at rate
(α− (1 +α)f + η)cH or at rate (α− (1 +α)f + η)cL. Hence, its optimized profits are given
by

max{p(α + η)cH + (1− p)ηcL, (α + η)cL + (1 + α)p(cH − cL)f} − R̄.
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The platform lends only if profits are non-negative, yielding condition (6).
In setting its interest rate, the platform prefers to offer rate (α− (1 + α)f + η)cH if

p(α + η)cH + (1− p)ηcL ≥ (α + η)cL + (1 + α)p(cH − cL)f,

which can be rearranged to become (7). Otherwise, the platform optimally offers a rate
equal to (α− (1 + α)f + η)cL.

To conclude the proof, assume (1 + α)cL > R̄. Let

η̂ :=
R̄

cL
− α.

Note η̂ < 1 because (1 + α)cL > R̄. Then, for any η ≥ η̂ we have

(α + η)cL + (1 + α)p(cH − cL)f − R̄ ≥ 0,

for all p ∈ [0, 1]. Therefore, if η ≥ η̂, (6) holds and the platform lends for any p ∈ [0, 1].

B.3 AUXILIARY LEMMAS

We now introduce some lemmas which will be useful in characterizing the equilibrium
with competition.

LEMMA 7. m∗B > 0 if and only if p ≥ RD

(1−f)αcH
.

Proof. First, we show m∗B > 0 if p ≥ RD

α(1−f)cH
. By way of contradiction, suppose m∗B = 0.

Then R∗P = {(α − (1 + α)f + η)cH} and G∗P (R) = I(R < (α − (1 + α)f + η)cH). Then, for
any m∗P ∈ [0, 1] and ε ∈ (0, α(1−f)cH−RD/p), LB(RD/p+ε,m∗P , G

∗
P ; p) > 0, contradicting

that m∗B = 0 is the bank’s equilibrium strategy.
Second, we show m∗B = 0 if p < RD

α(1−f)cH
. When p < RD

α(1−f)cH
, for any R ≤ α(1 − f)cH

we have
LB(R,m∗P , G

∗
P ; p) ≤ p(1− f)αcH −RD < 0

and, by (12), m∗B = 0.

LEMMA 8. If m∗B ∈ (0, 1), then supR∗B = (1− f)αcH .

Proof. We proceed by contradiction and assume R̃ := supR∗B < (1− f)αcH . Because m∗B ∈
(0, 1), by Lemma 7, we have p ≥ RD

(1−f)αcH
, which also implies (7). Hence, LP (R,m∗B, G

∗
B; p) <

LP ((α − (1 + α)f + η)cH ,m
∗
B, G

∗
B; p) for any R ∈ (R̃, (α − (1 + α)f + η)cH). Therefore, an

ε > 0 exists such that LB(R̃ + ε,m∗P , G
∗
P ; p) > LB(R̃,m∗P , G

∗
P ; p).

Hence, for a small enough ε, a lending mechanism (mB, FB) withmB = 1 and with do-

main R∗B∪{R̃+ε} exists such that
∫ R̂+ε

0
LB(R,m∗P , G

∗
P ; p)dF (R) > 0 andU(1,m∗P , FB, F

∗
P ) >
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U(m∗B,m
∗
P , F

∗
B, F

∗
P ), contradicting the assumption that R∗B is the domain of the equilibrium

lending mechanism offered by banks.

LEMMA 9. inf R∗P ∈ R∗P and inf R∗B ∈ R∗B.

Proof. Define
¯
RP := inf R∗P and

¯
RB := inf R∗B and consider lender J ∈ {P,B} and lender

I ∈ {P,B}with J 6= I .
If

¯
RJ /∈ R∗J , then a sequence (Rn)∞n=0 exists such thatRn >

¯
RJ andRn ∈ R∗J for all n and

Rn →
¯
RJ as n→∞. We, therefore, must haveLJ(

¯
RJ ,m

∗
I , G

∗
I ; p) < limn→∞ LJ(Rn,m

∗
I , G

∗
I ; p)

which, in turn, implies G∗I(¯
RJ) < limn→∞G

∗
I(Rn). This result, however, contradicts that

G∗I is a weakly decreasing function. Therefore,
¯
RJ ∈ R∗J .

LEMMA 10. Assume m∗P > 0 and m∗B > 0. Then minR∗P ≤ RD/p. Moreover, minR∗P = RD/p
or minR∗P = (α−(1+α)f+η)cL. Also, if minR∗P 6= (α−(1+α)f+η)cL, then minR∗B = RD/p.

Proof. Define
¯
RP := minR∗P and

¯
RB := minR∗B. First, we establish

¯
RP ≤ RD/p. We

proceed by contradiction and assume
¯
RP > RD/p. By competition between banks, we

thus have m∗B = 1 and R∗B = {RD/p}. In this case, if RD/p < (α − (1 + α)f + η)cL, the
platform’s best response is RD/p. If instead RD/p ≥ (α − (1 + α)f + η)cL, the platform’s
best response could be either RD/p or (α − (1 + α)f + η)cL. In both cases,

¯
R ≤ RD/p,

contradicting
¯
RP > RD/p.

Having established
¯
RP ≤ RD/p, we now prove

¯
RP = RD/p or

¯
R = (α − (1 + α)f +

η)cL. If RD/p ≤ (α − (1 + α)f + η)cL, then LP (R,m∗B, G
∗
B; p) < LP (RD/p,m

∗
B, G

∗
B; p)

for any R < RD/p, implying
¯
RP = RD/p. If instead RD/p > (α − (1 + α)f + η)cL,

LP (R,m∗B, G
∗
B; p) < LP ((α− (1 + α)f + η)cL,m

∗
B, G

∗
B; p) for any R < (α− (1 + α)f + η)cL

and LP (R′,m∗B, G
∗
B; p) < LP (RD/p,m

∗
B, G

∗
B; p) for any R′ ∈ ((α − (1 + α)f + η)cL, RD/p),

implying
¯
R = RD/p or

¯
R = (α− (1 + α)f + η)cL.

To prove the last part of the lemma, consider
¯
RP = RD/p 6= (α − (1 + α)f + η)cL. We

proceed by contradiction and assume
¯
RB > RD/p. Because

¯
RP 6= (α − (1 + α)f + η)cL,

an ε > 0 exists such that LP (RD/p + ε,m∗B, G
∗
B; p) > LP (RD/p,m

∗
B, G

∗
B; p), contradicting

RD/p ∈ R∗P . Hence, if
¯
RP = RD/p 6= (α− (1 + α)f + η)cL, the

¯
RB = RD/p.

LEMMA 11. If m∗B > 0 and R̄ > (α− (1 + α)f + η)cL, then (α− (1 + α)f + η)cL /∈ R∗P .

Proof. Note that LP ((α− (1 +α)f + η)cH ,m
∗
B, G

∗
B; p) ≤ LP ((α− (1 +α)f + η)cL,m

∗
B, G

∗
B; p)

only if

(1−m∗B)[p(α−(1+α)f+η)cH+(1−p)(η−f)cL] ≤ (1−m∗B)[(α−(1+α)f+η)cL+(1−p)αcLf ]
(18)

From the proof of Lemma 2, we have that p(α + η)cH + (1 − p)ηcL > (α + η)cL + (1 +
α)p(cH − cL)f if and only if

p >
αcL

(α− (1 + α)f + η)(cH − cL) + αcL
. (19)

Note that RD > αcL and (1− f)αcH < (α− (1 + α)f + η)(cH − cL) + αcL. Hence, because
we are considering p ≥ RD

(1−f)αcH
, inequality (19) is satisfied, which implies inequality (18)
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is violated. We must thus have LP ((α− (1 + α)f + η)cH ,m
∗
B, G

∗
B; p) > LP ((α− (1 + α)f +

η)cL,m
∗
B, G

∗
B; p) whenever (α− (1 + α)f + η)cL − R̄ < 0.

LEMMA 12. If m∗P > 0 and m∗B ∈ (0, 1), then maxR∗P ∈ {(1− f)αcH , (α− (1 + α)f + η)cH}.
Furthermore, if m∗P = 1, then maxR∗P = (α− (1 + α)f + η)cH .

Proof. First, note supR∗P ∈ R∗P by the left-continuity of G∗B(·) and the platform’s objective
function LP (·,mB, GB; p). Hence, supR∗P = maxR∗P . Also note that LP (R,m∗B, G

∗
B; p) <

LP ((α − (1 + α)f + η)cH ,m
∗
B, G

∗
B; p) for R ∈ ((1 − f)αcH , (α − (1 + α)f + η)cH) because

m∗B ∈ (0, 1). Therefore, ((1− f)αcH , (α− (1 + α)f + η)cH) ∩R∗P = ∅. Finally, by Lemma 8,
supR∗B = (1− f)αcH .

To prove the first part of the lemma, we proceed by contradiction and assume RM :=
maxR∗P < (1 − f)αcH . In this case, G∗P (R) = 0 for all R ≥ RM , along with supR∗B = (1 −
f)αcH , implies that (1− f)αcH ∈ R∗B and R /∈ R∗B for all R ∈ (RM , (1− f)αcH). Otherwise,
an R′ ≥ RM with R′ ∈ R∗B would exist such that LB(R′,m∗P , G

∗
P ; p) 6= 0, contradicting the

definition of equilibrium. Moreover, LB((1− f)αcH ,m
∗
P , G

∗
P ; p) = 0 and RM < (1− f)αcH

imply m∗P ∈ (0, 1).
If RM > (α − (1 + α)f + η)cL or if RM < (1 − f)αcH ≤ (α − (1 + α)f + η)cL then

LP ((1 − f)αcH ,m
∗
B, G

∗
B; p) > L(RM ,m∗B, G

∗
B; p), contradicting RM := maxR∗P . It remains

to consider RM ≤ (α − (1 + α)f + η)cL < (1 − f)αcH . In this case, by Lemma 10 we
have minR∗P = RD/p ≤ (α − (1 + α)f + η)cL. Moreover, we have R̄ < RD/p. Therefore,
LP (RD/p,m

∗
B, G

∗
B; p) > m∗B[(1 + α)pcH + (1 − p)cL]f . But this implies m∗P = 1, which

contradicts LB((1− f)αcH ,m
∗
P , G

∗
P ; p) = 0. Hence, maxR∗P ∈ {(1− f)αcH , (α− (1 + α)f +

η)cH}
To prove the second part of the lemma for m∗P = 1, we proceed again by contradiction

and assume R∗P = (1−f)αcH . In this case, LB((1−f)αcH , 1, G
∗
P ; p) < 0. Therefore,G∗B((1−

f)αcH) = 0. But then, LP ((α − (1 + α)f + η)cH ,m
∗
B, G

∗
B; p) > LP ((1 − f)αcH ,m

∗
B, G

∗
B; p),

contradicting R∗P = (1− f)αcH . Thus, if m∗P = 1 and m∗B ∈ (0, 1), then maxR∗P = (α− (1 +
α)f + η)cH .

LEMMA 13. Suppose m∗B ∈ (0, 1) and m∗P > 0. If R1 ∈ R∗B and R2 ∈ R∗B are such that
R1 < R2 ≤ (α − (1 + α)f + η)cL or (α − (1 + α)f + η)cL < R1 < R2, then we must have
[R1, R2] ⊆ R∗B ∩ R∗P .

Proof. Assume, by contradiction, that an Rk ∈ (R1, R2) exists such that Rk /∈ R∗B. By
the right-continuity of G∗P (·) and LB(·,m∗P , G∗P ; p), we have that an ε > 0 exists such that
LB(R,m∗P , G

∗
P ; p) < 0 for all R ∈ (Rk, Rk + ε). Let R′1 := sup{R : R ∈ R∗B and R < Rk}.

Hence, LB(R,m∗P , G
∗
P ; p) < 0 for all R ∈ (R′1, R

k + ε), thus implying

G∗P (R) <
(1−m∗P )(RD − pR)

m∗Pp(R−RD)
+

(1− p)RD

p(R−RD)
≤ (1−m∗P )(RD − pR′1)

m∗Pp(R
′
1 −RD)

+
(1− p)RD

p(R′1 −RD)
. (20)

Because R /∈ R∗B for all R ∈ (R′1, R
k + ε), we must have R /∈ R∗P for any R ∈ (R′1, R

k + ε).
If R′1 ∈ R∗B, then the last term in (20) coincides with G∗P (R′1) and therefore G∗P (R) <

G∗P (R′1) for any R ∈ (R′1, R
k + ε). But this implies that there exists R′ ∈ (R′1, R) such
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that R′ ∈ R∗P , contradicting the previous result that R′ /∈ R∗P for any R′ ∈ (R′1, R
k +

ε). If instead, R′1 /∈ R∗B, then we must have limR→R′1
− G∗P (R) > G∗P (R′1), which implies

R′1 ∈ R∗P . However, if R′1 /∈ R∗B, LP (Rk + ε,m∗B, G
∗
B; p) > LP (R′1,m

∗
B, G

∗
B; p), generating a

contradiction.
Hence, [R1, R2] ⊆ R∗B. In particular, LB(R,m∗P , G

∗
P ; p) = 0 for all R ∈ [R1, R2], which

implies

G∗P (R) =
(1−m∗P )(RD − pR)

m∗Pp(R−RD)
+

(1− p)RD

p(R−RD)

is strictly decreasing for R ∈ [R1, R2].
Suppose now, by way of contradiction, an Ry ∈ [R1, R2] exists such that R /∈ R∗P . By

the left-continuity of G∗B(·) and LP (·,m∗B, G∗B; p), we have that an ε > 0 exists such that
R /∈ R∗P for all R ∈ (Ry − ε, Ry). However, this observation implies G∗P (R) is constant in
(Ry − ε, Ry), contradicting the previous result. Hence, we also obtain [R1, R2] ⊆ R∗P .

B.4 PROOF OF LEMMA 3

First, note LP (R,mB, GB; p) < LP ((1 − f)αcL,mB, GB; p) for any R < (1 − f)αcL, and
hence [0, (1 − f)αcL) ∩ R∗P = ∅. To prove the lemma, it suffices to show that LP ((1 −
f)αcL,mB, GB; p) < LP ((α− (1 +α)f + η)cL,mB, GB; p). We proceed by contradiction and
assume

LP ((1− f)αcL,mB, GB; p) ≥ LP ((α− (1 + α)f + η)cL,mB, GB; p).

After some manipulations, this inequality implies

(η − f)cL −mBGB((α− (1 + α)f + η)cL)(1− p)[(α− f + η)cL − R̄] ≤ 0.

Because η ≥ f , then (α− f + η)cL − R̄ ≥ 0. Hence,

0 ≥ (η − f)cL −mBGB((α− (1 + α)f + η)cL)(1− p)[(α− f + η)cL − R̄]

(η − f)cL − [(α− f + η)cL − R̄]

0 ≥ R̄− αcL

However, R̄ > cL by Assumption 1.
We therefore conclude that LP (R,mB, GB; p) < LP ((α− (1 +α)f + η)cL,mB, GB; p) for

any any mB ∈ [0, 1] and R ≤ (1− f)αcL.
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B.5 PROOF OF LEMMA 4

When p < RD

(1−f)αcH
, Lemma 7 implies m∗B = 0. The platform is thus a monopolistic lender

for a merchant provided (6) is satisfied, and the results of Lemma 2 apply.
For the rest of the proof, we thus focus on p ≥ RD/R̄. By Lemma 7, banks lend

with positive probability m∗B > 0. We want to show that m∗B = 1, R∗B = {RD/p}, and
m∗P (1 − G∗P (RD/p)) = 0. Together, these conditions imply merchants borrow exclusively
from banks when p ≥ RD/R̄

As a preliminary observation, notice that, if m∗P > 0, RD/p ∈ R∗P . In fact, if R̄ > (α −
(1+α)f+η)cL, by Lemma 11, (α−(1+α)f+η)cL /∈ R∗P . If instead R̄ ≤ (α−(1+α)f+η)cL,
we have RD/p ≤ R̄ ≤ (α− (1+α)f +η)cL. By Lemmas 10 and 9, we thus have RD/p ∈ R∗P

in both cases.
Suppose, by way of contradiction, m∗B ∈ (0, 1). Which, in turn, implies m∗P > 0 and

¯
RP ≤ RD/p, otherwise competitive banks would offer rateRD/pwith probability one and
m∗B = 1. It also implies supR∗B = (1− f)αcH by Lemma 8.

First, we excludem∗P = 1. By the previous observation,RD/p ∈ R∗P . We must therefore
have LP (RD/p,m

∗
B, G

∗
B; p) ≥ LP ((α− (1 + α)f + η)cH ,m

∗
B, G

∗
B; pi), which implies

m∗B
{
p((α− (1 + α)f + η)cH − R̄)− I(RD/p)(1− p)[RD/p− (η − (1 + α)f)cL]

}
≥ p((α− (1 + α)f + η)cH −RD/p)− I(RD/p)(1− p)[RD/p− (η − (1 + α)f)cL].

(21)

Notice we have (α−(1+α)f+η)cH ≥ RD/pwhen p ≥ RD

(1−f)αcH
and η ≥ f and (α−(1+α)f+

η)cH− R̄ ≤ (α− (1+α)f+η)cH−RD/p because we are considering R̄ ≥ RD/p. Finally, we
also have p((α− (1+α)f+η)cH−RD/p)−I(RD/p)(1−p)[RD/p− (η− (1+α)f)cL] because
eitherRD/p > (α−(1+α)f+η)cL, orRD/p ≤ (α−(1+α)f+η)cL, along with p ≥ RD

(1−f)αcH
,

implies p((α − (1 + α)f + η)cH − RD/p) − I(RD/p)(1 − p)[RD/p − (η − (1 + α)f)cL] > 0.
Therefore, if p((α− (1+α)f +η)cH− R̄)− I(RD/p)(1−p)[RD/p− (η− (1+α)f)cL] ≤ 0, the
inequality (21) is a contradiction. If p((α− (1 + α)f + η)cH − R̄)− I(RD/p)(1− p)[RD/p−
(η − (1 + α)f)cL] > 0, the inequality (21) implies m∗B ≥ 1, which contradicts m∗B ∈ (0, 1).
Therefore, when p ≥ RD/R̄, m∗B = 1.

Next, we show m∗P (1 − G∗P (RD/p)) = 0. Assume, by way of contradiction, m∗P (1 −
G∗P (RD/p)) > 0. By our previous result in the proof, if m∗P > 0, then RD/p ∈ R∗P .
Consider, p > RD/R̄. Because m∗B = 1, the platform’s profits from lending are thus
LP (RD/p, 1, G

∗
B; p) < [(1 + α)pcH + (1 − p)cL]f , and hence m∗P = 0, contradicting

m∗P (1−G∗P (RD/p)) = 0.
Consider now p = RD/R̄, then LP (RD/p, 1, G

∗
B; p) = [(1+α)pcH+(1−p)cL]f and, more-

over, LP (R, 1, G∗B; p) ≤ LP (RD/p, 1, G
∗
B; p) for any R > RD/p, thus implying G∗B(R) ≤ 0.
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Hence, banks offer rate RD/p with probability one, and, for this to be the banks’ best
response, we must have m∗P (1−G∗P (RD/p)) = 0.

B.6 PROOF OF LEMMA 5

We prove m∗P > 0. Suppose m∗P = 0, then competitive banks would set R∗B = {RD/p} and
m∗B = 1. For a small enough ε > 0, LP (RD/p − ε, 1, G∗B; p) > [(1 + α)pcH + (1 − p)cL]f ,
which contradicts m∗P = 0. Hence m∗P > 0.

By Lemma 7, we have m∗B > 0. We now prove m∗B ∈ (0, 1). We proceed by contradic-
tion and assume m∗B = 1. In this case, LP (R, 1, G∗B; p) = [(1 + α)pcH + (1 − p)cL]f <

LP (RD/p, 1, G
∗
B; p) for any R such that G∗B(R) = 0. Hence, m∗P = 1 but R /∈ R∗P if

G∗B(R) = 0.
Let R̃ = supR∗B ≤ (1 − f)αcH . If R̃ ∈ R∗B, LB(R̃, 1, G∗P ; p) = 0 implies G∗P (R̃) > 0 and

an R > R̃ exists with R ∈ R∗P . If instead R̃ /∈ R∗B, then limR→R̃− G
∗
P (R) > 0, implying an

R ≥ R̃ exists with R ∈ R∗P . In either case, G∗B(R) = 0, thus contradicting the previous
result.

Because m∗B ∈ (0, 1), Lemma 8 implies supR∗B = (1 − f)αcH , Moreover, by Lemmas 9
and 10, we have that minR∗P ≤ RD/p and minR∗P ∈ {(α − (1 + α)f + η)cL, RD/p}. The
result that maxR∗P ∈ {(1− f)αcH , (α− (1 + α)f + η)cH} follows from Lemma 12.

B.7 PROOF OF LEMMA 6

Throughout the proof, recall that m∗B ∈ (0, 1) and m∗P > 0 by Lemma 5. In particular, an
R exists such that LP (R,m∗B, G

∗
B; p) ≥ m∗B[p(1 + α)cH + (1− p)cL]f .

We first consider a merchant with p(α+ η)cH + (1− p)ηcL > R̄. To establish our claim,
it is sufficient to note

LP ((α− (1 + α)f + η)cH ,m
∗
B, G

∗
B; p) > m∗B[p(1 + α)cH + (1− p)cL]f

because m∗B ∈ (0, 1) and p(α + η)cH + (1− p)ηcL > R̄. Therefore, m∗P = 1.
Next, we consider p(α+ η)cH + (1− p)ηcL ≤ R̄. Because (7) holds as a strict inequality

when p ≥ RD

(1−f)αcH
, we also have RD/p ≥ R̄ > (α− (1 + α)f + η)cL. By Lemmas 9, 10, and

11, we thus have minR∗B ≥ RD/p > (α− (1 + α)f + η)cL.
We proceed by contradiction and assume that maxR LP (R,m∗B, G

∗
B; p) > m∗B[p(1 +

α)cH + (1 − p)cL]f . In this case m∗P = 1. Moreover, by Lemma 5 we have RM :=

maxR∗P ∈ {(1− f)αcH , (α− (1 + α)f + η)cH} and, by the previous result, RM ≥ minR∗P >

(α− (1 + α)f + η)cL.
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If RM = (α− (1 + α)f + η)cH , then LP (RM ,m∗B, G
∗
B; p) ≤ m∗B[p(1 + α)cH + (1− p)cL]f ,

generating a contradiction. We thus consider RM = (1 − f)αcH . In this case, be-
cause supR∗B = (1 − f)αcH and m∗P = 1, we must have limR→(1−f)αc−H

G∗P (R) > 0 and
G∗P ((1 − f)αcH) = 0. Therefore, (1 − f)αcH /∈ R∗B and G∗B((1 − f)αcH) = 0. Hence,
LP (RM ,m∗B, G

∗
B; p) < LP ((α− (1 + α)f + η)cH ,m

∗
B, G

∗
B; p) ≤ m∗B[p(1 + α)cH + (1− p)cL]f ,

where the first inequality follows from (α−(1+α)f+η)cL < RM < (α−(1+α)f+η)cH . But
this result also generates a contradiction. We therefore obtain maxR LP (R,m∗B, G

∗
B; p) =

m∗B[p(1 + α)cH + (1− p)cL]f .
When R̄ > (α − (1 + α)f + η)cL, Lemma 11 implies minR∗P 6= (α − (1 + α)f + η)cL.

Therefore, by Lemmas 9 and 10, we obtain minR∗P = RD/p > (α− (1 + α)f + η)cL, where
the inequality follows because R̄ > (α− (1 + α)f + η)cL and p ≤ RD/R̄.

Finally, when RD/p ≤ (α− (1 +α)f + η)cL, Lemmas 9 and 10 imply minR∗P = RD/p ≤
(α− (1 + α)f + η)cL.

B.8 PROOF OF PROPOSITION 1

By Lemma 5,m∗B ∈ (0, 1). Moreover, by Lemma 6,m∗P = 1, minR∗P = RD/p, and maxR∗P =

(α− (1 + α)f + η)cH . Hence, LP (RD/p,m
∗
B, G

∗
B; p) = LP ((α− (1 + α)f + η)cH ,m

∗
B, G

∗
B; p),

from which we obtain that m∗B is given by

m∗B =
(α− (1 + α)f + η)cH −RD/p

(α− (1 + α)f + η)cH − R̄
∈ (0, 1) (22)

Because minR∗P = RD/p ≥ R̄ > (α − (1 + α)f + η)cL, Lemma 10 implies minR∗B =

RD/p > (α− (1+α)f +η)cL. Moreover, supR∗B = (1−f)αcH by Lemma 5. Hence, Lemma
13 implies all rates in [RD, (1−f)αcH) are best responses for both the platform and banks.
From LP (R,m∗B, G

∗
B; p) = LP ((α − (1 + α)f + η)cH ,m

∗
B, G

∗
B; p) for R ∈ [RD, (1 − f)αcH),

we obtain the expression for GB∗ in after using (22)

G∗B(R) =
RD/p− R̄
(R− R̄)

(α− (1 + α)f + η)cH −R
(α− (1 + α)f + η)cH −RD/p

. (23)

Note that limR→(1−f)αc−H
G∗B(R) > 0, hence (1− f)αcH ∈ R∗B.

From LB(R, 1, G∗P ; p) = 0 for [RD, (1− f)αcH ] we finally obtain the expression for G∗P

G∗P (R) =
(1− p)RD/p

R−RD

for R ∈ [RD/p, (1− f)αcH ]. (24)
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B.9 PROOF OF PROPOSITION 2

Lemmas 5 and 6 implym∗B ∈ (0, 1) andm∗P = 1, respectively. By Lemma 6, minR∗P = RD/p

and maxR∗P = (α− (1 + α)f + η)cH . Also, Lemma 10 implies minR∗B = RD/p. Therefore,
l0P (RD/p,m

∗
B, G

∗
B; p) = l1P ((α − (1 + α)f + η)cH ,m

∗
B, G

∗
B; p), from which we obtain the

expression for m∗B in (25).

m∗B =
p(α− (1 + α)f + η)cH + (1− p)(η − (1 + α)f)cL −RD/p

p(α− (1 + α)f + η)cH + (1− p)(η − (1 + α)f)cL −RD/p+RD − pR̄
∈ (0, 1) (25)

Let T := min{(α − (1 + α)f + η)cL, (1 − f)αcH}. If T = (1 − f)αcH , Lemmas 8 and 13
imply all rates in [RD/p, (1 − f)αcH) are best responses for both the platform and banks.
From l0P (R,m∗B, G

∗
B; p) = l1P ((α− (1 + α)f + η)cH ,m

∗
B, G

∗
B; p) for R ∈ [RD, (1− f)αcH), we

obtain G∗B is given by

G∗B(R) =
RD/p− R̄
(R− R̄)

p(α− (1 + α)f + η)cH + (1− p)(η − (1 + α)f)cL −R
p(α− (1 + α)f + η)cH + (1− p)(η − (1 + α)f)cL −RD/p

for R ∈ [RD/p, T ] (26)

In particular, limR→(1−f)αc−H
G∗B(R) > 0, hence (1−f)αcH ∈ R∗B. Using LB(R, 1, G∗P ; p) =

0 for R ∈ [RD, (1 − f)αcH ], we obtain G∗P is given by the following equation for R ∈
[RD/p, T ],

G∗P (R) =
(1− p)RD/p

R−RD

(27)

We focus the rest of the proof on T = (α − (1 + α)f + η)cL < (1 − f)αcH . We want to
show that any rate in [RD/p, (α− (1 + α)f + η)cL) is a best response for both the platform
and banks. It is sufficient to show that (α−(1+α)f+η)cL = sup{R∗B∩[RD/p, (α−(1+α)f+

η)cL]}. Lemma 13 will then imply [RD/p, (α− (1+α)f +η)cL) is a set of best responses for
lenders. We proceed by contradiction and assume R̃′ := sup{R∗B ∩ [RD/p, (α− (1 + α)f +

η)cL]} < (α− (1+α)f +η)cL. Hence, l0P (R,m∗B, G
∗
B; p) < l0P ((α− (1+α)f +η)cL,m

∗
B, G

∗
B; p)

for any R ∈ (R̃′, (α − (1 + α)f + η)cL). Therefore, an ε > 0 exists such that LB(R̃′ +

ε,m∗P , G
∗
P ; p) > 0 = LB((1− f)αcH ,m

∗
P , G

∗
P ; p), where R̃′ + ε < (1− f)αcH .

Therefore, for a small enough ε, a lending mechanism (mB, FB) with mB = 1

and with domain [RD/p, R̃
′ + ε] exists such that

∫ R̂′+ε
0

LB(R,m∗P , G
∗
P ; p)dF (R) > 0 and

U(1,m∗P , FB, F
∗
P ) > U(m∗B,m

∗
P , F

∗
B, F

∗
P ), contradicting the assumption that R∗B is the do-

main of the equilibrium lending mechanism offered by banks. Hence, (α−(1+α)f+η)cL =

supR∗B ∩ [RD/p, (α− (1 + α)f + η)cL] and any rate in [RD/p, (α− (1 + α)f + η)cL) is a best
response for the lenders.
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Hence, from l0P (R,m∗B, G
∗
B; p) = l1P ((α− (1 + α)f + η)cH ,m

∗
B, G

∗
B; p) for R ∈ [RD/p, T ),

we obtain G∗B is the same as (26). From LB(R, 1, G∗P ; p) = 0 for [RD/p, T ), we obtain G∗P is
given by (27) for R ∈ [RD/p, T ) as well. To summarize

G∗P (R) =
(1− p)RD/p

R−RD

for R ∈ [RD/p, T ] ∪ [U, (1− f)αcH ]. (28)

Let U := min{RB
∗ ∩ ((α − (1 + α)f + η)cL, (1 − f)αcH ]}. Note that such a U exists

because supR∗B = (1 − f)αcH > (α − (1 + α)f + η)cL and because of a reasoning anal-
ogous to that in Lemma 9. By Lemmas 8 and 13, if U < (1 − f)αcH , [U, (1 − f)αcH)

is a set of best responses for lenders. Because l0P ((α − (1 + α)f + η)cL,m
∗
B, G

∗
B; p) >

limR→(α−(1+α)f+η)c+L
l1P (R,m∗B, G

∗
B; p), a δ > 0 exists such that U ≥ (α− (1 + α)f + η)cL + δ.

The same result holds immediately if U = (1− f)αcH .
Also note l1P (U,m∗B, G

∗
B; p) > l1P (R,m∗B, G

∗
B; p) for all R ∈ ((α − (1 + α)f + η)cL, U).

Hence, from LB(U, 1, G∗P ; p) = 0 and U ≥ (α− (1 + α)f + η)cL + δ, we obtain

P (RP = (α− (1 + α)f + η)cL) = lim
R→(α−(1+α)f+η)c−L

G∗P (R)−G∗P (U) > 0,

thus implying (α−(1+α)f+η)cL ∈ R∗P and that the platform offers rate (α−(1+α)f+η)cL

with positive probability.
Because of this latest result, G∗P (U) < limR→(α−(1+α)f+η)c−L

G∗P (R), thus implying
LB((α − (1 + α)f + η)cL, 1, G

∗
P ; p) < limR→(α−(1+α)f+η)c−L

LB(R, 1, G∗P ; p) = 0. Hence,
(α− (1 + α)f + η)cL /∈ R∗B. Therefore, G∗B((α− (1 + α)f + η)cL) = G∗B(U).

Let RU be such that

m∗BpG
∗
B((α−(1+α)f+η)cL)(RU−R̄)+(1−m∗B)[pRU+(1−p)(η−f)cL−R̄]+[p(1+α)cH+(1−p)cL]f

= l0P ((α− (1 + α)f + η)cL,m
∗
B, G

∗
B; p),

from which we obtain

RU := (α−(1+α)f+η)cL+
(1− p)αcL[(α− (1 + α)f + η)cL − R̄]

p(α− (1 + α)f + η)cH − (1− p)αcL − pR̄
≥ (α−(1+α)f+η)cL

after substituting for m∗B. We thus set U := min{RU , (1− f)αcH}.
If RU ∈ ((α − (1 + α)f + η)cL, (1 − f)αcH), then U = RU , and Lemma 13 implies

[U, (1− f)αcH) is a set of best responses for lenders. From l1P (R,m∗B, G
∗
B; p) = l1P ((α− (1 +

α)f + η)cH ,m
∗
B, G

∗
B; p) for R ∈ [U, (1− f)αcH), we obtain the expression for G∗B in (29).
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G∗B(R) =
RD/p− R̄
(R− R̄)

p(α− (1 + α)f + η)cH − pR
p(α− (1 + α)f + η)cH + (1− p)(η − (1 + α)f)cL −RD/p

for R ∈ [U, (1− f)αcH ]. (29)

Note that limR→(1−f)αc−H
G∗B(R) > 0, hence (1 − f)αcH ∈ R∗B. From LB(R, 1, G∗P ; p) = 0 for

[RD, (1− f)αcH ] we obtain G∗P same as in (27) for R ∈ [U, (1− f)αcH ].
If RU ≥ (1 − f)αcH , then U = (1 − f)αcH . Banks offer rate (1 − f)αcH with

probability G∗B((α − (1 + α)f + η)cL) using the expression for G∗B(R) in (26). From
LB((1 − f)αcH , 1, G

∗
P ; p) = 0, we obtain P (RP = (α − (1 + α)f + η)cH) = G∗P (U) as

given in (28). In particular, the platform offers rates in R∗P = [RD/p, (α− (1 +α)f + η)cL]∪
{(α− (1 + α)f + η)cH}.

To summarize,

G∗B(R) =
RD/p− R̄
(R− R̄)

p(α− (1 + α)f + η)cH + (1− p)(η − (1 + α)f)cL −R
p(α− (1 + α)f + η)cH + (1− p)(η − (1 + α)f)cL −RD/p

for R ∈ [RD/p, T ] (30)

and, if U < (1− f)αcH ,

G∗B(R) =
RD/p− R̄
(R− R̄)

p(α− (1 + α)f + η)cH − pR
p(α− (1 + α)f + η)cH + (1− p)(η − (1 + α)f)cL −RD/p

for R ∈ [U, (1− f)αcH ] (31)

B.10 PROOF OF PROPOSITION 3

By Lemmas 5 and 6, we have, m∗B ∈ (0, 1), m∗P = 1 and maxR∗P = (α− (1 + α)f + η)cH .
Let V ′ := minR∗B. Note that such a V ′ exists because supR∗B = (1 − f)αcH > (α −

(1 + α)f + η)cL and because of a reasoning analogous to that in Lemma 9. Note also that
V ′ ≥ RD/p > (α − (1 + α)f + η)cL. By Lemmas 8 an 13, if V ′ < (1 − f)αcH , [V ′, (1 −
f)αcH) is a set of best responses for lenders. Because l0P ((α− (1 +α)f + η)cL,m

∗
B, G

∗
B; p) >

limR→(α−(1+α)f+η)c+L
l1P (R,m∗B, G

∗
B; p), a δ > 0 exists such that V ′ ≥ (α− (1 +α)f + η)cL + δ.

The same result holds immediately if V ′ = (1− f)αcH .
Because LB(V ′, 1, G∗P ; p) = 0 and because l1P (R,m∗B, G

∗
B; p) < l1P (V ′,m∗B, G

∗
B; p) for all
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R ∈ ((α− (1 + α)f + η)cL, V
′), we have

P (RP = (α− (1 + α)f + η)cL) =
V ′ −RD/p

V ′ −RD

. (32)

In particular, if V ′ > RD/p, we must have P (RP = (α − (1 + α)f + η)cL) > 0 and hence,
(α− (1 + α)f + η)cL ∈ R∗P .

Because maxR∗P = (α − (1 + α)f + η)cH , we must have LP ((α − (1 + α)f +

η)cH ,m
∗
B, G

∗
B; p) ≥ LP (α− (1 + α)f + η)cL,m

∗
B, G

∗
B; p), which implies

m∗B ≤
p(α− (1 + α)f + η)(cH − cL)− (1− p)αcL
p(α− (1 + α)f + η)cH − (1− p)αcL − pR̄

.

If V ′ > RD/p, this expression holds as an equality.
Moreover, from LP ((α− (1 + α)f + η)cH ,m

∗
B, G

∗
B; p) ≥ LP (V ′,m∗B, G

∗
B; p), we obtain

m∗B ≤ m̃B(V ′) :=
(α− (1 + α)f + η)cH − V ′

(α− (1 + α)f + η)cH − R̄
.

By Lemma 13, if V ′ < (1− f)αcH , this expression holds as an equality.
Let RV be defined so that

m̃B(RV ) =
p(α− (1 + α)f + η)(cH − cL)− (1− p)αcL
p(α− (1 + α)f + η)cH − (1− p)αcL − pR̄

,

which implies

RV = (α−(1+α)f+η)cL
(α− (1 + α)f + η)cH − R̄− 1−p

p
αcL

R̄
(α−(1+α)f+η)cL

(α− (1 + α)f + η)cH − R̄− 1−p
p
αcL

> (α−(1+α)f+η)cL.

The rate V ′ is thus determined as V ′ := min{(1− f)αcH ,max{RD/p,R
V }}.

If V ′ = RD/p, then minR∗P = minR∗B = RD/p and the equilibrium is as described in
Proposition 1.

If V ′ ∈ (RD/p, (1 − f)αcH), then by Lemma 13, all rates in [V ′, (1 − f)αcH) are best
responses for the lenders. Moreover, the platform offer rate (α − (1 + α)f + η)cL with
positive probability given by (32). In particular,

P (RP = (α− (1 + α)f + η)cL) = 1− P (RP > (α− (1 + α)f + η)cL) =
(1− p)RD/p

V ′ −RD

,

For ease of exposition, define V ≡ V ′ in this case. From LP ((α − (1 + α)f +
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η)cL,m
∗
B, G

∗
B; p) = LP ((α− (1 + α)f + η)cH ,m

∗
B, G

∗
B; p) we obtain m∗B as

m∗B =
p(α− (1 + α)f + η)(cH − cL)− (1− p)αcL
p(α− (1 + α)f + η)cH − (1− p)αcL − pR̄

∈ (0, 1) (33)

From LP (R,m∗B, G
∗
B; p) = LP ((α − (1 + α)f + η)cH ,m

∗
B, G

∗
B; p) for R ∈ [V, (1− f)αcH) we

obtain the expression for G∗B

G∗B(R) =
p(α− (1 + α)f + η)cL − pR̄

p(α− (1 + α)f + η)(cH − cL)− (1− p)αcL
(α− (1 + α)f + η)cH −R

R− R̄
for R ∈ [V, (1− f)αcH ]. (34)

This also implies P (RB = (1 − f)αcH) > 0 and, hence, (1 − f)αcH ∈ R∗B. From
LB(R, 1, G∗B; p) = 0 for R ∈ [V, (1− f)αcH ] we instead obtain G∗P is given by

G∗P (R) =
(1− p)RD/p

R−RD

Hence, to summarize

G∗P (R) =


(1−p)RD/p
V−RD

if R = (α− (1 + α)f + η)cL
(1−p)RD/p
R−RD

if R ∈ [V, (1− f)αcH ].
(35)

Finally, if V = (1 − f)αcH , the platform offers only rates (α − (1 + α)f + η)cL and
(α− (1 + α)f + η)cH , with probabilities given by (35) after we use V = (1− f)αcH . From
LP ((α− (1 +α)f + η)cL,m

∗
B, G

∗
B; p) = LP ((α− (1 +α)f + η)cH ,m

∗
B, G

∗
B; p) we again obtain

m∗B is as in (33), but now banks lend at rate (1− f)αcH with probability 1.

B.11 PROOF OF PROPOSITION 4

To begin with, we observe that, in case C, RD/p ≥ R̄ > (α − (1 + α)f + η)cL. Next, by
Lemmas 5 and 6, the platform is indifferent between lending at rateRD/p and not lending.
Therefore, LP (RD/p,m

∗
B, G

∗
B; p) = m∗B[p(1 + α)cH + (1− p)cL]f from which we obtain

m∗B =
R̄−RD − (1− p)(η − f)cL − [p(1 + α)cH + (1− p)cL]f

(1− p)[R̄− (η − f)cL]− [p(1 + α)cH + (1− p)cL]f
∈ (0, 1) (36)

Next, by Lemma 10, minR∗B = RD/p > (α − (1 + α)f + η)cL. Furthermore, Lemma 5
implies supR∗B = (1 − f)αcH . Therefore, by Lemma 13, all rates in [RD, (1 − f)αcH) are
best responses for both the platform and banks.
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Because [RD/p, (1− f)αcH) ⊆ R∗P , we have that

LP (R,m∗B, G
∗
B; p) = m∗B[p(1 + α)cH + (1− p)cL]f for all R ∈ [RD/p, (1− f)αcH).

We therefore solve for G∗B(R)

G∗B(R) = −1−m∗B
m∗B

pR + (1− p)(η − f)cL − R̄ + [p(1 + α)cH + (1− p)cL]f

p(R− R̄)

for any R ∈ [RD/p, (1− f)αcH), after substituting for m∗B, we obtain

G∗B(R) =
RD/p− R̄
R− R̄

R̄− pR− (1− p)(η − f)cL − [p(1 + α)cH + (1− p)cL]f

R̄−RD − (1− p)(η − f)cL − [p(1 + α)cH + (1− p)cL]f
∀R ∈ R∗B.

(37)
Because G∗B(·) is left-continuous, G∗B((1 − f)αcH) = limε→0+ G

∗
B((1 − f)αcH − ε) > 0.

Therefore, (1− f)αcH ∈ R∗B and, in particular, R∗B = [RD/p, (1− f)αcH ].
Using the left-continuity of G∗B(·) again, we obtain

LP ((1− f)αcH ,m
∗
B, G

∗
B; p) = lim

R→(1−f)αc−H

LP (R,m∗B, G
∗
B; p) = m∗B[p(1 + α)cH + (1− p)cL]f.

Therefore, R∗P = [RD/p, (1− f)αcH ].
To derive the platform’s strategy, we first consider p(α+ η)cH + (1− p)ηcL < R̄. In this

case, (α− (1 + α)f + η)cH /∈ R∗P because

LP ((α− (1 + α)f + η)cH ,m
∗
B, G

∗
B; p)

= (1−m∗B)[p(α + η)cH + (1− p)ηcL − R̄] +m∗B[p(1 + α)cH + (1− p)cL]f

< m∗B[p(1 + α)cH + (1− p)cL]f.

Therefore, G∗P ((1− f)αcH) = 0. Using this result in equation 12 for R = (1− f)αcH ∈ R∗B,
we obtain

m∗P = 1− (1− p)RD

p[(1− f)αcH −RD]
,

after some manipulation, we get

m∗P =
(1− f)αcH −RD/p

(1− f)αcH −RD

∈ (0, 1) (38)
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Moreover, using equation 12 again for all R ∈ R∗B = [RD/p, (1− f)αcH ], we have

G∗P (R) = 1− R−RD/p

m∗P (R−RD)
,

after substituting for m∗P and rearranging, we get

G∗P (R) =
(1− p)RD

p(1− f)αcH −RD

(1− f)αcH −R
R−RD

∀R ∈ R∗P . (39)

Next, we consider p(α + η)cH + (1 − p)ηcL = R̄. Now, we cannot conclude (α − (1 +

α)f+η)cH /∈ R∗P because LP ((α−(1+α)f+η)cH ,m
∗
B, G

∗
B; p) = m∗B[p(1+α)cH +(1−p)cL]f .

Therefore, let P (RP = (α − (1 + α)f + η)cH) = G∗P ((1 − f)αcH) = Q ∈
[
0, (1−p)RD/p

(1−f)αcH−RD

]
.

Using equation 12 for R = (1− f)αcH ∈ R∗B, we get

m∗P =
(1− f)αcH −RD/p

(1−Q)[(1− f)αcH −RD]
∈ (0, 1] (40)

Because Q ∈
[
0, (1−p)RD/p

(1−f)αcH−RD

]
, m∗P ∈ [0, 1]. We then use equation 12 for all R ∈ R∗B =

[RD/p, (1− f)αcH ], from which we obtain the following after substituting for the value of
m∗P

G∗P (R) =


(1−p)RD[(1−f)αcH−R]+Q[p(1−f)αcH−RD](pR−RD)

(R−RD)[p(1−f)αcH−RD]
if R ∈ [RD/p, (1− f)αcH)

Q if R ∈ [(1− f)αcH , (α− (1 + α)f + η)cH).

(41)

B.12 PROOF OF COROLLARY 1

The proof for parts 1, 2, 3, and 5 is included in the discussion that precedes Corollary 1 in
section 3.5. We, therefore, prove part 5 of the corollary.

If parameters satisfy case C, m∗P = 1 and LP (R,m∗B, G
∗
B; p) = LP ((α − (1 + α)f +

η)cH ,m
∗
B, G

∗
B; p) for all R ∈ [RD/p, (1 − f)αcH ]. Hence, the function G∗B(·) can be written

as G∗B(R) =
1−m∗B
m∗B

A(R)

R−R̄ , for some positive function A(·). Therefore, the welfare change can
be written as

∆W (R̄) = −(1−m∗B)w(R̄).
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where

w(R̄) := (R̄−RD)

∫ (α−(1+α)f+η)cH

RD/p

(
A(R)

R− R̄
+ 1

)
dF ∗P (R)−(1−p)F ∗P ((α−(1+α)f+η)cL)cL

Given the parameter values considered in case A2, R̄ may range from RD to RD/p.
Note that w(RD) > 0 because F ∗P ((α− (1 + α)f + η)cL) > 0 in case A2. Moreover,

w(RD/p) =
1

p

[
(1− p)RD

∫ (α−(1+α)f+η)cH

RD/p

(
A(R)

R−RD/p
+ 1

)
dF ∗P (R)

− (1− p)pF ∗P ((α− (1 + α)f + η)cL)cL

]
> 0

where the inequality follows because RD > cL by Assumption 1 and∫ (α−(1+α)f+η)cH
RD/p

(
A(R)

R−RD/p
+ 1
)
dF ∗P (R) > 1 > pF ∗P ((α− (1 + α)f + η)cL).

The function w(·) is also continuous and strictly increasing, with

w′(R̄) =

∫ (α−(1+α)f+η)cH

RD/p

(
A(R)(R−RD)

(R− R̄)2
+ 1

)
dF ∗P (R) > 0.

By the intermediate value theorem and because w(·) is strictly increasing, there exists
R̄W ∈ (RD, RD/p) such that ∆W (R̄) > 0 if R̄ ∈ (RD, R̄

W ), ∆W (R̄) = 0 if R̄ = R̄W , and
∆W (R̄) < 0 if R̄ ∈ (R̄W , RD/p).

B.13 PROOF OF COROLLARY 2

The proof for parts 1 and 2 is included in the discussion that precedes Corollary 2 in sec-
tion 3.5. We, therefore, prove part 3 of the corollary. We, therefore, focus on merchants
satisfying p ∈

[
RD

(1−f)αcH
, RD

R̄

)
. We show that both good and bad borrowers are unambigu-

ously worse off when the platform enters the credit market.
We start by considering bad borrowers. When banks are the only lenders, a bad bor-

rower obtains profits equal to (1− f)cL because she produces for one period and defaults
on the loan. If the bad merchant borrows from the platform, she obtains a payoff which
can be written as (1 − f)cL − ∆, where ∆ ∈ (0, (1 − f)cL) is an equilibrium quantity.
That is, the bad merchant earns lower profits when borrowing from the platform than
when borrowing from banks. Specifically, ∆ = (η − f)cL if the bad borrower chooses to
default; and ∆ = RP − (1 − f)αcL > 0 if the bad merchant does not default, where the
inequality follows from Lemma 3. Therefore, when the platform competes with banks,
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bad borrowers obtain a payoff equal to

m∗B(1− f)cL + (1−m∗B)m∗P [(1− f)cL −∆] < (1− f)cL

where the strict inequality follow because ∆ > 0 and m∗B ∈ (0, 1).
Next, we show the good borrower is also unambiguously worse off. When banks are

the only lenders, a good borrower earns profits (1+α)(1−f)cH−RD/p. When the platform
competes with banks, the good borrower’s profits are given by U(m∗B,m

∗
P , F

∗
B, F

∗
P ), where

the function U is defined in (9). We write it more succinctly as

[1− (1−m∗B)(1−m∗P )](1 + α)(1− f)cH − R̂C

where

R̂C :=m∗B(1−m∗P )

∫ (1−f)αcH

0

RdF ∗B(R) + (1−m∗B)m∗P

∫ (α−(1+α)f+η)cH

0

RdF ∗P (R)

+m∗Bm
∗
P

∫ (α−(1+α)f+η)cH

0

∫ (1−f)αcH

0

min{R,R′} dF ∗B(R) dF ∗P (R′)

represents the expected cost of borrowing.
In cases A, B1, and C, lenders offer rates above RD/p with positive probability; that is,

F ∗B(RD/p) < 1 and F ∗P (RD/p) < 1. As a result R̂C > RD/p. Moreover, in case C, we also
have [1− (1−mB ∗) (1−m∗P )] < 1. Hence, in cases A, B1, and C,

[1− (1−m∗B)(1−m∗P )](1 + α)(1− f)cH − R̂C < (1 + α)(1− f)cH −RD/p

In case B2, the merchant is never rationed, that is [1−(1−m∗B)(1−m∗P )] = 1, and profits
decline only if the expected cost of borrowing increases. If (13) holds, then the equilibrium
is similar to case A and, as just discussed, the good merchant’s profits decline. If (13) does
not hold, the platform offers rates below RD/p with positive probability. Specifically, it
offers rate (α − (1 + α)f + η)cL < RD/p with probability equal to (14). We show that
this probability is insufficiently low to compensate for the higher rates lenders offer in
equilibrium. Specifically, note F ∗B(RD/p) = 0 and banks offer rates RB ≥ V > RD/p,
whereas the platform either offers rate (α − (1 + α)f + η)cL < RD/p or it offers rates
RP ≥ V > RD/p. Therefore,

R̂C >m
∗
B(1−m∗P )V + (1−m∗B)m∗P

[(
1− (1− p)RD/p

V −RD

)
(α− (1 + α)f + η)cL +

(1− p)RD/p

V −RD

V

]
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+m∗Bm
∗
P

[(
1− (1− p)RD/p

V −RD

)
(α− (1 + α)f + η)cL +

(1− p)RD/p

V −RD

V

]
which implies

R̂C >

(
1− (1− p)RD/p

V −RD

)
(α− (1 + α)f + η)cL +

(1− p)RD/p

V −RD

V

because V > (α− (1 + α)f + η)cL.
To show the good borrower’s welfare declines also in this case, we need to show R̂C >

RD/p. To show this result, note(
1− (1− p)RD/p

V −RD

)
(α− (1 + α)f + η)cL +

(1− p)RD/p

V −RD

V

= (α− (1 + α)f + η)cL −RD/p−
RD/p−RD

V −RD

(α− (1 + α)f + η)cL +
RD/p−RD

V −RD

V +RD/p

=
[(α− (1 + α)f + η)cL −RD](V −RD/p)

V −RD

+RD/p.

In case B2 we have (α − (1 + α)f + η)cL ≥ R̄. When (13) does not hold, the inequality
must be strict. Moreover, from Assumptions 1, we have R̄ ≥ RD. As a result, even in case
B2 when (13) does not hold, we have R̂C > RD/p and, hence, the good merchant is worse
off when the platform enters the credit market.

C COMPETITION WITH INFORMATION ACQUISITION

We solve for the equilibrium in the credit market when the platform has the option to
acquire information with the same technology described in section 4.1.

C.1 EQUILIBRIUM WITH INFORMATION ACQUISITION

Similar to Section 3, each bank announces a lending mechanism for which it lends with
probability mB = E[dB] ∈ [0, 1] and offers rates according to the distribution FB(R) :=

P (RB ≤ R). The merchant chooses one bank to apply for credit. We maintain the as-
sumption the merchant faces large non-pecuniary costs that prevent him from applying
to multiple banks.

After receiving an application, the platform privately acquires the signal with proba-
bility a. A platform of type i ∈ {u, h, l} chooses a lending mechanism whereby it lends
with probability mP,i ∈ [0, 1] and offers rates according to a distribution FP,i := P (RP,i ≤
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0) for i ∈ {u, h, l}. Like in section 3, we define

GB(R) := P (RB ≥ R) = 1− lim
ε→0+

FB(R− ε)

GP,i(R) := P (RP,i > R) = 1− FP,i(R) for i ∈ {u, h, l}.

The merchant simultaneously receives credit decisions from the bank and the plat-
form. If both extend credit, a good merchant selects the offer with the lowest rate. We
maintain the convention that, if rates are identical, the good merchant borrows from the
platform. A bad merchant always selects the bank’s offer if both lenders offer credit. The
good merchant chooses the lender offering the lowest rate and her expected utility is

U I(a,mB,mP,u,mP,h,mP,l, FB, FP,u, FP,h, FP,l) :=

(1− a)U(mB,mP,u, FB, FP,u) + a[ψU(mB,mP,h, FB, FP,h) + (1− ψ)U(mB,mP,h, FB, FP,h)],

which is equal to U(mB,m
A
P , FB, F

A
P ), where U is defined as in equation (9) and

mA
P := (1− a)mP,u + a[ψmP,h + (1− ψ)mP,u]

FA
P (R) := {(1− a)mP,uFP,u(R) + a[ψmP,hFP,h(R) + (1− ψ)mP,uFP,l(R)]}/mA

P

Given posterior pi, the platform’s profits conditional on lending at rateR are still given by
the function LP (R,mB, GB; pi) defined in equation (10) in Section 3. In fact, conditional on
lending at a given rate R, profits vary across platform types only because different types
possess different beliefs.

Conditional on lending at rate R, a bank’s profits now depend on the distribution
of lending decisions of the three types of platform and on the probability the platform
acquires information, a. If a bank offers a loan at rate R, its expected profits are thus

LIB(R, a,mP,u,mP,h, GP,u, GP,h; p) :=(1− a)p {mP,uGP,u(R)(R−RD) + (1−mP,u)(R−RD)}

+ aψph {mP,hGP,h(R)(R−RD) + (1−mP,h)(R−RD)}

− (1− p)RD.

With probability 1 − a, the platform does not acquire information, and if the merchant is
good, she chooses the bank only ifR < RP or if the platform does not lend, that is, dP = 0.
With probability a, the platform acquires information and, with probability ψ, it observes
a high signal. A good merchant will, once again, choose the bank only if R < RP or
dP = 0. Regardless of whether the platform acquires information or not, a bad merchant
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always borrows from the bank and never repays. The platform’s profits are also equal to
LB(R,ma

P , G
a
P ; p), where LB is defined in equation (11), ma

P := (1 − a)mP,u + amP,h, and
Ga
P (R) := [(1− a)mP,uGP,u(R) + amP,hGP,h(R)]/ma

P .
In this framework, we define an equilibrium when the platform can acquire informa-

tion at cost c.

DEFINITION 2 (Equilibrium with Information Acquisition). An equilibrium with informa-
tion acquisition is an information-acquisition probability aI∗ ∈ [0, 1], lending probabilities for the
three platforms types and for banks, (mI∗

P,u,m
I∗
P,h,m

I∗
P,l,m

I∗
B ) ∈ [0, 1]4, distributions of the rates

offered by the three types of the platform and by banks, (F I∗
P,u, F

I∗
P,h, F

I∗
P,l, F

I∗
B ) ∈ ∆([0, 1 − f ])4

with supports RI∗
P,u, RI∗

P,h, RI∗
P,l, and RI∗

B and with GI∗
B (R) := 1− limε→0+ F

I∗
B (R− ε), GI∗

P,i(R) :=
1− F I∗

P,i(R), and

ma∗
P := (1− aI∗)mI∗

P,u + aI∗mI∗
P,h

Ga∗
P (R) := [(1− aI∗)mI∗

P,uG
I∗
P,u(R) + aI∗mI∗

P,hG
I∗
P,h(R)]/ma∗

P

mA∗
P := (1− aI∗)mI∗

P,u + aI∗[ψmI∗
P,h + (1− ψ)mI∗

P,l]

FA∗
P (R) := {(1− aI∗)mI∗

P,uF
I∗
P,u(R) + aI∗[ψmI∗

P,hF
I∗
P,h(R) + (1− ψ)mI∗

P,lF
I∗
P,l(R)]}/mA∗

P

such that:

1. The platform and competitive banks set rates optimally:

R∗IP,i = arg max
R≤(α−(1+α)f+η)cH

LP (R,mI∗
B , G

I∗
B ; pi) for i ∈ {u, h, l}

RI∗
B = arg max

R∈[RD,(1−f)αcH ]
LB(R,ma∗

P , G
a∗
P ; p)

s.t. LB(R,ma∗
P , G

a∗
P ; p) ≤ 0.

2. Lenders extend credit optimally:

mI∗
P,i ∈ arg max

mP∈[0,1]

{
mPLP (R,mI∗

B , G
I∗
B ; pi) + (1−mP )mI∗

B [pi(1 + α)cH + (1− pi)cL]f
}
∀R ∈ R∗P

for i ∈ {u, h, l}, and

mI∗
B ∈ arg max

mB∈[0,1]
mBLB(R,ma∗

P , G
a∗
P ; p) ∀R ∈ R∗B.

3. The platform acquires information optimally:

aI∗ ∈ arg max
a∈[0,1]

{
a[ψLI∗P (mI∗

B , G
I∗
B ; ph) + (1− ψ)LI∗P (mI∗

B , G
I∗
B ; pl)− c]

+ (1− a)LI∗P (mI∗
B , G

I∗
B ; pu)

}
, (42)
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where

LI∗P (mI∗
B , G

I∗
B ; pi) := mI∗

P,iLP (R,mI∗
B , G

I∗
B ; pi) + (1−mI∗

P,i)m
I∗
B [p(1 + α)cH + (1− p)cL]f

∀R ∈ RP,i, i ∈ {u, h, l}.

4. Banks are competitive in the lending market; that is, no lending mechanism (FB,mB)

exists such that
∫ (1−f)αcH

0
LB(R,ma∗

P , G
a∗
P ; p) dFB(R) > 0 and U(mB,m

A∗
P , FB, F

A∗
P ) >

U(mI∗
B ,m

A∗
P , F I∗

B , F
A∗
P ),.

Similar to Section 3, competitive banks earn zero profits in equilibrium; that is,

mI∗
B L

I
B(R, aI∗,mI∗

P,u,m
I∗
P,h, G

I∗
P,u, G

I∗
P,h; p) = 0 for any R ∈ RI∗

B .

Before solving for the equilibrium fully, we characterize some general properties in a
series of lemmas. We first show that, if the platform acquires information in equilibrium,
it lends with probability one after observing a high signal. All the proofs are in Appendix
D.

LEMMA 14 (Lending with Optimistic Beliefs). If aI∗ ∈ (0, 1], then mI∗
P,h = 1. That is, if the

platform acquires information with positive probability, then it lends after observing a high signal.

Intuitively, if the platform weakly prefers to abstain from lending after observing good
news about the borrower, it would strictly prefer to deny credit with no or worse news.
Because not lending is the platform’s optimal strategy regardless of information, costly
information acquisition is sub-optimal. We, therefore, rule out equilibria where the plat-
form denies credit after acquiring a high signal. Thus, hereafter, we consider mI∗

P,h = 1.
To characterize the equilibrium, we first describe the platform’s strategy when it is a

monopolistic lender, i.e. when banks do not lend and mI∗
B = 0. The optimal strategy of

the platform depends on two considerations analogous to those in Lemma 2 of Section
2.1.1. First, if

max{pi(α + η)cH + (1− pi)ηcL, (α + η)cL + (1 + α)pi(cH − cL)f} − R̄ ≥ 0 (43)

the platform earns profits by lending when its beliefs are equal to pi. If this inequality
if violated, the platform prefers not to lend to a merchant whose perceived quality is pi.
Second, if

pi >
αcL

(α− (1 + α)f + η)(cH − cL) + αcL
, (44)

the platform’s unique profit-maximizing rate is (α− (1 + α)f + η)cH ; otherwise, the plat-
form offers a rate equal to (α − (1 + α)f + η)cL, with indifference between the two rates
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in case pi = αcL
(α−(1+α)f+η)(cH−cL)+αcL

. The following lemma characterizes the equilibrium
when the platform is a monopolistic lender

LEMMA 15. In any equilibrium with m∗B = 0, the following holds.

1. If max{ph(α+η)cH +(1−ph)ηcL, (α+η)cL+(1+α)ph(cH− cL)f}− R̄ < 0 the platform
does not acquire information and does not lend to the merchant.

2. If max{ph(α+ η)cH + (1− ph)ηcL, (α+ η)cL + (1 + α)ph(cH − cL)f} − R̄ ≥ 0 but (α+
η)cL − R̄ < 0 the platform acquires information with probability 1 and does not lend after
observing a low signal. After observing a high signal, it lends at rate (α− (1 + α)f + η)cH
if (44) holds for i = h, otherwise it lends at rate (α− (1 + α)f + η)cL.

3. If max{ph(α+η)cH+(1−ph)ηcL, (α+η)cL+(1+α)ph(cH−cL)f}−R̄ ≥ 0, (α+η)cL−R̄ ≥
0, and (44) holds for i = h, the platform acquires information with probability 1 and lends
regardless of the signal. It lends at rate (α− (1 + α)f + η)cH if the signal is high, whereas
it lends at rate (α− (1 + α)f + η)cL if the signal is low.

4. If max{ph(α+η)cH+(1−ph)ηcL, (α+η)cL+(1+α)ph(cH−cL)f}−R̄ ≥ 0, (α+η)cL−R̄ ≥
0, and (44) does not hold for i = h, the platform does not acquire information and lends with
probability one at rate (α− (1 + α)f + η)cL.

Next, we observe the results in Lemmas 3 and in Section 3 hold also for an equilib-
rium with information acquisition. The results hold for any p, and thus apply also to an
informed platform.

We also obtain a Lemma identical to Lemma 4. We state it below because its proof is
different from Lemma 4 because we need to account for the platform’s option to acquire
information.

LEMMA 16 (Partial Segmentation with Information Acquisition). If p < RD

(1−f)αcH
, banks do

not lend to the merchant, but if (44) holds as a weak inequality, the platform lends in the way
described in Lemma 15. If p ≥ RD

R̄
, the merchant borrows exclusively from banks that offer loans

with probability 1 at rate RD

p
.

Hence, when p > RD

R̄
, banks remain the only lenders because the platform’s cost of

capital exceeds banks’ competitive rate RD/p. When p < RD

(1−f)αcH
, banks are unwilling

to enter the lending market because the merchant’s creditworthiness is too low to justify
the loan, even if the platform were not competing. Hence, like in 3, the platform is a
monopolistic lender when p < RD

(1−f)αcH
.

We also obtain the counterpart of Lemma 5.

LEMMA 17 (Mixed Strategies with Information Acquisition). If p ∈
[

RD

(1−f)αcH
, RD/R̄

)
and

c is sufficiently small, banks offer loans with probability mI∗
B ∈ (0, 1) and the platform acquires

information with probability aI∗ > 0 and offers loans so that (1 − aI∗)mI∗
P,u + aI∗mI∗

P,h ∈ (0, 1].
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Moreover, the uninformed and optimistic platform offer rates ranging between min{R∗P,u∪R∗P,h} ≤
RD/p and max{R∗P,u ∪ R∗P,h} ≥ (1 − f)αcH . In particular, min{R∗P,u ∪ R∗P,h} coincides either
with RD/p or with (α− (1 + α)f + η)cL. Banks offer rates up to supRI∗

B = (1− f)αcH .

Like in section 3, banks always deny credit with positive probability and offer rates up
to (1− f)αcH when they directly compete with the platform of merchants of intermediate
credit quality. Moreover, the ex-ante set of rates offered by the platform coincides with
the set identified in Lemma 5. However, the uninformed platform and the optimistic
platform may offer different rates.

Lemma 17 also indicates the platform still benefits from advantageous selection when
competing with banks. In particular, the platform lends with positive probability when
ph(α + η)cH + (1 − ph)ηcL < R̄, but p ∈

[
RD

(1−f)αcH
, RD/R̄

)
. According to Lemma 15 the

platform would not lend in this situation when mI∗
B = 0. Remark 2 thus also apply to this

extension of the model.
We also obtain a result similar to those in Lemma 6 about the equilibrium strategy of

the platform.

LEMMA 18 (The Platform’s Strategy with Information Acquisition). Consider a merchant
characterized by p ∈

[
RD

(1−f)αcH
, RD

R̄

)
and assume c is sufficiently small. If ph(α + η)cH + (1 −

ph)ηcL > R̄, the platform acquires information and lends so that (1−aI∗)mI∗
P,u+aI∗mI∗

P,h = 1 and
maxRI∗

P,h = (α− (1 +α)f + η)cH . If ph(α+ η)cH + (1− ph)ηcL ≤ R̄, the platform is indifferent
between acquiring information and not lending. Moreover, if R̄ > (α − (1 + α)f + η)cL, then
minR∗P,u = minR∗P,h = RD/p > (α − (1 + α)f + η)cL. If R̄ ≤ (α − (1 + α)f + η)cL and
RD/p < (α− (1 + α)f + η)cL, R∗P,h = RD/p.

We focus on the region where the banks and the platform compete for borrowers; that
is, we focus on borrowers with intermediate credit quality p ∈

[
RD

(1−f)αcH
, RD

R̄

)
. Using

results from Lemma 17 and 27, we consider cases analogous to those we had in section 3.

I.A: ph(α + η)cH + (1− ph)ηcL > R̄ > (α− (1 + α)f + η)cL, and p ∈
[

RD

(1−f)αcH
, RD

R̄

)
;

I.B: R̄ ≤ (α− (1 + α)f + η)cL and p ∈
[

RD

(1−f)αcH
, RD

R̄

)
I.B1: Like case I.B, but restricted to p ≥ RD

(α−(1+α)f+η)cL
;

I.B2: Like case I.B, but restricted to p < RD

(α−(1+α)f+η)cL
;

I.C: ph(α + η)cH + (1− ph)ηcL ≤ R̄ and p ∈
[

RD

(1−f)αcH
, RD

R̄

)
.
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C.2 EQUILIBRIUM IN CASE I.A

First, we consider case I.A. If R̄ > (α + η)cL, the platform obtains positive profits only
when lending to a good borrower. Hence, after acquiring information, a platform will
deny credit if the merchant is revealed to be bad. It will extend credit if the signal is good.
For an arbitrarily low cost of information acquisition c, the value of potentially screening
borrowers exceeds the information cost. Hence the platform always acquires information.

If instead, R̄ ∈ ((α − (1 + α)f + η)cL, (α + η)cL], the platform obtains positive profits
even when lending to a bad merchant by setting a rate equal to (α − (1 + α)f + η)cL.
However, because R̄ > (α − (1 + α)f + η)cL, an optimistic platform has no incentive to
undercut banks by setting a rate equal to (α− (1 + α)f + η)cL < RD/p.

The following proposition characterizes the equilibrium.

PROPOSITION 5. Consider a merchant with parameters satisfying I.A. There exists ε > 0 such
that, for any c ∈ (0, ε), the equilibrium is characterized uniquely as follows.

1. Banks lend as described in Proposition 1.

2. The platform acquires information with probability aI∗ = 1.

3. If R̄ > (α + η)cL, a pessimistic platform offers loans with probability mI∗
P,l = 0. If R̄ ∈

((α − (1 + α)f + η)cL, (α + η)cL], a pessimistic platform offers loans with probability
mI∗
P,l = 1 and offers rate (α− (1 + α)f + η)cL.

4. An optimistic platform lends with probability mI∗
P,h = 1 and offers rates with the same

distribution described in equation (24) of Proposition 1.

The banks’ lending probability and distribution of rate offers are identical to case A
in Section 3. Moreover, the optimistic platform offers interest rates from the same dis-
tribution as the uninformed platform in case A of Section 3, when the platform had no
option to acquire information. However, when R̄ > (α + η)cL, the platform lends only
with probability ψ < 1, because it refuses to lend if the merchant is revealed to be bad.

C.3 EQUILIBRIUM IN CASE I.B

In case I.B, the platform may profitably offer rates equal to or below (α− (1 + α)f + η)cL

because (α − (1 + α)f + η)cL ≥ R̄. Moreover, the platform can profitably lend after
observing a low signal by offering rates equal to (α− (1 + α)f + η)cL.

In case I.B1, competitive banks do force the platform to offer rates weakly below
(α − (1 + α)f + η)cL. After observing a low signal, the platform thus lends at rate
(α− (1 + α)f + η)cL to maximize the surplus extracted from a bad merchant when banks
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do not lend. After observing a high signal, the platform faces a trade-off: either it offers
low rates to compete with banks for a borrower of high perceived quality, or it offers
high rates to extract more surplus from the borrower. Because information allows the
platform to customize interest rates, the platform will acquire information in equilibrium
with positive probability. The next proposition characterizes the equilibrium in case I.B1.

PROPOSITION 6. Assume parameters satisfy case I.B1 and define

T := min{(α− (1 + α)f + η)cL, (1− f)αcH}

U c := min

{
(α− (1 + α)f + η)cL +

(1− ph)αcL[(α− (1 + α)f + η)cL − R̄]

ph(α− (1 + α)f + η)cH − (1− ph)αcL − pR̄
, (1− f)αcH

}
There exists ε > 0 such that, for any c ∈ (0, ε), there exists a unique equilibrium characterized by
the following:

1. Banks extend credit with probability

mI∗
B =

ph(α− (1 + α)f + η)cH + (1− ph)(η − (1 + α)f)cL −RD/p

ph(α− (1 + α)f + η)cH + (1− ph)(η − (1 + α)f)cL −RD/p+ phRD/p− phR̄
∈ (0, 1).

(45)
Compared with m∗B in Proposition 2, we have mI∗

B > m∗B. Conditional on making an
offer, they choose a rate from the support R∗B = [RD/p, T ) ∪ [U c, (1 − f)αcH ] so that, if
(1− f)αcH < (α− (1 + α)f + η)cH ,

GI∗
B =

RD/p− R̄
(R− R̄)

ph(α− (1 + α)f + η)cH + (1− ph)(η − (1 + α)f)cL −R
ph(α− (1 + α)f + η)cH + (1− ph)(η − (1 + α)f)cL −RD/p

for R ∈ [RD/p, T ]. (46)

If, instead, T = (α − (1 + α)f + η)cL, GI∗
B coincides with equation (46) above for R ∈

[RD/p,R
c], where

Rc := (α− (1 + α)f + η)cL −
c

(1− ψ)(1−mI∗
B )
, (47)

whereas for R ∈ [Rc, (α− (1 + α)f + η)cL], GI∗
B is given by

GI∗
B (R) =

RD/p− R̄
R− R̄

+
1−mI∗

B

mI∗
B

ψRD/p+ (1− ψ)(α− (1 + α)f + η)cL −R
p(R− R̄)

− c

mI∗
B p(R− R̄)

.

(48)

Furthermore,

GI∗
B (R) =

RD/p− R̄
(R− R̄)

ph(α− (1 + α)f + η)cH − phR
ph(α− (1 + α)f + η)cH + (1− ph)(η − (1 + α)f)cL −RD/p
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for R ∈ [U c, (1− f)αcH ]. (49)

2. If T = (1−f)αcH < (α−(1+α)f+η)cL, the platform acquires information with probability
aI∗ = 1. If T = (α− (1 + α)f + η)cL, the platform acquires information with probability

aI∗ = 1− U c −Rc

U c −RD

(1− p)RD/p

Rc −RD

∈ (0, 1). (50)

3. The pessimistic platform offers loans with probabilities mI∗
P,l = 1 at a rate equal to (α− (1 +

α)f + η)cL.

4. An optimistic platform lends with probability mI∗
P,h = 1. If T = (1 − f)αcH < (α − (1 +

α)f + η)cL, it offers rates in RI∗
P,h = [RD/p, (1− f)αcH)∪ {(α− (1 +α)f + η)cH} so that

P (RP > R) = GI∗
P (R), where

G∗P,h(R) =
(1− p)RD/p

R−RD

for R ∈ [RD/p, (1− f)αcH ]. (51)

If T = (α − (1 + α)f + η)cL, the platform offers rates in RI∗
P,h = [RD/p,R

c] ∪ [U c, (1 −
f)αcH ] \ {(1− f)αcH} ∪ {(α− (1 + α)f + η)cH} so that P (RP > R) = G∗P (R), where

G∗P,h(R) =

{
1
aI∗

(1−p)RD/p
R−RD

for R ∈ [RD/p,R
c]

1
aI∗

(1−p)RD/p
R−RD

for R ∈ [U c, (1− f)αcH ].
(52)

5. If T = (α−(1+α)f+η)cL, the uniformed platform extends credit with probabilitymI∗
P,u = 1

and offers rates in RI∗
P,u = [Rc, (α− (1 + α)f + η)cL], so that

GI∗
P,u =

(1− p)RD/p

(1− aI∗)(R−RD)
−
aI∗GI∗

P,h(U
c)

1− aI∗
for R ∈ [Rc, (α− (1 + α)f + η)cL). (53)

Competition between banks and the platform forces lenders to offer rates in [RD/p, T ].
If T = (1 − f)αcH < (α − (1 + α)f + η)cL, the optimistic and pessimist platform offer
different rates and the platform thus acquires information with positive probability. If T =

(α− (1 + α)f + η)cL, the incentive to customize is limited because, if the platform always
acquired information, the optimistic and pessimist platform would share a best response.
Hence, in equilibrium, the platform remains uniformed with positive probability and the
uninformed platform offers different rates from both the optimistic and pessimistic one.

In case I.B2, the optimal response of a pessimistic platform remains to lend at rate (α−
(1+α)f+η)cL to maximize the surplus it extracts from a bad borrower when banks do not
lend. Although the platform would like to offer high rates to extract more surplus from
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the merchant after observing a high signal, competition from banks force the platform to
offer rates down toRD/p, which, if close enough to ((α−(1+α)f+η)cL, may be dominated
by the latter rate. The following proposition describes the equilibrium in this case.

PROPOSITION 7. Assume parameters satisfy case I.B2. If

RD/p ≥ (α− (1 + α)f + η)cL
(α− (1 + α)f + η)cH − R̄− 1−ph

ph
αcL

R̄
(α−(1+α)f+η)cL

(α− (1 + α)f + η)cH − R̄− 1−ph
ph

αcL
,

the equilibrium is the same as in case I.A and it is described by Proposition 5. Otherwise, define

V c := min

(1− f)αcH , (α− (1 + α)f + η)cL
(α− (1 + α)f + η)cH − R̄− 1−ph

ph
αcL

R̄
(α−(1+α)f+η)cL

(α− (1 + α)f + η)cH − R̄− 1−ph
ph

αcL


In this case, there exists ε > 0 such that, for any c ∈ (0, ε), there exists an equilibrium character-
ized as follows:

1. Banks extend credit with probability

mI∗
B =

ph(α− (1 + α)f + η)(cH − cL)− (1− ph)αcL − c/ψ
ph(α− (1 + α)f + η)cH − (1− ph)αcL − phR̄

∈ (0, 1). (54)

Compared with m∗B in Proposition 3, we have mI∗
B > m∗B. Conditional on making an offer,

they choose a rate from the support R∗B = [V c, (1 − f)αcH ] so that, if V c ∈ (RD/p, (1 −
f)αcH), P (RB ≥ R) = GI∗

B (R), where

GI∗
B (R) =

ph(α− (1 + α)f + η)cL − phR̄ + c/ψ

ph(α− (1 + α)f + η)(cH − cL)− (1− ph)αcL
(α− (1 + α)f + η)cH −R

R− R̄
for R ∈ [V c, (1− f)αcH ]; (55)

if, instead, V c = (1− f)αcH , P (RB = (1− f)αcH) = 1.

2. The platform acquires information with probability

aI∗ =
(1− p)RD/p

V c −RD

∈ (0, 1). (56)

3. The pessimist and the uniformed platform offer loans with probabilities mI∗
P,l = mI∗

P,u = 1 at
a rate equal to (α− (1 + α)f + η)cL.

4. An optimistic platform lends with probability mI∗
P,h = 1 and offers rates with the same

distribution described in Proposition 3 for the uniformed platform.
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When V c > RD/p, the pessimistic and uniformed platform offer rate (α−(1+α)f+η)cL

with positive probability, thus deterring banks from offering rates below V c. The platform
thus uses information to offer customized interest rates and to extract surplus based on
the default risk of the merchant.

C.4 EQUILIBRIUM IN CASE I.C

We now study a merchant whose parameters satisfy I.C. The following proposition char-
acterizes the equilibrium and shows that the platform acquires information with proba-
bility strictly between zero and one.

PROPOSITION 8. Assume parameters satisfy case I.C. There exists ε > 0 such that, for any
c ∈ (0, ε), the equilibrium is characterized as follows.

1. The bank lends with probability mI∗
B ∈ (0, 1) given by

mI∗
B =

R̄−RD/ψ − (1− ph)(η − f)cL − [(1 + α)phcH + (1− ph)cL]f + c/ψ

(1− ph)R̄− (1− ph)(η − f)cL − [(1 + α)phcH + (1− ph)cL]f
. (57)

and, conditional on lending, they offer rates in RI∗
B = [RD/p, (1− f)αcH ] so that P (RB ≥

R) = GI∗
B (R) where

GI∗
B (R) =

(1−mI∗
B )[R̄− phR− (1− ph)(η − f)cL − ((1 + α)phcH + (1− ph)cL)f ] + c/ψ

mI∗
B p

h(R− R̄)
.

(58)

2. Compared to m∗B in Proposition 4, mI∗
B < m∗B.

3. The platform acquires information with probability aI∗ ∈ (0, 1) equal to m∗P from Proposi-
tion 4.

4. The uninformed and the pessimistic platform do not lend; that is, mI∗
P,u = mI∗

P,l = 0.

5. The optimistic platform lends with probability mI∗
P,h = 1 and offers rates with the same

distribution described in Proposition 4 for the uninformed platform.

The platform acquires information with probability aI∗ that is equal to its lending
probability in case C of Section 3. However, it denies credit at a higher probability, equal
to 1 − aI∗ψ. Moreover, banks offer loans with lower probability than in case C. There-
fore, credit is rationed more often when the platform can acquire information, because
of the combined effect of the platform’s better screening and of banks’ reluctance to lend
because of their winner’s curse.
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When ph(α+η)cH +(1−ph)ηcL = R̄, multiple equilibria still exist and they are indexed
by Q ∈

[
0, (1−p)RD/p

(1−f)αcH−RD

]
whereby P (RP = (α − (1 + α)f + η)cL) = Q and aI∗ is given by

the right-hand side of equation (40) in Proposition 4.

D PROOFS FOR THE INFORMATION ACQUISITION EXTENSION

D.1 PROOF OF LEMMA 15

First, we consider max{ph(α+η)cH + (1−ph)ηcL, (α+η)cL+ (1 +α)ph(cH − cL)f}− R̄ < 0.
In this case, even after observing a high signal, the platform has no incentive to lend.
Therefore, the platform does not acquire information.

Next, max{ph(α + η)cH + (1 − ph)ηcL, (α + η)cL + (1 + α)ph(cH − cL)f} − R̄ ≥ 0 but
(α + η)cL − R̄ < 0. In this case, the platform can profitably lend after observing a high
signal but prefers to deny credit after a low signal. Therefore, for a sufficiently small c,

LP (R,mI∗
B , G

I∗
B ; pu) = max{max{pu(α+η)cH+(1−pu)ηcL, (α+η)cL+(1+α)pu(cH−cL)f}−R̄, 0}

< ψ
{

max{ph(α + η)cH + (1− ph)ηcL, (α + η)cL + (1 + α)ph(cH − cL)f} − R̄
}

+(1−ψ)0−c

= ψLI∗P (mI∗
B , G

I∗
B ; ph) + (1− ψ)LI∗P (mI∗

B , G
I∗
B ; pl)− c,

and the platform acquires information with probability aI∗ = 1.
We now consider max{ph(α+η)cH+(1−ph)ηcL, (α+η)cL+(1+α)ph(cH−cL)f}−R̄ ≥ 0,

(α + η)cL − R̄ ≥ 0, and assume (44) holds for i = h. Now, the platform optimally lends
regardless of the signal it receives because (α + η)cL − R̄ ≥ 0. However, the optimal rate
for an optimistic platform is (α−(1+α)f+η)cH , whereas the optimal rate for a pessimistic
platform is (α− (1 + α)f + η)cL. Let RU ∈ {(α− (1 + α)f + η)cH , (α− (1 + α)f + η)cL} be
the optimal rate for an uninformed platform. For a small enough c we have

LP (RU ,m
I∗
B , G

I∗
B ; pu) = ψLP (RU ,m

I∗
B , G

I∗
B ; ph) + (1− ψ)LP (RU ,m

I∗
B , G

I∗
B ; pu)

< ψLP ((α− (1+α)f +η)cH ,m
I∗
B , G

I∗
B ; ph)+(1−ψ)LP ((α− (1+α)f +η)cL,m

I∗
B , G

I∗
B ; pu)−c

= ψLI∗P (mI∗
B , G

I∗
B ; ph) + (1− ψ)LI∗P (R,mI∗

B , G
I∗
B ; pu)− c,

and the platform thus acquires information with probability aI∗ = 1.
Finally, we consider max{ph(α+η)cH+(1−ph)ηcL, (α+η)cL+(1+α)ph(cH−cL)f}−R̄ ≥

0, (α + η)cL − R̄ ≥ 0, and assume (44) does not hold for i = h. In this case, the rate
(α− (1 +α)f + η)cL is optimal for the platform regardless of the information it possesses.
Therefore, for any positive cost of information acquisition, c, the platform does not ac-
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quire information and lends with probability one at rate (α− (1 + α)f + η)cL.

D.2 AUXILIARY LEMMAS

We now introduce some lemmas which will be useful in characterizing the equilibrium
with competition. Some lemmas contain new results which are specific to a model with
information acquisition. Others are extensions or modifications of lemmas derived in the
main model with no information acquisition.

LEMMA 19. Consider pi > 0. If R > (α − (1 + α)f + η)cL and R ∈ R∗P,i, then for any
R′ < (α− (1 + α)f + η)cL, we have R′ /∈ R∗P,y for py > pi. Moreover, R ∈ R∗P,y for py > pi.

Proof. Note

L(R,mB, GB; pi)

= mBGB(R)(R− R̄) + (1−mB)[piR+ (1− pi)(η − f)cL − R̄] + [(1 + α)pich + (1− pi)cL]f

+ I(R)(1−mB)(1− pi){R− (η − f)cL + fαcL}

where I(R) := I[R ≤ (α − (1 + α)f + η)cL]. Because L(R,mB, GB; pi) ≥ L(R′,mB, GB; pi)
for any R′,

mB[GB(R)(R− R̄)−GB(R′)(R′ − R̄)]

≥ −(1−mB)(R−R′)−(1−mB)
1− pi

pi
{I(R)(R + ((1 + α)f − η)cL)− I(R′)(R′ + ((1 + α)f − η)cL)}

Now consider L(R,mB, GB; py)− L(R′,mB, GB; py), which is equal to

pymB[GB(R)(R− R̄)−GB(R′)(R′ − R̄)] + (1−mB)(R−R′)
+ (1−mB)1− py {I(R)(R + ((1 + α)f − η)cL)− I(R′)(R′ + ((1 + α)f − η)cL)}

≥ py(1−mB)

(
1− py

pi

)
{I(R)(R + ((1 + α)f − η)cL)− I(R′)(R′ + ((1 + α)f − η)cL)}

If R > (α − (1 + α)f + η)cL and R′ ≤ (α − (1 + α)f + η)cL, then I(R)(R + ((1 +
α)f − η)cL) − I(R′)(R′ + ((1 + α)f − η)cL) < 0. If py > pi, then 1 − py/pi < 0. Hence
L(R,mB, GB; py)− L(R′,mB, GB; py) > 0 and R′ cannot be a best response for py > pi.

Therefore, RRI∗
P,y ⊆ ((α−(1+α)f+η)cL, (α−(1+α)f+η)cH ]. ForR > (α−(1+α)f+η)cL,

we have arg maxR>(α−(1+α)f+η)cL L(R,mI∗
B , G

I∗
B ; pi) = arg maxR>(α−(1+α)f+η)cL L(R,mI∗

B , G
I∗
B ; py).

Hence, R ∈ R∗P,y for py > pi.

LEMMA 20. If R ≤ (α − (1 + α)f + η)cL and R ∈ R∗P,i, then for any R′ < R and R′ >
(α− (1 + α)f + η)cL, we have R′ /∈ R∗P,y with py < pi.
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Proof. Because L(R,mB, GB; pi) ≥ L(R′,mB, GB; pi) for any R′,

mB[GB(R)(R− R̄)−GB(R′)(R′ − R̄)]

≥ −(1−mB)(R−R′)−(1−mB)
1− pi

pi
{I(R)(R + ((1 + α)f − η)cL)− I(R′)(R′ + ((1 + α)f − η)cL)} ,

where I(R) := I[R ≤ (α− (1 + α)f + η)cL]
Now consider L(R,mB, GB; py)− L(R′,mB, GB; py), which is equal to

pymB[GB(R)(R− R̄)−GB(R′)(R′ − R̄)] + (1−mB)(R−R′)
+ (1−mB)1− py {I(R)(R + ((1 + α)f − η)cL)− I(R′)(R′ + ((1 + α)f − η)cL)}

≥ py(1−mB)

(
1− py

pi

)
{I(R)(R + ((1 + α)f − η)cL)− I(R′)(R′ + ((1 + α)f − η)cL)}

If py < pi, then 1 − py/pi > 0. If R ≤ (α − (1 + α)f + η)cL and R′ < R, then I(R)(R +
((1 + α)f − η)cL) − I(R′)(R′ + ((1 + α)f − η)cL) > 0. If R′ > (α − (1 + α)f + η)cL, then
I(R)(R + ((1 + α)f − η)cL) − I(R′)(R′ + ((1 + α)f − η)cL) > 0. Hence, in either case,
L(R,mB, GB; py)− L(R′,mB, GB; py) > 0 and R′ cannot be a best response for py < pi.

LEMMA 21. Suppose R ≥ R̄. LP (R,mB, GB;x)−mI∗
B [(1 + α)xcH + (1− x)cL]f is increasing

in x. Moreover, if LI∗P (mI∗
B , G

I∗
B ; pi) = mI∗

B [(1 + α)picH + (1− pi)cL]f , then LI∗P (mI∗
B , G

I∗
B ; py) =

mI∗
B [(1+α)picH +(1−pi)cL]f ≥ maxR LP (R,mI∗

B , G
I∗
B ; py) for all py < pi, with strict inequality

if R > R̄ and mI∗
B ∈ (0, 1).

Proof. Define I(R) = I(R ≤ (α− (1 + α)f + η)cL). One can immediately verify

LP (R,mB, GB;x)−mI∗
B [(1 + α)xcH + (1− x)cL]f

= mBxGB(R)(R−R̄)+(1−mB)[x(R+(1+α)cHf)+(1−x)ηcL−R̄]+I(R)(1−x)[R−(η−(1+α)f)cL]

is increasing in x. Using this observation, we obtain that, if LI∗P (mI∗
B , G

I∗
B ; pi) = mI∗

B [(1 +
α)picH + (1− pi)cL]f and py < pi, then

0 = LI∗P (mI∗
B , GBI∗; pi)−mI∗

B [(1 + α)picH + (1− pi)cL]f

≥ LI∗P (mI∗
B , GBI∗; py)−mI∗

B [(1 + α)pycH + (1− py)cL]f

for py < pi. If R > R̄ and mI∗
B ∈ (0, 1), the last inequality is strict.

LEMMA 22. mI∗
B > 0 if and only if p ≥ RD

(1−f)αcH
.

Proof. First, we show mI∗
B > 0 if p ≥ RD

(1−f)αcH
. By way of contradiction, suppose mI∗

B = 0.
Then RI∗

P,u = RI∗
P,h = {(α − (1 + α)f + η)cH} and Ga∗

P (R) = I(R < (α − (1 + α)f + η)cH).
Then, for any ma∗

P ∈ [0, 1] and ε ∈ (0, (1 − f)αcH − RD/p), LB(RD/p + ε,ma∗
P , G

a∗
P ; p) > 0,

contradicting that mI∗
B = 0 is the bank’s equilibrium strategy.
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Second, we show mI∗
B = 0 if p < RD

(1−f)αcH
. When p < RD

(1−f)αcH
, for any R ≤ (1 − f)αcH

we have
LB(R,ma∗

P , G
a∗
P ; p) ≤ p(1− f)αcH −RD < 0

and, by (12), mI∗
B = 0.

LEMMA 23. If mI∗
B ∈ (0, 1), then supRI∗

B = (1− f)αcH .

Proof. We proceed by contradiction and assume R̃ := supRI∗
B < (1−f)αcH . BecausemI∗

B ∈
(0, 1), by Lemma 7, we have p ≥ RD

(1−f)αcH
, which also implies (7). Hence, LP (R,m∗B, G

∗
B; pi) <

LP ((α − (1 + α)f + η)cH ,m
∗
B, G

∗
B; pi) for any R ∈ (R̃, (α − (1 + α)f + η)cH) and for

i ∈ {u, h}. Therefore, an ε > 0 exists such that LB(R̃+ ε,ma∗
P , G

a∗
P ; pi) > LB(R̃,ma∗

P , G
a∗
P ; pi)

for i ∈ {u, h}.
Hence, for a small enough ε, a lending mechanism (mB, FB) withmB = 1 and with do-

main RI∗
B ∪{R̃+ε} exists such that

∫ R̂+ε

0
LB(R,ma∗

P , G
a∗
P ; p)dF (R) > 0 andU(1,mA∗

P , FB, F
A∗
P ) >

U(mI∗
B ,m

A∗
P , F I

B, F
A∗
P ), contradicting the assumption that RI∗

B is the domain of the equilib-
rium lending mechanism offered by banks.

LEMMA 24. Suppose mI∗
B ∈ (0, 1) for all c > 0. Then a m̄ ∈ (0, 1) exists such that mI∗

B ≤ m̄ for
any c > 0. That is, as c→ 0, lim supmI∗

B < 1.

Proof. We proceed by contradiction and assume a sequence (cn)∞n=0 with cn > 0 and cn → 0
such that mI∗

B,n → 1, where mI∗
B,n is the equilibrium value of mI∗

B when c = cn. In this case,
for any i ∈ {u, h} and for a sufficiently large N , LP (R,mI∗

B,N , G
I∗
B ; pi) = (1 − mI∗

B,N)[(1 +
α)pcH +(1−p)cL]f < LP (RD/p, 1, G

I∗
B ; pi) for any R such that GI∗

B (R) = 0. Hence, mI∗
P,i = 1

but R /∈ RI∗
P,i if GI∗

B (R) = 0.
By Lemma 23, supRI∗

B = (1− f)αcH . If (1− f)αcH ∈ RI∗
B , LB((1− f)αcH , 1, G

a∗
P ; p) = 0

implies Ga∗
P (R̃) > 0 and an R > (1 − f)αcH exists with R ∈ RI∗

P,i for some i ∈ {u, h}. If
instead (1 − f)αcH /∈ RI∗

B , then limR→R̃− G
a∗
P (R) > 0, implying an R ≥ (1 − f)αcH exists

with R ∈ RI∗
P,i for some i ∈ {u, h}. In either case, GI∗

B (R) = 0, thus contradicting the
previous result.

LEMMA 25. inf RI∗
P,i ∈ RI∗

P,i for i ∈ {u, l, h} and inf RI∗
B ∈ RI∗

B .

Proof. Define
¯
RP,i := inf RI∗

P,i and
¯
RB := inf RI∗

B . If
¯
RB /∈ RI∗

B , then a sequence (Rn)∞n=0

exists such that Rn >
¯
RB and Rn ∈ RI∗

B for all n and Rn →
¯
RB as n → ∞. We therefore

must have
LB(

¯
RB,m

a∗
P , G

a∗
P ; p) < lim

n→∞
LB(Rn,m

a∗
P , G

a∗
P ; p)

which, in turn, implies Ga∗
P (

¯
RJ) < limn→∞G

a∗
P (Rn). This result, however, contradicts that

Ga∗
P is a weakly decreasing function. Hence,

¯
RB ∈ RI∗

B .
Similarly, if

¯
RP,i /∈ RI∗

P,i, a sequence (Rn)∞n=0 exists such that Rn >
¯
RP,i and Rn ∈ RI∗

P,i

for all n and Rn →
¯
RP,i as n→∞. Using a similar reasoning to the one above, we would

then conclude GI∗
B (

¯
RJ) < limn→∞G

I∗
B (Rn), contradicting that GI∗

B is a weakly decreasing
function. Hence,

¯
RP,i ∈ RI∗

P,i for i ∈ {u, l, h}.
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LEMMA 26. Assume ma∗
P > 0 and mI∗

B > 0. Then min{RI∗
P,u ∪ RI∗

P,h} ≤ RD/p. Moreover,
either min{RI∗

P,u ∪ RI∗
P,h} = RD/p or min{RI∗

P,u ∪ RI∗
P,h} = (α − (1 + α)f + η)cL. Finally, if

min{RI∗
P,u ∪ RI∗

P,h} 6= (α− (1 + α)f + η)cL, then minRI∗
B = RD/p.

Proof. Define
¯
RP := min{RI∗

P,u ∪ RI∗
P,h} and

¯
RB := minRI∗

B . First, we establish
¯
RP ≤ RD/p.

We proceed by contradiction and assume
¯
RP > RD/p. By bank competition, we thus have

mI∗
B = 1 and RI∗

B = {RD/p}. In this case, if RD/p < (α − (1 + α)f + η)cL, the uniformed
and optimistic platform’s best response is RD/p. If instead RD/p ≥ (α − (1 + α)f + η)cL,
the platform’s best response could be either RD/p or (α − (1 + α)f + η)cL. In both cases,

¯
R ≤ RD/p, contradicting

¯
RP > RD/p.

Having established
¯
RP ≤ RD/p, we now prove

¯
RP = RD/p or

¯
R = (α−(1+α)f+η)cL.

If RD/p ≤ (α − (1 + α)f + η)cL, then LP (R,mI∗
B , G

I∗
B ; pi) < LP (RD/p,m

I∗
B , G

I∗
B ; p) for any

R < RD/p and any i ∈ {u, h}, implying
¯
RP = RD/p. If instead,RD/p > (α−(1+α)f+η)cL,

LP (R,mI∗
B , G

I∗
B ; pi) < LP ((α− (1 +α)f +η)cL,m

I∗
B , G

I∗
B ; pi) for any R < (α− (1 +α)f +η)cL

and LP (R′,mI∗
B , G

I∗
B ; pi) < LP (RD/p,m

I∗
B , G

I∗
B ; pi) for any R′ ∈ ((α− (1+α)f +η)cL, RD/p),

implying
¯
R = RD/p or

¯
R = (α− (1 + α)f + η)cL.

To prove the final part of the lemma, consider
¯
RP = RD/p 6= (α− (1 +α)f + η))cL. We

proceed by contradiction and assume
¯
RB > RD/p. Because

¯
RP 6= (α − (1 + α)f + η)cL,

an ε > 0 exists such that LP (RD/p+ ε,mI∗
B , G

I∗
B ; pi) > LP (RD/p,m

I∗
B , G

I∗
B ; pi) for i ∈ {u, h},

contradicting RD/p ∈ {RI∗
P,u ∪ RI∗

P,h}. Hence, if
¯
RP = RD/p 6= (α − (1 + α)f + η)cL, the

¯
RB = RD/p.

LEMMA 27. Assume min{RI∗
P,u ∪RI∗

P,h} = RD/p 6= (α− (1 +α)f + η)cL. If (1− aI∗)mI∗
P,u = 0,

then RD/p ∈ RI∗
P,h, whereas if aI∗mI∗

P,h = 0, then RD/p ∈ RI∗
P,u. Furthermore, if RD/p >

(α− (1 + α)f + η)cL, then minRI∗
P,h = RD/p. Similarly, if RD/p < (α− (1 + α)f + η)cL, but c

is sufficiently small, then minRI∗
P,h = RD/p.

Proof. For the first part of the lemma, notice that, if (1 − aI∗)mI∗
P,u = 0 and min{RI∗

P,h} >
RD/p, then an ε > 0 exists such that LB(RD/p+ ε,ma∗

P , G
a∗
P ; p) > 0, thus contradicting part

4 of the equilibrium definition 2. A similar reasoning can be used to rule out aI∗mI∗
P,h = 0

and min{RI∗
P,u} > RD/p.

To prove the next part of the lemma, we proceed by contradiction and assume minRI∗
P,h 6=

RD/p, thus implying RD/p /∈ RI∗
P,h. Hence, we must have RD/p = minRI∗

P,u. If RD/p >
(α− (1 + α)f + η)cL, Lemma 19 implies RD/p ∈ RI∗

P,h, thus generating a contradiction.
We now focus on RD/p < (α− (1 + α)f + η)cL. If aI∗ = 1, the first result of this lemma

shows min{RI∗
P,h} = RD/p. If instead aI∗ ≤ 1, consider R ∈ RI∗

P,h. Then, for a sufficiently
small c,

ψLP (R,mI∗
B , G

I∗
B ; ph) ≤ LP (RD/p,m

I∗
B , G

I∗
B ; pu)− (1− ψ)LI∗P (mI∗

B , G
I∗
B ; ph) + c

≤ LP (RD/p,m
I∗
B , G

I∗
B ; pu)− (1− ψ)LP (RD/p,m

I∗
B , G

I∗
B ; ph)

− (1−mI∗
B )[(α− (1 + α)f + η)−RD/p] + c

< ψLP (RD/p,m
I∗
B , G

I∗
B ; ph),
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where the last inequality equality follows from RD/p < (α− (1 + α)f + η)cL and Lemma
24. Therefore, minRI∗

P,h = RD/p when RD/p < (α − (1 + α)f + η)cL, but c is sufficiently
small.

LEMMA 28. If mI∗
B > 0 and R̄ > (α − (1 + α)f + η)cL, then (α − (1 + α)f + η)cL /∈ RI∗

P,i for
i ∈ {u, h}.

Proof. Note that LP ((α−(1+α)f+η)cH ,m
I∗
B , G

I∗
B ; pi) ≤ LP ((α−(1+α)f+η)cL,m

I∗
B , G

I∗
B ; pi)

if and only if

(1−mI∗
B )[pi(α + η)cH + (1− pi)ηcL]

≤ mI∗
B p

i[(α− (1 + α)f + η)cL − R̄] + (1−mI∗
B )[(α + η)cL + (1 + α)pi(cH − cL)f ]

We have that pi(α+ η)cH + (1− pi)ηcL > (α+ η)cL + (1 + α)pi(cH − cL)f if an only if (44)
holds.

Note that RD > cL and (1− f)αcH < (α− (1 +α)f + η)(cH − cL) +αcL. Hence, because
we are considering p ≥ RD

(1−f)αcH
, the inequality (44) is satisfied for i ∈ {u, h}. We must

therefore have LP ((α− (1+α)f+η)cH ,m
I∗
B , G

I∗
B ; pi) > LP ((α− (1+α)f+η)cL,m

I∗
B , G

I∗
B ; pi)

for for i ∈ {u, h}whenever (α− (1 + α)f + η)cL − R̄ < 0.

LEMMA 29. Assume R̄ ≤ RD/p. If ma∗
P > 0 and mI∗

B ∈ (0, 1), then max{RI∗
P,u ∪ RI∗

P,h} ∈
{(1−f)αcH , (α−(1+α)f+η)cH}. Moreover, ifma∗

P = 1 then maxRI∗
P,h = (α−(1+α)f+η)cH .

Proof. First, note supRI∗
P,i ∈ RI∗

P,i for i ∈ {u, l, h} by the left-continuity of GI∗
B (·) and the

platform’s objective function LP (·,mB, GB; pi). Hence, supRI∗
P,i = maxRI∗

P,i∗. Also note
that LP (R,mI∗

B , G
I∗
B ; pi) < LP ((α − (1 + α)f + η)cH ,m

I∗
B , G

I∗
B ; pi) for R ∈ ((1− f)αcH , (α −

(1 +α)f + η)cH) because mI∗
B ∈ (0, 1). Hence ((1− f)αcH , (α− (1 +α)f + η)cH)∩RI∗

P,i = ∅.
Finally, by Lemma 23, supRI∗

B = (1− f)αcH .
To prove the first part of the lemma, we proceed by contradiction and assume RM :=

{RI∗
P,u ∪ RI∗

P,h} < (1− f)αcH . In this case, Ga∗
P (R) = 0 for all R ≥ RM , along with supRI∗

B =
(1 − f)αcH , imply that (1 − f)αcH ∈ RI∗

B and R /∈ RI∗
B for all R ∈ (RM , (1 − f)αcH).

Otherwise, an R′ ≥ RM with R′ ∈ RI∗
B would exist such that LB(R′,ma∗

P , G
a∗
P ; p) 6= 0,

contradicting the definition of equilibrium. Moreover, LB((1 − f)αcH ,m
a∗
P , G

a∗
P ; p) = 0

and RM < (1− f)αcH imply ma∗
P ∈ (0, 1).

If RM > (α− (1 +α)f +η)cL or if RM < (1−f)αcH ≤ (α− (1 +α)f +η)cL then LP ((1−
f)αcH ,m

I∗
B , G

I∗
B ; pi) > L(RM ,mI∗

B , G
I∗
B ; pi) for i ∈ {u, h}, contradicting RM := max{RI∗

P,u ∪
RI∗
P,h}. It remains to consider RM ≤ (α − (1 + α)f + η)cL < (1 − f)αcH . In this case,

because mI∗
B ∈ (0, 1) and R̄ ≤ RD/p, LP (RD/p,m

∗
B, G

∗
B; pi) > m∗B[(1 + α)pcH + (1− p)cL]f

for i ∈ {u, h}. But this implies ma∗
P = 1, which contradicts LB((1− f)αcH ,m

a∗
P , G

a∗
P ; p) = 0.

Hence, max{RI∗
P,u ∪ RI∗

P,h} ∈ {(1− f)αcH , (α− (1 + α)f + η)cH}
To prove the second part of the lemma for ma∗

P = 1, we proceed again by contradiction
and assume (α − (1 + α)f + η)cH /∈ RI∗

P,h. By Lemma 19, this observation also implies
(α − (1 + α)f + η)cH /∈ RI∗

P,u and, therefore, Ga∗
P ((1 − f)αcH) = 0. Furthermore, from the

previous results, (1 − f)αcH = max{RI∗
P,u ∪ RI∗

P,h}. Hence, LB((1 − f)αcH , 1, G
a∗
P ; p) < 0.

Therefore, GI∗
B ((1− f)αcH) = 0. But then, LP ((α− (1 +α)f + η)cH ,m

I∗
B , G

I∗
B ; pi) > LP ((1−
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f)αcH ,m
I∗
B , G

I∗
B ; pi) for i ∈ {u, h}, contradicting that max{RI∗

P,u∪RI∗
P,h} = (1−f)αcH . Thus,

if ma∗
P = 1 and mI∗

B ∈ (0, 1), then maxRI∗
P,h = (α− (1 + α)f + η)cH .

LEMMA 30. Suppose mI∗
B ∈ (0, 1) and ma∗

P > 0. If R1 ∈ RI∗
B and R2 ∈ RI∗

B such that R1 <
R2 ≤ (α − (1 + α)f + η)cL or such that (α − (1 + α)f + η)cL < R1 < R2, then we must
have [R1, R2] ⊆ RI∗

B ∩ {RI∗
P,u ∪ RI∗

P,u}. In particular, Ga∗
P (·) and GI∗

B (·) are strictly decreasing in
[R1, R2].

Proof. Assume, by way of contradiction, that an Rk ∈ (R1, R2) exists such that Rk /∈ RI∗
B .

By the right-continuity of Ga∗
P (·) and LB(·,ma∗

P , G
a∗
P ; p), we have that an ε > 0 exists such

thatLB(R,ma∗
P , G

a∗
P ; p) < 0 for allR ∈ (Rk, Rk+ε). LetR′1 := sup{R : R ∈ RI∗

B and R < Rk}.
Hence, LB(R,ma∗

P , G
a∗
P ; p) < 0 for all R ∈ (R′1, R

k + ε), thus implying

Ga∗
P (R) <

(1−ma∗
P )(RD − pR)

ma∗
P p(R−RD)

+
(1− p)RD

p(R−RD)
≤ (1−ma∗

P )(RD − pR′1)

ma∗
P p(R

′
1 −RD)

+
(1− p)RD

p(R′1 −RD)
. (59)

Because R /∈ RI∗
B for all R ∈ (R′1, R

k + ε), we must have that R /∈ {RI∗
P,u ∪ RI∗

P,u} for any
R ∈ (R′1, R

k + ε).
If R′1 ∈ RI∗

B , then the last term in equation (59) coincides with Ga∗
P (R′1) and, therefore,

Ga∗
P (R) < Ga∗

P (R′1) for any R ∈ (R′1, R
k + ε). But this implies there exists R′ ∈ (R′1, R)

such that R′ ∈ {RI∗
P,u ∪ RI∗

P,u}, contradicting the previous result that R′ /∈ {RI∗
P,u ∪ RI∗

P,u}
for any R′ ∈ (R′1, R

k + ε). If instead, R′1 /∈ RI∗
B , then we must have limR→R′1

− Ga∗
P (R) >

Ga∗
P (R′1), which impliesR′1 ∈ {RI∗

P,u∪RI∗
P,u}. However, ifR′1 /∈ RI∗

B , LP (Rk+ε,mI∗
B , G

I∗
B ; p) >

LP (R′1,m
I∗
B , G

I∗
B ; p), generating a contradiction.

Hence, [R1, R2] ⊆ RI∗
B . In particular, LB(R,ma∗

P , G
a∗
P ; p) = 0 for all R ∈ [R1, R2], which

implies

Ga∗
P (R) =

(1−ma∗
P )(RD − pR)

ma∗
P p(R−RD)

+
(1− p)RD

p(R−RD)

is strictly decreasing for R ∈ [R1, R2].
Suppose now, by way of contradiction, an Ry ∈ [R1, R2] exists such that R /∈ {RI∗

P,u ∪
RI∗
P,u}. By the left-continuity of GI∗

B (·) and LP (·,mI∗
B , G

I∗
B ; pi) for i ∈ {u, h}, we have that an

ε > 0 exists such that R /∈ {RI∗
P,u∪RI∗

P,u} for all R ∈ (Ry−ε, Ry). However, this observation
implies Ga∗

P (R) is constant in (Ry − ε, Ry), contradicting the previous result. Hence, we
also obtain that [R1, R2] ⊆ {RI∗

P,u ∪ RI∗
P,u}.

D.3 PROOF OF LEMMA 14

To prove the first part, we proceed by contradiction and assume that LP (R,mI∗
B , G

I∗
B ; ph) ≤

mI∗
B [ph(1 + α)cH + (1 − ph)cL]f for all R. By Lemma 21, we have LP (R,mI∗

B , G
I∗
B ; pi) ≤

mI∗
B [ph(1 + α)cH + (1− ph)cL]f for i ∈ {u, l}. Therefore, for i ∈ {u, h, l}, LI∗P (mI∗

B , G
I∗
B ; pi) =

mI∗
B [pi(1+α)cH+(1−pi)cL]f and the maximizer in (42) is aI∗ = 0, contradicting aI∗ ∈ (0, 1].
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To prove the second part, we proceed again by contradiction and assume an R exists
such that R ∈ RI∗

P,i and LP (R,mI∗
B , G

I∗
B ; pi) ≥ mI∗

B [pi(1 + α)cH + (1 − pi)cL]f for i ∈ {l, h}.
In this case, for any c > 0,

LI∗P (mI∗
B , G

I∗
B ; pu) ≥ LP (R,mI∗

B , G
I∗
B ; pu)

= ψLP (R,mI∗
B , G

I∗
B ; ph) + (1− ψ)LP (R,mI∗

B , G
I∗
B ; pl)

> ψLP (R,mI∗
B , G

I∗
B ; ph) + (1− ψ)LP (R,mI∗

B , G
I∗
B ; pl)− c,

contradicting that aI∗ > 0.

D.4 PROOF OF LEMMA 16

When p < RD

(1−f)αcH
, Lemma 22 implies mI∗

B = 0. The platform is thus a monopolistic
lender for a merchant provided (43) is satisfied for i = h, and the results of Lemma 15
apply.

For the rest of the proof, we thus focus on p ≥ RD/R̄. By Lemma 22, banks lend
with positive probability m∗B > 0. We want to show that mI∗

B = 1, RI∗
B = {RD/p}, and

ma∗
P (1−Ga∗

P (RD/p)) = 0. Together, these conditions imply merchants borrow exclusively
from banks when p ≥ RD/R̄

As a preliminary observation, notice that, if ma∗
P > 0, RD/p = min{RI∗

P,u∪RI∗
P,h}. In fact,

if R̄ > (α − (1 + α)f + η)cL, by Lemma 28, (α − (1 + α)f + η)cL /∈ RI∗
P,i for i ∈ {u, h}. If

instead R̄ ≤ (α− (1 + α)f + η)cL, we have RD/p ≤ R̄ ≤ (α− (1 + α)f + η)cL. By Lemmas
26, we thus have RD/p = min{RI∗

P,u ∪ RI∗
P,h} in both cases.

Suppose, by way of contradiction, mI∗
B ∈ (0, 1). Which, in turn, implies ma∗

P > 0,
otherwise competitive banks would offer rate RD/p with probability one and mI∗

B = 1. It
also implies supRI∗

B = (1− f)αcH by Lemma 23.
First, we exclude ma∗

P = 1. By the previous observation, RD/p = min{RI∗
P,u ∪ RI∗

P,h}.
Hence, RD/p ∈ RI∗

P,i for some i ∈ {u, h}. We must therefore have LP (RD/p,m
I∗
B , G

I∗
B ; pi) ≥

LP ((α− (1 + α)f + η)cH ,m
I∗
B , G

I∗
B ; pi), which implies

mI∗
B

{
pi((α− (1 + α)f + η)cH − R̄)− I(RD/p)(1− pi)[RD/p− (η − (1 + α)f)cL]

}
≥ pi((α− (1 + α)f + η)cH −RD/p)− I(RD/p)(1− pi)[RD/p− (η − (1 + α)f)cL],

(60)

where I(R) = I(R ≤ (α− (1 + α)f + η)cL). Notice we have (α− (1 + α)f + η)cH ≥ RD/p

when p ≥ RD

(1−f)αcH
and η ≥ f and (α− (1 +α)f + η)cH − R̄ ≤ (α− (1 +α)f + η)cH −RD/p

because we are considering R̄ ≥ RD/p. Finally, we also have pi((α − (1 + α)f + η)cH −
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RD/p)−I(RD/p)(1−pi)[RD/p−(η−(1+α)f)cL] because eitherRD/p > (α−(1+α)f+η)cL,
or RD/p ≤ (α− (1 +α)f + η)cL, along with p ≥ RD

(1−f)αcH
, implies pi((α− (1 +α)f + η)cH −

RD/p)−I(RD/p)(1−pi)[RD/p−(η−(1+α)f)cL] > 0. Therefore, if pi((α−(1+α)f+η)cH−
R̄)− I(RD/p)(1− pi)[RD/p− (η− (1 +α)f)cL] ≤ 0, the inequality (60) is a contradiction. If
pi((α− (1 +α)f + η)cH − R̄)− I(RD/p)(1− pi)[RD/p− (η− (1 +α)f)cL] > 0, the inequality
(60) implies mI∗

B ≥ 1, which contradicts mI∗
B ∈ (0, 1). Therefore, when p ≥ RD/R̄, mI∗

B = 1.
Next, we show ma∗

P (1 − Ga∗
P (RD/p)) = 0. Assume, by way of contradiction, ma∗

P (1 −
Ga∗
P (RD/p)) > 0. By our previous result in the proof, ifma∗

P > 0, thenRD/p ∈ {RI∗
P,u∪RI∗

P,h}.
Consider, p > RD/R̄. Because mI∗

B = 1, the profits from lending for the platform are
LP (RD/p, 1, G

I∗
B ; pi) < [pi(1 + α)cH + (1− pi)cL]f for an i ∈ {u, l}, and hence mI∗

P,i = 0. By
Lemma 27, we must therefore have RD/p ∈ RI∗

P,y for y ∈ {u, l} and y 6= i. But this would
also imply mI∗

P,i = 0, thus contradicting ma∗
P (1−Ga∗

P (RD/p)) = 0.
Consider now p = RD/R̄, then for an i ∈ {u, l} LP (R, 1, GI∗

B ; pi) ≤ LP (RD/p, 1, G
I∗
B ; p)

for anyR > RD/p, thus implyingGI∗
B (R) ≤ 0. Hence, banks offer rateRD/pwith probabil-

ity one, and, for this to be the banks’ best response, we must have ma∗
P (1−Ga∗

P (RD/p)) =

0.

D.5 PROOF OF LEMMA 17

We prove ma∗
P > 0. Suppose ma∗

P = 0, then competitive banks would set RI∗
B = {RD/p}

and mI∗
B = 1. For a small enough ε > 0, LP (RD/p− ε, 1, GI∗

B ; pi) > [p(1 +α)cH + (1− p)cL]f

for i ∈ {u, h}, which contradicts ma∗
P = 0. Hence ma∗

P > 0.
By Lemma 22, we have mI∗

B > 0. We now prove mI∗
B ∈ (0, 1). We proceed by con-

tradiction and assume mI∗
B = 1. In this case, for any i ∈ {u, h}, LP (R, 1, GI∗

B ; pi) =

[p(1 + α)cH + (1 − p)cL]f < LP (RD/p, 1, G
I∗
B ; pi) for any R such that GI∗

B (R) = 0. Hence,
mI∗
P,i = 1 but R /∈ RI∗

P,i if GI∗
B (R) = 0.

Next, we show aI∗ > 0. Assume, by contradiction, that aI∗ = 0. Then, the equilibrium
is described by one of the cases of Section 3. In each of those cases, an R ∈ RI∗

P,u = R∗P

exists such that R 6= (α− (1 + α)f + η)cL. Therefore, for a sufficiently small c,

ψLI∗P (mI∗
B , G

I∗
B ; ph) + (1− ψ)LI∗P (mI∗

B , G
I∗
B ; pl)− c

> ψLP (R,mI∗
B , G

I∗
B ; ph) + (1− ψ)LP (R,mI∗

B , G
I∗
B ; pl)

= LI∗P (mI∗
B , G

I∗
B ; pu)

where the strict inequality follows because R 6= (α − (1 + α)f + η)cL and Lemma 24,
contradicting aI∗ = 0.
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Let R̃ = supRI∗
B ≤ (1 − f)αcH . If R̃ ∈ RI∗

B , LB(R̃, 1, Ga∗
P ; p) = 0 implies Ga∗

P (R̃) >

0 and an R > R̃ exists with R ∈ RI∗
P,i for some i ∈ {u, h}. If instead R̃ /∈ RI∗

B , then
limR→R̃− G

a∗
P (R) > 0, implying an R ≥ R̃ exists with R ∈ RI∗

P,i for some i ∈ {u, h}. In either
case, GI∗

B (R) = 0, thus contradicting the previous result.
Because mI∗

B ∈ (0, 1), Lemma 23 implies supR∗B = (1 − f)αcH , Moreover, by Lemmas
25 and 26, we have that min{RI∗

P,u∪RI∗
P,h} ≤ RD/p and min{RI∗

P,u∪RI∗
P,h} ∈ {(α− (1 +α)f +

η)cL, RD/p}. The result that max min{RI∗
P,u ∪ RI∗

P,h} ∈ {(1 − f)αcH , (α − (1 + α)f + η)cH}
follows from Lemma 29.

D.6 PROOF OF LEMMA 18

Throughout the proof, recall that mI∗
B ∈ (0, 1), ma∗

P > 0, and aI∗ > 0 by Lemma 17. In
particular, an R exists such that LP (R,mI∗

B , G
I∗
B ; ph) ≥ mI∗

B [ph(1 + α)cH + (1− p)cL]f .
We first consider a merchant with ph(α+ η)cH + (1− ph)ηcL > R̄. Suppose, by contra-

diction, that ma∗ ∈ (0, 1). By Lemma 14, we must have aI∗ ∈ (0, 1) and mI∗
P,u ∈ (0, 1). By

Lemma 21, we derive also mI∗
P,l = 0. Note that

LI∗P (mI∗
B , G

I∗
B ; ph)−mI∗

B [ph(1 + α)cH + (1− ph)cL]f

≥ LP ((α− (1 + α)f + η)cH ,m
I∗
B , G

I∗
B ; ph)−mI∗

B [ph(1 + α)cH + (1− ph)cL]f

= (1−mI∗
B )[ph(α + η)cH + (1− ph)ηcL − R̄] > 0

where the second inequality follows from ph(α+ η)cH + (1− ph)ηcL > R̄. Therefore, for a
sufficiently small c > 0,

ψLI∗P (mI∗
B , G

I∗
B ; ph) + (1− ψ)LI∗P (mI∗

B , G
I∗
B ; pl)− c

≥ mI∗
B [ph(1 + α)cH + (1− ph)cL]f + (1−mI∗

B )[ph(α + η)cH + (1− ph)ηcL − R̄]− c

= LI∗P (mI∗
B , G

I∗
B ; pu) + (1−mI∗

B )[ph(α + η)cH + (1− ph)ηcL − R̄]− c

≥ LI∗P (mI∗
B , G

I∗
B ; pu) + (1− m̄)[ph(α + η)cH + (1− ph)ηcL − R̄]− c

> LI∗P (mI∗
B , G

I∗
B ; pu),

where the second inequality follows from Lemma 24 and the last one from c being suffi-
ciently small. However, this result contradicts aI∗ ∈ (0, 1). Therefore, ma∗

P = 1.
Next, we consider ph(α + η)cH + (1 − ph)ηcL ≤ R̄. Because (44) holds for i = h when

p ≥ RD

(1−f)αcH
, we also have RD/p ≥ R̄ > (α − (1 + α)f + η)cL. By Lemmas 25, 26, and 28,

we thus have minRI∗
P,i ≥ RD/p > (α− (1 + α)f + η)cL for i ∈ {u, h}.

Because aI∗ > 0, we need to rule out LI∗P (mI∗
B , G

I∗
B ; pu) < ψLI∗P (mI∗

B , G
I∗
B ; ph) + (1 −
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ψ)LI∗P (mI∗
B , G

I∗
B ; pl)−c by contradiction. If this inequality holds, then also ma∗

P = 1 because
mI∗
P,h = 1. From Lemma 29, 19, and RD/p > (α − (1 + α)f + η)cL, we obtain maxRI∗

P,h =

(α− (1 + α)f + η)cH . But then

LI∗P (mI∗
B , G

I∗
B ; ph) = LP ((α−(1+α)f+η)cH ,m

I∗
B , G

I∗
B ; ph) ≤ mI∗

B [p(1+α)cH+(1−p)cL]f.

By Lemma 21, LI∗P (mI∗
B , G

I∗
B ; pi) = mI∗

B [p(1 + α)cH + (1 − p)cL]f also for i ∈ {u, l}, contra-
dicting LI∗P (mI∗

B , G
I∗
B ; pu) < ψLI∗P (mI∗

B , G
I∗
B ; ph) + (1− ψ)LI∗P (mI∗

B , G
I∗
B ; pl)− c.

We therefore have LI∗P (mI∗
B , G

I∗
B ; pu) = ψLI∗P (mI∗

B , G
I∗
B ; ph) + (1− ψ)LI∗P (mI∗

B , G
I∗
B ; pl)− c.

It remains to show that LI∗P (mI∗
B , G

I∗
B ; pu) = mI∗

B [p(1 + α)cH + (1 − p)cL]f . We proceed by
contradiction and assume LI∗P (mI∗

B , G
I∗
B ; pu) > mI∗

B [p(1 +α)cH + (1−p)cL]f . Then, mI∗
P,u = 1

and ma∗
P = 1. From the previous reasoning, we would then conclude LI∗P (mI∗

B , G
I∗
B ; ph) ≤

mI∗
B [p(1+α)cH+(1−p)cL]f , which impliesLI∗P (mI∗

B , G
I∗
B ; pu) = mI∗

B [p(1+α)cH+(1−p)cL]f by
Lemma 21, thus generating a contradiction. Therefore, when ph(α+η)cH+(1−ph)ηcL ≤ R̄,
we have

ψLI∗P (mI∗
B , G

I∗
B ; ph)+(1−ψ)LI∗P (mI∗

B , G
I∗
B ; pl)−c = mI∗

B [p(1+α)cH+(1−p)cL]f = LI∗P (mI∗
B , G

I∗
B ; pu)

When R̄ > (α− (1 + α)f + η)cL, Lemma 28 implies minR∗IP,i 6= (α− (1 + α)f + η)cL for
i ∈ {u, h}. Therefore, by Lemmas 25, 26, and 27, we obtain minR∗P,h = minR∗P,u = RD/p >

(α− (1 + α)f + η)cL, where the inequality follows because R̄ > (α− (1 + α)f + η)cL and
p ≤ RD/R̄.

Finally, when RD/p < (α − (1 + α)f + η)cL, Lemmas 25, 26, and 27 imply minRI∗
P,h =

RD/p ≤ (α− (1 + α)f + η)cL when c is sufficiently small.

D.7 PROOF OF PROPOSITION 5

By Lemmas 14, 17 and 18, we have mI∗
P,h = ma∗

P = 1, aI∗ > 0, mI∗
B ∈ (0, 1), and min{RI∗

P,u ∪
RI∗
P,h} = RD/p > (α − (1 + α)f + η)cL. Because arg maxR>(α−(1+α)f+η)cL LP (R,mB, GB; pi)

does not depend on pi, R∗P,u = R∗P,h.
First notice,

LP (R,mI∗
B , G

I∗
B ; pl) < LP ((α− (1 + α)f + η)cL,m

I∗
B , G

I∗
B ; pl) (61)

for all R 6= (α − (1 + α)f + η)cL. Thus, if R̄ > (α + η)cL, mI∗
P,l = 0. If, instead, R̄ ∈

((α− (1 + α)f + η), (α + η)cL], mI∗
P,l = 1 and RI∗

P,l = {(α− (1 + α)f + η)cL}.
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Because R∗P,u = R∗P,h, consider R ∈ R∗P,u. Then, for a sufficiently small c,

ψLI∗P (mI∗
B , G

I∗
B ; ph) + (1− ψ)LI∗P (mI∗

B , G
I∗
B ; pl)− c

> ψLP (R,mI∗
B , G

I∗
B ; ph) + (1− ψ)LP (R,mI∗

B , G
I∗
B ; pl)

= LP (R,mI∗
B , G

I∗
B ; pu) = LI∗P (mI∗

B , G
I∗
B ; ph)

where the strict inequality follows from (61) and Lemma 24. Hence, aI∗ = 1.
Using Lemma 26 and 23, we obtain (α− (1+α)f+η)cL < RD/p = minRI∗

B ≤ supRI∗
B =

(1− f)αcH . By Lemma 30 we have GI∗
P,h(·) and GI∗

B (·) are strictly decreasing in [RD/p, (1−
f)αcH ] because aI∗ = 1. Moreover, by 29, we have (α− (1 + α)f + η)cH ∈ RI∗

P,h.
The rest of the proof is thus identical to the proof of Proposition 1 with mI∗

B replacing
m∗B, GI∗

B replacing G∗B, and GI∗
P,h replacing G∗P .

D.8 PROOF OF PROPOSITION 6

By Lemmas 14, 17 and 18, we have mI∗
P,h = ma∗

P = 1, aI∗ > 0, and mI∗
B ∈ (0, 1). By 29, we

have (α − (1 + α)f + η)cH ∈ RI∗
P,h. Finally note that, because R̄ < (α + η)cH , mI∗

P,l = 1 and
RI∗
P,l = {(α− (1 + α)f + η)cL}. Thus, by 14, (α− (1 + α)f + η)cL /∈ RI∗

P,h.
First, we observe that, because R̄ < RD/p < (α + η)cH , mI∗

P,l = 1 and RI∗
P,l = {(α− (1 +

α)f + η)cL}.
Next, by Lemma 26 , minRI∗

P,h = RD/p. By Lemma 29, maxRI∗
P,h = (α− (1 +α)f + η)cH .

From LP ((α− (1 + α)f + η)cH ,m
I∗
B , G

I∗
B ; ph) = LP (RD/p,m

I∗
B , G

I∗
B ; ph), we thus obtain mI∗

B

is given by (45).
We first consider T = (1 − f)αcH < (α − (1 + α)f + η)cL. We want to show that, in

this case, aI∗ = 1. Suppose, by way of contradiction, that aI∗ ∈ (0, 1). I want to show
that, if R < (α − (1 + α)f + η)cL, then R /∈ RI∗

P,u for a sufficiently small c. We proceed by
contradiction and assume an R < (α − (1 + α)f + η)cL exist such that R ∈ RI∗

P,u for all c.
Then

ψLI∗P (mI∗
B , G

I∗
B ; ph) ≥ LP (R,mI∗

B , G
I∗
B ; ph)

= LP (R,mI∗
B , G

I∗
B ; pu)− (1− ψ)LP (R,mI∗

B , G
I∗
B ; pl)

> LI∗P m
I∗
B , G

I∗
B ; pu)− (1− ψ)LI∗P m

I∗
B , G

I∗
B ; pl) + c

where strict inequality follows becauseR < (α−(1+α)f+η)cL and because of Lemma 24.
But this result contradicts aI∗ < 1. Hence, for a sufficiently small c, minRI∗

P,u > (1− f)αcH .
Because (44) holds for i = u, we must thus have RI∗

P,u = {(α − (1 + α)f + η)cH}, thus
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contradicting the previous result that RI∗
P,u ⊆ [Rc, (α− (1 + α)f + η)cH ].

Therefore, if T = (1 − f)αcH < (α − (1 + α)f + η)cL, we have aI∗ = 1. The rest of the
results can then be derived as in the proof of Proposition 2 when T < (α− (1 +α)f + η)cL

with mI∗
B replacing m∗B, GI∗

B replacing G∗B, and GI∗
P,h replacing G∗P . In particular, using

LP (R,mI∗
B , G

I∗
B ; ph) = LP (RD/p,m

I∗
B , G

I∗
B ; ph) for all R ∈ [RD/p, T ], we obtain (46). Using

using LB(R, 1, GI∗
P,h; p) = LB(RD/p, 1, G

I∗
P,h; p

h) for all R ∈ [RD/p, T ], we obtain GI∗
P,h is

given by (51).
Next, we consider T ≥ (α− (1 + α)f + η)cL. By a reasoning identical to the one in the

proof of Proposition 2, we have (α−(1+α)f+η)cL = sup{RI∗
B ∩[RD/p, (α−(1+α)f+η)cL]}.

By Lemma 30, [RD/p, (α − (1 + α)f + η)cL] ⊆ RI∗
B and [RD/p, (α − (1 + α)f + η)cL] ⊆

{RI∗
P,u ∪ RI∗

P,u}. By the left-continuity of GI∗
B , an Rc ∈ [RD/p, (α − (1 + α)f + η)cH) exists

such that Rc = max{RI∗
P,h ∩ [RD/p, (α − (1 + α)f + η)cL]}. Otherwise, we would have

(α− (1 + α)f + η)cL ∈ RI∗
P,h, contradicting a result we established earlier.

Because (α − (1 + α)f + η)cL > RD/p ∈ RI∗
P,h, Lemma 20 implies R /∈ RI∗

P,u for all
R > (α− (1 +α)f + η)cL. Furthermore, by the same Lemma and because [RD/p, (α− (1 +

α)f + η)cL] ⊆ {RI∗
P,u ∪ RI∗

P,u}, we must also have RI∗
P,u = [Rc, (α− (1 + α)f + η)cH ]. Finally,

because Ga∗
P (R) is strictly decreasing from R ∈ [RD/p, (α− (1 + α)f + η)cL], but R /∈ RI∗

P,h

for R ∈ (Rc, (α− (1 + α)f + η)cL], then aI∗ ∈ (0, 1).
Because, aI∗ ∈ (0, 1), RD/p ∈ RI∗

P,h, Rc ∈ RI∗
P,i for i ∈ {u, h}, and (α − (1 + α)f + η)cL ∈

RI∗
P,i, for i ∈ {u, l}, we use the following system of equations to determine GI∗

B ((α − (1 +

α)f + η)cL), GI∗
B (RC), and Rc respectively:

LP ((α− (1 + α)f + η)cL,m
I∗
B , G

I∗
B ; pu) = ψLP (RD/p,m

I∗
B , G

I∗
B ; ph)

+ (1− ψ)LP ((α− (1 + α)f + η)cL,m
I∗
B , G

I∗
B ; pl)− c

LP (RD/p,m
I∗
B , G

I∗
B ; ph) = LP (Rc,mI∗

B , G
I∗
B ; ph)

LP (Rc,mI∗
B , G

I∗
B ; pu) = LP ((α− (1 + α)f + η)cL,m

I∗
B , G

I∗
B ; pu).

In particular, we obtain Rc is given by (47) and the the first equation implies

GI∗
B ((α− (1 + α)f + η)cL) > 0. (62)

From LP (R,mI∗
B , G

I∗
B ; ph) = LP (RD/p,m

I∗
B , G

I∗
B ; ph) for all R ∈ [RD/p,R

c], we obtain
GI∗
B coincides with the expression in (46) for R ∈ [RD/p,R

c]. From LP (R,mI∗
B , G

I∗
B ; pu) =

LP ((α− (1 + α)f + η)cL,m
I∗
B , G

I∗
B ; pu) for all R ∈ [Rc, (α− (1 + α)f + η)cL], we obtain GI∗

B

coincides with (48) for R ∈ [Rc, (α− (1 + α)f + η)cL].
Let U c := (1− f)cL if (1− f)αcH = (α− (1 +α)f + η)cL; otherwise let U c := min{RB

I∗∩
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((α − (1 + α)f + η)cL, (1 − f)αcH ]} if (1 − f)αcH > (α − (1 + α)f + η)cL. In the first case
with (1− f)αcH = (α− (1 + α)f + η)cL, (62) implies P (RB = (1− f)αcH) = GI∗

B ((α− (1 +

α)f + η)cL) > 0.
In the second case with (1 − f)αcH > (α − (1 + α)f + η)cL, note that such a U c exists

because supRI∗
B = (1− f)H > (α− (1 + α)f + η)cL and because of a reasoning analogous

to that in Lemma 25. By Lemmas 23, 30, and 20, if U c < (1 − f)αcH , [U, (1 − f)αcH)

is a set of best responses for banks and the optimistic platform. Because l0P ((α − (1 +

α)f + η)cL,m
I∗
B , G

I∗
B ; ph) > limR→(α−(1+α)f+η)c+L

l1P (R,mI∗
B , G

I∗
B ; ph), a δ > 0 exists such that

U c ≥ (α− (1 +α)f +η)cL+ δ. The same result holds immediately if U c = (1−f)αcH . Also
note l1P (U,mI∗

B , G
I∗
B ; ph) > l1P (R,mI∗

B , G
I∗
B ; ph) for all R ∈ ((α − (1 + α)f + η)cL, U

c). Hence,
from LB(U c, 1, Ga∗

P ; p) = 0 and U c ≥ (α− (1 + α)f + η)cL + δ, we obtain

(1− aI∗)P (RP,u = (α− (1 + α)f + η)cL) = lim
R→(α−(1+α)f+η)c−L

Ga∗
P (R)−Ga∗

P (U c) > 0. (63)

Hence, Ga∗
P (U c) < limR→(α−(1+α)f+η)c−L

Ga∗
P (R), thus implying LB((α − (1 + α)f +

η), 1, Ga∗
P ; p) < limR→(α−(1+α)f+η)c−L

LB(R, 1, Ga∗
P ; p) = 0. This result implies (α− (1 + α)f +

η)cL /∈ RI∗
B and GI∗

B ((α− (1 + α)f + η)cL) = GI∗
B (U c).

Let RUc be such that

mI∗
B p

hGI∗
B ((α− (1 + α)f + η)cL)(RUc − R̄) + (1−mI∗

B )[phRUc + (1− ph)(η − f)cL − R̄]

+ [(1 + α)phcH + (1− ph)cL]f

= l0P ((α− (1 + α)f + η)cL,m
I∗
B , G

I∗
B ; ph),

from which we obtain

RUc := (α−(1+α)f+η)cL+
(1−mI∗

B )(1− ph)αcL
ph[mI∗

BG
I∗
B ((α− (1 + α)f + η)cL) + (1−mI∗

B )]
> (α−(1+α)f+η)cL.

We thus set U c := min{RUc, (1− f)αcH}.
If RUc ∈ ((α − (1 + α)f + η)cL, (1 − f)αcH), then U c = RUc, and Lemma 30 implies

[U, (1 − f)αcH) is a set of best responses for banks and the optimistic platform. From
l1P (R,mI∗

B , G
I∗
B ; ph) = l1P ((α− (1+α)f +η)cH ,m

I∗
B , G

I∗
B ; p) for R ∈ [U, (1−f)αcH), we obtain

the expression for GI∗
B in (49). Note that limR→(1−f)αc−H

GI∗
B (R) > 0, hence (1−f)αcH ∈ RI∗

B .
From LB(R, 1, Ga∗

P ; p) = 0 and GI∗
P,u(R) = 0 for R ∈ [U c, (1 − f)αcH ] we obtain GI∗

P,h as in
(52) for R ∈ [U c, (1− f)αcH ].

IfRUc ≥ (1−f)αcH , then U c = (1−f)αcH . Banks offer rate (1−f)αcH with probability
GI∗
B ((α− (1 +α)f + η)cL) > 0 and, from LB((1− f)αcH , 1, G

a∗
P ; p) = 0, we obtain P (RP,h =
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(α− (1 + α)f + η)cH) = Ga∗
P (U).

To characterize the distribution of the optimistic and informed platform when T ≥
(α − (1 + α)f + η)cL, LB(R, 1, Ga∗

P ; p) = 0 for all R ∈ [RD/p, (α − (1 + α)f + η)cL). If
R ∈ [RD/p,R

c], GI∗
P (R) = 1 and we obtain the first case in (52) for GI∗

P,h(R). If R ∈
[Rc, (α− (1 + α)f + η)cL,, GI∗

P,h(R) = GI∗
P,h(U

c) and we obtain (53) for GI∗
P,h(R).

To pin down aI∗ when T ≥ (α− (1 + α)f + η)cL, note GI∗
P,u(R

c) = 1 and

GI∗
P,h(R

c) = GI∗
P,h(U

c) =
1

aI∗
(1− p)RD/p

U c −RD

.

Using LB(Rc, 1, Ga∗
P ; p) = 0, we obtain

−(1− p)RD + (1− aI∗)p(Rc −RD) + (1− p)RD
(1− p)RD

U c −RD

,

which yields (50).
Finally, we compare mI∗

B with m∗B from Proposition 2. Let

MB1(x; c) :=
x(α− (1 + α)f + η)cH + (1− x)(η − (1 + α)f)cL −RD/p

x(α− (1 + α)f + η)cH + (1− x)(η − (1 + α)f)cL −RD/p+ xRD/p− xR̄

and noticemI∗
B = MB1(ph; c) andm∗B = MB1(p; 0). Taking the derivative for c = 0, we have

dMB1(x; 0)

dx
=

(RD/p− R̄)[(RD/p− (η − (1 + α)f)cL)]{
x(α− (1 + α)f + η)cH + (1− x)(η − (1 + α)f)cL −RD/p+ xRD/p− xR̄

}2 > 0

because RD/p > R̄ and RD/p ≥ RD > cL ≥ (η − (1 + α)f)cL). Hence, for a sufficiently
small c, mI∗

B = MB1(ph; c) > MB1(p; 0) = m∗B.

D.9 PROOF OF PROPOSITION 7

By Lemmas 14, 17 and 18, we have mI∗
P,h = ma∗

P = 1, aI∗ > 0, and mI∗
B ∈ (0, 1). By 29, we

have (α − (1 + α)f + η)cH ∈ RI∗
P,h. Finally note that, because R̄ < (α + η)cH , mI∗

P,l = 1 and
RI∗
P,l = {(α− (1 + α)f + η)cL}. Thus, by 14, (α− (1 + α)f + η)cL /∈ RI∗

P,h.
We proceed as in the proof of Proposition 3. Specifically, Let V c := minRI∗

B . Note that
such a V c exists because supRI∗

B = (1−f)H > (α−(1+α)f+η)cL and because of a reasoning
analogous to that in Lemma 25. Note also that V c ≥ RD/p > (α − (1 + α)f + η)cL. By
Lemmas 23 an 30, if V c < (1−f)αcH , [V c, (1−f)αcH) is a set of best responses for lenders.
Because l0P ((α − (1 + α)f + η)cL,m

I∗
B , G

I∗
B ; pi) > limR→(α−(1+α)f+η)c+L

l1P (R,m∗B, G
∗
B; pi) for

any i ∈ {u, h}, a δ > 0 exists such that V c ≥ (α− (1+α)f +η)cL+ δ. The same result holds
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immediately if V c = (1− f)αcH .
Because LB(V c, 1, Ga∗

P ; p) = 0, we have Ga∗
P = (1−p)RD/p

V c−RD
. We thus observe that

l1P (R,mI∗
B , G

I∗
B ; pi) < l1P (V,mI∗

B , G
I∗
B ; pi) for allR ∈ ((α−(1+α)f+η)cL, V ) and all i ∈ {u, h},

and l0P (R′,mI∗
B , G

I∗
B ; pi) < l0P ((α−(1+α)f+η)cL,m

I∗
B , G

I∗
B ; pi) for allR < (α−(1+α)f+η)cL.

After recalling (α− (1 + α)f + η)cL /∈ RI∗
P,h, we conclude

(1− aI∗)P (RP,u = (α− (1 + α)f + η)cL) =
V c −RD/p

V −RD

. (64)

In particular, if V c > RD/p, we must have (1− aI∗)P (RP,u = (α− (1 +α)f + η)cL) > 0 and
hence, (α− (1 + α)f + η)cL ∈ RI∗

P,u.
For a sufficiently small c, because maxRI∗

P,h = (α− (1 +α)f + η)cH and (α− (1 +α)f +

η)cL /∈ RI∗
P,h, we must have LP ((α − (1 + α)f + η)cH ,m

I∗
B , G

I∗
B ; p) ≥ LP ((α − (1 + α)f +

η)cL,m
I∗
B , G

I∗
B ; ph) + c/ψ, which implies

mI∗
B ≤

ph(α− (1 + α)f + η)(cH − cL)− (1− ph)αcL − c/ψ
ph(α− (1 + α)f + η)cH − (1− ph)αcL − phR̄

.

If V c > RD/p and hence, (1−aI∗)P (RP,u = (α− (1+α)f +η)cL) > 0, this expression holds
as an equality because it is equivalent to

ψLI∗P (mI∗
B , G

I∗
B ; ph) + (1− ψ)LI∗P (mI∗

B , G
I∗
B ; pl)− c = LI∗P (mI∗

B , G
I∗
B ; pu).

Moreover, from LP ((α− (1+α)f+η)cH ,m
I∗
B , G

I∗
B ; ph) ≥ LP (V c,mI∗

B , G
I∗
B ; ph), we obtain

mI∗
B ≤ m̃B(V c) :=

(α− (1 + α)f + η)cH − V c

(α− (1 + α)f + η)cH − R̄
.

By Lemmas 30 and 19, if V c < (1 − f)αcH , V c ∈ RI∗
P,h and this expression holds as an

equality.
Let RV,c be defined so that

m̃B(RV c) =
ph(α− (1 + α)f + η)(cH − cL)− (1− ph)αcL − c/ψ

ph(α− (1 + α)f + η)cH + (1− ph)αcL + phR̄
,

which implies

RV c = (α−(1+α)f+η)cL
(α− (1 + α)f + η)cH − R̄− 1−ph

ph
αcL

R̄
(α−(1+α)f+η)cL

(α− (1 + α)f + η)cH − R̄− 1−ph
ph

αcL
> (α−(1+α)f+η)cL.
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The rate V c is thus determined as V c := min{(1− f)αcH ,max{RD/p,R
V c}}.

If V c = RD/p, then minRI∗
P,h = minRI∗

B = RD/p and the equilibrium is as described in
Proposition 5.

If V c ∈ (RD/p, (1 − f)αcH), by Lemmas 13 and 19, all rates in [V, (1 − f)αcH) are best
responses for banks and the optimistic platform. Therefore, for any R ∈ RI∗

P,h,

LP (R,mI∗
B , G

I∗
B ; ph) = LP ((α− (1 + α)f + η)cH ,m

I∗
B , G

I∗
B ; ph)

= LP ((α− (1 + α)f + η)cL,m
I∗
B , G

I∗
B ; ph) + c/ψ,

as previously discussed. From the last equality, we obtain mI∗
B is given by (54). From the

first equality, we obtain GI∗
B is given by (34).

Furthermore, by Lemma 21, for a sufficiently small c, LP (R,mI∗
B , G

I∗
B ; pu) < LP ((α −

(1 + α)f + η)cL,m
I∗
B , G

I∗
B ; pu). Hence, for all RI∗

P,u = {(α − (1 + α)f + η)cL}. From 64 with
P (RP,u = (α− (1 + α)f + η)cL) = 1, we obtain (56).

The rest of the proof for the case V C ∈ (RD/p, (1 − f)αcH) is identical to the proof of
Proposition 3 with mI∗

B replacing m∗B, GI∗
B replacing G∗B, and GI∗

P,h replacing G∗P .
Finally, if V c = (1− f)αcH , we have RI∗

P,h = (α− (1 +α)f + η)cL, RI∗
P,u = (α− (1 +α)f +

η)cH , aI∗ is still given by (56), and mI∗
B is given by (54). Banks lend at rate (1− f)αcH with

probability 1.
To conclude, we compare mI∗

B with m∗B from Proposition 3. Let

MB2(x; c) :=
x(α− (1 + α)f + η)(cH − cL)− (1− x)αcL − c/ψ

x(α− (1 + α)f + η)αcH − (1− x)cL − xR̄

and noticemI∗
B = MB2(ph; c) andm∗B = MB2(p; 0). Taking the derivative for c = 0, we have

dMB2(x; 0)

dx
=

cL[(α− (1 + α)f + η)cL − R̄]{
x(α− (1 + α)f + η)cH − (1− x)αcL − xR̄

}2 > 0

because R̄ < (α− (1 + α)f + η)cL when RV c > RD/p ≥ (α− (1 + α)f + η)cL. Hence, for a
sufficiently small c, mI∗

B = MB2(ph; c) > MB2(p; 0) = m∗B.

D.10 PROOF OF PROPOSITION 8

By Lemmas 14, 17 and 18, we have mI∗
P,h = 1, aI∗ > 0, mI∗

B ∈ (0, 1), and min{RI∗
P,u ∪RI∗

P,h} =

RD/p > (α − (1 + α)f + η)cL. Notice arg maxR>(α−(1+α)f+η)cL LP (R,mB, GB; pi) does not
depend on pi. Therefore, R∗P,u = R∗P,h.
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For a sufficiently small c, by Lemma 18 we have

ψLI∗P (mI∗
B , G

I∗
B ; ph)+(1−ψ)LI∗P (mI∗

B , G
I∗
B ; pl)−c = mI∗

B [p(1+α)cH+(1−p)cL]f = LI∗P (mI∗
B , G

I∗
B ; pu).

By Lemma 21, we also have LI∗P (mI∗
B , G

I∗
B ; pl) = mI∗

B [p(1+α)cH +(1−p)cL]f . UsingRD/p ∈
R∗P,h,

ψLP (RD/p,m
I∗
B , G

I∗
B ; ph) = ψmI∗

B [p(1 + α)cH + (1− p)cL]f + c,

from which we obtain (57). The previous equation also implies that, for a sufficiently
small c, LP (RD/p,m

I∗
B , G

I∗
B ; pu) < ψmI∗

B [p(1 + α)cH + (1− p)cL]f and, hence, mI∗
P,u = 0.

Using Lemma 26 and 23, we obtain (α− (1+α)f+η)cL < RD/p = minRI∗
B ≤ supRI∗

B =

(1− f)αcH . By Lemma 30 we have GI∗
P,h(·) and GI∗

B (·) are strictly decreasing in [RD/p, (1−
f)αcH ] because (1 − aI∗)mI∗

P,u = 1. Further note ma∗ = aI∗ and Ga∗
P (·) = GI∗

P,h(·). Hence,
the rest of the proof is identical to the proof of Proposition 4 with aI∗ replacing m∗P , GI∗

P,h

replacing G∗P , and GI∗
B replacing GI∗

B . In particular, from LP (R,mI∗
B , G

I∗
B ; ph) = mI∗

B [p(1 +

α)cH + (1− p)cL]f + c
ψ

we obtain (58).
We then need to compare mI∗

B with m∗B from Proposition 4. Let

MC(x; c) :=
R̄− xRD/p− (1− x)(η − f)cL − [(1 + α)xcH + (1− x)cL]f + c/ψ

(1− x)R̄− (1− ph)(η − f)cL − [(1 + α)xcH + (1− x)cL]f

and notice mI∗
B = MC(ph; c) and m∗B = MC(p; 0). Taking the derivative for c = 0, we have

dMC(x; 0)

dx
=

[R̄− ηcL](R̄−RD/p){
(1− x)R̄− (1− ph)(η − f)cL − [(1 + α)xcH + (1− x)cL]f

}2 < 0

because R̄ ≥ RD/p > ηcL and R̄ < RD/p. Hence, for a sufficiently small c, mI∗
B =

MC(ph; c) < MC(p; 0) = m∗B.

D.11 PROOF OF COROLLARY 3

We start by making a preliminary observation. Specifically, we observe that, if R ∈
[R̄, (α− (1 + α)f + η)cL], LP (RD/p,mB, GB; p) is decreasing in mB. Note

LP (R,mB, GB; p) = mBpGB(R)(R−R̄)+(1−mB)[R+(1−p)fαcL−R̄]+[(1+α)pcH+(1−p)cL]f.

In this case,

pGB(R)(RD/p− R̄) ≤ p(RD/p− R̄) < RD/p− R̄ + (1− p)fαcL
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and thus, LP (R,mB, GB; p) increases if mB declines.
We then consider parameters satisfying I.B2 with V c > RD/p. Note that, by comparing

V and V c from Propositions 3 and 7, we also have V ≥ V c > RD/p. In this case, aI∗ ∈
(0, 1), by Proposition 7. Hence, the platform’s profits are

L((α−(1+α)f+η)cL,m
I∗
B , G

I∗
B ; p) < L((α−(1+α)f+η)cL,m

∗
B, G

I∗
B ; p) = L((1−2f+η)cL,m

∗
B, G

∗
B; p)

The inequality comes from the fact that mI∗
B > m∗B and the preliminary observation we

made above. The equality follows from GI∗
B ((α − (1 + α)f + η)cL) = G∗B((α − (1 + α)f +

η)cL) = 1. Hence, the platform earns lower profits with the option to acquire information.
In case I.C, the platform’s profits are mI∗

B [(1 + α)pcH + (1 − p)cL]f , whereas, without
the option to acquire information, its profits are m∗B[(1 + α)pcH + (1 − p)cL]f . Because
mI∗
B < m∗B by Proposition 8, the platform earns lower expected profits when it has the

option to acquire information.
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