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Abstract

This study examines whether the sovereign credit market integrates information on
coastal flooding and sea level rise (SLR) hazards. Using credit default swap spreads as
measures of credit quality, I find that medium- to long-term risk for sovereigns with a
significant portion of their population vulnerable to ex-ante coastal flooding increases
in response to climate summit news. Additionally, I document that the market asyn-
chronously incorporates changing vulnerabilities of regions into its risk assessment with
such news. In- and out-of-sample predictability tests suggest that the market lags in
integrating adverse trends in exposure under projections of SLR and population growth,
indicating a lack of attention to complex climate information. Finally, I demonstrate
that these projections have historically been inaccurate, leading to mispricing.
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Approximately 230 million people currently live one meter above high tide, making them
vulnerable to storm surges and tidal disasters (Kulp and Strauss, 2019). As seas rise and
coastal populations expand, the risk of large-scale flooding intensifies for affected nations.
Financial institutions have recognized the potential national economic impact of these haz-
ards (FSB, 2020), prompting the question addressed in this paper—are risks stemming from
coastal flooding and sea level rise (SLR) incorporated into the sovereign credit market?
Understanding vulnerability is crucial as credit-impaired countries may face limited debt is-
suance capability to address the effects of climate change, and unaccounted factors can lead
to financial instability for market participants when climate risk materializes (Carney, 2015).

Studying market responses to these phenomena is challenging due to the limited time
series variation of coastal surges and the slow-moving nature of SLR vulnerability. There-
fore, I isolate an information channel, showing that the credit risk of countries exposed to
ex-ante coastal flooding hazards increases with news regarding international climate sum-
mits.1 This novel finding reveals that the market integrates publicly available information
regarding flooding vulnerability, correctly differentiating between regions that are suscepti-
ble. Confirming the role of attention in embedding climate risks into spreads is a prerequisite
to evaluating whether the market considers more complex information sets, such as long-term
exposure trends influenced by SLR and demographic changes. I find that investors are slow
to integrate climate and demographic projections—which have proven unreliable compared
to observed data—resulting in a mispricing of risks.

Sovereign risk is assessed using credit default swap (CDS) spreads, which offer several
advantages over bonds: (i) CDS instruments serve as insurance contracts that hedge against
default risk, (ii) they have standardized contracts over multiple time horizons, facilitating
easy comparison across countries (Augustin et al., 2020), (iii) they more rapidly reflect new
credit information (Gyntelberg et al., 2018), and (iv) they tend to be more liquid than the
underlying bond (Mullin and Bruno, 2020). For the empirical analyses, I use one-month
changes in 1-, 5-, and 10-year spreads for 59 sovereigns from January 2010 to November 2019
to derive credit protection returns, similar to Hilscher et al. (2015).2 This approach enables
me to test whether risks are integrated with attention and to identify the relevance of the
hazard across the term structure.

I begin by presenting evidence that the marginal effect of a one-standard deviation
increase in global attention is related to a 69 and 80 basis point increase in the 5- and 10-
year CDS returns of sovereigns exposed to coastal flooding hazard. In contrast, there is no

1I follow others, e.g., Engle et al. (2020), assuming that news articles offer information on climate change
and increase the saliency of potential risks.

2This period is selected post the CDS Big Bang and the Global Financial Crisis, as there is evidence of
sea level rise (SLR) pricing in other markets (Goldsmith-Pinkham et al., 2023).
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significant relationship between the less exposed sovereigns and credit risk across the term
structure of spreads. To put this into perspective, I compare the economic magnitude to the
results from the no-arbitrage model of Doshi et al. (2017). There, a one-standard-deviation
increase in the unemployment rate of their sample of countries has a comparable rise of 1.77%
in spreads. In aggregate, the results illustrate that the market is pricing coastal flooding
hazard contemporaneously with greater attention, particularly for longer-term spreads.

To obtain these estimates, I measure the percentage of country populations living in
the 1-in-100 year floodplain, as the approach has been used in the economics and scientific
literature (see Hallegatte et al. (2013); Dell et al. (2012)), is available historically, and is
forecasted under different climate scenarios.3 I acquire data from Vafeidis et al. (2011), a
paper which produced the most accurate information of flooding vulnerability that the credit
market would have access to at the time.4 I define this measure as sovereign susceptibility to
extreme sea level (ESL) hazard—a term commonly used in contemporary science (Gregory
et al., 2019). Using this metric to sort the sample of sovereigns into exposure quartiles, I
select the top quartile—fourteen sovereigns—as the group “more exposed” to the hazard and
compare it to the bottom two quartiles, the “less exposed” group. Then, I conduct panel
regressions in which I project CDS returns on a set of control variables, while also including
an interaction term between an attention index of interest and the exposure indicator.

I use the international summits news index developed by Faccini et al. (2023) as a
proxy for information on coastal flooding and SLR becoming more salient and subsequently
influencing the credit market. I argue that the index represents “bad news” about the econ-
omy related to climate change (Engle et al., 2020)—this is because news emanating from
these meetings, such as commitments and goal-setting, lack accountability and therefore also
credence among investors (Hsu et al., 2015). Scientific reports detailing the extent of coastal
flooding and SLR are also frequently discussed, such as Allison et al. (2011), which was
written before COP15. Considering these factors, I assume that the rise in media attention
surrounding international summits promulgates these hazards to the broader market.

I further confirm the relationship with six auxiliary tests. First, using an event study,
I determine that sovereigns more vulnerable to ESL hazard increased their long-term credit
risk during the lead-up to the Paris Agreement, in comparison with less-exposed counter-
parts. Second, I obtain data on CDS notional values from the Depository Trust and Clearing
Corporation, similar to Oehmke and Zawadowski (2017), and find that weekly net notional
amounts of sovereign CDS contracts are positively associated with attention to climate sum-

3A “1-in-100 year” flooding event has a 1% chance of occurring in any given year.
4100-year floods are a commonly used hazard threshold in economics and climate literature (see Gibson

and Mullins (2020) and Hallegatte et al. (2013)). I also crosscheck flood protection standards from Lincke
and Hinkel (2018) and set exposure to zero if a country is protected from a 1-in-100-year flooding event.
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mits. Third, I use the reduced-form sovereign credit model developed by Pan and Singleton
(2008) to estimate the risk premium from the term structure of spreads. The fundamental
idea is that the increase in attention is associated with an unexpected rise in the probability
that a sovereign suffers a negative credit event—in this case, a devastating coastal flood caus-
ing a missed interest payment or a debt restructuring. After the decomposition, I conduct
regressions to confirm that risk premiums follow a similar pattern to the main results. Fourth,
I use country-level Google search volumes related to United Nations Climate Change confer-
ences as an alternative measure of attention. Fifth, I show that the results are unchanged
after controlling for liquidity. Finally, including other climate risk factors does not alter the
findings. This set of results is crucial as it affirms the face validity of measuring vulnerability
with population exposure as well as the synchronous mechanism between attention and risk
pricing in the CDS returns.

Next, I investigate if the market considers a more complex information set, the changes
in coastal flooding exposure—∆ESL hazard. The risk is material as the long-run com-
pounding effects of coastal population growth and SLR exponentially increase the severity
and likelihood of damaging floods (Taherkhani et al., 2020). This is measured in two ways:
(i) by evaluating observed population growth trends, and (ii) by using forecasts of SLR and
population growth developed in Vafeidis et al. (2011). To assess changes in vulnerability,
I estimate each sovereign’s annual rate of change in susceptibility by regressing its popu-
lation vulnerable to 1-in-100-year floods on a linear time trend. These coefficients reveal
considerable cross-sectional variation, with some countries showing reduced risk due to in-
land population shifts. Furthermore, observed and projected data yield markedly different
values.5 To denote exposure, I select countries vulnerable to ESL hazard and further split
them into groups according to the sign and magnitude of estimate rates obtained from either
using observed or projected climate and population data. Once again, the exposure indicator
is interacted with an index to understand the relationship between CDS returns and global
attention to climate change and international summits.

The empirical results indicate no statistically significant difference in 5- or 10-year CDS
returns between more vulnerable and less vulnerable sovereigns, whether using observed or
projected data. What market frictions might be preventing differentiation between countries
with adverse or more favorable SLR exposure trends? A behavioral channel, as developed in
Hirshleifer (2001), would suggest that investors and markets can be inattentive to signals and
make systematic errors, particularly when information is sparse. In this setting, coastal surges

5The reason for the disparity lies in the assumptions held by demographers and climate scientists, as the
widely accepted scientific consensus used to be that populations would grow considerably faster in coastal
regions than in the interior, which has not materialized. Observed trends, rather, reveal that many regions
developed faster inland than on coasts.
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pose a long-term threat to vulnerable sovereigns, and during periods of elevated attention,
investors underreact because of the burden involved in processing information such as publicly
available demographic trends or forecasts (DellaVigna and Pollet, 2007). Behavioral theories,
however, require that investors are inattentive enough that return predictability is substantial
when compared to rational models (Van Nieuwerburgh and Veldkamp, 2010).

To test whether the market is inattentive, I perform both in- and out-of-sample (OOS)
predictability regressions. I find that the monthly OOS mean squared forecast error of a 54-
month rolling window estimation, calculated in comparison to the rolling mean (Campbell
and Thompson, 2008), produces an R-squared of 3.22% for more vulnerable sovereigns when
using climate projections. Here, the positive and large OOS R-squared values indicate that
market participants are sluggish in incorporating ∆ESL hazard, confirming a theory of
underreaction. In contrast, for the sample of sovereigns suffering from greater ∆ESL hazard
based on observed trends, the out-of-sample R-squared is -0.18%. Taken together with the
results of the panel regressions, the overarching findings substantiate three conclusions about
the sovereign credit market: (i) a premium is ascribed to coastal flooding exposure, (ii)
∆ESL vulnerability is slow to be incorporated, and (iii) risks are mispriced as the market
favors historically erroneous climate model projections over realized trends.

This study contributes to the active body of research documenting the relationship
between climate change and sovereign risk. To the best of my knowledge, no previous studies
have investigated whether sovereign credit markets incorporate ex-ante coastal flooding and
SLR hazards. In this paper, I uncover a novel exposure metric that measures the exposure of
sovereigns to coastal flooding and SLR, which credit markets appear to strongly respond to
during periods of attention. Others, such as Klusak et al. (2023), provide assessments of how
sovereign ratings may decrease under various climate scenarios based on GDP loss. Mallucci
(2022), Boehm (2022), and Beirne et al. (2021) use ex-post disasters such as temperature
shocks to reveal reductions in sovereign bond yields.

Recent scholarship that studies the nexus of SLR and risk has almost exclusively focused
on either the municipal bond or property markets. I add to this literature by documenting
that the risks are incorporated heterogeneously across a global financial instrument with
robust external validity. Painter (2020) and Goldsmith-Pinkham et al. (2023) both show
an association between flood hazard and municipal bond credit risk, although with more
muted effects in comparison to the premium found in this paper. In the property market,
some (Murfin and Spiegel, 2020) fail to detect any relationship between property prices and
vulnerability while others (Baldauf et al. (2020); Bakkensen and Barrage (2022); Ilhan (2020);
Nguyen et al. (2022)) show how heterogeneous beliefs and attention can impact prices. This
study is nuanced in that it finds evidence to support both streams of the debate, documenting
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how market frictions lead to an underreaction to publicly available information.
A concomitant contribution is that attention, rather than climate shocks, can serve

as a mechanism for the credit market to price climate risk, echoing findings by Choi et al.
(2020), Engle et al. (2020), and Ardia et al. (2020). These articles, however, typically brush
aside the fact that investors can underreact to news about climate change—a key outcome
of this investigation.6 This evidence suggests that the market distinguishes between relevant
pieces of climate information, albeit slowly. Hong et al. (2019) present evidence of investor
underreaction to country-level trends in droughts. Conversely, Schlenker and Taylor (2021)
demonstrate that financial markets integrate temperature projections.

The remainder of the paper proceeds as follows. Section 1 presents a systematic devel-
opment of the hypotheses. Data collection, sample creation methods, and exposure vulner-
ability are described in Section 2. I then present the empirical results relating attention to
sovereign CDS return in Section 3.1 and discuss market efficiency in Section 3.2. I conduct
robustness checks in Section 4 and conclude in Section 5.

1 Hypothesis Development

I outline a basic asset pricing framework to organize hypotheses that guide the empirical anal-
yses aimed at understanding the relationship between sovereign credit risk, coastal flooding,
and SLR. Sovereign CDS spreads are useful for studying climate phenomena as they mea-
sure a sovereign’s aggregate financial health and credit default risk. The instrument allows
a protection buyer to purchase insurance against a contingent credit event on an underlying
reference entity by paying an annuity premium (spread) to the protection seller. Sovereign
CDS are also useful for investigating whether the market considers ESL and ∆ESL hazards
as related to short, medium, or long term risks because contracts are standardized across the
term structure of spreads.

Consider a simplified reduced-form pricing of credit risk where the likelihood of default
is governed by a default-intensity process λ. Assuming that there has been no earlier default,
the probability of default within [t, t+ dt) for sovereign i can be defined as:

P [τi < t+ dt | τi ≥ t,Ft] = λi(t)dt (1)

where τi denotes the default time and λi(t) depends on all publicly available information
to investors at time t (t = 1, . . . , T ) represented by the filtration process Ft (Duffie and

6Exceptions include Gande and Parsley (2005), Kim et al. (2015), and Cathcart et al. (2020) who have
investigated the impact of news in sovereign credit markets. Cathcart et al. (2020), for example, finds that
sovereign credit spreads underreact to general media sentiment.
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Singleton, 1999). Intuitively, the intensity provides a “local” default rate which can be used
to price sovereign CDS contracts. Using the definition of default intensity, the valuation for
newly written sovereign CDS insurance contract for maturity m, can be approximated as the
risk-neutral, Q, expectation of its discounted payoff:

SCDSi(m, t) = LQE
[
λi(t)

Q | F(t)
]

(2)

where LQ is the fractional recovery of the face value of the contract.
I assume that the default intensity is dependent on an observable set of relevant covari-

ates that are either sovereign specific or global. In this setting, the likelihood of default for
a sovereign grows with the proportion of its population that is vulnerable to coastal flooding
and SLR hazard.7 The risk-neutral default intensity can then be stated in the affine form:

λi(t)
Q = e(α+β·Ui,t+θ·Vt+ϕ·Ct−h), (3)

where Ui,t is a vector containing sovereign specific covariates and Vt are those that are com-
mon. Ct−h is a vector of covariates proxying news regarding climate, coastal flooding, and
SLR related topics. Here, h (h = 0, . . . , H) is a lag factor for how quickly this information
is incorporated into CDS spreads and is critical for the developing the hypotheses. α, β, θ,
and ϕ are functions of the information included in the contemporaneous and lagged state
variables.

The base hypothesis is motivated by previous work on the time-series variation of
climate news and the pricing of assets vulnerable to slow-moving hazards (Giglio et al.,
2021). In this case, information regarding coastal flooding hazard becomes more salient with
news media surrounding climate summits. The assumption, similar to others (Kölbel et al.
(2024); Ilhan et al. (2021)), is that summits increase the perception and saliency of climate
risks, which in turn increase the cost of protection for those sovereigns that have a greater
proportion of their population vulnerable to coastal flooding. Information on the exposure of
sovereigns to coastal flooding (i.e., ESL exposure) is prevalent, publicly available, and does
not require specialized knowledge of climate forecasts or trends. Since the information is
relatively straightforward to process for investors, this suggests that h will be close to zero and
that C will be integrated into prices contemporaneously with news. Furthermore, considering
that the probability of a flooding event is unlikely in any given year but compounds over
time, ESL hazard can be deemed as a medium- to long-term hazard. Following this thread,
I propose the following prediction:

7As stated earlier, Painter (2020) and Goldsmith-Pinkham et al. (2023) show how SLR can impact
regional economies. Klusak et al. (2023) considers how sovereign ratings may decrease under forecasts of
climate physical risk adjusted GDP which includes SLR and coastal flooding risks.
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Hypothesis H1: Greater news attention to climate summits is contemporaneously related
to higher CDS spreads for sovereigns exposed to coastal flooding.

Next, I outline how the market may consider incorporating longer-term risks, i.e., the
changes in ESL hazard. This risk is largely dominated by demographic and SLR trends as
they will act to exponentially increase the odds and severity of coastal flooding disasters
disaster (Taherkhani et al., 2020). The information, however, is difficult to process as it
requires specialized knowledge of climate and demographic projections. DellaVigna and
Pollet (2007), for example, find that investors are short-sighted and neglect information on
long-term demographic changes. This processing inefficiency implies that h is greater than
zero, dampening the signal. The information is only fully integrated in the following periods
conditional on default not occurring. This observation leads to the second prediction:

Hypothesis H2: During periods of elevated news, the sovereign credit market is slow to
price long-term demographic and climate hazards, especially when information is complex.

This prediction implies that CDS spreads are predictable when new climate information
is particularly complex and difficult to process, i.e., when h > 0. This suggests that lagged
values of news proxies should positively predict CDS spreads. Empirical evidence from Chang
et al. (2022) and Wang et al. (2021) point to a systematic underreaction in spreads when
there is a change to the total mix of information, supporting this conjecture.

2 Data and Hazard Construction

In Section 2.1, I discuss the financial data used in the empirical exercises. In Section 2.2, I
explain the attention index used for the analyses. I describe in detail the methodology for
calculating ESL and ∆ESL hazard in sections 2.3 and 2.4.

2.1 Financial Data

The sovereign CDS market is a practical setting for investigating the research question be-
cause the spread responds rapidly to changes in credit events (Longstaff et al., 2011). I
acquire monthly sovereign CDS spread data from Datastream for 81 distinct sovereigns. The
spread data covers the 1-, 5-, and 10-year tenors, denominated in USD, with the underly-
ing as senior unsecured debt. The CDS spread levels are used to create monthly percent
changes for each country to obtain sovereign CDS returns. I restrict the sample to the time
period of January 2010 through November 2019 for three reasons: (i) previous research by
Goldsmith-Pinkham et al. (2023) has shown limited evidence of climate hazard being priced
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before 2010, (ii) to mitigate the impact of the global financial crisis, and (iii) to account for
the post-CDS “big bang” era that standardized coupon and default-contingent payments. I
limit the sample of sovereign CDS returns to only include sovereigns with non-missing values
and those that contain more than 90% of observations as non-zero.8 These constraints reduce
the sample size to 59 sovereigns. The remaining regions used in this study are presented in
Table 2. The sample consists of sovereigns from Europe, Latin America, Asia, and Africa.

Prior literature by Augustin (2018) and Dieckmann and Plank (2012) find that both
country and global factors are drivers of changes in sovereign CDS spreads. I use their
work as the basis for the economic and financial variables I gather at the monthly frequency
from Datastream: the S&P 500 excess returns, changes in the 5-year US constant maturity
Treasury yield, changes in the CBOE VIX volatility index, changes in the exchange rate
relative to USD, country excess stock market returns from MSCI, yearly debt-to-GDP ratios,
and yearly credit ratings from Oxford Economics. For the few countries that do not have their
own MSCI index, I use the regional MSCI index instead. The European countries Cyprus,
Latvia, Malta, Slovakia, and Armenia use the MSCI Emerging Market Index. The local
market returns for the Dominican Republic are substituted with the MSCI Frontier Markets
Latin America and Caribbean Index. The yearly credit ratings are transformed into five risk
buckets for use as a categorical control variable: [0, 4], (4, 8], (8, 12], (12, 16], and (16,20].
Finally, the yearly debt-to-GDP ratio is cubically interpolated to the monthly frequency. The
summary statistics for all financial variables used in the research are provided in Table 3.

2.2 Attention Index

The predictions outlined in Section 1 posit that greater news attention to climate hazards
could influence sovereign CDS equilibrium prices. Heightened attention to climate hazards
is already recognized to be a driver of prices in the bond (Painter, 2020), stock (Choi et al.,
2020), and housing markets (Giglio et al., 2021). In this context, SLR and coastal flooding
risks for affected sovereigns should become increasingly salient to the credit market as news
and information are disseminated during international climate summits. To capture the
market’s awareness of climate vulnerability, which fluctuates over time, an index measuring
the content of media articles can be used as an indirect method of pricing these risks.

The reason I highlight international summits is that these events bring global attention
to climate risks such as storm surges and SLR, amplifying the reach of climate related infor-
mation. For example, delegate Naderev Sano held a public hunger strike during the Warsaw
Climate Conference to raise awareness of the devastating impact of Hurricane Haiyan on

8The spreads of some sovereigns are relatively stable, and the returns therefore contain a large number
of zero values.

8



his representative country and hometown, Tacloban in the Philippines.9 The 1061 missing,
28,689 injured, and 6,300 dead were largely attributable to the storm surges caused by the
cyclone (Lagmay et al., 2015). Another example was when Tuvalu’s foreign minister de-
livered a speech while standing knee-deep in the ocean during the Climate Conference in
Glasgow. This striking gesture was meant to emphasize the effects of climate change and
SLR on low-lying regions, and the speech was rapidly disseminated throughout the media.10

Although the events aim to coordinate interventions to address a changing climate, either by
way of adaptation or mitigation, greenhouse gas emission reductions pledged by industrial-
ized nations typically fall far short of the reductions needed by 2030 to keep the world within
a disruptive 2◦C warming scenario Vandyck et al. (2016).

To represent global attention to climate summits, I adopt the news index developed
by Faccini et al. (2023). They uncover various factors by performing a textual analysis
using Latent Dirichlet Allocation from a corpus of 33,735 news articles pertaining to “climate
change” or “global warming” from Reuters. The machine learning method classifies the news
corpus into categories dependent on the frequency of set words appearing, as well as the share
associated with a given topic. Specifically, I choose the topic related to international climate
change summits, illustrated in Figure 1, as it represents events that shift the attention of
investors globally. The topic consists of words such as Copenhagen, summit, protocol, Kyoto,
and agreement—all words relating to climate summits. Further, Dickey-Fuller tests confirm
that the index is stationary, supporting its validity for time-series analysis.

While no news index can perfectly capture the news digested by the financial market, the
international summits index has elements making it a strong candidate for this use case. Ardia
et al. (2020) uses U.S.-news-based sources such as the Los Angeles Times and the Washington
Post to develop their sentiment-based indices. The novel work of Engle et al. (2020) proposes
a U.S.-centric metric of climate risk that may capture other irrelevant information. Faccini
et al. (2023) use 13 million news articles published by Reuters, a global news agency directly
connected to the financial information platform Eikon. The news provider is international and
therefore salient for sovereign CDS market participants—fitting the setting of the empirical
design. This application also expands the use of the index from the original paper as they
only test whether it has relevancy within the U.S. equity market. Furthermore, the climate
summit index does not attempt to gauge sentiment as in Ardia et al. (2020); instead, the
measure captures the intensity of the topic reported for a given period. A sentiment index
focuses on the emotional tone conveyed in news articles, aiming to quantify whether the

9From the CNN article, “Philippines delegate refuses to eat until action on climate change madness”,
published on November 12, 2013.

10From The Guardian article, “Tuvalu minister to address Cop26 knee deep in water to highlight climate
crisis and sea level rise”, published on November 8th, 2021.

9



sentiment expressed is positive, negative, or neutral. Intensity, on the other hand, measures
the strength or magnitude of the discussion surrounding international summits.

While Faccini et al. (2023) do not differentiate positive from negative news, I consider
increases in the climate summit index as “bad news” due to the general uncertainty and
lack of material commitments generated during climate summits (Hsu et al., 2015).11 Prior
literature also find that summits such as the one leading up to the Paris Climate agreement
increased credit spreads, suggesting increased risk perception in the CDS market Kölbel et
al. (2024). This interpretation aligns with Engle et al. (2020), who expect attention to rise
when there is cause for concern, indicating an adverse effect on an economy. One caveat
is that these factors capture media attention explicitly, rather than investor attention (Da
et al., 2011). An increase in the intensity of climate news does not necessarily mean that
investors will read the articles. Nonetheless, there is strong evidence that the level of news
coverage is a suitable proxy for the level of attention investors pay to climate change.

2.3 Construction of Extreme Sea Level Hazard

Since the first objective of this paper is to understand whether the market incorporates
coastal flooding, this section aims to measure exposure in a unsophisticated manner—as it
will be more likely to be incorporated into financial markets (Hirshleifer, 2015). I choose to
use population as a metric for vulnerability as the approach has been used in other contexts
in the economics (Dell et al., 2012) and climate science (McMichael et al., 2020) literature.12

To compute the ESL hazard for the sample of 59 countries, I use estimates of the
percent of total population living in the 1-in-100-year floodplain in the year 2000 according to
Vafeidis et al. (2011) and Neumann et al. (2015).13 These studies undertake a comprehensive
assessment of the current and future exposure of land and population to coastal flooding on
national and global scales. They generated estimates of the land area and population (as of
the 2000 census) within the 1-in-100-year coastal floodplain. To measure the exposure, the
authors use storm surge heights from the Dynamic and Interactive Vulnerability Assessment
(DIVA) and population data from the Global Rural-Urban Mapping Project (GRUMP). Both
databases were widely adopted in order to measure vulnerability to coastal flooding and SLR
hazard in the post-2000 period (e.g., Dasgupta et al. (2009)). Moreover, these evaluations
gained significant traction and validation in the scientific community, as evidenced by the

11Prominent climate scientists, such as James Hansen, have stated that the policies enacted during inter-
national summits are inadequate to curb the effects of climate change.

12In the economics literature population exposure is also useful as a metric as it has direct implications
on aggregate output and labor productivity of the economy.

13The estimates of exposure were initially available in 2011 and then later published in an academic journal
in 2015.
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numerous citations of Neumann et al. (2015).
For this study, I use the exposure metric of a 1-in-100-year flooding event—an incident

that has a 1% chance of occurring each year—to assess land vulnerable to coastal flooding,
i.e., ESL hazard. This return period of flooding is chosen because it is commonly used by
climate scientists, such as Hallegatte et al. (2013), and is in turn applied in the finance
literature (Painter, 2020). Furthermore, whether a country is protected against flooding is
gauged using the 1-in-100-year threshold to determine protection status (Vafeidis et al., 2011).
Consequently, I obtain current SLR protection standards for the countries in the sample from
Lincke and Hinkel (2018). I set the exposure for Hong Kong, Israel, Italy, Qatar, Bahrain,
and the Netherlands to zero as they are protected against such disasters.

This cutting-edge climate analysis from the first decade of the 2000s produces a rich
heterogeneity in the sample. Table 2 shows the percentage of each country’s population living
in the 1-in-100 year floodplain, which I refer to as ESL hazard. The table is sorted so that
the most vulnerable countries, such as Vietnam, Belgium, and Egypt, are at the top left,
with decreasing vulnerability as you move down the table. The right panel is a continuation
of the exposure data, also sorted from top to bottom according to exposure. The bottom
section of the table includes countries that are protected against these 1-in-100-year coastal
floods. I also sort countries into quartiles and quintiles based on their percent of exposure;
these can be identified as the second and third column of each panel in Table 2.

For the empirical identification strategy, I use a methodology that sorts sovereigns
into “more-” and “less-exposed” groups, rather than relying on raw exposure numbers. This
sorting is convenient because, while Table 2 accurately replicates the information available
to investors at the time, investors might use alternative data to derive their own exposure
estimates for a given sovereign. As a result, sorting proves more effective, as the absolute
numbers are less crucial than the relative positioning among countries. This approach aligns
with recent climate literature; according to Muis et al. (2017), although absolute exposures
have changed between 2004 and 2017, relative rankings have remained largely stable. I
provide evidence of this in Section 4.2, showing that using alternative data sources does
not dramatically alter the classification of the most exposed sovereigns, specifically those in
quartile 4. Essentially, this sorting technique is intended to alleviate concerns of measurement
error in the exposure calculation and allows for the differentiation of sovereigns based on
vulnerability, rather than on a perfect understanding of the market’s perceptions of exposure.

2.4 Construction of Changes in Extreme Sea Level Hazard

Next, I measure whether a country’s vulnerability to coastal flooding is increasing or decreas-
ing as a result of population growth and sea level rise (SLR)—what I term ∆ESL hazard. I
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calculate country-specific trends in vulnerability using two separate methods: (1) evaluating
forecasted trends based on SLR and population forecasts developed by Vafeidis et al. (2011)
and Neumann et al. (2015) and (2) extrapolating out historical or observed exposure esti-
mates based on data from 2000 to 2010. In this section, I describe how I derive both observed
and forecasted ∆ESL hazards and highlight the substantial differences between them.

I focus on a subset of sovereigns vulnerable to ESL hazards, specifically those in the
fourth and fifth quintiles as indicated in Table 2. I select this sample because population
growth and SLR will not meaningfully increase vulnerability to coastal flooding unless a
country already has a baseline exposure to ESL hazard. Therefore, the first, second, and
third quintiles are not included when assessing whether the credit market incorporates ∆ESL

hazard.
The prevailing assumption in early 21st-century research on coastal flooding was that

coastal populations would grow more quickly than inland populations (Nicholls et al., 2008).
This assumption was based on the rapid population growth observed in the coastal zones of
Bangladesh and China and was extrapolated globally. To represent this belief in my empirical
analysis, and to maintain consistency with the previous section, I once again utilize data from
Vafeidis et al. (2011) and Neumann et al. (2015). Instead of using their baseline exposure
estimates for 2000, I use their projections of the percentage of the population exposed under
scenario-driven assessments. The projections account for future coastal population exposure,
considering narrative scenarios of migration and SLR, as developed by the UK Government’s
Foresight project.

The projections include sovereign populations exposed to 1-in-100-year coastal flooding
over 30-year periods beginning in 2000 under four socio-economic scenarios (A through D), all
of which assume faster population growth on the coast than in the interior.14 The Foresight
scenarios A and C anticipate high population growth, while scenarios B and D predict low
to medium global population growth. These scenarios also assume a SLR of 10 cm by 2030,
which would subsequently expand the area of the 1-in-100-year floodplain and increase the
number of people affected.

In order to evaluate whether a sovereign is forecasted to be increasing or decreasing
in exposure to coastal flooding, I regresses the yearly percent exposed (SLRE) for each
sovereign s on a linear time trend γ for the year t as follows:

SLREs,t = as + γst+ ϵs,t, (4)
14While more recent literature by Merkens et al. (2016) has corrected this assumption by also accounting

for rapid inland population growth, I maintain that the earlier theory was well-accepted by both the scientific
community and the credit market.
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where the estimated γ values represents the rate of change in the percentage of the population
exposed per year.

To remain consistent with the prior Section, I use the base year 2000 assessment and
the four population projections under the four scenarios available for the year 2030. I then
estimate a weighted least squares regression comparable to the regression outlined in Equation
4. Although the Foresight project offers no probability weighting for the scenarios, I assume
equal weighting of 0.25 for each of the scenarios. Based on these weightings, I estimate the rate
of change in coastal flooding exposure, γ, for the 23 sovereigns with a baseline vulnerability
to ESL hazard. Figure 2 illustrates the values of the estimated γ coefficients, sorted from
least to greatest, when using climate and population forecasts. To mitigate concerns of
measurement error, I use a sorting methodology and split sovereigns by the median value of
γ to obtain the “more-” and “less-exposed” groups. These groups are visualized above and
below the black dashed line in Figure 2.

Next, I calculate the observed trends in exposure, given that the credit market may
prioritize real data over projections. The observed ∆ESL is determined using yearly gridded
population data from 2000 to 2010 provided by WorldPop and the Global Tide and Surge
Reanalysis (GTSR) dataset from Muis et al. (2016) which measures 1-in-100 year flood
inundation in centimeters. These datasets are chosen to reflect the information available
information to the market before the estimation period. I use the GTSR dataset because
access to the original DIVA dataset is now restricted; however, Muis et al. (2017) find that
geographic patterns of extreme sea levels in the two datasets show qualitative agreement.
The data contains the expected 1-in-100-year flooding extent in the form of a gridded raster
file, at a spatial resolution of 30" × 30" (1 × 1 km at the equator). Their methodology relies
on two hydrodynamic climate models that simulate the rise in water during storm surges
and tides. The methods account for wind speed, atmospheric pressure, and elevation, but
disregard existing coastal protection structures.

I also use the WorldPop gridded population database, available yearly from 2000 on
to 2010, which uses a consistent methodology across time making it useful for time series
analysis. This reflects the type of information the market would have had access to if they
kept up to date with demographic trends. Archila Bustos et al. (2020) finds that WorldPop
performs well compared to other datasets and has lower prediction error and better accuracy
than alternatives like LandScan.15 Using this dataset, I overlay it with the GTSR dataset
and apply a minimum threshold of 30 cm as a cutoff to designate a 1 × 1 km grid as exposed
to ESL hazard and calculate the percentage of the population exposed in a country. I then

15Landscan, for example, changes its methodology every year, making it unsuitable for time series appli-
cations.
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regress the yearly percentage exposed (SLRE) for each sovereign s on a linear time trend γ

for the years 2000 through 2010. Figure 3 shows the split of countries based on the estimated
γ values.

As an illustrative example of spatial exposure calculation, I present the logarithmic
population distribution of Vietnam in 2010, derived from the WorldPop dataset, in the left
panel of Figure 4. This figure indicates a high population density around Ho Chi Minh City.
The right panel of Figure 4 depicts the population residing in areas with more than a 30 cm
flooding vulnerability threshold, underscoring that a significant portion of Vietnam’s popu-
lation is concentrated in low-lying coastal regions. This methodology is useful in discerning
the temporal dynamics of population growth for countries vulnerable to flooding.

This approach allows for the separation of ESL and ∆ESL hazard, where prior liter-
ature typically used global mean sea level rise for their analysis (Goldsmith-Pinkham et al.
(2023); Bernstein et al. (2019); Baldauf et al. (2020)) or assumed that historically obtained
∆ESL is indicative of future exposure (Murfin and Spiegel, 2020). The heterogeneous risk
should be reflected in sovereign CDS spreads if investors are aware of climate model pro-
jections and the costs of future coastal surge disasters. Leveraging this subtle variation, I
investigate whether the credit market correctly distinguishes between countries with decreas-
ing or increasing vulnerability to coastal flooding.

3 Empirical Results and Discussion

3.1 Sensitivity to Attention

3.1.1 Extreme Sea Level Hazard

To test whether the sovereign credit market incorporates ESL hazard with attention, i.e., the
first hypothesis, I use sovereign CDS returns to capture changes in market risk. Akin to the
definition from Hilscher et al. (2015), monthly percent changes to 1-, 5-, and 10-year credit
returns are calculated for each sovereign, i, as:

RSCDS
i,t+1 =

∆si,t+1

si,t
. (5)

To assess the contemporaneous time-series dynamics between global attention (Attentiont)
and returns, the empirical estimation strategy relies on panel regressions of sovereign CDS
returns on explanatory variables with an indicator term, Exposure, that denotes whether
a country is vulnerable to ESL hazard. Specifically, Exposure is assigned a value of 1
for countries deemed exposed and 0 for those considered less vulnerable. This indicator is
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subsequently interacted with Attention to estimate the relationship between attention and
sovereign CDS returns for both exposed and unexposed country cohorts. I include regional
clustering to account for serial correlation of the error term within each sovereign and win-
sorize returns at 1% (Abadie et al., 2017). The estimated regressions follow the format:

RSCDS
i,t+1 = α + β1(Exposurei × Attentiont) + γ∆Xi,t + ηi + ρi,ty + εi,t, (6)

for country, i, at time t. Similar to other empirical studies in this field (i.e., Longstaff et al.
(2011); Dieckmann and Plank (2012); Augustin et al. (2020) etc.) I use a comprehensive set
of base covariates, ∆Xi,t, that control for sovereign-specific and global factors that are known
to affect sovereign CDS returns. The global covariates are the change in the 5-year constant
maturity Treasury yield, the change in CBOE VIX volatility index, the FTSE World Bond
Index returns, and the S&P 500 excess returns. The local covariates include the changes in
exchange rate of the local currency to USD, changes in foreign currency reserves denominated
in USD, local MSCI excess stock returns, MSCI monthly volatility, and changes in debt-to-
GDP ratio interpolated from a yearly frequency to monthly. Although I cannot rule out
omitted variable bias affecting the estimates, the control variables should account for the
bulk of observable economic information material to sovereign CDS spread returns.

As I am interested in assessing whether global news—a variable common to all countries—
has a concurrent effect on sovereign risk, I allow for the majority of time-series variation
within each sovereign to remain (Dieckmann and Plank, 2012). The variable ηi represents
country-by-month fixed effects to capture seasonal unobserved country heterogeneity that
may affect sovereign CDS spread returns. ρi,ty represents a fixed effect obtained by trans-
forming a numerical credit-rating from Oxford Economics and mapping the series into five
“risk buckets” that control for the yearly rating of each sovereign. Overall, this specification
choice is simply a reparameterization of a fully interacted model in order to highlight the
marginal effects of the index on returns, conditional on whether a country is vulnerable to
ESL hazard, rather than the difference between groups. 16

In line with hypothesis H1, I expect the marginal effect of Attention on returns for
the more affected sovereigns to be significantly greater than zero for medium- to long-term
sovereign CDS tenors. Moreover, I expect the coefficient of interest, β1, to be significantly
greater than zero, indicating a difference between exposure groups. For this relationship
to hold, market participants must respond to the arrival of information, as proxied by the
index, and correctly differentiate between the most and least vulnerable sovereigns. To

16A fully interacted model would be RSCDS
i,t+1 = α+β1(Exposurei×Attentiont)+β2Attentiont+γ∆Xi,t+

ηi+ ρi,ty + εi,t where β1 represents the estimated difference in the effect of Attention on returns between the
two groups. The country fixed effect subsumes the need for a separate “main effect” for Exposure.
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approximate the information available to the market and mitigate measurement error in
calculating sovereign exposure, I use an identification strategy that relies on sorting. This
method exploits the differential exposure to ESL hazard found in Table 2 and discussed in
detail in Section 2.3.

Specifically, I subset the entire 59 country sample into quartiles of exposure, where the
fourth quartile contains the most exposed sovereigns, and the second and first quartiles are
the least exposed to ESL hazard. This method places the 14 most vulnerable countries into
a single “more exposed” category, and the other 30 into the “less exposed” category. I argue
that this strategy is reasonable because vulnerability is heavily skewed to the fourth quartile
and precipitously falls in the third and second quartiles.17

Reverse causation in this regression setting is unlikely to significantly bias the estimates.
It is unrealistic to believe that deteriorating sovereign CDS returns for specific sovereigns
would prompt countries to organize additional international summits. The only plausible
pathway would be if a disastrous coastal surge event occurred in the lead-up to an interna-
tional summit. Such a catastrophe could cause a short-term negative effect on sovereign CDS
returns and may lead to more media articles about the importance of the climate summit.
While the news cycle may notice such an event, it is implausible that the disaster would
dominate the news during the climate summit.

Table 4 presents the estimates from regressing the 1-, 5-, and 10-year sovereign CDS
returns of sovereigns against the attention index. The first two rows produce the marginal
effects of the index on returns, conditional on the exposure as measured by the sorting
procedure. None of the coefficients in the second row of the Table are significantly different
from zero, indicating no relationship between returns and attention for the least affected
countries. By comparison, the relationship between the news and the 5- and 10-year returns
for the more exposed sample are significant at the 5% and 1% level, respectively. Specifically,
the marginal effect of a one-standard-deviation increase in the attention index is associated
with a rise of 0.69% and 0.80% in the 5- and 10-year CDS returns of affected sovereigns. The
association between attention and the term structure of sovereign CDS spreads is found to
be upward sloping, as the increase in the 10-year spread is more economically meaningful
than the equivalent increase for the 5-year spread.

Following the regression analysis, I perform post-estimation tests to explicitly determine
whether the coefficients for the climate summits’ attention index statistically differ between
the exposed and unexposed groups. The tests yield t-statistics of 1.81 and 2.57 for the 5-
and 10-year sovereign CDS spreads, suggesting a significant difference in the coefficients at

17T-tests confirm that the resulting groups do not significantly differ in their sovereign CDS returns over
the sample period.
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the 10% and 5% levels of significance, respectively.
The magnitude of the relationship can be compared to the empirical results from the no-

arbitrage model for the valuation of sovereign CDS contracts developed by Doshi et al. (2017).
Specifically, they use the model to differentiate the relationships between common global and
local covariates and CDS spreads. In a broad sample of sovereigns from Latin America, Asia,
and the Eurozone, they find that a one-percent increase in the unemployment rate results
in a 2.9 basis point increase in spreads. Back-of-the-envelope calculations reveal that this
is comparable to a 1.77% increase in sovereign spreads with a one-standard-deviation rise
in the unemployment rate. The estimates produced in this study are roughly half the effect
size of a one-standard-deviation shock to the unemployment rate—indicating a consequential
impact on sovereign CDS returns.

Taken together, the findings provide robust evidence that sovereign credit default swap
(CDS) returns for ESL-afflicted sovereigns are contemporaneously associated with global
attention to climate summits. The estimated coefficients support Hypothesis H1, indicating
that the market perceives ESL exposure as a medium- to long-term risk during periods of
heightened attention to climate summits.

The results carry broader implications. First, they suggest that investors use the popu-
lation exposure of sovereigns to differentiate between vulnerable countries, thereby confirming
the face validity of this metric. This is a novel finding and adds to other studies that exam-
ine other climate phenomena. For instance Dell et al. (2012) utilize a population-weighted
temperature metric to examine the decline in economic activity. Second, the findings under-
score the pricing of this vulnerability in longer-term CDS tenors, which is reasonable given
that the likelihood of experiencing a devastating flood event increases over longer periods.
Third, the results demonstrate that heightened news attention increases saliency of climate
risk, extending the literature that has found similar outcomes in other assets (see Engle et
al. (2020) and Giglio et al. (2021)).

As this result is critical to study the more complex question of whether SLR hazard
is incorporated, I perform a set of robustness checks that further confirm these results. In
Section 4.1, I use an event study to reveal that sovereigns with greater vulnerability to ESL
hazards experienced an increase in long-term credit risk during the lead-up to the Paris
Agreement—a noteworthy climate summit. Section 4.2 demonstrates that using alternate
data from the 2000s yields consistent results. In Section 4.3, I decompose CDS spreads
into a risk premium component for each country using the affine sovereign credit risk model
of Pan and Singleton (2008) to show that a one-standard deviation increase in attention
increases risk premiums by 49 and 59 basis points for 5- and 10-year sovereign CDS spreads.
I also establish that the results remain intact after accounting for liquidity (see Section 8.2).
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Moving to Section 8.3, I use an alternative country-level attention index—Google Trends data
on "UN Climate Change Conferences"—and uncover a similar relationship across medium-
and long-term CDS spreads. In Section 8.1, I leverage CDS notional amounts from the
Depository Trust and Clearing Corporation to highlight that net protection bought or sold
rises in response to news. Finally, in Section 8.5, I show that incorporating additional climate
risks leaves the magnitude and direction of the estimated relationship unchanged.

3.1.2 Changes in Extreme Sea Level Hazard

In this section, I conduct empirical tests to study whether the credit market is accounting
for changes in ESL exposure. The goal is to examine whether hypothesis H2 holds for a
hazard manifesting over a longer time scale. Consequently, only the 5- and 10-year spreads
are selected as the dependent variables, as ∆ESL is only relevant at these longer timescales.

I use a set of sovereigns that are vulnerable to ESL hazards, specifically those in the
fourth and fifth quintiles as denoted in Table 2. This sample is chosen because a baseline level
of vulnerability is necessary for variations in SLR and population changes to meaningfully
impact exposure to coastal flooding. Additionally, expanding the set of sovereigns increases
the power of the regressions.

The 23 selected sovereigns are divided into two groups based on their level of exposure:
a more- and less-exposed sample. This division is determined by the estimated linear time
trends, γs, using either observed data or climate and demographic projections, as outlined in
Section 2.4. The two sets of climate data produce drastically different groupings of sovereigns
vulnerable to ∆ESL hazard, as illustrated in Figures 2 and 3. I use a similar estimation
strategy as outlined in Specification 6, but include a “main effect” of Attention to highlight
the difference in the effect of the index on returns between exposure sets.

I present the estimates for the groups of sovereigns that are more- or less-exposed to
∆ESL hazard in Table 5. Columns (1) and (2) show the estimates from groupings based
on forecasts, while columns (3) and (4) are grouped according to ∆ESL exposure calculated
with observed data. The first row shows the effect of the news index on CDS returns for
sovereigns at risk of greater coastal flooding damages due to SLR and coastal population
growth, in contrast to sovereigns with inland population growth and limited SLR. The absence
of a statistically significant difference between the exposure groups in panels (a) and (b)
underscores the idea that the market does not price ∆ESL hazard contemporaneously with
climate news. This result supports hypothesis H2 in that the hazard is unpriced concurrently
with news entering the total mix of information; however, further empirical tests have to be
performed in order to see whether there is an underreaction.

In Section 4.3, I perform a robustness check that further confirms the return response
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pattern I find in this section. Again, I use the decomposed risk premiums for 5- and 10-year
sovereign CDS spreads and regress this on the interaction terms. Table 11 shows that there
is no significant difference between groups of sovereigns.

The main results presented here use an equally weighted forecast across all four pop-
ulation and SLR scenarios denoted in Neumann et al. (2015). In a robustness check shown
in Section 4.2, I confirm that other scenarios are also unaccounted for. Specifically, when
considering each of the four scenarios separately, there remains a non-significant difference
between the exposure groups.

What types of informational frictions could be causing this result? The observations
highlighted in Section 2.4 explicitly show the divergence between the rates of change in expo-
sure calculated using observed versus projected data, concluding that population assumptions
made in the early 21st century were incorrect. The disagreement in observed versus fore-
casted trends could mean that the market is simply averse to the ambiguity of information.
Ellsberg (1961) considers a set of paradoxes that outline investors’ distaste for ambiguity. In
this setting, the uncertainty of each parameter determining future exposure leads to investors
depending on observed rather than ambiguous future forecasts. This explanation, however,
holds little water since the coefficients in the first row of panel (b) are not significant. Fur-
thermore, the assumption that population growth would burgeon in coastal zones had been
an accepted theory, based on with the body of work from McGranahan et al. (2007) until
Neumann et al. (2015). Furthermore, assessment of coastal flooding exposure and SLR at
the sovereign scale has been relatively static in the cross-section due to the proliferation of
the DIVA modeling tool used in population exposure estimates (Muis et al., 2017). Consid-
ering the well documented and long-standing scientific consensus on climate and population
projections prior to 2016, it is implausible that ambiguity aversion would drive the credit
market to not price the hazard.

Another behavioral explanation may be that incorporating climate projections requires
specialized knowledge of up-to-date geophysical information, which may be onerous for the
market to incorporate. Indeed, investors have limited cognitive resources (Kahneman et al.,
1982) and may use heuristic simplification to deal with problems they are unfamiliar with.
Investors may also be prone to overlooking long-term signals and demographic changes that
are less salient when the information is reported (DellaVigna and Pollet, 2007). In the context
of processing observed versus forecast information, the market may simply be neglecting
the more complex projections concurrently with elevated attention and incorporating the
information in a laggard fashion. This friction would result in a delayed market reaction,
in that lagged attention would positively predict the CDS returns for the more vulnerable
sovereigns under forecasts. If, instead, return predictability is greater for the more vulnerable
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sovereigns when using observed data, this would imply that the market continues pricing
the less complex but accurate ∆ESL hazard according to observed trends of population
exposure to coastal flooding. In the next Section, I find evidence of the former in that the
market gradually impounds information on ∆ESL from climate and demographic models
asynchronously with attention, suggesting the market differentiates between the publicly
available data.

These nuanced findings are in line with prior conclusions of Murfin and Spiegel (2020)
who find that future property inundation, based on historical data, is not priced in residential
real estate markets. The conclusion that sophisticated institutional investors (i.e., CDS
traders) incorporate ex-ante climate risk is in line with Nguyen et al. (2022) who uncover an
SLR premium and increased default probability for affected residential properties, and with
Bernstein et al. (2019) who propose that institutional investors price SLR hazard.

3.2 Market Efficiency

I next show that sovereign CDS returns for countries exposed to ESL, and particularly ∆ESL

hazard, are highly predictable when using the climate summit news index. This predictability
suggests that the market is sluggish in pricing coastal flooding and SLR exposure based on
news, supporting hypothesis H2.

3.2.1 Predictability

Behavioral theories demand that there is an under- or overreaction to new information in asset
prices, leading to a predictability that is inconsistent with the efficient markets hypothesis,
as reviewed by Fama (1970). Initially, I use a panel vector autoregression (PVAR) approach,
previously used by Lee et al. (2018) and Cathcart et al. (2020), to measure predictability for
sovereign spreads that are structured in a panel format. The results, presented in Section 8.4,
show that two lags of the attention index are significant in predicting CDS returns. However,
in-sample estimates, though useful as a first pass to check for predictability, suffer from
look-ahead bias since the estimation uses all available information. Welch and Goyal (2008)
instead advocate for out-of-sample regressions as the highest standard for predictability, as
they mirror the real-time situation of investors. 18

Conventionally, predictability has been evaluated on time-series returns, rather than
in panel form. The well-known commonality of sovereign CDS spreads (see Longstaff et al.
(2011)) makes them suitable for transforming into a time-series format. I use two different

18Many studies use OOS predictability as a way of showing that there is easy money to be made, but that
is not the aim of this exercise. Instead, the goal is to illustrate the extent of market underreaction to climate
information, excluding the examination of potential arbitrage costs.
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approaches to collapse the returns for each exposure group on the basis ∆ESL: (i) a simple
average and (ii) a principal components analysis (PCA) to identify a single common latent
factor that best maintains the covariance structure among each sample.

Both averaging and PCA act as methods to linearly combine the spread returns across
the sample. Instead of equally weighting each sovereign, the PCA compresses the estimation
of the higher dimensional set of sovereign CDS returns to a common set of latent factors,
which are the priced risks across the market. To fix ideas, consider the data matrix of
demeaned sovereign CDS returns X for P sovereigns over T time periods, decomposed into
three smaller matrices using singular value decomposition (SVD):

X︸︷︷︸
T×P

= U︸︷︷︸
T×T

S︸︷︷︸
T×P

V T︸︷︷︸
P×P

, (7)

where S is a diagonal singular value matrix and both U and V T are orthonormal. The columns
of V contain the factor loadings or eigenvectors of XTX. The first principal component, the
vector containing the greatest sample variance for all linear combinations of X, is obtained
as:

zt,1 = Xvt,1, (8)

where vt,1 is the first column of matrix V . zt,1 is calculated for each more- or less-exposed
grouping of sovereigns when using either the ESL and ∆ESL measures of hazard. The
total variance captured by the first factor ranges from 49% to 59% across each sample. In
comparison, Longstaff et al. (2011) find that a single principal component of their sample
represents 64% of the total variation in the market.

The OOS regressions are estimated using the summation of sovereigns across time,
1
n

∑n
i,t R

SCDS
i,t , or the first principal component, zt,1, as the predicted variables. I use the

second-period lag of the climate summit attention index as the predictor variable as the
results in Section 8.4 indicate substantial in-sample predictability up to the second lag. To
test the degree of OOS predictability, I use the R2

OS of Campbell and Thompson (2008) that
compares the mean squared forecast error (MSFE) between the estimates obtained using
the predictors, and a naive benchmark that assumes no predictability. The statistic can be
outlined as follows:

R2
OS = 1−

∑T
t=T1

(
rt − r̂t|t−2

)2∑T
t=T1

(
rt − r̄t|t−1

)2 , (9)

where r̄t is the historical average return computed based on data through t − 1, and r̂t

is the fitted value estimated using the predictive regression through t − 2. T1 represents
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the first observation in the out-of-sample period used for forecast evaluation. While OOS
predictability tests are infrequently performed for sovereign CDS returns, I use the shorthand
by Campbell and Thompson (2008) who argue that an R2

OS greater than 0.5% represents an
economically valuable predictor.

I present the R2
OS values obtained from rolling windows of 48 and 54 months in Table 6.

Columns (1) through (4) represent the groups of sovereigns split according to ∆ESL hazard.
Each row contains information on which rolling window was used, as well as the predicted
variable—either average returns or the first principal component of each group. I test the
statistical significance of the R2

OS values by assessing whether the MSFE of the predictive
model exceeds the rolling average, using the Clark and West (2007) test with Newey-West
standard errors.

Across all columns, return predictability is greatest for the group of sovereigns with
higher exposure to ∆ESL hazard based on forecasted demographic and climate information,
as shown in column (4). The R2

OS statistics are economically meaningful, ranging from 2 to
3, and are significant at the 5% level within the rolling windows of 48 and 54 months. In
contrast, the OOS tests for the sovereigns grouped by observed trends in column (4) show
no economically meaningful R2

OS values and no significant predictability.
These results imply that the market is gradually trading on projected rather than ob-

served data. This finding supports hypothesis H2 and aligns with the results of Chang et al.
(2022) and Cathcart et al. (2020), who observe that the sovereign credit market is slow to in-
corporate new information. This underreaction is consistent with the model of Barberis et al.
(1998), which outlines the limited attention of investors when public information is released.
More specifically, the results align with the theoretical model and findings of DellaVigna and
Pollet (2007), who identify market inattention to demographic trends relevant for the future.

What do these results suggest when taken together with the contemporaneous regres-
sions in Sections 3.1.2 and 3.1.1? As information flows into the credit market, investors
incorporate information on coastal flooding exposure which is simpler to process than incor-
porating more complex climate and population projections. Then, in the following months,
the market prices ∆ESL risk and slowly incorporates the relevant information—suggestive
of an initial underreaction supporting hypothesis H2 (Simon, 1956).

To contextualize the results in terms of the prior literature, I uncover an explanation
for the underreaction found in Hong et al. (2019), specifically, I find that inattention to
news is mechanism in which markets underreact to climate change hazards. I also find
that they coincide with those of Schlenker and Taylor (2021) in that the credit market
eventually assimilates climate trends. However, a crucial observation made in Schlenker and
Taylor (2021) is that projections of temperature trends have generally been accurate. In
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contrast, forecasts of populations exposed to 1-in-100-year coastal flooding events have been
inexact for many sovereigns in comparison to their observed values as outlined in Section 2.4.
This discrepancy suggests that the market incorporates misleading projection information—
ultimately mispricing ∆ESL hazard. If instead predictability had been considerably greater
and positive in column (4) than column (2) in Table 6, then this could have been interpreted
as the market pricing of the hazard derived from observed trends.

4 Auxiliary Empirical Tests

4.1 Paris Agreement Shock

The disadvantage of using an attention index to price assets is that each index can be con-
structed using different corpora or methodologies, leading to varied series across the literature.
To circumvent this limitation, I examine the shock induced by the 2015 Paris Agreement, an
event acknowledged for its significance in the pricing of corporate CDS spreads and various
other financial assets (see Ilhan et al. (2021) and Kölbel et al. (2024)). Using an event study
methodology with principal components analysis, I find that the increased media attention in
the lead-up to COP21 in Paris is positively associated with abnormal sovereign CDS returns
for sovereigns exposed to ESL hazard.

For the event study methodology, I assume that sovereign CDS returns follow an ap-
proximate linear factor structure with static loadings. With similar notation to the SVD
formulation, outlined in Section 3.2.1, I assume CDS returns for a panel of sovereign can be
explained by a latent factor model. I use weekly rather than monthly sovereign CDS returns
in order to estimate the factor sensitivities and intercepts, because the lower frequency would
offer too few observations to estimate a stable β. I estimate a common latent factor for each
group of sovereigns (unexposed and exposed to ESL hazard) between January 2010 and De-
cember 2017. This factor explains 42% of the variance for the unexposed sample and 56%
for the exposed sample, respectively.

The time period selected for estimating β’s is from 24 to 208 weeks prior to the event
date—the week ending October 29, 2015. I select this week as the event data point be-
cause the result of the Bonn Climate Change Conference had produced a draft of the Paris
Agreement, slightly more than a month before the Paris summit.19 The number of news
articles discussing the upcoming climate summit increased dramatically during this period,
which suggests greater investor attention as well. During the lead-up to the conference, news

19See https://web.archive.org/web/20160123014706/https://unfccc.int/meetings/bonn_oct_
2015/meeting/8924.php
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agencies published articles focusing on the conference, whether signatories would agree on
the document, and about climate science.

Sovereign CDS returns are then projected onto the common latent factors during the
historical estimation period to obtain sovereign-specific estimates of αi and βi. Abnormal
returns are then calculated by subtracting realized returns during the event window by ex-
pected returns as follows:

ARi,t = RSCDS
i,t − (αi + β1,if1,t) , (10)

where f1 represents the first principal component, β1,i is the estimated coefficient from the
historical period, and ARi,t is the abnormal return for a time period in the event window.

Figures 6 and 7 illustrate the cumulative abnormal sovereign CDS returns over a [-4,10]
week window for the most and least exposed sovereigns, respectively. Cumulative abnormal
returns significantly increase by 1.3% six weeks after October 29, peaking in the last week of
COP21. The economic magnitude of the relationship is in line with the prior findings that
showed a 80 basis point increase in spreads with a standard deviation rise in the attention
index. This result underscores that climate summits do indeed shift the credit market to
incorporate coastal flooding risk. In comparison, there appears to be no discernible change
in credit risk for the sovereigns less exposed to ESL hazard.

The results are generally consistent with Kölbel et al. (2024) in that COP21 increased
credit spreads, but I interpret the relationship as indicative of investors perceiving a physical
rather than a transition risk. Furthermore, the results have the added implication that
climate summits are overall “bad news” for the economy, since they raise awareness of risks
but fail to inadequately address climate concerns (Hsu et al., 2015).

4.2 Alternative Exposure Data and Sorts

An assumption for this study is that the credit market is generally aware of the vulnerability
of sovereigns to extreme sea level rise; nonetheless, it is impossible perfectly discern the exact
information set conditioning the market. Therefore, I sort sovereigns based on variation in
ESL and ∆ESL hazard exposure to use as my primary identification strategy instead of re-
lying on specific numerical values of population exposure. Of course, this methodology could
still be problematic if the data sources I use are significantly different than the information
set available to the credit market. Thus, in this section, I show that the sorting methodology
and results are robust to alternative sources and other data processing choices.

To measure ESL hazard in Section 2.3, I use publicly available information from before
the estimation period (2010), based on assessments of coastal population exposure developed
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by the UK Government’s Foresight project (Vafeidis et al., 2011). Next, I sort the 59 countries
in my sample based on this vulnerability and choose the top quartile of exposure as the more
exposed sample, denoted in panel a of Table 2. To verify if sorting has resulted in a similar set
of vulnerable sovereigns as identified by new methodologies measuring population exposure,
I examine other sources of exposure information.

A common methodology for assessing global and national population exposure to ex-
treme sea levels involves using digital elevation models (DEMs) to measure the extent of
low-lying land areas. The NASA Shuttle Radar Topography Mission (SRTM), the first
global dataset available post-2000 for spatial elevation measurements, has been widely used
for this purpose. Kulp and Strauss (2019) uses the SRTM along with a 2010 population
dataset to measure the percentage of the population vulnerable to 1-year flooding events.
Using a similar sorting methodology for a sample of 59 countries, I list the 14 most exposed
sovereigns in panel (B) of Table 7. In each panel in the Table, the countries are sorted from
left to right based on the percent of their population that is vulnerable to ESL hazard. The
results show minimal differences between the sample of vulnerable sovereigns identified by
my methodology (in panel (A) of Table 7) and those identified by Kulp and Strauss (2019).

In panel (C) of Table 7, I include another DEM model developed by the Japan Aerospace
Exploration Agency (JAXA) in 2016. The JAXA model uses a different approach to measure
elevation compared to the SRTM, specifically employing stereo optical satellite imagery.
While the specific rankings of sovereigns are somewhat different, the overall group remains
relatively unchanged when compared to the original sort in panel (A) of Table 7.

Overall, this exercise shows that the sorting methodology produces relatively stable
groups of exposure even when using different data sources—mimicking the available infor-
mation that investors had at the time. In Table 8, I test whether the relationship between
attention and credit risk remains for the sovereigns vulnerable to ESL according to the
marginally changed exposure sorts. Similar to the results in Section 3.1.1, I find a sig-
nificant positive relationship between attention to climate summits and returns for 5- and
10-year sovereign CDS spreads. Together, these results indicate the robustness of the sorting
methodology used to capture vulnerability to ESL hazard.

Lastly, I consider alternative scenarios used to measure ∆ESL hazard. In Section 2.4, I
choose to equally weight socio-economic scenarios A, B, C, and D from the Foresight Project.
To demonstrate that the credit market does not contemporaneously differentiate between
sovereigns more or less vulnerable to ∆ESL hazard with news under different forecasts, I
test each scenario separately. Using a similar methodology to the one outlined in Section
2.4, I obtain a linear trend estimate to measure whether a country’s exposure is forecasted
to increase or decrease under each scenario. The first row of Table 9 shows that the main
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result in Section 3.1.2—that the credit market does not contemporaneously differentiate
between sovereigns more or less vulnerable to ∆ESL hazard—remains unchanged. None of
the coefficients in the first row are significant, indicating no distinction between groups.

4.3 Risk Premium Decomposition

The finding that there is a significant association between attention to climate summits and
pricing of coastal flooding hazard raises the question of whether the market perceives the
threat as a systematic risk. To investigate whether the credit spreads of exposed sovereigns
command a risk premium during periods of elevated attention, I use the reduced-form model
of Pan and Singleton (2008) and Longstaff et al. (2011) to decompose the term structure of
spreads into a “distress” risk premium. This premium captures the unpredictable variation
in the arrival rate of a credit event or, in other words, the market’s perception of default
risk. Intuitively, the risk premium is the additional return required by a risk-averse investor
over that of a risk-neutral investor. I expect risk premiums to be positively associated with
attention for longer maturities, in line with hypothesis H1 and the prior results.

The affine model put forth by Pan and Singleton (2008) is to identify the arrival rate of
a credit event or risk-neutral intensity of default, λ, which evolves stochastically and is time
varying. This model assumes that the time of default, τ , for a sovereign is characterized by the
first jump of a doubly stochastic Cox process (Lando, 1998). As described in the Hypothesis
Development section, the approximate valuation for newly written sovereign CDS insurance
contracts at maturity M is:

SCDSt(M) ≈ λt(1−RQ), (11)

for time t. Here, RQ is the constant fractional recovery on the cheapest-to-deliver bond if a
credit incident occurs. The Q superscript represents the default process under a risk-neutral
measure or, put differently, the discounted cash flow of the bond (Duffie, 2005). The main
idea is that the unpredictable variation in the market sovereign CDS spread is proportional
to the time-varying but unpredictable variation of the risk premium, λ. After estimating the
risk premiums for each sovereign, more thoroughly discussed in Appendix A, I winsorize the
estimated risk premium returns at the 1%. I then conduct a similar style of panel regressions
as outlined in equation 6.

Table 10 displays the estimates of the risk premium returns of ESL-exposed sovereigns
regressed on the attention index. The coefficient on the international summits index for
the 5- and 10-year returns is positive and significant at the 10% and 5% level for the more
exposed sample in columns (2) and (3). The results confirm that coastal flooding is priced as
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a systematic risk factor into the credit market during periods of heightened news attention.
Additionally, the market applies a long-term risk premium for sovereigns exposed to ESL and
do not account for ∆ESL hazards contemporaneously with news.

The regression results for the 5- and 10-year risk premium returns for ∆ESL-exposed
sovereigns is found in Table 11. These results reveal a similar relationship to that uncovered
in Section 3.1.2, that the market does not differentiate between observed and projected trends
concurrently with news.

4.4 Protected Countries

The prior results demonstrate that investors are insuring against and therefore pricing ESL
exposure. In each test, countries that are currently protected against 1-in-100-year surge
events are placed in the less-exposed group. As a robustness check, I empirically test whether
countries that have constructed infrastructure to protect against coastal flooding and SLR.
These adaptation projects are costly and typically require years to build. For example, the
Delta Works project in the Netherlands has taken four decades and $13 billion to complete.20

The expectation is that credit risk should not increase for countries that have built levees or
dikes, thereby leaving the sovereign CDS spreads unaffected.

I select the countries from the sample of 59 that have protection built for 1-in-100-year
surges, using the data provided by Lincke and Hinkel (2018). The six remaining sovereign
CDS spreads are for Hong Kong, Israel, Italy, Qatar, Bahrain, and the Netherlands. Similar
to equation 6, I focus on global attention indices as the time-varying independent variable,
with both local and global financial risk factors as controls. The results of the regressions on
the 1-, 5-, and 10- year sovereign CDS spreads of protected countries are presented in Table
12. The three columns demonstrate that the index is not significantly related to the sovereign
CDS returns of the protected sovereigns, suggesting that heightened global attention does
not lead investors to insure against countries that are reasonably protected.

Next, I perform a similar analysis but using the decomposed return premiums as the
dependent variable. Table 13 displays nearly identical results to the regressions with sovereign
CDS returns, with the added caveat that the coefficients for the attention index in columns
(3) and (4) are near zero. The results indicate, across all specifications, that risk premiums
are not significantly related to rising attention. This evidence suggests that investors are
correctly accounting for ESL hazard while respecting country protection standards. Market
participants are therefore rewarding countries that have invested heavily in adaptation to
coastal flooding.

20From the New York Times article, “Lessons for U.S. From a Flood-Prone Land”, published on November
14, 2012.
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5 Conclusion

In this paper, I show that the sovereign credit market reacts negatively to news surrounding
international climate summits by increasing the overall credit risk for countries vulnerable
to coastal flooding. Specifically, I use data on exposure to provide evidence that the CDS
returns for inundated sovereigns are increasing in comparison to less vulnerable nations when
attention to climate summits rise.

I find that the market also prices future exposure of sovereigns based on climate forecasts
of population growth and sea level rise. However, this pricing occurs gradually, indicating the
presence of market frictions in incorporating valuable climate information. Specifically, the
returns on credit spreads for sovereigns exposed to changes in extreme sea level hazards are
highly predictable when using an news index that proxies for attention on climate summits.

These results are consistent with a behavioral inattention hypothesis, where investors
underreact to important long-term information and only gradually incorporate forward-
looking projections from climate science. In this context, incorporating data from climate
models presents a substantial challenge for investors, who face limitations in processing capac-
ity and thus struggle to evaluate risks in the distant future. Although the market eventually
incorporates climate and demographic forecasts, I find that assumptions about demographic
growth made in the early 2000s are inconsistent with observed population data. This obser-
vation implies that the credit market misprices the changing vulnerability of sovereigns to
coastal flooding.

The results have substantial implications for policymakers and researchers. First, coun-
tries exposed to SLR will be compelled to build resilient infrastructure with public finance
such as government bonds. However, as sovereign risk increases with the perception of coastal
flooding, issuing government debt will become more expensive. Both factors will place undue
pressure on the finances of highly affected countries. Second, markets seem to react to climate
forecasts, highlighting the need for distributing accurate and up-to-date information. Last,
as a cautionary note, climate finance research often uses news indices to price slow-moving
climate hazards, which are normally difficult to identify. Given the complexity of processing
climate information, this approach could result in overreaction, underreaction, or disregard of
essential details. Researchers should therefore seek a deeper understanding of the behavioral
implications associated with the news indices they use.
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6 Tables

Table 1: Glossary

Term Description

SCDS Sovereign credit default swap.
SLR Sea level rise.
ESL hazard The percent of a region that is vulnerable to 1-in-100 year coastal flooding

events for the year 2000. A 1-in-100 year flooding event can be described
as an event that has a 1% chance of occurring each year. The data for this
analysis is gathered from Vafeidis et al. (2011) who use storm surge heights
from the Dynamic and Interactive Vulnerability Assessment database and
population estimates from the Global Rural-Urban Mapping Project.

∆ESL hazard Measures the rate of change in exposure to ESL hazard. This is obtained
by regressing the yearly percent of a sovereign population vulnerable to 1-in-
100-year floods onto a linear time trend. The estimated coefficient attached
to the time trend measures whether the sovereign is increasing or decreasing
in exposure over time.

International summits This index, developed by Faccini et al. (2023), captures media attention
to international climate summits. They use Latent Dirichlet Allocation on
Refinitiv Newswires to dissect each article into topics, one of which is inter-
national climate summits.

Net notional Aggregate net notional amount of CDS outstanding which is the net sum
of CDS insurance bought (or sold) for all contracts. This is in millions of
US dollar equivalents using foreign exchange rates and is obtained from the
Depository Trust and Clearing Corporation.
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Table 2: Percent of sovereign population exposed to extreme sea level hazard

Sovereign % Exposed Quintile Quartile Sovereign % Exposed Quintile Quartile
Vietnam 33.38 5 4 Poland 1.40 3 2
Belgium 17.70 5 4 Brazil 1.20 3 2
Egypt 10.89 5 4 Croatia 1.18 3 2
Denmark 8.84 5 4 Russia 0.94 3 2
Latvia 8.06 5 4 Romania 0.87 3 2
Japan 6.60 5 4 Mexico 0.76 2 2
United Kingdom 6.44 5 4 Turkey 0.73 2 2
Thailand 5.50 5 4 El Salvador 0.64 2 2
China 4.41 5 4 Peru 0.59 2 2
Uruguay 3.94 5 4 CostaRica 0.53 2 2
Germany 3.80 5 4 Bulgaria 0.48 2 2
Norway 3.34 4 4 Slovenia 0.45 2 2
Spain 3.22 4 4 Chile 0.38 2 2
Ireland 3.18 4 4 Dominican R. 0.33 2 2
Morocco 2.76 4 3 Colombia 0.29 2 1
France 2.76 4 3 Guatemala 0.14 2 1
Korean Republic 2.73 4 3 South Africa 0.11 2 1
Philippines 2.57 4 3 Serbia 0.03 1 1
Indonesia 2.55 4 3 Slovakia 0.00 1 1
Australia 2.48 4 3 Kazakhstan 0.00 1 1
Lebanon 2.41 4 3 Austria 0.00 1 1
Lithuania 2.37 4 3 Hungary 0.00 1 1
Portugal 2.23 4 3 Czech Republic 0.00 1 1
Cyprus 2.21 3 3 Protected Against 1-in-100 Year Floods
Jamaica 2.19 3 3 Qatar 0.00 1 1
Panama 2.06 3 3 Italy 0.00 1 1
Malaysia 1.90 3 3 Israel 0.00 1 1
Sweden 1.62 3 3 Netherlands 0.00 1 1
Finland 1.47 3 3 Hong Kong 0.00 1 1
Estonia 1.46 3 2 Bahrain 0.00 1 1

This table shows the percentage of a nation’s population residing in the 1-in-100 year coastal floodplain,
based on data from the 2000 census—what I call extreme sea level (ESL) hazard. The table is sorted
so that the most vulnerable countries, such as Vietnam, Belgium, and Egypt, are at the top left, with
decreasing vulnerability as you move down the table. The right panel is a continuation of the exposure
data, also sorted from top to bottom according to exposure. A 1-in-100 year flooding event can be
described as an event that has a 1% chance of occurring each year. The data for this analysis is
gathered from Vafeidis et al. (2011) who use storm surge heights from the Dynamic and Interactive
Vulnerability Assessment database and population estimates from the Global Rural-Urban Mapping
Project. I set exposure to zero for countries with 1-in-100 year surge protection standards according
to Lincke and Hinkel (2018). These “protected regions” are visible in the bottom right hand corner of
the table. The two rightmost columns of both panels represent the quartile and quintile of exposure to
ESL hazard, respectively.
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Table 3: Sample Statistics

Mean SD p25 p50 p75 N

% ∆ 1 Year Sovereign Spread 3.538 38.223 -14.459 -0.276 12.998 7,021
% ∆ 5 Year Sovereign Spread 0.159 13.273 -7.03 -0.469 4.825 7,021
% ∆ 10 Year Sovereign Spread 0.177 10.498 -5.114 -0.405 3.624 7,021
MSCI Local Returns 0.135 6.437 -3.538 0.045 3.884 7,015
MSCI Vol 7.556 47.937 -22.192 -1.629 24.616 7,015
% ∆ International Currency Reserves 18.372 1,494.62 -1.291 0.209 1.901 7,021
% ∆ Exchange Rate Dollar 0.286 2.286 -0.678 0.001 1.075 7,021
% ∆ Debt to GDP 0.303 1.412 -0.202 0.169 0.674 7,021
1 Year CDS Gamma -0.048 0.24 -0.196 -0.04 0.107 7,021
5 Year CDS Gamma -0.019 0.243 -0.165 -0.013 0.145 7,021
10 Year CDS Gamma -0.029 0.244 -0.172 -0.02 0.132 7,021
Google Trends 2.621 -7.285 0 0 3 6,844
% ∆ Log Gross Notional Amount -0.533 6.542 -3.507 -0.589 2.157 3,545
Oxford Economics Credit Rating 13.379 4.287 10.5 12.667 16.667 590
NDGAIN Exposure 0.471 0.077 0.405 0.465 0.527 580
NDGAIN Infrastructure 0.282 0.102 0.207 0.279 0.344 580
NDGAIN Readiness 0.517 0.133 0.406 0.504 0.609 580
% ∆ VIX 1.971 -24.552 -14.601 -2.269 10.851 118
% ∆ 5 Yr Treasury 0.307 -11.68 -6.637 0 5.789 118
% ∆ FTSE Bond Index 0.164 -1.547 -0.921 0.185 1.296 118
SPX Returns 0.978 -3.598 -0.75 1.395 3.03 118
International Summits 0.289 -0.183 0.138 0.256 0.404 118

This table presents the summary statistics of the variables used in the empirical exercises. Debt-to-
GDP is obtained at the yearly frequency but interpolated cubically to the monthly frequency. The credit
rating from Oxford Economics is obtained at the yearly frequency and is in the range 0 through 20. The
majority of the financial and economic data is obtained through Refinitiv. Weekly net notional amounts
which was accessed through historical access to the Depository Trust and Clearing Corporation website
Depository. NG-Gain is indices are obtained from the Notre Dame Global Adaptation Initiative. CDS
Gamma represents the illiquidity measure calculated in line with Bao et al. (2011). Google trends is the
country specific search volume index on the topic “United Nations Climate Change Conference”. The
total sample includes 59 countries for the period from January 2010 through November 2019. However,
calculating the percent change reduces the estimation sample to start from February 2010.
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Table 4: Marginal effects of news on sovereign CDS returns conditional on exposure to
extreme sea level hazards

(1) (2) (3)
1 Yr 5 Yr 10 Yr

More Exposed × International Summits 3.694 3.839∗∗ 4.441∗∗∗
(3.160) (1.757) (1.399)

Less Exposed × International Summits 1.502 0.407 0.412
(1.810) (0.929) (0.830)

SPX Returns -1.576∗∗∗ -0.840∗∗∗ -0.674∗∗∗
(0.186) (0.075) (0.063)

MSCI Local Returns -1.132∗∗∗ -0.518∗∗∗ -0.382∗∗∗
(0.150) (0.065) (0.049)

Debt to GDP -0.034 0.022 0.009
(0.140) (0.105) (0.076)

MSCI Vol 0.024∗∗∗ 0.012∗∗∗ 0.009∗∗∗
(0.009) (0.004) (0.003)

FTSE Bond Index -1.058∗∗∗ -0.458∗∗∗ -0.392∗∗∗
(0.321) (0.115) (0.100)

Exchange Rate Dollar 0.310 0.331∗∗ 0.213∗
(0.265) (0.160) (0.119)

Intl Reserves -0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗
(0.000) (0.000) (0.000)

5 Yr Treasury 0.093∗∗ 0.015 -0.006
(0.037) (0.012) (0.010)

VIX -0.021 -0.009 -0.010∗
(0.024) (0.008) (0.006)

SovereignxMonth Yes Yes Yes
Rating Yes Yes Yes
Adj R Squared 0.307 0.381 0.355
Observations 5088 5094 5086

This table presents regression results linking climate change news related to international summits with
sovereign CDS returns at 1-, 5-, and 10-year maturities for countries at risk from extreme sea level (ESL)
hazards. The coefficients in the first two rows show the marginal effects of the news index on returns,
conditional on sovereigns being more or less exposed to the hazard. “More Exposed” refers to the group
of sovereigns in the fourth quartile of Table 4, and “Less Exposed” refers to those in the first and second
quartiles. ESL hazard exposure is gathered from Vafeidis et al. (2011) by calculating percentage of a
population at risk from 1-in-100 year coastal floods for the year 2000. The InternationalSummits index
from Faccini et al. (2023) measures media attention to climate summits. I control for global covariates:
changes in the 5-year Treasury yield, CBOE VIX, FTSE World Bond Index returns, and S&P 500
excess returns. Country-specific covariates include changes in the local currency to USD exchange rate,
foreign currency reserves in USD, local MSCI excess stock returns and their volatility, and changes in
the debt-to-GDP ratio interpolated from yearly to monthly. All models include country-by-month and
credit rating fixed effects for the period January 2010 to November 2019. The table reports regression
coefficients of sovereign CDS returns, multiplied by 100, for the 1-, 5-, and 10-year maturities. Standard
errors, in parentheses, are clustered by sovereign. Significance at the 1%, 5%, and 10% levels is denoted
by ∗∗∗, ∗∗, ∗.
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Table 5: Differential effect of news on sovereign CDS returns by exposure to changes in
extreme sea level hazard

Forecasted ∆ESL (a) Observed ∆ESL (b)

(1) (2) (3) (4)
5 Yr 10 Yr 5 Yr 10 Yr

Exposed × International Summits -3.823 -2.970 -3.262 -2.869
(2.514) (2.117) (2.592) (2.154)

International Summits 4.744∗∗ 4.656∗∗ 4.452∗∗ 4.590∗∗
(2.156) (1.801) (2.073) (1.656)

SPX Returns -0.894∗∗∗ -0.742∗∗∗ -0.894∗∗∗ -0.742∗∗∗
(0.104) (0.074) (0.105) (0.074)

MSCI Local Returns -0.685∗∗∗ -0.492∗∗∗ -0.684∗∗∗ -0.491∗∗∗
(0.090) (0.065) (0.091) (0.065)

Debt to GDP 0.028 -0.069 0.052 -0.050
(0.413) (0.363) (0.428) (0.377)

MSCI Vol 0.021∗∗∗ 0.011∗∗ 0.021∗∗∗ 0.011∗∗
(0.005) (0.005) (0.005) (0.005)

FTSE Bond Index -0.111 -0.037 -0.111 -0.036
(0.211) (0.170) (0.211) (0.170)

Exchange Rate Dollar 0.056 0.027 0.062 0.032
(0.201) (0.137) (0.198) (0.135)

Intl Reserves 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗
(0.000) (0.000) (0.000) (0.000)

5 Yr Treasury 0.025 0.001 0.025 0.001
(0.018) (0.015) (0.018) (0.015)

VIX -0.015 -0.020∗∗ -0.015 -0.020∗∗
(0.013) (0.008) (0.013) (0.008)

SovereignxMonth Yes Yes Yes Yes
Rating Yes Yes Yes Yes
Adj R Squared 0.284 0.250 0.284 0.250
Observations 2660 2660 2660 2660

This table shows coefficients from a model linking news on international climate summits to 5- and 10-year sovereign
CDS returns for countries vulnerable to changes in extreme sea level hazard. The InternationalSummits index from
Faccini et al. (2023) measures media attention to climate summits and is interacted with Exposed to produce the first-row
coefficients, indicating the differential impact on CDS spreads between exposure groups. To calculate ∆ESL, I begin
with the 23 most exposed sovereigns to coastal flooding (fourth and fifth quintiles, Table 4). For panel (a), ∆ESL is
derived by regressing the forecasted percentage of the population exposed to 1-in-100 year coastal floods on a linear time
trend. Population and SLR forecasts come from Vafeidis et al. (2011). For panel (b), ∆ESL is calculated similarly but
uses observed population exposure data from 2000-2010. Sovereigns are split into more exposed (1) and less exposed (0)
groups, represented by Exposed, based on whether a sovereign’s trend coefficient is above or below the median across
the 23 sovereigns. Splits are shown in Figures 2 and 3. I control for global covariates: changes in the 5-year Treasury
yield, CBOE VIX, FTSE World Bond Index returns, and S&P 500 excess returns. Country-specific covariates include
changes in the local currency to USD exchange rate, foreign currency reserves in USD, local MSCI excess stock returns and
their volatility, and changes in the debt-to-GDP ratio interpolated from yearly to monthly. I include country-by-month
and credit rating fixed effects for the period January 2010 to November 2019. The coefficients of sovereign CDS returns
are multiplied by 100, for the 5- and 10-year maturities. Standard errors, in parentheses, are clustered by sovereign.
Significance at the 1%, 5%, and 10% levels is denoted by ∗∗∗, ∗∗, ∗.
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Table 6: R2
OS Out-of-sample predictability of CDS returns

Forecasted ∆ESL (a) Observed ∆ESL (b)

Rolling (1) (2) (3) (4)
Months Less Exposed More Exposed Less Exposed More Exposed

Average Returns 48 -5.902 3.302** -5.444 -0.422
Principal Component 48 -5.417 3.594** -5.221 -0.352
Average Returns 54 -6.470 2.803** -5.587 -0.464
Principal Component 54 -5.682 3.226** -5.180 -0.189

Number of Countries 12 11 12 11

This table presents out-of-sample return predictability results using the second lag of the climate summit
news index as the predictor and a time-series of sovereign CDS returns as the predicted variable. The
values presented in columns (1) through (4) are the R2

OS developed by Campbell and Thompson (2008).
The R2

OS values are calculated based on the rolling months as described in the column titled “Rolling
Months”. The sample of sovereigns in panels (a) and (b) consist of the of the 23 sovereigns more exposed
to ESL hazard, described as the fifth and fourth quintiles in Table 4. For panel (a), the changes in
ESL hazard are approximated by the coefficient obtained from regressing the forecasted (from Vafeidis
et al. (2011)) percent of population exposed to 1-in-100 year coastal floods on a linear time trend. For
panel (b), the changes in ESL hazard are approximated by the coefficient obtained from regressing the
observed (2000 to 2010) percent of population exposed to floods on a linear time trend. Then, for each
panel (a) and (b), the sovereigns are split into less and more exposed groups by dividing the estimated
coefficients by their median value, denoted in Figures 2 and 3. The panel CDS returns for each group
of sovereigns are linearly combined to a time-series by either using averaging or the extracting the first
principal component. Statistical significance is calculated with the method outlined in Clark and West
(2007) using Newey-West standard errors with two lags as the considered autocorrelation structure.
Significance is denoted by ∗∗∗, ∗∗, ∗ at the 1%, 5%, and 10% levels, respectively.
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Table 7: Sovereigns more exposed to extreme sea level rise hazard according to various data
sources

Panel A. Vafeidis et al. (2011) & Neumann et al. (2015)

Vietnam Belgium Egypt
Denmark Latvia Japan

United Kingdom Thailand China
Uruguay Germany Norway
Spain Ireland

Panel B. Shuttle Radar Topography Mission (SRTM)

Vietnam Japan Denmark
Belgium United Kingdom China
Indonesia Denmark France

Philippines Ireland Latvia
Thailand Malaysia

Panel C. JAXA

Vietnam Denmark Japan
Belgium China United Kingdom
Germany Indonesia Ireland
Finland Norway France
Thailand Latvia

This table presents the sample of sovereigns which have the largest percent of their population vulnerable
to extreme sea level rise hazard according to results of various climate studies. The 14 sovereigns selected
in each panel have the greatest percent of their population exposed to ESL hazard amongst the full
sample of 59 sovereigns after accounting for preexisting protection standards (Lincke and Hinkel, 2018).
In each panel, the sovereigns are listed from left to right according to their percent of exposure. In
Panel A, exposure to ESL hazard is calculated by averaging the yearly percent of a sovereign population
vulnerable to 1-in-100 year coastal floods based on data from Vafeidis et al. (2011) and Neumann et al.
(2015). In panel b, estimates of exposure are from NASA’s Shuttle Radar Topography Mission used to
map global coastal elevation. Panel C uses estimates of elevation from the ALOS Global Digital Surface
Model from the Japan Aerospace Exploration Agency (JAXA). Data for percent of population exposed
under these two methodologies are obtained from Kulp and Strauss (2019).
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Table 8: Marginal effects of news on sovereign CDS returns conditional on exposure to
extreme sea level hazard, according to various data sources

SRTM (a) JAXA (b)

(1) (2) (3) (4) (5) (6)
1 Yr 5 Yr 10 Yr 1 Yr 5 Yr 10 Yr

More Exposed × International Summits 3.603 2.855∗ 3.533∗∗ 4.373 4.672∗∗∗ 4.896∗∗∗
(3.077) (1.640) (1.340) (3.147) (1.614) (1.399)

Less Exposed × International Summits 2.910 1.291 1.496 2.140 0.939 0.903
(1.767) (1.024) (0.928) (1.785) (0.940) (0.905)

SPX Returns -1.741∗∗∗ -0.919∗∗∗ -0.730∗∗∗ -1.571∗∗∗ -0.809∗∗∗ -0.654∗∗∗
(0.179) (0.078) (0.061) (0.187) (0.075) (0.064)

MSCI Local Returns -1.151∗∗∗ -0.505∗∗∗ -0.378∗∗∗ -1.104∗∗∗ -0.488∗∗∗ -0.363∗∗∗
(0.160) (0.065) (0.050) (0.160) (0.065) (0.051)

Debt to GDP -0.105 -0.032 -0.044 -0.012 0.012 -0.005
(0.118) (0.081) (0.056) (0.150) (0.099) (0.070)

MSCI Vol 0.029∗∗∗ 0.014∗∗∗ 0.011∗∗∗ 0.027∗∗∗ 0.015∗∗∗ 0.011∗∗∗
(0.007) (0.004) (0.003) (0.008) (0.003) (0.002)

FTSE Bond Index -1.141∗∗∗ -0.380∗∗∗ -0.318∗∗∗ -0.837∗∗∗ -0.311∗∗∗ -0.258∗∗∗
(0.328) (0.115) (0.096) (0.310) (0.112) (0.093)

Exchange Rate Dollar 0.203 0.333∗ 0.213 0.469∗∗ 0.486∗∗∗ 0.344∗∗∗
(0.255) (0.173) (0.129) (0.195) (0.085) (0.060)

Intl Reserves -0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ -0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

5 Yr Treasury 0.082∗∗ 0.019 -0.001 0.093∗∗ 0.015 -0.005
(0.037) (0.012) (0.010) (0.037) (0.011) (0.009)

VIX -0.031 -0.013 -0.014∗∗ -0.033 -0.011 -0.013∗∗
(0.025) (0.009) (0.006) (0.025) (0.009) (0.006)

SovereignxMonth Yes Yes Yes Yes Yes Yes
Rating Yes Yes Yes Yes Yes Yes
Adj R Squared 0.310 0.377 0.351 0.293 0.365 0.335
Observations 5075 5086 5092 5081 5083 5089

This table presents regression results linking climate change news during international climate summits with 1-, 5-, and
10-year sovereign CDS returns for countries at risk from extreme sea level (ESL) hazards according to various elevation
models. The coefficients in the first two rows show the marginal effects of the news index on returns, conditional on
sovereigns being more or less exposed to the hazard. The “more exposed” sample of sovereigns in panel (a)—14 in total
denoted in panel (b) of Table 7—consists of the more exposed sovereigns according to elevation data from NASA’s Shuttle
Radar Topography Mission. The “more exposed” group of sovereigns in panel (b) are according to elevation data from
the Japan Aerospace Exploration Agency (JAXA). The coefficients in the first two rows represent the marginal effects of
InternationalSummits on returns based on exposure. Data for ESL hazard exposure under these two methodologies is
obtained from Kulp and Strauss (2019). The InternationalSummits index from Faccini et al. (2023) measures media
attention to climate summits. I control for global covariates: changes in the 5-year Treasury yield, CBOE VIX, FTSE
World Bond Index returns, and S&P 500 excess returns. Country-specific covariates include changes in the local currency
to USD exchange rate, foreign currency reserves in USD, local MSCI excess stock returns and their volatility, and changes
in the debt-to-GDP ratio interpolated from yearly to monthly. All models include country-by-month and credit rating
fixed effects for the period January 2010 to November 2019. The table reports regression coefficients of sovereign CDS
returns, multiplied by 100, for the 1-, 5-, and 10-year maturities. Standard errors, in parentheses, are clustered by
sovereign. Significance at the 1%, 5%, and 10% levels is denoted by ∗∗∗, ∗∗, ∗.
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Table 9: Differential effect of news on sovereign CDS returns by exposure to changes in
extreme sea level hazard under other scenarios

Scenario A Scenario B Scenario C Scenario D

(1) (2) (3) (4) (5) (6) (7) (8)
5 Yr 10 Yr 5 Yr 10 Yr 5 Yr 10 Yr 5 Yr 10 Yr

Exposed × Intl Summits -2.258 -1.888 -2.703 -2.486 -3.291 -3.198 -3.291 -3.198
(2.652) (2.205) (2.587) (2.149) (2.542) (2.090) (2.542) (2.090)

Intl Summits 3.995∗ 4.142∗∗ 4.208∗ 4.428∗∗ 4.491∗∗ 4.766∗∗ 4.491∗∗ 4.766∗∗
(2.094) (1.840) (2.030) (1.759) (2.079) (1.825) (2.079) (1.825)

SPX Returns -0.895∗∗∗ -0.742∗∗∗ -0.894∗∗∗ -0.742∗∗∗ -0.893∗∗∗ -0.741∗∗∗ -0.893∗∗∗ -0.741∗∗∗
(0.105) (0.074) (0.104) (0.074) (0.104) (0.074) (0.104) (0.074)

MSCI Local Returns -0.684∗∗∗ -0.491∗∗∗ -0.685∗∗∗ -0.492∗∗∗ -0.685∗∗∗ -0.492∗∗∗ -0.685∗∗∗ -0.492∗∗∗
(0.090) (0.065) (0.090) (0.065) (0.090) (0.065) (0.090) (0.065)

Debt to GDP 0.027 -0.070 0.029 -0.069 0.028 -0.070 0.028 -0.070
(0.417) (0.367) (0.416) (0.365) (0.414) (0.363) (0.414) (0.363)

MSCI Vol 0.021∗∗∗ 0.011∗∗ 0.021∗∗∗ 0.011∗∗ 0.021∗∗∗ 0.011∗∗ 0.021∗∗∗ 0.011∗∗
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

FTSE Bond Index -0.113 -0.038 -0.112 -0.037 -0.111 -0.037 -0.111 -0.037
(0.211) (0.170) (0.211) (0.170) (0.211) (0.170) (0.211) (0.170)

Exchange Rate Dollar 0.056 0.027 0.057 0.027 0.056 0.027 0.056 0.027
(0.199) (0.136) (0.200) (0.137) (0.201) (0.138) (0.201) (0.138)

Intl Reserves 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

5 Yr Treasury 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001
(0.018) (0.015) (0.018) (0.015) (0.018) (0.015) (0.018) (0.015)

VIX -0.015 -0.020∗∗ -0.015 -0.020∗∗ -0.015 -0.020∗∗ -0.015 -0.020∗∗
(0.013) (0.008) (0.013) (0.008) (0.013) (0.008) (0.013) (0.008)

SovereignxMonth Yes Yes Yes Yes Yes Yes Yes Yes
Rating Yes Yes Yes Yes Yes Yes Yes Yes
Adj R Squared 0.284 0.249 0.284 0.250 0.284 0.250 0.284 0.250
Observations 2660 2660 2660 2660 2660 2660 2660 2660
This table shows coefficients from a model linking news on international climate summits to 5- and 10-year sovereign
CDS returns for countries vulnerable to changes in extreme sea level hazard. The InternationalSummits index from
Faccini et al. (2023) measures media attention to climate summits and is interacted with Exposed to produce the first-row
coefficients, indicating the differential impact on CDS spreads between exposure groups. To calculate ∆ESL, I begin with
the 23 most exposed sovereigns to coastal flooding (fourth and fifth quintiles, Table 4). For each panel a-c, the changes
in ESL hazard are approximated by the coefficient obtained from regressing the forecasted percent of population exposed
to 1-in-100 year coastal floods on a linear time trend. Each panel corresponds to population forecasts obtained from
Vafeidis et al. (2011) under climate and population growth scenarios A through C developed by the UK Government’s
Foresight project. Sovereigns are split into more exposed (1) and less exposed (0) groups, represented by Exposed, based
on whether a sovereign’s trend coefficient is above or below the median across the 23 sovereigns. I control for global
covariates: changes in the 5-year Treasury yield, CBOE VIX, FTSE World Bond Index returns, and S&P 500 excess
returns. Country-specific covariates include changes in the local currency to USD exchange rate, foreign currency reserves
in USD, local MSCI excess stock returns and their volatility, and changes in the debt-to-GDP ratio interpolated from
yearly to monthly. All models include country-by-month and credit rating fixed effects for the period January 2010 to
November 2019. The coefficients of sovereign CDS returns are multiplied by 100, for the 5- and 10-year maturities.
Standard errors, in parentheses, are clustered by sovereign. Significance at the 1%, 5%, and 10% levels is denoted by ∗∗∗,
∗∗, ∗.
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Table 10: Marginal effects of news on sovereign CDS returns conditional on exposure to
extreme sea level hazards, according to various data sources

(1) (2) (3)
1 Yr 5 Yr 10 Yr

More Exposed × International Summits 6.864 2.712∗ 3.247∗∗
(1.00) (1.69) (2.68)

Less Exposed × International Summits -3.471 -0.025 1.000
(-1.20) (-0.03) (1.52)

SPX Returns -1.337∗∗∗ -0.829∗∗∗ -0.687∗∗∗
(-4.08) (-11.68) (-11.45)

MSCI Local Returns -1.295∗∗∗ -0.449∗∗∗ -0.349∗∗∗
(-6.55) (-7.44) (-7.58)

Debt to GDP 0.038 -0.029 -0.027
(0.16) (-0.38) (-0.46)

MSCI Vol 0.026∗∗ 0.010∗∗∗ 0.006∗∗
(2.33) (3.05) (2.40)

FTSE Bond Index -1.924∗∗∗ -0.428∗∗∗ -0.377∗∗∗
(-3.06) (-3.77) (-3.83)

Exchange Rate $ -0.255 0.197 0.138
(-1.00) (1.37) (1.27)

Intl Reserves -0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗
(-32.42) (53.14) (19.54)

5 Yr Treasury 0.098 0.007 -0.011
(1.37) (0.53) (-1.13)

VIX 0.049 -0.004 -0.011
(1.26) (-0.45) (-1.67)

SovereignxMonth Yes Yes Yes
Rating Yes Yes Yes
Adj R Squared 0.118 0.284 0.260
Observations 5084 5084 5084

This table presents regression results linking climate change news related to international summits with sovereign CDS
premium returns at 1-, 5-, and 10-year maturities for countries at risk from extreme sea level (ESL) hazard. Premiums are
obtained by decomposing sovereign CDS spreads using the reduced-form model of Longstaff et al. (2011). The coefficients
in the first two rows show the marginal effects of the news index on returns derived from premiums, conditional on
sovereigns being more or less exposed to the hazard. “More Exposed” refers to the group of sovereigns in the fourth
quartile of Table 4, and “Less Exposed” refers to those in the first and second quartiles. ESL hazard exposure is gathered
from Vafeidis et al. (2011) by calculating percentage of a population at risk from 1-in-100 year coastal floods for the
year 2000. The InternationalSummits index from Faccini et al. (2023) measures media attention. I control for global
covariates: changes in the 5-year Treasury yield, CBOE VIX, FTSE World Bond Index returns, and S&P 500 excess
returns. Country-specific covariates include changes in the local currency to USD exchange rate, foreign currency reserves
in USD, local MSCI excess stock returns and their volatility, and changes in the debt-to-GDP ratio interpolated from
yearly to monthly. All models include country-by-month and credit rating fixed effects for the period January 2010 to
November 2019. The table reports regression coefficients of sovereign CDS premium returns, multiplied by 100, for the
1-, 5-, and 10-year maturities. Standard errors, in parentheses, are clustered by sovereign. Significance at the 1%, 5%,
and 10% levels is denoted by ∗∗∗, ∗∗, ∗
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Table 11: Differential effect of news on sovereign CDS premiums by exposure to changes in
extreme sea level hazard under other scenarios

Forecasted ∆ESL (a) Observed ∆ESL(b)

(1) (2) (3) (4)
5 Yr 10 Yr 5 Yr 10 Yr

Exposed × International Summits -2.506 -2.612 -1.984 -1.382
(2.680) (2.001) (2.591) (1.990)

International Summits 3.070 4.458∗∗∗ 2.809 3.871∗∗
(2.078) (1.572) (2.195) (1.730)

Debt to GDP 0.288 0.124 0.301 0.137
(0.481) (0.390) (0.488) (0.398)

MSCI Vol 0.020∗∗∗ 0.011∗∗ 0.020∗∗∗ 0.011∗∗
(0.006) (0.005) (0.006) (0.005)

FTSE Bond Index -0.201 -0.146 -0.200 -0.145
(0.205) (0.177) (0.205) (0.177)

SPX Returns -0.879∗∗∗ -0.727∗∗∗ -0.879∗∗∗ -0.727∗∗∗
(0.089) (0.067) (0.090) (0.067)

MSCI Local Returns -0.625∗∗∗ -0.470∗∗∗ -0.625∗∗∗ -0.470∗∗∗
(0.076) (0.064) (0.077) (0.064)

Exchange Rate $ 0.010 -0.013 0.014 -0.010
(0.189) (0.138) (0.188) (0.136)

Intl Reserves 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗
(0.000) (0.000) (0.000) (0.000)

5 Yr Treasury 0.039∗∗ 0.010 0.039∗∗ 0.010
(0.017) (0.015) (0.017) (0.015)

VIX -0.010 -0.019∗ -0.010 -0.019∗
(0.015) (0.009) (0.015) (0.009)

SovereignxMonth Yes Yes Yes Yes
Rating Yes Yes Yes Yes
Adj R Squared 0.283 0.250 0.283 0.250
Observations 2641 2647 2641 2647

This table shows coefficients from a model linking news on international climate summits to 5- and 10-year sovereign CDS
premium returns for countries vulnerable to changes in extreme sea level hazard. Premiums are obtained by decomposing
sovereign CDS spreads using the reduced-form model of Longstaff et al. (2011). The InternationalSummits index from
Faccini et al. (2023) measures media attention to climate summits and is interacted with Exposed to produce the first-row
coefficients, indicating the differential impact on premium returns between exposure groups. To calculate ∆ESL, I begin
with the 23 most exposed sovereigns to coastal flooding (fourth and fifth quintiles, Table 4). For panel (a), ∆ESL is
derived by regressing the forecasted percentage of the population exposed to 1-in-100 year coastal floods on a linear time
trend. Population and SLR forecasts come from Vafeidis et al. (2011). For panel (b), ∆ESL is calculated similary but
uses observed population exposure data (2000-2010). Sovereigns are split into more exposed (1) and less exposed (0)
groups, represented by Exposed, based on whether a sovereign’s trend coefficient is above or below the median across
the 23 sovereigns. Splits are shown in Figures 2 and 3. I control for global covariates: changes in the 5-year Treasury
yield, CBOE VIX, FTSE World Bond Index returns, and S&P 500 excess returns. Country-specific covariates include
changes in the local currency to USD exchange rate, foreign currency reserves in USD, local MSCI excess stock returns and
their volatility, and changes in the debt-to-GDP ratio interpolated from yearly to monthly. All models include country-
by-month and credit rating fixed effects for the period January 2010 to November 2019. The coefficients of sovereign
CDS returns are multiplied by 100, for the 5- and 10-year maturities. Standard errors, in parentheses, are clustered by
sovereign. Significance at the 1%, 5%, and 10% levels is denoted by ∗∗∗, ∗∗, ∗.
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Table 12: Sensitivity of sovereign CDS returns to news for sovereigns protected against
extreme sea level hazard

(1) (2) (3)
1 Yr 5 Yr 10 Yr

International Summits 0.545 1.310 0.164
(8.210) (3.655) (3.246)

SPX Returns -1.596∗∗ -0.558∗∗ -0.508∗∗
(0.554) (0.198) (0.171)

MSCI Local Returns -1.319∗∗ -0.558∗∗ -0.436∗∗
(0.403) (0.206) (0.162)

Debt to GDP -0.176∗∗∗ -0.077∗ -0.068
(0.039) (0.034) (0.034)

MSCI Vol 0.032 0.010 0.005∗
(0.034) (0.008) (0.002)

FTSE Bond Index -0.680 -0.271 -0.267
(0.850) (0.276) (0.253)

Exchange Rate Dollar 0.043 0.512∗∗∗ 0.429∗∗∗
(0.762) (0.096) (0.064)

Intl Reserves -0.034 -0.018 -0.058∗∗∗
(0.018) (0.019) (0.009)

5 Yr Treasury 0.033 -0.030 -0.049
(0.090) (0.037) (0.033)

VIX -0.055 -0.011 -0.020
(0.086) (0.021) (0.011)

SovereignxMonth Yes Yes Yes
Rating Yes Yes Yes
Adj R Squared 0.173 0.204 0.170
Observations 686 693 693

This table reports the regressions that relates climate change news surrounding international summits
to 1-, 5-, and 10-year sovereign CDS returns for sovereigns protected against 1-in-100 year coastal
floods. The sample of sovereigns that are protected, based on Lincke and Hinkel (2018), include Hong
Kong, Israel, Italy, Qatar, Bahrain, and the Netherlands. The regressions are estimated with coun-
try by month and credit rating fixed effects for the sample period January 2010 to November 2019.
Internationalsummits is a time-series index developed in ? that captures global media attention to
international climate summits across Reuters newswires. I control for global covariates: changes in
the 5-year Treasury yield, CBOE VIX, FTSE World Bond Index returns, and S&P 500 excess returns.
Country-specific covariates include changes in the local currency to USD exchange rate, foreign currency
reserves in USD, local MSCI excess stock returns and their volatility, and changes in the debt-to-GDP
ratio interpolated from yearly to monthly. All models include country-by-month and credit rating fixed
effects for the period January 2010 to November 2019. The table reports regression coefficients of
sovereign CDS returns, multiplied by 100, for the 1-, 5-, and 10-year maturities. Standard errors, in
parentheses, are clustered by sovereign. Significance at the 1%, 5%, and 10% levels is denoted by ∗∗∗,
∗∗, ∗.
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Table 13: Sensitivity of sovereign CDS premium to news for sovereigns protected against
extreme sea level hazard

(1) (2) (3)
1 Yr 5 Yr 10 Yr

International Summits -10.645 -0.913 -0.233
(-0.89) (-0.61) (-0.29)

SPX Returns -1.243 -0.642∗∗ -0.551∗∗
(-1.22) (-2.96) (-2.99)

MSCI Local Returns -1.459∗ -0.393 -0.301
(-2.54) (-1.86) (-1.79)

Debt to GDP -0.181∗∗ -0.102∗∗ -0.079∗∗∗
(-2.84) (-3.84) (-4.11)

MSCI Vol 0.010 0.008 0.002
(0.20) (1.00) (0.63)

FTSE Bond Index -1.098 -0.605∗ -0.562∗∗∗
(-0.79) (-2.44) (-4.13)

Exchange Rate $ 0.484 0.222∗∗ 0.229∗∗∗
(0.47) (2.66) (7.34)

Intl Reserves 0.116∗ -0.023 -0.034∗
(2.18) (-1.09) (-2.10)

5 Yr Treasury -0.099 -0.060 -0.065∗∗
(-0.83) (-1.73) (-2.72)

VIX 0.034 -0.007 -0.010
(0.39) (-0.59) (-0.72)

SovereignxMonth Yes Yes Yes
Rating Yes Yes Yes
Adj R Squared 0.077 0.208 0.207
Observations 691 699 695

This table reports the regressions that relates climate change news surrounding international summits to
1-, 5-, and 10-year sovereign CDS premium returns. Premiums are obtained by decomposing sovereign
CDS spreads using the reduced-form model of Longstaff et al. (2011). The sample of sovereigns that are
protected, based on Lincke and Hinkel (2018), include Hong Kong, Israel, Italy, Qatar, Bahrain, and the
Netherlands. The regressions are estimated with country by month and credit rating fixed effects for the
sample period January 2010 to November 2019. Internationalsummits is a time-series index developed
in ? that captures global media attention to international climate summits across Reuters newswires.
I control for global covariates: changes in the 5-year Treasury yield, CBOE VIX, FTSE World Bond
Index returns, and S&P 500 excess returns. Country-specific covariates include changes in the local
currency to USD exchange rate, foreign currency reserves in USD, local MSCI excess stock returns and
their volatility, and changes in the debt-to-GDP ratio interpolated from yearly to monthly. All models
include country-by-month and credit rating fixed effects for the period January 2010 to November 2019.
The table reports regression coefficients of sovereign CDS returns, multiplied by 100, for the 1-, 5-, and
10-year maturities. Standard errors, in parentheses, are clustered by sovereign. Significance at the 1%,
5%, and 10% levels is denoted by ∗∗∗, ∗∗, ∗.
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Table 14: Marginal effects of news on sovereign CDS net notional amounts conditional on
exposure to extreme sea level hazard

(1) (2)

Less Exposed × International Summits 2.053∗ 1.802
(1.027) (1.111)

More Exposed × International Summits 4.043∗∗ 3.814∗∗
(1.490) (1.505)

SPX Returns 0.108∗∗
(0.046)

MSCI Local Returns 0.005
(0.033)

Debt to GDP 0.172
(0.162)

Exchange Rate Dollar -0.076
(0.080)

Intl Reserves -0.000∗∗∗
(0.000)

5 Yr Treasury 0.004
(0.016)

VIX 0.013∗∗
(0.005)

MSCI Vol 0.003
(0.004)

FTSE Bond Index 0.353∗∗∗
(0.082)

Controls No Yes
SovereignxMonth Yes Yes
Rating Yes Yes
Adj R Squared 0.016 0.021
Observations 2662 2662

This table reports the regressions that relates climate change news surrounding international summits to the log growth
of net notional amounts aggregated across all sovereign CDS tenors. Weekly net notional amounts,a measure of credit risk
transference, are obtained from the Depository Trust & Clearing Corporation and are averaged to the monthly frequency
to match control variables. The coefficients in the first two rows show the marginal effects of the news index on the
growth of net notional amounts, conditional on sovereigns being more or less exposed to the hazard. “More Exposed”
refers to the group of sovereigns in the fourth quartile of Table 4, and “Less Exposed” refers to those in the first and second
quartiles. ESL hazard exposure is gathered from Vafeidis et al. (2011) by calculating percentage of a population at risk
from 1-in-100 year coastal floods for the year 2000. The InternationalSummits index from Faccini et al. (2023) measures
media attention to climate summits. I control for global covariates: changes in the 5-year Treasury yield, CBOE VIX,
FTSE World Bond Index returns, and S&P 500 excess returns. Country-specific covariates include changes in the local
currency to USD exchange rate, foreign currency reserves in USD, local MSCI excess stock returns and their volatility, and
changes in the debt-to-GDP ratio interpolated from yearly to monthly. All models include country-by-month and credit
rating fixed effects for the period January 2010 to November 2019. The table reports regression coefficients of sovereign
CDS returns, multiplied by 100, for the 1-, 5-, and 10-year maturities. Standard errors, in parentheses, are clustered by
sovereign. Significance at the 1%, 5%, and 10% levels is denoted by ∗∗∗, ∗∗, ∗.
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Table 15: Marginal effects of news on sovereign CDS returns conditional on exposure to
extreme sea level hazard, controlling for liquidity

(1) (2) (3)
1 Yr 5 Yr 10 Yr

Gamma 3.008∗∗ 0.041 0.449
(1.420) (0.565) (0.439)

More Exposed × International Summits 2.954 3.830∗∗ 4.329∗∗∗
(3.010) (1.732) (1.368)

Less Exposed × International Summits 1.413 0.401 0.348
(1.759) (0.943) (0.848)

SPX Returns -1.593∗∗∗ -0.840∗∗∗ -0.676∗∗∗
(0.186) (0.075) (0.063)

MSCI Local Returns -1.125∗∗∗ -0.518∗∗∗ -0.381∗∗∗
(0.150) (0.065) (0.049)

Debt to GDP -0.034 0.022 0.009
(0.136) (0.105) (0.075)

MSCI Vol 0.024∗∗∗ 0.012∗∗∗ 0.009∗∗∗
(0.009) (0.004) (0.003)

FTSE Bond Index -1.048∗∗∗ -0.458∗∗∗ -0.392∗∗∗
(0.322) (0.115) (0.100)

Exchange Rate Dollar 0.300 0.330∗∗ 0.212∗
(0.265) (0.160) (0.119)

Intl Reserves -0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗
(0.000) (0.000) (0.000)

5 Yr Treasury 0.093∗∗ 0.015 -0.006
(0.037) (0.012) (0.010)

VIX -0.023 -0.009 -0.011∗
(0.024) (0.008) (0.006)

SovereignxMonth Yes Yes Yes
Rating Yes Yes Yes
Adj R Squared 0.308 0.381 0.355
Observations 5088 5094 5086

This table presents regression results linking climate change news related to international summits with sovereign CDS
returns at 1-, 5-, and 10-year maturities for countries vulnerable to extreme sea level (ESL) hazards. The regressions
include an additional variable, Gamma reported in the first row, which are the monthly price reversals for each tenor using
the methodology in Bao et al. (2011). The second two rows report the coefficients from interacting the news attention
index, InternationalSummits, with an indicator variable distinguishing countries more or less exposed to ESL hazard.
“More Exposed” refers to the group of sovereigns in the fourth quartile of Table 4, and “Less Exposed” refers to those in
the first and second quartiles. ESL hazard exposure is gathered from Vafeidis et al. (2011) by calculating percentage of a
population at risk from 1-in-100 year coastal floods for the year 2000. The time-series news index is sourced from Faccini
et al. (2023) and captures global media attention to international climate summits as reported on Reuters newswires. All
regressions are estimated with country by month and credit rating fixed effects for the sample period January 2010 to
November 2019. The table reports the regression coefficients of sovereign CDS returns, multiplied by 100, for the 1-, 5-,
and 10-year maturities. Standard errors, reported in parentheses, are clustered by sovereign. Statistical significance at
the 1%, 5%, and 10% levels are indicated by ∗∗∗, ∗∗, ∗.
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Table 16: Marginal effects of Google Trends on sovereign CDS returns conditional on exposure
to extreme sea level hazard

(1) (2) (3)
1 Yr 5 Yr 10 Yr

More Exposed × Google Trends 5.225 2.392∗∗ 1.788∗∗
(3.908) (0.756) (0.594)

Less Exposed × Google Trends -1.254 0.297 0.110
(1.940) (0.638) (0.515)

More Exposed -0.334 -0.378 -0.140
(0.575) (0.392) (0.350)

MSCI Local Returns -0.783∗∗∗ -0.362∗∗∗ -0.259∗∗∗
(0.129) (0.062) (0.048)

Debt to GDP -0.014 0.019 0.025
(0.105) (0.101) (0.069)

MSCI Vol 0.014 0.006∗∗ 0.006∗∗∗
(0.009) (0.002) (0.002)

Exchange Rate Dollar 0.431 0.328 0.237
(0.403) (0.182) (0.140)

Intl Reserves -0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗
(0.000) (0.000) (0.000)

YearxMonth Yes Yes Yes
Rating Yes Yes Yes
Adj R Squared 0.360 0.466 0.448
Observations 4972 4978 4970

This table presents regression results linking climate change attention related to international summits with sovereign
CDS returns at 1-, 5-, and 10-year maturities for countries vulnerable to extreme sea level (ESL) hazards. The coefficients
in the first two rows represent the marginal effects of Google Trends on returns conditional on exposure. Google Trends
is an indicator variable equal to 1 when the value of attention to the topic “United Nations Climate Change Conference”
in a country, is greater than the 90th percentile and 0 otherwise. ‘More Exposed” refers to the group of sovereigns in the
fourth quartile of Table 4, and “Less Exposed” refers to those in the first and second quartiles. ESL hazard exposure is
gathered from Vafeidis et al. (2011) by calculating percentage of a population at risk from 1-in-100 year coastal floods
for the year 2000. The regressions control for the country specific covariates: the changes in exchange rate of the local
currency to USD, changes in foreign currency reserves denominated in USD, local MSCI excess stock returns and their
monthly volatility, and changes in debt-to-GDP ratio interpolated from a yearly frequency to monthly. All regressions are
estimated with year by month and credit rating fixed effects for the sample period January 2010 to November 2019. The
table reports the regression coefficients of sovereign CDS returns, multiplied by 100, for the 1-, 5-, and 10-year maturities.
Standard errors, reported in parentheses, are clustered by sovereign and year. Statistical significance at the 1%, 5%, and
10% levels are indicated by ∗∗∗, ∗∗, ∗.
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Table 17: Panel vector autoregressions testing for sovereign CDS return predictability

Forecasted ∆ESL (a) Observed ∆ESL (b)

(1) (2) (3) (4)
Less Exposed More Exposed Less Exposed More Exposed

L.International Summits 5.051** 3.049* 6.754*** 0.354
(2.434) (1.748) (3.132) (0.299)

L2.International Summits 3.256** 5.519** 4.192*** 3.931*
(2.021) (2.507) (2.692) (1.663)

L.10 Yr CDS Growth -0.003 0.007 0.038 -0.040
(-0.065) (0.345) (1.325) (-1.235)

L2.10 Yr CDS Growth -0.042* 0.004 0.008 -0.047**
(-1.695) (0.297) (0.570) (-1.979)

SPX Returns -0.562*** -0.852*** -0.773*** -0.689***
(-3.997) (-5.715) (-4.753) (-5.060)

MSCI Local Returns -0.526*** -0.592*** -0.502*** -0.608***
(-4.685) (-5.476) (-4.366) (-6.534)

Debt to GDP 1.801* 1.242* 0.499 2.948***
(1.741) (1.814) (0.766) (4.668)

MSCI Vol 0.020*** 0.015*** 0.014*** 0.021***
(3.885) (3.159) (3.162) (3.553)

FTSE Bond Index -0.021 -0.294* -0.177 -0.164
(-0.133) (-1.913) (-1.217) (-0.946)

Exchange Rate Dollar 0.292* -0.189 -0.062 0.161
(1.871) (-1.502) (-0.398) (1.237)

Intl Reserves 0.000*** 0.020 0.000*** 0.048**
(8.898) (1.120) (13.304) (2.220)

5 Yr Treasury -0.018 0.021* -0.014 0.013
(-0.730) (1.717) (-0.702) (0.626)

VIX -0.010 -0.019* -0.020** -0.012
(-1.210) (-1.732) (-2.045) (-1.407)

N 1392 1276 1392 1276
J 5.475 9.426 4.363 3.538

This table reports the second order panel vector autoregressions are estimated to investigate the rela-
tionship between the two month lagged values of the climate summit news index and monthly sovereign
CDS returns for trend coastal flooding exposed sovereigns. Each panel reports the regression coefficients
of sovereign CDS returns, multiplied by 100, for 10-year maturities. The countries in panels (a) and (b)
consist of the of the 23 sovereigns more exposed to ESL hazard, described in Table 4. For panel (a),
the changes in ESL hazard are approximated by the coefficient obtained from regressing the forecasted
(from Vafeidis et al. (2011)) percent of population exposed to 1-in-100 year coastal floods on a linear
time trend. For panel (b), the changes in ESL hazard are approximated by the coefficient obtained from
regressing the historical (2000 to 2010) percent of population exposed to floods on a linear time trend.
For each panel, the sovereigns are split into less and more exposed groups by dividing the estimated
coefficients by their median value. Splits are shown in Figures 2 and 3. The InternationalSummits
index from Faccini et al. (2023) measures media attention to climate summits and is interacted with
Exposed to produce the first-row coefficients, indicating the differential impact on CDS spreads be-
tween exposure groups. I control for global covariates: changes in the 5-year Treasury yield, CBOE
VIX, FTSE World Bond Index returns, and S&P 500 excess returns. Country-specific covariates in-
clude changes in the local currency to USD exchange rate, foreign currency reserves in USD, local MSCI
excess stock returns and their volatility, and changes in the debt-to-GDP ratio interpolated from yearly
to monthly. All models include country-by-month and credit rating fixed effects for the period January
2010 to November 2019. The coefficients of sovereign CDS returns are multiplied by 100, for the 5- and
10-year maturities. Standard errors, in parentheses, are clustered by sovereign. Significance at the 1%,
5%, and 10% levels is denoted by ∗∗∗, ∗∗, ∗.
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Table 18: Marginal effects of news on sovereign CDS returns conditional on exposure to
extreme sea level hazard, controlling for other climate risks

(1) (2) (3)
1 Yr 5 Yr 10 Yr

More Exposed × International Summits 2.997 3.118∗ 3.835∗∗∗
(3.059) (1.641) (1.283)

Less Exposed × International Summits 0.872 -0.290 -0.160
(1.780) (0.982) (0.868)

NDGAIN Exposure -13.781 -31.334∗ -34.820∗∗
(37.249) (17.056) (16.322)

NDGAIN Infrastructure -29.981 -13.325 -11.620
(22.301) (11.367) (10.903)

NDGAIN Readiness -17.222 -16.538∗∗ -9.375
(10.676) (7.323) (5.969)

Other Controls Yes Yes Yes
SovereignxMonth Yes Yes Yes
Rating Yes Yes Yes
Adj R Squared 0.307 0.384 0.358
Observations 4972 4979 4971

This table presents regression results linking climate change news related to international summits with sovereign CDS
returns at 1-, 5-, and 10-year maturities for countries at risk from extreme sea level (ESL) hazards. I control for metrics
from the Notre Dame-Global Adaptation Index (ND-Gain). Exposure captures how climate change impacts human living
conditions. Infrastructure is a metric of how coastal infrastructure will be impacted by the combined effect of sea level
rise and potential storm surge. Infrastructure is a metric of how coastal infrastructure will be impacted by the combined
effect of sea level rise and potential storm surge. Readiness measures a country’s readiness to leverage private and
public sector investment for adaptive actions. The coefficients in the first two rows represent the marginal effects of
InternationalSummits on returns based on exposure. “More Exposed” refers to the group of sovereigns in the fourth
quartile of Table 4, and “Less Exposed” refers to those in the first and second quartiles. ESL hazard exposure is gathered
from Vafeidis et al. (2011) by calculating percentage of a population at risk from 1-in-100 year coastal floods for the year
2000. I control for global covariates: changes in the 5-year Treasury yield, CBOE VIX, FTSE World Bond Index returns,
and S&P 500 excess returns. Country-specific covariates include changes in the local currency to USD exchange rate,
foreign currency reserves in USD, local MSCI excess stock returns and their volatility, and changes in the debt-to-GDP
ratio interpolated from yearly to monthly. All models include country-by-month and credit rating fixed effects for the
period January 2010 to November 2019. The table reports regression coefficients of sovereign CDS returns, multiplied by
100, for the 1-, 5-, and 10-year maturities. Standard errors, in parentheses, are clustered by sovereign. Significance at the
1%, 5%, and 10% levels is denoted by ∗∗∗, ∗∗, ∗.
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7 Figures

Figure 1: International Climate Summit News Index

Figure 1 presents a time-series of the climate summits index obtained from Faccini et al. (2023). The
index is developed using Reuters newswires as a corpus and then performing Latent Dirichlet Allocation
to extract topics. The series is used as a proxy for attention to climate summits by the sovereign credit
market.
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Figure 2: Changes in extreme sea level hazard using forecasted data

Figure 2 presents the change in exposure of sovereigns to extreme sea level rise hazard. The sample of
sovereigns in the figure consist of the of the 23 sovereigns more exposed to ESL hazard, i.e., the fourth
and fifth quintiles of vulnerable sovereigns as described in Table 4. The changes in ESL hazard are
approximated by the coefficient obtained from regressing the forecasted percent of population exposed
to 1-in-100 year coastal floods on a linear time trend. The forecasts are obtained from Vafeidis et al.
(2011) and are equally weighted across scenarios A, B, C, and D. The sovereigns are split into less and
more exposed groups by dividing the estimated coefficients by their median value.

Figure 3: Changes in extreme sea level hazard using observed data

Figure 3 presents the change in exposure of sovereigns to extreme sea level rise hazard. The sample of
sovereigns in the figure consist of the of the 23 sovereigns more exposed to ESL hazard, i.e., the fourth
and fifth quintiles of vulnerable sovereigns as described in Table 4. The the changes in ESL hazard
are approximated by the coefficient obtained from regressing the observed (2000 to 2010) percent of
population exposed to 1-in-100 year coastal floods on a linear time trend. The sovereigns are split into
less and more exposed groups by dividing the estimated coefficients by their median value.
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Figure 4: Population of Ho Chi Minh City: total (Left) and vulnerable to extreme sea level
hazard (Right)

Figure 4 presents a snapshot of the population near Ho Chi Minh City in Vietnam for the year 2010.
The left hand side presents the total population in log form obtained from the 2010 gridded dataset
developed by WorldPop. The panel on the right illustrates the population exposed to extreme sea level
(ESL) hazard. Exposure to ESL hazard is calculated by using the historical 1-in-100 year coastal flood
exposure dataset developed by Muis et al. (2016). Then, I overlay the gridded population dataset and
set any grid with greater than 30 centimeters of exposure to flooding as “exposed”.
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Figure 5: Comparison of estimated rates of change of exposure using observed and projected
data

This figure presents a comparison between the linear trend coefficients estimated with observed versus
projected data data. Vietnam is excluded because of readability. The sample of sovereigns in the figure
consist of the of the 23 sovereigns more exposed to ESL hazard, i.e., the fourth and fifth quintiles of
vulnerable sovereigns as described in Table 4. The values on the y-axis represent the changes in ESL
hazard and are approximated by the coefficient obtained from regressing the historical (2000 to 2010)
percent of population exposed to 1-in-100 year coastal floods on a linear time trend. The values on
the y-axis similarly represent the change in ESL hazard, but use the forecasted percent of population
exposed to 1-in-100 year coastal floods found in Vafeidis et al. (2011).
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Figure 6: Cumulative abnormal returns for sovereigns vulnerable to extreme sea level hazard
around the Paris Climate Summit

Figure 6 presents the cumulative abnormal returns (CAR) of the more exposed sovereigns to extreme
sea level rise hazard around the last week of October 2015, the period immediately preceding the Paris
Climate summit. The sample of sovereigns used to calculate CARs consist of the fourth quartile of
extreme sea level (ESL) hazard exposed countries as described in Table 4. Exposure to ESL hazard is
calculated by averaging the yearly percent of a sovereign population vulnerable to 1-in-100 year coastal
floods between 2000 and 2010.

Figure 7: Cumulative abnormal returns for sovereigns not vulnerable to extreme sea level
hazard around the Paris Climate Summit

Figure 7 presents the cumulative abnormal returns of the less exposed sovereigns to extreme sea level
rise hazard around the last week of October 2015, the period immediately preceding the Paris Climate
summit. The sample of sovereigns used to calculate CARs consist of the first and second quartiles of
extreme sea level (ESL) hazard exposed countries as described in Table 4. Exposure to ESL hazard is
calculated by averaging the yearly percent of a sovereign population vulnerable to 1-in-100 year coastal
floods between 2000 and 2019.
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8 Appendix A

8.1 Sovereign CDS Net Notional Amounts

The evidence provided thus far implicitly tests for investor attention to SLR, as there would
be no observed price reaction for sovereign CDS spreads if investors did not pay attention.
The implied mechanism of increasing spreads is that the gross notional amounts and number
of trades should rise during periods of high climate attention. In this case, counterparties (i.e.,
investors) react to climate summits by purchasing swaps to protect against potential default
and credit risk premium rises for afflicted sovereigns, in turn increasing the equilibrium price
of the sovereign CDS. In this case, I do not explicitly link investor behavior of purchasing
more insurance with attention which I attempt to rectify in this robustness check.

To investigate sovereign CDS trading by investors, I follow the prior work of Oehmke and
Zawadowski (2017) who study the determinants of CDS trading volumes, obtained from the
Depository Trust and Clearing Corporation (DTCC).21 The DTCC Section I data, previously
available as open-source, contains weekly CDS position and trading data of single-name CDSs
for the top 1,000 traded entities, including companies, sovereigns, and states. I obtain the
weekly net notional amount outstanding from the DTCC between January 1, 2010 and March
25, 2016. I focus on the net notional outstanding as it represents the net protection bought
by buyers or sellers across the market for an entity, and captures the aggregate credit risk
exchanged in the market. Gross notional amounts, on the other hand, are a measure of the
total transaction volume occurring in the market and could increase if a counterparty offsets
an existing trade, thereby reducing the total credit risk transferred in the market.22

The net notional data provides a practical means for understanding whether there is
elevated trading activity and risk transference during periods of elevated attention, further
substantiating the increased spreads found in the main results. However, the DTCC data
has considerable drawbacks, which relegates the analysis to a robustness check rather than a
main result. The data represents activity across all tenors and is therefore more reliable for
ESL analysis, as the hazard should affect medium to longer tenors. Additionally, the data is
only available up to the first quarter of 2016 and measures the average weekly transactions
for an entity, again diluting the measure. Finally, the DTCC only records the amounts if the
CDS contract is in the top 1,000 traded that week across all entities (i.e., not only sovereigns).
Some sovereigns, particularly in South America, with lower trading volumes do not appear

21The Warehouse is a trade repository which consolidates information such as trade reporting, payment
calculation, credit event processing, and final settlement.

22The inaccuracies of gross notional amounts in measuring the total credit risk transferred in the CDS
market has led the literature to predominantly focus on net notional amounts as the more economically
relevant measure (see Oehmke and Zawadowski (2017)).
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in the data, and others may drop out of the sample for a string of weeks. Therefore, I match
the prior analysis and the frequency of the control variables, and aggregate the transactions
to obtain the mean weekly net notional amount traded in a month.

Using the net notional data, I ask whether net notional amounts are associated with
attention to the climate summit index for sovereigns vulnerable to coastal flooding hazard
in order to verify H1. I use the mean weekly net notional amounts in a month, and use their
natural log changes as the dependent variable in a regression of the form:

log

(
Gt

Gt−1

)
= α + β1(Exposurei × Attentiont) + γ∆Xi,t + ηi + ρi,ty + εi,t, (12)

where t denotes months and G represents the net notional amounts. The sample is restricted
to only include sovereigns that have more than 90% of their observations as non-missing
and different from zero. This leaves the 14 original fourth-quartile sovereigns in the sample
vulnerable to ESL hazard, and 23 from the bottom two quartiles remain in the unexposed
group. The sovereigns that are not in the top thousand contracts traded, and therefore
censored in the DTCC sample, are Uruguay, Dominican Republic, Costa Rica, Guatemala,
Lebanon, Serbia, and El Salvador. I then project the net notional growth onto the attention
index along with the same control variables and fixed effects as stated in equation 6.

The results of the regressions using net notional amounts as the dependent variable are
shown in Table 14. Columns (1) and (2) indicate that the index is significantly (at 1%) related
to increasing risk transfer activity for those sovereigns vulnerable to coastal flooding. In
terms of economic magnitude, a one-unit increase in the index leads to about a 4% rise in net
notional amounts. In comparison, there is a positive but non-significant relationship between
the least exposed group and climate summit news. Although not precisely comparable,
as these contracts are traded across all terms, the economic magnitude is similar to the
relationship documented in Section 3.1.1, where I find a 0.80% rise in spreads. The evidence
therefore supports hypothesis H1 in that the counterparties participating in the CDS market
perceive flood hazard as a material risk, and purchase net protection to hedge against it.

The evidence provided in this section points to the market purchasing sovereign default
insurance during periods of attention to climate summits, paralleling the prior findings.
Furthermore, it confirms that media attention is a significant factor in the growth of sovereign
CDS trading volume—a novel contribution to the literature. This interpretation is in line with
the findings of Augustin et al. (2016) who show that investors use sovereign CDS primarily
as hedging instruments. The conclusions drawn from this investigation explicitly support the
results showing that the cost of insurance rises to protect against countries that are most
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exposed during periods of global attention to climate hazards.

8.2 Liquidity

Generally, sovereign CDS are more liquid than a comparable sovereign bond with the same
maturity (Mullin and Bruno, 2020). Moreover, relative to the corporate CDS market, trad-
ing in the sovereign market is less clustered around the 5-year contract and is distributed
more evenly across tenors. Nonetheless, illiquidity may lead to investors demanding higher
compensation for bearing the risk associated with the sovereign debt, leading to an increase
in the CDS spread. Bao et al. (2011) capture liquidity using the negative of autocovariance
of prices changes and show that the measure is a significant factor for pricing a cross-section
of corporate bonds. Furthermore, they show that the variation explained by price reversals
is substantially greater than what can be explained by bid-ask spreads. In this robustness
check, I use the liquidity measure to show that prior results are not subsumed by potential
illiquidity in the CDS market.

To obtain monthly price reversals, I collect daily CDS spreads, quoted at the end of
the day, from Datastream for the 59 sovereigns in my sample from 2010 to the end of 2019.
I define illiquidity, γ, with:

γ = −Cov (∆pt,∆pt+1) , (13)

where ∆pt = pt − pt−1 is the price change from time t − 1 to t. γ’s are calculated at a
monthly frequency for each CDS tenor of all sovereigns in the sample. The time series of
price reversals are used as an additional control variable in the empirical regressions in the
form of specification 6.

Table 15 presents the results of the regressions including γ as a control variable. The
only significant estimate is located in the first column, indicating that the spreads of one-
year CDS spreads are significantly explained by liquidity. These results are consistent with
findings from Pan and Singleton (2008), who report that 1-year and 10-year contracts com-
prise approximately 10% and 20% of volumes in sovereign markets, respectively, with 5-year
contracts showing the greatest liquidity. The statistical significance of γ in the first column
thus matches the fact that the lack of liquidity may be an issue for shorter maturities, leaving
the underlying relationship between ESL hazard and credit risk intact.

8.3 Alternative Attention Indices

As an additional robustness check, I further validate the empirical investigation by testing
whether country level attention to international summits are reflected in sovereign CDS
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returns. Consistent with Hilscher and Nosbusch (2010), I view country level attention as a
potential risk factor that can alarm investors towards ESL hazard.

Data gathered from country Google search volumes (SVI) on the topic “United Nations
Climate Change Conference” are used to proxy for local investor attention, akin to Choi et
al. (2020).23 I collect the attention index for each sovereign from January 2004 to November
2019 and subset the data to only include information from January 2010 to November 2019.24

SVI is a normalized index, presented on a scale from 0 to 100, where the volume of searches
each month is scaled relative to the highest volume of searches in any given month within a
specific time frame. However, this normalization process often results in numerous months
where the index equals zero, leading to considerable sparsity within the index. In response,
I assign an indicator variable, Google Trends, to 1 when above the index is above the 90th
percentile and 0 otherwise. This results in a variable which represents particularly high
periods of attention in a country towards international summits.

The estimation strategy relies on an interactive term between Exposure and Google
Trends to understand the relationship between local attention and returns for each exposure
group. For the 1, 5, and 10 year spreads (RSCDS

i,t+1 ), I perform regressions of the following
specification:

RSCDS
i,t+1 = α+ β1(Exposurei ×GTrendsi,t)+ β2(Exposurei)+ γ∆Xi,t +λt + ρi,ty + εi,t, (14)

for country, i, at time t. ∆Xi,t is a set of country specific variables to control for sovereign-
specific factors that are known to affect sovereign CDS returns. I include λi which represents
year by month fixed effects to capture observable and observable heterogeneity between
periods of time and subsume global covariates such as VIX. ρi,ty represents a fixed effect
obtained by transforming a numerical credit-rating from Oxford Economics and mapping
the series into five “risk buckets” that control for the yearly rating of each sovereign. The
coefficient, β2, captures the difference in the base levels of CDS returns between exposure
groups, leaving the simple effects estimated from the interactive term.

The first two rows of Table 16 presents the estimated betas of the interactive term—the
relationship between high levels of country-specific attention to international summits and
CDS returns, conditional on exposure ESL hazard. The second row presents non-significant
coefficients for the interactive terms, indicating no relationship between the CDS spreads and

23Specifically, I use the pytrends package in Python to collect historical time series information on the
topic, m0rf7z0x.

24I opt to collect data from the inception of Google trends to include all available information up to
November 2019. The only sovereign with missing information on the topic is Latvia which is excluded from
the sample.
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local attention for sovereigns with lesser exposure to extreme sea level rise. In contrast, the
exposed countries (first row) present positive and significant coefficients, for 5 and 10 year
CDS spreads. I note that the coefficient on the interactive term for more exposed sovereigns
is large due to the greater volatility of shorter term spreads.

The results confirm a modest relationship between country level attention towards
the topic “United Nations Climate Change Conference” and risk for vulnerable countries,
supporting the prior results. My results lend credence to a combination of global and local
factors that drive variation in sovereign risk, similar to the conclusions of Dieckmann and
Plank (2012). Although these results are incomparable to prior specifications due to the
inherent non-linearities of the indicator Google Trends, it is possible to draw some broad
conclusions. The markedly smaller coefficient sizes suggest that while returns are sensitive
to local attention, the effects are limited. This relationship suggests that global rather than
local attention to international summits drives CDS returns for vulnerable sovereigns.

8.4 Panel Vector Autoregressions

I express a PVAR estimated using generalized method of moments, as:

 Attention t

RSCDS
i,t+1

Xi,t

 =

 α1

α2

α3

+
n∑

p=1

 β1,p β2p

β3,p β4,p

β5,p β6,p


 Attention t−p

RSCDS
i,t−p

Xi,t−p

+

 ε1,t

ε2,t

ε3,t

 , (15)

for sovereign i and p lags. The attention index, Attentiont and sovereign CDS returns, RSCDS
i,t+1 ,

are the endogenous vectors of interest, and Xi,t is an exogenous vector of control variables
used in regression 6. Before estimation, I verify with Dickey Fuller unit root tests and panel
unit root tests that both global and sovereign-specific variables are stationary. I find that
a second-order panel VAR model, estimated with the first three lags of the untransformed
variables as instruments, is found to produce an insignificant J statistic.25 I apply this
structural regression to the ESL- and ∆ESL-exposed groups with a Helmert transformation
to remove sovereign-specific fixed effects.

The results for the PVAR regression estimate for the ∆ESL-exposed sovereigns are
presented in Table 17, which illustrates that the sovereign CDS market is inattentive to news
when pricing coastal flooding hazard. Specifically, the second lag of international summits
has a statistically significant positive relationship with sovereign CDS returns across all sub-
groups of sovereigns. The lagged relationship is in support of hypothesis H2 in that the market

25The GMM estimation is performed with the Stata module developed by Abrigo and Love (2016).
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gradually incorporates longer-term risk, as in DellaVigna and Pollet (2007). There is also no
observed return reversal across all specifications, implying that the investors value climate
related news but are encumbered by challenges in information processing, leading to an un-
derreaction in the market. Nonetheless, the relative similarity in magnitude and significance
of the coefficient of interest across all specifications hinders cross-group comparisons.

In sum, the observed evidence supports a behavioral inattention story rather than one
of rational inattention. Investors, faced with the added complexity of processing climate
information, gradually integrate subsets of publicly available information. If investors are
rationally inattentive, then magnitudes across the entire sample would likely be smaller,
implying weak predictability (Sims (2003); Van Nieuwerburgh and Veldkamp (2010)).

8.5 Controlling for Other Risks

Other climate risks discussed during international summits could potentially affect the es-
timated relationship. To account for this, I utilize sovereign-specific indices developed by
the Notre Dame Global Adaptation Initiative (ND-GAIN), which offers open-source metrics
measuring a country’s vulnerability to climate disruptions (Chen et al., 2015). Specifically, I
incorporate three indices: human exposure to climate risks, national infrastructure vulnera-
bility, and the readiness of a country to adapt to climate change. This section demonstrates
that incorporating these additional indices does not alter the original relationship between
international summits and sovereign CDS spreads.

Table 18 includes the three indicators: Exposure, Infrastructure, and Readiness. Expo-
sure assesses a country’s vulnerability to climate change by evaluating sensitivity to climate
factors. Infrastructure quantifies a country’s vulnerability and adaptive capacity regarding
infrastructure in the face of climate change. Readiness measures a country’s capability to ef-
ficiently utilize investments for climate adaptation. Again, the contemporaneous correlation
between the news index and credit risk is significantly positive for medium to long term CDS
tenors.

9 Appendix B

I outline the decomposition method, developed in Pan and Singleton (2008) and Longstaff
et al. (2011), for the term structure of sovereign CDS spreads.

The risk-neutral default intensity at time t, λt, is described as the first jump of a Poisson
process following the stochastic differential equation,
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d lnλt = κQ
(
θQ − lnλt

)
dt+ σλdB

Q
t , (16)

where κ, θ, and σ account for the speed of mean-reversion, the long-run mean, and the
volatility of the Ornstein-Uhlenbeck process. By modelling the intensity in this form, a
sovereign CDS contract can be priced in its present value form at time t and maturity M as,

SCDSt(M) =
2
(
1−RQ

) ∫ t+M

t
EQ

t

[
λue

−
∫ u
t (rs+λs)ds

]
du∑2M

j=1

[
EQ

t e
−

∫ t+j/2
t (rs+λs)ds

] (17)

where the numerator is the contingent payment paid by the protection seller upon a credit
event, i.e., the premium leg. The denominator can be thought of as the protection leg,
representing the discounted value of a semiannual annuity, contingent on a default event not
occurring or maturity. RQ represents the constant risk-neutral fractional recovery, 25%, of
face value on the underlying cheapest to deliver bond in the event of a relevant credit event.
The variable rt denotes the riskless interest rate, while λt represents the risk-neutral intensity
or arrival rate of a credit event. The riskless rate and default intensity are assumed to follow
a stochastic process and evolve independently, therefore implying that the term structure can
be specified exogenously. This continuous-time model is then approximated and discretized
to include the price of a default free bond, D(t, u), that matures at time u,

SCDSQ
t (M) =

2
(
1−RQ

) ∫ t+M

t
D(t, u)EQ

t

[
λe−

∫ u
t λsds

]
du∑2M

j=1D(t, t+ j/2)EQ
t

[
e−

∫ t+j/2
t λsds

] . (18)

Thus far, the framework has defined pricing under risk-neutral conditions, however,
there is an equivalent historical data generating process of form P. Under this historical,
objective measure, default intensity is described as,

d lnλt = κP
(
θP − lnλt

)
dt+ σλdB

P
t , (19)

and can be linked to the risk neutral intensity process, Q, by the market price of risk,

ηt = δ0 + δ1 lnλt. (20)

The parameters that determine the price of risk, δ0 and δ1, satisfy κQ = κP + δ1σλ and
κQθQ = κP θP − δ0σλ. If δ0 and δ1 are equal to zero there would be no difference between
the risk-neutral and historical processes, implying no apparent risk premium in spreads.
Otherwise, if there is a premium,
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SCDSP
t (M) =

2
(
1−RQ

) ∫ t+M

t
D(t, u)EP

t

[
λe−

∫ u
t λsds

]
du∑2M

j=1D(t, t+ j/2)EP
t

[
e−

∫ t+j/2
t λsds

] (21)

would diverge from SCDSQ
t (M). Specifically, to obtain the default “distress” risk premium,

SCDSP
t (M) is subtracted from SCDSQ

t (M).
Estimation of the premium is obtained using the 1-, 5-, and 10-year sovereign CDS

spreads and Maximum-Likelihood as there is no closed-form solution. I assume the theoretical
1-year and 10-year sovereign CDS contracts as priced with normally distributed errors of mean
zero and standard deviations σϵ(1) and σϵ(10). I choose the 5-year sovereign CDS as perfectly
priced conditional on a set of parameters κQ, θQ and σ to recover λ using the inverse of the
pricing function. Values of the zero-coupon bonds that are apparent in the discrete pricing
formula are from the Treasury constant maturity curve published by the Federal Reserve
Board and interpolated using cubic spline interpolation. Lastly, the joint density function is,

fP (Θ, λ) =fP (ϵ1y | σϵ(1))× fP (ϵ10y | σϵ(10))× fP
(
lnλ | κP , κP θP , σ

)
×

∣∣∂SCDSQ
(
λ | κQ, κQθQ, σ

)
/∂λ

∣∣−1
,

(22)

where the parameter vector is Θ =
(
κQ, κQθQ, κP , σλ, σε(1), σε(10)

)
with ∆t being equal

to 1/12 due to the monthly frequency of the data.
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