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1. Introduction

Artificial intelligence (AI) was initially conceived with the goal of making human work and

life more interesting, fulfilling, and less laborious. Paired with other technological advances

like automation, AI has the potential to boost productivity, enhance job satisfaction, and

promote a healthier work-life balance. Nevertheless, empirical evidence regarding AI’s impact

on both work and leisure remains inconclusive. While much of the discussion has centered

on AI’s capacity to displace labor in some scenarios and generate new roles in others (e.g.,

Felten et al., 2019; Webb, 2019; Acemoglu et al., 2022; Kogan et al., 2023; Hampole et al.,

2025), relatively little attention has been given to how AI reshapes work on the intensive

margin—particularly its effects on work time, contracting efficiency, and the distribution of

productivity gains. This paper aims to fill these gaps by analyzing the micro-level impacts of

AI on time allocation, drawing on detailed individual-level time diaries collected from 2004

to 2023. Through this examination, we investigate how AI exposure influences work supply

at the intensive margin and assess its broader implications for firm valuation and economic

outcomes.

The relationship between occupation exposure to AI and work time is a priori ambiguous.

For any given task, AI-driven automation and efficiency improvements should theoretically

shorten task duration. Additionally, wealth creation boosted by technology should entice

individuals to allocate more time from work to leisure, provided that leisure is a normal

good. However, the classical principle-agent model (notably Holmstrom and Milgrom (1987))

provides a rich set of predictions in a setting where a worker optimally allocates his effort

based on the production process, monitoring effectiveness and personal preferences. AI’s

impact on the potential to enhance productivity in diverse fields,1 combined with its capacity

to improve monitoring and productivity measurement, can result in heavier workloads and

longer hours. This effect is expected to be more pronounced in competitive product markets,

1E.g., stock analysis (e.g., Gu et al., 2020; Lopez-Lira and Tang, 2023), legal practices (e.g., Casey and
Niblett, 2016; Surden, 2019), music generation (e.g., Briot et al., 2017; Briot, 2021), and accounting (Com-
merford et al., 2022).
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where businesses face escalating expectation from customers and pressures from competitors’

enhanced capabilities; and in labor markets with relatively inelastic supply, where workers lack

substantive bargaining power to adjust their schedules to their own advantage. Furthermore,

AI’s integration of real-time effort tracking and improved information availability frequently

erodes the division between work and personal life, further contributing to extended working

hours for some individuals.

Data from the American Time Use Survey (ATUS) provides a unique opportunity to test

the hypotheses. The ATUS conducts a cross-sectional survey each year, with an average

annual sample size of approximately 26,400 participants. Our sample spans two decades

from 2004 to 2023. Respondents document their activities using detailed 24-hour diaries

at 15-minute intervals, from which market-based work time, leisure time, and some special

categories (such as education and entertainment) can be calculated, with reasonable variations

for sensitivity checks (e.g., whether social activities at the workplace count as work or leisure).

To attribute the changes in workday patterns to AI, we then measure each occupation’s AI

exposure based on the textual correlation between task descriptions and the content of AI-

related patents using large language models. We further distinguish between complementarity

and substitution relationships between AI and jobs.

The advent of ChatGPT toward the end of 2022 provides a natural experiment to test on

how workers change time allocation when their jobs are disrupted or complemented by the

new AI technology. Workers in occupations with higher exposure to generative AI experienced

a significant increase in work hours and a decrease in leisure time following the introduction

of ChatGPT. An interquartile increase in AI exposure is associated with a 3.15-hour increase

in daily work time. This effect is particularly evident in occupations that are more com-

plementary to generative AI and in regions where AI awareness is higher, as measured by

Google search trends. Given that the general public was largely unprepared for exact tim-

ing of ChatGPT and even more for its advanced, “human like” capabilities,2 the prolonged

2The surprise by the general public was evident from the comments on social media shortly after ChapGPT’s
launching. For instance, The New York Times article titled “A Conversation With Bing’s Chatbot Left Me
Deeply Unsettled,” published on February 16, 2023, captured many of these reactions and reflected the broader
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workday is likely to be attributable to the new technology. The fact that AI technology actu-

ally increases overall work hours challenges the conventional expectation that such technology

enables people to finish work faster.

The same relationship holds for the entire sample period concerning occupational exposure

to general AI technology. After accounting for personal characteristics, a set of alternative

exposure measures to innovation, and saturated fixed effects—including occupation, industry

× year, state × year, year-month, and day-of-week—an interquartile shift in occupational AI

exposure corresponds to an additional 2.2 hours of work in the cross-section, or about 40%

of that magnitude within occupations (i.e., when incorporating additional occupation fixed

effects). Furthermore, the effect increases monotonically with the level of net complemen-

tarity in occupational AI exposure. This finding supports the hypothesis that AI-augmented

productivity motivates workers to extend their working hours. The hypothesis is further

supported by evidence that occupational complementarity to AI is positively correlated with

wages, which are expected to rise to incentivize greater effort.

In addition, we provide evidence of AI’s impact on performance monitoring, leveraging the

rapid adoption of AI-driven monitoring in remote work during the 2020 pandemic as a natural

laboratory. Remote workers with greater exposure to AI surveillance technologies work longer

hours post-pandemic. In contrast, this effect is not observed among the self-employed, where

the principal-agent problem does not apply, confirming the placebo effect.

Finally, we discover that despite higher compensation, greater AI exposure is associated

with lower general welfare of workers, as evidenced by decreased employee satisfaction in

Glassdoor ratings, consistent with stagnation of worker reservation utility despite productivity

gains. Moreover, the extension of the working day is more pronounced when the labor market

is competitive, reducing workers’ bargaining power to extract rents from technology-enabled

productivity gains; or when the product market is competitive, leading to most of the rents

being passed on to consumers, leaving little for firms to share with workers. In both scenarios,

the reservation utility of workers (reflecting overall welfare in equilibrium) fails to keep pace

public astonishment at the technology’s capabilities.
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with productivity gains during the AI boom, thereby undermining the income effect that

would have otherwise induced more leisure and discouraged work. The combined results

suggest that while AI-driven productivity gains promise greater efficiency, they have resulted

in longer working hours and lower employee satisfaction, especially in competitive markets and

for occupations with higher AI complementarity, challenging the conventional expectation that

technology frees humans from prolonged workdays.

Our study contributes to the rapidly growing literature analyzing the impact of AI on the

economy. A growing body of research (Autor, 2015; Felten et al., 2019; Webb, 2019; Acemoglu

et al., 2022; Yang, 2022; Babina et al., 2024; Hampole et al., 2025) has uncovered various facets

of AI’s impact on businesses and employment, focusing primarily on the extensive margin, i.e.,

occupations disrupted and new opportunities created by AI. In contrast, this study centers on

the intensive margin of workdays within the framework of a principal-agent model. Needless

to say, we also build upon and contribute to the literature using time allocation surveys,

which have predominantly examined general or cyclical trends and their heterogeneity across

population subgroups.3 Among studies built on time allocation survey, our study is unique

through the lens of AI exposure.

The remainder of the paper is organized as follows: Section 2 develops a simple model

within a principal-agent framework to provide theoretical guidance on the various ways AI

technology can influence worker time allocation. Section 3 introduces the primary datasets

used in our analyses, including patent data, occupation data, LinkedIn, Glassdoor, and the

American Time Use Survey. Section 4 presents the empirical analyses and reports the results.

Finally, Section 5 concludes.

3For instance, Aguiar et al. (2021) shows that younger men experienced the greatest decline in market work
hours among all demographic groups over the last 15 years, reallocating their leisure to video gaming and other
recreational computer activities. Aguiar and Hurst (2007) finds that the least educated adults experienced the
largest increases in leisure. Aguiar et al. (2013) investigates how individuals reallocate their lost work hours
during recessions.
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2. Modeling Framework and Hypotheses

Theories addressing the principal-agent problem have inspired a large body of research, includ-

ing many seminal papers. While this study is primarily empirical, we ensure that our analyses

are well-informed by theoretical insights. In particular, we build on straightforward adap-

tations of the Holmstrom and Milgrom (1987) model of dynamic incentive contracts, which

examines how risk-averse agents respond to compensation schemes that balance incentives,

risk-sharing, and the timing of information disclosure in a continuous-time framework. This

model offers predictions about the relationship between a worker’s “effort” (interpreted as the

number of work hours in our empirical context) and several key factors, including marginal

productivity, the ease of effort monitoring, and the worker’s bargaining power in capturing or

preserving the rents from technology-driven productivity gains.

The simple model, presented in the Online Appendix A, features a risk-neutral principal, a

risk-averse agent, and a production process following the standard Brownian motion in which

effort and marginal productivity are multiplicative in determining the drift while noise is

exogenously given. Under constant absolute risk aversion (CARA) utilities and a convex cost

of effort for the agent, Holmstrom and Milgrom (1987) demonstrate that the optimal dynamic

contract converges to a linear form in the aggregate: a lump-sum payment plus a share of the

output, i.e., α+ βX. In this framework, the lump sum ensures the agent’s reservation utility,

U (shaped by the worker’s relative bargaining power, which depends on the competitiveness of

both the labor and product markets). The “sharecropping” coefficient, β, is inversely related

to the agent’s increasing marginal cost of effort, risk aversion, and output noise. Finally, the

agent’s effort level, in response to the incentive, is positively correlated with their marginal

productivity and aligns in direction with the factors influencing β.

The model can be extended to incorporate a general constant elasticity of substitution

(CES) utility function, where the marginal utilities of consumption and leisure are interde-

pendent. This framework allows for the examination of how the work-leisure allocation changes

in response to external factors that influence the agent’s reservation utility U via their best
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alternatives in the marketplace. When consumption and leisure are complements, or when

the reservation utility is sufficiently high (limiting the principal’s ability to increase β due to

the agent’s risk aversion), work time is expected to decrease as the reservation utility rises.

Since leisure is a normal good, the agent places greater value on it as their welfare improves.

Rising U allows the agent to allocate more time to leisure and less to work (while enjoying

higher consumption), all else being equal.

The model offers tight guidance on how AI can influence optimal incentives and the equi-

librium level of effort for several reasons. First, if AI enhances the marginal productivity of the

agent—indicating that human and AI are complements in job tasks4—this increase in marginal

productivity results in greater effort or longer working hours. Conversely, if human and AI

are substitutes in the job,5 the effect is reversed. It is worth noting that a principal-agent

relationship is not required for this effect, as the same dynamic would apply to self-employed

individuals.

Second, AI enhances work monitoring by providing better predictions or more precise sig-

nals of workers’ efforts. This can occur through improved forecasting of market opportunities,

ensuring that the right products are produced, or through more accurate assessment of work-

ers’ labor input using past and concurrent, own and peer data. Both mechanisms reduce

the noise component (i.e., factors unrelated to workers’ effort or actions), thereby increasing

work hours. This effect operates in the same direction regardless of whether AI substitutes or

complements labor, though it is significantly stronger when the worker acts as an agent (i.e.,

employed by someone else) rather than as a principal (i.e., self-employed).

4A burgeoning literature corroborates complementarity in a wide range of occupations: Armour et al.
(2022) find that AI-enabled services augment the capabilities of human lawyers and generate new roles for legal
experts. Brogaard et al. (2024) find that human floor traders compete better with the help from algorithmic
traders. Cao et al. (2024) demonstrate the superiority of a “Man + Machine” stock analyst over either human
or AI analysts. Wang et al. (2024) find evidence supporting that AI solutions complement human experience
in medical coding tasks for healthcare systems.

5An equally large literature has expressed concerns over displacements of human labor during technology
advancement: Kogan et al. (2023) estimate the wage disruption effect of labor-saving technologies. Cheng
et al. (2024) discuss the effect of labor-replacing automation technologies on firms’ financial outcomes. Hui
et al. (2024) find that generative AI reduce the demand and wages for human labor in online labor market.
Jiang et al. (Forthcoming) report that exposure to fintech leads to a decline in job postings and employment.
Cao et al. (2024) highlight that AI outperforms humans in certain tasks like processing transparent data.
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Third, market forces and competitive conditions determine the extent to which workers

benefit from AI-enabled productivity gains. When AI complements human labor and enhances

labor productivity, the degree to which these gains translate into worker welfare–through a

combination of higher pay and lower work hours—depends on the relative bargaining power

of workers vis-a-vis their employers. Workers in regions or occupations characterized by com-

petitive labor markets have limited bargaining power and may see little material benefit, with

most of the rents accruing to employers or shareholders. Moreover, the share of rents available

for firms to split with their workers also depends on product market competition. In highly

competitive markets, consumers emerge as the primary beneficiaries of AI-driven productivity

gains through better-quality products, lower prices, and rising consumer expectations, leaving

little surplus for firms to share with their workers. If AI substitutes human labor and reduces

labor productivity, workers find themselves in an even weaker bargaining position.

The distribution of the rents impacts work hours via the income effect linked to workers’

reservation utility. When workers are able to capture a significant portion of the gains, their

reservation utility increases, leading to greater consumption of leisure (a normal good), which,

in turn, suppresses work hours. Conversely, when workers receive only a small share of the

gains, the income effect from reservation utility is limited, resulting in minimal impact on

work hours. The distribution of productivity rents serves as a distinct channel through which

AI influences work-life balance.

3. Data, Measurement, and Overview

3.1. American Time Use Survey (ATUS)

To study how workers allocate time in the advent of AI, this study uses the ATUS database

(2004-2023) of the Bureau of Labor Statistics (BLS) as its primary dataset. The ATUS delivers

comprehensive, nationally representative data detailing how Americans use their time, where

they spend it, and who they spend it with. It is the only federal source covering both market
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work (e.g., employment) and non-market activities, such as childcare and volunteering. To

date, the ATUS data has been extensively used to examine social issues related to trends

in work and leisure, health, and equality (e.g., Aguiar et al., 2013, 2021; Alon et al., 2020;

Doepke et al., 2023; Graff Zivin and Neidell, 2014; Krueger and Mueller, 2010).

The ATUS conducts a cross-sectional survey each year, with an average annual sample

size of approximately 26,400 participants. The ATUS sample is drawn from the population

of households that participated in the Current Population Survey (CPS). One eligible person

(household members aged 15 or older) per household is selected to participate in ATUS.

Following Aguiar et al. (2013), our sample consists of respondents aged between 16 and 65,

excluding individuals who are not in the position to be employed, such as full-time students

aged below 25 and those serving in the military.6 The sample further excludes those hired

by tech firms to focus on workers in AI-using firms rather than AI-inventing firms following

the literature (Acemoglu et al., 2022; Babina et al., 2024).7 As the ATUS survey does not

specifically select respondents based on employment status, the unemployed remain in our

sample as long as an occupation code is available - typically reflecting their most recent

job.8 Long-term unemployed individuals do not have relevant occupation affiliation, so their

exclusion does not impact our analysis of work time across occupations with varying AI

exposure. These criteria result in 123,603 unique individuals in the ATUS sample from 2004 to

2023, spanning four labor market statuses: employed - at work, employed - absent, unemployed

- on layoff, and unemployed - looking.

The ATUS respondents are interviewed once to document their activities from the previous

day, using 24-hour diaries divided into 15-minute intervals. These activities, classified into

6The military sector is defined using the Census industry code (”teio1icd”) provided by ATUS, including
national security and international affairs (9590) and armed forces (9600-9900).

7The tech sector is defined using the Census industry code (”teio1icd”) provided by ATUS, including
information (6470–6780), scientific and technical Services (7380-7460), and other professional, scientific, and
technical services (7490). Details on this classification system can be found in Appendix A of the ATUS Data
dictionary at https://www.bls.gov/tus/dictionaries/atusintcodebk23.pdf.

8The CPS survey of the ATUS respondents was collected two to five months before their ATUS interview.
This allows us to retrieve the most recent employment information (i.e., occupation code, industry code) from
the CPS survey for respondents who were employed during the CPS survey but became unemployed by the
time of the ATUS interview.
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over 400 distinct types, are grouped into four broad categories: basic survival (a fixed seven

hours per day for critical survival functions such as sleeping and eating), market work (to be

explained shortly), leisure, and others. Following previous literature (e.g., Aguiar et al., 2013,

2021; Boerma and Karabarbounis, 2021), our paper uses weekly hours as the unit of analysis,

calculated by multiplying daily hours by seven (with a top cap of 168 hours).

Market work, or simply “work,” comprises two components: (i) “Core” market work, which

includes time spent on main jobs, overtime work, and work activities performed at home;9

and (ii) ancillary activities, covering time spent on supplementary work-related tasks, such

as security procedures and waiting related to work. In our analyses, “work” time includes

“work, main job,” “eating and drinking as part of job”, “sports and exercise as part of job,”

“security procedures as part of job,” “waiting associated with work-related activities,” and

“work-related activities, not elsewhere classified.” Commuting and social activities at work

are excluded but results are qualitatively similar with their inclusion. 10

Leisure activities are broadly defined to include activities such as watching television and

movies, engaging with recreational computing and video games, reading, sports, and vari-

ous hobbies. Activities such as eating, sleeping, and personal care (ESP) may serve dual

function of meeting essential biological needs and offering leisure value. Thus we consider

the time above the seven hours for essential needs from these categories to be leisure activi-

ties. The residual category, “other,” including the remaining time spent on home production

(domestic responsibilities such as cleaning, maintenance, cooking, shopping, and gardening);

childcare; education (personal academic pursuits, such as participating in classes or doing

homework); job search activities (submitting resumes, conducting job interviews, and explor-

ing employment opportunities); own medical care; civic activities (going to church or social

club, volunteering, etc.); any unclassified activities.

Table 1 Panel A reports the summary statistics at the ATUS respondent level. Unless

otherwise specified, all potentially unbounded variables are winsorized at the 1% extremes.

9Secondary jobs, if any, are excluded due to the lack of occupation-related information.
10Commuting and social activities at work include “socializing, relaxing, and leisure as part of job”, and

“travel related to work.”
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The average respondent allocates 34.9 hours to work and 55.5 hours to leisure per week.

The variation is substantial, with standard deviations of 30.7 and 27.3 hours, respectively.

In the residual category, the average person spends 1.7 hours on education, 1.6 hours on

civic activities, 0.4 hours on own medical care, 0.1 hours on job search, 15.7 hours on home

production, and 4.5 hours on child care. These time allocation estimates are consistent with

previous studies (e.g., Aguiar et al., 2013, 2021).

ATUS also reports wages for each individual, which are expressed in 2023 constant dollars

in our analyses. For workers paid hourly, the hourly wage is directly reported. For non-hourly

workers, we estimate the hourly wage by dividing their weekly earnings by the total hours

they typically work each week. The average hourly earnings in our sample are $27.8 in 2023

dollars.

[Insert Table 1 here.]

3.2. AI patents

Central to our analysis is measuring individual occupation’s exposure to AI technologies. To

carry out this task, we first collect a comprehensive sample of AI patents granted between 2000

and 2023 from the Artificial Intelligence Patent Dataset (AIPD). AIPD was publicly released

by the United States Patent and Trademark Office (USPTO) in 2021. Giczy et al. (2022)

provide a detailed description of their procedures to identify components of AI technologies

from the universe of U.S. patents published between 1976 and 2020 using machine learning

models. Pairolero et al. (2023) extends the data to identify U.S. patent documents published

from 1976 through 2023 containing AI. AIPD provides model predictions for the probability

of a patent being AI-related, and we classify one as an AI patent if the predicted probability

exceeds the 86% threshold following Pairolero et al. (2023).

These procedures result in a total of 905,667 AI patents granted from 2000–2023 that fall

into one or more of eight categories classified in Pairolero et al. (2023): (i) machine learning,

(ii) vision, (iii) natural language processing, (iv) speech, (v) evolutionary computation, (vi)

10



AI hardware, and (vii) knowledge processing, and (viii) planning and control. The literature

has shown that only a small subset of patents have meaningful scientific and economic value.

For example, about one quarter of patents were never cited, and less than 1% of the patents

receive more than one hundred citations (Kogan et al., 2017). To focus on technologies that

reshape the production process, we limit our analysis to the top 1% of the most important AI

patents each year, identified by their adjusted forward citation counts. Based on the USPTO

patent citation data, the adjusted forward citation count of a given AI patent is defined as its

raw citation count divided by the average citation count of AI patents issued in the same year-

quarter within the same CPC subclass (e.g., Kogan et al., 2017; Bloom et al., 2021; Lerner

and Seru, 2022). The final sample used to construct occupational AI exposure contains 9,270

AI patents. Table 1 Panel B lists the number of AI patents every year in our sample and their

average count of adjusted citations.

The textual information from the title and abstract of each AI patent allows us to extract

information about the scope and content of the underlying innovations from text corpora.

This information is then matched to occupations to assess the latter’s exposure to AI.

3.3. Occupation data

The second step in completing the measurement involves retrieving job tasks from the Oc-

cupational Information Network (O*NET) database maintained by the US Department of

Labor. O*NET outlines specific tasks performed in individual occupations identified by an

8-digit Standard Occupational Classification (SOC) code and annotated with descriptions of

the occupation’s job tasks.11 For example, tasks associated with the occupation “data scien-

tists” (SOC 15-2051.00) in 2023 entail “analyze, manipulate, or process large sets of data using

statistical software,” “create graphs, charts, or other visualizations to convey the results of

data analysis using specialized software,” and “propose solutions in engineering, the sciences,

and other fields using mathematical theories and techniques.”

11The O*NET database has been explored by studies in labor economics (e.g., Howell and Wolff, 1991; Autor
and Dorn, 2013; Deming, 2017) and finance (e.g., Bates et al., 2024; Ma et al., 2016; Jiang et al., Forthcoming).
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To track the evolution of job tasks, we leverage the historical releases of O*NET databases

to create an annual panel of occupations spanning from 2000 to 2023.12 Every year, the

O*NET sample includes 900–1,100 occupations identified by the 8-digit SOC codes with job

task information.

3.4. Supplemental data on employment: LinkedIn and Glassdoor

Two databases provide supplemental information on employment, workload, and compensa-

tion at the individual level, which is aggregated to the occupation × firm level. First, LinkedIn

data from Revelio Lab contains information about education and employment at the user pro-

file level in a structured resume-like format. The structure allows us to aggregate information

at both the occupation and employer levels. With individuals’ employment history updated

through the end of 2023, we construct panels at the occupation × firm × year level, facilitating

inference on the relationship between time allocation and firm outcomes.

Glassdoor, through Revelio Lab, provides extensive information about pay, workload, and

employee reviews of their jobs and employers for nearly all major companies. Each employee

review contains review text, the employee’s ratings on several aspects of the firm, including

overall satisfaction and work-life-balance (WLB), and information about the reviewer, such as

her job title, tenure, employment status, and location.13 Glassdoor also groups occupations

into seven types: sales, finance, operation, marketing, administrative, scientist, and engineer.

Following prior research (Green et al., 2019; Gornall et al., 2024), we retain only U.S.-based

current employees, resulting in a final sample of 1,405,965 reviews across 4,334 firms.

Panel C reports the summary statistics of the job rating sample at the job type × firm

level. The average overall job rating is 3.41, and the WLB rating is similar at 3.40. Total

compensation averages $108,300 (SD = $51,710), with a median of $99,060. Employment at

the firm × job type level exhibits substantial dispersion, with a mean of 511.8 and a standard

12We describe the procedures and the O*NET data release we use to construct the annual panel of occupa-
tions’ job tasks in Section B.1 in the online appendix.

13Prior studies have validated that the Glassdoor review data provide valuable insights into firm performance
and broadly reflect the labor market, though they tend to overrepresent skilled occupations (e.g., Edmans,
2011; Green et al., 2019; Gornall et al., 2024).
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deviation of 709.66.

3.5. Other data

The 2023 Best States to Work Index (BSWI) is obtained from Oxfam, a global organization

dedicated to addressing poverty, inequality, and social injustice across more than 75 countries

with over 80 years of experience. BSWI is constructed based on state policies in three dimen-

sions: wages (40% of overall score); worker protections (35% of overall score); and rights to

organize (25% of overall score).14

Finally, for a subset of analyses where we analyze firm performance, the sample firms are

restricted to U.S. publicly listed firms with information retrieved from Compustat, CRSP, and

related WRDS databases.

3.6. Measuring occupational AI exposure over time

3.6.1. Measuring AI exposure at the occupation-patent level

An accurate measure of occupational exposure to AI technology is essential for attributing

changes in time allocation to AI. There have been a variety of exposure measures to a diverse

set of technologies or innovations, e.g., AI exposure developed by Felten et al. (2018) and

Webb (2019), generative AI exposure from Eisfeldt et al. (2023) and Hartley et al. (2024),

software and robot exposure developed by Webb (2019), fintech exposure from Jiang et al.

(Forthcoming), labor-saving and labor-augmenting technology exposure from Kogan et al.

(2023). These measures typically analyze the micro-foundations of tasks and aggregate each

task’s exposure to the occupational level, using either equal weights or task importance.

Ideally, the exposure measure captures both cross-sectional differences across occupations and

time-series variations in AI exposure within each occupation.

FollowingWebb (2019) and Jiang et al. (Forthcoming), we develop the AI exposure measure

by comparing the text of AI patents and the text of job descriptions. A potential approach,

14Data available at https://www.oxfamamerica.org/explore/issues/economic-justice/workers-rights/best-s
tates-to-work/.
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such as word embeddings, measures the overlap between two textual sources by calculating

their cosine similarity (e.g., Hoberg and Phillips, 2016; Webb, 2019). However, we follow

the recent trend in the literature (e.g., Lopez-Lira and Tang, 2023; Jha et al., 2024; Kim

and Nikolaev, 2024) that leverages large language models, such as ChatGPT, to analyze

unstructured textual data. ChatGPT, with its ability to process questions and generate

natural language responses, offers several benefits over traditional methods. These benefits

include greater flexibility in the expression of tasks, better understanding of the context, and

more detailed language interpretations (de Kok, 2025). Specifically, we prompt ChatGPT to

compare the textual description of a bundle of job tasks of an occupation to that of an AI

patent. Section B.3.1 of the Online Appendix provides more details on the ChatGPT prompt

setup, examples, and validation.

Our sample contains 9,270 AI patents from 2000 to 2023 and an average of 950 occupations,

identified with the 8-digit SOC code, in a given year. In total, ChatGPT encodes 8.71 million

pairs at the occupation (o) × patent (i) level, yielding the following two variables. The first

one is an AI exposure score (AIEXP
o,i ), which presents a similarity score (ranging from 1 to

10) between the text description of an AI patent i and the bundled job tasks of occupation

o. The average similarity score is 3.7. The second one is a complementarity classification

(AICOMP
o,i ) following procedures of Kogan et al. (2023) and Jiang et al. (Forthcoming). It is

a categorical variable (1 = complement, 0 = neutral, and −1 = substitute) that indicates

whether a given AI patent primarily complements, substitutes, or is neutral to the tasks of an

occupation. Among all occupation-patent pairs, 77.4% exhibit a complementary relationship,

19.4% show a substitute relationship, and 3.2% are natural. This proportion is almost identical

to Kogan et al. (2023)’s finding that approximately 19.7% of the job tasks are susceptible to

AI substitution.

3.6.2. Aggregating AI exposure to the occupation-year level

To measure the aggregate impact of a cluster of AI innovations on a given occupation’s tasks,

we sum up the individual impact of AI patents in a given period. That is, the annual AI
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exposure of a given occupation o in a year t, AIEXP
o,t , is the sum of the exposure of occupation

o to all AI patents i published during the 5-year period leading to year t as follows:

AIEXP
o,t =

∑
i∈It

AIEXP
o,i , (1)

where It represents the set of all AI patents i published between year t− 4 and year t.

Three related AI exposure measures at the occupation level in the existing literature are

from Webb (2019), Felten et al. (2019) and Hampole et al. (2025). Webb (2019) applies

natural language processing algorithms to measure the overlap between text descriptions of

job tasks and patents. Felten et al. (2019)’s AI exposure measure builds on the crowdsourced

assessments between 1,800 respondents from Amazon’s Mechanical Turk (mTurk) web service

and the Frontier Foundation (EFF) AI Progress Measurement dataset AI across nine AI

applications (such as speech recognition and image generation) from 2010 to 2015.

There are two main differences between our measure and the two earlier ones: First, both

previous measures are time-invariant and are based on information at the end of their re-

spective sample periods. Second, due to their research focus and the sample periods (mid- to

late- 2010s), the AI technology in those contexts was mostly restricted to machine learning

algorithms, and covers six of the eight AI technologies used in our sample. In comparison,

Hampole et al. (2025) construct AI exposure measures at the occupation-firm level by iden-

tifying firms’ adoption of AI applications from resumes and job postings provided by Revelio

during the 2010 to 2023 period. This approach offers a more firm-specific perspective on AI

exposure, though it is limited to occupation codes available in Revelio. While the O*NET

database encompasses approximately 800 occupations at the SOC 6-digit level, Revelio assigns

resumes to 335 SOC 6-digit codes.

A key limitation of our AI exposure measure, along with other technology exposure mea-

sures in the literature, is that textual similarity-based measures are non-directional – they

are unable to distinguish between substitutive and complementary effects embedded in the
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exposure.15 To decompose the substitutive and complementary effects of AI exposure, we

construct an AI net complementarity exposure following the approach used for fintech com-

plementarity in Jiang et al. (Forthcoming). Specifically, for a given SOC 8-digit occupation

o in a year t, AI net complementarity (AICOMP
o,t ) is defined as the sum of the product of AI

exposure and AI complementarity classification of occupation o with respect to AI patents i

published during the five-year period ending in year t, as shown in the following equation:

AICOMP
o,t =

∑
i∈It

AIEXP
o,i · AICOMP

o,i (2)

To ensure that the values of AI exposure measures remain within a range below 10, we

divide both AIEXP
o,t and AICOMP

o,t by 10,000.

3.6.3. Matching occupation-level AI exposure to the ATUS respondents

The ATUS data employs Census occupation classification codes, so we aggregate our AI

exposure measures, derived from SOC 8-digit occupation codes, to the corresponding level

for alignment with the ATUS data. Specifically, the occupation classification, “occ1990dd”

developed by Dorn (2009), is utilized to aggregate the Census occupation codes to a balanced

panel of occupations, which also serves as the occupational unit in the regressions.16

After aggregating AIEXP
o,t and AICOMP

o,t from the SOC 8-digit occupation to the SOC 6-

digit occupation level, we merge the results with the “occ1990dd” occupation codes, using

equal weights at each aggregation step.17 Next, the raw scores of AI exposure measures are

transformed into percentile ranks following the literature (e.g., Autor and Dorn, 2013; Webb,

15In papers focusing on the labor displacement effect of AI, e.g., Hampole et al. (2025), posit that the
semantic similarity between AI applications and job tasks implies a disruptive or substitutive effect.

16The “occ1990dd” classification system has been widely employed in labor economics studies (e.g., Autor
and Dorn, 2009, 2013; Webb, 2019). We aggregate the Census occupations codes to “occ1990dd” codes using
crosswalks obtained from: https://www.ddorn.net/data.htm.

17We match the SOC 6-digit occupation codes to occ1990dd in three steps: (i) we first match the SOC 2000
code and SOC 2018 code to the SOC 2010 codes using the crosswalks provided by BLS at https://www.bls.
gov/soc/soc 2000 to 2010 crosswalk.xls and https://www.bls.gov/soc/2018/soc 2010 to 2018 crosswalk.xlsx;
(ii) We then use the crosswalk provided by Webb (2019) to map the SOC 2010 codes to the 2010 Census
occupation codes; (iii) lastly, the 2010 Census occupation codes is matched to ”occ1990dd” codes using the
crosswalk provided by Autor (2015) at https://www.ddorn.net/data.htm.
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2019). Specifically, for each year, we sort occupations based on their AIEXP
o,t or AICOMP

o,t and

assign them a percentile rank ranging from 1 to 100.

For the interest of the readers, Table OA.2 of the Online Appendix lists top occupations

grouped by AI exposure and AI net complementarity in 2023. On the top of the list of

both AIEXP
o,t and AICOMP

o,t are computer and information system managers, bioinformatics

technicians, operations research analysts and management analysts. Occupations with high

AIEXP
o,t but low AICOMP

o,t include data entry keyers, tellers, and office machine operators,

while those at the bottom – such as dancers, barbers, and meat packers – rank low in both

dimensions.

Panel A of Figure 1 shows the time series of the raw scores of two AI exposure variables,

AIEXP
o,t and AICOMP

o,t that summarize the occupations of the individuals in the ATUS survey

from 2004 to 2023. Predictions of the average AI exposure measures are estimated using

quadratic regressions weighted by ATUS weights.

[Insert Figure 1 here.]

Table 1 Panel A reports the summary statistics of the occupational AI exposure measures

of ATUS respondents. The average AIEXP
o,t score is 0.66, while that of AICOMP

o,t is 0.47,

indicating that AI innovations tend to have a more substantial complementary effect than a

substitute effect on the labor market.

3.6.4. Validation of occupation-level AI exposure measures

To validate the occupation-level AI exposure score (AIEXP
o,t ) built with ChatGPT, we compare

it to a measure calculated as the Term-Frequency-Inverse Document Frequency cosine simi-

larity (TF-IDF) for a subset of patent-occupation pairs based on the 50 most influential AI

patents from each year.18 AIEXP
o,t scores show a correlation of 0.83 with the TF-IDF measure

at the “occ1990dd” occupation × year level, demonstrating a strong alignment between the

two measures and confirming the robustness of the GPT-derived measure.

18Section B.2.3 of the Online Appendix describes the TF-IDF textual analysis procedures.
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The TF-IDF measure is not directional and therefore is not as effective in validating our

measure of AI net complementarity exposure (AICOMP
o,t ). To address this issue, we compare

AICOMP
o,t to the predicted wage growth attributed to AI complementarity and substitution

estimated by Kogan et al. (2023).19 In 2023, AICOMP
o,t exhibits a correlation of 0.60 with the

overall wage growth related to AI. Breaking down the wage growth, AICOMP
o,t has correlations

of -0.59 and 0.47 with the wage growth attributed to AI substitution and complementary

components, respectively. Taken together, this evidence validates the reliability of our AI net

complementarity measure.

3.6.5. Comparison with other occupation-level exposure measures

A growing literature has estimated and analyzed occupation exposure to a variety of technolo-

gies and innovations including AI. It is thus necessary to compare and distinguish AI exposure

from the other exposure measures. Figure OA.1 of Online Appendix plots the AI exposure

used in this study against six related occupational exposure measures: AI exposure developed

by Felten et al. (2019), AI exposure and robot exposure developed by Webb (2019), routine

task intensity (RTI) provided by Autor and Dorn (2013), offshorability exposure developed by

Firpo et al. (2011) and standardized by Autor and Dorn (2013), and work-from-home (WFH)

feasibility score provided by Dingel and Neiman (2020).

The first two panels of Figure OA.1 show a positive correlation between our AI exposure

measure constructed using all AI patent filings from 2000 to 2023 and measures by Webb

(2019) and Felten et al. (2019). Further, AI exposure is negatively correlated with routine-

task intensity and a positive correlation with offshoring potentials and WFH feasibility.

19Using an open question-based approach, Kogan et al. (2023) ask ChatGPT about AI’s potential to substi-
tute or complement job tasks and yields time-invariant measures of different AI exposure components. They
do not report the exposure but provide AI-related earnings changes of occupations with the highest comple-
mentarity (substitution) exposure in Online Appendix. Section B.2.4 of the Online Appendix provides more
details about the validation procedures.
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4. AI and Workday: Empirical Analyses

4.1. Event study: ChatGPT

The release of generative AI tools, notably ChatGPT in November 2022, marked a watershed

moment for AI adoption in the workplace. Its immediate accessibility and versatility accel-

erated AI integration across industries and transformed business processes almost overnight.

According to McKinsey (2024), 33% of respondents’ organizations adopt generative AI right

away in 2023 and that number increases to 65% in 2024.20 The advent of generative AI was

a transformative event—rather than a gradual progression—whose precise timing was unfore-

seen by its adopters. Such properties make it an ideal setting to study the impact of AI on

workday.

The event study entails a difference-in-difference specification approach around the shock

with time allocation variables from the ATUS data as dependent variables. The test sample

covers 2022 to 2023, a relatively short range striding ChatGPT to capture the discrete change.

The hypothesis is that the impact of AI adoption on work hours should be more prominent

among occupations with greater sensitivity to generative AI. That is, the level of “treatment”

is captured by the generative AI exposure of the occupation to which a worker is affiliated.

The exposure construction follows Eisfeldt et al. (2023) who use a large language model to

classify whether job tasks of occupations can be performed more effectively using ChatGPT

based on task descriptions.21 The regression, at the survey respondent level, with subscripts

of i (individual), o (occupation), and t (year) level, is as follows:

Yi,o,t = β1 ·GenAIEXP
o · POSTt + β2 ·Xi,t + α + ϵi,o,t. (3)

The dependent variable is the number of weekly hours spent in a category (i.e., market work

or leisure) of activities. GenAIEXP
o is generative AI exposure of the occupation in percentile

20https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
21Section B.3 of the Online Appendix provides more details. Table OA.3 of the Online Appendix lists top

occupations grouped by generative AI exposure measures.
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rank. The POSTt dummy equals one for the year 2023. The regression incorporates a set of

individual-level controls including age, the number of children below 18, and a set of indicators

for gender, educational attainment, marital status, and race. The regression further includes

a battery of fixed effects, α, at the following levels: occupation, state × year, industry × year,

year-month, and day-of-week.22 These fixed effects filter out macro economic factors at both

the industry and state levels, as well as seasonality and weekday effects. Following general

practice in this literature (e.g., Aguiar et al., 2021), the linear regression is weighted by ATUS

sample weights in order to recover the representativeness of the population. Standard errors

are double clustered at the occupation and state level.

Table 2 reports the weighted linear regression results for equation (3) using ATUS data

from 2022 to 2023. Column (1) reports the results for the full sample. Specifically, workers

more exposed to generative AI experienced significantly increased work hours (Panel A) and

reduced leisure hours (Panel B) following the introduction of ChatGPT. A one-percentile rank

increase in generative AI exposure is associated with an increase of 0.063 hours in weekly work

time and a decrease of 0.064 hours in leisure time following the introduction of ChatGPT.

Consequently, comparing 2023 to 2022, an interquartile increase in generative AI exposure

corresponds to an additional 3.15 hours (0.063 × 50 percentiles from the 25th to the 50th)

of work and a reduction of 3.20 hours in leisure. Columns (2) and (3) present the results

for subsamples divided into the top quartile and the remaining observations based on the

extent to which generative AI complements the job tasks (see definition in Section B.3 of

the Online Appendix). The magnitude of the top 25% is more than twice that of the rest,

although the difference is not significant. Columns (4) and (5) present results for subsamples

divided into the top quartile and the remaining observations based on local AI awareness,

measured by state-level Google search trends for ChatGPT from November 30 to December

31, 2022.23 Workers in regions within the top quartile of AI awareness demonstrate greater

22Industry is defined by the Census detailed industry code ”trdtind1” used in ATUS (Refer to Appendix A
of the ATUS Data dictionary at https://www.bls.gov/tus/dictionaries/atusintcodebk23.pdf). It identifies 51
unique industries.

23Figure OA.2 of the Online Appendix plots the Google search trend of AI and ChatGPT from 2010 to
2023, suggesting a peak in Google search of ”ChatGPT” and ”AI” in December 2022 following the release of
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sensitivity in the relationship between generative AI exposure and work (or leisure) hours

than the remaining observations, and the differences are significant at the 10% level.

[Insert Table 2 here.]

4.2. Occupation AI exposure and work time

Next we extend the event study to the full sample period based on measured occupational AI

exposure (see Section 3.6 for more details). Figure 2 provides a diagnostic test. The figure

illustrates the distributional effects of occupational AI exposure on the work-life balance in

our sample, comparing 2004 and 2023. As AI exposure percentile ranks increase, individuals

experience longer working hours (Panel A) and shorter leisure hours (Panel B), with this gap

becoming more pronounced in 2023.

[Insert Figure 2 here.]

More formally, we estimate the relationship between occupational AI shocks and work time

at the individual (i) respondent level, indexed by occupation (o) and year (t)s:

Yi,o,t = β1 · AIEXP
o,t−1 + β2 ·Xi,t + ϵi,o,t. (4)

where the dependent variables are weekly hours spent on market work and leisure. The key

independent variable, AIEXP
o,t−1 , is the lagged occupational AI exposure, constructed as detailed

in Section 3.6. Following general practice in the literature (e.g., Autor and Dorn, 2013; Webb,

2019), the raw exposure scores are transformed to percentile ranks in each year. The model

specification incorporates additional covariates representing individual-level characteristics,

including age, the number of children below 18, and a set of indicators for gender, educa-

tional attainment, marital status, and race. Fixed effects at the following levels are also

included: occupation, state × year, industry × year, year-month, and day-of-week variations.

ChatGPT.
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Following standard practice in the literature (e.g., Aguiar et al., 2021) to recover the pop-

ulation representativeness of the sample, the linear regression is weighted by ATUS sample

weights. Unless otherwise stated, all potentially unbounded variables are winsorized at the

1% extremes. Standard errors are double-clustered by occupation and state.

Table 3 reports the weighted linear regression results for Equation (4) using ATUS data

from 2004 to 2023. Columns (1)–(3) present the results for weekly work hours. We find

that greater occupational AI exposure is associated with an increase in work hours. Specif-

ically, in column (1) where all fixed effects are included except the occupation fixed effects,

a one-percentile rank increase in occupational AI exposure is associated with an increase of

0.044 hours in weekly work time. Accordingly, an interquartile shift of one’s occupational AI

exposure percentile rank would increase her work hours by 2.20 per week on average. The

cross-sectional relationship is both economically and statistically significant (at the 1% level).

To alleviate concerns regarding cross-sectional relation potentially driven by confounding fac-

tors, the regression in column (2) further controls for other common occupation exposure

measures in the literature, including robot exposure from Webb (2019), routine task index

(RTI) from Autor and Dorn (2013), and offshorability exposure constructed by Firpo et al.

(2011) and standardized by Autor and Dorn (2013), all in percentile ranks. The direction and

magnitude of the coefficient for occupational AI exposure remains consistent (0.034, signifi-

cant at the 1% level). To further mitigate the concern that the relation between AI exposure

and time allocation could be driven by occupation-level unobserved heterogeneity, column

(3) incorporates occupation fixed effects. The direction of the coefficient for occupational

AI exposure remains consistent, albeit at a smaller magnitude (0.018, significant at the 10%

level).

[Insert Table 3 here.]

Columns (4)–(6) of Table 3 present the results for weekly leisure hours. We find that leisure

hours decrease as occupational AI exposure increases. Specifically, column (4) indicates that

a one-percentile rank increase in occupational AI exposure is associated with a decrease of
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0.033 hours in weekly leisure time (significant at the 1% level). Consequently, an interquartile

increase of one’s occupational AI exposure percentile rank would reduce her leisure hours by

1.65 per week on average. Such a negative impact of occupational AI exposure on leisure hours

remains consistent with additional occupational exposure measures including robot exposure,

RTI, and offshorability score, and standardized and represented in percentile ranks (column

(5)) and with occupation fixed effects (column (6)). Combined results suggest that time

allocation to the residual category (which includes personal care, education, etc.) slightly

decreases.

Table OA.4 of the Online Appendix reports the results of a series of robustness tests

using alternative specifications. In column (1), the dependent variable of market work hours

includes time spent on commute, work-related travels, and social and leisure activities at

work. Columns (2)–(3) incorporate an additional indicator for part-time workers. Columns

(4)–(5) do not control for race indicators. Columns (6) through (13) analyze a variety of

subsamples. Specifically, columns (6)–(7) exclude currently unemployed individuals. Columns

(8)–(9) exclude those who are surveyed on weekends. Columns (10)–(11) exclude workers in

absence, those who are currently employed but are absent from work on the survey date.

Finally, columns (12)–(13) only include workers who are compensated on an hourly basis

(with greater flexibility in adjusting their work hours). Across all alternative specifications,

the key coefficients for the impact of occupational AI exposure on work and leisure hours are

significant and consistent with Table 3, confirming robustness.

Table OA.5 in the Online Appendix examines the effect of occupational AI exposure on dif-

ferent types of leisure activities, distinguishing between those that involve a digital screen and

those that do not. For example, screen-based leisure activities include recreational computer

use, gaming, watching TV, etc., while non-screen-based leisure activities encompass listening

to music, reading, sports, traveling, etc. Columns (1) and (2) indicate that the previously

documented decline in total leisure time is primarily driven by a reduction in non-screen-based

activities, whereas time spent on screen-based leisure remains unaffected by occupational AI

exposure. Columns (3) to (6) further disaggregate non-screen-based activities into recreation
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(e.g., relaxing, listening to music, traveling), socializing, leisure components of eating, sleep-

ing, and personal care (ESP), and other activities (e.g., hobbies, reading, sports). The results

suggest that the decline in non-screen leisure can be attributed primarily to reductions in

solitary activities, particularly recreation and the leisure aspects of ESP.

Finally, we investigate how occupational AI exposure influences time allocation in activities

other than work or leisure. Table OA.6 in the Online Appendix summarizes the findings.

Specifically, time spent on civic activities significantly increases as AI exposure increases,

while time allocated to education and own medical care also decreases, albeit insignificantly.

Hence, AI does not contribute to the secular decline in devotion to social work and community

engagement, a phenomenon known as “bowling alone.”24 In contrast, the coefficients of home

production and childcare are not statistically significant. In other words, when work hours

increase, workers tend to cut back on personal activities - such as leisure, education, and self

medical care - while maintaining their family responsibilities.

4.3. Testing model predictions

4.3.1. Marginal productivity: AI complementarity vs. substitution and wage ef-

fect

A. Workday with technology complementarity

Technology can influence labor in two primary ways: substitution, where it replaces job tasks,

and complementarity, where advancements in capital—such as improved tools—enhance work-

ers’ marginal productivity (e.g., Acemoglu, 1998; Acemoglu and David, 2011; Acemoglu and

Restrepo, 2019). Thus, the overall effect shown in 3 invites a bifurcation. To decompose gen-

eral AI exposure, we use ChatGPT to classify each AI patent as complementary, substitutive,

or neutral to the tasks of an occupation based on its textual descriptions. The AI net com-

plementarity exposure at the occupation level, AICOMP
o,t , is defined as the difference between

exposure to complementary and substitutive AI patents over the past five years, transformed

24The term was coined by the book Bowling Alone: The Collapse and Revival of American Community
(2000) by Robert D. Putnam.

24



to percentile ranks by year. That is, we rank occupations by their net complementarity scores

to AI technology (with low complementarity indicating a strong substitution effect). Further

details on this variable can be found in Section 3.6.

Table 4 presents the weighted linear regression results for the impact of AI net comple-

mentarity exposure based on Equation (4), replacing AIEXP
o,t−1 with AICOMP

o,t−1 . The dependent

variables are weekly work hours in columns (1)–(4) and weekly leisure hours in columns (5)–

(8). Column (1) shows that, controlling for fixed effects at the levels of state × year, industry

× year, year-month and day-of-week, a one-percentile rank increase in AI net complementarity

is associated with an increase of 0.055 hours in weekly work time (significant at the 1% level).

That is, an interquartile increase in AI net complementarity is associated with an additional

2.75 work hours per week, equivalent to 7.89% of the sample mean (34.9 hours). Such a

positive relationship between AI net complementarity exposure and work hours remains con-

sistent when additional occupational exposure measures, including robot exposure, RTI, and

offshorability, are included (column (2)) with occupation fixed effects (column (3), significant

at the 5% level), and additionally controlled for the general AI exposure orthogonalized from

AI complementarity (column (4), significant at the 10% level).

[Insert Table 4 here.]

On the leisure side, a higher AI net complementarity exposure is associated with signifi-

cantly shorter leisure hours. Column (4) shows that a one-percentile rank increase in AI net

complementarity is associated with a reduction of 0.043 hours in weekly leisure time (signifi-

cant at the 1% level). The negative relationship remains consistent when additional controls

and/or refined fixed effects as those in the “Work” regressions in the same table.

Overall, the magnitude and significance of the coefficients on AICOMP
o,t−1 are greater than

those of AIEXP
o,t−1 presented in Table 3. Moreover, AI exposure that is not related to com-

plementarity has no impact on time allocation. The combined evidence suggests that the

documented extended workday results from AI’s complementarity to human work. In other

words, people end up having longer workdays precisely when AI makes them more productive
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(and presumably saves them time on given tasks). The seeming paradox echoes Jevons (1865),

which predicted that improvements in engine technology—and hence energy efficiency—would

lead to increased demand for and consumption of energy (coal at the time). Labor is another

factor of production that could apply the logic: When task productivity improves, the de-

mand for additional tasks increases, along with heightened expectations for both quality and

expediency, fostering a culture of “always-on” and “ever-better.”

B. Wage effect

We further explore the complementary or substitution effects of AI technologies on workers

through wage. If AI exposure improves worker productivity, wages should increase (holding

market competition constant). Conversely, if AI exposure leads to a substitution effect that

reduces wages, exposed workers may be compelled to work more in order to maintain their

total earnings. We test these two competing hypotheses by re-estimating Equation (4) using

wages from the ATUS as the dependent variable.

Table 5 presents the results. The dependent variable is wage measured as 100 times the

natural logarithm of hourly wages in 2023 constant dollars. The main explanatory variable

is occupational AI exposure in columns (1)–(3) and AI net complementarity in columns (4)–

(6). Consistent with prior studies built on time-invariant AI exposure measures (e.g., Felten

et al., 2019; Kogan et al., 2023), we find that greater AI exposure is associated with increased

wages. Specifically, in column (1), a one-percentile increase in AI exposure is associated with

an increase of hourly wages by 0.25%, significant at the 1% level. The positive relationship

remains consistent with specifications using additional occupational exposure measures (col-

umn 2), albeit with smaller magnitude and significance, even with occupation fixed effects

(column 3, significant at the 10% level). Also, a one-percentile increase in AI net comple-

mentarity increases hourly wages by 0.35%, significant at the 1% level (column (4)). The

positive relationship remains consistent with specifications using additional occupational ex-

posure measures (column (5)) and occupation fixed effects (column (6), significant at the 5%

level). Overall, the wage analysis suggests that working individuals, on average, experience
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positive financial gains from the complementarity of AI technology in their work.

[Insert Table 5 here.]

4.3.2. Performance monitoring: AI surveillance

Computerized workplace surveillance emerged in the 1980s (U.S. Congress, Office of Technol-

ogy Assessment, 1987) and saw an unprecedented acceleration in 2020, driven by the shift to

remote and hybrid work necessitated by COVID-19.25 Advancements in technology related to

datafication, sensorization, and computer vision, along with supporting infrastructure such as

cybersecurity, enable employers to obtain increasingly accurate measures of real effort, with

less contamination from noise in performance metrics. Such improvements, in the framework

of a principal-agent model, are expected to elicit greater effort from workers.

The 2020 COVID shock provides a pivotal moment to examine the effect of monitoring

on the workday using ATUS data from 2015 to 2023. Since remote work, outside of the

strictest lockdown periods, may be an endogenous choice, we screen the sample based on

ex-ante work-from-home (WFH) feasibility, as developed by Dingel and Neiman (2020), using

job characteristics pre-pandemic. For this study, remote workers are classified as those in the

65 occupations that do not require essential in-person duties, defined as having a WFH score

of one in Dingel and Neiman (2020).

Among the individuals belonging to occupations that can, ex ante, accommodate remote

work, their reception to the AI surveillance technology shock in 2020 depends on the occu-

pations’ exposure to the new technology. Such an exposure could be constructed analogous

to our main AI exposure measures. More specifically, we prompt ChatGPT to assess how

AI surveillance technology enhances monitoring for each of the 65 occupations based on the

six key dimensions in organizational control – restricting, recommending, recording, rating,

replacing, and rewarding following (Kellogg et al., 2020).26 With the resulting exposure mea-

25https://www.wsj.com/articles/youre-working-from-home-but-your-company-is-still-watching-you-11587
202201?mod=Searchresults pos20&page=1.

26Section B.4 of the Online Appendix describes the detailed procedures for measuring AI surveillance expo-
sure of all occupations. Table OA.7 of the Online Appendix lists top occupations grouped by AI surveillance
exposure.
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sure, AISUR
o , and resorting to the event year of 2020, we are able to conduct the following

difference-in-difference estimation on observations indexed by individual (i), occupation (o),

and year (t):

Yi,o,t = β1 · AISUR
o · Postt + β2 ·Xi,t + α + ϵi,o,t. (5)

The dependent variable is the number of weekly hours allocated to a specific activity

category, such as market work or leisure. The regression includes the same set of individual-

level controls as in our baseline regressions, along with a rich set of fixed effects. Since

performance monitoring is a defining feature of a principal-agent setup and becomes moot

in the absence of delegation, this hypothesis naturally lends itself to a placebo test: While

AI surveillance technology is expected to elicit greater worker effort in equilibrium, the effect

should be null for the self-employed.

Table 6 presents the weighted linear regression results for equation (5). Columns (1)–(2)

report results for work hours, while columns (3)–(4) correspond to leisure hours. Additionally,

the odd-numbered columns represent the sample of employees, whereas the even-numbered

columns capture the self-employed (who comprise approximately 6.67% of respondents). For

individuals employed by a “principal,” a one-percentile increase in AI surveillance exposure

is associated with a 0.043-hour increase in weekly work hours post-2020 relative to their

own past level (significant at the 5% level), which translates to 2.15 additional hours in a

workweek for an inter-quartile variation. In contrast, the self-employed—who act as their own

“agents”—confirm a placebo effect, both economically and statistically.

[Insert Table 6 here.]

4.3.3. Reservation utility: Employee welfare and market competition

A. Employee welfare: Evidence from Glassdoor reviews

The relationship between technology-enabled productivity gains and workday length can

also operate through the impact of these gains on workers’ reservation utility, as agents re-
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optimize the allocation between work (and consequently, consumption) and leisure to adjust

to a new welfare level determined within a competitive marketplace. At this new equilibrium,

the effect of productivity gains—even when accompanied by higher compensation—on worker

welfare remains a priori ambiguous, as factors such as self-motivation, fulfillment, and work-

life balance play a critical role in shaping overall job satisfaction. To evaluate this relationship

within the context of AI exposure, we leverage employee reviews from Glassdoor (via Revelio,

as detailed in Section 3). Our analysis focuses on two key metrics: overall job satisfaction

and Work-Life Balance (WLB) ratings for both public and private firms. These metrics are

measured at the job type (k) × firm (i) × year (t) level, with both rating scales ranging from

one (worst) to five (best).

The main explanatory variable, lagged AI exposure at the job type × firm level, is con-

structed in two steps. First, occupational AI exposure is aggregated to the job type × firm

level, using employment weights from Linkedin. Second, a three-year moving average is ap-

plied to the job type AI exposure to account for the gradual adaptation to labor market

disruptions (Jiang et al., Forthcoming). All specifications control for employment (natural

logarithm), firm × job type fixed effects, and job type × year fixed effects.

Table 7 shows that greater AI exposure is associated with lower employee satisfaction,

aligning with occupation-level evidence that AI exposure overall leads to extended work hours

and decreased leisure time, despite the fact that wage increases with productivity and work

hours. Based on the coefficients in column (1) and (4), an inter-quartile increases in a firm’s

general AI exposure and AI net complementarity exposure are associated with 4.3 and 3.8

basis point reduction in employees’ overall satisfaction rating, respectively (relative to the

average rating of 3.40). A qualitatively similar but more statistically significant relationship

(at the 5% level) is observed for the work-life balance (WLB) rating. An inter-quartile increase

in a firm’s general AI exposure corresponds to a 5.6 basis point decrease in the WLB rating

(relative to the average rating of 3.41).

[Insert Table 7 here.]
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The negative association strengthens to 6.9 basis points when AI complementarity expo-

sure serves as the main explanatory variable. Additionally, in column (3) and (6), the same

inter-quartile increase is associated with a 2.2 and 5.5 basis point rise in average annual com-

pensation, respectively, consistent with our previous findings at the occupation level. While

these effects may appear modest in isolation, the clear lack of worker welfare improvement

from AI is, in itself, a disappointment, particularly given that these technologies are intended

to better serve humanity.

B. Worker bargaining power: Labor market competition

Whether reservation utility increases depends on the bargaining power of the agent (worker)

relative to the principal (employer). In an uncompetitive labor market, workers will capture a

larger share of the surplus generated by AI-enhanced productivity. The income effect, driven

by an increase in reservation utility, leads workers to work less—relative to the level justified

by increased productivity alone. Therefore, the effect documented in Table 3 and Table 4 is

expected to be weaker in a less competitive labor market.

The labor economics literature readily supplies two proxies for labor market competition,

which is the inverse of the bargaining power of employers relative to workers. The first is the

labor market concentration at the state level, based on the argument that labor market con-

centration is a good proxy for firms’ monopsony power in labor markets (e.g. Azar et al., 2020,

2022; Benmelech et al., 2022; Rinz, 2022). Building on this literature, the labor market con-

centration in this study is measured using the Herfindahl-Hirschman Index (HHI) calculated

as the sum of the squared employment shares of public firms headquartered in the same state

based on Compustat data. Higher HHI indicates greater labor market concentration, which

is positively associated with firms’ pricing power in the labor market. The second is the 2023

Best States to Work Index (BSWI) provided by Oxfam which assesses the labor-friendliness

of state policies. Accordingly, we utilize the two proxies to examine the heterogeneity impact

of AI net complementarity on work and leisure hours. The proxy for higher bargaining power

of workers relative to firms, I(Worker Power vs. Firm), equals one if the lagged labor market

HHI is in the bottom quartile or the BSWI is in the top quartile, and zero otherwise. We then
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interact each of these two indicators with the AI net complementarity measure.

Table 8 reports weighted linear regression results for the heterogeneity effect of AI net

complementarity on work and leisure hours by labor market competition. For both indicators

for labor market competition, lower labor market competition (higher bargaining power on

the labor side) is associated with a smaller increase in work hours and a smaller decrease in

leisure hours relative to the level of AI net complementarity. Specifically, at a given level of

AI net complementarity, a worker in the bottom quartile of labor market concentration or the

top quartile of BSWI experiences 0.024 and 0.014 (column (1) and (column (3)) fewer work

hours per week (both significant at the 5% level), respectively. Notably, in more labor friendly

states, as measured by labor market concentration or BSWI index, the positive relationship

between AI net complementarity and work hours is weakened by more than 50%. Moreover,

at a given level of AI net complementarity, a worker in the bottom quartile of labor market

concentration or the top quartile of BSWI increases leisure hours by 0.011 and 0.09 (column

(3) and (4)) per week (both significant at the 5% level), respectively, given a level of AI net

complementarity. Taken together, the results suggest that the positive (negative) relationship

between AI net complementarity and work (leisure) hours attenuates with greater bargaining

power of employees.

[Insert Table 8 here.]

C. Producer bargaining power: Product market competition

Parallel to labor market competition, a firm’s product market power determines how pro-

ductive surplus is split between firms and the consumer of their products or services. The

more pricing power of firms relative to consumers, the more surplus eventually accrues to

labor as there is more to split with their employers. The level of surplus distributed to labors

is expected to mitigate the impact of AI net complementarity on a worker’s work and leisure

hours due to the income effects. Accordingly, we examine the degree to which product market

power of firms relative to consumers influences the relationship between AI net complementar-

ity and work and leisure hours. We adopt two measures for product market power, provided
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by Hoberg and Phillips (2016). One is firm-level product similarity that assesses how closely

a firm’s product descriptions in its 10-K filings match those of industry peers. The other

is the firm-level HHI, defined as the sum of the squared market shares of firms in the same

10-K text-based industry using Compustat sales data. Higher HHI indicates greater market

concentration, which is positively associated with firms’ pricing power, while higher product

similarity suggests a higher level of competition, thus, negatively impacting firms’ pricing

power (Hoberg and Phillips, 2016).

To measure the product market power of firms in a given market, we calculate the average

of product similarity and HHI of each Census industry, weighted by Compustat sales.27 The

indicator for high pricing power of firms in an industry relative to consumers, I(Firm Power

vs. Consumer), is set to one if the lagged product similarity is in the bottom quartile or if

the product HHI is in the top quartile, and zero otherwise. Each of these two indicators are

interacted with occupational AI net complementarity.

Table 9 presents the weighted linear regression results for the heterogeneity effect of AI

net complementarity on work and leisure hours by product market power. Higher product

market power of firms, measured using product similarities or product HHI, mitigates the

positive relationship between AI net complementarity and work hours by 0.016 and 0.021 per

week (column (1) and column (2)), significant at the 10% level, respectively. Moreover, higher

product market power of firms mitigates the negative relationship between AI net complemen-

tarity and leisure time, indicated by the positive coefficients for the interaction between AI

net complementarity and each of the product market power indicators. Specifically, at a given

level of AI net complementarity, a worker in the industry where firms have a greater pricing

power (i.e., bottom quartile worker in product market competition) based on product similar-

ities and product HHI experience 0.024 and 0.031 more leisure hours per week, respectively

(both significant at the 1% level). Overall, we find evidence confirming the prediction that

27We first calculate the sales-weighted product market competition proxies at the NAICS 3-digit industry
level, and then match them to the corresponding Census industry code ”trdtind1” using the crosswalk provided
by BLS at https://www2.census.gov/programs-surveys/demo/guidance/industry-occupation/census-2012-f
inal-code-list.xls.
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as firms have greater pricing power relative to consumers, workers gain more surplus, which

reduces the impact of AI technologies on work-life-balance. In other words, the increase in

work hours relative to leisure hours is more pronounced when the product market is more

competitive.

[Insert Table 9 here.]

5. Conclusion

The extensive individual-level time diary data (ATUS) collected over the past two decades

offers a unique setting to examine the nuanced relationship between occupational AI exposure

and workers’ time allocation. Our analysis reveals a consistent pattern: workers in occupations

with higher AI exposure end up working longer hours and enjoying less leisure time. This effect

is particularly pronounced in contexts where AI significantly enhances marginal productivity

and monitoring efficiency. It is further amplified in competitive labor and product markets,

where workers’ limited bargaining power fails to keep up with productivity gains, with rents

often accruing to firms or consumers.

Historically, technological advancements like the Industrial Revolution and automation

initially increased work hours as productivity demands rose and labor shifted to factory-based

systems. Over time, however, productivity gains and social reforms reduced work hours,

especially in developed economies, enabling improved work-life balance. Such a historical trend

has contributed to the expectation for AI technologies. Our findings challenge the prevailing

goal and assumption that technology progress improves lives including alleviating human labor

burdens. Instead, they uncover a paradox where AI-driven productivity gains and enhanced

monitoring efficiency extend workdays, especially in contexts with limited opportunities for

workers to share in the benefits. To achieve a world where humans work less and enjoy greater

well-being, deliberate policy interventions, equitable distribution of productivity gains, and

cultural shifts prioritizing leisure and quality of life are essential. By shedding light on AI’s

impact on work-life dynamics from a principal-agent framework, this study contributes to the
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broader discussion on the socio-economic consequences of emerging technologies.
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Figure 1. AI Exposure Over Time

The figure plots the average occupational artificial intelligence (AI) exposure of ATUS respon-
dents over time. The average is calculated using ATUS survey weights. Two AI exposure
measures are constructed by the authors using AI patents published in the five years ending in
a given year from 2000 to 2023: (i) average AI exposure based on the overlap of job tasks of
occupations and AI patents (blue line) and (ii) average AI net complementarity exposure (red
dotted line). Section B.2 describes the variable construction.
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Figure 2. AI Exposure and Workday

A: Weekly Work Hours

B: Weekly Leisure Hours

The figure plots the average weekly hours allocated to work (Panel A) and leisure (Panel B) over
occupation-level AI exposure in percentile rank. The time allocation variables are derived from
the American Time Use Survey (ATUS) for the periods 2004–2013 and 2014–2023, weighted using
ATUS sampling weights. Blue scatters and the blue dotted line represent data from 2004–2013,
while red scatters and the red line correspond to 2014–2023. The scatters depict binned averages
across 10-percentile groups, while the lines represent fitted values from quadratic regressions.
Annual AI exposure of occupations is constructed by the authors using AI patents published in
a five-year rolling window. The raw score for AI exposure is transformed into percentile ranks
by year following the literature (e.g., Autor and Dorn, 2013; Webb, 2019).
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Table 1: Summary Statistics

The table reports the summary statistics. Panel A describes the individual-level variables in the
ATUS sample from 2004 to 2023. The time spent on activities is from the ATUS, expressed
in hours per week. An individual’s total time endowment, after subtracting off 49 hours for
biological eating, sleeping, and personal care needs (ESP), is 119 hours per week. Market work
includes time spent on main jobs, overtime work, and ancillary work activities. Leisure includes
entertainment like recreational computing and video games, hobbies and leisure components of
ESP. Home production includes household chores, grocery shopping, caring for other adults, etc.
Education refers to one’s own education like attending courses. Civic includes going to church,
volunteering, etc. Job search activities include submitting resumes and conducting job interviews.
Hourly wages are in 2023 dollars. The time-varying exposure measures at the “occ1990dd” occu-
pation level, including AI exposure (AIEXP ) and AI net complementarity exposure (AICOMP ),
are constructed by the authors and transformed into percentile ranks by year, as described in
Section 3.6. Panel B summarizes the top 1% most cited AI patents every year from 2000 -
2023 based on the adjusted forward citations that are used to construct AI exposure measures.
Adjusted forward citations are defined as raw citations over the average citations of AI patents
granted within the same year-quarter and CPC subclass (Kogan et al., 2017). Panel C summa-
rizes employee ratings and AI exposure at the firm-job type level from 2008 to 2023. Employees’
ratings on overall satisfaction and work-life-balance (WLB) are from Glassdoor. AI exposure at
the firm-job type-year level is constructed in two steps. First, occupational AI exposure is aggre-
gated to the firm-job type level, using employment weights from Linkedin employment history;
second, a three-year moving average is applied.

Panel A: Occupation Exposure, Time Allocation and Wages at the Individual Level

VARIABLES N Mean Std P25 P50 P75
(1) (2) (3) (4) (5) (6)

Weekly Hours
Market work 123,603 34.88 30.72 0 43.28 59.50
Leisure 123,603 55.54 27.28 36.17 50.75 72.92
Education 123,603 1.70 7.70 0 0 0
Civic 123,603 1.61 5.90 0 0 0
Own medical care 123,603 0.37 2.08 0 0 0
Job Search 123,603 0.08 0.86 0 0 0
Home production 123,603 15.67 17.37 2.33 9.92 23.33
Child care 123,603 4.48 11.15 0 0 1.75
Hourly earnings ($) 104,400 27.73 17.72 15.01 22.30 34.93
I(Female) 123,603 0.48 0.50 0 0 1
I(Married) 123,603 0.55 0.50 0 1 1
No. Children 123,603 0.83 1.13 0 0 2
Age 123,603 40.06 13.15 29 40 51
Indicator for Educational Attachment
I(Less than high school) 123,603 0.11 0.31 0 0 0
I(High school) 123,603 0.28 0.45 0 0 1
I(Some college education) 123,603 0.27 0.44 0 0 1
I(Bachelor’s) 123,603 0.22 0.41 0 0 0
I(Master’s and above) 123,603 0.13 0.33 0 0 0
AIEXP - score 123,603 0.66 0.38 0.32 0.59 0.92
AIEXP - percentile 123,603 54 29.11 29 60 80
AICOMP - score 123,603 0.47 0.38 0.18 0.35 0.73
AICOMP - percentile 123,603 55.61 28.12 29 60 81
GenAIEXP - score 8,131 0.37 0.24 0.16 0.36 0.54
GenAIEXP - percentile 8,131 60.84 25.61 43 65 81
AISUR - score 10,600 7.07 0.48 6.74 7.00 7.45
AISUR - percentile 10,600 45.87 26.66 23 37 70
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Panel B: AI Patents Used for the AI Exposure Construction

Year No. AI Patents No.Adjusted Citations

2000 100 7.21
2001 111 7.28
2002 114 7.41
2003 124 9.15
2004 137 9.99
2005 130 9.34
2006 186 10.10
2007 173 9.77
2008 190 11.01
2009 218 12.22
2010 300 11.70
2011 315 13.22
2012 398 15.04
2013 446 16.39
2014 492 17.07
2015 480 17.36
2016 514 19.02
2017 555 19.79
2018 556 21.07
2019 705 20.69
2020 750 20.79
2021 741 21.30
2022 762 19.53
2023 771 24.93

Panel C: Summary Statistics at the Job Type × Firm Level

VARIABLES N Mean Std P25 P50 P75
(1) (2) (3) (4) (5) (6)

Rating (overall) 103,165 3.41 1.04 3.00 3.50 4.00
Rating (WLB) 103,165 3.40 1.04 2.91 3.50 4.00
Total Compensation ($000) 103,165 108.30 51.71 79.52 99.06 124.44
AIEXP - percentile 103,165 69.40 13.50 61.61 71.37 79.13
AICOMP - percentile 103,165 71.40 13.73 64.57 73.75 80.79
Employment 103,165 511.80 709.66 52.00 191.00 620.00
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Table 2: Event Study: Introduction of ChatGPT

The table reports the weighted linear regressions using the ATUS sample weights (Aguiar et al.,
2021) that examine the heterogeneity effect of occupational exposure to generative AI on work-life
balance based on individual responses to the ATUS survey from 2022 to 2023. The occupations
are uniquely identified by “occ1990dd” codes from Dorn (2009). The dependent variable is
weekly hours spent on market work in Panel A and leisure in Panel B. In each panel, column
(1) presents the results for the full sample. Columns (2)–(3) present the results for subsamples
defined using generative AI complementarity exposure at the occupation level, developed fol-
lowing Kogan et al. (2023). Columns (4)–(5) present the results for subsamples defined using
the state-level Google search trend of ChatGPT from November 30 to December 31, 2022. The
main explanatory variable, GenAIEXP , is generative AI exposure measure at the occupation
level, constructed following Eisfeldt et al. (2023) and transformed to percentile ranks following
the literature (e.g., Autor and Dorn, 2013; Webb, 2019). POST dummy equals one for the year
2023. All specifications include individual-level controls including age, the number of children,
and a series of indicator variables for gender, educational attainment, marital status, and race,
and fixed effects at the following levels: occupation, state × year, industry × year, year-month,
and day-of-week. Standard errors are double clustered by occupation and state. Asterisks denote
significance levels (***=1%, **=5%, *=10%).

Panel A: Work

DV Weekly Work Hoursi,o,t

State-level Google
GenAICOMP

o Search of ChatGPTs

Sample Full Sample Top 25% Bottom 75% Top 25% Bottom 75%

(1) (2) (3) (4) (5)

GenAIEXP
o × POSTt 0.063** 0.178** 0.088* 0.161** 0.053*

(2.12) (2.02) (1.82) (3.59) (1.77)

Individual Characteristics Yes Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes Yes
State × Year FE Yes Yes Yes Yes Yes
Industry × Year FE Yes Yes Yes Yes Yes
year-month FE Yes Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes Yes

Observations 8,094 3,394 4,692 1,830 6,190
R2 0.340 0.478 0.315 0.410 0.363
Adjusted R2 0.298 0.427 0.250 0.294 0.313
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Panel B: Leisure

DV Weekly Leisure Hoursi,o,t

State-level Google
GenAICOMP

o Search of ChatGPTs

Sample Full Sample Top 25% Bottom 75% Top 25% Bottom 75%

(1) (2) (3) (4) (5)

GenAIEXP
o × POSTt -0.064* -0.175* -0.089 -0.178*** -0.058

(-1.92) (-1.93) (-1.64) (-3.95) (-1.61)

Individual Characteristics Yes Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes Yes
State × Year FE Yes Yes Yes Yes Yes
Industry × Year FE Yes Yes Yes Yes Yes
year-month FE Yes Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes Yes

Observations 8,335 3,588 4,742 1,835 6,426
R2 0.317 0.384 0.318 0.389 0.335
Adjusted R2 0.275 0.328 0.255 0.271 0.285
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Table 3: AI Exposure and Workday

The table reports weighted linear regression results based on individual responses to the ATUS
survey from 2004–2023 using ATUS sample weights (Aguiar et al., 2021). The dependent variable
is weekly hours spent on market work in columns (1)–(3) and leisure in columns (4)–(6). The
main explanatory variable, AIEXP , is AI exposure measure in percentile ranks at the occupation
(“occ1990dd”)-year level, and is based on AI-related patents granted in a five-year window ending
in the current year (detailed description in Section 3.6). All specifications incorporate individual-
level controls, including age, the number of children, and a series of indicator variables for gender,
educational attainment, marital status, and race, and fixed effects at the following levels: state
× year, industry × year, year-month and day-of-week. Columns (2) and (5) include additional
occupational exposure measures, including robot exposure (Webb, 2019), routine task index
(RTI) (Autor and Dorn, 2013), and offshorability exposure (Firpo et al., 2011; Autor and Dorn,
2013), all in percentile ranks. Columns (3) and (6) include occupation fixed effects, which
subsume occupation-level controls. Standard errors are double clustered by occupation and
state. Asterisks denote significance levels (***=1%, **=5%, *=10%).

DV Weekly Hoursi,o,t

Work Leisure

(1) (2) (3) (4) (5) (6)

AIEXP
o,t−1 0.044*** 0.034*** 0.018* -0.033*** -0.025*** -0.016**

(3.26) (2.86) (1.79) (-3.18) (-2.96) (-2.04)

Individual characteristics Yes Yes Yes Yes Yes Yes
Other Occupation Exposure No Yes No No Yes No
Occupation FE No No Yes No No Yes
State × Year FE Yes Yes Yes Yes Yes Yes
Industry × Year FE Yes Yes Yes Yes Yes Yes
year-month FE Yes Yes Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes Yes Yes

Observations 121,841 121,841 121,841 121,841 121,841 121,841
R2 0.270 0.272 0.281 0.235 0.237 0.244
Adjusted R2 0.257 0.259 0.266 0.222 0.223 0.228
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Table 4: AI Technology Complementarity and Workday

The table reports weighted linear regression results based on individual responses to the ATUS
survey from 2004 – 2023 using the ATUS sample weights (Aguiar et al., 2021). The dependent
variable is weekly hours spent on market work in columns (1)–(3) and leisure in columns (4)–
(6). The main explanatory variable, AICOMP , is AI net complementarity measure in percentile
ranks at the occupation (“occ1990dd”)-year level, and is based on AI-related patents granted in
a five-year window ending in the current year (detailed description in Section 3.6). All specifica-
tions incorporate individual-level controls, including age, the number of children, and a series of
indicator variables for gender, educational attainment, marital status, and race, and fixed effects
at the following levels: state × year, industry × year, year-month and day-of-week. Columns
(2) and (5) include additional occupational exposure measures, including robot exposure (Webb,
2019), routine task index (RTI) (Autor and Dorn, 2013), and offshorability exposure (Firpo et al.,
2011; Autor and Dorn, 2013), all in percentile ranks. Columns (3) and (6) include occupation
fixed effects, which subsume occupation-level controls. Columns (4) and (8) include both occu-

pation fixed effects and orthogonalized general AI exposure, ÃIEXP
o,t−1 , the residual obtained from

regressing general AI exposure on AICOMP
o,t . Standard errors are double clustered by occupation

and state. Asterisks denote significance levels (***=1%, **=5%, *=10%).

DV Weekly Hoursi,o,t

Work Leisure

(1) (2) (3) (4) (5) (6) (7) (8)

AICOMP
o,t−1 0.055*** 0.041*** 0.027** 0.024* -0.043*** -0.034*** -0.021** -0.016**

(3.75) (3.22) (2.08) (1.86) (-3.97) (-3.72) (-2.62) (-2.34)

ÃIEXP
o,t−1 -0.015 0.020

(-0.60) (0.94)

Individual characteristics Yes Yes Yes Yes Yes Yes Yes Yes
Other Occupation Exposure No Yes No No No Yes No No
Occupation FE No No Yes Yes No No Yes Yes
State × Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry × Year FE Yes Yes Yes Yes Yes Yes Yes Yes
year-month FE Yes Yes Yes Yes Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 121,841 121,841 121,841 121,841 121,841 121,841 121,841 121,841
R2 0.270 0.272 0.281 0.281 0.236 0.237 0.244 0.244
Adjusted R2 0.257 0.259 0.266 0.266 0.222 0.223 0.228 0.228
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Table 5: AI Exposure and Wage

The table reports weighted linear regression results based on individual responses to the ATUS
survey from 2004 – 2023 using the ATUS sample weights (Aguiar et al., 2021). The dependent
variable is the natural logarithm of hourly wages in 2023 dollars. The main explanatory vari-
able represents AI exposure measures at the occupation(“occ1990dd”)-year level, expressed in
percentile ranks, and is based on AI-related patents granted in a five-year window ending in the
current year (detailed description in Section 3.6). Specifically, it refers to general AI exposure
(AIEXP ) in columns (1)–(2) and AI net complementarity exposure (AICOMP ) in columns (3)–
(4). All specifications incorporate individual-level controls, including age, the number of children,
and a series of indicator variables for gender, educational attainment, marital status, and race,
and fixed effects at the following levels: state × year, industry × year, year-month and day-of-
week. Columns (2) and (5) include additional occupational exposure measures, including robot
exposure (Webb, 2019), routine task index (RTI) (Autor and Dorn, 2013), and offshorability
exposure (Firpo et al., 2011; Autor and Dorn, 2013), all in percentile ranks. Columns (3) and (6)
include occupation fixed effects, which subsume occupation-level controls. Standard errors are
double clustered by occupation and state. Asterisks denote significance levels (***=1%, **=5%,
*=10%).

DV Log (Hourly Wage $)i,o,t× 100

(1) (2) (3) (4) (5) (6)

AIEXP
o,t−1 ) 0.250*** 0.149*** 0.023*

(5.28) (3.28) (1.78)
AICOMP

o,t−1 0.352*** 0.254*** 0.046**
(7.95) (4.96) (2.41)

Individual Characteristics Yes Yes Yes Yes Yes Yes
Occupational FE No No Yes No No Yes
State × Year FE Yes Yes Yes Yes Yes Yes
Industry × Year FE Yes Yes Yes Yes Yes Yes
year-month FE Yes Yes Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes Yes Yes

Observations 102,804 102,804 102,803 102,804 102,804 102,803
R2 0.491 0.504 0.566 0.499 0.508 0.566
Adjusted R2 0.480 0.494 0.555 0.489 0.497 0.556
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Table 6: Exposure to AI Surveillance Technology and Workday

The table reports the weighted linear regression results using the ATUS sample weights (Aguiar
et al., 2021) that examine the heterogeneity effect of AI surveillance exposure on work-life balance
based on individual responses of remote workers in the ATUS survey from 2015 to 2023. The
occupations are uniquely identified by “occ1990dd” codes from Dorn (2009). Remote workers
are defined as those in occupations with a work-from-home (WFH) feasibility index from Dingel
and Neiman (2020) equals one. The dependent variable is weekly hours spent on market work in
column (1)–(2) and leisure in column (3)–(4) . In each pair, the first column presents the results
for employees while the second column reports the results for a subsample of self-employed
workers. The main explanatory variable, AISUR

o , is AI surveillance exposure at the occupation
level (detailed description in Section B.4 of Online Appendix) and transformed to percentile
ranks (e.g., Autor and Dorn, 2013; Webb, 2019). POST dummy equals one for the years since
2020. All specifications include individual-level controls including age, the number of children,
and a series of indicator variables for gender, educational attainment, marital status, and race,
and fixed effects at the following levels: occupation, state × year, industry × year, year-month,
and day-of-week. Standard errors are double clustered by occupation and state. Asterisks denote
significance levels (***=1%, **=5%, *=10%).

DV Weekly Hoursi,o,t

Work Leisure

Sample Employees Self-Employed Employees Self-Employed

(1) (2) (3) (4)

AISUR
o × POSTt 0.043** -0.021 0.013 0.179

(2.07) (-0.11) (0.72) (1.44)

Individual Characteristics Yes Yes Yes Yes
Occupational FE Yes Yes Yes Yes
State × Year FE Yes Yes Yes Yes
Industry × Year FE Yes Yes Yes Yes
year-month FE Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes

Observations 9,838 515 9,838 515
R2 0.510 0.893 0.404 0.867
Adjusted R2 0.457 0.522 0.339 0.405
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Table 7: AI Exposure and Employee Satisfaction: Evidence from Glassdoor and LinkedIn

The table presents estimations from linear regressions examining the effects of occupational AI
exposure on employee ratings at the job type (k) × firm (i) × year (t) level. The sample
includes private and public firms from the Glassdoor database between 2008 and 2023. The
dependent variables are 100 times the overall satisfaction rating in columns (1)–(2) and the
Work-Life Balance (WLB) ratings in columns (4)–(5). The dependent variables in columns (3)
and (6) are 100 times the average annual compensation (natural logarithm) from Linkedin. The
main explanatory variable, lagged AI exposure at the job type × firm level, is constructed in
two steps. First, occupational AI exposure is aggregated to the job type × firm level, using
employment weights from Linkedin. Second, a three-year moving average is applied to the job
type AI exposure to smooth variations over time. Occupational AI exposure is constructed using
AI-related patents within the past five years (detailed description in Section 3.6). Specifically,
it refers to general AI exposure (AIEXP

k,i,t−3:t−1) in columns (1)–(3) and AI net complementarity

exposure (AICOMP
k,i,t−3:t−1) in columns (4)–(6). All specifications control for employment in the

natural logarithm at the job type × firm level, firm × job type fixed effects, and job type × year
fixed effects. Standard errors are double clustered by firm and year. Asterisks denote significance
levels (***=1%, **=5%, *=10%).

DV Rating × 100 Log(Compen- Rating × 100 Log(Compen-

Overall WLB sation)× 100 Overall WLB sation)× 100

(1) (2) (3) (4) (5) (6)

AIEXP
k,i,t−3:t−1 -0.085 -0.111** 0.044*

(-1.74) (-2.40) (2.04)
AICOMP

k,i,t−3:t−1 -0.075 -0.138** 0.109***
(-1.22) (-2.39) (3.57)

Employment Controls Yes Yes Yes Yes Yes Yes
Firm × Job Type FE Yes Yes Yes Yes Yes Yes
Job Type × Year FE Yes Yes Yes Yes Yes Yes

Observations 102,483 98,844 102,483 102,483 98,844 102,483
R2 0.341 0.337 0.947 0.341 0.337 0.947
Adjust R2 0.227 0.223 0.938 0.227 0.223 0.938
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Table 8: AI Exposure and Workday: In Relation to Labor Market Competition

The table reports the weighted linear regression results that estimate the heterogeneity effect
of AI on work-life balance sorted by labor market competition. The regression is weighted by
ATUS sample weights (Aguiar et al., 2021). The dependent variable is weekly hours spent on
market work in columns (1)-(2) and leisure in columns (3)-(4). The main explanatory variable,
AICOMP , represents AI net complementarity exposure at the occupation (“occ1990dd”)-year
level, expressed in percentile ranks, and is based on AI-related patents granted in a five-year
window ending in the current year (detailed description in Section 3.6). Two proxies for the
labor market power of firms are specified: the lagged state-level labor market concentration
measured by the Herfindahl-Hirschman Index (HHI) in columns (1) and (3) and the 2023 Best
States to Work Index (BSWI) provided by Oxfam in columns (2) and (4). The state-level labor
market HHI is calculated using the employment and headquarters state data of public firms from
Compustat. I(Worker Power vs. Firm) is the indicator of firms’ labor market power that equals
one if the labor market concentration is in the bottom quartile or BSWI is in the top quartile and
zero otherwise. All specifications incorporate individual-level controls, including age, the number
of children, and a series of indicator variables for gender, educational attainment, marital status,
and race, and fixed effects at the following levels: occupation, state × year, industry × year,
year-month and day-of-week. Standard errors are double clustered by occupation and state.
Asterisks denote significance levels (***=1%, **=5%, *=10%).

DV Weekly Hoursi,o,t

Work Leisure

Factor HHI BSWI HHI BSWI

(1) (2) (3) (4)

AICOMP
o,t−1 0.034** 0.030** -0.024*** -0.023***

(2.58) (2.49) (-2.98) (-3.27)
× I(Worker Power vs. Firm)s,t−1 -0.024*** -0.014** 0.011** 0.009**

(-9.47) (-2.15) (2.63) (2.10)

Individual Characteristics Yes Yes Yes Yes
Occupational FE Yes Yes Yes Yes
State× Year FE Yes Yes Yes Yes
Industry× Year FE Yes Yes Yes Yes
Year× Month FE Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes

Observations 121,799 121,841 121,799 121,841
R2 0.281 0.281 0.244 0.244
Adjusted R2 0.266 0.266 0.228 0.228
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Table 9: AI Exposure and Workday: In Relation to Product Market Competition

The table reports the weighted linear regression results that examine the heterogeneity effect of AI
on work-life balance sorted by product market competition. The regression is weighted by ATUS
sample weights (Aguiar et al., 2021). The occupations are uniquely identified by “occ1990dd”
codes from Dorn (2009). The dependent variable is weekly hours spent on market work in columns
(1)-(2) and leisure in columns (3)-(4). The main explanatory variable, AICOMP , represents AI
net complementarity exposure at the occupation-year level, expressed in percentile ranks, and is
based on AI-related patents granted in a five-year window ending in the current year (detailed
description in Section 3.6). Two proxies for the product market power of firms are specified: the
industry-level product similarity in column (1) and (3) and product market concentration (HHI)
in column (2) and (4). Firm-level product similarity and HHI scores provided by Hoberg and
Phillips (2016) were weighted by Compustat sales to calculate each of the proxies. I(Firm Power
vs. Consumer) is an indicator of firms’ product market power relative to consumers, which
equals one if the lagged product similarity is in the bottom quartile or the product similarity
in the top quartile and zero otherwise. All specifications incorporate individual-level controls,
including age, the number of children, and a series of indicator variables for gender, educational
attainment, marital status, and race, and fixed effects at the following levels: occupation, state
× year, industry × year, year-month and day-of-week. Standard errors are double clustered by
occupation and state. Asterisks denote significance levels (***=1%, **=5%, *=10%).

DV Weekly Hoursi,o,t

Work Leisure

Factor Product Product Product Product
Similarity HHI Similarity HHI

(1) (2) (3) (4)

AICOMP
o,t−1 0.027** 0.027** -0.024*** -0.024***

(2.08) (2.19) (-2.76) (-2.82)
× I(Firm Power vs. Consumer)j,t−1 -0.016* -0.021* 0.024*** 0.031***

(-1.74) (-1.93) (2.87) (2.73)

Individual Characteristics Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes
State × Year FE Yes Yes Yes Yes
Industry × Year FE Yes Yes Yes Yes
year-month FE Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes

Observations 112,477 112,272 112,477 112,272
R2 0.279 0.279 0.245 0.245
Adjusted R2 0.263 0.263 0.228 0.228
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Online Appendix

A. Optimal worker effort in a Principal-Agent Model

This model is a simple adaptation of Holmstrom and Milgrom (1987), aiming at illustrate
the relation between agent “effort” (which maps to length of work day) and a set of factors
including marginal productivity, effort observability, and bargaining power.

The output Xt follows a continuous-time stochastic process, affected by the agent’s effort
a and a noise term that is outside the control of the agent:

dXt = γatdt+ σdWt, (6)

where:
at is the agent’s effort level (“working time” in our empirical setting) at time t, which is

not directly observed by the principal. γ is the productivity parameter. σ represents the level
of uncertainty in the noise term, and Wt is the standard Wiener process.

The principal is risk neutral with the following utility function V , which is the difference
between the expected output γat and the compensation to the agent, Ct = f(Xt):

V =

∫ 1

0

(γat − f(Xt))dt (7)

Effort, at, is not contractible and hence the compensation function relies on output which
is a noisy representation of agent effort.

The Agent is risk-averse with CARA utility with a risk-aversion coefficient of r, with a
utility function depending on income C and leisure, and with a researvation utility of U0.
Assume the agent has one unit of time to allocate between work and leisure, his expected
utility is E[U(C, 1 − a)]. If we rule out the income effect of leisure for now, we assume that
the U take the simple form of

U =

∫ 1

0

(Ct −
1

2
rV ar(Ct)−

1

2
ka2)dt (8)

The principal solves the following optimization problem:

Maxf(Xt) V =

∫ 1

0

(γat − f(Xt))dt

s.t.E(U [f(Xt), a
∗
t ]) ≥ U (Participation constraint)

a∗ = Argmaxat E(U [f(Xt), at]) (Incentive compatibility)

(9)

Holmstrom and Milgrom (1987) shows that the optimal dynamic contract converges in the
aggregate to a linear contract in the form of

Ct = α + βXt, (10)

where β could be characterized as
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β =
1

1 + krσ2
(11)

Finally, the agent’s effort level in response to the incentive is

at =
γ

k(1 + krσ2)
(12)

In summary, equilibrium effort input is positively related to γ, the marginal productivity of
effort; and negatively associated with k, the marginal cost of effort; r, the agent’s risk aversion;
and σ, the volatility of the noise in performance attribution to agent effort. Such comparative
statics are robust with more general functional forms, though there is no closed-form solution.

In this simple model when agent’s utility function is separable in consumption and leisure
(see equation 8), a change in the agent’s reservation utility (which is determined by her next
best alternatives) does not affect the incentives and effort input. This will change with the
relaxation of agent’s utility function to a more general form, such as the constant elasticity of
substitution (CES) utility function:

U(C, 1− a) = [ηCρ + (1− η)(1− a)ρ]
1
ρ − 1

2
rV ar(Ct), (13)

where η ∈ (0, 1) is the relative preference for consumption and leisure, and ρ < 1 is the
substitution parameter, or 1

1−ρ
, the elasticity of substitution between C and 1− a, is strictly

positive.
Under this setup, the relation between a∗ and U is not monotone. However, under rea-

sonable parameters (e.g., agents are reasonably risk averse, and measuring performance is
reasonably noisy), increasing U (because the agent has better outside opportunities due to
bargaining power over their employer and the job market) tends to decrease work time. In
addition, the following two conditions would each on its own serve as a sufficient condition
for effort (work time) to shrink when U rises:

1. ρ < 0, i.e., consumption and leisure are strict complements.

2. U is sufficiently large, such that there is a limit on increasing β to agent the required
utility due to agent’s risk aversion.

Overall, because leisure is a normal good, the agent values leisure more when the agent’s
welfare improves. This force induces the agent to allocate more time into leisure from work,
other things equal. The effect is stronger when agent risk aversion is high; performance
measurement is noisy, complimentarity between consumption and leisure is high, and the
agent has good alternatives (hence demands high reservation utility).
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B. Documentation

B.1. Historical panel of O*NET data

The O*NET Data Collection Program currently makes updates to the O*NET Database
quarterly, with a primary update occurring in the 3rd quarter (August) of each year. Prior
to year 2015, the data was primarily updated once per year. To create a consistent annual
panel of job tasks, we use the O*NET databases released each August from 2015 onward. For
years prior to 2015, we select the data release closest to August, prioritizing those published
between June and August when multiple versions are available in the same year. Table OA.1
of Online Appendix lists the O*NET data release we use to construct the annual panel of
occupations’ job tasks from 2000–2023.
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B.2. Measure AI exposure at the occupation level using ChatGPT

This section provides details on how we use ChatGPT to quantify AI exposure measures for
occupations. Our practice was conducted on November 22, 2024 using the “gpt-4o-mini-2024-
07-18” model with the GPT “temperature” parameter set to 0.28

B.2.1. Prompt setup

ChatGPT, developed by OpenAI, is based on the GPT (Generative Pre-trained Transformer)
architecture, which uses a transformer design with self-attention mechanisms for advanced
contextual understanding. Pre-trained on vast datasets, it is highly proficient in processing
and analyzing text.

We use ChatGPT to classify the impact of AI patents on occupations due to its ability
to identify complex relationships and nuances in language. Specifically, we define a prompt,
which serves as a clear instruction or context-setting input that shapes the model’s output,
as following and apply it to a given patent-occupation combination in our sample:

You are a labor economist. Evaluate the extent to which a new AI patent substitutes or
complements job tasks of a given occupation, and its impact on task completion time. Respond
strictly in JSON format:

“overlap”: [similarity score], # Similarity between patent and tasks (1-10)
“label”: [effect label], # indicator of the impact of patent on tasks (-1 = substitute, 1 =

complement, 0 = unrelated)
Include no text other than the JSON object.

In this prompt, we ask ChatGPT to assume the role of a labor economist to classify the
impact of a patent filing on a given occupation. The terms Patent Title and Patent Abstract
are substituted by the title and abstract of a particular patent during the query. Similarly,
Occupation Title and Tasks are substituted by the title and the combined text of all task
statements of a particular occupation.

B.2.2. Example

We provide two examples of how ChatGPT scores the overlap between an occupation and AI
patent and labels the impact of the patent on the occupation.
Example 1)
Occupation: Urban and Regional Planners (SOC Code: 19-3051.00)

Task Statements: ”Hold public meetings with government officials, social scientists, lawyers,
developers, the public, or special interest groups to formulate, develop, or address issues re-
garding land use or community plans.— Design, promote, or administer government plans
or policies affecting land use, zoning, public utilities, community facilities, housing, or trans-
portation.— Advise planning officials on project feasibility, cost-effectiveness, regulatory con-
formance, or possible alternatives.— Recommend approval, denial, or conditional approval of

28Temperature is a parameter in ChatGPT that controls the randomness and creativity of its responses.
Setting the temperature to 0 makes the model consistently choose the most probable word.
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proposals.— Discuss with planning officials the purpose of land use projects, such as trans-
portation, conservation, residential, commercial, industrial, or community use.— Conduct
field investigations, surveys, impact studies, or other research to compile and analyze data on
economic, social, regulatory, or physical factors affecting land use.— Determine the effects of
regulatory limitations on land use projects.— Advocate sustainability to community groups,
government agencies, the general public, or special interest groups.— Mediate community dis-
putes or assist in developing alternative plans or recommendations for programs or projects.—
Keep informed about economic or legal issues involved in zoning codes, building codes, or en-
vironmental regulations.— Assess the feasibility of land use proposals and identify necessary
changes.— Supervise or coordinate the work of urban planning technicians or technologists.—
Identify opportunities or develop plans for sustainability projects or programs to improve en-
ergy efficiency, minimize pollution or waste, or restore natural systems.— Create, prepare, or
requisition graphic or narrative reports on land use data, including land area maps overlaid
with geographic variables, such as population density.— Evaluate proposals for infrastructure
projects or other development for environmental impact or sustainability.— Coordinate work
with economic consultants or architects during the formulation of plans or the design of large
pieces of infrastructure.— Review and evaluate environmental impact reports pertaining to
private or public planning projects or programs.— Develop plans for public or alternative
transportation systems for urban or regional locations to reduce carbon output associated
with transportation.— Investigate property availability for purposes of development.”
Patent #1 Title: Data processing systems for fulfilling data subject access requests
and related methods (Patent ID: 10452866)

Patent Abstract: “In particular embodiments, in response a data subject submitting a
request to delete their personal data from an organization’s systems, the system may: (1)
automatically determine where the data subject’s personal data is stored; and (2) in response
to determining the location of the data (which may be on multiple computing systems),
automatically facilitate the deletion of the data subject’s personal data from the various
systems (e.g., by automatically assigning a plurality of tasks to delete data across multiple
business systems to effectively delete the data subject’s personal data from the systems).”
ChatGPT Overlap Score: 4. Reasoning: While urban and regional planners work with
data in the context of zoning, land use, and sustainability projects, the patent’s focus is on
automating the deletion of personal data from organizational systems. This functionality has
limited direct relevance to the core tasks of urban planning, which involve regulatory, environ-
mental, and community-based considerations. ChatGPT Label: Substitute. Reasoning:
The patent describes an automated process that could replace certain aspects of planners’
data management responsibilities, such as managing personal data in environmental or im-
pact studies. By automating these tasks, the need for manual intervention by planners in
related data handling activities may decrease.
Patent #2 Title: Device location based on machine learning classifications (Patent
ID: 9980100)

Patent Abstract: “A venue system of a client device can submit a location request to a
server, which returns multiple venues that are near the client device. The client device can use
one or more machine learning schemes (e.g., convolutional neural networks) to determine that
the client device is located in one of specific venues of the possible venues. The venue system
can further select imagery for presentation based on the venue selection. The presentation
may be published as ephemeral message on a network platform.”
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ChatGPT Overlap Score: 7. Reasoning: Urban and regional planners often work with
location-based data and mapping to analyze land use and zoning, making the machine learning-
based venue location system relevant. This patent can enhance planners’ ability to determine
precise location contexts, aiding in tasks such as field investigations, land area mapping, and
transportation system planning. ChatGPT Label: Complement. Reasoning: The impact
is labeled as complementary because the patent provides tools that augment planners’ capa-
bilities by improving accuracy and efficiency in location-based decision-making. It supports
planners’ tasks without replacing their expertise, enabling more informed analyses and better
integration of spatial data into urban planning processes.
Example 2)
Occupation: Financial Quantitative Analysts (SOC Code: 13-2099.01)

Task Statements: “Develop core analytical capabilities or model libraries, using advanced
statistical, quantitative, or econometric techniques.— Provide application or analytical sup-
port to researchers or traders on issues such as valuations or data.— Research or develop
analytical tools to address issues such as portfolio construction or optimization, performance
measurement, attribution, profit and loss measurement, or pricing models.— Maintain or
modify all financial analytic models in use.— Apply mathematical or statistical techniques
to address practical issues in finance, such as derivative valuation, securities trading, risk
management, or financial market regulation.— Research new financial products or analytics
to determine their usefulness.— Devise or apply independent models or tools to help verify
results of analytical systems.— Define or recommend model specifications or data collection
methods.— Confer with other financial engineers or analysts on trading strategies, market dy-
namics, or trading system performance to inform development of quantitative techniques.—
Interpret results of financial analysis procedures.— Collaborate with product development
teams to research, model, validate, or implement quantitative structured solutions for new or
expanded markets.— Produce written summary reports of financial research results.— Consult
traders or other financial industry personnel to determine the need for new or improved an-
alytical applications.— Identify, track, or maintain metrics for trading system operations.—
Prepare requirements documentation for use by software developers.— Collaborate in the
development or testing of new analytical software to ensure compliance with user require-
ments, specifications, or scope.— Develop solutions to help clients hedge carbon exposure or
risk.— Analyze pricing or risks of carbon trading products.— Develop methods of assessing
or measuring corporate performance in terms of environmental, social, and governance (ESG)
issues.— Develop tools to assess green technologies or green financial products, such as green
hedge funds or social responsibility investment funds.— Assess the potential impact of cli-
mate change on business financial issues, such as damage repairs, insurance costs, or potential
disruptions of daily activities.”
Patent #1 Title: Systems and methods for predicting security threat attacks
(Patent ID: 9948663)

Patent Abstract: “A computer-implemented method for predicting security threat attacks
may include (1) identifying candidate security threat targets with latent attributes that de-
scribe features of the candidate security threat targets, (2) identifying historical attack data
that describes which of the candidate security threat targets experienced an actual security
threat attack, (3) determining a similarity relationship between latent attributes of at least
one specific candidate security threat target and latent attributes of the candidate security
threat targets that experienced an actual security threat attack according to the historical
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attack data, (4) predicting, based on the determined similarity relationship, that the specific
candidate security threat target will experience a future security threat attack, and (5) per-
forming at least one remedial action to protect the specific candidate security threat target
in response to predicting the future security threat attack. Various other methods, systems,
and computer-readable media are also disclosed.”
ChatGPT Overlap Score: 6. Reasoning: Financial quantitative analysts often use ad-
vanced statistical and predictive modeling techniques to assess risks and outcomes, which
aligns with the patent’s focus on using historical data and latent attributes for predictive an-
alytics. However, the application domain of this patent—security threat prediction—diverges
from the financial focus, leading to only a moderate overlap.. ChatGPT Label: Substitute.
Reasoning: the patent’s automated system for predicting security threats could potentially re-
place similar risk assessment models developed by financial quantitative analysts, especially in
contexts where these analysts might also evaluate risks related to cybersecurity or operational
disruptions. The automation reduces the need for manual model development in overlapping
areas of risk prediction.
Patent #2 Title: Authenticated access and aggregation database platform (Patent
ID: 10671749)

Patent Abstract: “A data processing system is disclosed for data processing, including
database and file management, as well accessing one or more databases or other data struc-
tures, authenticating users, and categorizing data items for addition to the database system.
In some embodiments, the system may be configured to coordinate access to user account
information via user-provided authentication credentials; apply account identification rules to
the accessed account information to identify a plurality of accounts of the user; and initiate
updates to a database record associated with the user indicative of any accounts identified.”
ChatGPT Overlap Score: 8. Reasoning: The patent describes a system for data process-
ing, authentication, and database management, which directly supports tasks performed by
financial quantitative analysts, such as managing large datasets, ensuring data integrity, and
applying analytical models to categorized financial data. The functionalities align closely with
analysts’ reliance on structured and accessible data for developing and maintaining financial
models. ChatGPT Label: Complement. Reasoning: The patent’s system enhances an-
alysts’ ability to manage and process complex datasets efficiently. By automating aspects
of data access, categorization, and updates, the technology supports analysts in focusing on
higher-value tasks such as developing models and interpreting data, rather than replacing
their expertise or core responsibilities.

B.2.3. Validating GPT-generated AI general exposure

Generative Large Language Models, such as ChatGPT, provide improved textual analysis
approaches over non-generative methods, mainly because that they enable expressing a task
through natural language and exhibit more sophisticated reasoning abilities (de Kok, 2025).
However, the black-box nature of these models poses challenges to the validation of the mea-
sures created by them. Here, we apply a non-generative natural language processing method
to calculate a comparative variable to our overlap variable generated by GPT. Specifically, fol-
lowing Kogan et al. (2023), we employ a combination of word embedding and term-frequency-
inverse-document-frequency (TF-IDF) approach to calculate the similarity between the text
description of an occupation and the abstract of a patent. Then, we aggregate the similarity
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score at the occupation-year level to represent the time-varying relevance of AI to each occu-
pation’s tasks. Finally, we compare the TF-IDF cosine similarity score to the GPT-generated
AI exposure score.

The specific procedure is as follows. First, we pre-process each text portion of the task
description of each SOC 8-digit occupation and patent abstracts by removing non-alphabetic
characters, lowercasing all text, removing all stopwords listed in the sources in Kogan et al.
(2023), and retaining lemmatized versions of nouns and verbs only. Next, we represent each
word of a text as a 100-dimensional vector using the word vectors provided by Pennington et al.
(2014). The word vectors are numerical representations of word meanings that can effectively
capture pairwise distances between words based on co-occurrence probabilities (Kogan et al.,
2023). Then, to measure the document similarity between an occupation task description
and a patent abstract, we construct a document-level vector, which is a weighted average of
the set of word vectors in each task description or patent abstract text. We use TF-IDF to
weigh each word vector, which gives higher weights for terms that occur more frequently in a
document and lower weights for terms that occur commonly across many documents (Kogan
et al., 2023). Finally, we calculate the cosine similarity between the task description of each
occupation and a patent abstract, each represented as a document vector, to measure the
relevance of the AI patent to the tasks performed by the occupation.

We aggregate the TF-IDF similarity scores from the SOC 8-digit occupation by patent
level to the occ1990dd occupation by year level following the procedures outlined in Section
3.6.2. The TF-IDF score and the GPT-based AI exposure score (AIEXP

o,t ) constructed using
the same patents show a high correlation of 0.83, demonstrating a strong alignment between
the two measures and confirming the robustness of the GPT-derived approach.

B.2.4. Validating GPT-generated AI net complementarity exposure

To study the wage effects of AI, Kogan et al. (2023) use ChatGPT4 released in March 2023 to
identify whether AI is a substitute or complement to occupation tasks using a question-based
approach. Specifically, they ask ChatGPT whether AI’s is able to perform specific job tasks
with or without human intervention. This approach yields time-invariant measures of the
occupation’s exposure to AI substitution and AI complementarity.

Kogan et al. (2023) do not report the AI exposures at the occupation level. However, Table
A8–9 in their Online Appendix provide different components of AI exposure-related earnings
changes for occupations with the highest AI substitution (or complementarity) exposure at the
SOC 6-digit occupation level. We validate our AI Net complementarity exposure (AICOMP

o,t )
by comparing it to those wage growth components. To summarize, AICOMP

o,t in 2023 exhibits a
strong negative correlation of -0.59 with the wage growth attributed to the substitution effect
of AI (column (3) in Table A8–9) documented in Kogan et al. (2023)). In contrast, AICOMP

o,t

shows a positive correlation of 0.47 with wage growth related to labor-complementing effects
(column (4) of in Table A8–9) and a correlation of 0.60 with the overall wage growth of AI
(column (6)). This underscores a strong consistency between the methods, validating the
reliability of our AI net complementarity measure.
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B.3. Measure generative AI exposure at the occupation level using
ChatGPT

This section provides details on how we use ChatGPT to quantify the exposure to Generative
AI of each task following Eisfeldt et al. (2023) and to distinguish the substitute and comple-
mentarity impact of Generative AI on each task following Kogan et al. (2023). We conducted
this categorization on November 12, 2024 using the “gpt-4o” model with the GPT “temper-
ature” parameter set to 0. The job task descriptions of occupations are obtained from the
O*NET 27.0 database released on August 1, 2022. Using the task statement, we generated
two output variables for each of the 19,267 tasks including (i) to which extent the task is
exposed to Generative AI technologies or not (ii) whether it is substituted or complemented
by Generative AI technologies.

B.3.1. Prompt setup

We define a prompt as following and apply it to each job task in our sample:
“Generate two outcomes in the exact format of ’[val1, val2, val3], [label]’ based on the

following instructions.”
“First Task: Pretend you are a labor economist evaluating the extent to which Generative

AI (specifically ChatGPT) might substitute or complement a job task of an occupation. ”
“The output must be exactly a list of numbers in this format: [val1, val2, val3], where: -

val1 is ChatGPT’s substitute score (1-10),” ”- val2 is its complement score (1-10),” ”- val3
is a label (-1 = substitute, 1 = complement, 0 = unrelated) indicating if ChatGPT primarily
complements or substitutes the job task.”

“Second Task: For the second task, use the following Context for Evaluation and Exposure
Rubric to label a given occupation task with one of the labels (E0, E1, E2, or E3) based on its
exposure to LLM capabilities.”

“The output must be exactly in this format: [label] that best describes the task’s exposure
to the LLM.”

“Context for Evaluation: Assume access to the most powerful OpenAI large language model
(LLM). This model can complete tasks involving text input and output, as long as the context
can be captured in 2000 words. However, it cannot retrieve up-to-date facts from the past year
unless provided in the input. Assume you are a worker with average expertise, using the LLM
along with other software or hardware tools specified in the task. You also have commonly
available technical tools (e.g., microphone, speakers) but no other physical materials. Your
goal is to label tasks according to the rubric below, ensuring equivalent quality (i.e., a reviewer
cannot distinguish whether a human completed it independently or with LLM assistance). If
you are unsure how to judge time savings, consider if the described tools cover the majority of
the subtasks.”

“Exposure Rubric:”
“- E1 - Direct Exposure: Label tasks as E1 if direct access to the LLM (e.g., via Chat-

GPT or OpenAI playground) alone can reduce task time by at least half while maintaining
quality. Examples include:” ” - Writing and transforming text/code,” ” - Editing text/code
as specified,” ” - Writing code for tasks previously done manually,” ” - Translating text,” ”
- Summarizing medium-length documents,” ” - Providing document feedback,” ” - Answer-
ing questions about a document,” ” - Generating or answering questions,” ” - Writing or
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responding to emails (including negotiation if via text),” ” - Maintaining written records,” ”
- Preparing general training materials, and” ” - Informing others through written or spoken
formats.”

“- E2 - Exposure by LLM-powered Applications: Label tasks as E2 if the LLM alone
may not halve the time required, but additional software built on the LLM could. Examples
include:” ” - Summarizing documents longer than 2000 words and answering questions on
them,” ” - Retrieving recent/specialized information from the internet or organization data,”
” - Making recommendations based on data,” ” - Analyzing written information for decisions,”
” - Preparing specialized training materials, and” ” - Maintaining complex databases.”

“- E3 - Exposure with Image Capabilities: Label tasks as E3 if the combination of the LLM
and an image-processing system (capable of viewing, captioning, and creating images, but not
video) significantly reduces task time. Examples include:” ” - Reading text from PDFs,” ” -
Scanning images,” ” - Creating or editing digital images based on instructions (realistic but
not highly detailed).”

“- E0 - No Exposure: Label tasks as E0 if none of the above criteria apply, and no clear
reduction in task time by half is achieved. Examples include:” ” - Tasks requiring significant
human interaction (e.g., in-person demonstrations),” ” - Tasks requiring precise physical mea-
surements or detailed visual review,” ” - Decisions impacting human livelihood (e.g., hiring,
grading),” ” - Tasks legally requiring a human,” ” - Tasks already completed efficiently with
existing (non-LLM) technology, and” ” - When in doubt, default to E0.”

B.3.2. Variable construction

Task scoring By applying the prompt, we categorize the Generative AI exposure, GenAIj
of a given task j into one of the following three categories based on the ChatGPT output in
the second task of the prompt:

• Direct Exposure (GenAIj = 1): if ChatGPT enables a task to be completed in less than
half the usual time, maintaining the same quality.

• Plus-Overlay Exposure (GenAIj = 0.5): if ChatGPT alone cannot cut task time by half,
but the addition of complementary software leveraging its functionality could achieve
this efficiency without sacrificing quality.

• No Exposure (GenAIj = 0): if ChatGPT neither reduces task time by half with com-
parable quality nor produces results of adequate quality.

Meanwhile, we classify a given task j as being substituted or complemented by Generative
AI into one of the following three classifications based on the ChatGPT output “label” in the
first task of the prompt:

• Substitute (GenAICOMP
j = -1): if ChatGPT primarily substitutes a job task.

• Complement (GenAICOMP
j = 1) if ChatGPT primarily complements a job task.

• Unrelated (GenAICOMP
j = 0) if ChatGPT is irrelevant to a job task.
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Aggregation to the Occupation-Level We next aggregate tasks’ exposures to Genera-
tive AI to the SOC 8-digit occupation level. Following Eisfeldt et al. (2023), we calculate the
Generative AI exposure (GenAIo) of a given occupation as the share of the total number of
tasks for each occupation that have either a direct or “plus-overlay” exposure to Generative
AI. We calculate Generative AI - Net complementarity (GenAICOMP

o ) for each SOC 8-digit
occupation by taking the equal-weighted average of GenAICOMP

j across all tasks associated
with that occupation. Next, we aggregate SOC 8-digit ocupation codes to occ1990dd codes
following the procedures outlined in Section 3.6.2.

B.3.3. Validation

We validate our Generative AI exposure measures by comparing them to Table IA.1 of Eisfeldt
et al. (2023) and Table A8–9 of Kogan et al. (2023).

Table IA.1 of Eisfeldt et al. (2023) lists the 20 SOC 6-digit occupations with the highest
and lowest Generative AI exposure. Our replicated Generative AI exposure has a correlation
of 0.95 with the numbers presented in that table.

Table A8–9 of Kogan et al. (2023) reports the predicted wage growth attributed to different
components of AI exposure of occupations with the highest exposure to labor-complementing
and labor-substituting potential of AI at the SOC 6-digit level. We find that GenAICOMP

o

has a correlation of -0.42 with the wage growth attributed to the labor-substituting potential
of AI (column (3) of Table A8–9 in Kogan et al. (2023)), and a correlation of 0.31 with that
of labor-complementing (column (4)) and a correlation of 0.44 with the total wage growth of
AI (column (6)), documented by Kogan et al. (2023)).
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B.4. Measure AI surveillance exposure at the occupation level using
ChatGPT

This section provides details on how we use ChatGPT to quantify the exposure to AI surveil-
lance of each task. We conducted this categorization on Februray 9, 2025 using the “gpt-4o-
2024-11-20” model with the GPT ”temperature” parameter set to 0. The job task descriptions
of occupations are obtained from the O*NET 28.0 database released on August 1, 2023. Using
the task statement, we generated two output variables for each of the 19,280 tasks including
(i) to which extent the task is exposed to AI-powered surveillance technologies (ii) a concise,
one-sentence rationale.

B.4.1. Prompt setup

We define a prompt as following and apply it to each job task in our sample:
“As a labor economist, assess AI’s ability to improve **monitoring efficiency** by better

tracking and evaluating workers’ performance, effort, and compliance based on three perspec-
tives of Algorithmic Control: Direction, Evaluation, and Discipline.”

“ **Context for Assessment:**”
“1. **Algorithmic Direction** – AI guides or restricts workers’ actions to align with

goals.”
“ - **Recommending:** Prompts workers to align decisions with predefined goals.”
“ - *Example:* AI recommends optimal scheduling based on data analysis.”
“ - **Restricting:** Limits access to information or constrains behavior.”
“ - *Example:* AI restricts information or modifies behavior in online communities.”

“”2. **Algorithmic Evaluation** – AI monitors and assesses performance through data
analysis.”
“ - **Recording:** Tracks behaviors and provides real-time feedback.”
“ - *Example:* AI logs work speed and accuracy for reviews.”
“ - **Rating:** Aggregates data (e.g., ratings, rankings) to evaluate productivity and predict
performance.”
“ - *Example:* AI ranks employees based on task completion rates.”

“”3. **Algorithmic Discipline** – AI enforces compliance and incentivizes workers via
automation and rewards.”
“ - **Replacing:** Automatically removes or reassigns underperforming workers.”
“ - *Example:* AI flags low-rated workers for reassignment.”
“ - **Rewarding:** Provides dynamic rewards or gamifies tasks to increase engagement.”
“ - *Example:* AI gives real-time rewards for task completion.”

“ **Output Format:**”
“Return one exact response per job task in the format: [val1, val2].”
“- **val1**: AI’s monitoring impact score (1–10), with 10 indicating the highest monitoring
improvement.”
“- **val2**: A concise, one-sentence rationale.”

B.4.2. Variable construction

Task scoring By applying the prompt, we categorize the AI surveillance exposure, AISUR
j of

a given task j and drop tasks ChatGPT could classify, leading to 19,273 tasks.
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Aggregation to the Occupation-Level We next aggregate tasks’ exposures to AI
surveillance to the SOC 8-digit occupation level. Following Eisfeldt et al. (2023), we cal-
culate AI surveillance (AISUR

o ) for each SOC 8-digit occupation by taking the equal-weighted
average of AISUR

j across all tasks associated with that occupation. Next, we aggregate SOC
8-digit ocupation codes to occ1990dd codes following the procedures outlined in Section 3.6.2.

B.4.3. Example

Table OA.7 of the Online Appendix lists top occupations grouped by AI surveillance exposure.
On the top of the list are dispatchers, stockers and order fillers, data entry keyers, etc., while
occupations with the lowest AI surveillance exposure include clergy, dentists, actors, and
judges.
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C. Figures

Figure OA.1. AI Exposure vs. General Technology Exposure

A: Felten et al. AI Exposure A: Webb AI Exposure

C: Webb Robot Exposure D: Routine-Task Intensity (RTI)
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E: Offshorability Exposure F: Work-From-Home (WFH) Exposure

The figure presents the correlation between occupational AI exposure and five occupational
exposure measures including the AI exposure constructed by Felten et al. (2018), AI exposure
and robot exposure constructed by Webb (2019), routine task intensity (RTI) from Autor and
Dorn (2013), offshorability potentials from Firpo et al. (2011), and work-from-home (WFH)
potentials from Dingel and Neiman (2020). All data series are at the occ1990dd occupation level.
The AI exposure measure is constructed by the authors based on AI patent filings from 2000 to
2023. Following the literature (e.g., Autor and Dorn, 2013; Webb, 2019), the authors transform all
occupation-level exposure scores to percentile ranks and plot the average AI exposure percentile
over the other six exposure measures.
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Figure OA.2. Google Search Trend of ChatGPT and AI

The figure presents the Google search trends of ChatGPT (launched on November 30, 2022) and
artificial intelligence (AI) from 2010–2023. The Google Search Trend provides a monthly index
scaled from 0 to 100 to indicate the popularity and frequency of particular search terms or topics,
where “0” indicates low search volume terms.
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D. Tables

Table OA.1: O*NET Database Annula Panel

This table lists the O*NET data release the authors use to construct the annual panel of occu-
pations’ job tasks from 2000–2023.

Database Date Published

O*NET 3.0 8/1/2000
O*NET 3.1 6/1/2001
O*NET 4.0 6/1/2002
O*NET 5.0 4/1/2003
O*NET 6.0 7/1/2004
O*NET 8.0 6/1/2005
O*NET 10.0 6/1/2006
O*NET 12.0 6/1/2007
O*NET 13.0 6/1/2008
O*NET 14.0 6/1/2009
O*NET 15.0 7/1/2010
O*NET 16.0 7/1/2011
O*NET 17.0 7/1/2012
O*NET 18.0 7/1/2013
O*NET 19.0 7/1/2014
O*NET 20.0 8/1/2015
O*NET 21.0 8/1/2016
O*NET 22.0 8/1/2017
O*NET 23.0 8/1/2018
O*NET 24.0 8/1/2019
O*NET 25.0 8/1/2020
O*NET 26.0 8/1/2021
O*NET 27.0 8/1/2022
O*NET 28.0 8/1/2023
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Table OA.2: Top Occupations by AI Exposure Scores and and AI Net Complementarity

This table presents the top occupations grouped by AI exposure (AIEXP ) and AI net comple-
mentarity (AICOMP ) at the SOC 6-digit level in 2023. Occupations are categorized into three
groups: high AIEXP & high AICOMP , high AIEXP & low AICOMP , and low AIEXP & low
AICOMP . AIEXP and AICOMP is measured by the annual AI-related patent filings from 2018
to 2023, representing the level of AI integration in each occupation.

O*NET occ1990dd AIEXP AIEXP AICOMP AICOMP

Occupation Title Code occ1990dd Title Code Score Pct. Score Pct.

High AIEXP & High AICOMP

Computer and Information Systems Managers 11-3021 Managers and administrators, n.e.c. 22 2.32 100 2.32 100
Electrical Engineers 17-2071 Electrical engineers 55 2.23 100 2.20 100
Computer Hardware Engineers 17-2061 Electrical engineers 55 2.21 100 2.19 100
Inspectors, Testers, Sorters, ... 51-9061 Production checkers, ... 799 2.21 100 1.97 99
Remote Sensing Scientists and Technologists 19-2099 Physical scientists, n.e.c. 76 2.18 100 2.16 100
Operations Research Analysts 15-2031 Operations and systems researchers ... 65 2.14 100 2.12 100
Management Analysts 13-1111 Management analysts 26 2.10 100 2.07 100
Radio Frequency Identification ... 17-2072 Electrical engineers 55 2.10 99 2.06 100
Cartographers and Photogrammetrists 17-1021 Surveryors, cartographers,... 218 2.02 99 1.90 99
Bioinformatics Technicians 43-9111 Statistical clerks 386 2.02 99 1.94 99

High AIEXP & Low AICOMP

Data Entry Keyers 43-9021 Data entry keyers 385 1.82 96 0.33 23
Log Graders and Scalers 45-4023 Timber, logging, ... 496 1.32 65 -0.34 2
Extruding, Forming, Pressing... 51-9041 Extruding and forming machine ... 755 1.48 80 0.31 21
Office Machine Operators,... 43-9071 Office machine operators, n.e.c. 347 1.48 79 0.33 23
Tellers 43-3071 Bank tellers 383 1.52 83 0.44 29
Transportation Security Screeners 33-9093 Production checkers, ... 36 1.44 77 0.33 23
Parts Salespersons 41-2022 Parts salesperson 275 1.48 80 0.49 31
Rolling Machine Setters, ... 51-4023 Rollers, roll hands, ... 707 1.34 66 0.28 19
Bill and Account Collectors 43-3011 Bill and account collectors 378 1.58 86 0.68 43
Meter Readers, Utilities 43-5041 Meter readers 366 1.40 73 0.50 32

Low AIEXP & Low AICOMP

Naturopathic Physicians 29-1199 Other health and therapy... 89 0.53 1 0.10 10
Retail Loss Prevention Specialists 33-9099 Protective service, n.e.c. 427 0.53 1 0.06 8
Barbers 39-5011 Barbers 457 0.57 2 -0.03 5
Excavating and Loading Machine ... 53-7032 Excavating and loading machine ... 853 0.59 2 -0.02 6
Welders, Cutters, and ... 51-4121 Welders, solderers, and ... 783 0.59 3 -0.09 3
Shampooers 39-5093 Hairdressers and cosmetologists 458 0.67 5 -0.40 1
Janitors and Cleaners,... 37-2011 Janitors 453 0.70 6 -0.11 3
Sewers, Hand 51-6051 Tailors, dressmakers, and sewers 666 0.71 7 -0.03 5
Dancers 27-2031 Dancers 193 0.71 7 -0.06 5
Slaughterers and Meat Packers 51-3023 Butchers and meat cutters 686 0.74 9 -0.64 1
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Table OA.3: Top Occupations by Generative AI Exposure

This table presents the top occupations grouped by Generative AI exposure (GenAIEXP ) and
Generative AI net complementarity (GenAICOMP ) at the SOC 6-digit level in 2023. Occupations
are categorized into three groups: high GenAIEXP & high GenAICOMP , high GenAIEXP &
low GenAICOMP , and low GenAIEXP & low GenAICOMP . GenAIEXP and GenAICOMP are
constructed following Eisfeldt et al. (2023) and Kogan et al. (2023), respectively, as outlined in
Section B.3 of the Online Appendix.

O*NET occ1990dd GenAIEXP GenAIEXP GenAICOMP GenAICOMP

Occupation Title Code occ1990dd Title Code Score Pct. Score Pct.

High GenAIEXP & High GenAICOMP

Training and Development Managers 11-3131 Human resources and labor ... 8 0.92 99 1.00 100
Market Research Analysts ... 13-1161 Computer systems analysts ... 64 0.92 99 0.84 99
Archivists 25-4011 Archivists and curators 165 0.92 99 0.77 98
Computer Systems Analysts 15-1211 Computer systems analysts ... 64 0.90 99 0.67 96
Software Quality Assurance Analysts ... 15-1253 Computer systems analysts ... 64 0.90 99 0.40 81
Credit Counselors 13-2071 Other financial specialists 25 0.87 98 0.74 98
Logisticians 13-1081 Operations and systems researchers ... 65 0.87 98 0.67 96
Environmental Scientists and Specialists,... 19-2041 Geologists 75 0.89 98 0.65 95
Web and Digital Interface Designers 15-1255 Computer systems analysts ... 64 0.84 97 0.87 99
Management Analysts 13-1111 Management analysts 26 0.82 96 0.91 100

High GenAIEXP & Low GenAICOMP

Tax Preparers 13-2082 Other financial specialists 25 0.92 99 -0.08 52
Credit Analysts 13-2041 Other financial specialists 25 0.82 96 -0.09 52
Financial Specialists, All Other 13-2099 Other financial specialists 25 0.77 94 0.09 60
Customer Service Representatives 43-4051 Customer service reps, invest., ... 376 0.73 92 0.07 58
Insurance Underwriters 13-2053 Insurance underwriters 24 0.71 91 -0.29 42
Securities, Commodities, and Financial ... 41-3031 Financial service sales occupations 255 0.70 90 -0.27 44
Actuaries 15-2011 Actuaries 66 0.67 88 -0.13 50
Data Entry Keyers 43-9021 Data entry keyers 385 0.67 88 0.00 55
Appraisers of Personal and Business Property 13-2022 Real estate sales occupations 254 0.64 87 -0.43 34
Mathematicians 15-2021 Mathematicians and statisticians 68 0.64 86 -0.09 52

Low GenAIEXP & Low GenAICOMP

Terrazzo Workers and Finishers 47-2053 Concrete and cement workers 588 0 1 -1.00 1
Tire Builders 51-9197 Machine operators, n.e.c. 779 0 1 -1.00 1
Stonemasons 47-2022 Masons, tilers, and carpet installers 563 0 1 -0.94 3
Slaughterers and Meat Packers 51-3023 Butchers and meat cutters 686 0 1 -0.93 4
Structural Metal Fabricators and Fitters 51-2041 Structural metal workers 597 0 1 -0.91 5
Structural Iron and Steel Workers 47-2221 Structural metal workers 597 0 1 -0.90 5
Surgical Assistants 29-9093 Health technologists ... 208 0 1 -0.89 6
Tire Repairers and Changers 49-3093 Heavy equipment and farm ... 516 0 1 -0.85 9
Tool Grinders, Filers, and Sharpeners 51-4194 Precision grinders and fitters 644 0 1 -0.83 10
Wellhead Pumpers 53-7073 Misc. material moving equipment... 859 0 1 -0.63 24
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Table OA.4: AI Exposure and Alternative Specifications

The table reports the regression results of alternative specifications that estimate the effect of
occupational AI exposure on work-life balance at the individual level based on the ATUS survey
from 2004–2023. For detailed information, please see the next page.

DV Weekly Hoursi,o,t

Sample Exclude
Unemployment

Work w.
Commute Work Leisure Work Leisure Work Leisure

(1) (2) (3) (4) (5) (6) (7)

AIEXP
o,t−1 0.018* 0.020** -0.017** 0.021* -0.014** 0.018* -0.017**

(1.71) (2.01) (-2.15) (1.84) (-2.28) (1.91) (-2.22)

Individual characteristics Yes Yes Yes Yes Yes Yes Yes
Race indicators Yes Yes Yes No No Yes Yes
Occupational FE Yes Yes Yes Yes Yes Yes Yes
Part-Time Work FE No Yes Yes No No No No
State × Year FE Yes Yes Yes Yes Yes Yes Yes
Industry × Year FE Yes Yes Yes Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes Yes Yes Yes

Observations 121,841 121,841 121,841 121,844 121,844 116,504 116,504
R2 0.284 0.310 0.252 0.281 0.243 0.303 0.252
Adjusted R2 0.269 0.296 0.236 0.266 0.228 0.288 0.235

DV Weekly Hoursi,o,t

Sample Exclude Weekends Exclude Absences Hourly Workers

Work Leisure Work Leisure Work Leisure

(6) (7) (8) (9) (10) (11)

AIEXP
o,t−1 0.024* -0.021** 0.017* -0.015* 0.032** -0.028**

(1.99) (-2.35) (1.69) (-1.96) (2.04) (-2.44)

Individual characteristics Yes Yes Yes Yes Yes Yes
Race indicators Yes Yes Yes Yes Yes Yes
Occupational FE Yes Yes Yes Yes Yes Yes
Part-Time Work FE No No No No No No
State × Year FE Yes Yes Yes Yes Yes Yes
Industry × Year FE Yes Yes Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes Yes Yes

Observations 60,940 60,940 116,737 116,737 58,590 58,590
R2 0.153 0.145 0.296 0.256 0.278 0.253
Adjusted R2 0.118 0.108 0.281 0.240 0.246 0.220
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The table reports the regression results of alternative specifications that estimate the effect of
occupational AI exposure on work-life balance at the individual level based on the ATUS survey
from 2004–2023. Following Aguiar et al. (2021), the regression is weighted by ATUS sample
weights. The occupations are uniquely identified by “occ1990dd” codes from Dorn (2009). The
dependent variables are weekly hours spent on market work and leisure. The main explanatory
variable is occupational AI exposure in percentile rank (AIEXP

o,t ), constructed by the authors
using AI patents in a five-year rolling window as described in Section 3.6. We additionally include
individual-level controls which include age, the number of children, and a series of indicator
variables for gender, educational attainment, marital status, and race, A battery of fixed effects
at the following levels are included: occupation, state × year, industry × year, year-month and
day-of-week. Standard errors are double clustered by occupation and state. Asterisks denote
the significance levels (***=1%, **=5%, *=10%). The unique specification for each column is
described as follows.

(a.) Column (1): The alternative dependent variable is market work hours, including hours for
commute, work-related travels and social&leisure activities at work.

(b.) Columns (2)-(3): The regression additionally controls for an indicator variable for part-time
workers.

(c.) Columns (4)-(5): The regression does not control for race indicators.

(d.) Columns (6)-(7): Currently unemployed individuals are excluded from the sample.

(e.) Columns (8)-(9): Individuals surveyed on weekends are excluded from the sample.

(f.) Columns (10)-(11): Individuals who are currently employed but are absent from work on
the ATUS interview date are excluded from the sample.

(g.) Columns (12)-(13): Only individuals compensated on the hourly bases are included from
the sample.
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Table OA.5: Decomposed Leisure Activities

The table reports the weighted linear regressions that estimate the effect of occupational AI
exposure on leisure activities at the individual level based on the ATUS survey from 2004–2023.
Following Aguiar et al. (2021), the regression is weighted by ATUS sample weights. The occupa-
tions are uniquely identified by “occ1990dd” codes from Dorn (2009). The dependent variable,
weekly hours spent on leisure activities, is categorized into screen-based leisure activities (recre-
ational computer use, gaming, and watching TV) in columns (1) and (7), and non-screen leisure
activities in columns (2) and (8). Column (3)–(6) and column (9)–(12) further decompose the
non-screen leisure activities subdivided into four categories: recreation (relaxing, listening to
music, traveling, etc.), socializing, leisure aspects of eating, sleeping, and personal care (ESP),
and others (hobbies, reading, and sports). The main explanatory variable represents AI exposure
measures at the occupation-year level, expressed in percentile ranks, and is based on AI-related
patents granted in a five-year window ending in the current year (detailed description in Section
3.6). We additionally include individual-level controls, including age, the number of children,
and a series of indicator variables for gender, educational attainment, marital status, and race,
and fixed effects at the following levels: occupation, state × year, industry × year, year-month,
and day-of-week. Standard errors are double clustered by occupation and state. Asterisks denote
the significance levels (***=1%, **=5%, *=10%).

DV Weekly Leisure Hoursi,o,t

Screen-Based Non-Screen Non-Screen

Recreation Socializing ESP Other

(1) (2) (3) (4) (5) (6)

AIEXP
o,t−1 -0.001 -0.014** -0.005* -0.003 -0.008 0.001

(-0.23) (-2.52) (-1.93) (-0.65) (-1.52) (0.40)

Individual characteristics Yes Yes Yes Yes Yes Yes
Occupational FE Yes Yes Yes Yes Yes Yes
State × Year FE Yes Yes Yes Yes Yes Yes
Industry × Year FE Yes Yes Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes Yes Yes

Observations 121,841 121,841 121,841 121,841 121,841 121,841
R2 0.132 0.154 0.051 0.078 0.137 0.075
Adjusted R2 0.114 0.136 0.0317 0.0587 0.119 0.0557

OA.22



Table OA.6: AI Exposure and Alternative Activities

The table reports the weighted linear regressions that examine the effect of occupational AI
exposure on time allocated to activities other than market work and leisure at the individual
level based on ATUS survey from 2004–2023. Following Aguiar et al. (2021), the regression is
weighted by ATUS survey weights. The occupations are uniquely identified by “occ1990dd” codes
from Dorn (2009). The dependent variable is weekly hours spent on home production in column
(1), child care in column (2), personal education in column (3), job search in column (4), own
medical care in column (5), and civic activities in column (6). The main explanatory variable,
AIEXP , represents AI exposure at the occupation-year level, expressed in percentile ranks, and
is based on AI-related patents granted in a five-year window ending in the current year (detailed
description in Section 3.6). We additionally include individual-level controls, including age, the
number of children, and a series of indicator variables for gender, educational attainment, marital
status, and race, and fixed effects at the following levels: occupation, state × year, industry ×
year, year-month, and day-of-week. Standard errors are double clustered by occupation and
state. Asterisks denote the significance levels (***=1%, **=5%, *=10%).

DV Weekly Hoursi,o,t

Home Child Education Job Own Medical Civic
Production Care Search Care Activities

(1) (2) (3) (4) (5) (6)

AIEXP
o,t−1 -0.000 0.002 -0.005 -0.000 -0.001 0.004**

(-0.04) (0.56) (-1.63) (-0.54) (-1.23) (2.07)

Individual Characteristics Yes Yes Yes Yes Yes Yes
Occupational FE Yes Yes Yes Yes Yes Yes
State × Year FE Yes Yes Yes Yes Yes Yes
Industry × Year FE Yes Yes Yes Yes Yes Yes
Year × Month FE Yes Yes Yes Yes Yes Yes
Day-of-Week FE Yes Yes Yes Yes Yes Yes

Observations 121,841 121,841 121,841 121,841 121,841 121,841
R2 0.143 0.174 0.163 0.047 0.043 0.080
Adjusted R2 0.125 0.156 0.146 0.027 0.023 0.061
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Table OA.7: Top Occupations by AI Surveillance

This table presents the top occupations grouped by AI Surveillance exposure (AISUR) at the
SOC 6-digit level. The procedures measuring AISUR are described in Section B.4 of Online
Appendix.

O*NET occ1990dd AISUR AISUR

Occupation Title Code occ1990dd Title Code Score Pct.

Highest

Gambling Surveillance Officers ... 33-9031 Guards and police, except public service 426 8.63 100
Air Traffic Controllers 53-2021 Air traffic controllers 227 8.26 100
Dispatchers, Except Police, Fire, ... 43-5032 Dispatchers 359 8.23 100
Packaging and Filling Machine Operators... 51-9111 Packers, fillers, and wrappers 754 8.20 100
Customer Service Representatives 43-4051 Customer service reps, invest., adjusters,... 376 8.07 99
First-Line Supervisors of Retail Sales Workers 41-1011 Sales supervisors and proprietors 243 8.05 99
Stockers and Order Fillers 53-7065 Stock and inventory clerks 365 8.03 98
Data Entry Keyers 43-9021 Data entry keyers 385 8.00 97
Heavy and Tractor-Trailer Truck Drivers 53-3032 Driver/sales workers and truck Drivers 804 8.00 97
First-Line Supervisors of Gambling Services Workers 39-1013 Managers and administrators, n.e.c. 459 7.90 96

Lowest

Oral and Maxillofacial Surgeons 29-1022 Dentists 85 4.36 1
Funeral Attendants 39-4021 Personal service occupations, n.e.c 469 4.65 1
Clergy 21-2011 Clergy 176 4.71 1
Judges, Magistrate Judges, and Magistrates 23-1023 Lawyers and judges 178 4.95 1
Musicians and Singers 27-2042 Musicians and composers 186 5.37 2
Labor Relations Specialists 13-1075 Personnel, HR, training, and labor... 27 5.43 2
Historians 19-3093 Social scientists and sociologists, n.e.c. 169 5.52 2
Actors 27-2011 Actors, directors, and producers 187 5.53 2
Barbers 39-5011 Barbers 457 5.75 3
Psychologists, All Other 19-3039 Psychologists 167 5.78 3
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