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1 Introduction

The interdependence of firms’ default intensities constitutes a central topic in the study of credit risk. A

large body of literature documents that default clustering arises for multiple reasons. First, firms are exposed

to common shocks or correlated risk factors (e.g., Du"e and Singleton (1999), Collin-Dufresne, Goldstein,

and Martin (2001), and Du"e and Gârleanu (2001)), so that default probabilities are jointly driven by

aggregate macroeconomic conditions. Second, firms may experience firm-specific (idiosyncratic) shocks

that propagate to other firms due to economic linkages, giving rise to contagion through firm networks.

Empirical studies such as Das, Du"e, Kapadia, and Saita (2007) and Jorion and Zhang (2009) provide

strong evidence that idiosyncratic risk contagion—often referred to as counterparty risk—can explain excess

default clustering beyond what is attributable to common risk factors alone. In addition, a growing theoretical

literature (e.g., Jarrow and Yu (2001), Jorion and Zhang (2007), and Azizpour, Giesecke, and Schwenkler

(2018)) has developed structural frameworks that incorporate counterparty risk into models of default

intensities and credit spreads. However, due to substantial analytical and estimation complexity, most existing

models are tractable only under highly simplified settings, such as two-firm economies or assumptions that

rule out cascading or looping e!ects—that is, situations in which a firm-specific shock propagates through

multiple firms and potentially feeds back into the originating firm before spreading further through the

network.

In this paper, we study a general credit risk framework with the following features: (i) 𝑀 firms are eco-

nomically linked through a network structure; (ii) cascade e!ects are permitted; (iii) contagion is asymmetric

across firms; and (iv) ordinary idiosyncratic shocks—rather than only extreme firm-specific tail events—can

propagate through the network. Our analysis focuses on the implications of the inter-firm network structure

for the cross-sectional behavior of credit spreads.

Unlike much of the existing literature in which economic linkages are left unspecified, we explicitly

model inter-firm connections as production-based input–output relationships. This discipline allows us to

provide a granular network-based interpretation of counterparty risk, clarifying how both the global structure

of the network and a firm’s position within it shape the propagation of idiosyncratic default risk. In practice,

firms are connected through multiple channels, including production networks, cross-holdings of assets,

debt and liability exposures, and other contractual relationships, all of which may facilitate idiosyncratic

risk spillovers. We focus on the production network as the primary channel because there is substantial
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empirical evidence that real default contagion occurs along supplier–customer chains (e.g., Jacobson and

Von Schedvin (2015)). While we do not rule out alternative transmission mechanisms, our framework

emphasizes the production network to deliver a clear and economically grounded mechanism. Once this

channel is well understood, the analysis can be readily extended to incorporate other forms of inter-firm

linkages. Finally, our framework does not rely on specific time-series assumptions about default intensities.!

Instead, our primary contribution lies in characterizing how the cross-sectional 𝑀 → 𝑀 network structure

governs the propagation of idiosyncratic default risk.

Theoretically, we develop a structural framework in which each firm’s default intensity depends on a

macroeconomic variable 𝑁 , firm-specific characteristics 𝑂𝐿 , and counterparty risk components 𝑃𝐿 𝑀 , where

𝑃𝐿 𝑀 captures idiosyncratic default-risk spillovers from firm 𝑄 to firm 𝑅 through the production input-output

network. We provide an economic interpretation of 𝑃𝐿 𝑀 by building on the key insights of Herskovic (2018)

and Chen (2023). Specifically, both studies develop a production-based general equilibrium model with 𝑀

representative firms that links real production to firms’ investment decisions. In this framework, each firm

produces a single good that is used as an intermediate input by other firms, and firms use sales revenue—that

is, cash flows—to issue equity held by households. Firms are subject to i.i.d. idiosyncratic productivity

shocks, which a!ect their own final output and subsequently spill over to downstream firms by a!ecting

input supplies, cash flows, and stock returns."

Motivated by this result, we define an 𝑀 → 𝑀 adjacency matrix 𝑆 ↑ [𝑃𝐿 𝑀] to characterize the structure

of idiosyncratic risk spillovers arising from the production network. As a model implication, each element

𝑃𝐿 𝑀 is an endogenous function of the underlying production network weights. A larger value of 𝑃𝐿 𝑀 indicates

that firm 𝑄 exerts a stronger idiosyncratic risk propagation e!ect on firm 𝑅. This e!ect reflects the overall

importance of firm 𝑄 to firm 𝑅 through three channels: (i) the direct importance of firm 𝑄’s output as an

input supplier to firm 𝑅; (ii) the indirect importance of firm 𝑄’s output through other firms in the production

network that subsequently a!ect firm 𝑅; and (iii) the importance of firm 𝑄’s output for aggregate household

consumption, which in turn feeds back to firm 𝑅.

When 𝑃𝐿 𝑀 is large, firm 𝑄 constitutes an economically important supplier to firm 𝑅, capturing both direct

and indirect input linkages. A negative idiosyncratic shock to firm 𝑄 reduces its output and disrupts firm 𝑅’s

!Das et al. (2007) adopt a similar modeling strategy.
"While both Herskovic (2018) and Chen (2023) do not distinguish between positive and negative idiosyncratic productivity

shocks, we focus on the propagation of negative idiosyncratic shocks and interpret these spillovers specifically in terms of default
risk.
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e!ective input supply. This disruption lowers firm 𝑅’s expected cash flows and equity value, while increasing

the volatility of cash flows and, consequently, equity return volatility.

We link this channel to firm 𝑅’s default intensity by adopting a distance-to-default (DD) framework

following Bharath and Shumway (2008). In this framework, the original Merton DD model is simplified in

a computationally tractable manner, allowing all components to be approximated using observable market

data. Specifically, a firm’s distance to default depends on the deviation of the market value of equity from

the face value of debt, scaled by the volatility of firm asset value (the combined value of debt and equity),

where asset volatility can be approximated as a linear function of equity volatility.

Under the assumption of a constant interest rate and fixed debt face value and maturity, a decline in

firm 𝑅’s equity value and an increase in firm 𝑅’s equity volatility both reduce its distance to default. A lower

distance to default, in turn, implies a higher default probability and default intensity. Consequently, a larger

𝑃𝐿 𝑀 increases firm 𝑅’s default intensity through the cash-flow news channel operating via the input-output

linkage.

After expressing firm 𝑅’s default intensity as a structural function that depends positively on the network

components 𝑃𝐿 𝑀 , we derive the credit default swap (CDS) spread for firm 𝑅 under the risk-neutral measure.

The CDS spread is determined by equating the expected present value of premium payments to the expected

present value of default loss payments. The analytical solution implies that firm 𝑅’s CDS spread depends

on a nonlinear function of macroeconomic conditions, firm-specific characteristics, and production-network

spillover terms 𝑃𝐿 𝑀 for all 𝑄 , with the partial derivative 𝑁CDS𝐿
𝑁𝑂𝐿 𝑀

> 0. This result implies that credit spreads are

best explained by incorporating the production-network structure {𝑃𝐿 𝑀} in a nonlinear manner.

We next provide empirical evidence to support the structural framework. There are two natural ap-

proaches, both of which face significant obstacles. First, directly estimating the fully specified structural

model is computationally infeasible in large production networks. Existing structural counterparty-risk

models, such as Jarrow and Yu (2001), are tractable only under highly simplified assumptions—for exam-

ple, two-firm economies without cascading network e!ects. Second, directly applying statistical prediction

methods, including standard machine-learning algorithms, faces a fundamental limitation relative to our

structural framework: these approaches typically rely on firm-level features as inputs, but cannot directly

incorporate the full network topology—represented by an 𝑀 → 𝑀 adjacency matrix—as a predictive object.

To address these challenges, we adopt a recently developed machine-learning methodology: graph

neural networks (GNNs). GNNs are explicitly designed to capture global graph topology and to model data
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with complex cross-sectional dependence, making them a natural empirical counterpart to our production-

network-based structural framework.

Unlike much of the machine-learning literature, which emphasizes extensive model tuning and increas-

ingly sophisticated architectures to maximize pooled out-of-sample predictive performance, our objective is

di!erent. We deliberately employ a parsimonious GNN architecture that is su"cient to deliver clear financial

interpretation of network e!ects. In doing so, we sacrifice architectural complexity in favor of economic

transparency. Our empirical analysis pursues two primary objectives: (i) to assess the incremental predictive

power of production-network information for credit spreads relative to non-network benchmarks, and (ii) to

characterize which firms’ credit spreads are most exposed to counterparty risk through the network and the

economic states in which such network risk is most strongly priced.

In our GNN framework, each firm is represented as a node, and each firm-to-firm idiosyncratic risk

spillover is represented as a weighted, directed edge. The model incorporates both node-level features—such

as firm-specific characteristics and macroeconomic variables—and edge-level features, which capture the

magnitude of production-network spillovers 𝑃𝐿 𝑀 . These spillover measures are estimated using input–output

data and stock return data following Diebold and Yılmaz (2014) and Chen (2023). The GNN aggregates

information from neighboring nodes and edges to construct firm-level latent representations, which are then

used to predict CDS spreads.

We evaluate the empirical results in light of the two objectives above by conducting the following

analyses. First, we compare the out-of-sample performance of the GNN model with a set of nonlinear

benchmark models that rely on the same node-level features but exclude network information. Among these

benchmarks, the convolutional neural network (CNN) provides a natural point of comparison. We design

the CNN architecture under strict assumptions so that it corresponds to a GNN in which all network edges

are set to zero.

Under identical training and validation protocols, we find that the GNN substantially reduces out-of-

sample prediction error, with the RMSE declining to 0.89, compared with 1.34 for the CNN benchmark.

Economically, we find that incorporating network edge features induces an average spread change of approx-

imately 21.8% in the full sample and yields an incremental 𝐿2 of 0.56 in explaining credit spreads. This

result corroborates the central role of network e!ects in the structural model.

The improvement in predictive accuracy is present for both investment-grade and high-yield firms,

with a more pronounced e!ect for investment-grade firms. Intuitively, investment-grade firms are typically
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large, mature, and highly interconnected through multiple input–output relationships, which places them

in more central positions within production networks. As a result, incorporating network characteristics is

particularly informative for predicting the CDS spreads of investment-grade firms, whose credit risk is more

exposed to contagion through complex production linkages.

Second, we assess the time-varying importance of network structure by examining out-of-sample pre-

diction performance at a monthly frequency. The resulting time-series evidence reveals that GNN models

consistently outperform all competing approaches throughout the sample. In several periods, the RMSE

achieved by GNNs is as low as one quarter of that produced by alternative algorithms, particularly relative

to dimension-reduction methods such as PCR and PLS. This persistent performance gap indicates that pair-

wise inter-firm network information captures a substantial component of credit risk that is not explained by

firm-level characteristics alone.

Moreover, we find there are several episodes in which network structure becomes especially important.

The first occurs during the 2008 financial crisis. During severe economic downturns, production networks

are disrupted as firms face liquidity constraints and operational distress. Under such conditions, inter-firm

contagion and counterparty risk become first-order determinants of credit spreads, which GNNs are well

equipped to capture.

A second episode occurs in late 2009 and early 2010, when equity prices rebounded sharply and

firms began repairing previously disrupted production linkages. This transition period involved substantial

uncertainty due to portfolio reallocation and network reconfiguration. Models that ignore network structure

experience sharp increases in RMSE, whereas GNNs maintain strong predictive performance by accounting

for evolving inter-firm dependencies.

A third episode occurs around 2018, coinciding with the escalation of trade tensions and tari! policies.

Tari!s can be viewed as disruptions to trade linkages that increase fragility in global value chains. During

this period, CDS spreads reflect firms’ exposure to a!ected trade partners, again amplifying the role of

network structure.

Finally, following the onset of the COVID-19 pandemic in 2020, widespread production shutdowns—such

as factory closures in the semiconductor sector—generated severe upstream supply disruptions. Downstream

firms reliant on these inputs experienced heightened fragility, leading to pronounced network-driven credit

risk. GNNs capture these cascading e!ects, while non-network models fail to do so.

The time-series evidence suggests that the full inter-firm network captures an important component of
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systematic risk that is priced in CDS spreads. These findings echo the production network literature (e.g.,

Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi, 2012), which emphasizes that network structure provides

a microfoundation for systematic risk.

In addition, we examine the network-attributable credit spread change across sectors to identify which

industries’ credit spreads are more susceptible to supply-chain disruptions.

We find that network features tend to matter more for firms that (i) occupy intermediate positions in

the production chain and are exposed to both upstream and downstream risks, (ii) rely heavily on shipping,

logistics, and distribution across the supply chain, or (iii) depend on specialized inputs that are di"cult to

substitute. For such firms, disruptions or shocks propagating through supplier–customer relationships can

lead to substantial changes in expected cash flows and, consequently, credit spreads. Industries exhibiting

these characteristics include electrical equipment, shipbuilding, railroad equipment, and defense. For

example, we find that network features induce especially large spread changes for the defense sector during

the period from 2014 to 2018, which coincides with discrete geopolitical shocks such as the Russia–

Ukraine conflict and conflicts involving ISIS. During such periods, defense demand becomes lumpy and

state-dependent, and contracts may be renegotiated, accelerated, delayed, or repriced.

By contrast, industries whose credit risk is primarily driven by firm-specific fundamentals or final

demand exhibit smaller network-attributable spread changes. For instance, network edge features induce

relatively modest shifts in the credit spreads of natural resource extraction industries (mining and coal),

which are heavily influenced by commodity prices and balance-sheet leverage. Similarly, the entertainment

and textile sectors rely more heavily on idiosyncratic fundamentals such as intellectual property, brand value,

and consumer sentiment, and often operate with more diversified supplier and customer bases. As a result,

changes in supply-chain networks play a more limited role in shaping their credit spreads.

Related Literature

This paper contributes to the literature on credit risk. A large body of work proposes structural models to

study default clustering, credit risk spillovers, and interconnectedness in credit markets. Default clustering is

commonly attributed to two broad mechanisms. First, firms may be exposed to common risk factors, which

are typically modeled through state variables or aggregate macroeconomic shocks (e.g., Collin-Dufresne,

Goldstein, and Martin (2001), Du"e and Gârleanu (2001)). Second, default clustering may arise from firm-

specific shocks—namely, idiosyncratic risks—that propagate through economic linkages. Related studies
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include Jarrow and Yu (2001), Das et al. (2007), Jorion and Zhang (2007), Jorion and Zhang (2009), and

Azizpour, Giesecke, and Schwenkler (2018). Our paper primarily contributes to the second strand of the

literature by studying idiosyncratic default-risk contagion through inter-firm networks. To our knowledge,

this is the first paper to provide a comprehensive framework for understanding how the entire network

structure shapes credit risk. While most existing structural models focus on highly simplified settings—such

as two-firm economies, the absence of cascading e!ects, and contagion driven only by extreme firm-specific

tail events—and typically do not explicitly specify the underlying economic linkages, we develop a more

general credit risk structural model with the following features: (i) 𝑀 firms are economically linked through a

network structure that is explicitly identified as a production-based input–output network; (ii) cascade e!ects

are permitted; (iii) contagion is asymmetric across firms; and (iv) ordinary idiosyncratic shocks, rather than

only tail events, can propagate through the network. We focus on examining how inter-firm network structure

and firms’ positions within the network shape the cross-sectional behavior of credit spreads.# While some

CDS-focused studies (e.g., Getmansky, Girardi, and Lewis (2016)) emphasize counterparty risk arising

from common protection sellers such as dealers, our analysis abstracts from dealer cores and OTC market

structure. Instead, we focus on inter-firm economic connections operating through production networks.

Beyond the counterparty-risk literature, there is a broad body of research on modeling and measuring

credit and default risk, including Merton (1974), Du"e and Singleton (1999), Du"e (1999), Du"e, Pan, and

Singleton (2000), Du"e and Lando (2001), Du"e and Pan (1997), Du"e, Pedersen, and Singleton (2003),

Du"e, Saita, and Wang (2007), Bharath and Shumway (2008), Bao and Pan (2013), and Hu, Pan, and

Wang (2013). We contribute to this literature by explicitly incorporating counterparty risk through inter-firm

networks into a structural credit risk framework.$ Some papers (e.g., Giesecke, Longsta!, Schaefer, and

Strebulaev (2011)) emphasize the presence of a non-default-related credit risk premium. From a structural

perspective, this premium compensates investors for exposure to adverse states that do not necessarily involve

realized default. Such premia are particularly important during recessions, when bond prices decline sharply,

and are often modeled through time-varying volatility, di!erences between physical and risk-neutral default

probabilities, or rare-disaster risk. In contrast, our paper focuses on a parsimonious framework that does not

#Related contributions include Hawkes (1971), Giesecke (2002), Giesecke and Weber (2004), Giesecke (2004), Kitwiwat-
tanachai and Pearson (2015), Benzoni, Collin-Dufresne, Goldstein, and Helwege (2015), Aït-Sahalia, Cacho-Diaz, and Laeven
(2015), and Jacobson and Von Schedvin (2015).

$Additional related studies include Altman (1968), Du"e and Liu (2001), Almeida and Philippon (2007), Campbell, Hilscher,
and Szilagyi (2008), Longsta!, Pan, Pedersen, and Singleton (2011), Ang and Longsta! (2013), Gouriéroux, Monfort, and Renne
(2014), Galil, Shapir, Amiram, and Ben-Zion (2014), Kitwiwattanachai (2015), Berndt, Douglas, Du"e, and Ferguson (2018),
Boyarchenko and Shachar (2020), Monfort, Pegoraro, Renne, and Roussellet (2021), and Bao, Hou, and Zhang (2023).
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rely on specific time-series assumptions about default intensities—an approach also adopted by Das et al.

(2007). Instead, we emphasize how the cross-sectional 𝑀 → 𝑀 network structure governs the propagation of

default risk.

Our work also contributes to the growing literature on inter-firm networks, particularly production-based

networks. A large body of research develops production-based multisector models to study the implications

of network structure for aggregate productivity, aggregate volatility, and macroeconomic tail risk (e.g.,

Carvalho (2008), Acemoglu et al. (2012), Carvalho and Gabaix (2013), Herskovic (2018), and Chen (2023)).

We adapt this production-based input–output framework to provide an economically grounded explanation

for the existence of counterparty risk and to o!er a comprehensive analysis of the role of production networks

in shaping credit spreads.%

Finally, this paper contributes to the growing literature on machine learning in finance. A number of

studies, including Kelly, Pruitt, and Su (2019), Gu, Kelly, and Xiu (2020), and Gu, Kelly, and Xiu (2021),

apply machine-learning techniques to asset pricing and return prediction, demonstrating their e!ectiveness

in handling high-dimensional data. Our paper introduces graph neural networks (GNNs) as a novel empirical

tool for integrating granular and global network-topology information to explain credit spreads.&

The remainder of the paper is organized as follows. Section 2 outlines a conceptual framework for CDS

pricing. Section 3 presents the empirical evidence. Section 4 concludes.

2 Structural Framework

2.1 Production-Network Exposure

We consider a production-based multi-firm network model developed in Herskovic (2018) and Chen (2023),

which links real production to firms’ investment and asset prices. While these frameworks abstract from

leverage and default, we extend the setting by allowing firms to issue defaultable debt in the form of a

zero-coupon bond.

We study a production economy with 𝑀 firms indexed by 𝑅 = 1, . . . , 𝑀. Each firm purchases other firms’

%Additional related literature includes Gabaix (2011), Diebold and Yılmaz (2014), Acemoglu, Akcigit, and Kerr (2016),
Blasques, Koopman, Lucas, and Schaumburg (2016), Härdle, Wang, and Yu (2016), Acemoglu, Ozdaglar, and Tahbaz-Salehi
(2017), Demirer, Diebold, Liu, and Yilmaz (2018), Chen, Härdle, and Okhrin (2019), Liu (2022), Dew-Becker (2023), Engle and
Kelly (2012), Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2016), and Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2020).

&Additional related work includes Kelly and Jiang (2014), Kelly, Malamud, and Zhou (2024), Wang, Lin, Cui, Jia, Wang, Fang,
Yu, Zhou, Yang, and Qi (2019), Uddin, Tao, and Yu (2021), and Zhang, Pu, Cucuringu, and Dong (2023).
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goods as intermediate inputs in order to produce its own output. A firm’s output can either be used as an

intermediate input by other firms or be directly consumed by the representative household. Each firm’s

production technology is subject to negative idiosyncratic productivity shocks.

Firms use the cash flows generated from selling their real output to issue equity, which is held by the

household. As a result, idiosyncratic productivity shocks propagate through the supply chain and a!ect

firms’ cash flows, dividends, and stock returns. In addition, each firm 𝑅 issues a single zero-coupon bond

with face value 𝑇𝐿 and maturity 𝑈 . The risk-free interest rate 𝑉 is constant, and the face value 𝑇𝐿 is fixed and

does not vary with economic conditions.

As shown in Chen (2023), the production network generates rich cross-firm dependencies not only in cash

flows, dividends, stock returns, and return volatilities, but also in idiosyncratic return volatilities—that is, the

volatility of residual returns after removing common components. Importantly, this idiosyncratic volatility

spillover structure provides a natural measure of pairwise systemic risk within the production network. In

this paper, we focus on this pairwise systemic risk measure and explore its implications for credit spreads.

Specifically, we define an 𝑀 → 𝑀 adjacency matrix,

𝑆 ↑ [𝑃𝐿 𝑀]𝑃𝐿, 𝑀=1, (1)

which characterizes pairwise idiosyncratic risk spillovers across firms as summarized by equation (1). We

take this structural result as the starting point of our analysis and leave the detailed derivation of the full

production equilibrium to the Internet Appendix.

As a model implication, each element 𝑃𝐿 𝑀 in equation (1) is an endogenous function of the underlying

production network weights. A larger value of 𝑃𝐿 𝑀 indicates that firm 𝑄 exerts a stronger idiosyncratic risk

propagation e!ect on firm 𝑅. This e!ect reflects the overall importance of firm 𝑄 to firm 𝑅 through three

channels: (i) the direct importance of firm 𝑄’s output as an input supplier to firm 𝑅; (ii) the indirect importance

of firm 𝑄’s output through other firms in the production network that subsequently a!ect firm 𝑅; and (iii) the

importance of firm 𝑄’s output for aggregate household consumption, which in turn feeds back to firm 𝑅.

Let 𝑊 𝑀 ,𝑄 ↓ 0 denote a negative idiosyncratic productivity shock to firm 𝑄 at time 𝑋. Firm 𝑅’s operating

cash-flow innovation is given by

ω𝑌𝐿,𝑄 = 𝑍
↔
𝑅𝑁𝑄 + 𝑍

↔
𝑆𝑂𝐿,𝑄 ↗

𝑃∑
𝑀=1

𝑃𝐿 𝑀𝑊 𝑀 ,𝑄 , (2)
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as shown in equation (2), where 𝑁𝑄 is a vector of aggregate macroeconomic conditions and 𝑂𝐿,𝑄 is a vector

of firm-specific characteristics.

Negative supplier shocks reduce firm 𝑅’s expected cash flows in proportion to its downstream exposure

𝑃𝐿 𝑀 in equation (2). In addition, supplier disruptions increase uncertainty in downstream production. We

therefore allow cash-flow volatility to depend on production-network exposure according to

Var𝑄 (ω𝑌𝐿,𝑄 ) ↑ 𝑎
2
𝑇,𝐿,𝑄 = 𝑎̄

2
𝑇,𝐿 +

𝑃∑
𝑀=1

𝑃
2
𝐿 𝑀𝑎

2
𝑈, 𝑀 ,𝑄 , (3)

as specified in equation (3), where 𝑎̄2
𝑇,𝐿 is a firm-specific baseline variance and 𝑎

2
𝑈, 𝑀 ,𝑄 denotes the conditional

variance of supplier 𝑄’s downside shock.

2.2 Capital Structure and Distance to Default

Let 𝑏𝐿,𝑄 denote the market value of firm 𝑅’s assets at time 𝑋, defined as the present value of future operating

cash flows. Equity holders have limited liability, so the market value of equity satisfies

𝑐𝐿,𝑄 = max
(
𝑏𝐿,𝑄 ↗ 𝑇𝐿𝑑

↗𝑉 (𝑊↗𝑄 )
, 0

)
, (4)

as given in equation (4).

Following the distance-to-default framework of Bharath and Shumway (2008), distance to default for

firm 𝑅 at time 𝑋 is defined as

𝑒𝑒𝐿,𝑄 =
ln
(
𝑋𝐿,𝑁

𝑌𝐿

)
+
(
𝑉 ↗ 1

2𝑎
2
𝑋 ,𝐿,𝑄

)
(𝑈 ↗ 𝑋)

𝑎𝑋 ,𝐿,𝑄

↘
𝑈 ↗ 𝑋

, (5)

as shown in equation (5), where 𝑎𝑋 ,𝐿,𝑄 denotes the volatility of firm asset value.

Consistent with Bharath and Shumway (2008), asset value and asset volatility are approximated using

observable equity market data according to

𝑏𝐿,𝑄 ≃ 𝑐𝐿,𝑄 + 𝑇𝐿 , (6)

𝑎𝑋 ,𝐿,𝑄 ≃
𝑐𝐿,𝑄

𝑏𝐿,𝑄
𝑎𝑍 ,𝐿,𝑄 , (7)

as specified in equations (6) and (7), where 𝑎𝑍 ,𝐿,𝑄 denotes equity return volatility.
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We allow equity value and equity volatility to depend on production-network exposure as follows:

ln 𝑐𝐿,𝑄 = 𝑓𝐿 + 𝑓
↔
𝑅𝑁𝑄 + 𝑓

↔
𝑆𝑂𝐿,𝑄 ↗

𝑃∑
𝑀=1

𝑃𝐿 𝑀𝑔 𝑀 ,𝑄 + 𝑕𝐿,𝑄 , (8)

𝑎𝑍 ,𝐿,𝑄 = 𝑎̄𝑍 ,𝐿 +
𝑃∑
𝑀=1

𝑃𝐿 𝑀𝑖 𝑀 ,𝑄 , (9)

as described in equations (8) and (9), where 𝑔 𝑀 ,𝑄 ↓ 0 captures supplier-specific downside cash-flow news

and 𝑖 𝑀 ,𝑄 ↓ 0 captures supplier-specific downside uncertainty.

2.3 Default Probability and Credit Spreads

To price credit default swaps, we approximate the risk-neutral default probability over the CDS horizon [𝑋,𝑈]

as

PQ𝐿,𝑄 (default by 𝑈) ≃ ε
(
↗𝑒𝑒𝐿,𝑄

)
, (10)

as given in equation (10), abstracting from time variation in risk premia.

Assuming fractional recovery of par 𝐿 ⇐ (0, 1) and a zero-coupon approximation for the CDS contract,

the par CDS spread 𝑗𝐿,𝑄 satisfies

𝑗𝐿,𝑄 = (1 ↗ 𝐿)
PQ𝐿,𝑄 (default by 𝑈)

𝑈 ↗ 𝑋

, (11)

as defined in equation (11).

Substituting equation (10) into equation (11) yields the simplified CDS spread,

𝑗𝐿,𝑄 =
1 ↗ 𝐿

𝑈 ↗ 𝑋

ε
(
↗𝑒𝑒𝐿,𝑄

)
, (12)

as shown in equation (12).

Equations (1)–(12) jointly imply that firm 𝑅’s CDS spread is a nonlinear function of macroeconomic

conditions, firm-specific characteristics, and production-network exposure {𝑃𝐿 𝑀}𝑃𝑀=1. In particular, greater

downstream exposure to negative supplier shocks lowers distance to default and increases credit spreads.
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3 Empirical Evidence

We provide empirical support for our structural framework, which emphasizes the importance of the entire

network topology in explaining credit spreads. To this end, we adopt a recently developed machine-learning

methodology—graph neural networks (GNNs)—to conduct CDS spread prediction exercises. GNNs are

specifically designed to model data with complex cross-sectional dependence and to incorporate rich network

topology features as inputs, making them a natural empirical counterpart to our structural framework.

The basic intuition behind the GNN architecture is to represent the inter-firm network explicitly. Each

firm is modeled as a node, while each firm-to-firm idiosyncratic risk spillover measure is represented as a

weighted and directed edge. The model takes both node-level features—such as firm-specific characteristics

and macroeconomic variables—and edge-level features, namely the idiosyncratic risk spillover measures

𝑃𝐿 𝑀 , as inputs. Through a sequence of message-passing and aggregation steps, the GNN embeds information

from the network structure and edge weights into latent node-level representations, which are then used to

predict CDS spreads in a standard neural network framework.

We briefly describe the GNN architecture below and relegate architecture details to the Internet Appendix.

We then describe the data construction, with particular emphasis on the measurement of node-level and edge-

level features, and finally present the CDS spread prediction results.

3.1 Architecture of the Empirical Algorithm

In much of the machine-learning literature, researchers emphasize extensive model tuning and increasingly

sophisticated architectures to maximize out-of-sample predictive performance. Our objective and approach

di!er. We deliberately employ a parsimonious vanilla GNN architecture that is su"cient to deliver a clear

financial interpretation of network e!ects.

The Graph Neural Network (GNN) framework consists of two key components: an inter-layer message-

passing scheme and an intra-layer updating scheme, with the latter corresponding to the standard updating

mechanism used in conventional neural network architectures such as CNNs.

Figure 1 illustrates the inter-layer message-passing scheme that is specific to GNNs.

F!"#$% 1 A&’#( H%$%
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This scheme determines how initial node-level and edge-level features are transformed into latent node

representations. Specifically, each normalized embedding 𝑘̂
(𝑎 )
𝐿 at layer 𝑙 incorporates information from

node 𝑅 and its neighbors according to

𝑘̂
(𝑎 )
𝐿 = 𝑘

(𝑎 )
𝐿

⊕
𝑀⇐N(𝐿)

(𝑃𝐿 𝑀), (13)

where 𝑘̂
(𝑎 )
𝐿 denotes the normalized embedding of node 𝑅 at layer 𝑙 , 𝑘 (𝑎 )𝐿 is the embedding of node 𝑅 at layer

𝑙 ,
⊕

represents the concatenation operator, and N(𝑅) denotes the neighborhood of node 𝑅.

In equation (17), 𝑃𝐿 𝑀 represents the directed idiosyncratic risk spillover from node 𝑄 to node 𝑅. Collecting

all 𝑃𝐿 𝑀 yields the adjacency matrix 𝑆 ↑ [𝑃𝐿 𝑀]. To encode network e!ects, we follow the graph convolutional

network (GCN) formulation of Kipf and Welling (2016). Under this framework, network information is

incorporated as

𝑚̂
(𝑎 ) = 𝑒

↗1
𝑆̂𝑚

(𝑎 )
𝑛

(𝑎 )
, if 𝑆 is asymmetric, (14)

where 𝑚̂
(𝑎 ) is the output of the 𝑙-th layer, 𝑆̂ = 𝑆 + 𝑜 with 𝑜 denoting the identity matrix, 𝑒 is the out-degree

matrix, 𝑚 (𝑎 ) is the input to the 𝑙-th layer, and 𝑛
(𝑎 ) is the trainable weight matrix. The out-degree matrix 𝑒

is diagonal, with diagonal elements equal to the column sums of 𝑆.

The intuition is as follows. Each row of the adjacency matrix 𝑆 = [𝑃𝐿 𝑀] reflects the extent to which

firm 𝑅 receives idiosyncratic risk spillovers from other firms. By multiplying this row by neighboring firms’

features and aggregating the results, the model assigns greater weight to more economically important

suppliers. After aggregating weighted supplier information together with firm 𝑅’s own characteristics, the

GNN constructs a latent representation of firm 𝑅. The matrix 𝑒
↗1 serves to normalize the adjacency matrix.

Thus, the contribution of neighboring information depends on the economic importance of the supplier to

firm 𝑅.

The intra-layer updating scheme governs how node representations are transformed from one hidden layer

to the next. This structure is standard across neural network architectures. Each layer applies a sequence of

operations to the node representations, including batch normalization, dropout, nonlinear activation (ReLU),

and an aggregation function. In standard neural networks, the aggregation function typically takes the form

of an equally weighted average. In GNNs, however, aggregation is performed by combining neighboring
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node characteristics using edge-weighted averages, thereby reflecting the relative importance of neighboring

information.

The architecture described above corresponds to the vanilla GNN baseline, which is fundamentally

cross-sectional. That is, it operates on a single cross-sectional network snapshot to predict outcomes in the

subsequent period. Unlike CNNs, which naturally incorporate temporal pooling, the vanilla GNN does not

include an explicit mechanism for temporal aggregation. Although we implement an extended architecture

with pooling over time in the Internet Appendix, we focus on the baseline specification in the main analysis.

This choice is beneficial for two reasons. First, it is consistent with our structural framework, which

emphasizes cross-sectional network e!ects rather than explicit dynamic propagation. Second, introducing

temporal pooling requires additional assumptions—such as recurrent structures (e.g., LSTM)—that increase

model complexity and reduce interpretability. Moreover, CDS data are sparse and unevenly observed across

firms and time, which necessitates masking schemes that further obscure economic interpretation. Therefore,

we focus on the vanilla structure in the main analysis.

3.2 Data and Implementation Details

We use daily Markit CDS data for U.S. firms spanning January 2005 to December 2020.’ We focus on

the 5-year tenor and senior unsecured contracts, which are the most liquid in the CDS market. We use

spreads from the prevalent XR14 contract. The spread on XR contracts reflects default risk while excluding

restructuring risk, which aligns with our structural framework.(

We construct a monthly panel by retaining the most recent CDS spread observed in each month. The

final dataset contains 678 firms and 130,176 firm-month observations over the sample period.

T)&*% 1 )+, F!"#$% 3 A&’#( H%$%

Table 1 reports summary statistics for the distribution of log CDS spreads, along with firms’ market

capitalization and implied credit ratings. Columns 1–2 show that CDS contracts are observed for a median

duration of 137 months (11.4 years), with a minimum of 2 months and a maximum of 192 months (16 years).

Columns 3–4 indicate that the sample spans firms ranging from very small (market capitalization of $700

’Prior to 2005, CDS coverage is limited, rendering the data less suitable for machine-learning applications.
(As documented by Liu (2022), XR contracts became the standard for U.S. corporates following the 2009 CDS Big Bang,

whereas MR (modified restructuring) contracts were more common prior to that event. XR spreads primarily reflect default risk,
while MR spreads reflect both default and restructuring risk.
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million) to very large (market capitalization of $1.73 trillion). Columns 5–6 show that firms cover a wide

spectrum of credit quality, from AA-rated to CCC- and D-rated firms.) These statistics highlight the broad

coverage of the CDS market in terms of firm size, credit quality, and sample duration.

We use the logarithm of CDS spreads as the target variable. CDS spreads are strongly right-skewed,

and commonly used loss functions in machine learning, such as the mean squared error (MSE), are highly

sensitive to skewness: large observations receive disproportionate weight and can dominate the loss. As

a result, a model trained on levels may overfit extreme observations at the expense of fitting the bulk of

the distribution. To mitigate this issue, we apply a logarithmic transformation to CDS spreads and use the

transformed variable as the target in our prediction model. Figure 3 presents the histogram of log CDS

spreads. The mean log CDS spread is approximately ↗4.69, with a standard deviation of 0.94.

Node Characteristics. We construct 94 firm-level characteristics following Gu, Kelly, and Xiu (2020).

Of these, 61 characteristics are updated annually, 13 quarterly, and 20 monthly. These characteristics are

designed to capture distinct and largely nonredundant information about firm fundamentals.!*

In addition, we include eight macroeconomic variables from Welch and Goyal (2008): the dividend-

price ratio (dp), earnings-price ratio (ep), book-to-market ratio (bm), net equity issuance (ntis), Treasury-bill

rate (tbl), term spread (tms), default spread (dfy), and stock variance (svar).!! In total, we use 112 node-

level features. Following Kelly, Pruitt, and Su (2019) and Freyberger, Neuhierl, and Weber (2020), all

characteristics are rank-normalized cross-sectionally each month and mapped to the interval [↗1, 1].

Edge Characteristics. To construct edge-level features, we estimate pairwise idiosyncratic volatility

spillovers using CRSP daily stock returns, consistent with the structural framework. This procedure follows

Chen (2023), which generalizes the systemic risk measures developed in Diebold and Yılmaz (2014). We

assume that firms within the same industry produce similar products and are subject to similar productivity-

specific shocks. Accordingly, we estimate risk spillovers at the sector level and impose them on firms based

on industry classification.

)The firm count exceeds 678 because some firms experience rating changes over time and are therefore associated with multiple
ratings during the sample period. Sectoral distributions of CDS contracts are reported in Internet Appendix B.

!*We account for data release delays following Gu, Kelly, and Xiu (2020) and Gu, Kelly, and Xiu (2021). The underlying data
and replication codes for early years are provided by the authors. Related literature includes Fama and French (2016), Green, Hand,
and Zhang (2017), Hou, Xue, and Zhang (2020), Gu, Kelly, and Xiu (2021), and Kelly, Malamud, and Zhou (2024). Details of all
characteristics are provided in Internet Appendix C.

!!Including interactions between firm-level and macroeconomic variables yields similar out-of-sample results.
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Specifically, we compute daily industry returns as value-weighted averages of firm returns. For each

calendar month, we regress daily industry returns on the Fama–French three factors and treat the residuals as

idiosyncratic industry returns.!" Monthly idiosyncratic volatility is then computed as the standard deviation

of daily idiosyncratic returns.

We estimate pairwise idiosyncratic volatility spillovers using a rolling-window LASSO vector autore-

gression (VAR). For each 90-month rolling window, we estimate a VAR for the panel of sector-level log

idiosyncratic volatilities and perform a generalized variance decomposition (GVD) for 6-month-ahead fore-

cast errors.!# This procedure yields a 48→48 matrix of spillover intensities, where each element 𝑃𝐿 𝑀 measures

the contribution of shocks originating in sector 𝑄 to the idiosyncratic volatility of sector 𝑅. These measures

constitute the empirical counterpart of the structural spillover weights 𝑃𝐿 𝑀 in the model.

We collect the estimated 𝑃𝐿 𝑀 from each rolling window to form a time-varying adjacency matrix 𝑆𝑄

updated at a monthly frequency.!$

Extrapolation to the Firm Level. After obtaining sector-level spillover measures, we extrapolate them

to the firm level by imposing sectoral risk spillovers on firms according to their industry classifications.

Figure 2 illustrates this procedure.
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Figure 2 shows an example with three sectors and five firms. If the spillover intensity from sector 2 to

sector 1 equals 0.1, then this value is assigned as the spillover intensity from any firm in sector 2 to any firm

in sector 1.

By imposing sector-level adjacency matrices at the firm level, we map inter-sectoral dependencies into

inter-firm dependencies. This approach implicitly assumes that firms within the same sector are representative

of sector-level production and risk exposure. While heterogeneity undoubtedly exists within industries, this

assumption is consistent with our production-network framework, in which firms within a sector face similar

productivity shocks. For clarity, we abstract from additional firm-specific shock channels.

Finally, one may ask why we do not construct idiosyncratic volatility spillovers directly from CDS data.

!"Results are robust to removing only the CAPM factor, removing five principal components, or not removing common factors
at all.

!#Results are robust to rolling windows ranging from 80 to 100 months and forecast horizons between 6 and 10 months.
!$The adjacency matrix at time 𝑋 is constructed using data from 𝑋 ↗ 90 to 𝑋. Results are robust to lagging edge inputs by one

month to avoid look-ahead bias. Prior work (e.g., Kryzanowski, Perrakis, and Zhong, 2017) finds that CDS markets tend to lead
equity markets in response to negative news by days or weeks.
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We do not pursue this approach because corporate CDS data exhibit substantial noise, sparse coverage,

infrequent trading, and non-transaction-based quotes that vary significantly across time and firms. In

contrast, equity market data are cleaner, higher frequency, and better suited for constructing reliable spillover

measures. Moreover, using stock data aligns naturally with our structural framework, in which equity prices

reflect firm value and default risk.

Training Configuration and Benchmark We construct a monthly panel in which the inputs consist of

firm-level node characteristics and inter-firm edge characteristics, and the target variable is the CDS spread.

As discussed above, we adopt a vanilla GNN architecture that operates primarily in the cross section.

Accordingly, for each month 𝑋, we train the GNN using the full cross-sectional network observed at month

𝑋. We then use the 𝑋 + 1 snapshot as a validation set to tune hyperparameters and prevent overfitting,

and we generate out-of-sample predictions for month 𝑋 + 1. For all GNN specifications, we use stochastic

gradient descent (SGD) as the optimizer. To mitigate overfitting, we implement early stopping and select all

hyperparameters by minimizing the mean squared error on the validation set.

We recursively refit the model each month to incorporate the most recent node-level and edge-level

information, despite the associated computational cost, until the end of the sample period. This rolling

training scheme ensures that all reported predictions are strictly out of sample.

To benchmark the performance of models that do not incorporate network edge information, we consider

a set of alternative nonlinear machine-learning methods, including convolutional neural networks (CNN),

gradient boosting regression trees (GBRT), random forests (RF), principal component regression (PCR),

partial least squares (PLS), and support vector regression (SVR). These models use the same set of firm-level

node characteristics as inputs but do not incorporate inter-firm edge features. All competing models are

trained using the same rolling data partitions and evaluated under the same out-of-sample protocol as the

GNN.

To provide a clean and internally consistent benchmark for the GNN, the CNN model is designed

under strict architectural restrictions such that it is equivalent to a GNN with all network edges removed.

Specifically, this benchmark preserves the same inter-layer and intra-layer structure as the GNN, but replaces

the adjacency matrix with the identity matrix, e!ectively eliminating all cross-node message passing. The

model uses the same number of layers, activation functions, and parameter-sharing structure as the GNN,

and excludes any graph-level normalization. We hand-code the architecture to ensure that this zero-edge
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GNN collapses exactly to a per-node feedforward network. For simplicity, we refer to this restricted model

as CNN throughout the paper. Detailed descriptions of all comparison algorithms are provided in Internet

Appendix D.

3.3 Empirical Results

We evaluate the importance of network edge features in explaining credit spreads by examining both pooled

out-of-sample (OOS) performance across the entire sample and time-series variation in OOS performance.

The OOS evaluation provides an objective assessment of predictive accuracy.

Pooled Out-of-Sample Performance. Table 2 reports pooled OOS performance for all machine-learning

models. Panel A reports pooled out-of-sample root mean squared errors (RMSEs), while Figure 4 visualizes

these results using bar plots.
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Column 1 of Table 2 reports RMSEs for the full sample from March 2005 to December 2020. Columns 2

and 3 report RMSEs for investment-grade (BBB and above) and high-yield (BB and below) firms, respectively.

Columns 4 and 5 report RMSEs for firms below and above the median market capitalization.

The results in Column 1 show that GNN models, across di!erent architectural depths, achieve RMSEs

of approximately 0.89—less than half of those produced by alternative algorithms. Under identical training

conditions, CNN models exhibit substantially higher RMSE: 1.34 with two hidden layers. While increasing

CNN depth initially improves performance, additional layers lead to deterioration, likely due to overfitting. In

contrast, GNN performance is remarkably stable across architectures: even a single hidden layer is su"cient

to capture the relevant network topology, and additional layers yield limited incremental gains. This stability

reflects diminishing returns from repeated aggregation over a fixed network structure.

Tree-based methods (GBRT and RF) outperform dimension-reduction approaches (PCR and PLS) and

support vector regression (SVR), but still underperform relative to CNNs and substantially underperform

relative to GNNs. Overall, these results indicate that incorporating network topology—specifically inter-firm

idiosyncratic risk spillovers—accounts for a substantial share of the cross-sectional variation in CDS spreads.

Columns 2 and 3 show that GNN models deliver substantial performance gains for both investment-

grade and high-yield firms. For investment-grade firms, RMSEs from CNN2 are approximately 1.4, whereas

GNN RMSEs are around 0.9. For high-yield firms, RMSEs from alternative models are approximately 1.2,
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compared with about 0.85 for GNNs. These results indicate that network information improves predictive

accuracy across credit qualities, with particularly pronounced gains for investment-grade firms. Intuitively,

investment-grade firms tend to be larger, more central, and more interconnected within production and trade

networks; as a result, their CDS spreads are especially sensitive to network-wide spillovers, which GNNs are

well suited to capture.

Columns 4 and 5 show that GNN models outperform competing algorithms for both small and large

firms. For small firms, RMSE declines from 1.30 (CNN2) to 0.80 (GNN2), while for large firms RMSE

declines from 1.39 to 0.96. These improvements are of comparable magnitude. However, we note that

firms in our sample are predominantly small to medium-sized, and therefore we refrain from drawing strong

conclusions regarding size-based heterogeneity.

Economic Significance of Network E!ects. To assess the economic magnitude of network e!ects, Panel B

of Table 2 reports two additional measures.

The first measure is the network-attributable spread change (NSC), which captures the magnitude of the

network-induced change in credit-spread levels relative to a node-only benchmark:

NSC ↑
E
[)))l̂og 𝑗

GNN ↗ l̂og 𝑗
CNN)))]

|E[log 𝑗] | .

Here, l̂og 𝑗
GNN

denotes the predicted log CDS spread from GNN2, l̂og 𝑗
CNN

denotes the predicted log CDS

spread from CNN2, and log 𝑗 denotes the realized log CDS spread. The numerator measures the average

magnitude of the network-induced change in the predicted log spread level when network information is

incorporated, while the denominator normalizes this change by a typical log spread level. This normalization

yields a scale-free statistic that facilitates comparison across samples, industries, and time.

NSC can be interpreted as an average treatment–style e!ect relative to a node-only baseline, quantifying

how much the inclusion of network information shifts the level of predicted credit spreads. Panel B shows

that incorporating network edge features induces an average spread change of approximately 21.8% in the

full sample. The network-induced change is larger for high-yield firms (30.1%) than for investment-grade

firms (18.5%), and larger for small firms (26.6%) than for large firms (17.7%).
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In addition to NSC, we report an incremental explanatory-power measure, denoted 𝑜𝑀𝑝_𝐿2:

𝑜𝑀𝑝_𝐿2 ↑ 1 ↗
E
[
(l̂og 𝑗

GNN ↗ log 𝑗)2
]

E
[
(l̂og 𝑗

CNN ↗ log 𝑗)2
] .

This statistic measures the fraction of node-only prediction error eliminated by incorporating network edge

features.

As reported in Panel B, the average incremental 𝐿2 is approximately 0.56, with particularly pronounced

gains for investment-grade firms and for relatively smaller firms in our sample. Given the limited size

coverage of our data, we refrain from drawing strong conclusions regarding size-related heterogeneity.

Nevertheless, the results consistently indicate that network edge information is especially informative for

explaining the credit spreads of investment-grade firms, which tend to be more central and embedded in

complex trade and production relationships.

While network edge information also improves the prediction of credit spreads for high-yield firms, the

associated gains in explanatory power are more modest than those observed for investment-grade firms. A

plausible explanation is that high-yield firms are closer to default, and their credit risk is more strongly driven

by firm-specific fundamentals and balance-sheet conditions. As a result, firm-level characteristics account

for a larger proportion of the variation in their credit spreads, even though network information remains

economically relevant.

Time-Series Variation in Out-of-Sample Performance. We next examine the time-series performance

of network features. Figure 5 plots the monthly out-of-sample RMSEs for each algorithm.
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Figure 5 shows that GNN models consistently outperform all competing models over time. In certain

periods, GNN RMSEs are as low as one-quarter of those produced by alternative algorithms, particularly

relative to dimension-reduction methods such as PCR and PLS. This persistent outperformance highlights

the importance of pairwise inter-firm network information in explaining CDS spreads.

More importantly, the time-series results reveal distinct episodes during which network structure becomes

especially informative for CDS pricing. The first such episode coincides with the 2008 Global Financial

Crisis. During periods of severe economic stress, production networks are disrupted as firms face binding
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liquidity constraints, operational shutdowns, and heightened default risk. In this environment, inter-firm

contagion and counterparty exposure become first-order determinants of credit spreads. As idiosyncratic

shocks propagate through production and financial linkages, CDS spreads increasingly reflect network

position rather than standalone firm fundamentals. GNNs are well suited to capture these contagion e!ects,

whereas models that abstract from network structure perform poorly.

A second episode arises in late 2009 and early 2010, a transitional phase following the crisis. Although

equity markets rebounded sharply during this period, production and counterparty networks remained

impaired and were undergoing reconfiguration. Firms adjusted supplier relationships, renegotiated contracts,

and reallocated production across newly constrained networks. This re-wiring process introduced substantial

uncertainty that was not immediately reflected in balance-sheet or accounting data. As a result, models that

rely solely on firm-level features exhibit a sharp deterioration in predictive performance. In contrast, GNNs

continue to perform well by incorporating evolving inter-firm dependencies that shape downside credit risk

during this network re-equilibration phase.

A third episode occurs around 2018, coinciding with the escalation of trade tensions and the introduction

of tari! policies. From a network perspective, tari!s represent shocks to trade and production linkages that

increase fragility within global value chains. Firms’ exposure to a!ected suppliers and customers becomes

a key determinant of credit risk, as disruptions propagate asymmetrically through the network. During this

period, CDS spreads reflect not only firm-specific conditions but also indirect exposure to trade partners

facing heightened uncertainty. The superior performance of GNNs during this episode underscores the role

of network structure in transmitting trade-related shocks into credit markets.

Finally, following the onset of the COVID-19 pandemic in 2020, widespread production shutdowns

generated severe upstream supply disruptions. The sudden closure of critical nodes—such as semiconductor

manufacturing facilities—had cascading e!ects on downstream firms that depended on these inputs. Credit

risk during this period was therefore shaped by firms’ positions within disrupted supply chains rather than

by their pre-pandemic fundamentals alone. GNNs e!ectively capture these cascading network e!ects, while

non-network models struggle to account for the resulting comovement in CDS spreads.

Taken together, the time-series evidence not only supports the predictions of our structural framework but

also highlights the state-dependent importance of inter-firm networks in credit markets. In periods of stress,

transition, or structural disruption, the full network topology captures an economically meaningful component

of systematic risk that is priced in CDS spreads. These findings are consistent with the production-network
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literature (e.g., Acemoglu et al., 2012), which emphasizes that network structure provides a microfoundation

for aggregate risk and its amplification.

To examine how global network features di!erentially a!ect sectors within the production network over

time, we plot the network-attributable spread change (NSC) for firms across Fama–French 48 industries and

across out-of-sample months.

Figure 6 presents a heatmap of the time-varying NSC across industries. For each month and each Fama–

French 48 industry, we compute NSC as the average absolute di!erence between the predicted log CDS

spread from GNN2 and that from CNN2, normalized by the average log CDS spread within the industry. At

each month, industries are ranked by NSC. The five industries with the largest network-attributable spread

change are highlighted in red, while the five industries with the smallest network-attributable spread change

are highlighted in blue; all remaining industries are shown in white.
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As shown in Figure 6, several industries consistently appear among those with the highest NSC. These

include Industry 22 (electrical equipment, covering electronic transmission and distribution equipment and

electrical apparatus), Industry 25 (shipbuilding and railroad equipment), and Industry 26 (defense-related

industries, including guided missiles and tanks).

In contrast, several industries consistently appear among those with the lowest NSC, including Industry 7

(entertainment, such as film and live performances), Industry 15 (rubber and plastic products), Industry 16

(textiles, including textile mill and canvas products), Industry 28 (mining, including metal and nonmetallic

mining), and Industry 29 (coal, including bituminous coal and lignite mining).

These patterns are economically intuitive. Network features tend to matter more for firms that (i) occupy

intermediate positions in the production chain and are exposed to both upstream and downstream risks, (ii)

rely heavily on shipping, logistics, and distribution across the supply chain, or (iii) depend on specialized

inputs that are di"cult to substitute. For such firms, disruptions or shocks propagating through supplier–

customer relationships can lead to substantial changes in expected cash flows and, consequently, credit

spreads.

The industries highlighted in red—notably electrical equipment, shipbuilding, railroad equipment, and

defense—are precisely those that lie at critical intermediate nodes of the production and trade network. Their
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revenues depend on continuous flows from multiple counterparties, making them particularly sensitive to

network-level disruptions. Defense-related firms, in particular, rely on highly specialized and sophisticated

components sourced through rigid supply chains and often operate under long-term contracts. This network

rigidity, characterized by low input substitutability, amplifies the importance of network edge information

in determining the credit health of the defense sector. Consistent with this interpretation, network features

induce especially large spread changes for defense sector during the period from 2014 to 2018, which

coincides with discrete geopolitical shocks such as the Russia–Ukraine conflict and conflicts involving

ISIS. During such periods, defense demand becomes lumpy and state-dependent, and contracts may be

renegotiated, accelerated, delayed, or repriced.

By contrast, the industries highlighted in blue are those whose credit risk is primarily driven by firm-

specific fundamentals or final demand. For example, firms in natural resource extraction (mining and

coal) are heavily influenced by commodity prices and balance-sheet leverage, which dominate network

considerations. Similarly, entertainment and textile firms rely more heavily on idiosyncratic fundamentals

such as intellectual property, brand value, and consumer sentiment, and often operate with more diversified

supplier and customer bases. As a result, network edge features induce relatively smaller shifts in their credit

spreads.

4 Conclusion

This paper develops a structural framework for credit counterparty risk in which idiosyncratic shocks

propagate through an inter-firm production network. By explicitly modeling firms’ economic linkages

as input–output relationships, the framework clarifies how both a firm’s position within the network and

the global network topology shape the transmission of idiosyncratic default risk and the cross-sectional

behavior of credit spreads. The model allows for asymmetric contagion, cascading e!ects, and ordinary

firm-specific shocks, and links production-network spillovers to default intensities and CDS spreads through

a distance-to-default channel.

To provide empirical support for the structural mechanism, we propose a parsimonious network-based

empirical approach that directly incorporates the full inter-firm network topology. Using graph neural

networks (GNNs), we embed both firm-level characteristics and pairwise idiosyncratic risk spillovers into a

unified prediction framework. This approach overcomes a key limitation of standard empirical and machine-
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learning methods, which typically rely on firm-level features and cannot incorporate the entire 𝑀→ 𝑀 network

structure as a predictive object.

Empirically, we find that models incorporating production-network information substantially outperform

non-network benchmarks in predicting CDS spreads. The improvement is economically large, persistent

across firm size and credit quality, and particularly pronounced during periods of financial stress, economic

transitions, and supply-chain disruptions. These findings indicate that inter-firm network structure captures

an important component of credit risk that is not explained by firm fundamentals or common shocks alone,

and that this network-based risk is state-dependent and priced in CDS markets.

Overall, our results provide direct empirical support for a production-network-based view of counterparty

risk. They suggest that credit spreads reflect not only firms’ standalone default risk, but also their exposure

to idiosyncratic shocks originating elsewhere in the network. More broadly, the paper demonstrates how

combining structural economic modeling with modern network-based machine-learning tools can yield new

insights into credit risk, contagion, and systemic risk. An important direction for future research is to extend

the framework to incorporate other forms of inter-firm linkages—such as financial exposures or dealer

networks—and to study the dynamic evolution of network risk over time.
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Table 1. Summary Statistics of CDS Contracts and Issuing Firms

This table presents summary statistics for CDS contracts and their issuing firms from January 2005 to December 2020. Columns
1-2 show CDS contract duration statistics. Columns 3-4 show firms’ market capitalization statistics. Columns 5-6 present the
distribution of firms’ credit ratings.

CDS Duration Firm Market Capitalization Firm Rating Distribution

Month Dollar($) Rating Firm Count

mean 117 mean 2.65 → 107 AA 97

std 69 std 5.38 → 107 A 144

min 2 min 7.01 → 102 BBB 192

25% 50 25% 3.57 → 106 BB 156

50% 137 50% 1.01 → 107 B 88

75% 188 75% 2.64 → 107 CCC 59

max 192 max 1.71 → 109 D 3
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Table 2. Out-of-Sample Performance and Network Attribution. Panel A reports pooled out-of-sample root mean squared errors
(RMSEs) for alternative machine-learning models. Panel B reports the economic contribution of network edge information beyond
node characteristics, measured by the network-attributable spread change (NSC) and the incremental 𝐿2 (Inc_R2). Column 1 reports
the full sample (March 2005–December 2020). Columns 2–3 report investment-grade (BBB and above) and high-yield (BB and
below) firms. Columns 4–5 report small (below-median market capitalization) and large (at or above median market capitalization)
firms. NSC is defined as E[|l̂og 𝑗

GNN ↗ l̂og 𝑗
CNN |]/|E[log 𝑗] |. Inc_R2 is defined as 1↗MSEGNN/MSECNN. Predicted log spreads

are obtained from CNN2 and GNN2.

All Investment Grade High Yield Small Big

Panel A: Pooled Out-of-Sample RMSE

RF 1.665 1.828 1.271 1.464 1.845

GBRT 1.900 2.128 1.320 1.570 2.181

PCR 2.196 2.527 1.283 1.501 2.719

PLS 2.348 2.679 1.459 1.679 2.865

SVR 1.876 2.103 1.296 1.540 2.160

CNN1 2.245 2.308 2.110 2.072 2.405

CNN2 1.338 1.392 1.221 1.282 1.391

CNN3 1.378 1.437 1.249 1.337 1.418

GNN1 0.890 0.909 0.850 0.808 0.965

GNN2 0.888 0.904 0.854 0.809 0.960

GNN3 0.893 0.915 0.847 0.808 0.972

Panel B: Network-Attributable Spread Change and Incremental 𝐿
2

NSC 0.218 0.185 0.301 0.266 0.177

Inc_R2 0.560 0.578 0.511 0.602 0.524
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Figure 1. Inter-Layer Design of the GNN

This figure depicts the inter-layer message-passing architecture of the GNN algorithm, where node embeddings are generated
according to the GCN procedure proposed in Kipf and Welling (2016).

27



Figure 2. Extrapolation of Sector-Level Network E!ects to Firm Level

This figure illustrates the process of extrapolating sector-level idiosyncratic risk spillover to the firm level. Panel A depicts risk
spillover among three sectors, estimated from the Generalized Variance Decomposition (GVD) of VAR forecast errors. In the
adjacency matrix, element (𝑅, 𝑄) indicates the risk spillover intensity from sector 𝑄 to sector 𝑅. Panel B demonstrates the extrapolation
of this risk spillover to five firms across the three sectors.
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Figure 3. Distribution of Log CDS Spreads

This figure displays the histogram of log CDS spreads for 5-year tenor, senior unsecured contracts from January 2005 to December
2020.
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Figure 4. Out-of-Sample Prediction Error of Machine Learning Algorithms

This figure presents the out-of-sample prediction error of various machine learning algorithms using pooled Root Mean Square
Error (RMSE). Panel A displays the overall RMSE across all out-of-sample periods. Panel B presents the overall RMSE by firm
credit rating, with investment grade defined as BBB or above and high-yield as BB or below. Panel C shows the overall RMSE by
firm size, with small firms defined as those below the median market capitalization and large firms as those at or above the median.

(a) Pooled RMSE

(b) Pooled RMSE by Firm Credit Rating

(c) Pooled RMSE by Firm Market Capitalization
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