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Abstract

We develop a structural model of credit counterparty risk in which contagion arises from an inter-firm
production network. We then propose a parsimonious empirical approach that directly incorporates
network topology to predict credit spreads. We find that incorporating network edge features induces an
average credit-spread change of approximately 21.8% and yields an incremental R? of 0.56 in explaining
credit spreads. Our results show that network-based counterparty risk is strongly priced and plays a first-
order role in shaping credit spreads, particularly during periods when production networks experience
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1 Introduction

The interdependence of firms’ default intensities constitutes a central topic in the study of credit risk. A
large body of literature documents that default clustering arises for multiple reasons. First, firms are exposed
to common shocks or correlated risk factors (e.g., Duffie and Singleton (1999), Collin-Dufresne, Goldstein,
and Martin (2001), and Duffie and Gérleanu (2001)), so that default probabilities are jointly driven by
aggregate macroeconomic conditions. Second, firms may experience firm-specific (idiosyncratic) shocks
that propagate to other firms due to economic linkages, giving rise to contagion through firm networks.

Empirical studies such as Das, Duffie, Kapadia, and Saita (2007) and Jorion and Zhang (2009) provide
strong evidence that idiosyncratic risk contagion—often referred to as counterparty risk—can explain excess
default clustering beyond what is attributable to common risk factors alone. In addition, a growing theoretical
literature (e.g., Jarrow and Yu (2001), Jorion and Zhang (2007), and Azizpour, Giesecke, and Schwenkler
(2018)) has developed structural frameworks that incorporate counterparty risk into models of default
intensities and credit spreads. However, due to substantial analytical and estimation complexity, most existing
models are tractable only under highly simplified settings, such as two-firm economies or assumptions that
rule out cascading or looping effects—that is, situations in which a firm-specific shock propagates through
multiple firms and potentially feeds back into the originating firm before spreading further through the
network.

In this paper, we study a general credit risk framework with the following features: (i) n firms are eco-
nomically linked through a network structure; (ii) cascade effects are permitted; (iii) contagion is asymmetric
across firms; and (iv) ordinary idiosyncratic shocks—rather than only extreme firm-specific tail events—can
propagate through the network. Our analysis focuses on the implications of the inter-firm network structure
for the cross-sectional behavior of credit spreads.

Unlike much of the existing literature in which economic linkages are left unspecified, we explicitly
model inter-firm connections as production-based input—output relationships. This discipline allows us to
provide a granular network-based interpretation of counterparty risk, clarifying how both the global structure
of the network and a firm’s position within it shape the propagation of idiosyncratic default risk. In practice,
firms are connected through multiple channels, including production networks, cross-holdings of assets,
debt and liability exposures, and other contractual relationships, all of which may facilitate idiosyncratic

risk spillovers. We focus on the production network as the primary channel because there is substantial



empirical evidence that real default contagion occurs along supplier—customer chains (e.g., Jacobson and
Von Schedvin (2015)). While we do not rule out alternative transmission mechanisms, our framework
emphasizes the production network to deliver a clear and economically grounded mechanism. Once this
channel is well understood, the analysis can be readily extended to incorporate other forms of inter-firm
linkages. Finally, our framework does not rely on specific time-series assumptions about default intensities.!
Instead, our primary contribution lies in characterizing how the cross-sectional n X n network structure
governs the propagation of idiosyncratic default risk.

Theoretically, we develop a structural framework in which each firm’s default intensity depends on a
macroeconomic variable M, firm-specific characteristics X;, and counterparty risk components a;;, where
a;;j captures idiosyncratic default-risk spillovers from firm j to firm i through the production input-output
network. We provide an economic interpretation of a;; by building on the key insights of Herskovic (2018)
and Chen (2023). Specifically, both studies develop a production-based general equilibrium model with n
representative firms that links real production to firms’ investment decisions. In this framework, each firm
produces a single good that is used as an intermediate input by other firms, and firms use sales revenue—that
is, cash flows—to issue equity held by households. Firms are subject to i.i.d. idiosyncratic productivity
shocks, which affect their own final output and subsequently spill over to downstream firms by affecting
input supplies, cash flows, and stock returns.?

Motivated by this result, we define an n X n adjacency matrix A = [a;;] to characterize the structure
of idiosyncratic risk spillovers arising from the production network. As a model implication, each element
a;j is an endogenous function of the underlying production network weights. A larger value of a;; indicates
that firm j exerts a stronger idiosyncratic risk propagation effect on firm i. This effect reflects the overall
importance of firm j to firm i through three channels: (i) the direct importance of firm j’s output as an
input supplier to firm 7; (ii) the indirect importance of firm j’s output through other firms in the production
network that subsequently affect firm 7; and (iii) the importance of firm j’s output for aggregate household
consumption, which in turn feeds back to firm i.

When q;; is large, firm j constitutes an economically important supplier to firm #, capturing both direct

and indirect input linkages. A negative idiosyncratic shock to firm j reduces its output and disrupts firm i’s

Das et al. (2007) adopt a similar modeling strategy.

2While both Herskovic (2018) and Chen (2023) do not distinguish between positive and negative idiosyncratic productivity
shocks, we focus on the propagation of negative idiosyncratic shocks and interpret these spillovers specifically in terms of default
risk.



effective input supply. This disruption lowers firm i’s expected cash flows and equity value, while increasing
the volatility of cash flows and, consequently, equity return volatility.

We link this channel to firm i’s default intensity by adopting a distance-to-default (DD) framework
following Bharath and Shumway (2008). In this framework, the original Merton DD model is simplified in
a computationally tractable manner, allowing all components to be approximated using observable market
data. Specifically, a firm’s distance to default depends on the deviation of the market value of equity from
the face value of debt, scaled by the volatility of firm asset value (the combined value of debt and equity),
where asset volatility can be approximated as a linear function of equity volatility.

Under the assumption of a constant interest rate and fixed debt face value and maturity, a decline in
firm i’s equity value and an increase in firm i’s equity volatility both reduce its distance to default. A lower
distance to default, in turn, implies a higher default probability and default intensity. Consequently, a larger
a;j increases firm i’s default intensity through the cash-flow news channel operating via the input-output
linkage.

After expressing firm i’s default intensity as a structural function that depends positively on the network
components a;;, we derive the credit default swap (CDS) spread for firm i under the risk-neutral measure.
The CDS spread is determined by equating the expected present value of premium payments to the expected
present value of default loss payments. The analytical solution implies that firm i’s CDS spread depends
on a nonlinear function of macroeconomic conditions, firm-specific characteristics, and production-network

0

spillover terms a;; for all j, with the partial derivative ggsi > 0. This result implies that credit spreads are
Ly

best explained by incorporating the production-network structure {a;;} in a nonlinear manner.

We next provide empirical evidence to support the structural framework. There are two natural ap-
proaches, both of which face significant obstacles. First, directly estimating the fully specified structural
model is computationally infeasible in large production networks. Existing structural counterparty-risk
models, such as Jarrow and Yu (2001), are tractable only under highly simplified assumptions—for exam-
ple, two-firm economies without cascading network effects. Second, directly applying statistical prediction
methods, including standard machine-learning algorithms, faces a fundamental limitation relative to our
structural framework: these approaches typically rely on firm-level features as inputs, but cannot directly
incorporate the full network topology—represented by an n X n adjacency matrix—as a predictive object.

To address these challenges, we adopt a recently developed machine-learning methodology: graph

neural networks (GNNs). GNNs are explicitly designed to capture global graph topology and to model data



with complex cross-sectional dependence, making them a natural empirical counterpart to our production-
network-based structural framework.

Unlike much of the machine-learning literature, which emphasizes extensive model tuning and increas-
ingly sophisticated architectures to maximize pooled out-of-sample predictive performance, our objective is
different. We deliberately employ a parsimonious GNN architecture that is sufficient to deliver clear financial
interpretation of network effects. In doing so, we sacrifice architectural complexity in favor of economic
transparency. Our empirical analysis pursues two primary objectives: (i) to assess the incremental predictive
power of production-network information for credit spreads relative to non-network benchmarks, and (ii) to
characterize which firms’ credit spreads are most exposed to counterparty risk through the network and the
economic states in which such network risk is most strongly priced.

In our GNN framework, each firm is represented as a node, and each firm-to-firm idiosyncratic risk
spillover is represented as a weighted, directed edge. The model incorporates both node-level features—such
as firm-specific characteristics and macroeconomic variables—and edge-level features, which capture the
magnitude of production-network spillovers a; ;. These spillover measures are estimated using input—output
data and stock return data following Diebold and Yilmaz (2014) and Chen (2023). The GNN aggregates
information from neighboring nodes and edges to construct firm-level latent representations, which are then
used to predict CDS spreads.

We evaluate the empirical results in light of the two objectives above by conducting the following
analyses. First, we compare the out-of-sample performance of the GNN model with a set of nonlinear
benchmark models that rely on the same node-level features but exclude network information. Among these
benchmarks, the convolutional neural network (CNN) provides a natural point of comparison. We design
the CNN architecture under strict assumptions so that it corresponds to a GNN in which all network edges
are set to zero.

Under identical training and validation protocols, we find that the GNN substantially reduces out-of-
sample prediction error, with the RMSE declining to 0.89, compared with 1.34 for the CNN benchmark.
Economically, we find that incorporating network edge features induces an average spread change of approx-
imately 21.8% in the full sample and yields an incremental R? of 0.56 in explaining credit spreads. This
result corroborates the central role of network effects in the structural model.

The improvement in predictive accuracy is present for both investment-grade and high-yield firms,

with a more pronounced effect for investment-grade firms. Intuitively, investment-grade firms are typically



large, mature, and highly interconnected through multiple input—output relationships, which places them
in more central positions within production networks. As a result, incorporating network characteristics is
particularly informative for predicting the CDS spreads of investment-grade firms, whose credit risk is more
exposed to contagion through complex production linkages.

Second, we assess the time-varying importance of network structure by examining out-of-sample pre-
diction performance at a monthly frequency. The resulting time-series evidence reveals that GNN models
consistently outperform all competing approaches throughout the sample. In several periods, the RMSE
achieved by GNNss is as low as one quarter of that produced by alternative algorithms, particularly relative
to dimension-reduction methods such as PCR and PLS. This persistent performance gap indicates that pair-
wise inter-firm network information captures a substantial component of credit risk that is not explained by
firm-level characteristics alone.

Moreover, we find there are several episodes in which network structure becomes especially important.
The first occurs during the 2008 financial crisis. During severe economic downturns, production networks
are disrupted as firms face liquidity constraints and operational distress. Under such conditions, inter-firm
contagion and counterparty risk become first-order determinants of credit spreads, which GNNs are well
equipped to capture.

A second episode occurs in late 2009 and early 2010, when equity prices rebounded sharply and
firms began repairing previously disrupted production linkages. This transition period involved substantial
uncertainty due to portfolio reallocation and network reconfiguration. Models that ignore network structure
experience sharp increases in RMSE, whereas GNNs maintain strong predictive performance by accounting
for evolving inter-firm dependencies.

A third episode occurs around 2018, coinciding with the escalation of trade tensions and tariff policies.
Tariffs can be viewed as disruptions to trade linkages that increase fragility in global value chains. During
this period, CDS spreads reflect firms’ exposure to affected trade partners, again amplifying the role of
network structure.

Finally, following the onset of the COVID-19 pandemic in 2020, widespread production shutdowns—such
as factory closures in the semiconductor sector—generated severe upstream supply disruptions. Downstream
firms reliant on these inputs experienced heightened fragility, leading to pronounced network-driven credit
risk. GNNs capture these cascading effects, while non-network models fail to do so.

The time-series evidence suggests that the full inter-firm network captures an important component of



systematic risk that is priced in CDS spreads. These findings echo the production network literature (e.g.,
Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi, 2012), which emphasizes that network structure provides
a microfoundation for systematic risk.

In addition, we examine the network-attributable credit spread change across sectors to identify which
industries’ credit spreads are more susceptible to supply-chain disruptions.

We find that network features tend to matter more for firms that (i) occupy intermediate positions in
the production chain and are exposed to both upstream and downstream risks, (ii) rely heavily on shipping,
logistics, and distribution across the supply chain, or (iii) depend on specialized inputs that are difficult to
substitute. For such firms, disruptions or shocks propagating through supplier—customer relationships can
lead to substantial changes in expected cash flows and, consequently, credit spreads. Industries exhibiting
these characteristics include electrical equipment, shipbuilding, railroad equipment, and defense. For
example, we find that network features induce especially large spread changes for the defense sector during
the period from 2014 to 2018, which coincides with discrete geopolitical shocks such as the Russia—
Ukraine conflict and conflicts involving ISIS. During such periods, defense demand becomes lumpy and
state-dependent, and contracts may be renegotiated, accelerated, delayed, or repriced.

By contrast, industries whose credit risk is primarily driven by firm-specific fundamentals or final
demand exhibit smaller network-attributable spread changes. For instance, network edge features induce
relatively modest shifts in the credit spreads of natural resource extraction industries (mining and coal),
which are heavily influenced by commodity prices and balance-sheet leverage. Similarly, the entertainment
and textile sectors rely more heavily on idiosyncratic fundamentals such as intellectual property, brand value,
and consumer sentiment, and often operate with more diversified supplier and customer bases. As a result,

changes in supply-chain networks play a more limited role in shaping their credit spreads.

Related Literature

This paper contributes to the literature on credit risk. A large body of work proposes structural models to
study default clustering, credit risk spillovers, and interconnectedness in credit markets. Default clustering is
commonly attributed to two broad mechanisms. First, firms may be exposed to common risk factors, which
are typically modeled through state variables or aggregate macroeconomic shocks (e.g., Collin-Dufresne,
Goldstein, and Martin (2001), Duffie and Gérleanu (2001)). Second, default clustering may arise from firm-

specific shocks—namely, idiosyncratic risks—that propagate through economic linkages. Related studies



include Jarrow and Yu (2001), Das et al. (2007), Jorion and Zhang (2007), Jorion and Zhang (2009), and
Azizpour, Giesecke, and Schwenkler (2018). Our paper primarily contributes to the second strand of the
literature by studying idiosyncratic default-risk contagion through inter-firm networks. To our knowledge,
this is the first paper to provide a comprehensive framework for understanding how the entire network
structure shapes credit risk. While most existing structural models focus on highly simplified settings—such
as two-firm economies, the absence of cascading effects, and contagion driven only by extreme firm-specific
tail events—and typically do not explicitly specify the underlying economic linkages, we develop a more
general credit risk structural model with the following features: (i) # firms are economically linked through a
network structure that is explicitly identified as a production-based input—output network; (ii) cascade effects
are permitted; (iii) contagion is asymmetric across firms; and (iv) ordinary idiosyncratic shocks, rather than
only tail events, can propagate through the network. We focus on examining how inter-firm network structure
and firms’ positions within the network shape the cross-sectional behavior of credit spreads.?> While some
CDS-focused studies (e.g., Getmansky, Girardi, and Lewis (2016)) emphasize counterparty risk arising
from common protection sellers such as dealers, our analysis abstracts from dealer cores and OTC market
structure. Instead, we focus on inter-firm economic connections operating through production networks.
Beyond the counterparty-risk literature, there is a broad body of research on modeling and measuring
credit and default risk, including Merton (1974), Duffie and Singleton (1999), Duffie (1999), Duffie, Pan, and
Singleton (2000), Duffie and Lando (2001), Duffie and Pan (1997), Duffie, Pedersen, and Singleton (2003),
Duffie, Saita, and Wang (2007), Bharath and Shumway (2008), Bao and Pan (2013), and Hu, Pan, and
Wang (2013). We contribute to this literature by explicitly incorporating counterparty risk through inter-firm
networks into a structural credit risk framework.# Some papers (e.g., Giesecke, Longstaff, Schaefer, and
Strebulaev (2011)) emphasize the presence of a non-default-related credit risk premium. From a structural
perspective, this premium compensates investors for exposure to adverse states that do not necessarily involve
realized default. Such premia are particularly important during recessions, when bond prices decline sharply,
and are often modeled through time-varying volatility, differences between physical and risk-neutral default

probabilities, or rare-disaster risk. In contrast, our paper focuses on a parsimonious framework that does not

3Related contributions include Hawkes (1971), Giesecke (2002), Giesecke and Weber (2004), Giesecke (2004), Kitwiwat-
tanachai and Pearson (2015), Benzoni, Collin-Dufresne, Goldstein, and Helwege (2015), Ait-Sahalia, Cacho-Diaz, and Laeven
(2015), and Jacobson and Von Schedvin (2015).

4Additional related studies include Altman (1968), Duffie and Liu (2001), Almeida and Philippon (2007), Campbell, Hilscher,
and Szilagyi (2008), Longstaff, Pan, Pedersen, and Singleton (2011), Ang and Longstaff (2013), Gouriéroux, Monfort, and Renne
(2014), Galil, Shapir, Amiram, and Ben-Zion (2014), Kitwiwattanachai (2015), Berndt, Douglas, Duffie, and Ferguson (2018),
Boyarchenko and Shachar (2020), Monfort, Pegoraro, Renne, and Roussellet (2021), and Bao, Hou, and Zhang (2023).



rely on specific time-series assumptions about default intensities—an approach also adopted by Das et al.
(2007). Instead, we emphasize how the cross-sectional n X n network structure governs the propagation of
default risk.

Our work also contributes to the growing literature on inter-firm networks, particularly production-based
networks. A large body of research develops production-based multisector models to study the implications
of network structure for aggregate productivity, aggregate volatility, and macroeconomic tail risk (e.g.,
Carvalho (2008), Acemoglu et al. (2012), Carvalho and Gabaix (2013), Herskovic (2018), and Chen (2023)).
We adapt this production-based input—output framework to provide an economically grounded explanation
for the existence of counterparty risk and to offer a comprehensive analysis of the role of production networks
in shaping credit spreads.>

Finally, this paper contributes to the growing literature on machine learning in finance. A number of
studies, including Kelly, Pruitt, and Su (2019), Gu, Kelly, and Xiu (2020), and Gu, Kelly, and Xiu (2021),
apply machine-learning techniques to asset pricing and return prediction, demonstrating their effectiveness
in handling high-dimensional data. Our paper introduces graph neural networks (GNNs) as a novel empirical
tool for integrating granular and global network-topology information to explain credit spreads.®

The remainder of the paper is organized as follows. Section 2 outlines a conceptual framework for CDS

pricing. Section 3 presents the empirical evidence. Section 4 concludes.

2 Structural Framework

2.1 Production-Network Exposure

We consider a production-based multi-firm network model developed in Herskovic (2018) and Chen (2023),
which links real production to firms’ investment and asset prices. While these frameworks abstract from
leverage and default, we extend the setting by allowing firms to issue defaultable debt in the form of a
zero-coupon bond.

We study a production economy with n firms indexed by i = 1, ..., n. Each firm purchases other firms’

5Additional related literature includes Gabaix (2011), Diebold and Yilmaz (2014), Acemoglu, Akcigit, and Kerr (2016),
Blasques, Koopman, Lucas, and Schaumburg (2016), Hirdle, Wang, and Yu (2016), Acemoglu, Ozdaglar, and Tahbaz-Salehi
(2017), Demirer, Diebold, Liu, and Yilmaz (2018), Chen, Hirdle, and Okhrin (2019), Liu (2022), Dew-Becker (2023), Engle and
Kelly (2012), Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2016), and Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2020).

6Additional related work includes Kelly and Jiang (2014), Kelly, Malamud, and Zhou (2024), Wang, Lin, Cui, Jia, Wang, Fang,
Yu, Zhou, Yang, and Qi (2019), Uddin, Tao, and Yu (2021), and Zhang, Pu, Cucuringu, and Dong (2023).



goods as intermediate inputs in order to produce its own output. A firm’s output can either be used as an
intermediate input by other firms or be directly consumed by the representative household. Each firm’s
production technology is subject to negative idiosyncratic productivity shocks.

Firms use the cash flows generated from selling their real output to issue equity, which is held by the
household. As a result, idiosyncratic productivity shocks propagate through the supply chain and affect
firms’ cash flows, dividends, and stock returns. In addition, each firm i issues a single zero-coupon bond
with face value F; and maturity 7. The risk-free interest rate r is constant, and the face value F; is fixed and
does not vary with economic conditions.

As shown in Chen (2023), the production network generates rich cross-firm dependencies not only in cash
flows, dividends, stock returns, and return volatilities, but also in idiosyncratic return volatilities—that is, the
volatility of residual returns after removing common components. Importantly, this idiosyncratic volatility
spillover structure provides a natural measure of pairwise systemic risk within the production network. In
this paper, we focus on this pairwise systemic risk measure and explore its implications for credit spreads.

Specifically, we define an n X n adjacency matrix,
A = [agl} s (1

which characterizes pairwise idiosyncratic risk spillovers across firms as summarized by equation (1). We
take this structural result as the starting point of our analysis and leave the detailed derivation of the full
production equilibrium to the Internet Appendix.

As a model implication, each element a;; in equation (1) is an endogenous function of the underlying
production network weights. A larger value of a;; indicates that firm j exerts a stronger idiosyncratic risk
propagation effect on firm i. This effect reflects the overall importance of firm j to firm i through three
channels: (i) the direct importance of firm j’s output as an input supplier to firm 7; (ii) the indirect importance
of firm j’s output through other firms in the production network that subsequently affect firm 7; and (iii) the
importance of firm j’s output for aggregate household consumption, which in turn feeds back to firm i.

Let u; ; > 0 denote a negative idiosyncratic productivity shock to firm j at time 7. Firm i’s operating

cash-flow innovation is given by

n
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as shown in equation (2), where M, is a vector of aggregate macroeconomic conditions and X; ; is a vector
of firm-specific characteristics.

Negative supplier shocks reduce firm i’s expected cash flows in proportion to its downstream exposure
a;j in equation (2). In addition, supplier disruptions increase uncertainty in downstream production. We

therefore allow cash-flow volatility to depend on production-network exposure according to
n
- 2 ) 2 2
Var, (An; ) = Orit =0+ Z a;;i0u i o 3)
j=1

2

as specified in equation (3), where 77,

; 1s a firm-specific baseline variance and 0'3 it denotes the conditional

variance of supplier j’s downside shock.

2.2 Capital Structure and Distance to Default

Let V; ; denote the market value of firm i’s assets at time ¢, defined as the present value of future operating

cash flows. Equity holders have limited liability, so the market value of equity satisfies
Eg = max(Vy, - Fre T, 0), )

as given in equation (4).
Following the distance-to-default framework of Bharath and Shumway (2008), distance to default for

firm i at time ¢ is defined as
Lit
ln(_v) + (r — %G_Z’i’t) (l — t)

13

DD;; = , )
OvV.,it T—1t

as shown in equation (5), where oy ; ; denotes the volatility of firm asset value.
Consistent with Bharath and Shumway (2008), asset value and asset volatility are approximated using

observable equity market data according to

Vie = Ei; + Fi, (6)
E;;

OV.ia ® O it (N
i,t

as specified in equations (6) and (7), where ok ; ; denotes equity return volatility.
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We allow equity value and equity volatility to depend on production-network exposure as follows:

n

’ ’
IIlEl"t =q; + aMMt + a'XXi,t — Z aijgj,t + Ni.ts (8)
J=1
n
OE,it =0E,;i+ Z aij®jts 9
J=1

as described in equations (8) and (9), where 6; ; > 0 captures supplier-specific downside cash-flow news

and ¢; ; > 0O captures supplier-specific downside uncertainty.

2.3 Default Probability and Credit Spreads

To price credit default swaps, we approximate the risk-neutral default probability over the CDS horizon [#, T
as

P?, (default by T) ~ ®(-DD;,,) (10)

as given in equation (10), abstracting from time variation in risk premia.
Assuming fractional recovery of par R € (0, 1) and a zero-coupon approximation for the CDS contract,

the par CDS spread s; ; satisfies

Q
P> (default by T)
o= (1-R)— : 11
Sl,l ( ) T —¢ ( )
as defined in equation (11).
Substituting equation (10) into equation (11) yields the simplified CDS spread,
1-R
Si,t = T—; (I)(—DDi,t) s (12)

as shown in equation (12).
Equations (1)—(12) jointly imply that firm i’s CDS spread is a nonlinear function of macroeconomic
conditions, firm-specific characteristics, and production-network exposure {a; };?:1. In particular, greater

downstream exposure to negative supplier shocks lowers distance to default and increases credit spreads.
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3 Empirical Evidence

We provide empirical support for our structural framework, which emphasizes the importance of the entire
network topology in explaining credit spreads. To this end, we adopt a recently developed machine-learning
methodology—graph neural networks (GNNs)—to conduct CDS spread prediction exercises. GNNs are
specifically designed to model data with complex cross-sectional dependence and to incorporate rich network
topology features as inputs, making them a natural empirical counterpart to our structural framework.

The basic intuition behind the GNN architecture is to represent the inter-firm network explicitly. Each
firm is modeled as a node, while each firm-to-firm idiosyncratic risk spillover measure is represented as a
weighted and directed edge. The model takes both node-level features—such as firm-specific characteristics
and macroeconomic variables—and edge-level features, namely the idiosyncratic risk spillover measures
a;j, as inputs. Through a sequence of message-passing and aggregation steps, the GNN embeds information
from the network structure and edge weights into latent node-level representations, which are then used to
predict CDS spreads in a standard neural network framework.

We briefly describe the GNN architecture below and relegate architecture details to the Internet Appendix.
We then describe the data construction, with particular emphasis on the measurement of node-level and edge-

level features, and finally present the CDS spread prediction results.

3.1 Architecture of the Empirical Algorithm

In much of the machine-learning literature, researchers emphasize extensive model tuning and increasingly
sophisticated architectures to maximize out-of-sample predictive performance. Our objective and approach
differ. We deliberately employ a parsimonious vanilla GNN architecture that is sufficient to deliver a clear
financial interpretation of network effects.

The Graph Neural Network (GNN) framework consists of two key components: an inter-layer message-
passing scheme and an intra-layer updating scheme, with the latter corresponding to the standard updating
mechanism used in conventional neural network architectures such as CNNs.

Figure 1 illustrates the inter-layer message-passing scheme that is specific to GNNs.

Ficure 1 ABouTt HERE
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This scheme determines how initial node-level and edge-level features are transformed into latent node
representations. Specifically, each normalized embedding fsz) at layer k incorporates information from

node 7 and its neighbors according to

]:ll(k) = hl(k) @ (Clij), (13)

JEN(I)

where fzgk) denotes the normalized embedding of node i at layer &, h;k) is the embedding of node i at layer
k, €P represents the concatenation operator, and N (i) denotes the neighborhood of node i.

In equation (17), a;j represents the directed idiosyncratic risk spillover from node j to node i. Collecting
all a;; yields the adjacency matrix A = [a;;]. To encode network effects, we follow the graph convolutional
network (GCN) formulation of Kipf and Welling (2016). Under this framework, network information is

incorporated as
A% = pTAF®OW®E —if Ais asymmetric, (14)

where H¥) is the output of the k-th layer, A = A + I with I denoting the identity matrix, D is the out-degree
matrix, H¥) is the input to the k-th layer, and W¥) is the trainable weight matrix. The out-degree matrix D
is diagonal, with diagonal elements equal to the column sums of A.

The intuition is as follows. Each row of the adjacency matrix A = [a;;] reflects the extent to which
firm i receives idiosyncratic risk spillovers from other firms. By multiplying this row by neighboring firms’
features and aggregating the results, the model assigns greater weight to more economically important
suppliers. After aggregating weighted supplier information together with firm i’s own characteristics, the
GNN constructs a latent representation of firm i. The matrix D~! serves to normalize the adjacency matrix.
Thus, the contribution of neighboring information depends on the economic importance of the supplier to
firmi.

The intra-layer updating scheme governs how node representations are transformed from one hidden layer
to the next. This structure is standard across neural network architectures. Each layer applies a sequence of
operations to the node representations, including batch normalization, dropout, nonlinear activation (ReLU),
and an aggregation function. In standard neural networks, the aggregation function typically takes the form

of an equally weighted average. In GNNs, however, aggregation is performed by combining neighboring
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node characteristics using edge-weighted averages, thereby reflecting the relative importance of neighboring
information.

The architecture described above corresponds to the vanilla GNN baseline, which is fundamentally
cross-sectional. That is, it operates on a single cross-sectional network snapshot to predict outcomes in the
subsequent period. Unlike CNNs, which naturally incorporate temporal pooling, the vanilla GNN does not
include an explicit mechanism for temporal aggregation. Although we implement an extended architecture
with pooling over time in the Internet Appendix, we focus on the baseline specification in the main analysis.
This choice is beneficial for two reasons. First, it is consistent with our structural framework, which
emphasizes cross-sectional network effects rather than explicit dynamic propagation. Second, introducing
temporal pooling requires additional assumptions—such as recurrent structures (e.g., LSTM)—that increase
model complexity and reduce interpretability. Moreover, CDS data are sparse and unevenly observed across
firms and time, which necessitates masking schemes that further obscure economic interpretation. Therefore,

we focus on the vanilla structure in the main analysis.

3.2 Data and Implementation Details

We use daily Markit CDS data for U.S. firms spanning January 2005 to December 2020.” We focus on
the S5-year tenor and senior unsecured contracts, which are the most liquid in the CDS market. We use
spreads from the prevalent XR14 contract. The spread on XR contracts reflects default risk while excluding
restructuring risk, which aligns with our structural framework.3

We construct a monthly panel by retaining the most recent CDS spread observed in each month. The

final dataset contains 678 firms and 130,176 firm-month observations over the sample period.

TaBLE 1 AND FiIGURE 3 ABouT HERE

Table 1 reports summary statistics for the distribution of log CDS spreads, along with firms’ market
capitalization and implied credit ratings. Columns 1-2 show that CDS contracts are observed for a median
duration of 137 months (11.4 years), with a minimum of 2 months and a maximum of 192 months (16 years).

Columns 3—4 indicate that the sample spans firms ranging from very small (market capitalization of $700

7Prior to 2005, CDS coverage is limited, rendering the data less suitable for machine-learning applications.

8As documented by Liu (2022), XR contracts became the standard for U.S. corporates following the 2009 CDS Big Bang,
whereas MR (modified restructuring) contracts were more common prior to that event. XR spreads primarily reflect default risk,
while MR spreads reflect both default and restructuring risk.
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million) to very large (market capitalization of $1.73 trillion). Columns 5-6 show that firms cover a wide
spectrum of credit quality, from AA-rated to CCC- and D-rated firms.® These statistics highlight the broad
coverage of the CDS market in terms of firm size, credit quality, and sample duration.

We use the logarithm of CDS spreads as the target variable. CDS spreads are strongly right-skewed,
and commonly used loss functions in machine learning, such as the mean squared error (MSE), are highly
sensitive to skewness: large observations receive disproportionate weight and can dominate the loss. As
a result, a model trained on levels may overfit extreme observations at the expense of fitting the bulk of
the distribution. To mitigate this issue, we apply a logarithmic transformation to CDS spreads and use the
transformed variable as the target in our prediction model. Figure 3 presents the histogram of log CDS

spreads. The mean log CDS spread is approximately —4.69, with a standard deviation of 0.94.

Node Characteristics. We construct 94 firm-level characteristics following Gu, Kelly, and Xiu (2020).
Of these, 61 characteristics are updated annually, 13 quarterly, and 20 monthly. These characteristics are
designed to capture distinct and largely nonredundant information about firm fundamentals.!©

In addition, we include eight macroeconomic variables from Welch and Goyal (2008): the dividend-
price ratio (dp), earnings-price ratio (ep), book-to-market ratio (bm), net equity issuance (ntis), Treasury-bill
rate (tbl), term spread (tms), default spread (dfy), and stock variance (svar).!! In total, we use 112 node-
level features. Following Kelly, Pruitt, and Su (2019) and Freyberger, Neuhierl, and Weber (2020), all

characteristics are rank-normalized cross-sectionally each month and mapped to the interval [—1, 1].

Edge Characteristics. To construct edge-level features, we estimate pairwise idiosyncratic volatility
spillovers using CRSP daily stock returns, consistent with the structural framework. This procedure follows
Chen (2023), which generalizes the systemic risk measures developed in Diebold and Yilmaz (2014). We
assume that firms within the same industry produce similar products and are subject to similar productivity-
specific shocks. Accordingly, we estimate risk spillovers at the sector level and impose them on firms based

on industry classification.

9The firm count exceeds 678 because some firms experience rating changes over time and are therefore associated with multiple
ratings during the sample period. Sectoral distributions of CDS contracts are reported in Internet Appendix B.

10We account for data release delays following Gu, Kelly, and Xiu (2020) and Gu, Kelly, and Xiu (2021). The underlying data
and replication codes for early years are provided by the authors. Related literature includes Fama and French (2016), Green, Hand,
and Zhang (2017), Hou, Xue, and Zhang (2020), Gu, Kelly, and Xiu (2021), and Kelly, Malamud, and Zhou (2024). Details of all
characteristics are provided in Internet Appendix C.

Including interactions between firm-level and macroeconomic variables yields similar out-of-sample results.
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Specifically, we compute daily industry returns as value-weighted averages of firm returns. For each
calendar month, we regress daily industry returns on the Fama—French three factors and treat the residuals as
idiosyncratic industry returns.!? Monthly idiosyncratic volatility is then computed as the standard deviation
of daily idiosyncratic returns.

We estimate pairwise idiosyncratic volatility spillovers using a rolling-window LASSO vector autore-
gression (VAR). For each 90-month rolling window, we estimate a VAR for the panel of sector-level log
idiosyncratic volatilities and perform a generalized variance decomposition (GVD) for 6-month-ahead fore-
cast errors.’® This procedure yields a 48 x 48 matrix of spillover intensities, where each element a;; measures
the contribution of shocks originating in sector j to the idiosyncratic volatility of sector i. These measures
constitute the empirical counterpart of the structural spillover weights a;; in the model.

We collect the estimated a;; from each rolling window to form a time-varying adjacency matrix A,

updated at a monthly frequency.™*

Extrapolation to the Firm Level. After obtaining sector-level spillover measures, we extrapolate them
to the firm level by imposing sectoral risk spillovers on firms according to their industry classifications.

Figure 2 illustrates this procedure.

Ficure 2 ABout HERE

Figure 2 shows an example with three sectors and five firms. If the spillover intensity from sector 2 to
sector 1 equals 0.1, then this value is assigned as the spillover intensity from any firm in sector 2 to any firm
in sector 1.

By imposing sector-level adjacency matrices at the firm level, we map inter-sectoral dependencies into
inter-firm dependencies. This approach implicitly assumes that firms within the same sector are representative
of sector-level production and risk exposure. While heterogeneity undoubtedly exists within industries, this
assumption is consistent with our production-network framework, in which firms within a sector face similar
productivity shocks. For clarity, we abstract from additional firm-specific shock channels.

Finally, one may ask why we do not construct idiosyncratic volatility spillovers directly from CDS data.

12Results are robust to removing only the CAPM factor, removing five principal components, or not removing common factors
at all.

BBResults are robust to rolling windows ranging from 80 to 100 months and forecast horizons between 6 and 10 months.

“The adjacency matrix at time ¢ is constructed using data from ¢ — 90 to 7. Results are robust to lagging edge inputs by one
month to avoid look-ahead bias. Prior work (e.g., Kryzanowski, Perrakis, and Zhong, 2017) finds that CDS markets tend to lead
equity markets in response to negative news by days or weeks.
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We do not pursue this approach because corporate CDS data exhibit substantial noise, sparse coverage,
infrequent trading, and non-transaction-based quotes that vary significantly across time and firms. In
contrast, equity market data are cleaner, higher frequency, and better suited for constructing reliable spillover
measures. Moreover, using stock data aligns naturally with our structural framework, in which equity prices

reflect firm value and default risk.

Training Configuration and Benchmark We construct a monthly panel in which the inputs consist of
firm-level node characteristics and inter-firm edge characteristics, and the target variable is the CDS spread.
As discussed above, we adopt a vanilla GNN architecture that operates primarily in the cross section.
Accordingly, for each month ¢, we train the GNN using the full cross-sectional network observed at month
t. We then use the ¢ + 1 snapshot as a validation set to tune hyperparameters and prevent overfitting,
and we generate out-of-sample predictions for month 7 + 1. For all GNN specifications, we use stochastic
gradient descent (SGD) as the optimizer. To mitigate overfitting, we implement early stopping and select all
hyperparameters by minimizing the mean squared error on the validation set.

We recursively refit the model each month to incorporate the most recent node-level and edge-level
information, despite the associated computational cost, until the end of the sample period. This rolling
training scheme ensures that all reported predictions are strictly out of sample.

To benchmark the performance of models that do not incorporate network edge information, we consider
a set of alternative nonlinear machine-learning methods, including convolutional neural networks (CNN),
gradient boosting regression trees (GBRT), random forests (RF), principal component regression (PCR),
partial least squares (PLS), and support vector regression (SVR). These models use the same set of firm-level
node characteristics as inputs but do not incorporate inter-firm edge features. All competing models are
trained using the same rolling data partitions and evaluated under the same out-of-sample protocol as the
GNN.

To provide a clean and internally consistent benchmark for the GNN, the CNN model is designed
under strict architectural restrictions such that it is equivalent to a GNN with all network edges removed.
Specifically, this benchmark preserves the same inter-layer and intra-layer structure as the GNN, but replaces
the adjacency matrix with the identity matrix, effectively eliminating all cross-node message passing. The
model uses the same number of layers, activation functions, and parameter-sharing structure as the GNN,

and excludes any graph-level normalization. We hand-code the architecture to ensure that this zero-edge
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GNN collapses exactly to a per-node feedforward network. For simplicity, we refer to this restricted model
as CNN throughout the paper. Detailed descriptions of all comparison algorithms are provided in Internet

Appendix D.

3.3 Empirical Results

We evaluate the importance of network edge features in explaining credit spreads by examining both pooled
out-of-sample (OOS) performance across the entire sample and time-series variation in OOS performance.

The OOS evaluation provides an objective assessment of predictive accuracy.

Pooled Out-of-Sample Performance. Table 2 reports pooled OOS performance for all machine-learning
models. Panel A reports pooled out-of-sample root mean squared errors (RMSEs), while Figure 4 visualizes

these results using bar plots.

TABLE 2 AND FIGURE 4 ABouT HERE

Column 1 of Table 2 reports RMSEs for the full sample from March 2005 to December 2020. Columns 2
and 3 report RMSEs for investment-grade (BBB and above) and high-yield (BB and below) firms, respectively.
Columns 4 and 5 report RMSE:s for firms below and above the median market capitalization.

The results in Column 1 show that GNN models, across different architectural depths, achieve RMSEs
of approximately 0.89—Iess than half of those produced by alternative algorithms. Under identical training
conditions, CNN models exhibit substantially higher RMSE: 1.34 with two hidden layers. While increasing
CNN depth initially improves performance, additional layers lead to deterioration, likely due to overfitting. In
contrast, GNN performance is remarkably stable across architectures: even a single hidden layer is sufficient
to capture the relevant network topology, and additional layers yield limited incremental gains. This stability
reflects diminishing returns from repeated aggregation over a fixed network structure.

Tree-based methods (GBRT and RF) outperform dimension-reduction approaches (PCR and PLS) and
support vector regression (SVR), but still underperform relative to CNNs and substantially underperform
relative to GNNs. Overall, these results indicate that incorporating network topology—specifically inter-firm
idiosyncratic risk spillovers—accounts for a substantial share of the cross-sectional variation in CDS spreads.

Columns 2 and 3 show that GNN models deliver substantial performance gains for both investment-
grade and high-yield firms. For investment-grade firms, RMSEs from CNN2 are approximately 1.4, whereas

GNN RMSEs are around 0.9. For high-yield firms, RMSEs from alternative models are approximately 1.2,
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compared with about 0.85 for GNNs. These results indicate that network information improves predictive
accuracy across credit qualities, with particularly pronounced gains for investment-grade firms. Intuitively,
investment-grade firms tend to be larger, more central, and more interconnected within production and trade
networks; as a result, their CDS spreads are especially sensitive to network-wide spillovers, which GNNs are
well suited to capture.

Columns 4 and 5 show that GNN models outperform competing algorithms for both small and large
firms. For small firms, RMSE declines from 1.30 (CNN2) to 0.80 (GNN2), while for large firms RMSE
declines from 1.39 to 0.96. These improvements are of comparable magnitude. However, we note that
firms in our sample are predominantly small to medium-sized, and therefore we refrain from drawing strong

conclusions regarding size-based heterogeneity.

Economic Significance of Network Effects. To assess the economic magnitude of network effects, Panel B
of Table 2 reports two additional measures.
The first measure is the network-attributable spread change (NSC), which captures the magnitude of the

network-induced change in credit-spread levels relative to a node-only benchmark:

— GN
EHlog s
|E[log s]|

N ——CNN
—logs ”

NSC =

Here, 1@GNN denotes the predicted log CDS spread from GNN2, lgg\sCNN denotes the predicted log CDS
spread from CNN2, and log s denotes the realized log CDS spread. The numerator measures the average
magnitude of the network-induced change in the predicted log spread level when network information is
incorporated, while the denominator normalizes this change by a typical log spread level. This normalization
yields a scale-free statistic that facilitates comparison across samples, industries, and time.

NSC can be interpreted as an average treatment—style effect relative to a node-only baseline, quantifying
how much the inclusion of network information shifts the level of predicted credit spreads. Panel B shows
that incorporating network edge features induces an average spread change of approximately 21.8% in the
full sample. The network-induced change is larger for high-yield firms (30.1%) than for investment-grade

firms (18.5%), and larger for small firms (26.6%) than for large firms (17.7%).
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In addition to NSC, we report an incremental explanatory-power measure, denoted Inc_R?:

—— GNN
) E[(logs —log s)z]
Inc R“"=1-

—C .
E[(log s log s)Z]

This statistic measures the fraction of node-only prediction error eliminated by incorporating network edge
features.

As reported in Panel B, the average incremental R? is approximately 0.56, with particularly pronounced
gains for investment-grade firms and for relatively smaller firms in our sample. Given the limited size
coverage of our data, we refrain from drawing strong conclusions regarding size-related heterogeneity.
Nevertheless, the results consistently indicate that network edge information is especially informative for
explaining the credit spreads of investment-grade firms, which tend to be more central and embedded in
complex trade and production relationships.

While network edge information also improves the prediction of credit spreads for high-yield firms, the
associated gains in explanatory power are more modest than those observed for investment-grade firms. A
plausible explanation is that high-yield firms are closer to default, and their credit risk is more strongly driven
by firm-specific fundamentals and balance-sheet conditions. As a result, firm-level characteristics account
for a larger proportion of the variation in their credit spreads, even though network information remains

economically relevant.

Time-Series Variation in Out-of-Sample Performance. We next examine the time-series performance

of network features. Figure 5 plots the monthly out-of-sample RMSEs for each algorithm.

Ficure 5 ABouTt HERE

Figure 5 shows that GNN models consistently outperform all competing models over time. In certain
periods, GNN RMSEs are as low as one-quarter of those produced by alternative algorithms, particularly
relative to dimension-reduction methods such as PCR and PLS. This persistent outperformance highlights
the importance of pairwise inter-firm network information in explaining CDS spreads.

More importantly, the time-series results reveal distinct episodes during which network structure becomes
especially informative for CDS pricing. The first such episode coincides with the 2008 Global Financial

Crisis. During periods of severe economic stress, production networks are disrupted as firms face binding
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liquidity constraints, operational shutdowns, and heightened default risk. In this environment, inter-firm
contagion and counterparty exposure become first-order determinants of credit spreads. As idiosyncratic
shocks propagate through production and financial linkages, CDS spreads increasingly reflect network
position rather than standalone firm fundamentals. GNNs are well suited to capture these contagion effects,
whereas models that abstract from network structure perform poorly.

A second episode arises in late 2009 and early 2010, a transitional phase following the crisis. Although
equity markets rebounded sharply during this period, production and counterparty networks remained
impaired and were undergoing reconfiguration. Firms adjusted supplier relationships, renegotiated contracts,
and reallocated production across newly constrained networks. This re-wiring process introduced substantial
uncertainty that was not immediately reflected in balance-sheet or accounting data. As a result, models that
rely solely on firm-level features exhibit a sharp deterioration in predictive performance. In contrast, GNNs
continue to perform well by incorporating evolving inter-firm dependencies that shape downside credit risk
during this network re-equilibration phase.

A third episode occurs around 2018, coinciding with the escalation of trade tensions and the introduction
of tariff policies. From a network perspective, tariffs represent shocks to trade and production linkages that
increase fragility within global value chains. Firms’ exposure to affected suppliers and customers becomes
a key determinant of credit risk, as disruptions propagate asymmetrically through the network. During this
period, CDS spreads reflect not only firm-specific conditions but also indirect exposure to trade partners
facing heightened uncertainty. The superior performance of GNNs during this episode underscores the role
of network structure in transmitting trade-related shocks into credit markets.

Finally, following the onset of the COVID-19 pandemic in 2020, widespread production shutdowns
generated severe upstream supply disruptions. The sudden closure of critical nodes—such as semiconductor
manufacturing facilities—had cascading effects on downstream firms that depended on these inputs. Credit
risk during this period was therefore shaped by firms’ positions within disrupted supply chains rather than
by their pre-pandemic fundamentals alone. GNNs effectively capture these cascading network effects, while
non-network models struggle to account for the resulting comovement in CDS spreads.

Taken together, the time-series evidence not only supports the predictions of our structural framework but
also highlights the state-dependent importance of inter-firm networks in credit markets. In periods of stress,
transition, or structural disruption, the full network topology captures an economically meaningful component

of systematic risk that is priced in CDS spreads. These findings are consistent with the production-network
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literature (e.g., Acemoglu et al., 2012), which emphasizes that network structure provides a microfoundation
for aggregate risk and its amplification.

To examine how global network features differentially affect sectors within the production network over
time, we plot the network-attributable spread change (NSC) for firms across Fama—French 48 industries and
across out-of-sample months.

Figure 6 presents a heatmap of the time-varying NSC across industries. For each month and each Fama—
French 48 industry, we compute NSC as the average absolute difference between the predicted log CDS
spread from GNN2 and that from CNN2, normalized by the average log CDS spread within the industry. At
each month, industries are ranked by NSC. The five industries with the largest network-attributable spread
change are highlighted in red, while the five industries with the smallest network-attributable spread change

are highlighted in blue; all remaining industries are shown in white.

Ficurg 6 ABouT HERE

As shown in Figure 6, several industries consistently appear among those with the highest NSC. These
include Industry 22 (electrical equipment, covering electronic transmission and distribution equipment and
electrical apparatus), Industry 25 (shipbuilding and railroad equipment), and Industry 26 (defense-related
industries, including guided missiles and tanks).

In contrast, several industries consistently appear among those with the lowest NSC, including Industry 7
(entertainment, such as film and live performances), Industry 15 (rubber and plastic products), Industry 16
(textiles, including textile mill and canvas products), Industry 28 (mining, including metal and nonmetallic
mining), and Industry 29 (coal, including bituminous coal and lignite mining).

These patterns are economically intuitive. Network features tend to matter more for firms that (i) occupy
intermediate positions in the production chain and are exposed to both upstream and downstream risks, (ii)
rely heavily on shipping, logistics, and distribution across the supply chain, or (iii) depend on specialized
inputs that are difficult to substitute. For such firms, disruptions or shocks propagating through supplier—
customer relationships can lead to substantial changes in expected cash flows and, consequently, credit
spreads.

The industries highlighted in red—notably electrical equipment, shipbuilding, railroad equipment, and

defense—are precisely those that lie at critical intermediate nodes of the production and trade network. Their
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revenues depend on continuous flows from multiple counterparties, making them particularly sensitive to
network-level disruptions. Defense-related firms, in particular, rely on highly specialized and sophisticated
components sourced through rigid supply chains and often operate under long-term contracts. This network
rigidity, characterized by low input substitutability, amplifies the importance of network edge information
in determining the credit health of the defense sector. Consistent with this interpretation, network features
induce especially large spread changes for defense sector during the period from 2014 to 2018, which
coincides with discrete geopolitical shocks such as the Russia—Ukraine conflict and conflicts involving
ISIS. During such periods, defense demand becomes lumpy and state-dependent, and contracts may be
renegotiated, accelerated, delayed, or repriced.

By contrast, the industries highlighted in blue are those whose credit risk is primarily driven by firm-
specific fundamentals or final demand. For example, firms in natural resource extraction (mining and
coal) are heavily influenced by commodity prices and balance-sheet leverage, which dominate network
considerations. Similarly, entertainment and textile firms rely more heavily on idiosyncratic fundamentals
such as intellectual property, brand value, and consumer sentiment, and often operate with more diversified
supplier and customer bases. As a result, network edge features induce relatively smaller shifts in their credit

spreads.

4 Conclusion

This paper develops a structural framework for credit counterparty risk in which idiosyncratic shocks
propagate through an inter-firm production network. By explicitly modeling firms’ economic linkages
as input—output relationships, the framework clarifies how both a firm’s position within the network and
the global network topology shape the transmission of idiosyncratic default risk and the cross-sectional
behavior of credit spreads. The model allows for asymmetric contagion, cascading effects, and ordinary
firm-specific shocks, and links production-network spillovers to default intensities and CDS spreads through
a distance-to-default channel.

To provide empirical support for the structural mechanism, we propose a parsimonious network-based
empirical approach that directly incorporates the full inter-firm network topology. Using graph neural
networks (GNNs), we embed both firm-level characteristics and pairwise idiosyncratic risk spillovers into a

unified prediction framework. This approach overcomes a key limitation of standard empirical and machine-
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learning methods, which typically rely on firm-level features and cannot incorporate the entire n X n network
structure as a predictive object.

Empirically, we find that models incorporating production-network information substantially outperform
non-network benchmarks in predicting CDS spreads. The improvement is economically large, persistent
across firm size and credit quality, and particularly pronounced during periods of financial stress, economic
transitions, and supply-chain disruptions. These findings indicate that inter-firm network structure captures
an important component of credit risk that is not explained by firm fundamentals or common shocks alone,
and that this network-based risk is state-dependent and priced in CDS markets.

Overall, our results provide direct empirical support for a production-network-based view of counterparty
risk. They suggest that credit spreads reflect not only firms’ standalone default risk, but also their exposure
to idiosyncratic shocks originating elsewhere in the network. More broadly, the paper demonstrates how
combining structural economic modeling with modern network-based machine-learning tools can yield new
insights into credit risk, contagion, and systemic risk. An important direction for future research is to extend
the framework to incorporate other forms of inter-firm linkages—such as financial exposures or dealer

networks—and to study the dynamic evolution of network risk over time.
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Table 1. Summary Statistics of CDS Contracts and Issuing Firms

This table presents summary statistics for CDS contracts and their issuing firms from January 2005 to December 2020. Columns
1-2 show CDS contract duration statistics. Columns 3-4 show firms’ market capitalization statistics. Columns 5-6 present the

distribution of firms’ credit ratings.

CDS Duration Firm Market Capitalization Firm Rating Distribution
Month Dollar($) Rating Firm Count

mean 117 mean 2.65 x 107 AA 97
std 69 std 5.38 x 10’ A 144
min 2 min 7.01 x 102 BBB 192
25% 50 25% 3.57 x 100 BB 156
50% 137 50% 1.01 x 107 B 88
75% 188 75% 2.64 x 107 CCC 59
max 192 max 1.71 x 10° D 3
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Table 2. Out-of-Sample Performance and Network Attribution. Panel A reports pooled out-of-sample root mean squared errors
(RMSESs) for alternative machine-learning models. Panel B reports the economic contribution of network edge information beyond
node characteristics, measured by the network-attributable spread change (NSC) and the incremental R? (Inc_R?). Column 1 reports
the full sample (March 2005-December 2020). Columns 2-3 report investment-grade (BBB and above) and high-yield (BB and

below) firms. Columns 4-5 report small (below-median market capitalization) and large (at or above median market capitalization)

——GNN —CNN
firms. NSC is defined as E[|log s —logs [1/|E[log s]|. Inc_R? is defined as 1 — MSEGgnN/MSEcnn. Predicted log spreads

are obtained from CNN2 and GNN2.

All Investment Grade High Yield Small Big

Panel A: Pooled Out-of-Sample RMSE

RF 1.665 1.828 1.271 1.464 1.845
GBRT 1.900 2.128 1.320 1.570 2.181
PCR 2.196 2.527 1.283 1.501 2719
PLS 2.348 2.679 1.459 1.679 2.865
SVR 1.876 2.103 1.296 1.540 2.160
CNNI1 2.245 2.308 2.110 2.072 2.405
CNN2 1.338 1.392 1.221 1.282 1.391
CNN3 1.378 1.437 1.249 1.337 1.418
GNNI1 0.890 0.909 0.850 0.808 0.965
GNN2 0.888 0.904 0.854 0.809 0.960
GNN3 0.893 0.915 0.847 0.808 0.972

Panel B: Network-Attributable Spread Change and Incremental R>

NSC 0.218 0.185 0.301 0.266 0.177

Inc_R? 0.560 0.578 0.511 0.602 0.524
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Figure 1. Inter-Layer Design of the GNN
This figure depicts the inter-layer message-passing architecture of the GNN algorithm, where node embeddings are generated
according to the GCN procedure proposed in Kipf and Welling (2016).
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Figure 2. Extrapolation of Sector-Level Network Effects to Firm Level

This figure illustrates the process of extrapolating sector-level idiosyncratic risk spillover to the firm level. Panel A depicts risk
spillover among three sectors, estimated from the Generalized Variance Decomposition (GVD) of VAR forecast errors. In the
adjacency matrix, element (7,7) indicates the risk spillover intensity from sector j to sector i. Panel B demonstrates the extrapolation
of this risk spillover to five firms across the three sectors.
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Figure 3. Distribution of Log CDS Spreads
This figure displays the histogram of log CDS spreads for 5-year tenor, senior unsecured contracts from January 2005 to December
2020.
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Figure 4. Out-of-Sample Prediction Error of Machine Learning Algorithms

This figure presents the out-of-sample prediction error of various machine learning algorithms using pooled Root Mean Square
Error (RMSE). Panel A displays the overall RMSE across all out-of-sample periods. Panel B presents the overall RMSE by firm
credit rating, with investment grade defined as BBB or above and high-yield as BB or below. Panel C shows the overall RMSE by
firm size, with small firms defined as those below the median market capitalization and large firms as those at or above the median.

175
&
2150
z - Al
125
1.00
- . . l
0.50
RE GBRT PCR PLS SVR CNNY CNN2 CNN3 GNNL GNN2 GNN3

(a) Pooled RMSE
25
2.0
wl5
]
=
z - High_Y
e Inv_Grade
1.0
0.5
0.0
RE GBRT PCR pLS SR CNNL NN CNN3 GNNL GNN2 GNN3

(b) Pooled RMSE by Firm Credit Rating

3.0

2.0
w
215
z = Small
= Big
1.0
0.5
0.0
RF GBRT PCR PLS SVR NN CNN2 CNN3

GNNL GNNZ GNN3

(c) Pooled RMSE by Firm Market Capitalization

30



0¢0c 8T0¢ 910¢ v10Z [4y4 0T0C 800¢ 900¢

G0
FO'T
FGQ'T
F0'¢
FG'¢
Lo
ENND ——
ZNND ——
INND ——
ENND —— rse
ZNND ——
TNND
YAS ——
S1d — o'V
¥od
1499 —
EL|

*0T0T 12quuada( 01 G107 Ydre] woly porrad aup
IOAO SUNILIOS[e SUTUIRI[-AUIYORW [[B 10 (FSIAY) 0110 parenbs ueaur j001 ojdures-jo-no Apuowt oy sjod amsy s1yy, “1041y UondIpasd djdures-Jo-yn(Q Jo SILIIG dWL], °S N1

31



— —
r......w. .1. TH m ! . I " Yim 'l .Jqu,mw

1.......& ﬂ..ﬂﬁ .__-J. ....l..... CIRTNT 1.-.... o amm 2o et nf#
R I I

1 | A

EIEIIINEE N -._. I mia I P fe
{ ." ..I... T ..-.. .J-.ll-. :.I- -..- dl..ﬂ.-..l -... B

y " L

I 1
' oz
"Ill....n _.H_ f". mw

il ﬁ .I.

" UL L Bl BRI
u . .*_.. .-._... - mIrLon 4

=l's b : ........._ I __.._. I EEIN -...Lll WE m

JLLRYR L) A . ._. -_r.lf¥= Fiag' ) b B v RS

Tl | 1 M 4 "-._..1 ' juis ... n .m

.._ i ! ..r .... H .._..I. - TR 18, IJL. .r...- T

Lo 0 :
e i TS L e

*ANYM UT UMOUS IB SILNSNpUI
Sururewran [fe ‘on[q ur payySIyS1y ore afueyd peaids o[qeINQINIL-IOMIU JSI[[EWS ) YIIM SILNSNPUT AT ) S[TYM ‘pa1 ur pAySIySIy axe (HSN) 25ueyd peaids s[qeinqrnje-yiomjou
19318 O} YIM SIALISNPUI dAY YL, ‘DSN AQ payuel Ie saLnsnpul ‘Yuow yoes 1y Ansnpur oyl urgiim peaids SO S0] a3eioae 9y AQ paziewriou ‘gNND WO 18yl pue ZNND
woij peaxds SO o[ parorpaid oY) U9OM)q IUIRPIP AIN[Osqe TLIAR ) St pauyap ‘DSN ndwod om ‘Ansnpul g4 YoualJ—ewe] Yord pue JJuowW Yoed 0 'SILISNPUI SSOIOR
(DSN) 28ueyd peaids 9[qeinqrnie-omiou urkres-own ) jo dewnneay e sjudsard a3y SIY, "SILIISNPU] SSOIIY saguey)) pealrds I[qeInqri))y-YI0M)IN SUIfIeA-dul], ‘9 In3L|

19430 4

Anysnpu 8t-44

32



References

Acemoglu, Daron, Ufuk Akcigit, and William Kerr, 2016, Networks and the macroeconomy: An empirical

exploration, Nber Macroeconomics Annual 30, 273-335.

Acemoglu, Daron, Vasco M Carvalho, Asuman Ozdaglar, and Alireza Tahbaz-Salehi, 2012, The network
origins of aggregate fluctuations, Econometrica 80, 1977-2016.

Acemoglu, Daron, Asuman Ozdaglar, and Alireza Tahbaz-Salehi, 2017, Microeconomic origins of macroe-

conomic tail risks, American Economic Review 107, 54-108.

Ait-Sahalia, Yacine, Julio Cacho-Diaz, and Roger Laeven, 2015, Modeling financial contagion using mutually

exciting jump processes, Journal of Financial Economics 117, 585-606.

Almeida, Heitor, and Thomas Philippon, 2007, The risk-adjusted cost of financial distress, The Journal of
Finance 62, 2557-2586.

Altman, Edward I, 1968, Financial ratios, discriminant analysis and the prediction of corporate bankruptcy,
The Journal of Finance 23, 589-609.

Ang, Andrew, and Francis A. Longstaff, 2013, Systemic sovereign credit risk: lessons from the u.s. and

europe, Journal of Monetary Economics 60, 493-510.

Azizpour, Shahriar, Kay Giesecke, and Gustavo Schwenkler, 2018, Exploring the sources of default cluster-

ing, Journal of Financial Economics 129, 154-183.

Bao, Jack, Kewei Hou, and Shaojun Zhang, 2023, Systematic default and return predictability in the stock
and bond markets, Journal of Financial Economics 149, 349-377.

Bao, Jack, and Jun Pan, 2013, Relating equity and credit markets through structural models: evidence from
volatilities, Journal of Finance 68, 2359-2398.

Benzoni, Luca, Pierre Collin-Dufresne, Robert S Goldstein, and Jean Helwege, 2015, Modeling credit
contagion via the updating of fragile beliefs, The Review of Financial Studies 28, 1960-2008.

Berndt, Antje, Rohan Douglas, Darrell Duffie, and Mark Ferguson, 2018, Corporate credit risk premia,
Review of Finance 22, 419-454.

Bharath, Sreedhar T, and Tyler Shumway, 2008, Forecasting default with the merton distance to default
model, The Review of Financial Studies 21, 1339-13609.

Blasques, Francisco, Siem Jan Koopman, Andre Lucas, and Julia Schaumburg, 2016, Spillover dynamics
for systemic risk measurement using spatial financial time series models, Journal of Econometrics 195,
211-223.

Boyarchenko, Nina, and Or Shachar, 2020, The evolving market for u.s. sovereign credit risk, Liberty Street

Economics .

33



Breiman, Leo, 2001, Random forests, Machine learning 45, 5-32.

Campbell, John Y, Jens Hilscher, and Jan Szilagyi, 2008, In search of distress risk, The Journal of Finance
63, 2899-2939.

Carvalho, Vasco, and Xavier Gabaix, 2013, The great diversification and its undoing, American Economic
Review 103, 1697-1727.

Carvalho, Vasco M, 2008, Aggregate fluctuations and the network structure of intersectoral trade (The
University of Chicago).

Chen, Belinda, 2023, Network factors for idiosyncratic volatility spillover, Available at SSRN 4579385 .

Chen, Cathy Yi-Hsuan, Wolfgang Karl Hérdle, and Yarema Okhrin, 2019, Tail event driven networks of
sifis, Journal of Econometrics 208, 282-298.

Collin-Dufresne, Pierre, Robert S. Goldstein, and J. Spencer Martin, 2001, The determinants of credit spread
changes, Journal of Finance 56, 2177-2207.

Das, Sanjiv R., Darrell Duffie, Nikunj Kapadia, and Leandro Saita, 2007, Common failings: how corporate
defaults are correlated, Journal of Finance 62, 93-117.

Demirer, Mert, Francisdasdu X Diebold, Laura Liu, and Kamil Yilmaz, 2018, Estimating global bank

network connectedness, Journal of Applied Econometrics 33, 1-15.
Dew-Becker, Ian, 2023, Tail risk in production networks, Econometrica 91, 2089-2123.

Diebold, Francis X, and Kamil Yilmaz, 2014, On the network topology of variance decompositions: Mea-

suring the connectedness of financial firms, Journal of Econometrics 182, 119-134.
Duffie, Darrell, 1999, Credit swap valuation, Financial Analysts Journal 55, 73-87.

Duffie, Darrell, and Nicolae Garleanu, 2001, Risk and valuation of collateralized debt obligations, Financial
Analysts Journal 57, 41-59.

Duffie, Darrell, and David Lando, 2001, Term structures of credit spreads with incomplete accounting

information, Econometrica 69, 633-664.
Duffie, Darrell, and Jun Liu, 2001, Floating—fixed credit spreads, Financial Analysts Journal 57, 76-87.
Duffie, Darrell, and Jun Pan, 1997, An overview of value at risk, Journal of Derivatives 4, 7-49.

Duffie, Darrell, Jun Pan, and Kenneth J. Singleton, 2000, Transform analysis and asset pricing for affine

jump-diffusions, Econometrica 68, 1343-1376.

Duffie, Darrell, Lasse Heje Pedersen, and Kenneth J. Singleton, 2003, Modeling sovereign yield spreads: a
case study of russian debt, Journal of Finance 58, 119-159.

34



Duffie, Darrell, Leandro Saita, and Ke Wang, 2007, Multi-period corporate default prediction with stochastic

covariates, Journal of Financial Economics 83, 635—665.

Duffie, Darrell, and Kenneth J. Singleton, 1999, Modeling term structures of defaultable bonds, Review of
Financial Studies 12, 687-720.

Engle, Robert, and Bryan Kelly, 2012, Dynamic equicorrelation, Journal of Business & Economic Statistics
30, 212-228.

Fama, Eugene F, and Kenneth R French, 2016, Dissecting anomalies with a five-factor model, The Review
of Financial Studies 29, 69-103.

Freyberger, Joachim, Andreas Neuhierl, and Michael Weber, 2020, Dissecting characteristics nonparametri-
cally, The Review of Financial Studies 33, 2326-2377.

Gabaix, Xavier, 2011, The granular origins of aggregate fluctuations, Econometrica 79, 733-772.

Galil, Koresh, Offer Moshe Shapir, Dan Amiram, and Uri Ben-Zion, 2014, The determinants of cds spreads,
Journal of Banking & Finance 41, 271-282.

Getmansky, Mila, Giulio Girardi, and Craig Lewis, 2016, Interconnectedness in the cds market, Financial
Analysts Journal 72, 62-82.

Giesecke, Kay, 2002, An exponential model for dependent defaults (Humboldt-Universitit zu Berlin,
Wirtschaftswissenschaftliche Fakultt).

Giesecke, Kay, 2004, Correlated default with incomplete information, Journal of Banking & Finance 28,
1521-1545.

Giesecke, Kay, Francis A. Longstaff, Stephen Schaefer, and Ilya Strebulaev, 2011, Corporate bond default
risk: a 150-year perspective, Journal of Financial Economics 102, 233-250.

Giesecke, Kay, and Stefan Weber, 2004, Cyclical correlations, credit contagion, and portfolio losses, Journal
of Banking & Finance 28, 3009-3036.

Gouriéroux, Christian, Alain Monfort, and Jean-Paul Renne, 2014, Pricing default events: Surprise, exo-

geneity and contagion, Journal of Econometrics 182, 397-411.

Green, Jeremiah, John RM Hand, and X Frank Zhang, 2017, The characteristics that provide independent

information about average us monthly stock returns, The Review of Financial Studies 30, 4389—4436.

Gu, Shihao, Bryan Kelly, and Dacheng Xiu, 2020, Empirical asset pricing via machine learning, The Review
of Financial Studies 33, 2223-2273.

Gu, Shihao, Bryan Kelly, and Dacheng Xiu, 2021, Autoencoder asset pricing models, Journal of Economet-
rics 222, 429-450.

35



Hirdle, Wolfgang Karl, Weining Wang, and Lining Yu, 2016, Tenet: Tail-event driven network risk, Journal
of Econometrics 192, 499-513.

Hawkes, Alan G, 1971, Spectra of some self-exciting and mutually exciting point processes, Biometrika 58,
83-90.

Herskovic, Bernard, 2018, Networks in production: Asset pricing implications, The Journal of Finance 73,
1785-1818.

Herskovic, Bernard, Bryan Kelly, Hanno Lustig, and Stijn Van Nieuwerburgh, 2016, The common factor
in idiosyncratic volatility: Quantitative asset pricing implications, Journal of Financial Economics 119,
249-283.

Herskovic, Bernard, Bryan Kelly, Hanno Lustig, and Stijn Van Nieuwerburgh, 2020, Firm volatility in
granular networks, Journal of Political Economy 128, 4097-4162.

Hou, Kewei, Chen Xue, and Lu Zhang, 2020, Replicating anomalies, The Review of financial studies 33,
2019-2133.

Hu, Grace Xing, Jun Pan, and Jiang Wang, 2013, Noise as information for illiquidity, Journal of Finance 68,
2341-2382.

Ioffe, Sergey, and Christian Szegedy, 2015, Batch normalization: Accelerating deep network training by

reducing internal covariate shift, in International Conference on Machine Learning, 448-456, PMLR.

Jacobson, Tor, and Erik Von Schedvin, 2015, Trade credit and the propagation of corporate failure: An

empirical analysis, Econometrica 83, 1315-1371.

Jarrow, Robert A, and Fan Yu, 2001, Counterparty risk and the pricing of defaultable securities, The Journal
of Finance 56, 1765-1799.

Jorion, Philippe, and Gaiyan Zhang, 2007, Good and bad credit contagion: evidence from credit default

swaps, Journal of Financial Economics 84, 860—883.

Jorion, Philippe, and Gaiyan Zhang, 2009, Credit contagion from counterparty risk, Journal of Finance 64,
2053-2087.

Kelly, Bryan, and Hao Jiang, 2014, Tail risk and asset prices, The Review of Financial Studies 27,2841-2871.

Kelly, Bryan, Semyon Malamud, and Kangying Zhou, 2024, The virtue of complexity in return prediction,
The Journal of Finance 79, 459-503.

Kelly, Bryan T, Seth Pruitt, and Yinan Su, 2019, Characteristics are covariances: A unified model of risk

and return, Journal of Financial Economics 134, 501-524.

Kipf, Thomas N, and Max Welling, 2016, Semi-supervised classification with graph convolutional networks,
arXiv preprint arXiv:1609.02907 .

36



Kitwiwattanachai, Chanatip, 2015, Learning network structure of financial institutions from cds data, Avail-
able at SSRN 2533606 .

Kitwiwattanachai, Chanatip, and Neil D. Pearson, 2015, Inferring Correlations of Asset Values and Distances-
to-Default from CDS Spreads: A Structural Model Approach, The Review of Asset Pricing Studies 5,
112-154.

Kryzanowski, Lawrence, Stylianos Perrakis, and Rui Zhong, 2017, Price discovery in equity and cds markets,
Journal of Financial Markets 35, 21-46.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton, 2015, Deep learning, nature 521, 436-444.

Liu, Lily Y, 2022, Estimating loss given default from cds under weak identification, Journal of Financial
Econometrics 20, 310-344.

Longstaff, Francis A., Jun Pan, Lasse H. Pedersen, and Kenneth J. Singleton, 2011, How sovereign is

sovereign credit risk, American Economic Journal: Macroeconomics 3, 75-103.

Merton, Robert C, 1974, On the pricing of corporate debt: The risk structure of interest rates, The Journal
of finance 29, 449-470.

Monfort, Alain, Fulvio Pegoraro, Jean-Paul Renne, and Guillaume Roussellet, 2021, Affine modeling of

credit risk, pricing of credit events, and contagion, Management Science 67, 3674-3693.

Thekumparampil, Kiran K, Chong Wang, Sewoong Oh, and Li-Jia Li, 2018, Attention-based graph neural

network for semi-supervised learning, arXiv preprint arXiv:1803.03735 .

Uddin, Ajim, Xinyuan Tao, and Dantong Yu, 2021, Attention based dynamic graph learning framework for
asset pricing, in Proceedings of the 30th ACM International Conference on Information & Knowledge
Management, 1844—-1853.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin, 2017, Attention is all you need, Advances in neural information processing

systems 30.

Velickovié, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio,
2017, Graph attention networks, arXiv preprint arXiv:1710.10903 .

Wang, Daixin, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang, Quan Yu, Jun Zhou, Shuang
Yang, and Yuan Qi, 2019, A semi-supervised graph attentive network for financial fraud detection, in
2019 IEEE International Conference on Data Mining (ICDM), 598-607, IEEE.

Welch, Ivo, and Amit Goyal, 2008, A comprehensive look at the empirical performance of equity premium
prediction, The Review of Financial Studies 21, 1455-1508.

Zhang, Chao, Xingyue Pu, Mihai Cucuringu, and Xiaowen Dong, 2023, Graph neural networks for forecasting
multivariate realized volatility with spillover effects, arXiv preprint arXiv:2308.01419 .

37



	Introduction
	Structural Framework
	Production-Network Exposure
	Capital Structure and Distance to Default
	Default Probability and Credit Spreads

	Empirical Evidence
	Architecture of the Empirical Algorithm
	Data and Implementation Details
	Empirical Results

	Conclusion
	Production Network Foundations and Idiosyncratic Volatility Spillovers
	Technology and First-Moment Production Network
	From Revenue Propagation to Idiosyncratic Volatility
	Interpretation and Economic Meaning
	Link to Default Risk and Credit Spreads

	CDS Distribution Across Sectors
	Firm Level Characteristics
	Algorithm Details
	Graph Neural Networks
	GNN-Attention
	CNN
	PCR and PLS
	GBRT and RF
	SVR

	Model Complexity and Stability
	Robustness of GNN Under Various Specifications

