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1 Introduction

Macroeconomic risk, often related to technology, consumption, or intermediary capital, is at

the heart of most equilibrium-based asset pricing models. Yet reliable detection of macroeco-

nomic risk premia remains elusive: 1) different time horizons often provide drastically different

estimates of the priced risk, 2) most empirical models are widely known to be misspecified,

calling for methods robust to the nature and number of risk factors, and 3) the weak contempo-

raneous link between macroeconomic factors and asset returns often leads to model parameters

being weakly identified at best, causing a fundamental inference problem. All of these issues

contribute to the empirical macrofinance disconnect.

We propose a new estimation framework that addresses all of the above. Unlike any existing

approach, it produces not only reliable risk premia estimates but also their whole term struc-

ture in an internally consistent framework. Our method, which leverages the fact that many

nontradable factors are persistent, relies on three key ingredients: 1) the moving average (MA)

representation of the persistent component of the factor, driven by either priced or non-priced

shocks, 2) an approximate factor structure for a wide cross-section of asset returns, which recov-

ers priced shocks and is robust to model misspecification (Chamberlain and Rothschild (1983)

and Giglio and Xiu (2021)), and 3) the hierarchical Bayesian inference method of Bryzgalova,

Huang, and Julliard (2023), which recovers both time series and cross-sectional properties of

risk factors, and is by design robust to weak identification.

Our framework accurately identifies not only the joint comovement between nontradable

factors and asset returns but also their propagation mechanism, and hence recovers the whole

term structure of risk premia. As we show, the latter is crucial in assessing the role of macroe-

conomic risks in asset returns. We find that many macroeconomic variables (e.g., industrial

production, consumption, and GDP growth) have increasing unconditional term structures and

carry large and significant risk premia at business cycle frequencies (two–three years). Further-

more, conditionally, their risk premia are strongly time-varying and countercyclical.

Our findings are not a simple byproduct of factor persistence. We find that similarly per-

sistent risk factors can have increasing (liquidity of Pástor and Stambaugh (2003)), flat (in-

termediary factor of He et al. (2017)), or decreasing term structures (VIX), or no significant

risk premia at all (capital share growth of Lettau et al. (2019)). As we show, risk premia over

different horizons can be directly mapped into per-period average returns of factor-mimicking
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portfolios hedging multi-horizon priced innovations. The economic magnitude of our findings

is striking: At business cycle frequencies, risk premia carried by, for example, industrial pro-

duction, GDP, and consumption, are as large as that of the market. Crucially, all of our results

are not based on ad-hoc frequency-based procedures, but are instead fully determined by the

structural parameters of the model.

Our framework provides sharp identification of risk premia and reliable inference and is

rooted in economic theory: Equilibrium asset prices are jump variables. Hence, news about

current and future priced states should immediately be reflected into prices, albeit they might

manifest in nontradable variables only with delay (see, e.g., Hansen et al. (2008)). Similar

to Giglio and Xiu (2021), we leverage the fact that, while the actual drivers of asset returns

are identifiable only up to a rotation, conditional and unconditional risk premia of observable

factors are not affected by this issue and can, therefore, be reliably recovered from the data.

As a result, our estimator is robust to the omitted variable bias, measurement error, and weak

identification. Contrary to the existing literature, our method allows for the joint modeling of

factor and return dynamics over different horizons, providing coherent insights into the whole

term structure of risk premia. Tackling an inference problem in this setup would be challenging,

if not infeasible, in frequentist estimation. Instead, we develop a simple Gibbs algorithm for

Bayesian posterior sampling, with all the conditional posterior distributions available in closed

form. Thus, we deliver not only point estimates of risk premia and deep model parameters but

also valid credible intervals for all the objects of interest.

It is widely known that some nontradable factors have higher exposure to asset returns at

longer horizons. (See, e.g., Jagannathan and Wang (2007), Cohen et al. (2009), and Hansen

et al. (2008)) We uncover the mechanism generating this phenomenon and show that, in these

cases, risk premia at different horizons are driven by the same priced innovations that slowly

propagate through the nontradable risk factor. As a result, we also explain why many risk

factors are statistically weak at quarterly frequency, yet become strongly identified at longer

horizons. Consider GDP growth, for example. Although contemporaneous asset return shocks

account for only 4% of the variation in GDP growth, they contribute to over 20% of its time

series variation at business cycle frequencies. In such a case, the term structure of risk premia

effectively boosts the signal-to-noise ratio of priced shocks in nontradable factors and sharply

identifies the common priced component (which would normally be weak at best).

The empirical asset pricing literature has long recognized the persistent nature of many
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nontradable risk factors. As a result, researchers would usually first extract the AR(1) innova-

tion from a factor and then proceed with measuring its risk premia via Fama-MacBeth (FM)

regressions or the Generalized Method of Moments (GMM).1 However, as we show, this com-

mon procedure fails to recover the true sources of priced risk. First, the conditional mean of

the macroeconomic variable could follow a process different from AR(1). Second, the persistent

component of the variable does not need to be driven only by priced shocks. As we show, AR(1)

residuals do not recover actual priced innovations in many factors, leading to a significant bias

in risk premia estimates. Our approach, rooted in the Wold decomposition, relies on the flex-

ible MA representation of the risk factor. Like the local projection framework (Jordà, 2005),

it recovers the impulse response functions of macro quantities to shocks spanned by financial

markets without postulating a stringent (V)AR structure, hence avoiding the resulting fragility

to misspecification (Olea et al., 2024). Different from these papers, our approach leverages the

large cross-section of asset returns to efficiently separate priced and unpriced innovations and

restore reliable inference on risk premia.

We use a large cross-section of 275 equity portfolios to estimate the term structures of risk

premia of many nontradable risk factors. Contrary to the standard one-period inference, we find

that a large part of the factors’ conditional mean is driven by priced shocks, slowly propagating

through the time series. Their overall dynamics display clear business cycle patterns and are

common across many different macroeconomic factors.

Many risk factors are characterized by increasing term structures of risk premia. For exam-

ple, while the risk premium of GDP growth is only 0.03 at the quarterly horizon, it increases

to 0.20 at the three-year horizon and is strongly significant (while being spanned by the same

shocks). Furthermore, the term structures of macro risk exhibit strong commonality in their

business cycle behavior: The average level is strongly countercyclical, with moderate risk premia

during expansion and significant increases during recessions.

We also observe factors commanding flat or downward-sloping unconditional term structures

of risk premia. For example, the VIX risk premium is −0.13 at the monthly frequency, but

its two-year counterpart is only −0.03. This observation is reassuring since the sign of the

VIX risk premium, and its term structure, are mostly consistent with previous findings based

on VIX derivatives (Eraker and Wu (2014), Dew-Becker et al. (2017), and Johnson (2017)).

Intermediary factors (Adrian et al. (2014) and He et al. (2017)) carry significantly positive

1See He et al. (2017), Pástor and Stambaugh (2003), and Giglio and Xiu (2021), among others.

3



unconditional risk premia with an almost flat term structure. Furthermore, our estimate of risk

premia for the intermediary factor of He et al. (2017) is rather close to the average return of

its tradable version, further validating our findings.

We further investigate the connection between the term structure of risk premia and forward

equity yields implied by the dividend strips data. Under joint lognormality, forward equity yields

equal the difference between dividend risk premia and expected dividend growth. We show

that our estimates of unconditional dividend risk premia between one- and five-year horizons

are similar to those of Bansal et al. (2021). Note that we use a longer time series sample and

an entirely different method from Bansal et al. (2021), so this consistency is affirmative.

To infer the term structure of forward equity yields, one needs an estimate of expected

dividend growth. We rely on our MA representation to derive the conditional dynamics of

dividend growth. However, we do not assume that the spanned MA component captures the

entire dividend predictability (we allow for predictability of the unspanned component); hence,

ex-ante, our formulation is not guaranteed to generate equity yields consistent with the observed

data. Nevertheless, ex-post, our estimates of forward equity yields are strongly countercyclical

and closely track the observed yields implied by the dividend strips data. Our model also

generates a downward-sloping (upward-sloping) term structure of equity yields in economic

downturns (expansions). The procyclical behaviours of the slopes of the dividend term structure

are mainly driven by the time variation in expected dividend growth instead of time-varying

dividend risk premia.

To further highlight the strength and robustness of our method, we conduct extensive sim-

ulations and study the empirical size and power of the procedure in detecting the persistent

priced component of nontradable factors. We find that the Bayesian credible intervals pro-

vide proper posterior coverages of the pseudo-true risk premia. Moreover, we show that the

MA-based approach is essential in identifying the priced component in persistent factors and

leads to a significant boost in power. Finally, our Bayesian inference remains valid even in the

presence of persistent yet weak risk factors.

The remainder of the paper is organized as follows. In the next subsection we review the

most closely related literature and our contribution to it. Section 2 outlines our estimation

framework and its properties, while Section 3 provides simulation evidence on the power of the

method in realistically small samples. Section 4 presents our empirical findings, and Section 5

concludes. Additional results, proofs, derivations, and a detailed description of the data sources,
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are reported in the Internet Appendix.

Closely Related Literature

Our paper naturally relates to the inference on risk premia in linear factor models. As shown

by the past literature (e.g., Kan and Zhang (1999a,b), Kleibergen (2009), and Kleibergen and

Zhan (2015)), weak factors invalidate risk premia estimates and cross-sectional fit of traditional

FM and GMM estimators. Several studies (e.g., Kan et al. (2013), Gospodinov et al. (2014,

2019), Bryzgalova (2015), Kleibergen and Zhan (2020), Anatolyev and Mikusheva (2022), and

Bryzgalova et al. (2023)) propose methods that are robust to weak factors and misspecification.

Giglio and Xiu (2021) further emphasize that standard estimators of risk premia are biased if

some priced factors are omitted and propose a three-pass method to resolve the issue. Likewise,

Giglio et al. (2023) propose a supervised principal component analysis (PCA) method to recover

the risk premia of weak factors. Similarly, our method aligns with the literature that relates to

PCA in asset pricing (e.g., Chamberlain and Rothschild (1983), Connor and Korajczyk (1986,

1988), Kozak et al. (2018, 2020), and Kelly et al. (2019)). Unlike them, we incorporate the

dynamics of factors and returns to elicit the entire term structure of risk premia in an internally

consistent manner. This additional dimension is economically meaningful since many variables,

particularly macro variables, are significantly priced only at particular horizons.

Equilibrium macro-finance models have sharp and salient predictions for the term structures

of risk premia of macro factors. For instance, as shown in Figure A1, the habit model of

Campbell and Cochrane (1999) predicts flat term structures of risk premia for consumption

and dividend growth.2 Yet these same factors command upward-sloping term structures in the

long-run risk model of Bansal and Yaron (2004). However, these predictions rely on ad hoc

assumptions on cash flow dynamics and investors’ preferences. To obtain model-free estimates,

van Binsbergen et al. (2012) and van Binsbergen and Koijen (2017)) analyze traded dividend

claims and observe a downward-sloping term structure of dividend risk, which contradicts the

predictions of leading macro-finance models. Consequently, several equilibrium models (e.g.,

Belo et al. (2015), Hasler and Marfe (2016), Ai et al. (2018), and Kragt et al. (2020)) have

been developed to explain this phenomenon. However, traded dividend strips data suffer from

a short time series sample and liquidity concerns. Recent papers tackle these shortcomings by

2Calibration and derivation details can be found in Internet Appendix IA.4.
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estimating either a regime-switching model (Bansal et al. (2021)) or an affine term structure

model of expected returns and dividend growth (Giglio et al. (2023)). Both papers suggest an

unconditionally upward-sloping and conditionally time-varying term structure of dividend risk

– as we uncover for dividend growth risk premia. But crucially, our new method has much

broader applicability than solely dividends, as it delivers the term structure of risk premia for

all factors (traded and nontraded) of equilibrium models.

Our paper also connects to the large body of literature that emphasizes horizon-dependent

risk premia (see, e.g., Chernov et al. (2021)). Extensive empirical evidence shows that con-

sumption growth carries more significant premia at long horizons (Daniel and Marshall (1997),

Parker and Julliard (2005), Jagannathan and Wang (2007), Hansen et al. (2008), Malloy et al.

(2009), Ortu et al. (2013), Dew-Becker and Giglio (2016), and Bandi and Tamoni (2023)). In

contrast, VIX (Eraker and Wu (2014), Dew-Becker et al. (2017), and Johnson (2017)) carry

more sizable risk premia at short horizons. Our paper is motivated by these empirical facts

and provides a much more extensive and robust investigation of the risk premia of more than

20 economic variables.

Finally, our paper is related to the recent developments of Bayesian econometrics in asset

pricing (e.g., Barillas and Shanken (2018), Chib et al. (2020), Bryzgalova et al. (2023), and

Avramov et al. (2023)). Unlike most papers, which emphasize Bayesian model selection and/or

aggregation, we estimate the posterior credible intervals of the term structure of risk premia.

2 Theory and Method

This section describes our Bayesian framework for estimating factors’ risk premia. We aim to

test whether a (covariance-stationary) factor gt, either tradable or nontradable, is priced in a

large cross-section of test assets. Throughout our analysis, we consider log variables; that is,

gt is the log growth rate of Gt between time t − 1 and t, where Gt can be, for example, the

portfolio value, consumption, or production.

We denote the vector of log returns onN assets, in excess of the log risk-free rate (rf ), by rt =

(r1t, . . . , rNt)
⊤. We further define the cumulative variable: gt−1→t+S = log(Gt+S) − log(Gt−1),

which measures the multiperiod growth rate of Gt. Similarly, rt−1→t+S denote the cumulative

log returns between time t− 1 and t+ S.
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We assume a linear latent factor model for rt driven by K systematic factors, as follows:

rt = µr + βṽṽt +wrt, ṽt
iid∼ N (0K , IK), wrt

iid∼ N (0N ,Σwr), ṽt ⊥ wrt, (1)

where ṽt are K uncorrelated latent factors with loadings βṽ, wrt are unpriced idiosyncratic

errors, and µr denote expected log excess returns. We relax the assumption of serially uncor-

related ṽt in Section 2.2. We impose an approximate factor structure among asset returns,

following Chamberlain and Rothschild (1983). Mathematically, the largest K eigenvalues of

rt’s covariance matrix will explode as the number of assets goes to infinity (equivalently, the

eigenvalues of βṽβ⊤
ṽ will explode), while those of Σwr remain bounded. We allow for a certain

degree of cross-sectional dependence of wrt, as discussed later in the simulation study. The

number of latent factors, K, is assumed to be known in this section.

We further assume that factors’ loadings, βṽ, can partially explain expected returns,

µ̃r = µr +
1

2
Υr = βṽλṽ +α, (2)

where Υr =
(
var(r1t), . . . , var(rNt)

)⊤, λṽ denote risk premia associated with ṽt, and α is a

vector of pricing errors. The extra term 1
2
Υr is added to the mean log excess returns in equation

(2) due to the Jensen’s inequality.3 In addition, we assume that each asset’s pricing error, αi,

is independently and identically distributed (IID) and cross-sectionally independent of factor

loadings, with a zero mean and finite standard deviation. This form of model misspecification

has been commonly used in the past literature (e.g., Kan et al. (2013), Gospodinov et al. (2014),

Giglio and Xiu (2021), and Bryzgalova et al. (2023)) and has a clear economic interpretation.

Equation (2) is equivalent to a log SDF that is linear in latent factors ṽt, described as follows:4

mt = 1− λ⊤
ṽ ṽt. (3)

Since ṽt have an identity covariance matrix, their risk prices are identical to risk premia.

We represent the covariance-stationary factor gt as a sum of a moving average of asset return

shocks plus other shocks, including measurement error, not spanned by financial markets:

gt = µg +
S̄∑
s=0

ρ̃sη̃
⊤
g ṽt−s︸ ︷︷ ︸
ft−s

+ wgt, η̃⊤
g η̃g = 1, (4)

3The approximation in equation (2) is exact under the lognormality assumption of asset returns.
4It is more appropriate to assume the log SDF as mt − Et−1[mt] = λ⊤

ṽ ṽt. However, since we study only
excess returns, the (un)conditional mean of the SDF cannot be determined. For simplicity, we assume the
function form in equation (3).
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where µg is the unconditional mean of gt, ft is the spanned component that potentially drives

both gt and asset returns, {ρ̃s}S̄s=0 are square-summable, and wgt is a potentially autocorrelated

shock unrelated to ṽt and wrt.

As long as the priced component of gt is covariance stationary, the above representation must

exist, possibly with S̄ = ∞ (by virtue of the Wold theorem), and requires η̃g to be constant for

all lags s. Furthermore, using a finite S̄ must yield a finite approximation error relative to the

true priced component, due to the square integrability property of the MA coefficients in the

Wold representation. Note that since ft is a white noise innovation, we can interpret {ρ̃s}S̄s=0

as gt’s impulse responses to the asset returns’ shock ft.5 In other words,

ρs = E [gt+s|ft = 1; gt−1, rt−1]− E [gt+s|ft = 0; gt−1, rt−1] , (5)

and ρs is analogous to the local projection (LP, see, e.g., Jordà (2005)) coefficient of gt+s on

ft, where the latter is identified leveraging a large cross-section of asset returns. That is,

our framework, like LPs, recovers the impulse response of g to financial shocks avoiding the

fragilities brought about by postulating and selecting a stringent autoregressive structure (Olea

et al. (2024), Bryzgalova et al. (2024)). Furthermore, since we make use of the existence of a

MA representation in the construction of E [gt+s|ft = 0; gt−1, rt−1], we learn from the data about

ρs not only from gt+s but also from all other leads and lags of gt, arguably gaining efficiency.

Moreover, our approach controls directly for the MA structure implied by a sequence of linear

projections6 and uses only one estimating equation (equation (4), instead of S̄ linear regressions

with correlated residuals), hence greatly simplifying inference.

Several features of equation (4) are noteworthy. First, in theory, S̄ can be +∞, but we

truncate the number of lags to ensure realistic estimation in finite samples. Second, gt can

react to both current and lagged asset return shocks ṽt. This assumption is motivated by the

fact that asset prices are jump variables: news about current and future economic states are

immediately incorporated into asset prices, whereas nontradable factors might respond to the

same news with delay. The slow responses of nontraded economic variables to financial market

shocks are also related to past literature showing that asset returns can predict macro variables

(e.g., Liew and Vassalou (2000), Ang et al. (2006), and Bryzgalova et al. (2024)). Third, when

5We do not interpret ft as a structural shock, so the impulse responses of gt to ft purely quantify the lead-lag
correlations rather than the causal relationship between asset returns and gt.

6Lusompa (2023) shows that the autocorrelation process of LP can be written as a Moving Average process
of the Wold errors and impulse responses, and accounting for this dependency leads to more efficient estimates.
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gt correlates with only the contemporaneous asset return shocks (i.e., ρ̃s = 0 for s > 0), the

model reduces to the setting studied in Giglio and Xiu (2021).7

We now use several examples to illustrate how the general framework in Equations (1)–(4)

maps into canonical representative agent models imposing particular parametric restrictions.

Example 1. Adrian et al. (2014) measure a financial intermediary SDF, i.e., mt = 1 − λ ·
LevFact, where LevFact is the shock to the leverage of security broker-dealers. To map our

framework into theirs, we impose in equations (1)–(4) that ṽt = ft = LevFact, S̄ = 0, ρ̃0 = 1,

and gt is a noisy proxy for LevFact with a measurement error wgt.

Example 2. In the canonical long-run consumption risk model of Bansal and Yaron (2004), the

log consumption growth is modeled as ∆ct = xt−1+σt−1ηt, where σt−1 is the stochastic volatility

process, xt−1 is the conditional consumption mean following an AR(1) process, xt = ρxxt−1 +

φeσt−1et =
∑∞

s=0 φeρ
s
xσt−s−1et−s, and σt−1ηt is the short-run consumption shock. Within this

framework, the log SDF is linear in three independent shocks, i.e., mt−Et−1(mt) = λm,ησt−1ηt−
λm,eσt−1et − λm,ωσωωt (ωt is the shock to σ2

t . See Internet Appendix IA.4 for details).

The SDF in equation (3) maps into the Bansal and Yaron (2004) one imposing the following

restrictions: i) ṽt = (σt−1ηt, σt−1et, σωωt)
⊤ and ii) λṽ = (−λm,η, λm,e, λm,ω)⊤. To estimate the

risk premium of the short-run consumption shock, σt−1ηt, we need to impose in equation (4)

that S̄ = 0, ρ̃0 = 1, ft = σt−1ηt, and wgt = xt−1. Furthermore, to identify the risk premia of the

shock to the conditional consumption mean, we need a different set of restrictions in equation

(4): S̄ = ∞, ρ0 = 0, ρs = φeρ
s−1
x for s ≥ 1, ft = σt−1et, and wgt = σt−1ηt. In the empirical

application, we consider the estimation for both S̄ = 0 and S̄ >> 0 to capture the risk premia

of both short-run and long-run consumption shocks.

We next define the risk premium of gt by extending the approach of Giglio and Xiu (2021).

In their framework, gt’s risk premium is defined as the negative of the covariance between gt

and the SDF, λg = −cov(gt,mt).8 When gt is a traded log excess return, the fundamental asset

pricing equation, E
[
exp(mt + gt + rft)

]
= 1, implies E[gt] + 1

2
var(gt) = −cov(gt,mt) under the

joint log normality assumption. For a nontradable factor, one can interpret −cov(gt,mt) as the

pseudo expected excess return of gt as if it were tradable. In other words, −cov(gt,mt) is the

7Since their paper uses original rather than log returns, this statement is precise with the exception of the
log-linearization approximation error.

8This definition is consistent with Cochrane (2009, Chapter 6).
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risk premium on an asset that delivers a payoff that grows at the rate of gt. We expand their

definition by allowing for an entire term structure of risk premia. Specifically, the (average per-

period) risk premium of g from t−1 to t+S (0 ≤ S ≤ S̄) is defined as the multiperiod covariance

between the factor and the SDF, divided by the number of holding periods, as follows:

λSg = −cov(mt−1→t+S, gt−1→t+S)

1 + S
=

∑S
τ=0

∑τ
s=0 ρ̃s

1 + S
· η̃⊤

g λṽ︸ ︷︷ ︸
λf

. (6)

There are two ways to interpret the definition in equation (6). First, λf is the risk premium

of the spanned component (ft = η̃⊤
g ṽt) driving both asset returns and gt, and

∑S
τ=0

∑τ
s=0 ρ̃s

1+S
is

the per-period loading of gt−1→t+S on multiperiod asset return shocks ft−1→t+S. Hence, λSg , the

risk premium of g over an investment horizon of (1 + S) periods, equals its per-period loadings

on f multiplied by f ’s risk premium.

Second, as established below, we can interpret λSg as the risk premium of the horizon-specific

mimicking portfolio hedging against gt−1→t+S, with portfolio weights wMP as follows:

wMP = cov(rt−1→t+S)
−1cov(rt−1→t+S, gt−1→t+S).

The risk premium of this portfolio, normalized by the number of holding periods, is

λMP
g =

(
E[rt−1→t+S ] +

1
2Υ(rt−1→t+S)

)⊤
wMP

1 + S
=
(
E[rt]+

1

2
Υr

)⊤
cov(rt)

−1βṽ
cov(ṽt−1→t+S , gt−1→t+S)

1 + S
,

where the last equality uses the assumption that vt are serially uncorrelated and wr,t−1→t+S are

orthogonal to g. We relax the assumption of uncorrelated ṽt in Section 2.2.

Using Proposition A.1 in the Appendix, we simplify the risk premium of gt’s mimicking port-

folio and show that, as the number of test assets goes to infinity, λMP
g → λ⊤

ṽ cov(ṽt−1→t+S ,gt−1→t+S)

1+S
=

− cov(mt−1→t+S ,gt−1→t+S)

1+S
, where mt−1→t+S =

∑S
τ=0mt+τ−1,t+τ = 1 + S − λ⊤

ṽ ṽt−1→t+S. Therefore,

our definition of gt’s risk premium in equation (6) is asymptotically equivalent to the risk

premium of the horizon-specific mimicking portfolio in a large cross-section.

Example 3. Suppose that the IID CAPM holds: ft = ṽt = rmktt , with rmktt independent over

time and normalized to have unit variance. The SDF is then mt = 1−λmktrmktt . For any factor

gt that follows the process in equation (4), we can compute the term structure of its risk premia

using the definition in equation (6), as follows:
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λSg = −cov(mt−1→t+S, gt−1→t+S)

1 + S
=

[
βg0 +

1

1 + S

“forward”-market-βs︷ ︸︸ ︷
S∑
τ=1

τ∑
s=1

βgs

]
λmkt,

where the forward market betas, βgS ≡ cov(gt−1+s→t+s,rmkt
t )

σ2
mkt

, captures the predictability of g. There

are two takeaways from this example. First, the term structure of factor risk premia is de-

termined by how the same priced asset return shocks are propagated through the tested factor.

Second, the mimicking portfolio based on purely the single-period market beta (βg0) is generally

uninformative about the multi-period risk premia, since it ignores the information embedded in

forward betas.

In the data, asset return factors, ṽt, are unidentified. That is, one can only estimate a

linear rotation of ṽt, denoted by vt = Hṽt, where H is a K × K nonsingular matrix. Since

ṽt
iid∼ N (0K , IK), we have that Σv ≡ cov(vt) = HH⊤. Even though ṽt cannot be identified,

gt’s risk premium is well-defined. In particular, the identification of λSg builds upon the rotation

invariance property emphasized in Giglio and Xiu (2021). The rotation invariance can be easily

seen by rewriting the model as follows:

rt = α+ βṽH
−1︸ ︷︷ ︸

βv

Hλṽ︸ ︷︷ ︸
λv

− 1

2
Υr + βṽH

−1︸ ︷︷ ︸
βv

Hṽt︸︷︷︸
vt

+wrt, gt = µg +
S̄∑
s=0

ρ̃sη̃
⊤
g H

−1︸ ︷︷ ︸
η⊤
g

Hṽt−s︸ ︷︷ ︸
vt−s

+ wgt, and

mt = 1− λ⊤
v (H

−1)⊤H−1vt = 1− λ⊤
v Σ

−1
v vt, λSg =

∑S
τ=0

∑τ
s=0 ρ̃s

1 + S
· η̃⊤

g H
−1︸ ︷︷ ︸

ηg

Hλṽ︸ ︷︷ ︸
λv

.

(7)

Therefore, the most important quantity in our paper, λSg , is well identified.

Remark 1. λf in equation (6) can be interpreted as the risk price of ft after controlling for

the omitted sources of priced risk in the SDF. Let vt = Hṽt, where H⊤ = (η̃g,H1) is a K×K

nonsingular matrix, and H⊤
1 η̃g = 0. Under this formulation, vt = (ft,u

⊤
t )

⊤, ut = H⊤
1 ṽt, and

ft ⊥ ut. The log SDF in equation (3) can be rewritten as mt = 1 − λ⊤
v Σ

−1
v vt = 1 − λfft −

λ⊤
u (H

⊤
1 H1)

−1ut, where λf = η̃⊤
g λṽ and λu = H⊤

1 λṽ. Using this particular SDF representation,

we can decompose the variance of the SDF, which is equivalent to the squared maximal Sharpe

ratio in the economy, as var(mt) = λ2f +var(λ⊤
u (H

⊤
1 H1)

−1ut). Hence, λf can be interpreted as

the (per period) model-implied Sharpe ratio of the ft shock; λ2f/var(mt) quantifies the relative

importance of ft in the SDF, conditioned that ft is given the largest power in the log SDF to

explain the cross-section of average returns. If ft is strongly identified in a macro factor, we
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can examine the largest role that this macro state variable plays in the SDF.

Estimating the confidence bands – or better, the statistical uncertainty – of λSg is challenging

in the frequentist framework. Specifically, λSg is a function of ρg, ηg, and λv, where the first

two parameters depend on each other. Hence, the frequentist asymptotic covariance matrix of

λSg is quite complex despite its closed-form expression outlined above. Consequently, we adopt

a Bayesian framework to provide valid inference for all model parameters and present it in the

next subsection.

2.1 Bayesian Estimation of Risk Premia

This subsection describes our hierarchical Bayesian framework. We first consider the time series

dimension, which is needed to estimate the joint posterior distribution of asset returns’ latent

factors and their loadings, expected asset returns, gt’s loadings on the latent factors, and the

precision matrices of error terms. We make the following distributional assumptions:

gt = µg +
S̄∑
s=0

ρsη
⊤
g (vt−s − µv) + wgt, wgt

iid∼ N (0, σ2
wg), vt

iid∼ N (µv,Σv), (8)

rt = µr + βv(vt − µv) +wrt, wrt
iid∼ N (0N ,Σwr), Σwr = diag{σ2

1,wr, . . . , σ
2
N,wr}, and (9)

vt ⊥ wgt ⊥ wrt, and let ρg = (µg, ρ0, . . . , ρS̄)
⊤, (10)

where vt are linear and nonsingular rotations of the true K latent factors ṽt. Since these

rotations are arbitrary, we need to estimate their unconditional means (µv) and covariance

matrix (Σv). Direct modeling of µv is critical for obtaining a proper posterior distribution of

expected excess returns µr.9 According to equation (10), the error terms, wgt and wrt, are

orthogonal, which implies that we can estimate the model parameters in gt and rt separately.

The systems in (8) and (9) introduce a potential degree of misspecification relative to the

true data-generating processes described in equations (2) and (4). First, the error wgt could

be serially correlated. As Müller (2013) shows, posteriors are still asymptotically normal and

centered at the maximum likelihood estimate under this assumption, although the canonical

posterior covariance matrix of the model parameters is incorrect and should be replaced with

a sandwich covariance matrix. We incorporate this correction within our method.

9The sample average of rt is µr +βv
1
T

∑T
t=1(vt−µv)+

1
T

∑T
t=1 wrt. If we always demean the latent factors

to have zero sample averages, the first source of uncertainty about µr, originated from 1
T

∑T
t=1(vt − µv), will

disappear. Consequently, the credible intervals for µr will be too tight if we do not directly model µv.
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Second, Σwr is assumed to be diagonal. Our posterior characterization below does not

require this assumption, and indeed, we impose it only to avoid numerical problems when

considering very large cross-sectional dimensions (i.e., when the number of assets approaches

or exceeds the time series dimension). However, as we will show through simulations, the

diagonal assumption does not have material effects on the posterior distributions. Hence, this

assumption is harmless. This robustness result is not surprising since, in a frequentist setting,

this type of misspecification would affect only efficiency but not consistency.

We assign the standard uninformative prior distributions to the time series parameters

π(ρg,ηg, σ
2
wg) ∝ (σ2

wg)
−1, π(v) ∝ 1, π(µv,Σv) ∝ |Σv|−

K+1
2 , and

π(βv) ∝ 1, π(µr,Σwr) ∝ |Σwr|−
N+1

2 .
(11)

In the cross-sectional dimension, conditional on the recovered sources of risk vt in the time

series dimension, the SDF and its risk prices, λv, can then be recovered using the Bayesian-

SDF estimator (B-SDF) in Definition 1 of Bryzgalova et al. (2023). That is, conditional on the

recovered vt being the sources of risk driving the cross-section, we have the SDF

mt = 1− λ⊤
v Σ

−1
v vt ⇒ µ̃r = βvλv.

10 (12)

Recall that we nevertheless allow for pricing errors as outlined in (2). With extensive simulation

studies, we show in Section 3 that this approach delivers valid posterior distributions.

Within the frequentist paradigm, constructing proper inference for the system in equations

(8)–(12) is, if not infeasible, at least a daunting task. As we are about to show in Proposition

1 below, this is both simple and transparent within the Bayesian paradigm.

There are two reasons for this. First, a joint distribution, say p(x, y), can be traced by

generating a Markov chain that sequentially samples from p(x|y) and p(y|x) – the so-called

Gibbs sampling.

Second, the hierarchical structure of the time series and cross-sectional layers of the es-

timation problem yields well-defined and well-understood conditional posterior distributions.

Specifically, if vt were known (i.e., conditioning on it), equation (8) would simply be an ordi-

nary linear regression problem with well-known properties: in a Bayesian setting, under diffuse

and/or conjugate priors, a normal-inverse-gamma posterior distribution (i.e., the analogue of

the t-distribution that would arise for frequentist inference in this case).

10µ̃r = µr +
1
2Υr, where both µr and Υr are estimated in the time series step.
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Similarly, if vt were known, equation (9) would simply be a canonical multivariate linear

regression, thereby yielding (under diffuse and/or conjugate priors) a well-known posterior

distribution: a normal-inverse-Wishart (the Bayesian analogue of the frequentist multivariate

t-distribution result).

Furthermore, conditional on knowing both the parameters in equation (9) and the data,

the distribution of the latent factors vt can be obtained by inverting its relationship with asset

returns. Finally, conditional on the parameters and latent factors in the time series layer, the

distribution of the risk prices, λv, simply follows from Definition 2 of Bryzgalova et al. (2023).

Note that this layer is fundamental since it de facto selects which of (and how) the latent drivers

vt are actually sources of priced risk – the crucial stage for measuring the risk premia associated

with gt.

We formalize this hierarchal characterization of the posterior in the proposition below and

derive it in Internet Appendix IA.1.1.

Proposition 1 (Gibbs sampler of the baseline model). Under the assumptions in equations

(8)–(12), the posterior distribution of the model parameters can be sampled from the following

conditional distributions:

(1) Conditional on the data, {gt}Tt=1+S̄
, and latent factors, {vt}Tt=1, the parameters of the

gt process (σ2
wg, ρg, and ηg) follow the normal-inverse-gamma distribution in equations

(IA.1)–(IA.3) of Internet Appendix IA.1.1. For point identification purposes, draws of ρg
and ηg are normalized such that η⊤

g ηg = 1.

(2) Conditional on asset returns, {rt}Tt=1, and latent factors, the parameters of the rt process

(Σwr and B⊤
r = (µr,βv)) follow the normal-inverse-Wishart distribution in equations

(IA.4)–(IA.5) of Internet Appendix IA.1.1.

(3) Conditional on asset returns and (µr,βv,Σwr), the latent factors, vt, their mean, and

covariance matrix can be sampled from

vt | rt,µr,βv,Σwr,µv,Σv ∼ N
((

β⊤
v Σ

−1
wrβv

)−1[
β⊤
v Σ−1

wr

(
rt − µr + βvµv

)]
,
(
β⊤
v Σ−1

wrβv

)−1
)
, (13)

Σv | {vt}Tt=1 ∼ W−1

(
T − 1,

T∑
t=1

(vt − v̄)(vt − v̄)⊤
)
, and (14)

14



µv | Σv, {vt}Tt=1 ∼ N
(
v̄, Σv/T

)
, (15)

where N (·) and W−1(·) denote, respectively, the normal and inverse-Wishart distributions.

(4) Conditional on the posterior draws from the time series steps (1)–(3), the posterior dis-

tribution of λv is a Dirac distribution at (β⊤
v βv)

−1β⊤
v µ̃r, yielding a Dirac conditional

posterior for the term structure of gt’s risk premia at λSg =
∑S

τ=0

∑τ
s=0 ρs

1+S
· η⊤

g λv, where

0 ≤ S ≤ S̄.

Several features of our Bayesian Gibbs sampler are noteworthy. First, although we do not

know in closed-form the joint distribution of all parameters, all conditional distributions, such

as inverse-gamma, multivariate normal, and inverse-Wishart distributions, are well-defined and

standard.

Second, we follow Müller (2013) and adjust the posterior covariance matrix of ρg and ηg

for the autocorrelation in the residuals, wgt and wrt, using the Newey and West (1987) type of

sandwich estimator.11

Third, the posterior distribution of vt in Step 3 of Proposition 1 ignores the information

embedded in gt, balancing the trade-off between model simplicity and estimation efficiency.

Since gt depends on many lags of the latent factors, incorporating its information in estimating

vt is feasible but requires a more computationally demanding approach, such as the Kalman

filter. Since we consider large cross-sections of test assets, the discarded information is negligible

as N → ∞. Finally, in empirical applications, not conditioning on gt in the extraction of vt
provides a level playing field when comparing the estimated risk premia of different gt.

Fourth, Proposition 1 does not require a diagonal Σwr. Nevertheless, for empirical applica-

tions where N is close to the time series sample size, we impose diagonality to avoid numerical

difficulties. Our simulation studies confirm that the assumption of a diagonal Σwr does not

result in invalid confidence intervals, even though wrt is cross-sectionally correlated in the hypo-

thetical true data-generating process. In contrast, in empirical applications where the number

of test assets is relatively small (i.e., N ≤ 50, such as in the cross-section of corporate bonds),

we use a nondiagonal Σwr in estimation.

Fifth, the cross-sectional dimension (Step 4 in Proposition 1) defines latent factors’ risk

premia as (β⊤
v βv)

−1β⊤
v µ̃r and, via the sequential resampling, accounts for the uncertainty

11The number of lags is set to be S̄ since wgtxt and wg,t−lxt−l become serially uncorrelated for l > S̄, where
xt denote the regressors in gt’s equation and is the linear transformation of latent factors {vt−s}S̄s=0.
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about the expected returns, the factor loadings, and the latent factors’ means µv.

In addition to risk premia estimates, our Bayesian framework can produce valid posterior

distributions for other economic quantities of interest, including, but not limited to, the time

series fit in gt’s equation (R2
g), cumulative impulse responses of gt to the asset return shocks

({ρ̃s}S̄s=0), and the cross-sectional fit in explaining average returns.

Past literature often adopts the Fama-MacBeth regression to estimate factors’ risk premia.

In Proposition 1, steps 2–4 echo the time series and cross-sectional steps of the Bayesian Fama-

MacBeth in Bryzgalova et al. (2023) for principal components of asset returns. Step 1 is the

additional step that models the joint dynamics of asset returns and gt. As Giglio and Xiu

(2021) argue, estimating factors’ risk premia using principal components of asset returns can

avoid the omitted variable bias and attenuation bias from measurement errors.

Finally, the traditional Fama-MacBeth regression suffers from weak identification (see, e.g.,

Kan and Zhang (1999a,b)), particularly for macro factors. One contribution of our paper is

to use the factors’ cumulative loadings on asset returns, proxied by {ρ̃s}S̄s=0, to identify their

risk premia. In short, we will show in both simulation studies and real-world data that our

Bayesian estimates are not only robust to the weak identification but, more importantly, help

recover the risk premia of persistent macro factors.

2.2 Time-Varying Risk Premia and Their Term Structures

From an economic standpoint, a salient feature of macro-finance equilibrium models is the time

variation in risk premia. In this section, we extend our Bayesian framework for estimating

time-varying term structures.

We now require the SDF to price assets conditionally ; that is,12

Et[ri,t+1] +
1

2
vart(ri,t+1)︸ ︷︷ ︸

µ̃r,i,t

= −covt(mt+1, ri,t+1), i = 1 . . . N, (16)

where Et denotes the conditional expectation at time t, and vart(ri,t+1) is the conditional

variance of ri,t+1. Throughout our paper, we consider homoskedastic asset returns; hence,

vart(ri,t+1) is constant over time. We define Υr as
(
vart(r1,t+1), . . . , vart(rN,t+1)

)⊤. Leveraging

12Since the SDF prices the log excess returns, we have Et

[
exp(mt+1 + ri,t+1 + rf,t+1)

]
= 1, i = 1 . . . N .

Hence, under the joint log normality assumption, we obtain equation (16).
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Hansen and Jagannathan (1991), we focus on the conditional SDF projections on the space of

returns as follows:

mt+1 = 1− b⊤t
(
rt+1 − Et[rt+1]

)
, where bt = covt(rt+1)

−1µ̃rt. (17)

The return process, as before, follows an approximate factor structure,

rt = µr + βṽṽt +wrt, ṽt ⊥ wrt, Et−1[wrt] = 0N , E[ṽt] = 0K , (18)

where, importantly, the priced systematic factors ṽt are potentially predictable. That is, ṽt =

µṽ,t−1 + ϵṽt, where µṽ,t−1 ≡ Et−1 [ṽt]; hence µṽ,t−1 ⊥ ϵṽt. We normalize the innovations to the

latent factors such that cov(ϵṽt) = IK .

As previously, unconditional mean returns are partially explained by βṽ in equation (2). The

only additional assumption that we require is that the eigenvalues of cov(µṽ,t−1) are bounded.

This formulation yields the SDF13

mt+1 = 1− λ⊤
ṽ ϵṽ,t+1 − µ⊤

ṽtϵṽ,t+1, (19)

where µ⊤
ṽtϵṽ,t+1 captures time-varying risk premia of asset return shocks.

Since the Wold representation requires the MA formulation to depend only on innovations,

the process for g is modified as follows:

gt = µg +
S̄∑
s=0

ρ̃sη̃
⊤
g ϵṽ,t−s︸ ︷︷ ︸
ft−s

+ wgt, η̃⊤
g η̃g = 1. (20)

That is, g is potentially driven by the innovations of the priced systematic factors ṽt. Hence,

defining the conditional risk premia analogously as the unconditional ones, we have that the

time-varying term structure of risk premia is given by

λSg,t−1 = −covt−1(mt−1→t+S, gt−1→t+S)

1 + S
=

S∑
τ=0

τ∑
s=0

ρ̃sη̃
⊤
g (λṽ + Et−1

[
µṽ,t+τ−s−1

]
)

1 + S
. (21)

13Using equations (17) and (18), we can show that bt =
(
βṽβ

⊤
ṽ +Σwr

)−1(
α + βṽλṽ + βṽµṽ,t

)
and rt+1 −

Et[rt+1] = βṽϵṽ,t+1 + wr,t+1. Ignoring the unpriced shocks wr, we can represent the linear SDF as mt+1 =

1− α⊤(βṽβ
⊤
ṽ +Σwr

)−1
βṽϵṽ,t+1 − (λṽ + µṽ,t)

⊤β⊤
ṽ

(
βṽβ

⊤
ṽ +Σwr

)−1
βṽϵṽ,t+1. Following similar derivations as

in Appendix A.1, we can derive that mt+1 → 1− (λṽ + µṽ,t)
⊤ϵṽ,t+1 as N → ∞.
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Four important observations are in order. First, the dynamics of the conditional mean of the

systematic risks, µṽ,t−1, drive the time variation of the term structure of risk premia. Second,

since by construction E [µṽ,t−1] = 0, the implied unconditional term structure is the same as

that of equation (6), which was obtained with uncorrelated sources of systematic risk. That

is, the estimator derived in Section 2.1 is consistent even in the presence of time-varying risk

premia. Third, despite the added generality, the risk premia of g remain point-identified due to

the rotation invariance property of our setting (See Appendix A.2). Fourth, to elicit the time

variation of the term structure, we need to explicitly model the conditional mean process, that

is, the dynamics of ṽ.

We assume that ṽt are driven by some predictors, such as ṽt’s lags and p external variables

zt. Let xt = (ṽ⊤
t , z

⊤
t )

⊤, which follows a vector autoregressive (VAR) model of order q:14

xt = ϕ0 + ϕ1xt−1 + · · ·+ ϕqxt−q + ϵxt, ϵxt
iid∼ N (0K+p,Σϵx). (22)

The additional layer in equation (22) requires a minimal change to our Gibbs sampler to

characterize the posterior distribution. The only deviation from Section 2.1 is that vt follows

a VAR process rather than an IID normal distribution. In particular, using the canonical

diffuse prior π(ϕ0, . . . ,ϕq,Σϵx) ∝ |Σϵx|−
K+p+1

2 , the conditional posterior of the parameters in

this additional layer follows the usual normal-inverse-Wishart distribution and can be sampled

accordingly. We summarize the Gibbs sampler in Proposition A2 of Appendix A.2 and derive

it in Internet Appendix IA.1.2.

The time-varying framework in this subsection is closely connected to the literature on affine

term structure models, such as Kim and Wright (2005) and Cochrane and Piazzesi (2008). For

instance, in Cochrane and Piazzesi (2008), xt in equation (22) contains three latent factors

(level, slope, and curvature) of government bond yields, plus the bond-return forecasting factor

in Cochrane and Piazzesi (2005). Besides, they also assume that risk prices of the shocks to

latent factors are linear functions of the lagged bond-return forecasting factor. Unlike their

paper, since we focus on estimating only risk premia, we do not need to model the dynamics

of the risk-free rates. Hence, we always normalize mt to have a constant mean.

Our paper shares some common modelling choices with Kelly et al. (2023) in that we study

the log SDF linear in latent factors of equity excess returns, impose log normality, and presume

14The VAR assumption is often adopted in past literature studying return predictability (e.g., Campbell and
Shiller (1988), Campbell and Vuolteenaho (2004), and Campbell et al. (2013)).
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that the time-varying risk prices of the shocks to latent factor are affine in the state variables xt.

However, our paper is distinct from theirs in the following aspects. First and foremost, we aim to

estimate the term structure of risk premia for all (traded and nontraded) factors of equilibrium

models, whereas Kelly et al. (2023) focus on dividend yields. Second, Kelly et al. (2023) specify

the dynamics of asset prices and reverse-engineer the dynamics for dividend growth using the

restrictions implied by the former. Conversely, our paper specifies a MA representation for

dividend growth that always exists, as in equation (20). Our modelling choice is analogous to

most macrofinance models that directly specify the dynamics of, e.g., consumption and dividend

growth, but we do so in a general and flexible way via the MA representation.

3 Simulations

This section studies the finite-sample properties of our Bayesian estimator in Proposition 1

via Monte Carlo simulations. Throughout the simulations, we consider two sample sizes, T ∈
{200, 600}, matching the quarterly and monthly frequencies, respectively. We simulate asset

returns from a five-factor model as in equations (1) and (2), as follows:

rt = α̂+ β̂ṽλ̂ṽ −
1

2
Υ̂r + β̂ṽṽt +wrt, ṽt

iid∼ N (0K , IK).

Specifically, rt contain Fama-French 275 portfolio returns (FF275, see Internet Appendix IA.3),

and factor loadings β̂ṽ are calibrated as the eigenvectors corresponding to the five largest

eigenvalues of the sample covariance matrix of rt. Risk premia λ̂ṽ are estimated using the

observed data. To ensure that α and βṽ are orthogonal in simulations, we regress the estimated

α on βṽ and extract the residual term, denoted by α̂. We allow for a non-diagonal covariance

matrix of wrt. Following Bai and Ng (2002), we simulate wirt as follows:

wirt = σ̂irt ·
[
eit +

J∑
j ̸=0,j=−J

βei−j,t

]
, eit

iid∼ N (0,
1

1 + 2Jβ2
), (23)

where J = max{10, int
(
N/20

)
}, β = 0.1,15 and {σ̂2

ir}Ni=1 are the estimated variance of idiosyn-

cratic shocks for each asset.

Second, we simulate strong factors. For T = 200, we use nondurable consumption growth

15β cannot be too large since we need to ensure that the largest eigenvalue of Σ̂wr is less than the smallest
eigenvalue of β̂⊤

ṽ β̂ṽ. Otherwise, some common factors cannot be identified.
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to estimate impulse responses, denoted by {ρ̂s}S̄s=0, assuming the true S̄ = 8 (quarters). For

T = 600, we use monthly industrial production growth to obtain {ρ̂s}S̄s=0, and the true S̄ is 16

(months). With these parameters, we simulate the strong gt as follows:

gt = c ·
S̄∑
s=0

ρ̂sft−s + wgt, ft =
1√
3
(ṽ1t + ṽ3t + ṽ5t), wgt

iid∼ N (0, σ2
wg), (24)

where ft relates to both large and small principal components (PCs) of asset returns. We

consider different signal-to-noise ratios summarized by the time series fit R2
g ∈ {30%, 20%, 10%}.

Finally, for the weak factor, we simulate ft independently from the standard normal distri-

bution. Nevertheless, the simulated weak factor gt is autocorrelated, so we can use it to explore

whether the Newey and West (1987) type of sandwich covariance matrix can deliver proper

Bayesian credible intervals for factors with an autocorrelated measurement error.

Tables A1 and IA.III of the Internet Appendix report the empirical size of our test for strong

factors in 1,000 simulations. We estimate the term structure of gt’s risk premia using S̄ = 12

for T = 200 and S̄ = 24 for T = 600. Our method provides appropriate credible intervals for

gt’s risk premia as long as we include all priced latent factors in the estimation (K ≥ 5), even

in an environment with a low signal-to-noise ratio and a small sample size. However, if we

omit some priced factors (e.g., the number of factors is four), our Bayesian estimates are biased

because the simulated gt loads on the fifth PC of asset returns. Nevertheless, including more

factors than in the pseudo-true model has no sizable detrimental effect, suggesting that such

an approach is conservative.

Can we recover the priced information embedded in gt if we consider only the contempo-

raneous correlation between gt and asset returns? To answer this question, we estimate the

models with different numbers of lags S̄. Figure 1 plots the average correlation between the

true ft and its estimate, f̂t = η̂⊤
g v̂t. When we project gt only on contemporaneous asset return

shocks (S̄ = 0 in equation (8)), corr(ft, f̂t) is small, ranging from 0.4 to 0.65. As we include

more lagged asset pricing information in gt, this correlation coefficient significantly increases;

hence, including the lagged asset return information is essential in identifying the priced shock

driving the nontradable factor. Notably, the detrimental effect of including more lags than in

the pseudo-true specification is generally very small.

Figure 2 reports the power of rejecting zero risk premia of strong factors.16 The model with

16We report the power for R2
g ∈ {10%, 20%} in Figure IA.1 of the Internet Appendix.
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Figure 1: Posterior median of correlation coefficients between true and estimated ft

The figure plots the average corr(f̂t, ft) in 1,000 simulations, where corr(f̂t, ft) quantifies the correlation between
the true ft and its estimate, f̂t = η̂⊤

g v̂t. We consider strong factors, with R2
g ∈ {10%, 20%, 30%}, and two sample

sizes, T ∈ {200, 600}. In each simulated scenario, we estimate several model configurations with different
numbers of factors and different S̄.

S̄ = 0 generally has low test power. In contrast, as we include more lagged latent factors in gt’s

estimation, we considerably increase the test power. Hence, our proposed MA representation

of gt is the key to detecting significant risk premia in persistent factors.

Including more factors (e.g., in the seven-factor models) tends to be a conservative strategy

since it delivers proper yet wider credible intervals of risk premia estimates. Nevertheless, it

comes at the cost of lowering the power of the test and the correlation between the true and

estimated ft. In the empirical application, we will explore whether our risk premia estimates

are robust to adding more latent factors, acknowledging that more factors will increase the

estimation uncertainty mechanically.

In Tables IA.IV and IA.V of the Internet Appendix, we investigate useless factors that do

not correlate with asset returns. The useless factors are assumed to be persistent, and a larger

R2
g corresponds to a more persistent process. Past literature (e.g., Kan and Zhang (1999a,b))

points out the fragility of Fama-MacBeth and GMM estimates of risk premia in the presence

of useless factors. It is worth noting that our Bayesian estimates do not suffer from this issue.

The Bayesian credible intervals of useless factors’ risk premia tend to be conservative, leading

to a slight under-rejections of zero risk premia in small sample.

One potential concern is that including many lags of multiple latent factors might lead to

severe overfitting of the data. To alleviate this concern, we report in the Internet Appendix (see
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Figure 2: Power of identifying strong factors

The figure plots the frequency of rejecting the null hypothesis H0 : λS̄g = 0, based on the 90%, 95%, and 99%
credible intervals based on our Bayesian estimates in Proposition 1. λS̄g is defined in equation (6). We consider
strong factors, with R2

g = 30%, and two sample sizes, T ∈ {200, 600}. In each simulated scenario, we estimate
several model configurations with different numbers of factors and different S̄. The number of Monte Carlo
simulations is 1,000.

Table IA.VI) the posterior means of R2
g in 1,000 simulations. Our simulation results suggest

that the posterior means of R2
g are reasonably close to their pseudo-true values. Hence, our

approach does not lead to significantly inflated time series fits for gt.

Moreover, we explore the performance of our Bayesian estimates for factors that correlate

with only the contemporaneous asset return shocks (i.e., S̄ = 0 in the true data-generating

process of gt), which fits the model configuration studied in Giglio and Xiu (2021). Table

IA.VII of the Internet Appendix shows that our Bayesian estimator has almost identical size

and power to the frequentist test in Giglio and Xiu (2021) in the special case of S̄ = 0.

Finally, in Internet Appendix IA.2, we repeat our simulation study to examine the time-

varying risk premia and their term structures as described in Section 2.2. Overall, size and

power, as well as the correlation between filtered and calibrated latent processes (see Tables

IA.VIII–IA.X in the Appendix), are similar to those reported in this section. Despite the sig-

nificant added generality by modeling the latent systematic risk drivers as following a VAR(1)

process, we observe only a minimal degree of attenuation bias and increased posterior uncer-

tainty for the estimated term structure of risk premia.
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4 Empirical Analysis

In this section, we apply our Bayesian framework to investigate whether factors are priced, the

term structure of the factors’ risk premia, and their connection to forward equity yields.

4.1 Unconditional Risk Premia in Equity Markets

We begin our empirical investigation with the unconditional risk premia in equity markets.

Our analysis relies on a large cross-section of FF275, covering the period between Q3 1963 and

Q4 2019. Throughout our paper, we standardize the tested factors to have unit variances per

period. Definition, sample periods, and data sources of factors and test assets can be found in

Internet Appendix IA.3.

To conduct our Bayesian estimation in Section 2, we need to determine the number of latent

factors, K. We adopt the selection approach proposed by Giglio and Xiu (2021)17 and estimate

that the number of factors is five in FF275 at monthly or quarterly frequencies.

Moreover, we find that the first several latent factors explain most of the time series and

cross-sectional variations. In the time series dimension, the first five PCs account for more than

93% of time series variations at monthly and quarterly frequencies. Adding the 6th and 7th

PCs only marginally improves the time series fit. In the cross-sectional dimension, the five-,

six, and seven-factor models explain 55.0%, 58.6%, and 58.7% (59.0%, 59.3%, and 72.9%) of

cross-sectional variations in average returns at the quarterly (monthly) frequency. Therefore,

the statistical test in Giglio and Xiu (2021), as well as time series and cross-sectional fit,

indicate that the five-factor model is a reasonable benchmark; we thus adopt it in our baseline

estimations (but also conduct robustness checks with K = 6 or 7).

4.1.1 Term Structure of Risk Premia

We first explore Bayesian risk premia estimates of some canonical tradable factors and compare

them with their time series average excess returns. Figure 3 plots the term structure of risk

premia for Carhart (1997) four factors, whose risk premia are estimated using Proposition 1

17We follow the method in Internet Appendix I.1 of Giglio and Xiu (2021). That is, the selected number of
factors is equal to K̂ = argmin1≤j≤Kmax

[
N−1T−1γj(R̄

⊤R̄) + j × ϕ(n, T )
]
− 1, where R̄ is a T ×N matrix of

demeaned asset returns, γj(R̄⊤R̄) is the j-th eigenvalue of R̄⊤R̄, ϕ(n, T ) = 0.5× γ̂× (log(N)+ log(T ))(N− 1
2 +

T− 1
2 ), and γ̂ is the median of the first Kmax eigenvalues of R̄⊤R̄. We set Kmax to 15.
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Figure 3: Term structure of risk premia: Carhart four factors

Term structure of risk premia estimates (in Sharpe ratio units) using Proposition 1. The risk premium at horizon
S (λSg ) is defined in equation (6). The cross-section of test assets consists of 275 Fama-French characteristic-
sorted portfolios. We consider five-factor models for asset returns. We study monthly Carhart (1997) four
factors, whose risk premia are estimated using a lag of 24 months in gt’s equations. We include their in-sample
monthly Sharpe ratios (grey dotted lines). In addition to the point estimates, we report the 68% and 90%
Bayesian credible intervals, highlighted in pink and blue, respectively. Definition and data sources of factors
and test assets can be found in Appendix IA.3. Sample: July 1963 to December 2019.

(S̄ = 24 and K = 5). These tradable factors tend to have almost flat term structures of

risk premia. The Bayesian point estimates (solid blue lines) have similar magnitudes as the

time series Sharpe ratios (grey dotted lines), which are covered by the 68% Bayesian credible

intervals (purple dotted lines). Therefore, our approach provides estimates very close to the

time series averages of tradable factors in both economic and statistical sense.

Next, we study other economic variables and report their term structures of risk premia

estimates in Table 1. For quarterly (monthly) variables, we conduct the Bayesian estimation
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Table 1: Factors’ risk premia: Five-factor models

Panel A. Quarterly variables, S̄ = 12 quarters
S = 0 2 4 6 8 10 12 R2

g

AEM intermediary 0.082*** 0.077** 0.078** 0.063 0.046 0.026 0.019 14.6%
Capital share growth 0.008 0.009 0.005 0.001 -0.003 -0.007 -0.012 7.4%
GDP growth 0.026* 0.084*** 0.133*** 0.164*** 0.180*** 0.195*** 0.204*** 23.4%
IP growth 0.008 0.087*** 0.145*** 0.177*** 0.194*** 0.204*** 0.205*** 37.5%
Durable consumption growth -0.014 0.079** 0.122*** 0.140*** 0.147*** 0.153*** 0.158*** 18.3%
Nondurable consumption growth 0.042*** 0.103*** 0.141*** 0.179*** 0.206*** 0.226*** 0.244*** 22.4%
Service consumption growth 0.006 0.013 0.020 0.027 0.035 0.041 0.045 9.8%
Nondurable + service 0.028* 0.067* 0.099* 0.127** 0.148* 0.163** 0.181** 18.5%
Labor income growth 0.000 0.002 0.003 0.004 0.005 0.005 0.009 5.3%
Dividend growth 0.009 0.045* 0.109*** 0.175*** 0.245*** 0.306*** 0.357*** 40.3%
Macro PC1 (FRED-QD) 0.019 0.092*** 0.165*** 0.222*** 0.266*** 0.303*** 0.332*** 47.9%
Macro PC2 (FRED-QD) 0.098*** 0.147*** 0.148** 0.129* 0.110 0.091 0.070 37.1%
Macro PC3 (FRED-QD) -0.003 -0.003 -0.002 -0.002 -0.001 0.000 0.001 10.8%
Macro PC4 (FRED-QD) -0.151*** -0.173*** -0.226*** -0.286*** -0.341*** -0.389*** -0.434*** 47.3%
Macro PC5 (FRED-QD) 0.050 0.055 0.044 0.029 0.018 0.011 0.003 29.3%

Panel B. Monthly variables, S̄ = 24 months
S = 0 4 8 12 16 20 24 R2

g

Oil price change -0.004 -0.023 -0.034 -0.039 -0.042 -0.041 -0.040 7.1%
TED spread change 0.000 -0.001 0.000 0.000 0.001 0.001 0.001 8.8%
Nontraded HKM intermediary 0.098*** 0.101*** 0.097*** 0.093*** 0.091*** 0.089*** 0.088*** 60.8%
Traded HKM intermediary 0.114*** 0.115*** 0.110*** 0.104*** 0.100*** 0.098*** 0.096*** 71.0%
PS liquidity 0.050*** 0.074*** 0.086*** 0.097*** 0.108*** 0.118*** 0.126*** 15.0%
∆ log(VIX) -0.131*** -0.079*** -0.062*** -0.049*** -0.042*** -0.037*** -0.032*** 51.6%

The table reports Bayesian estimates of factors’ risk premia using Proposition 1, where the risk premia over
S horizons (λSg ) are defined in equation (6). The cross-section of test assets consists of 275 Fama-French
characteristic-sorted portfolios. We consider a five-factor model for asset returns. Panel A tabulates the es-
timates of quarterly factors, using a lag of 12 quarters in gt’s equations. Panel B tabulates the estimates of
monthly factors, using a lag of 24 months in estimation. We use Bayesian credible intervals to conduct hypothe-
sis testing: If the 90% (95%, 99%) credible interval of gt’s risk premium does not contain zero, the risk premium
estimate will be highlighted by * (**, ***). Definition and data sources of factors and test assets can be found
in Internet Appendix IA.3.

as in Proposition 1, using a lag of 12 quarters (24 months) in gt’s equations. Four empirical

findings in Table 1 are noteworthy.

First, many macro factors carry significant risk premia, including IP growth, GDP growth,

durable and nondurable consumption growth, dividend growth, and macro PCs 1, 2, and 4 in

the FRED-QD dataset of McCracken and Ng (2020).18 More interestingly, most of them have

upward-sloping term structures of risk premia, as shown in Figure 4. At quarterly frequency

(S = 0), most macroeconomic factors are weakly identified at best. However, risk premia

carried by these macro factors are significant and as large as that of the market at business cycle

frequencies (two to three years). Therefore, these macro factors are riskier from the perspective

18Dividend growth is the quarterly growth of the smoothed aggregate dividend payments made in the previous
12 months. We consider the smoothed annual dividends of the S&P 500 index in order to remove the mechanical
seasonality in the dividend payments.
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of long-term than short-term investors. The only exception among the priced macro factors is

macro PC2, where we detect an almost flat term structure.

Second, the observations in Table 1 have direct implications for leading macro-finance mod-

els. Figure A1 of the Appendix plots the term structure of risk premia in the habit (Campbell

and Cochrane (1999)) and long-run risk frameworks (Bansal and Yaron (2004)).19 Specifically,

the habit model implies a flat term structure of consumption risk premia, whereas it is upward-

sloping in the long-run risk model. With respect to dividend growth, we consider the quarterly

growth of the smoothed dividend payment (defined as the aggregate dividend payments made

in the previous 12 months) to be consistent with our empirical analysis. Even though both

models predict upward-sloping term structures of risk premia for smoothed dividend growth,

the magnitudes and slopes are much more sizable in the long-run risk model than in the habit

model. Overall, the long-run risk model tends to be more consistent with our estimates for

nondurable consumption and dividend growth.

Third, our findings are not a simple byproduct of factor persistence. For instance, durable

consumption growth, Adrian et al. (2014) (AEM) intermediary factor, and labour income

growth have similar autocorrelation structures. However, as we show in Table 1, their term

structures of risk premia are totally different: upward-sloping for durable consumption growth,

slightly downward-sloping for AEM intermediary factor, and flat for labour income growth.

Therefore, the term structure of risk premia is driven by the propagating mechanism of how

the economic factor responds to the ft shock over time (rather than just its persistence).

Fourth, the term structure of VIX risk premia (more precisely, their absolute values) is

downward-sloping. The mimicking portfolio hedging against monthly VIX changes earns a

sizable risk premium of −0.13, but the two-year risk premium declines to only −0.03, although

still significant. This observation is consistent with the previous literature (Eraker and Wu

(2014), Dew-Becker et al. (2017), and Johnson (2017)), which estimates VIX risk premia using

derivative contracts with different expiration dates.

We further confirm that we can interpret the term structure of risk premia estimates from

the angle of horizon-specific mimicking portfolios. Figure IA.2 in the Internet Appendix plots

the per-period mean returns of the horizon-specific mimicking portfolios hedging against the

six macro factors in Figure 4. As we show therein, these portfolios display increasing term

structures of risk premia that are similar to what we find in Figure 4.

19We discuss the calibrations in detail in Internet Appendix IA.4.
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(c) Durable consumption growth
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(d) Nondurable consumption growth
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(e) Macro PC1 (FRED-QD)
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(f) Macro PC4 (FRED-QD)

Figure 4: Term structure of factor’s risk premia: Some priced macro factors
This figure plots the term structure of risk premia estimates using Proposition 1, where the risk premium
over S horizons (λSg ) is defined in equation (6). The cross-section of test assets consists of 275 Fama-French
characteristic-sorted portfolios. We consider five-, six- and seven-factor models for asset returns. In addition
to the point estimates, we show the 68% and 90% Bayesian credible intervals based on five-factor models,
highlighted in pink and blue, respectively. Definition and data sources of factors and test assets can be found
in Internet Appendix IA.3.
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However, simple mimicking portfolios based on single-period risk exposures may fail to

capture the entire term structure of risk premia embedded in economic factors. Figure 5 plots

the estimates for both traded and nontraded versions of the He et al. (2017) (HKM) intermediary

factors (Panel (a)) and Pástor and Stambaugh (2003) (PS) liquidity factors (Panel (b)). The

HKM traded and nontraded factors command almost the same risk premia across different

horizons. The term structures are almost flat, so the nontraded HKM risk factor has an almost

zero forward beta (see the discussion in Example 3). Conversely, the tradable version of the PS

liquidity factor, which ignores the positive forward betas, fails to capture the upward-sloping

term structure.
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Figure 5: Term structure of factor’s risk premia: Traded vs. Nontraded versions
This figure plots the term structure of risk premia estimates for both traded and nontraded versions of the
He et al. (2017) intermediary factors and Pástor and Stambaugh (2003) liquidity factors. The cross-section of
test assets consists of 275 Fama-French characteristic-sorted portfolios. We consider five-factor models for asset
returns. In addition to the point estimates, we show the 90% Bayesian credible intervals. Definition and data
sources of factors and test assets can be found in Internet Appendix IA.3.

4.1.2 Risk Price of the ft Shock to Nontraded Factors

We go on to explore the role of the ft shock in the latent SDF. We use the SDF representation

in Remark 1; that is, mt = 1 − λfft − λ⊤
uΣ

−1
u ut, where ut are orthogonal to ft and act as

the control for omitted sources of priced risk. Table 2 reports the risk price estimates of ft for

several priced nontraded risk factors based on the evidence in Table 1. We show that these

ft shocks are indeed priced in the cross-section. Furthermore, the annualised Sharpe ratios

implied by these ft shocks are economically large yet not excessive — 0.42 to 0.71 per year

— on par with that of the market index. Finally, the column E
[
SR2

f/SR
2
m | data

]
quantifies
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the importance of ft in the latent SDF. We find that these economic sources of risk explain

individually about 13 − 58% of the SDF’s variance. Therefore, a significant amount of priced

shocks in financial markets are not captured by these economic factors, further highlighting the

importance of controlling for omitted variables in the estimation.

Table 2: Risk price of the ft shock to nontraded risk factors

λf E[SRf | data] E
[ SR2

f

SR2
m
| data

]
Panel A. Quarterly variables, S̄ = 12 quarters

AEM intermediary 0.356 [0.205, 0.494] 0.711 [0.412, 0.987] 0.580 [0.225, 0.858]
GDP growth 0.226 [0.098, 0.353] 0.452 [0.196, 0.706] 0.231 [0.047, 0.513]
IP growth 0.223 [0.096, 0.341] 0.447 [0.192, 0.682] 0.221 [0.046, 0.479]
Durable consumption growth 0.340 [0.190, 0.472] 0.681 [0.393, 0.944] 0.528 [0.201, 0.826]
Nondurable consumption growth 0.283 [0.157, 0.411] 0.567 [0.314, 0.822] 0.358 [0.122, 0.660]
Nondurable + service 0.212 [0.046, 0.369] 0.425 [0.114, 0.740] 0.204 [0.015, 0.558]
Dividend growth 0.245 [0.120, 0.375] 0.491 [0.240, 0.750] 0.270 [0.072, 0.558]
Macro PC1 (FRED-QD) 0.213 [0.098, 0.329] 0.427 [0.196, 0.658] 0.204 [0.047, 0.444]
Macro PC4 (FRED-QD) -0.294 [-0.413, -0.173] 0.589 [0.346, 0.827] 0.385 [0.158, 0.637]

Panel B. Monthly variables, S̄ = 24 months
Nontraded HKM intermediary 0.126 [0.056, 0.201] 0.437 [0.193, 0.696] 0.136 [0.028, 0.314]
PS liquidity 0.152 [0.067, 0.226] 0.528 [0.231, 0.783] 0.196 [0.040, 0.405]
∆ log(VIX) -0.148 [-0.259, 0.251] 0.655 [0.371, 0.950] 0.327 [0.115, 0.595]

The table reports (1) the risk price of the ft shock to the nontraded risk factors (column λf ), (2) the annualized
Sharpe ratio implied by the λfft component (column E[SRf | data]), and (3) the share of SDF variance explained
by ft (column E

[
SR2

f/SR
2
m | data

]
), based on the same estimates as in Table 1 and the SDF representation in

Remark 1. In each column, we report both the posterior median and the 90% posterior credible intervals.

4.1.3 Contemporaneous Innovations in Macro Factors

Empirically, researchers often fail to identify priced macro risks when studying only the con-

temporary correlations between asset returns and macro factors. The first column of Table 1,

and Figure 4, indicate that the risk premia of GDP growth, IP growth, durable consumption

growth, dividend growth, and macro PC1 are tiny and insignificant at S = 0. One concern of

the analysis in Table 1 and Figure 4 is that we include many lags in the estimation, leading to

noisier risk premia estimates. To alleviate this concern we repeat the estimation using S̄ = 0.

Panel A of Table 3 shows that among the eight priced macro factors mentioned above, only

macro PC2 and PC4 carry significant risk premia in this case.

Panel B further extracts the AR(1) innovations in macro factors and estimates their risk

premia by setting S̄ = 0. Similar to Panel A, we observe only macro PC2, PC4, and nondurable

plus service consumption (albeit neither nondurable nor service consumption is priced at S̄ = 0)
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being priced, while all other macro factors have negligible and insignificant risk premia. Al-

though the AR(1) model is often used in both empirical and theoretical works, extracting the

AR(1) innovations is insufficient to recover the risk premia of many macro variables, either

because the AR(1) shocks are inconsequential or the AR(1) assumption is questionable. Differ-

ently, the MA representation does not take a stance on their exact data-generating processes.

We model the priced component of the macro factors as a flexible MA of both the current and

lagged asset return innovations.

But why does including lagged asset return shocks in gt’s equation enable us to identify

the priced risk? The time series fit, R2
g, sheds light on this issue. For most traditional macro

factors, R2
g values in Table 1 are considerably larger than those in Table 3. For instance, the

contemporaneous asset return shocks explain only 3% of time series variations in macro PC1,

but its R2
g increases to 48% in the estimation with S̄ = 12 quarters, hence greatly enhancing

the signal-to-noise ratio and our ability to identify the risk premia. In contrast, comparing the

R2
g of AEM and HKM factors in Table 1 with those in Table 3, we find that lagged asset return

innovations are not essential in driving intermediary factors. For these factors, estimating their

risk premia using S̄ = 0 seems to be a better choice.

Remark 2. There is extensive literature on developing new estimators of risk premia that are

robust to weak factors, including Kan et al. (2013), Gospodinov et al. (2014, 2019), Bryzgalova

(2015), Kleibergen and Zhan (2020), Anatolyev and Mikusheva (2022), and Bryzgalova et al.

(2023). Our Bayesian estimator is not only robust to the weak identification issue but, more

importantly, transforms some weak macro factors at short horizons into strongly identified ones

at business-cycle frequencies. With this regard, we successfully recover the priced risk in macro

variables through the lens of horizon-specific risk.

4.1.4 MA Components of Macro Factors

Perhaps the most surprising empirical finding is that macro variables carry much more sizeable

risk premia at long horizons (S = 8 to 12 quarters) than at quarterly frequency (S = 0). What

is the economic intuition behind this phenomenon? To help answer this question, we plot in

Figure 6 the MA component spanned by six priced macro variables and asset return factors,

that is,
∑S̄

s=0 ρsη
⊤
g vt−s. Strikingly, the MA components of all these six macro variables present

clear business cycle patterns — long-horizon investors who hedge against low (high) realizations

of these macro factors require positive (negative) risk premia.
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Table 3: Factors’ risk premia: S̄ = 0

E[λg | D] E[R2
g | D]

Number of factors: 5 6 7 5 6 7
Panel A. Original factors

AEM intermediary 0.141*** 0.176*** 0.175*** 10.4% 12.2% 12.4%
Capital share growth 0.032 0.013 0.013 1.8% 2.8% 2.8%
GDP growth 0.005 0.013 0.013 4.2% 4.3% 4.3%
IP growth -0.028 0.004 0.003 2.9% 4.3% 4.3%
Durable consumption growth -0.011 0.000 -0.002 7.7% 7.9% 8.2%
Nondurable consumption growth 0.042 0.058 0.056 3.7% 4.1% 4.1%
Service consumption growth 0.015 0.053 0.052 4.0% 6.4% 6.5%
Nondurable + service 0.032 0.067* 0.066* 4.0% 5.9% 6.0%
Labor income growth -0.006 0.035 0.028 1.5% 3.8% 8.7%
Dividend growth of SP500 0.037 0.037 0.044 5.1% 5.4% 11.7%
Macro PC1 (FRED-QD) -0.009 0.019 0.021 2.8% 3.9% 4.6%
Macro PC2 (FRED-QD) 0.140*** 0.109** 0.103** 21.3% 22.0% 23.0%
Macro PC3 (FRED-QD) -0.063* -0.076** -0.078** 4.3% 4.7% 4.8%
Macro PC4 (FRED-QD) -0.155*** -0.164*** -0.168*** 25.2% 25.4% 26.6%
Macro PC5 (FRED-QD) 0.068 0.108** 0.101** 24.8% 25.5% 27.9%
Oil price change -0.018 -0.017 -0.016 2.6% 4.5% 4.5%
TED spread change -0.034 -0.040* -0.033 6.8% 10.9% 17.4%
Nontraded HKM intermediary 0.100*** 0.104*** 0.104*** 60.3% 61.0% 61.1%
Traded HKM intermediary 0.112*** 0.116*** 0.116*** 70.3% 71.0% 71.2%
PS liquidity 0.061*** 0.059*** 0.062*** 11.9% 12.2% 12.9%
∆ log(VIX) -0.120*** -0.118*** -0.118*** 42.8% 43.0% 43.1%

Panel B. AR(1) shocks of macro factors
GDP growth 0.005 0.012 0.012 4.2% 4.3% 4.3%
IP growth -0.021 0.001 -0.002 3.6% 4.3% 4.9%
Durable consumption growth -0.010 0.002 0.000 7.4% 7.6% 7.8%
Nondurable consumption growth 0.042 0.058 0.057 3.7% 4.1% 4.1%
Service consumption growth 0.016 0.055 0.055 3.7% 6.3% 6.4%
Nondurable + service 0.031 0.069* 0.069* 3.7% 6.0% 6.0%
Labor income growth -0.007 0.033 0.027 1.4% 3.6% 8.3%
Dividend growth of SP500 0.067* 0.068* 0.074* 3.3% 3.4% 9.5%
Macro PC1 (FRED-QD) 0.014 0.016 0.013 6.1% 6.1% 7.1%
Macro PC2 (FRED-QD) 0.109*** 0.082* 0.077 23.9% 24.8% 27.6%
Macro PC3 (FRED-QD) -0.052 -0.051 -0.055 3.3% 3.3% 4.1%
Macro PC4 (FRED-QD) -0.150*** -0.160*** -0.165*** 26.8% 26.9% 28.7%
Macro PC5 (FRED-QD) 0.057 0.074 0.068 33.8% 33.2% 37.1%
Oil price change -0.026 -0.025 -0.025 3.2% 4.8% 4.8%

The table reports Bayesian estimates of (1) factors’ risk premia and (2) time series fit R2
g. Panel A considers the

original variables that are identical to those in Tables 1 and IA.XI, whereas Panel B studies the AR(1) shocks of
some macro factors. We estimate model parameters using Proposition 1 by setting S̄ = 0. The cross-section of
test assets consists of 275 Fama-French characteristic-sorted portfolios. We consider five-, six-, and seven-factor
models for asset returns. For risk premia estimates, we use Bayesian credible intervals to conduct hypothesis
testing: If the 90% (95%, 99%) credible interval of gt’s risk premium does not contain zero, the risk premium
estimate will be highlighted by * (**, ***). Definition and data sources of factors and test assets can be found
in Internet Appendix IA.3.
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Figure 6: Moving average components of some macro factors

This figure plots the time series of (posterior means of) moving average components spanned by asset returns’
latent factors:

∑S̄
s=0 ρsη

⊤
g vt−s, with S̄ = 12 quarters. The cross-section of test assets consists of 275 Fama-

French characteristic-sorted portfolios. We consider five-factor models for asset returns. Definition and data
sources of factors and test assets can be found in Internet Appendix IA.3. Sample: Q3 1963 to Q4 2019.
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Are the MA components of the priced macro factors similar? Table 4 shows that macro PC1,

GDP growth, and IP growth have highly correlated MA components, often with correlation

coefficients of about 90%, and their correlation with nondurable consumption is 70% or more.

Nevertheless, the MA components of other macro variables, although correlated, seem to contain

considerably independent information. In short, we detect some string commonality in the

priced component of these macro variables, but they are not all alike.20

Table 4: Are MA components of macro factors similar in five-factor models?

GDP growth IP growth Durable Nondurable Service Dividend Macro PC1 Macro PC2 Macro PC4
GDP growth 1.00 0.90 0.69 0.70 0.60 0.39 0.90 0.43 -0.45
IP growth 0.90 1.00 0.72 0.70 0.57 0.35 0.85 0.40 -0.25
Durable 0.69 0.72 1.00 0.64 0.35 0.32 0.61 0.32 -0.19
Nondurable 0.70 0.70 0.64 1.00 0.59 0.48 0.73 0.34 -0.55
Service 0.60 0.57 0.35 0.59 1.00 0.43 0.72 0.13 -0.43
Dividend 0.39 0.35 0.32 0.48 0.43 1.00 0.64 -0.25 -0.59
Macro PC1 0.90 0.85 0.61 0.73 0.72 0.64 1.00 0.15 -0.51
Macro PC2 0.43 0.40 0.32 0.34 0.13 -0.25 0.15 1.00 -0.19
Macro PC4 -0.45 -0.25 -0.19 -0.55 -0.43 -0.59 -0.51 -0.19 1.00

The table reports the correlation among the moving average components spanned by asset returns’ latent
factors,

∑S̄
s=0 ρsη

⊤
g vt−s, with S̄ = 12 quarters. The cross-section of test assets consists of 275 Fama-French

characteristic-sorted portfolios. We consider five-factor models for asset returns. Definition and data sources of
factors and test assets can be found in Internet Appendix IA.3.

4.1.5 Robustness Checks: More Latent Factors

Which principal components of asset returns drive gt? Table IA.XII in the Internet Appendix

reports the posterior means of the squared correlation21 between the common component es-

timates, η̂⊤
g v̂t, and the first seven PCs of asset returns, where the posterior distributions of

η̂g and v̂t are estimated using a seven-factor model. The first PC of asset returns is the most

important, particularly for the priced factors. Specifically, PC1 of asset returns accounts for

56–87% of the time series variations in the common components of GDP growth, IP growth,

nondurable consumption growth, dividend growth, macro PCs 1, 2, 4, HKM intermediary fac-

tors, the liquidity factor, and the VIX changes. Overall, the common component is spanned

mainly by the first five PCs of asset returns.

However, several variables are closely related to PC6 and PC7 of equity portfolio returns. For

example, these two small PCs explain 48% of the common component in labor income growth.

Furthermore, PC6 of asset returns accounts for 28%, 28%, and 9% of common components in

20Table IA.XIII in the Internet Appendix repeats these analyses in six- and seven-factor models, showing
very similar empirical patterns.

21We do not report the correlation since we cannot identify the sign of η̂⊤
g v̂t.
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capital share growth, macro PC3, and oil price change. While labor income growth, capital

share growth, and macro PC3 are not priced in six- and seven-factor models, the risk premia

estimates of oil price change become significantly negative after we include PC6 of asset returns.

Therefore, it is important to conduct robustness checks by considering different numbers of

latent factors. We report the term structure of risk premia estimates based on six- and seven-

factor models in the Internet Appendix. (See Table IA.XI) The point estimates of most factors

are nearly unchanged, but Bayesian credible intervals often become wider, consistent with the

observations in simulation studies.

4.2 Time-Varying Term Structure of Macroeconomic Risk Premia

We now turn to the analysis of the time variation in the term structure of macroeconomic

factors’ risk premia, applying the method in Section 2.2. Since the dynamics of latent factors, vt,

determines the time variation in factor risk premia, we first investigate whether the five largest

PCs of asset returns can be predicted by their one-period lags and other external economic

variables. Following past literature (e.g., Campbell and Vuolteenaho (2004), Campbell et al.

(2013), and Gagliardini et al. (2016)), we include as external predictors the price-earning ratio

as well as term, default, and value spreads.

Table IA.XIV in the Internet Appendix shows that external predictors have limited pre-

dictive power. In Panel A, we consider only the four external predictors. Although value and

term spread can predict PC1 and PC5 to a certain extent, the adjusted R2s are very smalll

or even negative in these specifications. We further include the lagged return PCs in Panel B

and observe economically sizable predictability. For example, the adjusted R2 is above 11% for

PC4 at the quarterly frequency. In contrast, all external predictors are almost inessential in

these regressions. Therefore, using them to model time-varying risk premia will introduce huge

estimation noise, which can lead to attenuation bias in risk premia estimates.

Using the VAR(1) formulation for the latent systematic factors, we estimate the term struc-

ture of unconditional risk premia for the same set of variables as in Table 1. Figures IA.6–IA.8

shows the empirical results, in which the blue lines and shaded areas present the estimates

based on the conditional models.22 For comparison, we also include the previous estimates (the

22In particular, in Figure IA.6, the VAR(1) model contains only the latent factors of returns, whereas, in
Figure IA.8, both latent factors and external predictors are included in the VAR(1) model. Unlike these two
models, we impose a restriction in Figure IA.7 that both the latent factors and external predictors are driven
only by the lagged external predictors.
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purple lines and areas) in Table 1 based on the unconditional models. The point estimates are

almost identical in both conditional and unconditional models, although we occasionally detect

some minor attenuations and wider confidence intervals due to the additional parameters in the

VAR system. Overall, the risk premia estimates based on the unconditional models are able to

deliver consistent estimates even if the true model is time-varying.

Having established the robustness of the unconditional risk premia estimates, we proceed

to explore the time-varying term structure of macro risk premia. Figure 7 reports the posterior

means of the risk premia at one-quarter to three-year horizons for nondurable consumption,

GDP, and industrial production growths (in Panels (a)–(c), respectively), using four external

predictors to model conditional factors’ risk premia. The figure highlights a clear commonality

in the business cycle behavior of the term structures of macroeconomic risk premia.23

Two observations are noteworthy. First, the average level is strongly countercyclical, with

smaller risk premia during expansion and a significant increase during recession episodes. Sec-

ond, short-maturity (e.g., one-quarter) macro risk premia exhibit very small time variation,

confirming that macroeconomic variables are weak factors at best at short horizons, even con-

ditionally.

4.3 Term Structure of (Dividend) Risk Premia vs Strips

In this subsection, we study the connection between the term structure of risk premia defined in

equation (21) and that of dividend strips that have been extensively studied in past literature

(e.g., van Binsbergen et al. (2012), van Binsbergen and Koijen (2017), Bansal et al. (2021), and

Giglio et al. (2023)). Suppose that Dt is the dividend payment at time t, and Ps,t denotes the

time-t price of the dividend strip that delivers Dt+s at time t+ s. We define the holding period

return on this dividend strip, as well as the spot and forward equity yield, as follows:

holding period return: Rt,t+S =
Dt+s

Ps,t
,

spot equity yield: es,t =
1

s
log
( Dt

Ps,t

)
, and

forward equity yield: efs,t =
1

s
log
( Dt

Ps,t

)
− 1

s
rf,t,t+s,

23Figure IA.9 in the Internet Appendix shows the time-varying risk premia for durable consumption and
dividend growth, as well as the Macro PC1 and PC4. Besides, we present in Figure IA.10 the time-varying risk
premia based on a different VAR(1) model that contains only the latent factors of returns.
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Figure 7: Time-varying term structure of macroeconomic factor’s risk premia
This figure plots the time-varying term structure of risk premia following the method in Section 2.2. Risk premia
of latent factors are linear in four external predictors: PE ratio of S&P 500, Term spread, default spread, and
value spread. Estimates are based on the composite cross-section of 275 Fama-French characteristic-sorted
portfolios. Definition and data sources of factors and test assets can be found in Internet Appendix IA.3.
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where 1
s
rf,t,t+s is log risk-free rate with time-to-maturity s.

In Internet Appendix IA.5, we show that under joint log-normality of SDF and dividend

growth, forward equity yield and dividend risk premia satisfy the following relationship:

efs,t = λsdt − Et[gd,t,t+s]−
1

2s
vart(∆dt,t+s) ≈ λsdt − Et[gd,t,t+s], (25)

where gd,t,t+s = 1
s
log
(
Dt+s

Dt

)
is the per-period log dividend growth rate, ∆dt,t+s = log

(
Dt+s

Dt

)
is the multiperiod dividend growth, and λsdt = −1

s
covt(mt,t+s,∆dt,t+s) is the s-period dividend

risk premium defined in equation (21). Since vart(∆dt,t+s) is empirically negligible, we can

approximate the forward equity yield with λsdt − Et[gd,t,t+s].

Equation (25) makes clear the distinction between the term structure of dividend risk premia

and its strips: the forward equity yields are driven by both dividend risk premia and expected

dividend growths. As we show in Internet Appendix IA.5, dividend risk premia can be inter-

preted as the per-period risk premium on the hold-to-maturity dividend strips. We estimate

the term structure of unconditional dividend risk premia using our MA formulation and show

in Figure IA.11 that our estimated (one- to five-year) premia, unconditionally, are extremely

similar to those obtained in Bansal et al. (2021), although we use an entirely different data

sample and methodology.

Nevertheless, to obtain the term structure of dividend strips, we also need to estimate the

conditional mean of dividend growth. This is obtained using equation (4) as follows:

Et[gd,t,t+s] =
1

s

s∑
τ=1

Et[∆dt+τ ], where Et[∆dt+τ ] = µg +
S̄∑
s=τ

ρ̃sft+τ−s. (26)

Note that in equation (4) the unspanned component wgt is allowed to be persistent. In other

words, we do not assume that the MA component of return shocks captures the entire dividend

predictability. Consequently, the forward equity yields implied by the MA model are not

guaranteed to match the empirical ones exactly.

We present the time series of expected dividend growth and its risk premia for one-, two-, and

five-year holding horizons in Figure 8. The estimation is based on a MA(20) formulation, with

time-varying risk premia driven by only external predictors. We observe clear business-cycle

patterns in the conditional dividend growth and risk premia. While expected dividend growth

turns from positive to negative during economic recessions, dividend risk premia generally spike
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Figure 8: Time-varying expected dividend growth and risk premia
This figure plots the time-varying expected dividend growth (Panel (a)) and risk premia (Panel (b)). The
conditional mean of dividend growth is based on the MA model in equation (26), with S̄ = 20 quarters. The
time-varying dividend risk premia are based on a VAR(1) model for the latent risk factors, in which only the
external predictors can forecast latent factors. Estimates are based on the composite cross-section of 275 Fama-
French characteristic-sorted portfolios. Definition and data sources of factors and test assets can be found in
Internet Appendix IA.3.

in crisis periods. Furthermore, the term structure of expected dividend growth is downward-

sloping in normal times but strongly upward-sloping during recessions; however, we do not

detect such patterns for dividend risk premia.

We next estimate forward equity yields for one-, two-, and five-year holding horizons using

equation (25), based on the expected dividend growth and risk premia in Figure 8. Note that

the estimation is based on the full sample from 1963Q3 to 2019Q4, but we display in Figure 9

the subsample from 2004Q4, the date from which we have the observed data of forward equity
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yields.24 Figure 9 shows that our model generates a downward-sloping term structure of equity

yields in bad economic states but an upward-sloping one during expansions, consistent with

the observed data. Our estimates of forward equity yields are also strongly countercyclical,

closely tracking the observed data. Since expected dividend growth displays much more sizable

variation than dividend risk premia, the time variation of the latter, rather than the former,

explains most of the variation in forward equity yields. This is further highlighted in Figure

IA.13, which shows the estimates of forward equity yields based on a (counterfactual) constant

risk premia model. Even if dividend risk premia are assumed to be constant, our formulation

is able to generate realistic estimates of forward equity yields.

However, we cannot precisely match the observed forward equity yields. For instance, the

observed one-year forward equity yield is about 0.3 in 2009Q1, but our model estimates a

forward equity yield of only 0.2 in the same period. As we point out in equation (26), our MA

formulation allows for other sources of dividend predictability beyond asset returns, which can

potentially drive the difference between our estimates and the observed data.

In summary, the term structure of dividend risk premia is different from that of dividend

strips, with the gap captured by the expected dividend growth. Our econometric framework

targets the term structure of risk premia of not only dividend growth but also other economic

quantities. Although our model allows for other sources of dividend predictability beyond the

MA representation of priced shocks, we are still able to deliver realistic estimates of forward eq-

uity yields, closely matching the observed yields, and generate the time-varying term structures

of equity yields.

5 Conclusion

We propose a novel estimator of factors’ risk premia, their term structure, and their time

variation in a large cross-section of asset returns. The asset returns follow an approximate

factor structure, whereas the tested factor can slowly adjust to the asset return systematic

shocks, motivated by the Wold decomposition. The latter assumption allows the tested factors

and asset returns to have rich dynamics but poses a challenge for the frequentist estimation. We

tackle this challenge by taking a Bayesian perspective. Specifically, we derive a Gibbs sampler

24The data on realised one-, two-, and five-year forward equity yields are from Bansal, Miller, Song, and
Yaron (2021). We thank the authors for sharing the data with us.
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Figure 9: Time series of estimated forward equity yields: Time-varying dividend risk premia
This figure displays the time series of estimated forward equity yields based on our MA model with 20 lags.
Dividend risk premia are time-varying and modelled as being linearly dependent on external predictors. We
estimate a five-factor latent factor model of FF275 using the full sample from 1963Q3 to 2019Q4. We plot the
estimates in the subsample from 2004Q4, the date from which we have the observed data of forward equity
yields. The data on realised forward equity yields are from Bansal et al. (2021).
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in which all conditional distributions of model parameters have standard closed forms, so our

Bayesian estimator is straightforward to implement.

Our Bayesian framework has the frequentist three-pass procedure in Giglio and Xiu (2021)

as a particular, unconditional and single-period, case. More precisely, we adopt their rotation

invariance property but also show that both the conditional and unconditional term structures

of risk premia of observable variables are invariant to arbitrary rotation of the latent factors. We

show that the risk premia of an economic state variable over multiple periods can be interpreted

as the per-period mean returns of the mimicking portfolios that hedge against its multi-horizon

innovations.

We first apply our method to a large equity cross-section. Our results suggest that, un-

conditionally, most macro variables have significantly upward-sloping term structures of risk

premia. Although they are almost unpriced at quarterly horizons, their risk premia, measured

over two- to three-year holding horizons, are comparable to many tradable anomalies in equity

markets. In other words, macro risk strikes back at business cycle frequencies. Meanwhile, we

observe flat or downward-sloping unconditional term structures for other factors, such as VIX

and intermediary factors.

Furthermore, conditional on four return predictors often used in previous literature, the

macro risk premia are strongly time-varying and have clear business cycle patterns: They are

countercyclical, with low risk premia in normal times but significantly increasing risk premia

in economic recessions.

Theoretical asset pricing models predict which economic state variables should be priced in

the cross-section of asset returns. Given the rich set of new empirical facts we uncover, we argue

that when researchers evaluate their models, they should consider the heterogeneous factor risk

premia across horizons and states of the business cycle.
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Appendices

Appendix A Additional Propositions and Proofs

Proposition A1. As N → ∞, µ̃⊤
r cov(rt)

−1βṽ → λ⊤
ṽ under the following assumptions:

i. The K eigenvalues of β⊤
ṽ βṽ explode as N → ∞, whereas Σwr has bounded eigenvalues:

γ(β⊤
ṽ βṽ) = Op(N) and γ(Σwr) = Op(1);

ii. β⊤
ṽ βṽ

N
and Σwr converge to positive-definite matrices with bounded entries;

iii. Asset returns and their expectations follow equations (1) and (2). In particular, αi is IID

and cross-sectionally independent of factor loadings, with a zero mean and satisfying that
α⊤Σ−1

wrβṽ

N
→ 0⊤

K as N → ∞. All elements in βṽ are bounded.25

A.1 Proof of Proposition A1

Assumptions in equation (2) imply that µ̃⊤
r cov(rt)

−1βṽ = α⊤cov(rt)
−1βṽ︸ ︷︷ ︸

(I)

+λ⊤
ṽ β

⊤
ṽ cov(rt)

−1βṽ︸ ︷︷ ︸
(II)

.

Assumptions in equation (1) imply that cov(rt) = βṽβ
⊤
ṽ +Σwr. Using the Woodbury matrix

identity, we can rewrite the inverse of cov(rt) as follows:

cov(rt)
−1 = Σ−1

wr −Σ−1
wrβṽ(IK + β⊤

ṽ Σ
−1
wrβṽ)

−1β⊤
ṽ Σ

−1
wr .

We now consider the behaviors of components (I) and (II) as N → ∞.

(I) = α⊤[Σ−1
wr −Σ−1

wrβṽ(IK + β⊤
ṽ Σ

−1
wrβṽ)

−1β⊤
ṽ Σ

−1
wr

]
βṽ

= α⊤Σ−1
wrβṽ ·

[
IK − (IK + β⊤

ṽ Σ
−1
wrβṽ)

−1β⊤
ṽ Σ

−1
wrβṽ

]
= α⊤Σ−1

wrβṽ · (IK + β⊤
ṽ Σ

−1
wrβṽ)

−1 =
α⊤Σ−1

wrβṽ
N

·
(IK + β⊤

ṽ Σ
−1
wrβṽ

N

)−1
.

Assumption (ii) in Proposition A.1 implies that IK+β⊤
ṽ Σ−1

wrβṽ

N
converges to a positive-definite

matrix with bounded entries. On the contrary, due to assumption (iii) in Proposition A.1,
α⊤Σ−1

wrβṽ

N
→ 0⊤

K as N → ∞, which implies that (I) → 0⊤
K .

25Ingersoll (1984) defines the pricing errors α such that α⊤Σ−1
wrβṽ = 0. Our assumption in Proposition A1

is weaker than that in Ingersoll (1984). This assumption in (iii) is satisfied, e.g., when αn ∼ Op(
1√
N
), where the

latter is a sufficient condition for the absence of asymptotic arbitrage opportunities defined in Ingersoll (1984).
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(II) = λ⊤
ṽ β

⊤
ṽ

[
Σ−1
wr −Σ−1

wrβṽ(IK + β⊤
ṽ Σ

−1
wrβṽ)

−1β⊤
ṽ Σ

−1
wr

]
βṽ

= λ⊤
ṽ

[
β⊤
ṽ Σ

−1
wrβṽ − β⊤

ṽ Σ
−1
wrβṽ(IK + β⊤

ṽ Σ
−1
wrβṽ)

−1β⊤
ṽ Σ

−1
wrβṽ

]
(let A = (β⊤

ṽ Σ
−1
wrβṽ)

−1)

= λ⊤
ṽ

[
A−1 −A−1(IK +A−1)−1A−1

]
= λ⊤

ṽ (A+ IK)
−1.

Since we assume that the eigenvalues of β⊤
ṽ βṽ will explode as N → ∞, whereas Σwr has

bounded eigenvalues, A → 0 as N → ∞. This further implies that (II) → λ⊤
ṽ .

A.2 Estimating Time-Varying Risk Premia in Section 2.2

In estimation, we identify a linear rotation of ṽt: vt = Hṽt = Hµṽ,t−1 +Hϵṽt = µv,t−1 + ϵvt,

which implies that Σϵv = cov(ϵvt) = HH⊤. We generalize the rotation invariance to identify

the time-varying risk premia as follows:

rt = α− Υr

2
+ βṽH

−1︸ ︷︷ ︸
βv

Hλṽ︸ ︷︷ ︸
λv

+ βṽH
−1︸ ︷︷ ︸

βv

Hṽt︸︷︷︸
vt

+wrt, gt = µg +
S̄∑
s=0

ρ̃sη̃
⊤
g H

−1︸ ︷︷ ︸
η⊤
g

Hϵṽ,t−s︸ ︷︷ ︸
ϵv,t−s

+ wgt,

mt = 1− λ⊤
v (H

−1)⊤H−1ϵvt − µ⊤
v,t−1(H

−1)⊤H−1ϵvt = 1− λ⊤
v Σ

−1
ϵv ϵvt − µ⊤

v,t−1Σ
−1
ϵv ϵvt, and

λSg,t−1 =

∑S
τ=0

∑τ
s=0 ρ̃s

1 + S
· η̃⊤

g H
−1︸ ︷︷ ︸

η⊤
g

H(λṽ + Et−1

[
µṽ,t+τ−s−1

]
)︸ ︷︷ ︸

λv+Et−1

[
µv,t+τ−s−1

] ;

(A1)

therefore, the time-varying risk premia, λSg,t−1, are point identified.

Proposition A2 (Gibbs sampler of the time-varying model). Under the assumptions in equa-

tions (18)–(22), the posterior distribution of the model parameters can be sampled from the

following conditional distributions:

(1) Conditional on the data, {gt}Tt=1+S̄
, and shocks to latent factors, {ϵvt}Tt=1, the parameters

of the gt process (σ2
wg, ρg, and ηg) follow the normal-inverse-gamma distribution in equa-

tions (IA.1)–(IA.3) of Internet Appendix IA.1.1. The only difference is that we replace

vt with ϵvt in equations (IA.1)–(IA.3). For point identification purposes, draws of ρg and

ηg are normalized such that η⊤
g ηg = 1.

(2) Conditional on asset returns, {rt}Tt=1, and latent factors, {vt}Tt=1, the parameters of the

rt process (Σwr and B⊤
r = (µr,βv)) follow the normal-inverse-Wishart distribution in

equations (IA.4)–(IA.5) of Internet Appendix IA.1.1.
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(3) Conditional on asset returns and (µr,µv,βv,Σwr), the latent factors, vt, can be sampled

from the normal-inverse-Wishart distribution in equation (IA.6).

(4) Conditional on latent factors, {vt}Tt=1, the model parameters in the VAR(q) system of vt
can be obtained from equations (IA.9)–(IA.10). The conditional mean of vt equals the

first K elements of ϕ0+ϕ1xt−1+ · · ·+ϕqxt−q, and the first K variables in ϵxt are shocks

to priced systematic factors, ϵvt. We can also obtain the unconditional mean of vt as the

first K elements in (I − ϕ1 − · · · − ϕq)
−1ϕ0.

(5) Conditional on the posterior draws from the time series steps (1)–(4), the posterior dis-

tribution of λv is a Dirac distribution at (β⊤
v βv)

−1β⊤
v µ̃r, where µ̃r = µr +

1
2
Υr, and

Υir = (βvΣϵvβ
⊤
v +Σwr)ii, i = 1, . . . , N . It further yields a Dirac conditional posterior

for the term structure of gt’s risk premia at λSg,t−1 =
∑S

τ=0

∑τ
s=0

ρsη⊤
g (λv+Et−1

[
µṽ,t+τ−s−1

]
)

1+S
,

where 0 ≤ S ≤ S̄.

Appendix B Additional Figures and Tables
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Figure A1: Term Structure of Risk Premia in Habit and Long-Run Risk Models

The figure plots the term structure of risk premia implied by the habit model of Campbell and Cochrane (1999)
(left panel) and the long-run risk model (right panel) of Bansal and Yaron (2004). We consider three macro
variables: (1) quarterly consumption growth, (2) quarterly dividend growth, and (3) quarterly growth in the
smooth dividend payment (the aggregate dividend payments made in the previous 12 months). Risk premia are
normalized by the quarterly volatility of the macro variables. Calibration and derivation details can be found
in Internet Appendix IA.4.
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Table A1: Testing risk premia of strong factors at quarterly frequencies (T = 200)

S = 0 1 2 3 4 5 6 7 8 9 10 11 12

Panel A: R2
g = 30%

Number of Factors = 5
10% 0.134 0.110 0.114 0.111 0.113 0.108 0.109 0.107 0.109 0.112 0.110 0.113 0.113
5% 0.075 0.068 0.064 0.068 0.063 0.066 0.064 0.064 0.064 0.066 0.065 0.060 0.063
1% 0.014 0.020 0.019 0.019 0.019 0.016 0.015 0.014 0.012 0.014 0.014 0.014 0.016

Number of Factors = 4
10% 0.338 0.331 0.331 0.336 0.327 0.328 0.328 0.328 0.325 0.327 0.331 0.326 0.328
5% 0.233 0.225 0.228 0.229 0.233 0.235 0.233 0.232 0.233 0.233 0.219 0.235 0.224
1% 0.089 0.095 0.096 0.094 0.094 0.091 0.090 0.092 0.091 0.091 0.088 0.087 0.089

Number of Factors = 7
10% 0.141 0.108 0.115 0.124 0.120 0.119 0.111 0.111 0.112 0.117 0.115 0.118 0.119
5% 0.080 0.075 0.074 0.072 0.073 0.069 0.069 0.066 0.071 0.076 0.070 0.071 0.075
1% 0.014 0.018 0.014 0.016 0.017 0.017 0.016 0.017 0.014 0.014 0.015 0.013 0.011

Panel B: R2
g = 20%

Number of Factors = 5
10% 0.134 0.126 0.122 0.120 0.116 0.115 0.114 0.115 0.115 0.118 0.118 0.123 0.120
5% 0.069 0.064 0.069 0.060 0.059 0.057 0.058 0.058 0.059 0.059 0.057 0.050 0.052
1% 0.008 0.015 0.015 0.013 0.010 0.010 0.011 0.009 0.009 0.011 0.009 0.011 0.012

Number of Factors = 4
10% 0.307 0.339 0.327 0.320 0.328 0.322 0.327 0.328 0.331 0.336 0.330 0.339 0.337
5% 0.198 0.217 0.219 0.221 0.225 0.220 0.221 0.221 0.218 0.219 0.212 0.214 0.218
1% 0.047 0.085 0.077 0.073 0.078 0.077 0.073 0.077 0.077 0.072 0.067 0.072 0.071

Number of Factors = 7
10% 0.141 0.131 0.138 0.125 0.128 0.121 0.120 0.125 0.132 0.140 0.142 0.134 0.138
5% 0.074 0.065 0.069 0.066 0.064 0.063 0.067 0.063 0.062 0.057 0.060 0.064 0.062
1% 0.009 0.017 0.013 0.014 0.010 0.010 0.010 0.008 0.011 0.009 0.009 0.012 0.011

Panel C: R2
g = 10%

Number of Factors = 5
10% 0.117 0.166 0.169 0.159 0.172 0.175 0.174 0.175 0.174 0.173 0.166 0.169 0.172
5% 0.049 0.082 0.085 0.090 0.102 0.099 0.098 0.096 0.095 0.099 0.092 0.091 0.089
1% 0.007 0.018 0.021 0.017 0.024 0.022 0.025 0.029 0.028 0.027 0.019 0.024 0.020

Number of Factors = 4
10% 0.194 0.287 0.296 0.306 0.313 0.308 0.316 0.318 0.308 0.302 0.284 0.290 0.297
5% 0.093 0.176 0.174 0.173 0.193 0.202 0.188 0.193 0.182 0.187 0.182 0.188 0.184
1% 0.012 0.058 0.055 0.052 0.062 0.061 0.064 0.062 0.066 0.064 0.063 0.063 0.057

Number of Factors = 7
10% 0.117 0.178 0.168 0.178 0.193 0.197 0.193 0.189 0.191 0.187 0.192 0.186 0.185
5% 0.041 0.100 0.103 0.097 0.112 0.116 0.113 0.113 0.115 0.106 0.104 0.111 0.098
1% 0.004 0.022 0.019 0.017 0.026 0.026 0.025 0.026 0.030 0.031 0.025 0.028 0.023

The table reports the frequency of rejecting the null hypothesis H0 : λSg = λS,⋆g based on the 90%, 95%, and
99% credible intervals of our Bayesian estimates in Proposition 1. λSg is defined in equation (6), and λS,⋆g is λSg ’s
pseudo-true value. We consider strong factors, with R2

g ∈ {10%, 20%, 30%}. We simulate quarterly observations
of gt and rt by assuming that i) the true number of latent factors is 5, ii) the time series sample size is 200
quarters, and iii) the true S̄ = 8. We estimate several model configurations with different numbers of factors
(4, 5, and 7) and S̄ = 12. The number of Monte Carlo simulations is 1,000.
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Internet Appendix for:

Macro Strikes Back: Term Structure of Risk Premia

Abstract

The Internet Appendix provides additional propositions, proofs, tables, figures, and empirical

results supporting the main text.
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IA.1 Additional Propositions and Proofs

IA.1.1 Derivations of the Posterior Distributions in Proposition 1

We present a detailed version of Proposition 1 in the main text.

Proposition IA.1 (Gibbs sampler of the baseline model). Under the assumptions described

in equations (8)–(12), the posterior distribution of model parameters is given by the following

conditional distributions:

(1) Conditional on the data {gt}Tt=1+S̄
and latent factors {vt}Tt=1, parameters in gt’s equation

follow a normal-inverse-gamma distribution:

σ2
wg | {gt}Tt=1+S̄,ρg,ηg, {vt}

T
t=1 ∼ IG

(
T − S̄

2
,
(G− Vρρg)

⊤(G− Vρρg)

2

)
, (IA.1)

ρg | G, σ2
wg,ηg, {vt}Tt=1 ∼ N

((
V ⊤

ρ Vρ

)−1
V ⊤

ρ G, Σ̂ρ

)
, and (IA.2)

ηg | G, σ2
wg,ρg, {vt}Tt=1 ∼ N

((
V ⊤

η Vη

)−1
V ⊤

η Ḡ, Σ̂η

)
. (IA.3)

To identify ρg and ηg, we normalize ηg after each posterior draw such that η⊤
g ηg = 1.

(2) Conditional on asset returns and latent factors, we update model parameters in rt’s equa-

tion using a normal-inverse-Wishart distribution, as follows:

Σwr | R, {vt}Tt=1,µr,βv ∼ W−1

(
T,
(
R− VrBr

)⊤(
R− VrBr

))
and (IA.4)

Br | R, {vt}Tt=1,Σwr ∼ MVN
(
(V ⊤

r Vr)
−1V ⊤

r R, Σwr ⊗ (V ⊤
r Vr)

−1

)
, (IA.5)

where B⊤
r = (µr,βv).

(3) Conditional on asset returns and (µr,βv,Σwr), we update both latent factors vt and their

mean and covariance parameters, as follows:

vt | rt,µr,βv,Σwr,µv,Σv ∼ N
((

β⊤
v Σ

−1
wrβv

)−1[
β⊤
v Σ−1

wr

(
rt − µr + βvµv

)]
,
(
β⊤
v Σ−1

wrβv

)−1
)
, (IA.6)
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Σv | {vt}Tt=1 ∼ W−1

(
T − 1,

T∑
t=1

(vt − v̄)(vt − v̄)⊤
)
, and (IA.7)

µv | Σv, {vt}Tt=1 ∼ N
(
v̄, Σv/T

)
, (IA.8)

where v̄ =
∑T

t=1 vt/T . In steps (1)–(3), IG(·) denotes the inverse-gamma distribution,

N (·) and MVN (·) denote the normal and multivariate normal distributions, and W−1(·)
is the inverse-Wishart distribution. The quantities G, Ḡ, Vρ, Vη, Σ̂ρ, Σ̂η, Vr, and R are

defined in the proof.

(4) Based on the posterior draws from the time series steps (1)–(3), the posterior distribution

of λv is a Dirac distribution at (β⊤
v βv)

−1β⊤
v µ̃r. In addition, the posterior distribution of

the term structure of gt’s risk premia is also a Dirac distribution at λSg =
∑S

τ=0

∑τ
s=0 ρs

1+S
·

η⊤
g λv, where 0 ≤ S ≤ S̄.

We next derive the posterior distribution in gt’s equation. We introduce some matrix nota-

tions, as follows:

Vρ =


1 (vS̄+1 − µv)

⊤ηg · · · (v1 − µv)
⊤ηg

...
...

...

1 (vT − µv)
⊤ηg · · · (vT−S̄ − µv)

⊤ηg

 ,

Vη =


∑S̄

s=0 ρs(v1,1+S̄−s − µv) · · ·
∑S̄

s=0 ρs(vK,1+S̄−s − µv)
...

...∑S̄
s=0 ρs(v1,T−s − µv) · · ·

∑S̄
s=0 ρs(vK,T−s − µv)

 ,

G = (g1+S̄, . . . , gT )
⊤, and Ḡ = (g1+S̄ − µg, . . . , gT − µg)

⊤.

Using the notations above, the data likelihood for G can be written as

p(G | ρg,ηg, {vt}Tt=1, σ
2
wg) = (2πσ2

wg)
−T−S̄

2 exp

{
− 1

2σ2
wg

(G− Vρρg)
⊤(G− Vρρg)

}
,

where (G − Vρρg)
⊤(G − Vρρg) = (Ḡ − Vηηg)

⊤(Ḡ − Vηηg). Since we assign a flat prior to

(ρg,ηg, σ
2
wg), the posterior distribution of σ2

wg is

p(σ2
wg | G,ρg,ηg, {vt}Tt=1) ∝

(
1

σ2
wg

)T−S̄
2

+1

exp

{
−(G− Vρρg)

⊤(G− Vρρg)

2σ2
wg

}
;

hence, the posterior distribution of σ2
wg is an inverse-gamma in equation (IA.1).
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We next consider the posterior distribution of ρg and ηg. From the data likelihood, we can

derive the kernel of ρg’s posterior,

p(ρg | G, σ2
wg,ηg, {vt}Tt=1) ∝ exp

{
−1

2
(ρg − ρ̂g)

⊤
[
σ2
wg

(
V ⊤

ρ Vρ

)−1
]−1

(ρg − ρ̂g)

}
,

where ρ̂g =
(
V ⊤

ρ Vρ

)−1
V ⊤

ρ G. The next step is to make adjustments for the posterior covariance

matrix of ρg due to the potentially autocorrelated wgtVρt. A simple solution is given by Müller

(2013), which proposes that we can replace σ2
wg

(
V ⊤

ρ Vρ

)−1 with the Newey and West (1987)

type of sandwich covariance matrix, denoted as Σ̂ρ, as follows:

ρg | G, σ2wg,ηg, {vt}Tt=1 ∼ N
(
ρ̂g, Σ̂ρ

)
, Σ̂ρ =

(
V ⊤
ρ Vρ

)−1[
(T − S̄)Ŝρ

](
V ⊤
ρ Vρ

)−1
,

Ŝρ =
1

T − S̄

T∑
t=1+S̄

ŵ2
g,t

(
Vρ,tV

⊤
ρ,t

)
+

L∑
l=1

(
1− l

1 + L

)
Γ̂ρl, and

Γ̂ρl =
1

T − S̄ − l

T∑
t=1+S̄+l

ŵg,tŵg,t−l
(
Vρ,tV

⊤
ρ,t−l + Vρ,t−lV

⊤
ρ,t

)
for l > 0, ŵg,t = gt − V ⊤

ρt ρ̂g,

where L, the number of lags in the Newey-West estimator, is chosen to be S̄ since wgtVρt and

wg,t−lVρt−l are uncorrelated for l > S̄.

We finish deriving the multivariate normal in equation (IA.2). A similar derivation can be

applied to the posterior distribution of ηg in equation (IA.3).

We now proceed to derive the posterior distribution of model parameters in rt’s equation.

We stack time series observations into the following matrices:

R =


r⊤1
...

r⊤T

 , Vr =


1 (v1 − µv)

⊤

...
...

1 (vT − µv)
⊤

 , and Br =

(
µ⊤
r

β⊤
v

)
,

and the data likelihood of asset returns is

p(R | {vt}Tt=1,µr,βv,Σwr) ∝ |Σwr|−
T
2 exp

{
−1

2
tr
[
Σ−1
wr

(
R− VrBr

)⊤(
R− VrBr

)]}
.

Under the prior distribution in equation (11), we first derive the posterior of Σwr,

p(Σwr | R, {vt}Tt=1,µr,βv) ∝ |Σwr|−
T+N+1

2 exp
{
−1

2
tr
[
Σ−1
wr

(
R− VrBr

)⊤(
R− VrBr

)]}
,
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which implies the inverse-Wishart distribution of Σwr in equation (IA.4). When Σwr is diagonal,

which is assumed in the high-dimensional setting, the inverse-Wishart distribution reduces to

independent inverse-gamma distributions of {σ2
wr,n}Nn=1.

We next derive the posterior of (µr,βv)

p(Br | R, {vt}Tt=1,Σwr) ∝ exp
{
−1

2
tr
[
Σ−1
wr

(
Br − B̂r

)⊤
V ⊤
r Vr

(
Br − B̂r

)]}
,

where B̂r = (V ⊤
r Vr)

−1V ⊤
r R, and the formula above is the kernel of the multivariate normal

distribution in equation (IA.5). However, when we implement equation (IA.5), we replace

(V ⊤
r Vr)

−1 with (V ⊤
r Vr + Dr)

−1, where Dr = diag{0, 1, . . . , 1}. The additional term Dr is a

small penalty that preempts numerical difficulties in high-dimensional applications.

Finally, we derive the posterior distribution of latent factors and their means and covariance

matrix. The posterior distribution of vt is

p(vt | rt,µr,βv,Σwr,µv,Σv)

∝ p(rt | vt,µr,βv,Σwr)π(vt | µv,Σv)

∝ exp
{
−1

2
(rt − µr + βvµv − βvvt)

⊤Σ−1
wr(rt − µr + βvµv − βvvt)

}
∝ exp

{
−1

2

[
v⊤
t (β

⊤
v Σ

−1
wrβv)vt − 2v⊤

t β
⊤
v Σ

−1
wr(rt − µr + βvµv)

]}
,

which implies equation (IA.6). The posterior distribution of (µv,Σv) is

p(µv,Σv | {vt}Tt=1) ∝ |Σv|
T+K+1

2 exp
{
−1

2
tr
[
Σ−1
v

T∑
t=1

(vt − µv)(vt − µv)
⊤]},

which is the kernel of the normal-inverse-Wishart distribution in equations (IA.7) and (IA.8).

IA.1.2 Proof of Proposition A2

The only new ingredient in Proposition A2 is step 4, which estimates the model parameters in

the VAR(q) system of xt. First, we introduce the following matrix notations:

X(1) =


x⊤
q+1
...

x⊤
T

 , X(0) =


1 x⊤

q . . . x⊤
1

...
...

...

1 x⊤
T−1 . . . x⊤

T−q

 , and Φ =


ϕ⊤
0
...

ϕ⊤
q

 ,
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and equation (22) implies that the data likelihood is

p(X(1) | X(0),Φ,Σϵx) ∝ |Σϵx|−
T−q
2 exp

{
−1

2
tr
[
Σ−1
ϵx

(
X(1) −X(0)Φ

)⊤(
X(1) −X(0)Φ

)]}
.

Under the prior distribution π(Φ,Σϵx) ∝ |Σϵx|−
K+p+1

2 , we can easily show that (Φ,Σϵx)

follow the normal-inverse-Wishart distribution,

Σϵx | Φ,X(1),X(0),W−1

(
T − q,

(
X(1) −X(0)Φ

)⊤(
X(1) −X(0)Φ

))
and (IA.9)

Φ | Σϵx,X
(1),X(0) ∼ MVN

((
(X(0))⊤X(0)

)−1
(X(0))⊤X(1), Σϵx ⊗

(
(X(0))⊤X(0)

)−1
)
, (IA.10)

following similar derivations as in equations (IA.4)–(IA.5).

IA.2 Simulations: Time-Varying Risk Premia

In this section, we explore the finite-sample performance of our Bayesian estimator in Propo-

sition A2 when latent factors command time-varying risk premia. Different from the uncondi-

tional risk premia model, we simulate latent factors, ṽt, from the VAR(1) process,

ṽt = ϕ̂1ṽt−1 + ϵṽt, ϵṽt
iid∼ N (0K , IK),

where ϕ̂1 is calibrated by running the VAR(1) regression using the top five PCs of asset returns.1

Next, we simulate the asset returns as before, assuming a five-factor model. Finally, we generate

gt such that it is driven by ϵṽt instead of ṽt:

gt = c ·
S̄∑
s=0

ρ̂sft−s + wgt, ft =
1√
3
(1, 0, 1, 0, 1)ϵṽt.

Similar to the simulations in the main text, we report the size, power, and time series fit

in gt’s equation (R2
g) and the correlation between estimated and pseudo-true latent process ft

in Tables IA.IX–IA.VIII. Overall, our Bayesian estimator in Proposition A2 has satisfactory

finite-sample performance, delivering consistent estimates of unconditional risk premia when

the priced systematic factors follow a VAR(1) process.

1If a parameter in ϕ1 is not significant at the 10% level, we set it to be zero in ϕ̂1.
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IA.3 Data Description

We consider a cross-section of 275 equity portfolios collected from Ken French’s website (FF275):

25 (5× 5) portfolios sorted by (1) size and book-to-market ratio, (2) size and accrual, (3) size

and beta, (4) size and investment, (5) size and long-term reversals, (6) size and momentum,

(7) size and net issuance, (8) size and profitability, (9) size and residual variance, (10) size and

variance, and (11) size and short-term reversals. The sample ranges from Q3 1963 to Q4 2019.

Table IA.II presents the factors studied in Section 4. We show each variable’s name, descrip-

tion, sample, and data source. When the sample of factors differs from that of asset returns,

we use the overlapping sample. Hence, different factors use different samples in estimation.

We briefly describe how we construct the macro PCs using FRED-QD. There are 246 macro

variables in the dataset, but we keep only those with complete observations. We next estimate

the correlation structure of the remaining 159 variables and use it to construct the five PCs,

which account for 25.5%, 9.4%, 5.3%, 4.7%, and 4.4% of the time series variations of this large

panel data.

IA.4 Term Structure of Risk Premia in Macro-Finance Models

The first model that we consider is the external habit model of Campbell and Cochrane (1999)

(CC henceforth). The model dynamics are summarized by the following equations:

log SDF: mt+1 = log δ − γg + γ(1− ϕ)(st − s̄)− γ[1 + λ(st)]vt+1,

log consumption surplus ratio: st+1 = (1− ϕ)s̄+ ϕst + λ(st)vt+1,

log consumption growth: ∆ct+1 = g + vt+1, vt+1
iid∼ N (0, σ2), and

log dividend growth: ∆dt+1 = g + wt+1, wt+1
iid∼ N (0, σ2w), corr(wt, vt) = ρ,

where vt and wt are shocks to consumption and dividend growth, respectively, and their corre-

lation equals ρ. CC choose the specification of λ(st) to ensure a constant risk-free rate:

λ(st) =


√

1−2(st−s̄)
S̄

− 1, st ≤ smax

0, st > smax

, where: S̄ = σ

√
γ

1− ϕ
, smax = s̄+

1

2
(1− S̄2).

We simulate the dynamics of (mt+1, st+1,∆ct+1,∆dt+1, λ(st)) following the same parameter

choices as in Table 1 of CC, which are summarized in Panel A of Table IA.I.
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Secondly, we consider the long-run risk model of Bansal and Yaron (2004) (BY henceforth),

in which they introduce slow-moving conditional mean and stochastic volatility of consumption

and dividend growth. We summarize the dynamics of the state variables as follows:

conditional consumption mean: xt+1 = ρxt + φeσtet+1

log consumption growth: ∆ct+1 = µ+ xt + σtηt+1

log dividend growth: ∆dt+1 = µd + ϕdxt + πσtηt+1 + φdσtut+1, and

stochastic volatility: σ2
t+1 = σ2 + ν1(σ

2
t − σ2) + σωωt+1,

where et+1, ut+1, ηt+1, ωt+1
iid∼ N (0, 1).

To solve the model, BY consider the approximate solution for the price-consumption ratio,

that is, zt = A0 + A1xt + A2σ
2
t , where

A0 =
1

1− κ1

[
log δ + κ0 + (1− 1

ψ
)µ+ κ1A2(1− ν1)σ

2 +
θ

2
(κ1A2σω)

2

]
, A1 =

1− 1
ψ

1− κ1ρ
,

A2 =
0.5 ·

[(
θ − θ

ψ

)2
+ (θA1κ1φe)

2
]

θ(1− κ1ν1)
, κ1 =

exp(z̄)

1 + exp(z̄)
, and κ0 = log

(
1 + exp(z̄)

)
− κ1z̄.

The steady state z̄ can be found by numerically solving a fixed-point problem: z̄ = A0(z̄) +

A2(z̄)σ
2. Finally, the shock in the log SDF is

mt+1 − Et(mt+1) = λm,ησtηt+1 − λm,eσtet+1 − λm,ωσωωt+1,

where λm,η =
[
− θ

ψ
+ θ − 1

]
= −γ, λm,e = (1− θ)

[
κ1
(
1− 1

ψ

) φe
1− κ1ρ

]
, and λm,ω = (1− θ)A2κ1.

We simulate the dynamics of (mt+1,∆ct+1,∆dt+1, xt, σ
2
t ) using the parameter choices sum-

marized in Panel B of Table IA.I, following exactly the same calibration as in Bansal et al.

(2012).

We first simulate the monthly sequences from each model and aggregate them into quar-

terly observations. Using the quarterly data, we calculate the unconditional risk premia of

consumption (∆c) and dividend growth (∆d) as follows:

λSg = −
E
[
covt

(
m̄t→t+S, gt→t+S

)]
S · σ(gt+1)

, (IA.11)

where m̄t+1 = mt+1−Et(mt+1), and we divide the covariance term by σ(gt+1) because we always
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Table IA.I: Parameter Choices in Calibration

Parameter Variable Value
Panel A. Campbell and Cochrane (1999)

Mean consumption growth (%) g 1.89
Standard deviation of consumption growth (%) σ 1.50
Log risk-free rate (%) rf 0.94
Persistence coefficient ϕ 0.87
Utility curvature γ 2.00
Standard deviation of dividend growth (%) σw 11.2
Correlation between ∆c and ∆d ρ 0.2
Subjective discount factor δ 0.89
Steady-state surplus consumption ratio S̄ 0.057
Maximum surplus consumption ratio Smax 0.094

Panel B. Bansal, Kiku, and Yaron (2012)
Subjective discount factor δ 0.9989
Risk-aversion parameter γ 10
IES parameter ψ 1.5
Unconditional mean of consumption growth µ 0.0015
Persistence coefficient in xt ρ 0.975
Persistence coefficient in σ2

t ν1 0.999
Unconditional volatility σ 0.0072
xt+1’s loading on σtet+1 φe 0.038
σ2
t ’s loading on wt+1 σw 0.0000028

Unconditional mean of dividend growth µd 0.0015
∆dt+1’s loading on xt ϕd 2.5
∆dt+1’s loading on σtηt+1 π 2.6
∆dt+1’s loading on σtut+1 φd 5.96

The table presents the parameter values used in calibrating the term structure of risk premia in canonical
macro-finance models. Panel A shows the parameter choices used in Campbell and Cochrane (1999). Panel B
displays the parameter values used in Bansal et al. (2012).

normalize the single-period variable to have unit volatility in the empirical analysis.

Using equation (IA.11), we can obtain closed-form solutions for the term structure of con-

sumption and dividend risk premia in the external habit model,

λS∆c = γσ
[
1 + E[λ(st)]

]
, λS∆d = ργσ

[
1 + E[λ(st)]

]
.2 (IA.12)

Therefore, the habit model implies flat term structures of risk premia for consumption and

dividend growth. We obtain a long sequence of λ(st), numerically approximate E[λ(st)], and

estimate λS∆c and λS∆d. In contrast, we do not have simple closed-form solutions in the long-run

2These are monthly risk premia. The quarterly risk premia equal these monthly numbers multiplied by
√
3

due to the normalization.
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risk model; hence, we numerically estimate the risk premia through simulations.

In our empirical analysis, we do not consider single-period dividend growth due to the

strong seasonality detected in the data. Instead, we calculate the sum of the lagged 12 monthly

dividends, denoted by D
(12m)
t , and calculate its growth rate as ∆d

(12m)
t = log(D

(12m)
t /D

(12m)
t−1 ).

To make our calibration exercise as close as to the empirical analysis as possible, we estimate

the risk premia of ∆d(12m)
t in the habit and long-run risk models.

Why do we use m̄t+1 = mt+1 − Et(mt+1) rather than mt+1 in equation (IA.11)? Intuitively,

Et(mt+1) captures the information in the risk-free rate, which is removed because we study

the risk premia/average excess returns. In our empirical analysis, we always normalize the log

SDF such that its unconditional and conditional means are constant. Using m̄t+1 to define risk

premia is consistent with our empirical strategy. We now formally show that we can ignore

Et(mt+1) in equation (IA.11) assuming log normality.

Suppose thatRt→t+S =
∏S

τ=1Rt+τ−1→t+τ denotes the cumulative gross stock return, Rf,t→t+S =∏S
τ=1Rf,t+τ−1→t+τ denotes the gross risk-free rate, and Mt,t+S =

∏S
τ=1Mt+τ−1→t+τ is the multi-

period SDF that prices the multi-period stock return Rt→t+S,

Et
[
Mt,t+SRt→t+S

]
= Et

[ S∏
τ=1

Mt+τ−1→t+τRt+τ−1→t+τ

]
= 1.

Define M̃t+τ−1→t+τ =
Mt+τ−1→t+τ

Et+τ−1[Mt+τ−1→t+τ ]
= Mt+τ−1→t+τ · Rf,t+τ−1→t+τ , where E

[
M̃t+τ−1→t+τ

]
= Et+τ−1

[
M̃t+τ−1→t+τ

]
= 1. We can rewrite the fundamental asset pricing equation as,

Et

[ S∏
τ=1

Mt+τ−1→t+τRt+τ−1→t+τ

]
= Et

[ S∏
τ=1

M̃t+τ−1→t+τ
Rt+τ−1→t+τ

Rf,t+τ−1→t+τ

]
= 1, which implies

Et

[ S∏
τ=1

Rt+τ−1→t+τ

Rf,t+τ−1→t+τ

]
− 1 = −covt

[ S∏
τ=1

M̃t+τ−1→t+τ ,

S∏
τ=1

Rt+τ−1→t+τ

Rf,t+τ−1→t+τ

]
, (IA.13)

where the left side is the multi-horizon excess stock return, and the right side is the covariance

between the demeaned cumulative SDF and the excess return.
We now assume that asset returns, macro variables, and the SDF follow log-normal distri-

butions and represent all variables in log units, as follows:

S∏
τ=1

M̃t+τ−1→t+τ = exp

{ S∑
τ=1

m̃t+τ−1→t+τ

}
= exp{m̃t→t+S},

S∏
τ=1

Rt+τ−1→t+τ

Rf,t+τ−1→t+τ
= exp{r̃et→t+S},

Et

[ S∏
τ=1

Rt+τ−1→t+τ

Rf,t+τ−1→t+τ

]
− 1 = Et

[
exp{r̃et→t+S}

]
− 1 = exp

{
Et

(
r̃et→t+S

)
+

1

2
vart

(
r̃et→t+S

)}
− 1, and
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covt

[ S∏
τ=1

M̃t+τ−1→t+τ ,

S∏
τ=1

Rt+τ−1→t+τ

Rf,t+τ−1→t+τ

]
= covt

[
exp{m̃t→t+S}, exp{r̃et→t+S}

]
= Et

[
exp{r̃et→t+S + m̃t→t+S}

]
− Et

[
exp{r̃et→t+S}

]
· Et

[
exp{m̃t→t+S}

]
= exp

{
Et

(
m̃t→t+S

)
+

1

2
vart

(
m̃t→t+S

)
+ Et

(
r̃et→t+S

)
+

1

2
vart

(
r̃et→t+S

)
+ covt

(
m̃t→t+S , r̃

e
t→t+S

)}
− exp

{
Et

(
r̃et→t+S

)
+

1

2
vart

(
r̃et→t+S

))}
= exp

{
Et

(
r̃et→t+S

)
+

1

2
vart

(
r̃et→t+S

)
+ covt

(
m̃t→t+S , r̃

e
t→t+S

)}
− exp

{
Et

(
r̃et→t+S

)
+

1

2
vart

(
r̃et→t+S

))}
.

In the derivation above, we use the fact that exp{Et
(
m̃t→t+S

)
+1

2
vart

(
m̃t→t+S

)
} = Et

(
M̃t→t+S

)
=

1. We remove the common component, exp{Et
(
r̃et→t+S

)
+ 1

2
vart

(
r̃et→t+S

)
}, from both the left

and right sides of equation (IA.13). We have the following equation:

exp
{
− Et

(
r̃et→t+S

)
− 1

2
vart

(
r̃et→t+S

)}
− 1 = exp

{
covt

(
m̃t→t+S , r̃

e
t→t+S

)}
− 1, which implies

Et
(
r̃et→t+S

)
+

1

2
vart

(
r̃et→t+S

)
= −covt

(
m̃t→t+S , r̃

e
t→t+S

)
.

Therefore, −covt
(
m̃t→t+S, r̃

e
t→t+S

)
properly quantifies the risk premia of the log multi-horizon

excess return, conditional on the assumption of log-normality as in our paper and also in many

macro-finance models.

We can express m̃t+1 as follows:

m̃t+1 = mt+1 − log(Et[Mt+1]) = mt+1 − Et[mt+1]−
1

2
vart[mt+1] = m̄t+1 −

1

2
vart[mt+1].

It is easy to show that vart[mt+1] does not correlate with consumption or dividend growth in the

habit and long-run risk formulations that we consider. Finally, dividing the multi-period risk

premia, −covt
(
m̃t→t+S, r̃

e
t→t+S

)
, by the number of periods S, and normalizing by the volatility

of the single-period variable, leads to the definition in equation (IA.11).

IA.5 Connection to Dividend Strips

Let Dt denote the dividend payment at time t, and Ps,t denotes the time-t price of the dividend

strip delivering Dt+s at time t+ s. The fundamental asset pricing equation implies that

Ps,t = Et[Mt,t+s ·Dt+s], (IA.14)
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where Mt,t+s is the multi-period SDF between time t and t+ s. Accordingly, the gross risk-free

rate with time-to-maturity s is Rf,t,t+s = 1/Et[Mt,t+s].

The s-period return on the dividend strip with time-to-maturity s can be expressed as

Rt,t+s =
Dt+s

Ps,t
=

Dt

Ps,t

Dt+s

Dt

, (IA.15)

which implies the following per-period log strip return:

rt+s =
1

s
log(Rt,t+s) =

1

s
log

(
Dt

Ps,t

)
+

1

s
log

(
Dt+s

Dt

)
= es,t + gd,t,t+s, (IA.16)

where es,t = 1
s
log
(
Dt

Ps,t

)
is the spot equity yield for maturity s, and gd,t,t+s = 1

s
log
(
Dt+s

Dt

)
is

the per-period log growth rate of dividend payments. Equation (IA.16) also implies that the

conditional variance of rt+s is identical to that of gd,t,t+s, that is, vart(rt+s) = vart(gd,t,t+s).

Assuming the joint log normality of dividend growth and the SDF, we can rewrite Ps,t

Dt
and

es,t as follows:

Ps,t
Dt

= Et
[
emt,t+s+∆dt,t+s

]
= exp

{
Et[mt,t+s]+

1

2
vart(mt,t+s)+Et[∆dt,t+s]+

1

2
vart(∆dt,t+s)+covt(mt,t+s,∆dt,t+s)

}
,

which implies that the spot equity yield, es,t, can be expressed as

es,t = −1

s

[
Et[mt,t+s] +

1

2
vart(mt,t+s)

]
− 1

s
Et[∆dt,t+s]−

1

2s
vart(∆dt,t+s)−

1

s
covt(mt,t+s,∆dt,t+s).

This further implies that the expected per-period strip return is

Et[rt+s] = es,t + Et[gd,t,t+s] =
1

s
rf,t,t+s −

1

2s
vart(∆dt,t+s)−

1

s
covt(mt,t+s,∆dt,t+s). (IA.17)

Note that vart(∆dt,t+s) = s2vart(rt+s) and −1
s
covt(mt,t+s,∆dt,t+s) is the risk premium of the

dividend growth defined in equation (21); hence, we can express the expected per-period strip

return, after accounting for the Jensen’s correction term, as follows:

Et[rt+s] +
s

2
vart(rt+s) =

1

s
rf,t,t+s + λsdt. (IA.18)

Note that under the joint log normality assumption, Et[rt+s] + s
2
vart(rt+s) = 1

s
logEt[Rt,t+s].

Therefore, λsdt, which equals 1
s
logEt[Rt,t+s]− 1

s
rf,t,t+s, can be interpreted as the per-period risk
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premium on the hold-to-maturity dividend strips.

Using equation (IA.17), we can derive the forward equity yield, as follows:

efs,t = es,t −
1

s
rf,t,t+s = λsdt − Et[gd,t,t+s]−

1

2s
vart(∆dt,t+s), (IA.19)

where the last term, 1
2s
vart(∆dt,t+s) is negligible in the empirical data.

IA.6 Additional Tables

Table IA.II: List of Factors

Number and description of factors: Sample Source
AEM intermediary factor (Adrian et al. (2014)) Q1 1968 – Q3 2017 Tyler Muir’s Website
Capital share growth (Lettau et al. (2019)) Q3 1963 – Q4 2013 Website of Journal of Finance
Industrial production growth (log change in real per capita) Q3 1963 – Q4 2019 Federal Reserve Bank of St. Louis
GDP growth (log change in real per capita) Q3 1963 – Q4 2019 BEA Table 7.1
Durable consumption growth (log change in real per capita) Q3 1963 – Q4 2019 BEA Table 7.1
Nondurable consumption growth (log change in real per capita) Q3 1963 – Q4 2019 BEA Table 7.1
Service consumption growth (log change in real per capita) Q3 1963 – Q4 2019 BEA Table 7.1
Labor income growth (defined in Lettau and Ludvigson (2001)) Q3 1963 – Q3 2019 Martin Lettau’s website
Macro PCs 1–5 (FRED-QD, McCracken and Ng (2020)) Q3 1963 – Q4 2019 Michael W. McCracken’s website
Oil price (log) change, Spot Crude Oil Price: WTISPLC Jan 1982 – Dec 2019 Federal Reserve Bank of St. Louis
TED spread (log) change Jan 1986 – Dec 2019 Federal Reserve Bank of St. Louis
(Non)traded HKM intermediary factors (He et al. (2017)) Jan 1970 – Dec 2019 Zhiguo He’s website
PS nontraded liquidity factor (Pástor and Stambaugh (2003)) Jul 1963 – Dec 2019 Lubos Pastor’s website
∆ log(VIXt) = log(VIXt)− log(VIXt−1) Jan 1986 – Dec 2019 Federal Reserve Bank of St. Louis
Real dividend (log) growth of the S&P500 index Q3 1963 – Q4 2019 Robert Shiller’s website
Price-earning ratio of the S&P500 index (PEt−1) Q3 1963 – Q4 2019 Robert Shiller’s website
Term spread (TSt−1) from FRED-QD/MD Q3 1963 – Q4 2019 Michael W. McCracken’s website
Default spread (DSt−1) from FRED-QD/MD Q3 1963 – Q4 2019 Michael W. McCracken’s website
Value spread (V St−1) Q3 1963 – Q4 2019 Ken French’s website
MKT (market), SMB (size), HML (value), MOM (momentum) Jul 1963 – Dec 2019 Ken French’s website

The table presents a list of factors used in Section 4. For each variable, we show the name, description, sample,
and data source. In particular, we download the monthly real dividend payments of the S&P500 index from
Robert Shiller’s website. To avoid the mechanical seasonality in dividend payments, we first calculate the sum
of the lagged 12 monthly dividends, denoted by Dt, and compute its growth rate as log(Dt/Dt−1). Term spread
is the difference between the 10-year and three-month Treasury yields. Default spread is the difference between
the yields of the BAA and AAA corporate bonds. The value spread is constructed following Campbell and
Vuolteenaho (2004) and Campbell et al. (2013).
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Table IA.III: Testing risk premia of strong factors at monthly frequencies (T = 600)

S = 0 2 4 6 8 10 12 14 16 18 20 22 24

Panel A: R2
g = 30%

Number of Factors = 5
10% 0.075 0.112 0.102 0.104 0.103 0.099 0.103 0.103 0.101 0.102 0.099 0.102 0.095
5% 0.024 0.062 0.047 0.046 0.050 0.045 0.045 0.046 0.044 0.043 0.044 0.051 0.049
1% 0.002 0.016 0.019 0.015 0.015 0.014 0.015 0.013 0.013 0.014 0.013 0.013 0.013

Number of Factors = 4
10% 0.030 0.395 0.442 0.442 0.451 0.448 0.449 0.447 0.442 0.443 0.448 0.445 0.446
5% 0.007 0.293 0.331 0.333 0.338 0.327 0.327 0.332 0.332 0.330 0.331 0.330 0.333
1% 0.001 0.134 0.158 0.156 0.153 0.146 0.146 0.149 0.152 0.150 0.147 0.150 0.147

Number of Factors = 7
10% 0.070 0.110 0.100 0.102 0.106 0.102 0.105 0.101 0.099 0.098 0.093 0.097 0.094
5% 0.020 0.063 0.051 0.047 0.046 0.044 0.044 0.044 0.046 0.045 0.043 0.050 0.052
1% 0.001 0.016 0.017 0.015 0.015 0.017 0.016 0.014 0.016 0.016 0.016 0.015 0.016

Panel B: R2
g = 20%

Number of Factors = 5
10% 0.059 0.111 0.107 0.094 0.096 0.094 0.091 0.090 0.094 0.089 0.093 0.092 0.090
5% 0.028 0.061 0.051 0.054 0.049 0.049 0.044 0.047 0.052 0.053 0.056 0.053 0.051
1% 0.004 0.008 0.011 0.009 0.011 0.009 0.008 0.008 0.010 0.009 0.012 0.011 0.011

Number of Factors = 4
10% 0.026 0.390 0.432 0.421 0.420 0.424 0.417 0.429 0.422 0.427 0.428 0.438 0.435
5% 0.008 0.275 0.312 0.311 0.310 0.308 0.312 0.316 0.312 0.303 0.310 0.309 0.305
1% 0.000 0.111 0.133 0.131 0.130 0.134 0.136 0.138 0.142 0.134 0.136 0.134 0.139

Number of Factors = 7
10% 0.051 0.126 0.102 0.101 0.097 0.096 0.092 0.092 0.091 0.090 0.091 0.089 0.092
5% 0.026 0.062 0.052 0.053 0.053 0.052 0.051 0.051 0.048 0.052 0.056 0.056 0.056
1% 0.003 0.009 0.011 0.010 0.011 0.012 0.010 0.011 0.010 0.011 0.013 0.011 0.010

Panel C: R2
g = 10%

Number of Factors = 5
10% 0.042 0.149 0.149 0.136 0.133 0.140 0.133 0.142 0.137 0.136 0.134 0.134 0.139
5% 0.017 0.070 0.076 0.086 0.082 0.083 0.085 0.082 0.082 0.083 0.077 0.079 0.090
1% 0.003 0.007 0.024 0.021 0.025 0.019 0.021 0.021 0.017 0.017 0.019 0.020 0.022

Number of Factors = 4
10% 0.018 0.313 0.373 0.376 0.382 0.384 0.378 0.386 0.384 0.379 0.375 0.369 0.366
5% 0.004 0.191 0.258 0.255 0.269 0.269 0.264 0.261 0.267 0.269 0.268 0.261 0.261
1% 0.002 0.037 0.110 0.111 0.117 0.119 0.121 0.121 0.117 0.108 0.107 0.108 0.112

Number of Factors = 7
10% 0.039 0.144 0.155 0.150 0.142 0.136 0.140 0.138 0.143 0.138 0.146 0.136 0.140
5% 0.013 0.075 0.089 0.086 0.088 0.093 0.093 0.089 0.090 0.093 0.087 0.087 0.087
1% 0.002 0.006 0.029 0.026 0.026 0.025 0.025 0.025 0.020 0.022 0.026 0.026 0.027

The table reports the frequency of rejecting the null hypothesis H0 : λSg = λS,⋆g based on the 90%, 95%, and
99% credible intervals of our Bayesian estimates in Proposition 1. λSg is defined in equation (6), and λS,⋆g is λSg ’s
pseudo-true value. We consider strong factors, with R2

g ∈ {10%, 20%, 30%}. We simulate monthly observations
of gt and rt by assuming that i) the true number of latent factors is 5, ii) the time series sample size is 600
quarters, and iii) the true S̄ = 16. We estimate several model configurations with different numbers of factors
(4, 5, and 7), and S̄ = 24. The number of Monte Carlo simulations is 1,000.
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Table IA.IV: Testing risk premia of useless factors at quarterly frequencies (T = 200)

S = 0 1 2 3 4 5 6 7 8 9 10 11 12

Panel A: R2
g = 30%

Number of Factors = 5
10% 0.032 0.036 0.043 0.047 0.052 0.051 0.057 0.056 0.060 0.067 0.072 0.073 0.073
5% 0.016 0.015 0.014 0.019 0.022 0.027 0.027 0.029 0.036 0.034 0.039 0.038 0.039
1% 0.003 0.001 0.002 0.005 0.007 0.008 0.008 0.007 0.010 0.012 0.012 0.012 0.012

Number of Factors = 4
10% 0.027 0.038 0.048 0.049 0.051 0.048 0.047 0.053 0.052 0.052 0.059 0.063 0.065
5% 0.011 0.016 0.021 0.027 0.027 0.026 0.027 0.027 0.031 0.028 0.030 0.030 0.031
1% 0.001 0.000 0.003 0.006 0.005 0.004 0.008 0.004 0.006 0.006 0.008 0.009 0.009

Number of Factors = 7
10% 0.023 0.029 0.040 0.040 0.046 0.053 0.049 0.054 0.054 0.056 0.060 0.062 0.063
5% 0.008 0.009 0.017 0.022 0.024 0.028 0.027 0.028 0.029 0.031 0.033 0.038 0.034
1% 0.002 0.001 0.002 0.004 0.005 0.006 0.006 0.012 0.009 0.008 0.009 0.009 0.010

Panel B: R2
g = 20%

Number of Factors = 5
10% 0.015 0.025 0.029 0.036 0.038 0.043 0.047 0.049 0.050 0.054 0.050 0.053 0.053
5% 0.006 0.011 0.013 0.014 0.019 0.021 0.021 0.025 0.023 0.025 0.028 0.028 0.030
1% 0.002 0.003 0.003 0.007 0.006 0.004 0.006 0.005 0.005 0.007 0.005 0.004 0.004

Number of Factors = 4
10% 0.027 0.028 0.034 0.040 0.043 0.043 0.045 0.047 0.050 0.053 0.053 0.051 0.051
5% 0.012 0.011 0.010 0.018 0.017 0.018 0.017 0.019 0.021 0.025 0.026 0.027 0.027
1% 0.001 0.002 0.002 0.002 0.001 0.003 0.003 0.004 0.004 0.005 0.005 0.006 0.004

Number of Factors = 7
10% 0.011 0.022 0.023 0.028 0.036 0.039 0.039 0.045 0.050 0.051 0.055 0.052 0.050
5% 0.006 0.008 0.013 0.018 0.018 0.022 0.023 0.023 0.024 0.026 0.023 0.022 0.019
1% 0.002 0.001 0.003 0.004 0.004 0.003 0.004 0.004 0.004 0.005 0.005 0.005 0.006

Panel C: R2
g = 10%

Number of Factors = 5
10% 0.026 0.022 0.027 0.030 0.033 0.034 0.033 0.033 0.032 0.031 0.033 0.036 0.035
5% 0.010 0.007 0.014 0.014 0.015 0.014 0.016 0.018 0.017 0.017 0.018 0.018 0.016
1% 0.001 0.000 0.000 0.002 0.002 0.001 0.002 0.002 0.003 0.000 0.002 0.003 0.003

Number of Factors = 4
10% 0.023 0.024 0.027 0.029 0.036 0.033 0.027 0.031 0.026 0.032 0.031 0.031 0.033
5% 0.010 0.010 0.019 0.016 0.019 0.013 0.013 0.014 0.013 0.013 0.015 0.015 0.014
1% 0.002 0.003 0.001 0.003 0.003 0.004 0.004 0.005 0.004 0.003 0.004 0.003 0.003

Number of Factors = 7
10% 0.025 0.017 0.021 0.022 0.025 0.019 0.022 0.021 0.021 0.019 0.021 0.025 0.022
5% 0.005 0.006 0.009 0.008 0.010 0.008 0.013 0.013 0.011 0.010 0.014 0.014 0.016
1% 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.002

The table reports the frequency of rejecting the null hypothesis H0 : λSg = 0 based on the 90%, 95%, and 99%
credible intervals of our Bayesian estimates in Proposition 1. λSg is defined in equation (6). We consider useless
factors with different degrees of persistency; that is, the persistent component in gt accounts for 10%, 20%, or
30% of time series variations. We simulate quarterly observations of gt and rt by assuming that i) the true
number of latent factors is 5, ii) the time series sample size is 200 quarters, and iii) gt is orthogonal to rt. We
estimate several model configurations with different numbers of factors (4, 5, and 7), and S̄ = 12. The number
of Monte Carlo simulations is 1,000.
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Table IA.V: Testing risk premia of useless factors at monthly frequencies (T = 600)

S = 0 2 4 6 8 10 12 14 16 18 20 22 24

Panel A: R2
g = 30%

Number of Factors = 5
10% 0.019 0.038 0.046 0.051 0.055 0.061 0.066 0.078 0.083 0.085 0.086 0.090 0.089
5% 0.006 0.013 0.017 0.024 0.029 0.033 0.035 0.035 0.046 0.048 0.049 0.053 0.049
1% 0.001 0.001 0.002 0.003 0.006 0.006 0.007 0.007 0.009 0.013 0.013 0.014 0.013

Number of Factors = 4
10% 0.015 0.032 0.044 0.054 0.059 0.065 0.076 0.082 0.086 0.088 0.093 0.094 0.089
5% 0.009 0.013 0.019 0.024 0.032 0.033 0.039 0.043 0.045 0.051 0.051 0.049 0.050
1% 0.000 0.002 0.003 0.006 0.009 0.011 0.013 0.011 0.010 0.011 0.015 0.013 0.013

Number of Factors = 7
10% 0.013 0.024 0.029 0.041 0.050 0.053 0.063 0.065 0.075 0.077 0.089 0.088 0.082
5% 0.005 0.014 0.016 0.022 0.025 0.026 0.029 0.034 0.038 0.043 0.043 0.043 0.044
1% 0.000 0.000 0.002 0.004 0.005 0.006 0.007 0.007 0.008 0.011 0.014 0.016 0.017

Panel B: R2
g = 20%

Number of Factors = 5
10% 0.017 0.035 0.040 0.056 0.060 0.060 0.073 0.072 0.070 0.076 0.073 0.076 0.073
5% 0.003 0.016 0.026 0.027 0.040 0.040 0.035 0.042 0.045 0.045 0.042 0.044 0.042
1% 0.001 0.005 0.007 0.006 0.012 0.010 0.009 0.008 0.011 0.013 0.015 0.014 0.014

Number of Factors = 4
10% 0.020 0.037 0.052 0.052 0.062 0.068 0.072 0.075 0.076 0.079 0.074 0.081 0.079
5% 0.007 0.013 0.026 0.030 0.034 0.039 0.035 0.039 0.037 0.042 0.040 0.044 0.042
1% 0.001 0.004 0.004 0.005 0.008 0.009 0.008 0.007 0.012 0.010 0.009 0.010 0.010

Number of Factors = 7
10% 0.009 0.026 0.034 0.036 0.046 0.045 0.053 0.057 0.053 0.054 0.058 0.058 0.063
5% 0.003 0.012 0.018 0.018 0.020 0.023 0.027 0.030 0.036 0.035 0.036 0.041 0.040
1% 0.000 0.003 0.003 0.004 0.006 0.007 0.007 0.008 0.006 0.009 0.010 0.007 0.008

Panel C: R2
g = 10%

Number of Factors = 5
10% 0.011 0.021 0.024 0.032 0.038 0.040 0.044 0.042 0.043 0.043 0.045 0.046 0.046
5% 0.003 0.005 0.008 0.010 0.013 0.011 0.014 0.021 0.017 0.018 0.018 0.022 0.021
1% 0.000 0.000 0.001 0.001 0.001 0.001 0.003 0.002 0.003 0.002 0.003 0.008 0.006

Number of Factors = 4
10% 0.018 0.029 0.028 0.035 0.037 0.037 0.041 0.047 0.049 0.045 0.054 0.044 0.040
5% 0.005 0.010 0.006 0.015 0.015 0.013 0.015 0.019 0.022 0.021 0.018 0.019 0.020
1% 0.000 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.002 0.004 0.004 0.003

Number of Factors = 7
10% 0.007 0.010 0.015 0.018 0.023 0.028 0.032 0.032 0.035 0.031 0.034 0.037 0.039
5% 0.001 0.005 0.003 0.007 0.009 0.007 0.010 0.010 0.012 0.009 0.010 0.013 0.013
1% 0.000 0.000 0.001 0.001 0.001 0.002 0.001 0.000 0.002 0.002 0.002 0.002 0.002

The table reports the frequency of rejecting the null hypothesis H0 : λSg = 0 based on the 90%, 95%, and 99%
credible intervals of our Bayesian estimates in Proposition 1. λSg is defined in equation (6). We consider useless
factors with different degrees of persistency; that is, the persistent component in gt accounts for 10%, 20%, or
30% of time series variations. We simulate quarterly observations of gt and rt by assuming that i) the true
number of latent factors is 5, ii) the time series sample size is 600 months, and iii) gt is orthogonal to rt. We
estimate several model configurations with different numbers of factors (4, 5, and 7), and S̄ = 24. The number
of Monte Carlo simulations is 1,000.
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Table IA.VI: Bayesian estimates of R2
g and corr(f̂t, ft) for strong and useless factors

Number of factors: K = 4 K = 5 K = 7
True R2

g = 10% 20% 30% 10% 20% 30% 10% 20% 30%

Panel A. Posterior distributions of R2
g

T = 200, strong factors
median 0.122 0.187 0.259 0.142 0.224 0.311 0.156 0.235 0.320
5th 0.065 0.109 0.155 0.081 0.142 0.206 0.094 0.152 0.217
95th 0.199 0.288 0.370 0.228 0.325 0.421 0.240 0.337 0.428

T = 600, strong factors
median 0.104 0.185 0.272 0.112 0.204 0.297 0.116 0.207 0.300
5th 0.064 0.130 0.201 0.073 0.148 0.227 0.074 0.151 0.231
95th 0.149 0.249 0.344 0.158 0.264 0.370 0.163 0.267 0.373

T = 200, useless factors
median 0.081 0.083 0.084 0.091 0.094 0.097 0.109 0.113 0.117
5th 0.045 0.046 0.045 0.054 0.055 0.054 0.069 0.072 0.073
95th 0.133 0.140 0.145 0.145 0.154 0.167 0.165 0.178 0.195

T = 600, useless factors
median 0.041 0.042 0.044 0.046 0.047 0.049 0.052 0.055 0.059
5th 0.027 0.026 0.026 0.030 0.031 0.030 0.035 0.037 0.037
95th 0.063 0.071 0.080 0.067 0.077 0.087 0.075 0.086 0.102

Panel B. Posterior distributions of corr(f̂t, ft)
T = 200, strong factors

median 0.702 0.810 0.842 0.773 0.902 0.937 0.677 0.855 0.910
5th 0.324 0.605 0.736 0.386 0.745 0.860 0.294 0.665 0.809
95th 0.849 0.883 0.895 0.910 0.951 0.967 0.864 0.926 0.951

T = 600, strong factors
median 0.885 0.916 0.927 0.919 0.960 0.972 0.882 0.944 0.963
5th 0.760 0.873 0.893 0.812 0.925 0.953 0.747 0.901 0.940
95th 0.928 0.944 0.950 0.955 0.974 0.980 0.934 0.964 0.974

The table reports the Bayesian estimates of R2
g and corr(f̂t, ft) for strong and useless factors: (1) R2

g measures the
percentage of gt’s time series variations explained by asset returns’ latent factors, and (2) corr(f̂t, ft) quantifies
the correlation between the true ft and its estimate, f̂t = η̂⊤

g v̂t. For useless factors, we report only R2
g. In each

model, we report the median, 5th, and 95th percentiles based on 1,000 simulations. We consider strong and
useless factors with different degrees of persistency; that is, the persistent component in gt accounts for 10%,
20%, or 30% of time series variations. We simulate monthly or quarterly observations of gt and rt by assuming
that the true number of latent factors is 5. We estimate several model configurations with different numbers of
factors (K ∈ {4, 5, 7}), and S̄ = 12 for T = 200 (S̄ = 24 for T = 600).
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Table IA.VII: Size and power of the Bayesian estimates and Giglio and Xiu (2021)

Bayesian Estimation Giglio and Xiu (2021)
Five factors Seven factors Five factors Seven factors

10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A. Size
T = 200

10% 0.066 0.030 0.012 0.068 0.026 0.009 0.072 0.033 0.012 0.075 0.029 0.012
20% 0.087 0.042 0.008 0.085 0.045 0.005 0.091 0.048 0.008 0.082 0.046 0.005
30% 0.095 0.058 0.008 0.089 0.053 0.008 0.096 0.059 0.009 0.093 0.055 0.008

T = 600
10% 0.101 0.047 0.009 0.098 0.043 0.010 0.103 0.053 0.007 0.111 0.041 0.007
20% 0.100 0.050 0.011 0.097 0.048 0.008 0.099 0.051 0.009 0.100 0.056 0.008
30% 0.104 0.050 0.016 0.106 0.048 0.016 0.110 0.048 0.013 0.099 0.050 0.012

Panel B. Power
T = 200

10% 0.278 0.190 0.051 0.267 0.160 0.046 0.286 0.188 0.045 0.288 0.189 0.040
20% 0.403 0.279 0.119 0.387 0.265 0.101 0.397 0.282 0.101 0.396 0.273 0.099
30% 0.484 0.371 0.169 0.466 0.358 0.154 0.478 0.359 0.151 0.480 0.370 0.155

T = 600
10% 0.520 0.410 0.186 0.499 0.391 0.189 0.523 0.414 0.174 0.507 0.391 0.176
20% 0.658 0.545 0.307 0.659 0.530 0.298 0.652 0.540 0.295 0.649 0.530 0.287
30% 0.715 0.598 0.365 0.708 0.583 0.364 0.711 0.590 0.343 0.699 0.581 0.334

Panel A reports the frequency of rejecting the null hypothesis H0 : λg = λ⋆g based on the 90%, 95%, and 99%
credible intervals given by (1) our Bayesian estimates in Proposition 1 and (2) the frequentist test statistics in
Theorem 1 of Giglio and Xiu (2021). λ⋆g is λg’s pseudo-true value. Differently, Panel B reports the frequency of
rejecting the null hypothesis H0 : λg = 0. We consider strong factors, with R2

g ∈ {10%, 20%, 30%}. We simulate
quarterly (T = 200) and monthly (T = 600) observations of gt and rt by assuming that i) the true number of
latent factors is five and ii) gt correlates with only on the contemporaneous ṽt (S̄ = 0). We estimate several
model configurations with different numbers of factors (5, 7). The number of Monte Carlo simulations is 1,000.

Table IA.VIII: Bayesian estimates of R2
g and corr(f̂t, ft) for strong and useless factors

Panel A. R2
g Panel B. corr(f̂t, ft)

Number of factors: K = 5 K = 7 K = 5 K = 7
True R2

g = 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30%

Quarterly frequency (T = 200)
median 0.146 0.223 0.310 0.157 0.232 0.318 0.762 0.883 0.921 0.677 0.831 0.888
5th 0.081 0.139 0.208 0.097 0.144 0.219 0.343 0.724 0.846 0.283 0.635 0.795
95th 0.219 0.328 0.424 0.229 0.333 0.428 0.893 0.936 0.953 0.842 0.905 0.931

Monthly frequency (T = 600)
median 0.115 0.208 0.299 0.118 0.210 0.301 0.913 0.953 0.965 0.874 0.935 0.953
5th 0.069 0.148 0.227 0.074 0.151 0.229 0.794 0.916 0.942 0.717 0.888 0.928
95th 0.165 0.270 0.376 0.168 0.272 0.377 0.951 0.969 0.976 0.926 0.957 0.968

The table reports the Bayesian estimates of R2
g and corr(f̂t, ft) for strong factors: (1) R2

g measures the percentage
of gt’s time series variations explained by ϵvt, and (2) corr(f̂t, ft) quantifies the correlation between the true ft
and its estimate, f̂t = η̂⊤

g ϵ̂vt. In each model, we report the median, 5th, and 95th percentiles based on 1,000
simulations. We consider several degrees of persistency; that is, the persistent component in gt accounts for
10%, 20%, or 30% of time series variations. We simulate monthly or quarterly observations of gt and rt by
assuming that the true number of latent factors is 5. We estimate several model configurations with different
numbers of factors (K ∈ {5, 7}), and S̄ = 12 for T = 200 (S̄ = 24 for T = 600).
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Table IA.IX: Testing unconditional risk premia of strong factors at quarterly frequencies
(T = 200) when factors command time-varying risk premia in simulations

S = 0 1 2 3 4 5 6 7 8 9 10 11 12

Panel A: R2
g = 30%

Number of Factors = 5
10% 0.088 0.099 0.102 0.111 0.115 0.115 0.111 0.114 0.113 0.115 0.111 0.113 0.112
5% 0.041 0.054 0.058 0.059 0.060 0.060 0.061 0.059 0.059 0.059 0.058 0.058 0.056
1% 0.010 0.013 0.017 0.015 0.015 0.016 0.016 0.017 0.019 0.017 0.017 0.018 0.019

Number of Factors = 7
10% 0.092 0.103 0.108 0.112 0.114 0.111 0.111 0.107 0.106 0.107 0.105 0.102 0.095
5% 0.048 0.050 0.056 0.056 0.053 0.055 0.057 0.055 0.057 0.053 0.054 0.054 0.055
1% 0.010 0.011 0.012 0.015 0.015 0.014 0.014 0.015 0.015 0.013 0.014 0.012 0.014

Panel B: R2
g = 20%

Number of Factors = 5
10% 0.103 0.104 0.103 0.097 0.096 0.100 0.103 0.099 0.103 0.108 0.110 0.114 0.103
5% 0.054 0.048 0.052 0.047 0.048 0.049 0.045 0.049 0.050 0.053 0.050 0.055 0.052
1% 0.008 0.013 0.014 0.011 0.008 0.008 0.011 0.013 0.013 0.012 0.013 0.012 0.013

Number of Factors = 7
10% 0.091 0.086 0.086 0.087 0.083 0.082 0.088 0.092 0.091 0.093 0.096 0.097 0.095
5% 0.048 0.045 0.046 0.048 0.045 0.044 0.044 0.043 0.047 0.050 0.054 0.051 0.051
1% 0.005 0.009 0.011 0.010 0.009 0.009 0.012 0.013 0.011 0.012 0.012 0.013 0.012

Panel C: R2
g = 10%

Number of Factors = 5
10% 0.084 0.118 0.121 0.127 0.127 0.132 0.124 0.133 0.132 0.127 0.122 0.124 0.125
5% 0.034 0.064 0.067 0.063 0.070 0.071 0.065 0.067 0.069 0.064 0.068 0.065 0.067
1% 0.007 0.015 0.016 0.015 0.018 0.015 0.012 0.014 0.014 0.014 0.012 0.012 0.012

Number of Factors = 7
10% 0.072 0.121 0.113 0.123 0.129 0.127 0.136 0.134 0.137 0.129 0.127 0.126 0.122
5% 0.027 0.066 0.069 0.069 0.072 0.072 0.071 0.064 0.069 0.071 0.069 0.066 0.065
1% 0.004 0.015 0.015 0.012 0.015 0.017 0.016 0.012 0.011 0.011 0.012 0.010 0.011

The table focuses on unconditional risk premia λSg =
∑S

τ=0

∑τ
s=0

ρsη
⊤
g λv

1+S and reports the frequency of rejecting
the null hypothesis H0 : λSg = λS,⋆g based on the 90%, 95%, and 99% credible intervals of our Bayesian estimates
in Proposition A2. λS,⋆g is λSg ’s pseudo-true value. We consider strong factors, with R2

g ∈ {10%, 20%, 30%}.
We simulate quarterly observations of gt and rt by assuming that i) the true number of latent factors is 5, ii)
the time series sample size is 200 quarters, iii) the true S̄ = 8, and iv) the five latent factors follow a VAR(1)
process. We estimate several model configurations with different numbers of factors (5, 7), and S̄ = 12. The
number of Monte Carlo simulations is 1,000.
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Table IA.X: Testing unconditional risk premia of strong factors at monthly frequencies (T =
600) when factors command time-varying risk premia in simulations

S = 0 2 4 6 8 10 12 14 16 18 20 22 24

Panel A: R2
g = 30%

Number of Factors = 5
10% 0.080 0.107 0.127 0.117 0.121 0.121 0.121 0.117 0.119 0.118 0.119 0.115 0.116
5% 0.038 0.054 0.068 0.062 0.063 0.062 0.062 0.065 0.056 0.058 0.056 0.056 0.059
1% 0.005 0.012 0.012 0.016 0.016 0.017 0.017 0.017 0.015 0.016 0.016 0.017 0.017

Number of Factors = 7
10% 0.077 0.110 0.123 0.115 0.117 0.115 0.120 0.113 0.118 0.115 0.121 0.120 0.114
5% 0.038 0.054 0.062 0.065 0.062 0.058 0.056 0.058 0.053 0.053 0.054 0.052 0.049
1% 0.006 0.006 0.011 0.012 0.013 0.013 0.014 0.012 0.014 0.015 0.013 0.014 0.016

Panel B: R2
g = 20%

Number of Factors = 5
10% 0.075 0.092 0.107 0.107 0.106 0.109 0.112 0.110 0.111 0.109 0.117 0.112 0.110
5% 0.035 0.050 0.059 0.060 0.062 0.063 0.059 0.065 0.063 0.059 0.058 0.059 0.055
1% 0.004 0.011 0.013 0.011 0.011 0.011 0.012 0.012 0.013 0.013 0.012 0.013 0.013

Number of Factors = 7
10% 0.069 0.099 0.100 0.105 0.105 0.103 0.103 0.107 0.104 0.102 0.105 0.105 0.109
5% 0.027 0.050 0.054 0.054 0.059 0.057 0.058 0.061 0.060 0.056 0.057 0.057 0.053
1% 0.003 0.008 0.012 0.009 0.013 0.011 0.013 0.013 0.014 0.013 0.011 0.013 0.015

Panel C: R2
g = 10%

Number of Factors = 5
10% 0.045 0.104 0.102 0.111 0.117 0.116 0.117 0.116 0.116 0.119 0.118 0.110 0.114
5% 0.020 0.049 0.051 0.056 0.052 0.069 0.072 0.068 0.066 0.064 0.068 0.065 0.062
1% 0.004 0.003 0.018 0.014 0.012 0.012 0.017 0.017 0.016 0.017 0.014 0.013 0.011

Number of Factors = 7
10% 0.044 0.100 0.104 0.106 0.116 0.114 0.120 0.116 0.115 0.123 0.115 0.117 0.113
5% 0.022 0.057 0.052 0.061 0.057 0.060 0.063 0.061 0.060 0.060 0.059 0.064 0.061
1% 0.004 0.004 0.016 0.012 0.011 0.011 0.010 0.011 0.012 0.013 0.013 0.012 0.013

The table focuses on unconditional risk premia λSg =
∑S

τ=0

∑τ
s=0

ρsη
⊤
g λv

1+S and reports the frequency of rejecting
the null hypothesis H0 : λSg = λS,⋆g based on the 90%, 95%, and 99% credible intervals of our Bayesian estimates
in Proposition A2. λS,⋆g is λSg ’s pseudo-true value. We consider strong factors, with R2

g ∈ {10%, 20%, 30%}. We
simulate monthly observations of gt and rt by assuming that i) the true number of latent factors is 5, ii) the
time series sample size is 600 quarters, and iii) the true S̄ = 16, and iv) the five latent factors follow a VAR(1)
process. We estimate several model configurations with different numbers of factors (5, 7), and S̄ = 24. The
number of Monte Carlo simulations is 1,000.
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Table IA.XI: Factors’ risk premia: Six- and seven-factor models

Panel A. Quarterly variables, S̄ = 12 quarters
S = 0 2 4 6 8 10 12 R2

g

Number of factors = 6
AEM intermediary 0.103*** 0.115*** 0.130** 0.124** 0.111 0.092 0.083 15.2%
Capital share growth 0.010 0.010 0.006 0.001 -0.001 -0.002 -0.005 11.1%
GDP growth 0.021 0.065* 0.100* 0.123* 0.136* 0.146* 0.152* 24.1%
IP growth 0.001 0.053* 0.090* 0.111* 0.123* 0.128* 0.130* 40.2%
Durable consumption growth -0.003 0.075** 0.112** 0.129** 0.136** 0.143** 0.150** 18.4%
Nondurable consumption growth 0.031** 0.082** 0.109** 0.138** 0.160** 0.175** 0.189** 23.3%
Service consumption growth 0.034 0.053 0.074 0.085 0.091 0.100 0.110 11.8%
Nondurable + service 0.041* 0.086* 0.124* 0.153* 0.176* 0.194* 0.212* 18.6%
Labor income growth 0.011 0.007 0.006 0.007 0.008 0.009 0.013 10.5%
Dividend growth of S&P500 0.000 0.020 0.060* 0.106** 0.153** 0.195** 0.232** 44.7%
Macro PC1 (FRED-QD) 0.013 0.076** 0.137** 0.184** 0.220** 0.251** 0.273** 48.7%
Macro PC2 (FRED-QD) 0.063 0.100 0.104 0.092 0.078 0.066 0.053 41.0%
Macro PC3 (FRED-QD) 0.001 -0.001 -0.003 -0.006 -0.012 -0.022 -0.034 17.8%
Macro PC4 (FRED-QD) -0.132*** -0.150*** -0.200*** -0.255*** -0.305*** -0.353*** -0.397*** 48.0%
Macro PC5 (FRED-QD) 0.084** 0.095* 0.079 0.057 0.038 0.024 0.013 30.5%

Number of factors = 7
AEM intermediary 0.114*** 0.115*** 0.123** 0.113** 0.099* 0.079 0.067 16.5%
Capital share growth 0.006 0.006 0.004 0.001 0.000 -0.002 -0.003 10.3%
GDP growth 0.018 0.060* 0.094* 0.116* 0.127* 0.136* 0.142* 24.5%
IP growth 0.002 0.051* 0.086* 0.106* 0.118* 0.124* 0.126* 41.1%
Durable consumption growth -0.002 0.070** 0.105*** 0.123*** 0.131*** 0.140*** 0.146*** 18.7%
Nondurable consumption growth 0.027** 0.075** 0.102** 0.130** 0.150** 0.165** 0.179** 24.8%
Service consumption growth 0.027 0.046 0.065 0.075 0.080 0.089 0.099 11.8%
Nondurable + service 0.039* 0.083* 0.120* 0.150* 0.173* 0.191* 0.209** 18.9%
Labor income growth 0.007 0.004 0.004 0.004 0.005 0.007 0.009 11.2%
Dividend growth S&P500 -0.001 0.014 0.051* 0.095** 0.139** 0.179** 0.215** 46.4%
Macro PC1 (FRED-QD) 0.013 0.071** 0.129** 0.176** 0.211** 0.240** 0.263** 48.8%
Macro PC2 (FRED-QD) 0.061 0.095 0.098 0.086 0.074 0.062 0.050 41.4%
Macro PC3 (FRED-QD) 0.001 -0.002 -0.005 -0.008 -0.015 -0.027 -0.041 18.0%
Macro PC4 (FRED-QD) -0.134*** -0.153*** -0.204*** -0.262*** -0.313*** -0.361*** -0.402*** 48.1%
Macro PC5 (FRED-QD) 0.044 0.063 0.061 0.056 0.051 0.047 0.044 36.5%

Panel B. Monthly variables, S̄ = 24 months
S = 0 4 8 12 16 20 24 R2

g

Number of factors = 6
Oil price change -0.018 -0.045* -0.056* -0.059* -0.064* -0.067* -0.068* 11.6%
TED spread change -0.005 -0.007 -0.005 -0.005 -0.005 -0.004 -0.004 12.9%
Nontraded HKM intermediary 0.102*** 0.105*** 0.102*** 0.097*** 0.096*** 0.094*** 0.093*** 61.4%
Traded HKM intermediary 0.117*** 0.119*** 0.114*** 0.108*** 0.105*** 0.102*** 0.101*** 71.5%
Nontraded liquidity 0.044** 0.065** 0.077** 0.087** 0.096** 0.104** 0.110** 15.4%
∆ log(VIX) -0.126*** -0.077*** -0.061*** -0.047*** -0.040*** -0.035*** -0.030*** 51.7%

Number of factors = 7
Oil price change -0.016 -0.041* -0.052* -0.055* -0.058* -0.061* -0.063* 11.4%
TED spread change -0.006 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 18.6%
Nontraded HKM intermediary 0.100*** 0.103*** 0.099*** 0.096*** 0.094*** 0.092*** 0.091*** 61.5%
Traded HKM intermediary 0.116*** 0.118*** 0.111*** 0.105*** 0.102*** 0.099*** 0.097*** 71.9%
PS liquidity 0.043** 0.063** 0.074** 0.083** 0.092** 0.099** 0.105** 15.4%
∆ log(VIX) -0.129*** -0.078*** -0.061*** -0.048*** -0.040*** -0.035*** -0.030** 51.6%

The table repeats the same analysis in Table 1 of the main text. However, unlike Table 1, we consider six- and
seven-factor models for asset returns in this table.
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Table IA.XII: Which principal components of returns drive the common component η̂⊤
g v̂t?

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Total R2

Panel A. Quarterly variables, S̄ = 12 quarters
AEM intermediary 0.09 0.21 0.42 0.06 0.06 0.07 0.05 0.95
Capital share growth 0.21 0.13 0.13 0.08 0.07 0.28 0.05 0.95
GDP growth 0.66 0.02 0.02 0.07 0.15 0.03 0.03 0.99
IP growth 0.69 0.01 0.01 0.04 0.17 0.04 0.03 0.99
Durable consumption growth 0.38 0.07 0.16 0.18 0.09 0.07 0.03 0.98
Nondurable consumption growth 0.67 0.02 0.06 0.02 0.12 0.04 0.06 0.98
Service consumption growth 0.20 0.07 0.07 0.34 0.10 0.09 0.08 0.94
Nondurable + service 0.53 0.04 0.05 0.15 0.10 0.05 0.05 0.97
Labor income growth 0.05 0.06 0.07 0.13 0.07 0.20 0.28 0.87
Dividend growth of SP500 0.56 0.04 0.07 0.12 0.14 0.01 0.04 0.97
Macro PC1 (FRED-QD) 0.76 0.01 0.01 0.01 0.17 0.01 0.02 0.99
Macro PC2 (FRED-QD) 0.78 0.03 0.01 0.03 0.06 0.07 0.02 1.00
Macro PC3 (FRED-QD) 0.14 0.05 0.07 0.23 0.11 0.28 0.06 0.94
Macro PC4 (FRED-QD) 0.77 0.07 0.07 0.01 0.06 0.01 0.01 0.99
Macro PC5 (FRED-QD) 0.40 0.05 0.05 0.02 0.02 0.13 0.22 0.89

Panel B. Monthly variables, S̄ = 24 months
Oil price change 0.10 0.06 0.16 0.23 0.05 0.09 0.11 0.80
TED spread change 0.11 0.04 0.03 0.13 0.09 0.01 0.14 0.55
Nontraded HKM intermediary 0.77 0.14 0.00 0.06 0.02 0.01 0.00 1.00
Traded HKM intermediary 0.79 0.14 0.00 0.04 0.02 0.01 0.00 1.00
PS liquidity 0.82 0.03 0.02 0.03 0.01 0.05 0.00 0.96
∆ log(VIX) 0.87 0.06 0.02 0.01 0.00 0.00 0.00 0.96

The table reports the posterior means of the squared correlation between the common component estimates,
η̂⊤
g v̂t, and the first seven principal components of asset returns. The cross-section of test assets consists of

275 Fama-French characteristic-sorted portfolios. In the last column, we also report the sum of the first seven
columns and denote it as the total R2. All variables are standardized to have unit variances. We consider a
seven-factor model for asset returns. Panel A tabulates the estimates of quarterly factors, using a lag of 12
quarters in gt’s equations. Panel B tabulates the estimates of monthly factors, using a lag of 24 months in
estimation. Definition and data sources of factors and test assets can be found in Internet Appendix IA.3.

Table IA.XIII: Are MA components of macro factors similar? (six- and seven-factor models)
GDP growth IP growth Durable Nondurable Service Dividend Macro PC1 Macro PC2 Macro PC4

Panel A. Number of factors = 6
GDP growth 1.00 0.89 0.72 0.69 0.48 0.36 0.89 0.47 -0.43
IP growth 0.89 1.00 0.74 0.72 0.38 0.35 0.84 0.42 -0.23
Durable 0.72 0.74 1.00 0.69 0.36 0.31 0.64 0.38 -0.22
Nondurable 0.69 0.72 0.69 1.00 0.45 0.45 0.71 0.41 -0.52
Service 0.48 0.38 0.36 0.45 1.00 0.14 0.48 0.15 -0.33
Dividend growth 0.36 0.35 0.31 0.45 0.14 1.00 0.63 -0.22 -0.59
Macro PC1 0.89 0.84 0.64 0.71 0.48 0.63 1.00 0.17 -0.51
Macro PC2 0.47 0.42 0.38 0.41 0.15 -0.22 0.17 1.00 -0.17
Macro PC4 -0.43 -0.23 -0.22 -0.52 -0.33 -0.59 -0.51 -0.17 1.00

Panel B. Number of factors = 7
GDP growth 1.00 0.90 0.71 0.67 0.50 0.34 0.89 0.47 -0.43
IP growth 0.90 1.00 0.74 0.70 0.40 0.33 0.84 0.43 -0.25
Durable 0.71 0.74 1.00 0.68 0.37 0.30 0.65 0.39 -0.23
Nondurable 0.67 0.70 0.68 1.00 0.43 0.43 0.68 0.39 -0.52
Service 0.50 0.40 0.37 0.43 1.00 0.18 0.52 0.14 -0.34
Dividend growth 0.34 0.33 0.30 0.43 0.18 1.00 0.61 -0.26 -0.55
Macro PC1 0.89 0.84 0.65 0.68 0.52 0.61 1.00 0.16 -0.52
Macro PC2 0.47 0.43 0.39 0.39 0.14 -0.26 0.16 1.00 -0.17
Macro PC4 -0.43 -0.25 -0.23 -0.52 -0.34 -0.55 -0.52 -0.17 1.00

The table reports the correlation among the moving average components spanned by asset returns’ latent factors,∑S̄
s=0 ρsη

⊤
g vt−s, with S̄ = 12 quarters. The cross-section of test assets consists of FF275. We consider six- and

seven-factor models for asset returns. Definition and data sources of factors and test assets can be found in
Internet Appendix IA.3.
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Table IA.XIV: Can external variables predict principal components of asset returns?

Quarterly: Q3 1963 – Q4 2019 Monthly: July 1963 – Dec 2019
PC1t PC2t PC3t PC4t PC5t PC1t PC2t PC3t PC4t PC5t

Panel A. Use only external predictors

PEt−1 0.058 -0.001 0.025 0.122 0.021 0.032 0.000 -0.002 -0.035 0.065
(0.08) (0.081) (0.081) (0.08) (0.081) (0.046) (0.046) (0.046) (0.046) (0.046)

TSt−1 -0.056 0.054 0.085 0.095 0.048 -0.037 0.023 -0.053 -0.043 0.05
(0.071) (0.072) (0.072) (0.071) (0.072) (0.041) (0.041) (0.041) (0.041) (0.041)

DSt−1 -0.077 -0.066 0.053 -0.092 -0.012 -0.054 -0.029 -0.032 0.038 -0.055
(0.08) (0.081) (0.08) (0.079) (0.081) (0.046) (0.046) (0.046) (0.046) (0.046)

V St−1 -0.109 -0.020 -0.009 -0.030 -0.050 -0.088** -0.017 0.028 0.060 0.005
(0.073) (0.074) (0.074) (0.073) (0.074) (0.042) (0.042) (0.042) (0.042) (0.042)

R2
adj 0.92% -1.31% -0.72% 1.58% -1.49% 0.79% -0.49% -0.08% -0.07% 0.57%

Panel B. Use both external predictors and lagged PCs

PC1t−1 -0.04 0.097 -0.069 -0.305*** 0.036 0.128*** 0.227*** 0.075* -0.121*** -0.162***
(0.067) (0.067) (0.066) (0.064) (0.068) (0.038) (0.038) (0.039) (0.038) (0.037)

PC2t−1 -0.154** 0.024 0.042 0.059 -0.161** -0.05 -0.02 -0.041 0.023 -0.189***
(0.066) (0.066) (0.065) (0.063) (0.067) (0.038) (0.038) (0.038) (0.038) (0.037)

PC3t−1 0.061 -0.114* 0.253*** -0.028 0.053 -0.021 -0.051 0.118*** 0.05 0.008
(0.068) (0.068) (0.067) (0.065) (0.069) (0.038) (0.038) (0.039) (0.039) (0.037)

PC4t−1 0.005 0 -0.174*** -0.047 0.044 -0.008 0.006 -0.043 -0.078** -0.12***
(0.067) (0.067) (0.066) (0.064) (0.068) (0.038) (0.038) (0.038) (0.038) (0.037)

PC5t−1 0.13* -0.226*** -0.052 0.14** 0.075 0.09** 0.025 0.02 -0.075** 0.004
(0.067) (0.067) (0.066) (0.065) (0.068) (0.038) (0.038) (0.038) (0.038) (0.037)

PEt−1 0.063 0.013 0.025 0.103 0.029 0.029 0.002 0.004 -0.032 0.067
(0.08) (0.08) (0.079) (0.077) (0.081) (0.046) (0.045) (0.046) (0.046) (0.045)

TSt−1 -0.065 0.066 0.012 0.068 0.049 -0.036 0.03 -0.039 -0.041 0.044
(0.073) (0.073) (0.071) (0.07) (0.074) (0.041) (0.04) (0.041) (0.041) (0.04)

DSt−1 -0.094 -0.021 0.055 -0.125 -0.016 -0.039 -0.015 -0.021 0.027 -0.061
(0.08) (0.08) (0.078) (0.077) (0.081) (0.046) (0.045) (0.046) (0.046) (0.044)

V St−1 -0.113 -0.003 0.064 -0.084 -0.042 -0.07* 0.016 0.017 0.036 -0.025
(0.075) (0.075) (0.074) (0.072) (0.076) (0.042) (0.042) (0.042) (0.042) (0.041)

R2
adj 3.34% 3.78% 6.88% 11.12% 0.05% 2.8% 4.21% 1.52% 2.11% 7.51%

The table reports the empirical results of regressing principal components (PCs) of asset returns on their one-
period lags and external predictors. The cross-section of test assets consists of 275 Fama-French characteristic-
sorted portfolios. We consider the predictability of the five largest PCs at both quarterly (left side) and monthly
(right side) frequencies. External predictors include the price-earning ratio of the SP500 index (PEt−1), term
spread (TSt−1), default spread (DSt−1), and value spread (V St−1). The numbers without parentheses are
coefficient estimates, with their standard errors in the parentheses. If the coefficient estimate is significant in
the 90% (95%, 99%) significance level, it will be highlighted by * (**, ***). The final row shows the adjusted
R-squared (R2

adj) in each regression. In Panel A, we regress PCs on only the four external predictors, while we
further add the one-period lags of PCs in Panel B. Definition and data sources of factors and test assets can be
found in Internet Appendix IA.3.
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IA.7 Additional Figures
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(a) R2
g = 20% & T = 200
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(b) R2
g = 20% & T = 600
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Figure IA.1: Power of identifying strong factors

The figure plots the frequency of rejecting the null hypothesis H0 : λS̄g = 0 based on the 90%, 95%, and 99%
credible intervals based on our Bayesian estimates in Proposition 1. λS̄g is defined in equation (6). We consider
strong factors, with R2

g ∈ {10%, 20%, 30%}, and two sample sizes, T ∈ {200, 600}. In each simulated scenario,
we estimate several model configurations with different numbers of factors and different S̄. The number of
Monte Carlo simulations is 1,000.
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(a) GDP growth
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(b) IP growth
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(c) Durable consumption growth
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(d) Nondurable consumption growth
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(e) Macro PC1 (FRED-QD)
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(f) Macro PC4 (FRED-QD)

Figure IA.2: Per-period mean returns of horizon-specific mimicking portfolios
This figure plots the per-period mean returns of gt−1→t+S ’s horizon-specific mimicking portfolio, where S ranges
from 0 to 12 quarters. In particular, we project nontraded risk factor onto PCs of asset returns across different
horizons: ωMP

S = cov(vt−1→t+S)
−1cov(vt−1→t+S , gt−1→t+S), where vt−1→t+S are the cumulative returns on

the PCs between t − 1 and t + S. Next, we estimate time-series averages of (ωMP
S )⊤vt, 0 ≤ S ≤ 12. The

cross-section of test assets consists of 275 Fama-French characteristic-sorted portfolios. We consider the first
five, six, and seven PCs in constructing the horizon-specific mimicking portfolios.
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(a) AEM: 5 factors
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(b) AEM: 6 factors
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(c) AEM: 7 factors
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(d) Capital Share: 5 factors
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(e) Capital Share: 6 factors
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(f) Capital Share: 7 factors
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(g) GDP: 5 factors
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(h) GDP: 6 factors
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(i) GDP: 7 factors
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(j) IP growth: 5 factors

0 2 4 6 8 10 12

S

λ gS

−
0.

04
 0

.0
5

 0
.1

4
 0

.2
4

 0
.3

3

90% CIs 68% CIs

(k) IP growth: 6 factors
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Figure IA.3: Term structure of factor’s risk premia: Quarterly variables
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(m) Durable: 5 factors
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(n) Durable: 6 factors
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(o) Durable: 7 factors
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(p) Nondurable: 5 factors
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(q) Nondurable: 6 factors
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(r) Nondurable: 7 factors
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(s) Service: 5 factors
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(t) Service: 6 factors
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(u) Service: 7 factors
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(v) Nondur+service: 5 factors
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(w) Nondur+Service: 6 factors
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Figure IA.3: Term structure of factor’s risk premia: Quarterly variables
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(y) Labor: 5 factors
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(z) Labor: 6 factors
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(aa) Labor: 7 factors
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(ab) Dividend: 5 factors

0 2 4 6 8 10 12

S

λ gS

−
0.

06
 0

.0
8

 0
.2

2
 0

.3
6

 0
.5

0
90% CIs 68% CIs

(ac) Dividend: 6 factors
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(ad) Dividend: 7 factors
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(ae) Macro PC1: 5 factors
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(af) Macro PC1: 6 factors
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(ag) Macro PC1: 7 factors
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(ah) Macro PC2: 5 factors
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(ai) Macro PC2: 6 factors
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Figure IA.3: Term structure of factor’s risk premia: Quarterly variables
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(ak) Macro PC3: 5 factors
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(al) Macro PC3: 6 factors
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(am) Macro PC3: 7 factors
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(an) Macro PC4: 5 factors
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(ao) Macro PC4: 6 factors
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(ap) Macro PC4: 7 factors
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(aq) Macro PC5: 5 factors
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(ar) Macro PC5: 6 factors
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Figure IA.3: Term structure of factor’s risk premia: Quarterly variables

The figure plots the term structure of risk premia estimates using Proposition 1, where the risk premia over
S horizons (λSg ) are defined in equation (6). The cross-section of test assets consists of 275 Fama-French
characteristic-sorted portfolios. We consider five-, six- and seven-factor models for asset returns. We study
quarterly factors, whose risk premia are estimated using a lag of 12 quarters in gt’s equations. In addition
to the point estimates, we show the 68% and 90% Bayesian credible intervals, highlighted in pink and blue,
respectively. Definition and data sources of factors and test assets can be found in Internet Appendix IA.3.
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(a) Oil price: 5 factors
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(b) Oil price: 6 factors
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(c) Oil price: 7 factors
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(d) TEDar1: 5 factors

0 5 10 15 20

S

λ gS

−
0.

08
−

0.
04

−
0.

01
 0

.0
3

 0
.0

6
90% CIs 68% CIs

(e) TEDar1: 6 factors
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(f) TEDar1: 7 factors
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(g) HKMntr: 5 factors
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(h) HKMntr: 6 factors
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(i) HKMntr: 7 factors
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(j) HKMtr: 5 factors
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(k) HKMtr: 6 factors
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Figure IA.4: Term structure of factor’s risk premia: Monthly variables
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(m) PS liquidity: 5 factors
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(n) PS liquidity: 6 factors
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(o) PS liquidity: 7 factors
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(p) ∆ log(VIX): 5 factors
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(q) ∆ log(VIX): 6 factors
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Figure IA.4: Term structure of factor’s risk premia: Monthly variables

The figure plots the term structure of risk premia estimates using Proposition 1, where the risk premia over
S horizons (λSg ) are defined in equation (6). The cross-section of test assets consists of 275 Fama-French
characteristic-sorted portfolios. We consider five-, six- and seven-factor models for asset returns. We study
monthly factors, whose risk premia are estimated using a lag of 24 months in gt’s equations. For Fama-French
five factors, we also include their in-sample monthly Sharpe ratios (see black dotted lines). In addition to the
point estimates, we show the 68% and 90% Bayesian credible intervals, highlighted in pink and blue, respectively.
Definition and data sources of factors and test assets can be found in Internet Appendix IA.3.
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Figure IA.5: Moving average components of some macro factors
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Figure IA.5: Moving average components of some macro factors
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Figure IA.5: Moving average components of some macro factors

The figure plots the time series of (posterior means of) moving average components spanned by asset returns’ la-
tent factors:

∑S̄
s=0 ρsη

⊤
g vt−s, with S̄ = 12 quarters. The cross-section of test assets consists of 275 Fama-French

characteristic-sorted portfolios. We consider five-, six- and seven-factor models for asset returns. Definition and
data sources of factors and test assets can be found in Internet Appendix IA.3.
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Figure IA.6: Term structure of unconditional risk premia in time-varying models
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Figure IA.6: Term structure of unconditional risk premia in time-varying models

The figure plots the term structure of unconditional risk premia estimates using Propositions 1 and A2. The
cross-section of test assets consists of 275 Fama-French characteristic-sorted portfolios. We consider the five-
factor models for asset returns. For quarterly (monthly) factors, risk premia are estimated using a lag of 12
quarters (24 months) in gt’s equations. The blue dotted lines and the light blue shaded areas present the risk
premia estimates and their 90% posterior credible intervals under the conditional models using the method
described in Section 2.2. In the time-varying models, we model the dynamics of latent systematic factors as a
VAR(1) process. For comparison, we include the purple dotted lines and the related shaded areas, showing the
risk premia estimated using the unconditional models described in Section 2.1. Definition and data sources of
factors and test assets can be found in Internet Appendix IA.3.
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Figure IA.7: Term structure of unconditional risk premia in time-varying models with only
external predictors: PE ratio of S&P 500, Term spread, default spread, and value spread
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Figure IA.7: Term structure of unconditional risk premia in time-varying models with only
external predictors: PE ratio of S&P 500, Term spread, default spread, and value spread

The figure plots the term structure of unconditional risk premia estimates using Propositions 1 and A2. The
cross-section of test assets consists of 275 Fama-French characteristic-sorted portfolios. We consider the five-
factor models for asset returns. For quarterly (monthly) factors, risk premia are estimated using a lag of 12
quarters (24 months) in gt’s equations. The blue dotted lines and the light blue shaded areas present the risk
premia estimates and their 90% posterior credible intervals under the conditional models using the method
described in Section 2.2. In the time-varying models, we model the dynamics of latent systematic factors as
a VAR(1) process, where both latent factors and four external predictors (PE ratio of S&P 500, Term spread,
default spread, and value spread) are driven by only the lagged external predictors. For comparison, we include
the purple dotted lines and the related shaded areas, showing the risk premia estimated using the unconditional
models described in Section 2.1. Definition and data sources of factors and test assets can be found in Appendix
IA.3.
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Figure IA.8: Term structure of unconditional risk premia in time-varying models with both
lagged latent factors and external predictors: PE ratio of S&P 500, Term spread, default spread,
and value spread
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Figure IA.8: Term structure of unconditional risk premia in time-varying models with both
lagged latent factors and external predictors: PE ratio of S&P 500, Term spread, default spread,
and value spread

The figure plots the term structure of unconditional risk premia estimates using Propositions 1 and A2. The
cross-section of test assets consists of 275 Fama-French characteristic-sorted portfolios. We consider the five-
factor models for asset returns. For quarterly (monthly) factors, risk premia are estimated using a lag of 12
quarters (24 months) in gt’s equations. The blue dotted lines and the light blue shaded areas present the risk
premia estimates and their 90% posterior credible intervals under the conditional models using the method
described in Section 2.2. In the time-varying models, we model the dynamics of latent systematic factors as a
VAR(1) process, with the PE ratio of the S&P500 index, term spread, default spread, and value spread as the
external predictor. For comparison, we include the purple dotted lines and the related shaded areas, showing
the risk premia estimated using the unconditional models described in Section 2.1. Definition and data sources
of factors and test assets can be found in Appendix IA.3.
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Figure IA.9: Time-varying term structure of macroeconomic factor’s risk premia
This figure plots the time-varying term structure of risk premia following the method in Section 2.2. Risk premia
of latent factors are linear in four external predictors: PE ratio of S&P 500, Term spread, default spread, and
value spread. Estimates are based on the composite cross-section of 275 Fama-French characteristic-sorted
portfolios. Definition and data sources of factors and test assets can be found in Internet Appendix IA.3.
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Figure IA.10: Time-varying term structure of macroeconomic factor’s risk premia: VAR(1)
model with only latent factors
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Figure IA.10: Time-varying term structure of macroeconomic factor’s risk premia: VAR(1)
model with only latent factors
This figure plots the time-varying term structure of risk premia following the method in Section 2.2 and a
VAR(1) for the latent systematic risk factors. Estimates are based on the composite cross-section of 275 Fama-
French characteristic-sorted portfolios. Definition and data sources of factors and test assets can be found in
Internet Appendix IA.3.
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Figure IA.11: Term structure of unconditional dividend risk premia
This figure plots the term structure of dividend risk premia estimates. Unlike the estimates in Table 1, we do
not standardize the dividend growth. The cross-section of test assets consists of 275 Fama-French characteristic-
sorted portfolios. We consider a five-factor model for asset returns. We study the quarterly dividend growth,
whose risk premia are estimated using a lag of 20 quarters in gt’s equations. In addition to the point estimates,
we show the 68% and 90% Bayesian credible intervals, highlighted in pink and blue, respectively. The green
crosses are the risk premia estimates obtained from Table 4 of Bansal et al. (2021).
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Figure IA.12: Expected dividend growth implied by the MA model: Constant risk premia
model
This figure plots the time-varying expected dividend growth. The conditional mean of dividend growth is
based on the MA model in equation (26), with S̄ = 20 quarters. Dividend risk premia are assumed to be
constant. Estimates are based on the composite cross-section of 275 Fama-French characteristic-sorted portfolios.
Definition and data sources of factors and test assets can be found in Internet Appendix IA.3.
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Figure IA.13: Time series of estimated forward equity yields: Constant dividend risk premia
This figure displays the time series of estimated forward equity yields based on our MA model with 20 lags.
Dividend risk premia are assumed to be constant. We estimate a five-factor model of FF275 using the full
sample from 1963Q3 to 2019Q4. We plot the estimates in the subsample from 2004Q4, the date from which
we have the observed data of forward equity yields. The data of realised forward equity yields are from Bansal
et al. (2021).
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