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Abstract

We develop a unified framework to study the term structure of risk premia of nontrad-
able factors. Our method delivers level and time variation of risk premia, uncovers their
propagation mechanism, and is robust to misspecification and weak identification. Most
macroeconomic factors are weakly identified at the quarterly frequency, but have increasing
(unconditional) term structures with large risk premia at business cycle horizons. More-
over, macro risk premia are strongly time-varying and countercyclical. Our framework
also recovers the term structure of forward equity yields. We show that it is strongly
countercyclical and closely matches the observed values implied by dividend strip data.
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1 Introduction

Macroeconomic risk, often related to technology, consumption, or intermediary capital, is at
the heart of most equilibrium-based asset pricing models. Yet reliable detection of macroeco-
nomic risk premia remains elusive: 1) different time horizons often provide drastically different
estimates of the priced risk, 2) most empirical models are widely known to be misspecified,
calling for methods robust to the nature and number of risk factors, and 3) the weak contempo-
raneous link between macroeconomic factors and asset returns often leads to model parameters
being weakly identified at best, causing a fundamental inference problem. All of these issues
contribute to the empirical macrofinance disconnect.

We propose a new estimation framework that addresses all of the above. Unlike any existing
approach, it produces not only reliable risk premia estimates but also their whole term struc-
ture in an internally consistent framework. Our method, which leverages the fact that many
nontradable factors are persistent, relies on three key ingredients: 1) the moving average (MA)
representation of the persistent component of the factor, driven by either priced or non-priced
shocks, 2) an approximate factor structure for a wide cross-section of asset returns, which recov-
ers priced shocks and is robust to model misspecification (Chamberlain and Rothschild (1983)
and Giglio and Xiu (2021)), and 3) the hierarchical Bayesian inference method of Bryzgalova,
Huang, and Julliard (2023), which recovers both time series and cross-sectional properties of
risk factors, and is by design robust to weak identification.

Our framework accurately identifies not only the joint comovement between nontradable
factors and asset returns but also their propagation mechanism, and hence recovers the whole
term structure of risk premia. As we show, the latter is crucial in assessing the role of macroe-
conomic risks in asset returns. We find that many macroeconomic variables (e.g., industrial
production, consumption, and GDP growth) have increasing unconditional term structures and
carry large and significant risk premia at business cycle frequencies (two—three years). Further-
more, conditionally, their risk premia are strongly time-varying and countercyclical.

Our findings are not a simple byproduct of factor persistence. We find that similarly per-
sistent risk factors can have increasing (liquidity of Péastor and Stambaugh (2003)), flat (in-
termediary factor of He et al. (2017)), or decreasing term structures (VIX), or no significant
risk premia at all (capital share growth of Lettau et al. (2019)). As we show, risk premia over

different horizons can be directly mapped into per-period average returns of factor-mimicking



portfolios hedging multi-horizon priced innovations. The economic magnitude of our findings
is striking: At business cycle frequencies, risk premia carried by, for example, industrial pro-
duction, GDP, and consumption, are as large as that of the market. Crucially, all of our results
are not based on ad-hoc frequency-based procedures, but are instead fully determined by the
structural parameters of the model.

Our framework provides sharp identification of risk premia and reliable inference and is
rooted in economic theory: Equilibrium asset prices are jump variables. Hence, news about
current and future priced states should immediately be reflected into prices, albeit they might
manifest in nontradable variables only with delay (see, e.g., Hansen et al. (2008)). Similar
to Giglio and Xiu (2021), we leverage the fact that, while the actual drivers of asset returns
are identifiable only up to a rotation, conditional and unconditional risk premia of observable
factors are not affected by this issue and can, therefore, be reliably recovered from the data.
As a result, our estimator is robust to the omitted variable bias, measurement error, and weak
identification. Contrary to the existing literature, our method allows for the joint modeling of
factor and return dynamics over different horizons, providing coherent insights into the whole
term structure of risk premia. Tackling an inference problem in this setup would be challenging,
if not infeasible, in frequentist estimation. Instead, we develop a simple Gibbs algorithm for
Bayesian posterior sampling, with all the conditional posterior distributions available in closed
form. Thus, we deliver not only point estimates of risk premia and deep model parameters but
also valid credible intervals for all the objects of interest.

It is widely known that some nontradable factors have higher exposure to asset returns at
longer horizons. (See, e.g., Jagannathan and Wang (2007), Cohen et al. (2009), and Hansen
et al. (2008)) We uncover the mechanism generating this phenomenon and show that, in these
cases, risk premia at different horizons are driven by the same priced innovations that slowly
propagate through the nontradable risk factor. As a result, we also explain why many risk
factors are statistically weak at quarterly frequency, yet become strongly identified at longer
horizons. Consider GDP growth, for example. Although contemporaneous asset return shocks
account for only 4% of the variation in GDP growth, they contribute to over 20% of its time
series variation at business cycle frequencies. In such a case, the term structure of risk premia
effectively boosts the signal-to-noise ratio of priced shocks in nontradable factors and sharply
identifies the common priced component (which would normally be weak at best).

The empirical asset pricing literature has long recognized the persistent nature of many



nontradable risk factors. As a result, researchers would usually first extract the AR(1) innova-
tion from a factor and then proceed with measuring its risk premia via Fama-MacBeth (FM)
regressions or the Generalized Method of Moments (GMM).! However, as we show, this com-
mon procedure fails to recover the true sources of priced risk. First, the conditional mean of
the macroeconomic variable could follow a process different from AR(1). Second, the persistent
component of the variable does not need to be driven only by priced shocks. As we show, AR(1)
residuals do not recover actual priced innovations in many factors, leading to a significant bias
in risk premia estimates. Our approach, rooted in the Wold decomposition, relies on the flex-
ible MA representation of the risk factor. Like the local projection framework (Jorda, 2005),
it recovers the impulse response functions of macro quantities to shocks spanned by financial
markets without postulating a stringent (V)AR structure, hence avoiding the resulting fragility
to misspecification (Olea et al., 2024). Different from these papers, our approach leverages the
large cross-section of asset returns to efficiently separate priced and unpriced innovations and
restore reliable inference on risk premia.

We use a large cross-section of 275 equity portfolios to estimate the term structures of risk
premia of many nontradable risk factors. Contrary to the standard one-period inference, we find
that a large part of the factors’ conditional mean is driven by priced shocks, slowly propagating
through the time series. Their overall dynamics display clear business cycle patterns and are
common across many different macroeconomic factors.

Many risk factors are characterized by increasing term structures of risk premia. For exam-
ple, while the risk premium of GDP growth is only 0.03 at the quarterly horizon, it increases
to 0.20 at the three-year horizon and is strongly significant (while being spanned by the same
shocks). Furthermore, the term structures of macro risk exhibit strong commonality in their
business cycle behavior: The average level is strongly countercyclical, with moderate risk premia
during expansion and significant increases during recessions.

We also observe factors commanding flat or downward-sloping unconditional term structures
of risk premia. For example, the VIX risk premium is —0.13 at the monthly frequency, but
its two-year counterpart is only —0.03. This observation is reassuring since the sign of the
VIX risk premium, and its term structure, are mostly consistent with previous findings based
on VIX derivatives (Eraker and Wu (2014), Dew-Becker et al. (2017), and Johnson (2017)).
Intermediary factors (Adrian et al. (2014) and He et al. (2017)) carry significantly positive

1See He et al. (2017), Pastor and Stambaugh (2003), and Giglio and Xiu (2021), among others.



unconditional risk premia with an almost flat term structure. Furthermore, our estimate of risk
premia for the intermediary factor of He et al. (2017) is rather close to the average return of
its tradable version, further validating our findings.

We further investigate the connection between the term structure of risk premia and forward
equity yields implied by the dividend strips data. Under joint lognormality, forward equity yields
equal the difference between dividend risk premia and expected dividend growth. We show
that our estimates of unconditional dividend risk premia between one- and five-year horizons
are similar to those of Bansal et al. (2021). Note that we use a longer time series sample and
an entirely different method from Bansal et al. (2021), so this consistency is affirmative.

To infer the term structure of forward equity yields, one needs an estimate of expected
dividend growth. We rely on our MA representation to derive the conditional dynamics of
dividend growth. However, we do not assume that the spanned MA component captures the
entire dividend predictability (we allow for predictability of the unspanned component); hence,
ex-ante, our formulation is not guaranteed to generate equity yields consistent with the observed
data. Nevertheless, ex-post, our estimates of forward equity yields are strongly countercyclical
and closely track the observed yields implied by the dividend strips data. Our model also
generates a downward-sloping (upward-sloping) term structure of equity yields in economic
downturns (expansions). The procyclical behaviours of the slopes of the dividend term structure
are mainly driven by the time variation in expected dividend growth instead of time-varying
dividend risk premia.

To further highlight the strength and robustness of our method, we conduct extensive sim-
ulations and study the empirical size and power of the procedure in detecting the persistent
priced component of nontradable factors. We find that the Bayesian credible intervals pro-
vide proper posterior coverages of the pseudo-true risk premia. Moreover, we show that the
MA-based approach is essential in identifying the priced component in persistent factors and
leads to a significant boost in power. Finally, our Bayesian inference remains valid even in the
presence of persistent yet weak risk factors.

The remainder of the paper is organized as follows. In the next subsection we review the
most closely related literature and our contribution to it. Section 2 outlines our estimation
framework and its properties, while Section 3 provides simulation evidence on the power of the
method in realistically small samples. Section 4 presents our empirical findings, and Section 5

concludes. Additional results, proofs, derivations, and a detailed description of the data sources,



are reported in the Internet Appendix.

Closely Related Literature

Our paper naturally relates to the inference on risk premia in linear factor models. As shown
by the past literature (e.g., Kan and Zhang (1999a,b), Kleibergen (2009), and Kleibergen and
Zhan (2015)), weak factors invalidate risk premia estimates and cross-sectional fit of traditional
FM and GMM estimators. Several studies (e.g., Kan et al. (2013), Gospodinov et al. (2014,
2019), Bryzgalova (2015), Kleibergen and Zhan (2020), Anatolyev and Mikusheva (2022), and
Bryzgalova et al. (2023)) propose methods that are robust to weak factors and misspecification.
Giglio and Xiu (2021) further emphasize that standard estimators of risk premia are biased if
some priced factors are omitted and propose a three-pass method to resolve the issue. Likewise,
Giglio et al. (2023) propose a supervised principal component analysis (PCA) method to recover
the risk premia of weak factors. Similarly, our method aligns with the literature that relates to
PCA in asset pricing (e.g., Chamberlain and Rothschild (1983), Connor and Korajczyk (1986,
1988), Kozak et al. (2018, 2020), and Kelly et al. (2019)). Unlike them, we incorporate the
dynamics of factors and returns to elicit the entire term structure of risk premia in an internally
consistent manner. This additional dimension is economically meaningful since many variables,
particularly macro variables, are significantly priced only at particular horizons.

Equilibrium macro-finance models have sharp and salient predictions for the term structures
of risk premia of macro factors. For instance, as shown in Figure A1, the habit model of
Campbell and Cochrane (1999) predicts flat term structures of risk premia for consumption
and dividend growth.? Yet these same factors command upward-sloping term structures in the
long-run risk model of Bansal and Yaron (2004). However, these predictions rely on ad hoc
assumptions on cash flow dynamics and investors’ preferences. To obtain model-free estimates,
van Binsbergen et al. (2012) and van Binsbergen and Koijen (2017)) analyze traded dividend
claims and observe a downward-sloping term structure of dividend risk, which contradicts the
predictions of leading macro-finance models. Consequently, several equilibrium models (e.g.,
Belo et al. (2015), Hasler and Marfe (2016), Ai et al. (2018), and Kragt et al. (2020)) have
been developed to explain this phenomenon. However, traded dividend strips data suffer from

a short time series sample and liquidity concerns. Recent papers tackle these shortcomings by

2Calibration and derivation details can be found in Internet Appendix IA.4.



estimating either a regime-switching model (Bansal et al. (2021)) or an affine term structure
model of expected returns and dividend growth (Giglio et al. (2023)). Both papers suggest an
unconditionally upward-sloping and conditionally time-varying term structure of dividend risk
— as we uncover for dividend growth risk premia. But crucially, our new method has much
broader applicability than solely dividends, as it delivers the term structure of risk premia for
all factors (traded and nontraded) of equilibrium models.

Our paper also connects to the large body of literature that emphasizes horizon-dependent
risk premia (see, e.g., Chernov et al. (2021)). Extensive empirical evidence shows that con-
sumption growth carries more significant premia at long horizons (Daniel and Marshall (1997),
Parker and Julliard (2005), Jagannathan and Wang (2007), Hansen et al. (2008), Malloy et al.
(2009), Ortu et al. (2013), Dew-Becker and Giglio (2016), and Bandi and Tamoni (2023)). In
contrast, VIX (Eraker and Wu (2014), Dew-Becker et al. (2017), and Johnson (2017)) carry
more sizable risk premia at short horizons. Our paper is motivated by these empirical facts
and provides a much more extensive and robust investigation of the risk premia of more than
20 economic variables.

Finally, our paper is related to the recent developments of Bayesian econometrics in asset
pricing (e.g., Barillas and Shanken (2018), Chib et al. (2020), Bryzgalova et al. (2023), and
Avramov et al. (2023)). Unlike most papers, which emphasize Bayesian model selection and/or

aggregation, we estimate the posterior credible intervals of the term structure of risk premia.

2 Theory and Method

This section describes our Bayesian framework for estimating factors’ risk premia. We aim to
test whether a (covariance-stationary) factor g, either tradable or nontradable, is priced in a
large cross-section of test assets. Throughout our analysis, we consider log variables; that is,
g; is the log growth rate of G; between time t — 1 and ¢, where G; can be, for example, the
portfolio value, consumption, or production.

We denote the vector of log returns on NV assets, in excess of the log risk-free rate (ry), by r¢ =
(714, .,7n¢e) . We further define the cumulative variable: g; 1 5115 = log(Gyys) — log(Gy_1),
which measures the multiperiod growth rate of G;. Similarly, r,_1_,;,s denote the cumulative

log returns between time t — 1 and ¢ + S.



We assume a linear latent factor model for r; driven by K systematic factors, as follows:
-  iid iid -
Ty = IJ’T + ﬂf)vt + Wyg, Uy~ N(OK7 IK)7 Wyt ~ N(0N7 2’LU7’)7 (% —L Wy, (1)

where v, are K uncorrelated latent factors with loadings B3, w,; are unpriced idiosyncratic
errors, and p, denote expected log excess returns. We relax the assumption of serially uncor-
related v, in Section 2.2. We impose an approximate factor structure among asset returns,
following Chamberlain and Rothschild (1983). Mathematically, the largest K eigenvalues of
r,’s covariance matrix will explode as the number of assets goes to infinity (equivalently, the
eigenvalues of 3;3; will explode), while those of X, remain bounded. We allow for a certain
degree of cross-sectional dependence of w,;, as discussed later in the simulation study. The
number of latent factors, K, is assumed to be known in this section.

We further assume that factors’ loadings, 35, can partially explain expected returns,
- 1
Hr = Ky + §Tr = /817)\17 + o (2>

where Y, = (var(rlt), . ,var(rNt))T, A; denote risk premia associated with v;, and « is a
vector of pricing errors. The extra term %TT is added to the mean log excess returns in equation
(2) due to the Jensen’s inequality.> In addition, we assume that each asset’s pricing error, ay,
is independently and identically distributed (IID) and cross-sectionally independent of factor
loadings, with a zero mean and finite standard deviation. This form of model misspecification
has been commonly used in the past literature (e.g., Kan et al. (2013), Gospodinov et al. (2014),
Giglio and Xiu (2021), and Bryzgalova et al. (2023)) and has a clear economic interpretation.

Equation (2) is equivalent to a log SDF that is linear in latent factors @;, described as follows:*
me=1-— Ao, (3)

Since v; have an identity covariance matrix, their risk prices are identical to risk premia.
We represent the covariance-stationary factor g; as a sum of a moving average of asset return
shocks plus other shocks, including measurement error, not spanned by financial markets:

S
G =ty + > peily Do—s + Wye, )Ty = 1, (4)
N——

s=0
ft—s

3The approximation in equation (2) is exact under the lognormality assumption of asset returns.

41t is more appropriate to assume the log SDF as m; — E;_1[m;] = A} ©;. However, since we study only
excess returns, the (un)conditional mean of the SDF cannot be determined. For simplicity, we assume the
function form in equation (3).



where f14 is the unconditional mean of g;, f; is the spanned component that potentially drives
both ¢; and asset returns, {ﬁs}fzo are square-summable, and wy, is a potentially autocorrelated
shock unrelated to v; and w,..

As long as the priced component of g; is covariance stationary, the above representation must
exist, possibly with S = oo (by virtue of the Wold theorem), and requires 7y to be constant for
all lags s. Furthermore, using a finite S must yield a finite approximation error relative to the
true priced component, due to the square integrability property of the MA coefficients in the
Wold representation. Note that since f; is a white noise innovation, we can interpret {,53};?:0

as g;’s impulse responses to the asset returns’ shock f,.% In other words,

ps =E [gt+s|ft =191, ”°t—1] -E [gt+s|ft =0 gt—h’"t—l] ) (5)

and ps is analogous to the local projection (LP, see, e.g., Jorda (2005)) coefficient of g¢,s on
fi, where the latter is identified leveraging a large cross-section of asset returns. That is,
our framework, like LPs, recovers the impulse response of g to financial shocks avoiding the
fragilities brought about by postulating and selecting a stringent autoregressive structure (Olea
et al. (2024), Bryzgalova et al. (2024)). Furthermore, since we make use of the existence of a
MA representation in the construction of E g4 s| fy = 0; g;—1, 7¢—1], we learn from the data about
ps not only from g, but also from all other leads and lags of g;, arguably gaining efficiency.
Moreover, our approach controls directly for the MA structure implied by a sequence of linear
projections® and uses only one estimating equation (equation (4), instead of S linear regressions
with correlated residuals), hence greatly simplifying inference.

Several features of equation (4) are noteworthy. First, in theory, S can be +o0, but we
truncate the number of lags to ensure realistic estimation in finite samples. Second, g; can
react to both current and lagged asset return shocks v;. This assumption is motivated by the
fact that asset prices are jump variables: news about current and future economic states are
immediately incorporated into asset prices, whereas nontradable factors might respond to the
same news with delay. The slow responses of nontraded economic variables to financial market
shocks are also related to past literature showing that asset returns can predict macro variables

(e.g., Liew and Vassalou (2000), Ang et al. (2006), and Bryzgalova et al. (2024)). Third, when

®We do not interpret f; as a structural shock, so the impulse responses of g; to f; purely quantify the lead-lag
correlations rather than the causal relationship between asset returns and g;.

6Lusompa (2023) shows that the autocorrelation process of LP can be written as a Moving Average process
of the Wold errors and impulse responses, and accounting for this dependency leads to more efficient estimates.



g correlates with only the contemporaneous asset return shocks (i.e., ps = 0 for s > 0), the
model reduces to the setting studied in Giglio and Xiu (2021).”
We now use several examples to illustrate how the general framework in Equations (1)—(4)

maps into canonical representative agent models imposing particular parametric restrictions.

Example 1. Adrian et al. (201}) measure a financial intermediary SDF, i.e., my = 1 — X -
LevFac;, where LevFac, is the shock to the leverage of security broker-dealers. To map our
framework into theirs, we impose in equations (1)-(4) that o, = f; = LevFacy, S =0, py = 1,

and g¢ 1s a noisy proxy for LevFac, with a measurement error wy;.

Example 2. In the canonical long-run consumption risk model of Bansal and Yaron (2004), the
log consumption growth is modeled as Ac; = xy_1 4+ 04_17;, where oy_1 1s the stochastic volatility
process, xy_1 is the conditional consumption mean following an AR(1) process, xy = p,xs_1 +
P16 = Zzio PePi0t—s—1€1—s, and o,_11; s the short-run consumption shock. Within this
framework, the log SDF is linear in three independent shocks, i.e., my—E;_1(my) = Ay pOt—174 —
Am,e0t—1€1 — AmwOuwy (W is the shock to o?. See Internet Appendix IA.J for details).

The SDF in equation (3) maps into the Bansal and Yaron (2004) one imposing the following
restrictions: i) 0, = (04_1M, 01—164,0wwy) | and i) Xg = (=AM Amer Amw) - To estimate the
risk premium of the short-run consumption shock, o,_11m;, we need to impose in equation (4)
that S =0, po =1, fr = o4_174, and Wyt = T4—1. Furthermore, to identify the risk premia of the
shock to the conditional consumption mean, we need a different set of restrictions in equation
(4): S =00, po =0, ps = ept for s > 1, f; = 04164, and wy = o4_17,. In the empirical
application, we consider the estimation for both S =0 and S >> 0 to capture the risk premia

of both short-run and long-run consumption shocks.

We next define the risk premium of g, by extending the approach of Giglio and Xiu (2021).
In their framework, g¢;’s risk premium is defined as the negative of the covariance between g,
and the SDF, A\, = —cov(g;, m;).> When g, is a traded log excess return, the fundamental asset
pricing equation, E[exp(m; + g; + ry)| = 1, implies E[g,] + 1var(g;) = —cov(g;,m;) under the
joint log normality assumption. For a nontradable factor, one can interpret —cov(g;, m;) as the

pseudo expected excess return of ¢; as if it were tradable. In other words, —cov(g;, my) is the

"Since their paper uses original rather than log returns, this statement is precise with the exception of the
log-linearization approximation error.

8This definition is consistent with Cochrane (2009, Chapter 6).



risk premium on an asset that delivers a payoff that grows at the rate of g;. We expand their
definition by allowing for an entire term structure of risk premia. Specifically, the (average per-
period) risk premium of g from t—1to t+S (0 < S < §) is defined as the multiperiod covariance
between the factor and the SDF, divided by the number of holding periods, as follows:

S T o~
\S — _COV(mtflatJrSagtflatJrS) - ZT:O Zszo Ps AT\ (6)
g 1+S 1+8 U

Ay

There are two ways to interpret the definition in equation (6). First, As is the risk premium

POND DY R
and ===

of the spanned component (f; = ﬁngJt) driving both asset returns and g, is
the per-period loading of g;_1_,++¢ on multiperiod asset return shocks f;_1_.:1¢. Hence, /\5 , the
risk premium of g over an investment horizon of (1 4 S) periods, equals its per-period loadings
on f multiplied by f’s risk premium.

Second, as established below, we can interpret )\5 as the risk premium of the horizon-specific

M

mimicking portfolio hedging against g;_i_,;,g, with portfolio weights w™?* as follows:

w"? = cov(ri_1ims) T ov(Tio1 s, Gio1osers)-

The risk premium of this portfolio, normalized by the number of holding periods, is

-
Elr;_1 s+ i (ry g)) wMP 1 T _ cov(Dy_ s Gt

)\g/[P _ ( [ t—1—t+ ] 21_’_(5 —t+ )) _ (E[Tt]‘f’*’rr) COV(’I't) 1,66 ( t 1—>1t-:_SSgt 1—>t+S)7

where the last equality uses the assumption that v, are serially uncorrelated and w, ;_1_+g are

orthogonal to g. We relax the assumption of uncorrelated v, in Section 2.2.

Using Proposition A.1 in the Appendix, we simplify the risk premium of g,’s mimicking port-

Al cov(Be_1t48,9t—1—1+5) _
1+S

folio and show that, as the number of test assets goes to infinity, )\éw L

_cov(mi_14415,9t—1-3t+5)
1+S

, where my;_1_415 = Zf:o Mygpr—1p4r = 1+ 5 — )\gﬁtflaws- Therefore,
our definition of g,’s risk premium in equation (6) is asymptotically equivalent to the risk

premium of the horizon-specific mimicking portfolio in a large cross-section.

Example 3. Suppose that the I[ID CAPM holds: f; = ©; = r™, with v independent over
time and normalized to have unit variance. The SDF is then my = 1 — A\puper™t. For any factor
g: that follows the process in equation (4), we can compute the term structure of its risk premia

using the definition in equation (6), as follows:

10



“forward”-market-Bs

S T
s COV(My—15648, Gi-15t4+8) | o 1 9
)\g = — = ﬁo‘i_ 1+S 2255 )\mkt7

1 + S T=1 s=1
where the forward market betas, 3% = COV(QHZZ_’“’S’T;W), captures the predictability of g. There

mkt
are two takeaways from this example. First, the term structure of factor risk premia is de-

termined by how the same priced asset return shocks are propagated through the tested factor.
Second, the mimicking portfolio based on purely the single-period market beta (3) is generally
uninformative about the multi-period risk premia, since it ignores the information embedded in

forward betas.

In the data, asset return factors, v;, are unidentified. That is, one can only estimate a
linear rotation of v;, denoted by v; = Hv,, where H is a K x K nonsingular matrix. Since
on S N (0g, Ix), we have that 3, = cov(v;) = HH'". Even though ©; cannot be identified,
g¢’s risk premium is well-defined. In particular, the identification of )\5 builds upon the rotation
invariance property emphasized in Giglio and Xiu (2021). The rotation invariance can be easily
seen by rewriting the model as follows:

S
_ 1 g T ripre
re=oa+BiH THX\y— X+ B H  Hoy + wy, gtzug+s§:0psn; H '"H®o;_, + wy, and

Bo Ay Bv Ut "7;— Vt—s (7)
T INT g7—1 Tyl FEED DN DIy N
mt=1—)\v(H_)H_UtZI—)\UEJ’Ut, )‘g:T_l—s_'ngH_H)‘fz-
Mg v

Therefore, the most important quantity in our paper, )\5 , is well identified.

Remark 1. \; in equation (6) can be interpreted as the risk price of fi after controlling for
the omitted sources of priced risk in the SDF. Let vy = H®v;, where H' = (f),, Hy) is a K x K
nonsingular matriz, and HlTﬁg = 0. Under this formulation, v; = (fi,u))", u; = H| v;, and
ft L w;. The log SDF in equation (8) can be rewritten as my = 1 — XN S v, = 1 — A\pfy —
AL (H Hy) 'uy, where \p = ﬁ;)\ﬂ and A, = H| X;. Using this particular SDF representation,
we can decompose the variance of the SDF, which is equivalent to the squared mazimal Sharpe
ratio in the economy, as var(m;) = X; +var(A; (H Hy) 'u,). Hence, Ay can be interpreted as
the (per period) model-implied Sharpe ratio of the f; shock; /\fc/var(mt) quantifies the relative
importance of f; in the SDF, conditioned that f; is given the largest power in the log SDF to

explain the cross-section of average returns. If f; is strongly identified in a macro factor, we
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can examine the largest role that this macro state variable plays in the SDF.

Estimating the confidence bands — or better, the statistical uncertainty — of )\g is challenging
in the frequentist framework. Specifically, )\5 is a function of pgy, my, and A,, where the first
two parameters depend on each other. Hence, the frequentist asymptotic covariance matrix of

S . . . . . .
A, 1s quite complex despite its closed-form expression outlined above. Consequently, we adopt
a Bayesian framework to provide valid inference for all model parameters and present it in the

next subsection.

2.1 Bayesian Estimation of Risk Premia

This subsection describes our hierarchical Bayesian framework. We first consider the time series
dimension, which is needed to estimate the joint posterior distribution of asset returns’ latent
factors and their loadings, expected asset returns, g;’s loadings on the latent factors, and the

precision matrices of error terms. We make the following distributional assumptions:
S
iid
gt = Hg + Z psn;<vt—s - /J"v) + Wy, Wgt ~
s=0

iid
(O, U,ig), Vy ~ (Ilfm Ev)a (8)

iid

Ty = Wy + Bv(vt - u/v) T Wy, Wy~ (ON7 Ewr)a Ypr = diag{o—iwra s 70—]2\7711;7"}7 and (9)

v, L wy L w,y, and let py, = (ug, po, - - - ,pg)T, (10)

where v, are linear and nonsingular rotations of the true K latent factors v,. Since these
rotations are arbitrary, we need to estimate their unconditional means (u,) and covariance
matrix (3,). Direct modeling of u, is critical for obtaining a proper posterior distribution of
expected excess returns u,.° According to equation (10), the error terms, wg and w,, are
orthogonal, which implies that we can estimate the model parameters in g; and r, separately.

The systems in (8) and (9) introduce a potential degree of misspecification relative to the
true data-generating processes described in equations (2) and (4). First, the error wg, could
be serially correlated. As Miiller (2013) shows, posteriors are still asymptotically normal and
centered at the maximum likelihood estimate under this assumption, although the canonical
posterior covariance matrix of the model parameters is incorrect and should be replaced with

a sandwich covariance matrix. We incorporate this correction within our method.

9The sample average of ¢ is p, + Bv% Zthl (ve — po) + % Zthl w,;. If we always demean the latent factors

to have zero sample averages, the first source of uncertainty about p,., originated from % Zthl(vt — Wy), will
disappear. Consequently, the credible intervals for w, will be too tight if we do not directly model p,.
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Second, 3, is assumed to be diagonal. Our posterior characterization below does not
require this assumption, and indeed, we impose it only to avoid numerical problems when
considering very large cross-sectional dimensions (i.e., when the number of assets approaches
or exceeds the time series dimension). However, as we will show through simulations, the
diagonal assumption does not have material effects on the posterior distributions. Hence, this
assumption is harmless. This robustness result is not surprising since, in a frequentist setting,
this type of misspecification would affect only efficiency but not consistency.

We assign the standard uninformative prior distributions to the time series parameters

K41

ﬂ-(pgangvo-?ug) X (O-Z)g)ilv ’7T(’U) X 17 W(l*l'vu Zv) X ’2v|777 and (11>
7(By) < 1, m(pr, Sw) ¢ [Spe| 2

In the cross-sectional dimension, conditional on the recovered sources of risk v; in the time
series dimension, the SDF and its risk prices, A\,, can then be recovered using the Bayesian-
SDF estimator (B-SDF) in Definition 1 of Bryzgalova et al. (2023). That is, conditional on the

recovered v; being the sources of risk driving the cross-section, we have the SDF
my=1-A 2 v, = @1, = B0 (12)

Recall that we nevertheless allow for pricing errors as outlined in (2). With extensive simulation
studies, we show in Section 3 that this approach delivers valid posterior distributions.

Within the frequentist paradigm, constructing proper inference for the system in equations
(8)—(12) is, if not infeasible, at least a daunting task. As we are about to show in Proposition
1 below, this is both simple and transparent within the Bayesian paradigm.

There are two reasons for this. First, a joint distribution, say p(x,y), can be traced by
generating a Markov chain that sequentially samples from p(z|y) and p(y|z) — the so-called
Gibbs sampling.

Second, the hierarchical structure of the time series and cross-sectional layers of the es-
timation problem yields well-defined and well-understood conditional posterior distributions.
Specifically, if v; were known (i.e., conditioning on it), equation (8) would simply be an ordi-
nary linear regression problem with well-known properties: in a Bayesian setting, under diffuse
and /or conjugate priors, a normal-inverse-gamma posterior distribution (i.e., the analogue of

the t-distribution that would arise for frequentist inference in this case).

00, = p, + %Th where both u, and Y, are estimated in the time series step.
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Similarly, if v, were known, equation (9) would simply be a canonical multivariate linear
regression, thereby yielding (under diffuse and/or conjugate priors) a well-known posterior
distribution: a normal-inverse-Wishart (the Bayesian analogue of the frequentist multivariate
t-distribution result).

Furthermore, conditional on knowing both the parameters in equation (9) and the data,
the distribution of the latent factors v, can be obtained by inverting its relationship with asset
returns. Finally, conditional on the parameters and latent factors in the time series layer, the
distribution of the risk prices, A,, simply follows from Definition 2 of Bryzgalova et al. (2023).
Note that this layer is fundamental since it de facto selects which of (and how) the latent drivers
v, are actually sources of priced risk — the crucial stage for measuring the risk premia associated
with g;.

We formalize this hierarchal characterization of the posterior in the proposition below and

derive it in Internet Appendix TA.1.1.

Proposition 1 (Gibbs sampler of the baseline model). Under the assumptions in equations
(8)—(12), the posterior distribution of the model parameters can be sampled from the following

conditional distributions:

(1) Conditional on the data, {g,}]_, 5, and latent factors, {v,}[_,, the parameters of the
g process (aﬁ}g, Py, and n,) follow the normal-inverse-gamma distribution in equations
(IA.1)-(IA.3) of Internet Appendiz IA.1.1. For point identification purposes, draws of p,

and ng are normalized such that nngg = 1.

(2) Conditional on asset returns, {ri}_,, and latent factors, the parameters of the v process
(., and B! = (u,,3,)) follow the normal-inverse-Wishart distribution in equations

(IA.4)—(IA.5) of Internet Appendiz IA.1.1.

(8) Conditional on asset returns and (., By, Xw), the latent factors, vy, their mean, and

covariance matrix can be sampled from

Ve | re, o, Boy Doy, o, B ~ N ((ﬂlijiﬂv)l [Be o (1t — By + Bomr) ] (ﬁjzg,{ﬂv)l>, (13)
T

| {o ), ~ Wl <T 1, (v B) (v - 5)T>, and (14)

t=1
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o | B oy ~ A (0, 27). (13
where N'(+) and W™(-) denote, respectively, the normal and inverse- Wishart distributions.

(4) Conditional on the posterior draws from the time series steps (1)-(3), the posterior dis-
tribution of X, is a Dirac distribution at (B B,) '8, it,, yielding a Dirac conditional

S T
posterior for the term structure of g,’s risk premia at )\5 = Zo=o2icofs n;)\v, where

1+S
0<S<S§S.

Several features of our Bayesian Gibbs sampler are noteworthy. First, although we do not
know in closed-form the joint distribution of all parameters, all conditional distributions, such
as inverse-gamma, multivariate normal, and inverse-Wishart distributions, are well-defined and
standard.

Second, we follow Miiller (2013) and adjust the posterior covariance matrix of p, and n,
for the autocorrelation in the residuals, wy and w,, using the Newey and West (1987) type of
sandwich estimator.!!

Third, the posterior distribution of v; in Step 3 of Proposition 1 ignores the information
embedded in g¢;, balancing the trade-off between model simplicity and estimation efficiency.
Since g; depends on many lags of the latent factors, incorporating its information in estimating
v, is feasible but requires a more computationally demanding approach, such as the Kalman
filter. Since we consider large cross-sections of test assets, the discarded information is negligible
as N — oo. Finally, in empirical applications, not conditioning on g¢; in the extraction of v,
provides a level playing field when comparing the estimated risk premia of different g,.

Fourth, Proposition 1 does not require a diagonal X,,,.. Nevertheless, for empirical applica-
tions where N is close to the time series sample size, we impose diagonality to avoid numerical
difficulties. Our simulation studies confirm that the assumption of a diagonal 3, does not
result in invalid confidence intervals, even though w,; is cross-sectionally correlated in the hypo-
thetical true data-generating process. In contrast, in empirical applications where the number
of test assets is relatively small (i.e., N < 50, such as in the cross-section of corporate bonds),
we use a nondiagonal 3, in estimation.

Fifth, the cross-sectional dimension (Step 4 in Proposition 1) defines latent factors’ risk

premia as (8, 3,)7'8)] @, and, via the sequential resampling, accounts for the uncertainty

"' The number of lags is set to be S since wgrxy and wy ;2 become serially uncorrelated f01: 1> S, where
x; denote the regressors in g;’s equation and is the linear transformation of latent factors {vt,s}SS:O.
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about the expected returns, the factor loadings, and the latent factors’ means p,,.

In addition to risk premia estimates, our Bayesian framework can produce valid posterior
distributions for other economic quantities of interest, including, but not limited to, the time
series fit in ¢;’s equation (Rg), cumulative impulse responses of g; to the asset return shocks
({ps}5_,), and the cross-sectional fit in explaining average returns.

Past literature often adopts the Fama-MacBeth regression to estimate factors’ risk premia.
In Proposition 1, steps 2-4 echo the time series and cross-sectional steps of the Bayesian Fama-
MacBeth in Bryzgalova et al. (2023) for principal components of asset returns. Step 1 is the
additional step that models the joint dynamics of asset returns and ¢g;. As Giglio and Xiu
(2021) argue, estimating factors’ risk premia using principal components of asset returns can
avoid the omitted variable bias and attenuation bias from measurement errors.

Finally, the traditional Fama-MacBeth regression suffers from weak identification (see, e.g.,
Kan and Zhang (1999a,b)), particularly for macro factors. One contribution of our paper is
to use the factors’ cumulative loadings on asset returns, proxied by {ﬁs}fzo, to identify their
risk premia. In short, we will show in both simulation studies and real-world data that our
Bayesian estimates are not only robust to the weak identification but, more importantly, help

recover the risk premia of persistent macro factors.

2.2 Time-Varying Risk Premia and Their Term Structures

From an economic standpoint, a salient feature of macro-finance equilibrium models is the time
variation in risk premia. In this section, we extend our Bayesian framework for estimating
time-varying term structures.

We now require the SDF to price assets conditionally; that is,'?

1 .
E, [Tz‘,tﬂ] + §Va1"t(7"i,t+1) = —COVt(th, Ti,t+1), i=1...N, (16)

(.

v~
Horit

where E; denotes the conditional expectation at time ¢, and var,(r;;41) is the conditional
variance of 7;441. Throughout our paper, we consider homoskedastic asset returns; hence,

var(r;+1) is constant over time. We define Y, as (Vart(rl’t+1)’ . ,vart(thH))T. Leveraging

12Gince the SDF prices the log excess returns, we have E, [exp(mtﬂ + i1 + rf7t+1)] =1, ¢=1...N.
Hence, under the joint log normality assumption, we obtain equation (16).
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Hansen and Jagannathan (1991), we focus on the conditional SDF projections on the space of

returns as follows:
M =1—b/ ('rt+1 — ]Et[rtﬂ]), where b, = covy(rii1) " fi. (17)
The return process, as before, follows an approximate factor structure,
v = Wy + B0 + wyy, Uy L wy, Ey|wy] =0y, E[o] =0k, (18)

where, importantly, the priced systematic factors v, are potentially predictable. That is, v; =
Moi—1 + €5, where pg,—1 = E,_; [04]; hence pg,—1 L €. We normalize the innovations to the
latent factors such that cov(ez) = Ik.

As previously, unconditional mean returns are partially explained by B; in equation (2). The
only additional assumption that we require is that the eigenvalues of cov(ps,—1) are bounded.

This formulation yields the SDF!3

T T
My = 1 — A@ €ot+1 — M€ t+1, (19)

where p],€;.11 captures time-varying risk premia of asset return shocks.
Since the Wold representation requires the MA formulation to depend only on innovations,
the process for g is modified as follows:
S
gt = Hg + Z ﬁsﬁ;ef),tfs + Wgyt, ﬁ;ﬁg = 1. (20)
—_——

s=0
ftfs

That is, g is potentially driven by the innovations of the priced systematic factors v,. Hence,
defining the conditional risk premia analogously as the unconditional ones, we have that the

time-varying term structure of risk premia is given by

S - o~
X;,t—1 _ _COVt—l(mt—1—>t+S> gt—1—>t+S) _ Z /)sngT()\f; +E, [Nﬁ,t+r—s—1] ) (21)

1+ 1+S

13Using equations (17) and (18), we can show that b; = (,C‘i;,,[")'ﬁT + Ew)_l (a + BsAs + ,Bgu;),t) and rpq —
Ei[ri+1] = Bs€s 41 + Wy 41 Ignoring the unpriced shocks w,, we can represent the linear SDF as my41 =

1—a’ (55,8;)'— + Ewr)fl,@gegﬁtﬂ — (Xo + o) B (,Bgﬁ;— + Ewr)illgﬁ€57t+1. Following similar derivations as
in Appendix A.1, we can derive that m;1 — 1 — (As + o) €541 as N — oo.
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Four important observations are in order. First, the dynamics of the conditional mean of the
systematic risks, p5,_1, drive the time variation of the term structure of risk premia. Second,
since by construction E [p5,1] = 0, the implied unconditional term structure is the same as
that of equation (6), which was obtained with uncorrelated sources of systematic risk. That
is, the estimator derived in Section 2.1 is consistent even in the presence of time-varying risk
premia. Third, despite the added generality, the risk premia of g remain point-identified due to
the rotation invariance property of our setting (See Appendix A.2). Fourth, to elicit the time
variation of the term structure, we need to explicitly model the conditional mean process, that
is, the dynamics of .

We assume that v; are driven by some predictors, such as v;’s lags and p external variables

zi. Let &, = (9, ,2)", which follows a vector autoregressive (VAR) model of order ¢:*

iid

Ly = ¢0 + ¢1wt—1 + -+ ¢qwt—q + €z, €xp ™ (0K+p7 Eex)- (22)

The additional layer in equation (22) requires a minimal change to our Gibbs sampler to
characterize the posterior distribution. The only deviation from Section 2.1 is that v, follows
a VAR process rather than an IID normal distribution. In particular, using the canonical

diffuse prior m(¢y, ..., Py, Xey) X |E€m|_K+2p+1, the conditional posterior of the parameters in

this additional layer follows the usual normal-inverse-Wishart distribution and can be sampled
accordingly. We summarize the Gibbs sampler in Proposition A2 of Appendix A.2 and derive
it in Internet Appendix IA.1.2.

The time-varying framework in this subsection is closely connected to the literature on affine
term structure models, such as Kim and Wright (2005) and Cochrane and Piazzesi (2008). For
instance, in Cochrane and Piazzesi (2008), @; in equation (22) contains three latent factors
(level, slope, and curvature) of government bond yields, plus the bond-return forecasting factor
in Cochrane and Piazzesi (2005). Besides, they also assume that risk prices of the shocks to
latent factors are linear functions of the lagged bond-return forecasting factor. Unlike their
paper, since we focus on estimating only risk premia, we do not need to model the dynamics
of the risk-free rates. Hence, we always normalize m; to have a constant mean.

Our paper shares some common modelling choices with Kelly et al. (2023) in that we study

the log SDF linear in latent factors of equity excess returns, impose log normality, and presume

4The VAR assumption is often adopted in past literature studying return predictability (e.g., Campbell and
Shiller (1988), Campbell and Vuolteenaho (2004), and Campbell et al. (2013)).
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that the time-varying risk prices of the shocks to latent factor are affine in the state variables x;.
However, our paper is distinct from theirs in the following aspects. First and foremost, we aim to
estimate the term structure of risk premia for all (traded and nontraded) factors of equilibrium
models, whereas Kelly et al. (2023) focus on dividend yields. Second, Kelly et al. (2023) specify
the dynamics of asset prices and reverse-engineer the dynamics for dividend growth using the
restrictions implied by the former. Conversely, our paper specifies a MA representation for
dividend growth that always exists, as in equation (20). Our modelling choice is analogous to
most macrofinance models that directly specify the dynamics of, e.g., consumption and dividend

growth, but we do so in a general and flexible way via the MA representation.

3 Simulations

This section studies the finite-sample properties of our Bayesian estimator in Proposition 1
via Monte Carlo simulations. Throughout the simulations, we consider two sample sizes, T' €
{200,600}, matching the quarterly and monthly frequencies, respectively. We simulate asset
returns from a five-factor model as in equations (1) and (2), as follows:

1. o ~ i
§Tr+/6f)vt+wrt7 ’Utng(OK,IK)-

Ty = & + Bf,j\@ —
Specifically, r;, contain Fama-French 275 portfolio returns (FF275, see Internet Appendix [A.3),
and factor loadings Bf) are calibrated as the eigenvectors corresponding to the five largest
eigenvalues of the sample covariance matrix of r,. Risk premia X; are estimated using the
observed data. To ensure that a and 3; are orthogonal in simulations, we regress the estimated

a on G5 and extract the residual term, denoted by &. We allow for a non-diagonal covariance

matrix of w,;. Following Bai and Ng (2002), we simulate w;,; as follows:

1

7T2J52)’ (23>

J
. iid
Wit = Ojpt * [eit + Z Bei—j,t} . e ~N(0
J#0,5=—J
where J = max{10, int(N/20)}, 8 = 0.1," and {62}, are the estimated variance of idiosyn-
cratic shocks for each asset.

Second, we simulate strong factors. For T = 200, we use nondurable consumption growth

153 cannot be too large since we need to ensure that the largest eigenvalue of $,» is less than the smallest
eigenvalue of 3] B;. Otherwise, some common factors cannot be identified.
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to estimate impulse responses, denoted by {p,}5_,, assuming the true S = 8 (quarters). For
T = 600, we use monthly industrial production growth to obtain {j,}5_,, and the true S is 16
(months). With these parameters, we simulate the strong g, as follows:

S
. 1 - . iid
gt =c- E Psfies +Wgr, fr = —=(01p + Vgt + Ust), wgr ~
s=0 \/§

(0,05), (24)
where f; relates to both large and small principal components (PCs) of asset returns. We
consider different signal-to-noise ratios summarized by the time series fit R? € {30%,20%, 10%}.

Finally, for the weak factor, we simulate f; independently from the standard normal distri-
bution. Nevertheless, the simulated weak factor g; is autocorrelated, so we can use it to explore
whether the Newey and West (1987) type of sandwich covariance matrix can deliver proper
Bayesian credible intervals for factors with an autocorrelated measurement error.

Tables A1 and TA.III of the Internet Appendix report the empirical size of our test for strong
factors in 1,000 simulations. We estimate the term structure of g,’s risk premia using S = 12
for T = 200 and S = 24 for T" = 600. Our method provides appropriate credible intervals for
g¢’s risk premia as long as we include all priced latent factors in the estimation (K > 5), even
in an environment with a low signal-to-noise ratio and a small sample size. However, if we
omit some priced factors (e.g., the number of factors is four), our Bayesian estimates are biased
because the simulated g; loads on the fifth PC of asset returns. Nevertheless, including more
factors than in the pseudo-true model has no sizable detrimental effect, suggesting that such
an approach is conservative.

Can we recover the priced information embedded in g, if we consider only the contempo-
raneous correlation between g, and asset returns? To answer this question, we estimate the
models with different numbers of lags S. Figure 1 plots the average correlation between the
true f; and its estimate, ft = ﬁ;ﬁt. When we project g; only on contemporaneous asset return
shocks (S = 0 in equation (8)), corr(f;, f;) is small, ranging from 0.4 to 0.65. As we include
more lagged asset pricing information in g;, this correlation coefficient significantly increases;
hence, including the lagged asset return information is essential in identifying the priced shock
driving the nontradable factor. Notably, the detrimental effect of including more lags than in
the pseudo-true specification is generally very small.

Figure 2 reports the power of rejecting zero risk premia of strong factors.!® The model with

'®We report the power for RZ € {10%,20%} in Figure IA.1 of the Internet Appendix.
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Figure 1: Posterior median of correlation coefficients between true and estimated f;

The figure plots the average corr( ft, f+) in 1,000 simulations, where corr( ft, f+) quantifies the correlation between
the true f; and its estimate, f;, = ﬁ;f)t. We consider strong factors, with R € {10%, 20%, 30%}, and two sample
sizes, T € {200,600}. In each simulated scenario, we estimate several model configurations with different

numbers of factors and different S.

S = 0 generally has low test power. In contrast, as we include more lagged latent factors in g;’s
estimation, we considerably increase the test power. Hence, our proposed MA representation
of g, is the key to detecting significant risk premia in persistent factors.

Including more factors (e.g., in the seven-factor models) tends to be a conservative strategy
since it delivers proper yet wider credible intervals of risk premia estimates. Nevertheless, it
comes at the cost of lowering the power of the test and the correlation between the true and
estimated f;. In the empirical application, we will explore whether our risk premia estimates
are robust to adding more latent factors, acknowledging that more factors will increase the
estimation uncertainty mechanically.

In Tables IA.IV and IA.V of the Internet Appendix, we investigate useless factors that do
not correlate with asset returns. The useless factors are assumed to be persistent, and a larger
Rg corresponds to a more persistent process. Past literature (e.g., Kan and Zhang (1999a,b))
points out the fragility of Fama-MacBeth and GMM estimates of risk premia in the presence
of useless factors. It is worth noting that our Bayesian estimates do not suffer from this issue.
The Bayesian credible intervals of useless factors’ risk premia tend to be conservative, leading
to a slight under-rejections of zero risk premia in small sample.

One potential concern is that including many lags of multiple latent factors might lead to

severe overfitting of the data. To alleviate this concern, we report in the Internet Appendix (see
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The figure plots the frequency of rejecting the null hypothesis Hy : )\f = 0, based on the 90%, 95%, and 99%
credible intervals based on our Bayesian estimates in Proposition 1. /\f is defined in equation (6). We consider
strong factors, with Rg = 30%, and two sample sizes, T' € {200,600}. In each simulated scenario, we estimate
several model configurations with different numbers of factors and different S. The number of Monte Carlo

simulations is 1,000.

Table IA.VI) the posterior means of Rﬁ in 1,000 simulations. Our simulation results suggest
that the posterior means of Rg are reasonably close to their pseudo-true values. Hence, our
approach does not lead to significantly inflated time series fits for g;.

Moreover, we explore the performance of our Bayesian estimates for factors that correlate
with only the contemporaneous asset return shocks (i.e., S = 0 in the true data-generating
process of ¢;), which fits the model configuration studied in Giglio and Xiu (2021). Table
IA.VII of the Internet Appendix shows that our Bayesian estimator has almost identical size
and power to the frequentist test in Giglio and Xiu (2021) in the special case of S = 0.

Finally, in Internet Appendix IA.2, we repeat our simulation study to examine the time-
varying risk premia and their term structures as described in Section 2.2. Overall, size and
power, as well as the correlation between filtered and calibrated latent processes (see Tables
[A.VITI-TA.X in the Appendix), are similar to those reported in this section. Despite the sig-
nificant added generality by modeling the latent systematic risk drivers as following a VAR(1)
process, we observe only a minimal degree of attenuation bias and increased posterior uncer-

tainty for the estimated term structure of risk premia.
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4 Empirical Analysis

In this section, we apply our Bayesian framework to investigate whether factors are priced, the

term structure of the factors’ risk premia, and their connection to forward equity yields.

4.1 Unconditional Risk Premia in Equity Markets

We begin our empirical investigation with the unconditional risk premia in equity markets.
Our analysis relies on a large cross-section of FF275, covering the period between Q3 1963 and
Q4 2019. Throughout our paper, we standardize the tested factors to have unit variances per
period. Definition, sample periods, and data sources of factors and test assets can be found in
Internet Appendix [A.3.

To conduct our Bayesian estimation in Section 2, we need to determine the number of latent
factors, K. We adopt the selection approach proposed by Giglio and Xiu (2021)!"” and estimate
that the number of factors is five in FF275 at monthly or quarterly frequencies.

Moreover, we find that the first several latent factors explain most of the time series and
cross-sectional variations. In the time series dimension, the first five PCs account for more than
93% of time series variations at monthly and quarterly frequencies. Adding the 6th and 7th
PCs only marginally improves the time series fit. In the cross-sectional dimension, the five-,
six, and seven-factor models explain 55.0%, 58.6%, and 58.7% (59.0%, 59.3%, and 72.9%) of
cross-sectional variations in average returns at the quarterly (monthly) frequency. Therefore,
the statistical test in Giglio and Xiu (2021), as well as time series and cross-sectional fit,
indicate that the five-factor model is a reasonable benchmark; we thus adopt it in our baseline

estimations (but also conduct robustness checks with K =6 or 7).

4.1.1 Term Structure of Risk Premia

We first explore Bayesian risk premia estimates of some canonical tradable factors and compare
them with their time series average excess returns. Figure 3 plots the term structure of risk

premia for Carhart (1997) four factors, whose risk premia are estimated using Proposition 1

1"We follow the method in Internet Appendix L.1 of Giglio and Xiu (2021). That is, the selected number of
factors is equal to K = argmin, <<k, [NT'T71,(RTR) + j x ¢(n,T)] — 1, where R is a T' x N matrix of
demeaned asset returns, v; (R R) is the j-th eigenvalue of R R, ¢(n,T) = 0.5 x 4 x (log(N) +log(T))(N~z +
T_%), and 4 is the median of the first K., eigenvalues of RT R. We set K.y to 15.
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Figure 3: Term structure of risk premia: Carhart four factors

Term structure of risk premia estimates (in Sharpe ratio units) using Proposition 1. The risk premium at horizon
S ()\5 ) is defined in equation (6). The cross-section of test assets consists of 275 Fama-French characteristic-
sorted portfolios. We consider five-factor models for asset returns. We study monthly Carhart (1997) four
factors, whose risk premia are estimated using a lag of 24 months in g;’s equations. We include their in-sample
monthly Sharpe ratios (grey dotted lines). In addition to the point estimates, we report the 68% and 90%
Bayesian credible intervals, highlighted in pink and blue, respectively. Definition and data sources of factors
and test assets can be found in Appendix IA.3. Sample: July 1963 to December 2019.

(S = 24 and K = 5). These tradable factors tend to have almost flat term structures of
risk premia. The Bayesian point estimates (solid blue lines) have similar magnitudes as the
time series Sharpe ratios (grey dotted lines), which are covered by the 68% Bayesian credible
intervals (purple dotted lines). Therefore, our approach provides estimates very close to the
time series averages of tradable factors in both economic and statistical sense.

Next, we study other economic variables and report their term structures of risk premia

estimates in Table 1. For quarterly (monthly) variables, we conduct the Bayesian estimation
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Table 1: Factors’ risk premia: Five-factor models

Panel A. Quarterly variables, S = 12 quarters

S = 0 2 4 6 8 10 12 R
AEM intermediary 0.082%%*  0.077**  0.078%*  0.063 0.046 0.026 0.019 14.6%
Capital share growth 0.008 0.009 0.005 0.001 -0.003 -0.007 -0.012 7.4%
GDP growth 0.026* 0.084%F*  0.133%**  0.164***  0.180***  0.195%**  0.204***  23.4%
IP growth 0.008 0.087*F#%  0.145%** Q. 177%F*  0.194%**  (0.204**F*  0.205***  37.5%
Durable consumption growth -0.014 0.079%%  0.122%**  0.140%F*  0.147*%%F  0.153%*¥*  0.158%**  18.3%
Nondurable consumption growth —0.042***  (0.103***  0.141***  (0.179%**  0.206***  0.226*%**  0.244***  22.4%
Service consumption growth 0.006 0.013 0.020 0.027 0.035 0.041 0.045 9.8%
Nondurable + service 0.028* 0.067* 0.099* 0.127*%  0.148* 0.163**  0.181**  18.5%
Labor income growth 0.000 0.002 0.003 0.004 0.005 0.005 0.009 5.3%
Dividend growth 0.009 0.045* 0.109%%*%  0.175%**  0.245%**  (0.306%**  0.357***  40.3%
Macro PC1 (FRED-QD) 0.019 0.092%%*%  0.165%**  0.222%F*  (0.266%**  0.303*%*¥*  0.332%**F  47.9%
Macro PC2 (FRED-QD) 0.098%**F*  0.147***  0.148%F  (.129* 0.110 0.091 0.070 37.1%
Macro PC3 (FRED-QD) -0.003 -0.003 -0.002 -0.002 -0.001 0.000 0.001 10.8%
Macro PC4 (FRED-QD) S0.I51*FF _0.173FFF  10.226%**  -0.286*FFF  -0.341F**  -0.389*%FF  _0.434%**  47.3%
Macro PC5 (FRED-QD) 0.050 0.055 0.044 0.029 0.018 0.011 0.003 29.3%
Panel B. Monthly variables, S = 24 months
S = 0 4 8 12 16 20 24 Rg
Oil price change -0.004 -0.023 -0.034 -0.039 -0.042 -0.041 -0.040 71%
TED spread change 0.000 -0.001 0.000 0.000 0.001 0.001 0.001 8.8%
Nontraded HKM intermediary 0.098***  0.101***  0.097*F*  0.093***  0.091***  0.089%**  0.088***  60.8%
Traded HKM intermediary 0.114***  0.115%**  0.110%%F  0.104***  0.100***  0.098***  0.096***  71.0%
PS liquidity 0.050%%*  0.074%**  0.086***  0.097***  0.108***  0.118%**  (0.126%**  15.0%
Alog(VIX) -0.131%F**  -0.079%%F  -0.062***  -0.049%** -0.042%** -0.037*** -0.032*** 51.6%

The table reports Bayesian estimates of factors’ risk premia using Proposition 1, where the risk premia over
S horizons ()\5 ) are defined in equation (6). The cross-section of test assets consists of 275 Fama-French
characteristic-sorted portfolios. We consider a five-factor model for asset returns. Panel A tabulates the es-
timates of quarterly factors, using a lag of 12 quarters in g;’s equations. Panel B tabulates the estimates of
monthly factors, using a lag of 24 months in estimation. We use Bayesian credible intervals to conduct hypothe-
sis testing: If the 90% (95%, 99%) credible interval of g;’s risk premium does not contain zero, the risk premium
estimate will be highlighted by * (**, ***). Definition and data sources of factors and test assets can be found
in Internet Appendix IA.3.

as in Proposition 1, using a lag of 12 quarters (24 months) in ¢;’s equations. Four empirical
findings in Table 1 are noteworthy.

First, many macro factors carry significant risk premia, including IP growth, GDP growth,
durable and nondurable consumption growth, dividend growth, and macro PCs 1, 2, and 4 in
the FRED-QD dataset of McCracken and Ng (2020).'® More interestingly, most of them have
upward-sloping term structures of risk premia, as shown in Figure 4. At quarterly frequency
(S = 0), most macroeconomic factors are weakly identified at best. However, risk premia
carried by these macro factors are significant and as large as that of the market at business cycle

frequencies (two to three years). Therefore, these macro factors are riskier from the perspective

8Dividend growth is the quarterly growth of the smoothed aggregate dividend payments made in the previous
12 months. We consider the smoothed annual dividends of the S&P 500 index in order to remove the mechanical
seasonality in the dividend payments.
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of long-term than short-term investors. The only exception among the priced macro factors is
macro PC2, where we detect an almost flat term structure.

Second, the observations in Table 1 have direct implications for leading macro-finance mod-
els. Figure A1 of the Appendix plots the term structure of risk premia in the habit (Campbell
and Cochrane (1999)) and long-run risk frameworks (Bansal and Yaron (2004)).'? Specifically,
the habit model implies a flat term structure of consumption risk premia, whereas it is upward-
sloping in the long-run risk model. With respect to dividend growth, we consider the quarterly
growth of the smoothed dividend payment (defined as the aggregate dividend payments made
in the previous 12 months) to be consistent with our empirical analysis. Even though both
models predict upward-sloping term structures of risk premia for smoothed dividend growth,
the magnitudes and slopes are much more sizable in the long-run risk model than in the habit
model. Overall, the long-run risk model tends to be more consistent with our estimates for
nondurable consumption and dividend growth.

Third, our findings are not a simple byproduct of factor persistence. For instance, durable
consumption growth, Adrian et al. (2014) (AEM) intermediary factor, and labour income
growth have similar autocorrelation structures. However, as we show in Table 1, their term
structures of risk premia are totally different: upward-sloping for durable consumption growth,
slightly downward-sloping for AEM intermediary factor, and flat for labour income growth.
Therefore, the term structure of risk premia is driven by the propagating mechanism of how
the economic factor responds to the f; shock over time (rather than just its persistence).

Fourth, the term structure of VIX risk premia (more precisely, their absolute values) is
downward-sloping. The mimicking portfolio hedging against monthly VIX changes earns a
sizable risk premium of —0.13, but the two-year risk premium declines to only —0.03, although
still significant. This observation is consistent with the previous literature (Eraker and Wu
(2014), Dew-Becker et al. (2017), and Johnson (2017)), which estimates VIX risk premia using
derivative contracts with different expiration dates.

We further confirm that we can interpret the term structure of risk premia estimates from
the angle of horizon-specific mimicking portfolios. Figure IA.2 in the Internet Appendix plots
the per-period mean returns of the horizon-specific mimicking portfolios hedging against the
six macro factors in Figure 4. As we show therein, these portfolios display increasing term

structures of risk premia that are similar to what we find in Figure 4.

19We discuss the calibrations in detail in Internet Appendix IA.4.
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Figure 4: Term structure of factor’s risk premia: Some priced macro factors

This figure plots the term structure of risk premia estimates using Proposition 1, where the risk premium
over S horizons ()\5 ) is defined in equation (6). The cross-section of test assets consists of 275 Fama-French
characteristic-sorted portfolios. We consider five-, six- and seven-factor models for asset returns. In addition
to the point estimates, we show the 68% and 90% Bayesian credible intervals based on five-factor models,
highlighted in pink and blue, respectively. Definition and data sources of factors and test assets can be found
in Internet Appendix TA.3.
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However, simple mimicking portfolios based on single-period risk exposures may fail to
capture the entire term structure of risk premia embedded in economic factors. Figure 5 plots
the estimates for both traded and nontraded versions of the He et al. (2017) (HKM) intermediary
factors (Panel (a)) and Pastor and Stambaugh (2003) (PS) liquidity factors (Panel (b)). The
HKM traded and nontraded factors command almost the same risk premia across different
horizons. The term structures are almost flat, so the nontraded HKM risk factor has an almost
zero forward beta (see the discussion in Example 3). Conversely, the tradable version of the PS
liquidity factor, which ignores the positive forward betas, fails to capture the upward-sloping

term structure.
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Figure 5: Term structure of factor’s risk premia: Traded vs. Nontraded versions

This figure plots the term structure of risk premia estimates for both traded and nontraded versions of the
He et al. (2017) intermediary factors and Pastor and Stambaugh (2003) liquidity factors. The cross-section of
test assets consists of 275 Fama-French characteristic-sorted portfolios. We consider five-factor models for asset
returns. In addition to the point estimates, we show the 90% Bayesian credible intervals. Definition and data
sources of factors and test assets can be found in Internet Appendix IA.3.

4.1.2 Risk Price of the f; Shock to Nontraded Factors

We go on to explore the role of the f; shock in the latent SDF. We use the SDF representation
in Remark 1; that is, my = 1 — Asf; — A} X1, where u; are orthogonal to f; and act as
the control for omitted sources of priced risk. Table 2 reports the risk price estimates of f; for
several priced nontraded risk factors based on the evidence in Table 1. We show that these
f+ shocks are indeed priced in the cross-section. Furthermore, the annualised Sharpe ratios
implied by these f; shocks are economically large yet not excessive — 0.42 to 0.71 per year

— on par with that of the market index. Finally, the column E[SR}/SR?, | data] quantifies
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the importance of f; in the latent SDF. We find that these economic sources of risk explain
individually about 13 — 58% of the SDF’s variance. Therefore, a significant amount of priced
shocks in financial markets are not captured by these economic factors, further highlighting the

importance of controlling for omitted variables in the estimation.

Table 2: Risk price of the f; shock to nontraded risk factors

A E[SR; | data] E[ged | datal

Panel A. Quarterly variables, S = 12 quarters
AEM intermediary 0.356 [0.205, 0.494]  0.711 [0.412, 0.987] 0.580 [0.225, 0.858]
GDP growth 0.226 [0.098, 0.353]  0.452 [0.196, 0.706] 0.231 [0.047, 0.513]
IP growth 0.223 [0.096, 0.341]  0.447 [0.192, 0.682] 0.221 [0.046, 0.479)]
Durable consumption growth 0.340 [0.190, 0.472]  0.681 [0.393, 0.944] 0.528 [0.201, 0.826]
Nondurable consumption growth  0.283 [0.157, 0.411]  0.567 [0.314, 0.822] 0.358 [0.122, 0.660]
Nondurable + service 0.212 [0.046, 0.369]  0.425 [0.114, 0.740] 0.204 [0.015, 0.558]
Dividend growth 0.245 [0.120, 0.375]  0.491 [0.240, 0.750] 0.270 [0.072, 0.558]
Macro PC1 (FRED-QD) 0.213 [0.098, 0.329]  0.427 [0.196, 0.658] 0.204 [0.047, 0.444]
Macro PC4 (FRED-QD) -0.204 [-0.413, -0.173]  0.589 [0.346, 0.827] 0.385 [0.158, 0.637]

Panel B. Monthly variables, S = 24 months
Nontraded HKM intermediary 0.126 [0.056, 0.201]  0.437 [0.193, 0.696] 0.136 [0.028, 0.314]
PS liquidity 0.152 [0.067, 0.226]  0.528 [0.231, 0.783] 0.196 [0.040, 0.405]
Alog(VIX) -0.148 [-0.259, 0.251]  0.655 [0.371, 0.950] 0.327 [0.115, 0.595]

The table reports (1) the risk price of the f; shock to the nontraded risk factors (column As), (2) the annualized
Sharpe ratio implied by the Ay f; component (column E[SR; | datal), and (3) the share of SDF variance explained
by f+ (column E[SR? /SR2, | data]), based on the same estimates as in Table 1 and the SDF representation in
Remark 1. In each column, we report both the posterior median and the 90% posterior credible intervals.

4.1.3 Contemporaneous Innovations in Macro Factors

Empirically, researchers often fail to identify priced macro risks when studying only the con-
temporary correlations between asset returns and macro factors. The first column of Table 1,
and Figure 4, indicate that the risk premia of GDP growth, IP growth, durable consumption
growth, dividend growth, and macro PC1 are tiny and insignificant at S = 0. One concern of
the analysis in Table 1 and Figure 4 is that we include many lags in the estimation, leading to
noisier risk premia estimates. To alleviate this concern we repeat the estimation using S = 0.
Panel A of Table 3 shows that among the eight priced macro factors mentioned above, only
macro PC2 and PC4 carry significant risk premia in this case.

Panel B further extracts the AR(1) innovations in macro factors and estimates their risk
premia by setting S = 0. Similar to Panel A, we observe only macro PC2, PC4, and nondurable

plus service consumption (albeit neither nondurable nor service consumption is priced at S = 0)
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being priced, while all other macro factors have negligible and insignificant risk premia. Al-
though the AR(1) model is often used in both empirical and theoretical works, extracting the
AR(1) innovations is insufficient to recover the risk premia of many macro variables, either
because the AR(1) shocks are inconsequential or the AR(1) assumption is questionable. Differ-
ently, the MA representation does not take a stance on their exact data-generating processes.
We model the priced component of the macro factors as a flexible MA of both the current and
lagged asset return innovations.

But why does including lagged asset return shocks in ¢;’s equation enable us to identify
the priced risk? The time series fit, RS, sheds light on this issue. For most traditional macro
factors, Rg values in Table 1 are considerably larger than those in Table 3. For instance, the
contemporaneous asset return shocks explain only 3% of time series variations in macro PCI,
but its R; increases to 48% in the estimation with S = 12 quarters, hence greatly enhancing
the signal-to-noise ratio and our ability to identify the risk premia. In contrast, comparing the
Rf] of AEM and HKM factors in Table 1 with those in Table 3, we find that lagged asset return
innovations are not essential in driving intermediary factors. For these factors, estimating their

risk premia using S = 0 seems to be a better choice.

Remark 2. There is extensive literature on developing new estimators of risk premia that are
robust to weak factors, including Kan et al. (2013), Gospodinov et al. (2014, 2019), Bryzgalova
(2015), Kleibergen and Zhan (2020), Anatolyev and Mikusheva (2022), and Bryzgalova et al.
(2023). Our Bayesian estimator is not only robust to the weak identification issue but, more
importantly, transforms some weak macro factors at short horizons into strongly identified ones
at business-cycle frequencies. With this regard, we successfully recover the priced risk in macro

variables through the lens of horizon-specific risk.

4.1.4 MA Components of Macro Factors

Perhaps the most surprising empirical finding is that macro variables carry much more sizeable
risk premia at long horizons (S = 8 to 12 quarters) than at quarterly frequency (S = 0). What
is the economic intuition behind this phenomenon? To help answer this question, we plot in
Figure 6 the MA component spanned by six priced macro variables and asset return factors,
that is, Zf:o psngTvt_s. Strikingly, the MA components of all these six macro variables present
clear business cycle patterns — long-horizon investors who hedge against low (high) realizations

of these macro factors require positive (negative) risk premia.
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Table 3: Factors’ risk premia: S =0

E\, | D E[R2 | D)
Number of factors: 5 6 7 5 6 7
Panel A. Original factors
AEM intermediary 0.141%%%  0.176***  0.175%+* 10.4% 12.2% 12.4%
Capital share growth 0.032 0.013 0.013 1.8% 28% 2.8%
GDP growth 0.005 0.013 0.013 4.2%  4.3% 4.3%
IP growth -0.028 0.004 0.003 2.9% 4.3% 4.3%
Durable consumption growth -0.011 0.000 -0.002 7% 79%  8.2%
Nondurable consumption growth 0.042 0.058 0.056 37%  41%  4.1%
Service consumption growth 0.015 0.053 0.052 4.0% 64% 6.5%
Nondurable + service 0.032 0.067* 0.066* 4.0%  59% 6.0%
Labor income growth -0.006 0.035 0.028 1.5% 38% 8.7%
Dividend growth of SP500 0.037 0.037 0.044 51% 54% 11.7%
Macro PC1 (FRED-QD) -0.009 0.019 0.021 2.8% 3.9% 4.6%
Macro PC2 (FRED-QD) 0.140%**  0.109** 0.103** 21.3% 22.0% 23.0%
Macro PC3 (FRED-QD) -0.063* -0.076*%*  -0.078** 4.3%  4.7% 4.8%
Macro PC4 (FRED-QD) L0.155FFF  L0.164%FF  _0.168%%*  25.2% 254% 26.6%
Macro PC5 (FRED-QD) 0.068 0.108** 0.101°*+* 24.8% 25.5% 27.9%
Oil price change -0.018 -0.017 -0.016 2.6% 45% 4.5%
TED spread change -0.034 -0.040%* -0.033 6.8% 10.9% 17.4%
Nontraded HKM intermediary 0.100***%  0.104***  0.104%** 60.3% 61.0% 61.1%
Traded HKM intermediary 0.112%**  0.116%F*F  0.116%*** 70.3% 71.0% 71.2%
PS liquidity 0.061%%%  0.059***  (0.062%** 11.9% 12.2% 12.9%
Alog(VIX) 0.120%FF  _0.118%%%  0.118%%*F  42.8% 43.0% 43.1%
Panel B. AR(1) shocks of macro factors
GDP growth 0.005 0.012 0.012 4.2%  4.3%  4.3%
IP growth -0.021 0.001 -0.002 3.6% 4.3% 4.9%
Durable consumption growth -0.010 0.002 0.000 74%  7.6%  7.8%
Nondurable consumption growth 0.042 0.058 0.057 37%  41%  4.1%
Service consumption growth 0.016 0.055 0.055 3.7%  6.3%  6.4%
Nondurable + service 0.031 0.069* 0.069* 3. 7% 6.0% 6.0%
Labor income growth -0.007 0.033 0.027 14% 3.6% 8.3%
Dividend growth of SP500 0.067* 0.068* 0.074* 3.3% 34% 9.5%
Macro PC1 (FRED-QD) 0.014 0.016 0.013 6.1% 6.1% 7.1%
Macro PC2 (FRED-QD) 0.109%%*  0.082* 0.077 23.9% 24.8% 27.6%
Macro PC3 (FRED-QD) 0.052  -0.051  -0.055 3.3% 3.3% 4.1%
Macro PC4 (FRED-QD) -0.150%**  -0.160*** -0.165*** 26.8% 26.9% 28.7%
Macro PC5 (FRED-QD) 0.057 0.074 0.068 33.8% 332% 37.1%
Oil price change -0.026 -0.025 -0.025 32%  4.8%  4.8%

The table reports Bayesian estimates of (1) factors’ risk premia and (2) time series fit RS. Panel A considers the
original variables that are identical to those in Tables 1 and IA.XI, whereas Panel B studies the AR(1) shocks of
some macro factors. We estimate model parameters using Proposition 1 by setting S = 0. The cross-section of
test assets consists of 275 Fama-French characteristic-sorted portfolios. We consider five-, six-, and seven-factor
models for asset returns. For risk premia estimates, we use Bayesian credible intervals to conduct hypothesis
testing: If the 90% (95%, 99%) credible interval of g;’s risk premium does not contain zero, the risk premium
estimate will be highlighted by * (**, ***). Definition and data sources of factors and test assets can be found
in Internet Appendix IA.3.
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Figure 6: Moving average components of some macro factors

This figure plots the time series of (posterior means of) moving average components spanned by asset returns’
latent factors: Ef:o psn;vt_s, with § = 12 quarters. The cross-section of test assets consists of 275 Fama-
French characteristic-sorted portfolios. We consider five-factor models for asset returns. Definition and data
sources of factors and test assets can be found in Internet Appendix [A.3. Sample: Q3 1963 to Q4 2019.
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Are the MA components of the priced macro factors similar? Table 4 shows that macro PC1,
GDP growth, and IP growth have highly correlated MA components, often with correlation
coefficients of about 90%, and their correlation with nondurable consumption is 70% or more.
Nevertheless, the MA components of other macro variables, although correlated, seem to contain
considerably independent information. In short, we detect some string commonality in the

priced component of these macro variables, but they are not all alike.?°

Table 4: Are MA components of macro factors similar in five-factor models?

GDP growth IP growth Durable Nondurable Service Dividend Macro PC1 Macro PC2 Macro PC4

GDP growth 1.00 0.90 0.69 0.70 0.60 0.39 0.90 0.43 -0.45
IP growth 0.90 1.00 0.72 0.70 0.57 0.35 0.85 0.40 -0.25
Durable 0.69 0.72 1.00 0.64 0.35 0.32 0.61 0.32 -0.19
Nondurable 0.70 0.70 0.64 1.00 0.59 0.48 0.73 0.34 -0.55
Service 0.60 0.57 0.35 0.59 1.00 0.43 0.72 0.13 -0.43
Dividend 0.39 0.35 0.32 0.48 0.43 1.00 0.64 -0.25 -0.59
Macro PC1 0.90 0.85 0.61 0.73 0.72 0.64 1.00 0.15 -0.51
Macro PC2 0.43 0.40 0.32 0.34 0.13 -0.25 0.15 1.00 -0.19
Macro PC4 -0.45 -0.25 -0.19 -0.55 -0.43 -0.59 -0.51 -0.19 1.00

The table reports the correlation among the moving average components spanned by asset returns’ latent

factors, Zf:o psn;vt,& with S = 12 quarters. The cross-section of test assets consists of 275 Fama-French
characteristic-sorted portfolios. We consider five-factor models for asset returns. Definition and data sources of
factors and test assets can be found in Internet Appendix TA.3.

4.1.5 Robustness Checks: More Latent Factors

Which principal components of asset returns drive g;? Table TA.XII in the Internet Appendix
reports the posterior means of the squared correlation?! between the common component es-
timates, ﬁ;ﬁt, and the first seven PCs of asset returns, where the posterior distributions of
M, and ¥, are estimated using a seven-factor model. The first PC of asset returns is the most
important, particularly for the priced factors. Specifically, PC1 of asset returns accounts for
56-87% of the time series variations in the common components of GDP growth, IP growth,
nondurable consumption growth, dividend growth, macro PCs 1, 2, 4, HKM intermediary fac-
tors, the liquidity factor, and the VIX changes. Overall, the common component is spanned
mainly by the first five PCs of asset returns.

However, several variables are closely related to PC6 and PCT7 of equity portfolio returns. For
example, these two small PCs explain 48% of the common component in labor income growth.

Furthermore, PC6 of asset returns accounts for 28%, 28%, and 9% of common components in

20Table TA.XIII in the Internet Appendix repeats these analyses in six- and seven-factor models, showing
very similar empirical patterns.

21We do not report the correlation since we cannot identify the sign of ﬁ;ﬁt.
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capital share growth, macro PC3, and oil price change. While labor income growth, capital
share growth, and macro PC3 are not priced in six- and seven-factor models, the risk premia
estimates of oil price change become significantly negative after we include PC6 of asset returns.
Therefore, it is important to conduct robustness checks by considering different numbers of
latent factors. We report the term structure of risk premia estimates based on six- and seven-
factor models in the Internet Appendix. (See Table IA.XI) The point estimates of most factors
are nearly unchanged, but Bayesian credible intervals often become wider, consistent with the

observations in simulation studies.

4.2 Time-Varying Term Structure of Macroeconomic Risk Premia

We now turn to the analysis of the time variation in the term structure of macroeconomic
factors’ risk premia, applying the method in Section 2.2. Since the dynamics of latent factors, v,
determines the time variation in factor risk premia, we first investigate whether the five largest
PCs of asset returns can be predicted by their one-period lags and other external economic
variables. Following past literature (e.g., Campbell and Vuolteenaho (2004), Campbell et al.
(2013), and Gagliardini et al. (2016)), we include as external predictors the price-earning ratio
as well as term, default, and value spreads.

Table TA.XIV in the Internet Appendix shows that external predictors have limited pre-
dictive power. In Panel A, we consider only the four external predictors. Although value and
term spread can predict PC1 and PC5 to a certain extent, the adjusted R?s are very smalll
or even negative in these specifications. We further include the lagged return PCs in Panel B
and observe economically sizable predictability. For example, the adjusted R? is above 11% for
PC4 at the quarterly frequency. In contrast, all external predictors are almost inessential in
these regressions. Therefore, using them to model time-varying risk premia will introduce huge
estimation noise, which can lead to attenuation bias in risk premia estimates.

Using the VAR(1) formulation for the latent systematic factors, we estimate the term struc-
ture of unconditional risk premia for the same set of variables as in Table 1. Figures IA.6-1A.8
shows the empirical results, in which the blue lines and shaded areas present the estimates

based on the conditional models.?* For comparison, we also include the previous estimates (the

22In particular, in Figure IA.6, the VAR(1) model contains only the latent factors of returns, whereas, in
Figure IA.8, both latent factors and external predictors are included in the VAR(1) model. Unlike these two
models, we impose a restriction in Figure IA.7 that both the latent factors and external predictors are driven
only by the lagged external predictors.
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purple lines and areas) in Table 1 based on the unconditional models. The point estimates are
almost identical in both conditional and unconditional models, although we occasionally detect
some minor attenuations and wider confidence intervals due to the additional parameters in the
VAR system. Overall, the risk premia estimates based on the unconditional models are able to
deliver consistent estimates even if the true model is time-varying.

Having established the robustness of the unconditional risk premia estimates, we proceed
to explore the time-varying term structure of macro risk premia. Figure 7 reports the posterior
means of the risk premia at one-quarter to three-year horizons for nondurable consumption,
GDP, and industrial production growths (in Panels (a)—(c), respectively), using four external
predictors to model conditional factors’ risk premia. The figure highlights a clear commonality
in the business cycle behavior of the term structures of macroeconomic risk premia.??

Two observations are noteworthy. First, the average level is strongly countercyclical, with
smaller risk premia during expansion and a significant increase during recession episodes. Sec-
ond, short-maturity (e.g., one-quarter) macro risk premia exhibit very small time variation,

confirming that macroeconomic variables are weak factors at best at short horizons, even con-

ditionally.

4.3 Term Structure of (Dividend) Risk Premia vs Strips

In this subsection, we study the connection between the term structure of risk premia defined in
equation (21) and that of dividend strips that have been extensively studied in past literature
(e.g., van Binsbergen et al. (2012), van Binsbergen and Koijen (2017), Bansal et al. (2021), and
Giglio et al. (2023)). Suppose that D, is the dividend payment at time ¢, and P, denotes the
time-t price of the dividend strip that delivers D, at time ¢ +s. We define the holding period

return on this dividend strip, as well as the spot and forward equity yield, as follows:

Dyys
holding period return: R;; s = sy
Ps,t
1 D
spot equity yield: es; = —log ( ! ), and
S Ps,t

D 1
forward equity yield: ef . = —log ( ! ) = T tt+ss
TS Py 5

23Figure IA.9 in the Internet Appendix shows the time-varying risk premia for durable consumption and
dividend growth, as well as the Macro PC1 and PC4. Besides, we present in Figure TA.10 the time-varying risk
premia based on a different VAR(1) model that contains only the latent factors of returns.
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Figure 7: Time-varying term structure of macroeconomic factor’s risk premia
This figure plots the time-varying term structure of risk premia following the method in Section 2.2. Risk premia
of latent factors are linear in four external predictors: PE ratio of S&P 500, Term spread, default spread, and
value spread. Estimates are based on the composite cross-section of 275 Fama-French characteristic-sorted
portfolios. Definition and data sources of factors and test assets can be found in Internet Appendix TA.3.
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where %7‘ #1445 18 log risk-free rate with time-to-maturity s.
In Internet Appendix IA.5, we show that under joint log-normality of SDF and dividend
growth, forward equity yield and dividend risk premia satisfy the following relationship:

1
eit = )\flt —E, [9d,t,t+s] - 2_Svart(Adt,t+s) ~ )\Zt —E, [9d,t,t+s]> (25)

where ggi14s = log (D”S) is the per-period log dividend growth rate, Ad;;,s = log (D”S)
is the multiperiod dividend growth, and A}, = —%covt(mnws, Ad; ) is the s-period dividend
risk premium defined in equation (21). Since var;(Ad; ;i) is empirically negligible, we can
approximate the forward equity yield with A\j, — E¢[ga.¢.1+s]-

Equation (25) makes clear the distinction between the term structure of dividend risk premia
and its strips: the forward equity yields are driven by both dividend risk premia and expected
dividend growths. As we show in Internet Appendix IA.5, dividend risk premia can be inter-
preted as the per-period risk premium on the hold-to-maturity dividend strips. We estimate
the term structure of unconditional dividend risk premia using our MA formulation and show
in Figure TA.11 that our estimated (one- to five-year) premia, unconditionally, are extremely
similar to those obtained in Bansal et al. (2021), although we use an entirely different data
sample and methodology.

Nevertheless, to obtain the term structure of dividend strips, we also need to estimate the

conditional mean of dividend growth. This is obtained using equation (4) as follows:

E gdt t+s = Z Et Adt+~r where ]Et[AdtJrT] = Mg —+ Z ﬁsftJrT,S. (26)

Note that in equation (4) the unspanned component wy; is allowed to be persistent. In other
words, we do not assume that the MA component of return shocks captures the entire dividend
predictability. Consequently, the forward equity yields implied by the MA model are not
guaranteed to match the empirical ones exactly.

We present the time series of expected dividend growth and its risk premia for one-, two-, and
five-year holding horizons in Figure 8. The estimation is based on a MA(20) formulation, with
time-varying risk premia driven by only external predictors. We observe clear business-cycle
patterns in the conditional dividend growth and risk premia. While expected dividend growth

turns from positive to negative during economic recessions, dividend risk premia generally spike
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Figure 8: Time-varying expected dividend growth and risk premia

This figure plots the time-varying expected dividend growth (Panel (a)) and risk premia (Panel (b)). The
conditional mean of dividend growth is based on the MA model in equation (26), with S = 20 quarters. The
time-varying dividend risk premia are based on a VAR(1) model for the latent risk factors, in which only the
external predictors can forecast latent factors. Estimates are based on the composite cross-section of 275 Fama-
French characteristic-sorted portfolios. Definition and data sources of factors and test assets can be found in
Internet Appendix TA.3.

in crisis periods. Furthermore, the term structure of expected dividend growth is downward-
sloping in normal times but strongly upward-sloping during recessions; however, we do not
detect such patterns for dividend risk premia.

We next estimate forward equity yields for one-, two-, and five-year holding horizons using
equation (25), based on the expected dividend growth and risk premia in Figure 8. Note that
the estimation is based on the full sample from 1963Q3 to 2019Q4, but we display in Figure 9
the subsample from 2004Q4, the date from which we have the observed data of forward equity
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yields.?* Figure 9 shows that our model generates a downward-sloping term structure of equity
yields in bad economic states but an upward-sloping one during expansions, consistent with
the observed data. Our estimates of forward equity yields are also strongly countercyclical,
closely tracking the observed data. Since expected dividend growth displays much more sizable
variation than dividend risk premia, the time variation of the latter, rather than the former,
explains most of the variation in forward equity yields. This is further highlighted in Figure
[A.13, which shows the estimates of forward equity yields based on a (counterfactual) constant
risk premia model. Even if dividend risk premia are assumed to be constant, our formulation
is able to generate realistic estimates of forward equity yields.

However, we cannot precisely match the observed forward equity yields. For instance, the
observed one-year forward equity yield is about 0.3 in 2009Q1, but our model estimates a
forward equity yield of only 0.2 in the same period. As we point out in equation (26), our MA
formulation allows for other sources of dividend predictability beyond asset returns, which can
potentially drive the difference between our estimates and the observed data.

In summary, the term structure of dividend risk premia is different from that of dividend
strips, with the gap captured by the expected dividend growth. Our econometric framework
targets the term structure of risk premia of not only dividend growth but also other economic
quantities. Although our model allows for other sources of dividend predictability beyond the
MA representation of priced shocks, we are still able to deliver realistic estimates of forward eq-
uity yields, closely matching the observed yields, and generate the time-varying term structures

of equity yields.

5 Conclusion

We propose a novel estimator of factors’ risk premia, their term structure, and their time
variation in a large cross-section of asset returns. The asset returns follow an approximate
factor structure, whereas the tested factor can slowly adjust to the asset return systematic
shocks, motivated by the Wold decomposition. The latter assumption allows the tested factors
and asset returns to have rich dynamics but poses a challenge for the frequentist estimation. We

tackle this challenge by taking a Bayesian perspective. Specifically, we derive a Gibbs sampler

24The data on realised one-, two-, and five-year forward equity yields are from Bansal, Miller, Song, and
Yaron (2021). We thank the authors for sharing the data with us.
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Figure 9: Time series of estimated forward equity yields: Time-varying dividend risk premia

This figure displays the time series of estimated forward equity yields based on our MA model with 20 lags.
Dividend risk premia are time-varying and modelled as being linearly dependent on external predictors. We
estimate a five-factor latent factor model of FF275 using the full sample from 1963Q3 to 2019Q4. We plot the
estimates in the subsample from 2004Q4, the date from which we have the observed data of forward equity
yields. The data on realised forward equity yields are from Bansal et al. (2021).
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in which all conditional distributions of model parameters have standard closed forms, so our
Bayesian estimator is straightforward to implement.

Our Bayesian framework has the frequentist three-pass procedure in Giglio and Xiu (2021)
as a particular, unconditional and single-period, case. More precisely, we adopt their rotation
invariance property but also show that both the conditional and unconditional term structures
of risk premia of observable variables are invariant to arbitrary rotation of the latent factors. We
show that the risk premia of an economic state variable over multiple periods can be interpreted
as the per-period mean returns of the mimicking portfolios that hedge against its multi-horizon
innovations.

We first apply our method to a large equity cross-section. Our results suggest that, un-
conditionally, most macro variables have significantly upward-sloping term structures of risk
premia. Although they are almost unpriced at quarterly horizons, their risk premia, measured
over two- to three-year holding horizons, are comparable to many tradable anomalies in equity
markets. In other words, macro risk strikes back at business cycle frequencies. Meanwhile, we
observe flat or downward-sloping unconditional term structures for other factors, such as VIX
and intermediary factors.

Furthermore, conditional on four return predictors often used in previous literature, the
macro risk premia are strongly time-varying and have clear business cycle patterns: They are
countercyclical, with low risk premia in normal times but significantly increasing risk premia
in economic recessions.

Theoretical asset pricing models predict which economic state variables should be priced in
the cross-section of asset returns. Given the rich set of new empirical facts we uncover, we argue
that when researchers evaluate their models, they should consider the heterogeneous factor risk

premia across horizons and states of the business cycle.
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Appendices

Appendix A Additional Propositions and Proofs

Proposition A1l. As N — oo, 1 cov(r,) "85 — A} under the following assumptions:

i. The K eigenvalues of B35 Bs explode as N — oo, whereas X, has bounded eigenvalues:
V(Qgﬁﬁ) = Op(N) and v(Z,) = Op(1);

B3 Bs
N

1. and X, converge to positive-definite matrices with bounded entries;

iii. Asset returns and their expectations follow equations (1) and (2). In particular, o; is 11D
and cross-sectionally independent of factor loadings, with a zero mean and satisfying that

-1
—aTEN“”ﬁ” — OIT( as N — oco. All elements in By are bounded.?

A.1 Proof of Proposition A1l

Assumptions in equation (2) imply that f.cov(r,) '8 = a'cov(r,) "' Bs + A} B; cov(ry) ™ Bs.

() (1)
Assumptions in equation (1) imply that cov(r;) = 3583 +X,,,. Using the Woodbury matrix

identity, we can rewrite the inverse of cov(r;) as follows:
cov(r) ™ =X = T Be(Tic + By 20y B) 785 Ty

We now consider the behaviors of components (/) and (/) as N — oc.
(I) = &[Sy = S0, 8: (I + 87 50,,8:) ' 67 0| B
=38 [T = (L + By X0 B5) ™' By By B

a8 I+ BI2718: 1

=a'S 0 (Ix+Bi%,.8:) " =

t I +B] TurBs

v converges to a positive-definite

Assumption (ii) in Proposition A.1 implies tha
matrix with bounded entries. On the contrary, due to assumption (iii) in Proposition A.1,

O‘TETM — 0 as N — oo, which implies that (I) — 0.

25Ingersoll (1984) defines the pricing errors « such that o' 3!3; = 0. Our assumption in Proposition A1

is weaker than that in Ingersoll (1984). This assumption in (iii) is satisfied, e.g., when a,, ~ Op(ﬁ)’ where the

latter is a sufficient condition for the absence of asymptotic arbitrage opportunities defined in Ingersoll (1984).
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(I1) = A1 8] [ — i Ba(I + B 3,0 8:) ' By ot | Bs
=X [B: T Bs — By Tpr Ba(Ik + By Tyt B3) '8 nBs]  (let A= (8] 2,,8:) ")
=N [AT AT I+ AT TTAT = A (A+ Ig) L

Since we assume that the eigenvalues of B3] 3; will explode as N — oo, whereas ¥, has

bounded eigenvalues, A — 0 as N — oo. This further implies that (17) — AJ.

A.2 Estimating Time-Varying Risk Premia in Section 2.2

In estimation, we identify a linear rotation of v;: v, = HUy = Hpgy 1 + Hegy = [y -1 + €,
which implies that 3., = cov(e,;) = HH'. We generalize the rotation invariance to identify

the time-varying risk premia as follows:

S
Y, 1 1y~ s =T pr—1
B, H  HAy+ B H \H +wye, gi= g+ > psiiy H ' Hegyy +
T « 5 bl ) v Ut rt, gt = Hg g psw Wats

Bv Ay Bv Ut "7; €y,t—s

mi=1—-X (H ) TH e, — ,ultfl(Hfl)THflevt =1-A 2 ey — ,uvT’t,lE;}evt, and (A1)

S T ~
S _ Dr02os=0Ps T -1 N N )
>‘g,t71 - = 1+ g : Tlg H H()‘U + IEt—l [“’U,t-‘rT—S—l])?
77; A11+Et—l [H'u,t«l»ffsfl]

therefore, the time-varying risk premia, )‘g,tfp are point identified.

Proposition A2 (Gibbs sampler of the time-varying model). Under the assumptions in equa-
tions (18)-(22), the posterior distribution of the model parameters can be sampled from the

following conditional distributions:

(1) Conditional on the data, {g:}]_, 5, and shocks to latent factors, {€,}/_,, the parameters
of the g; process (vag, Py, and m,) follow the normal-inverse-gamma distribution in equa-
tions (IA.1)-(IA.3) of Internet Appendix IA.1.1. The only difference is that we replace
v, with €, in equations (IA.1)-(IA.3). For point identification purposes, draws of p, and

Mg are normalized such that ’r);ng =1.

(2) Conditional on asset returns, {r;}1_,, and latent factors, {v;}1_,, the parameters of the
ry process (Sur and B = (p,,B,)) follow the normal-inverse-Wishart distribution in

equations (IA.4)—(IA.5) of Internet Appendiz IA.1.1.
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(3) Conditional on asset returns and (o, oy, Bo, Zwr), the latent factors, vy, can be sampled

from the normal-inverse- Wishart distribution in equation (IA.6).

(4) Conditional on latent factors, {v;}1_,, the model parameters in the VAR(q) system of v;
can be obtained from equations (IA.9)-(IA.10). The conditional mean of v; equals the
first K elements of po+ @141+ -+ Pgxi_q, and the first K variables in €, are shocks
to priced systematic factors, €,,. We can also obtain the unconditional mean of v; as the

first K elements in (I — ¢y — -+ — @) bo.

(5) Conditional on the posterior draws from the time series steps (1)—-(4), the posterior dis-
tribution of X\, is a Dirac distribution at (B, 8,)7'8) it,, where fi, = p, + %TT, and

Y = (8,208 + Zwr)ii, t=1,...,N. It further yields a Dirac conditional posterior

N
y . . S o S T PsTg (>\’U+Ei—1 [Hﬁ,t+f—s—1])
for the term structure of g,’s risk premia at \;, | =>77_(> 7 55 ,

where 0 < 5§ < S.

Appendix B Additional Figures and Tables

Habit Model LRR Model
0.30 A
0.25 A1
©
é 0.20 A
g
o
~ 0.154
0
o
0.10 A
—  —  E—
Le—" — / = consumption growth
0.05 A ’/ 1 . dividend growth
7 /7 == smoothed dividend growth
é lll fIS é 1IO 1I2 1I4 1I6 1I8 2I0 2I tll (IS é 1IO 1I2 1I4 1I6 1I8 2I0
Quarter Quarter

Figure A1l: Term Structure of Risk Premia in Habit and Long-Run Risk Models

The figure plots the term structure of risk premia implied by the habit model of Campbell and Cochrane (1999)
(left panel) and the long-run risk model (right panel) of Bansal and Yaron (2004). We consider three macro
variables: (1) quarterly consumption growth, (2) quarterly dividend growth, and (3) quarterly growth in the
smooth dividend payment (the aggregate dividend payments made in the previous 12 months). Risk premia are
normalized by the quarterly volatility of the macro variables. Calibration and derivation details can be found

in Internet Appendix IA.4.
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Table A1l: Testing risk premia of strong factors at quarterly frequencies (7" = 200)

S=0 1 2 3 4 ) 6 7 8 9 10 11 12

Panel A: Rg = 30%

Number of Factors = 5
10% 0.134 0.110 0.114 0.111 0.113 0.108 0.109 0.107 0.109 0.112 0.110 0.113 0.113
5% 0.075 0.068 0.064 0.068 0.063 0.066 0.064 0.064 0.064 0.066 0.065 0.060 0.063
1% 0.014 0.020 0.019 0.019 0.019 0.016 0.015 0.014 0.012 0.014 0.014 0.014 0.016

Number of Factors = 4
10% 0.338 0.331 0.331 0.336 0.327 0.328 0.328 0.328 0.325 0.327 0.331 0.326 0.328
5% 0.233 0.225 0.228 0.229 0.233 0.235 0.233 0.232 0.233 0.233 0.219 0.235 0.224
1% 0.089 0.095 0.096 0.094 0.094 0.091 0.090 0.092 0.091 0.091 0.088 0.087 0.089

Number of Factors = 7
10% 0.141 0.108 0.115 0.124 0.120 0.119 0.111 0.111 0.112 0.117 0.115 0.118 0.119
5% 0.080 0.075 0.074 0.072 0.073 0.069 0.069 0.066 0.071 0.076 0.070 0.071 0.075
1% 0.014 0.018 0.014 0.016 0.017 0.017 0.016 0.017 0.014 0.014 0.015 0.013 0.011

Panel B: Rg =20%

Number of Factors = 5
10% 0.134 0.126 0.122 0.120 0.116 0.115 0.114 0.115 0.115 0.118 0.118 0.123 0.120
5% 0.069 0.064 0.069 0.060 0.059 0.057 0.058 0.058 0.059 0.059 0.057 0.050 0.052
1% 0.008 0.015 0.015 0.013 0.010 0.010 0.011 0.009 0.009 0.011 0.009 0.011 0.012

Number of Factors = 4
10% 0.307 0.339 0.327 0.320 0.328 0.322 0.327 0.328 0.331 0.336 0.330 0.339 0.337
5% 0.198 0.217 0.219 0.221 0.225 0.220 0.221 0.221 0.218 0.219 0.212 0.214 0.218
1% 0.047 0.085 0.077 0.073 0.078 0.077 0.073 0.077 0.077 0.072 0.067 0.072 0.071

Number of Factors = 7
10% 0.141 0.131 0.138 0.125 0.128 0.121 0.120 0.125 0.132 0.140 0.142 0.134 0.138
5% 0.074 0.065 0.069 0.066 0.064 0.063 0.067 0.063 0.062 0.057 0.060 0.064 0.062
1% 0.009 0.017 0.013 0.014 0.010 0.010 0.010 0.008 0.011 0.009 0.009 0.012 0.011

Panel C: R? = 10%

Number of Factors = 5
10% 0.117 0.166 0.169 0.159 0.172 0.175 0.174 0.175 0.174 0.173 0.166 0.169 0.172
5% 0.049 0.082 0.085 0.090 0.102 0.099 0.098 0.096 0.095 0.099 0.092 0.091 0.089
1% 0.007 0.018 0.021 0.017 0.024 0.022 0.025 0.029 0.028 0.027 0.019 0.024 0.020

Number of Factors = 4
10% 0.194 0.287 0.296 0.306 0.313 0.308 0.316 0.318 0.308 0.302 0.284 0.290 0.297
5% 0.093 0.176 0.174 0.173 0.193 0.202 0.188 0.193 0.182 0.187 0.182 0.188 0.184
1% 0.012 0.058 0.055 0.052 0.062 0.061 0.064 0.062 0.066 0.064 0.063 0.063 0.057

Number of Factors = 7
10% 0.117 0.178 0.168 0.178 0.193 0.197 0.193 0.189 0.191 0.187 0.192 0.186 0.185
5% 0.041 0.100 0.103 0.097 0.112 0.116 0.113 0.113 0.115 0.106 0.104 0.111 0.098
1% 0.004 0.022 0.019 0.017 0.026 0.026 0.025 0.026 0.030 0.031 0.025 0.028 0.023

The table reports the frequency of rejecting the null hypothesis Hy : )\5 = )\57* based on the 90%, 95%, and
99% credible intervals of our Bayesian estimates in Proposition 1. A} is defined in equation (6), and X5 is AJ’s
pseudo-true value. We consider strong factors, with Rg € {10%, 20%, 30%}. We simulate quarterly observations
of g; and r; by assuming that i) the true number of latent factors is 5, ii) the time series sample size is 200

quarters, and iii) the true S = 8. We estimate several model configurations with different numbers of factors
(4, 5, and 7) and S = 12. The number of Monte Carlo simulations is 1,000.
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Internet Appendix for:

Macro Strikes Back: Term Structure of Risk Premia

Abstract

The Internet Appendix provides additional propositions, proofs, tables, figures, and empirical

results supporting the main text.



IA.1 Additional Propositions and Proofs

IA.1.1 Derivations of the Posterior Distributions in Proposition 1

We present a detailed version of Proposition 1 in the main text.

Proposition IA.1 (Gibbs sampler of the baseline model). Under the assumptions described
in equations (8)—(12), the posterior distribution of model parameters is given by the following

conditional distributions:

(1) Conditional on the data {g,}_, 5 and latent factors {v,}{_,, parameters in g,’s equation

follow a normal-inverse-gamma distribution.:

T—-8 (G—-V,p,) (G-,
01209 ‘ {gt}tT:H—S'v p97 7797 {Ivt}thl ~ Ig( 2 ) ( PPQ)Q( ppg) ) ) (IAl)
pg | G7 0-12ug7 7797 {vt}?:l ~ N ((VpTVP)_lvaGa zAJP)7 and (IAQ)
Ty ‘ G7 0121;g> Py, {Ut}zzl ~ N ((VnTVW)_IVnTéa i\:7)) ' (IA3>

To identify p, and n,, we normalize 1y after each posterior draw such that "7;779 =1.

(2) Conditional on asset returns and latent factors, we update model parameters in r,’s equa-

tion using a normal-inverse- Wishart distribution, as follows:

Sor | R vl e, By ~ W (T, (R-— VTBT)T(R - VTBT)) and (IA.4)

B | R (o} S~ MON (V) WTR, 200 (VW) (1A9)
where B! = (p,, 3,).

(8) Conditional on asset returns and (p,, By, L), we update both latent factors v, and their

mean and covariance parameters, as follows:

vtrhu,.,,cawzwnuwzvNN(@E;:@,)l[ﬁgz;,%(n—u,.wvuv)], (ﬁIE;,}ﬂv)l), (IA.6)



T

¥, [ {vi}E, ~wt <T —1, > (v —0)(v — @)T>, and (IA.7)
t=1
o | o, {vi}, ~ N (f;, >, /T>, (IA.8)

where v = ZtT:l v/T. In steps (1)-(3), ZG(-) denotes the inverse-gamma distribution,
N () and MVN(-) denote the normal and multivariate normal distributions, and W=(-)
is the inverse- Wishart distribution. The quantities G, G, V,, V,, 2,), 2,], V., and R are
defined in the proof.

(4) Based on the posterior draws from the time series steps (1)-(3), the posterior distribution
of Xy is a Dirac distribution at (B, B,)"'8) fi,. In addition, the posterior distribution of

S T
the term structure of g;’s risk premia is also a Dirac distribution at )\5 = Zre0dicols

1+S
n;)\v, where 0 < S < S.

We next derive the posterior distribution in g¢;’s equation. We introduce some matrix nota-
tions, as follows:
1 (vgy — NU)Tng T (v1 — ”U)Tng
v, = | : . )

(vr —po)"my o (Vp_g— ) My

S
5 0 Ps (vy J1+5—s — Hy) - 28:0 PS(UK,1+S'—s — )
s 0 ps (%1 T —s #’v) T ZSS:() ps(’UK,Tfs - “v)

--»EIT , and G = (G145 — Hgs > 97 —Mg)T-
Using the notations above, the data likelihood for G can be written as

T-S

_1-5 1
§G | promy (0} o2,) = (2r02,) 7 exof =5 LG - Vi) (G - Vi) .
wyg

where (G — V,p,)" (G — V,p,) = (G — V;n,)" (G — V,m,). Since we assign a flat prior to

(PgsMy, wg) the posterior distribution of o2 is

1\ G- V,p,) (G-,
p(o-?ug | Gap_t]?’r’ga {’Ut}zzl) X <O'T> exp{—( Ppg) ( ppg) };

2
g 20wg

hence, the posterior distribution of o7, is an inverse-gamma in equation (IA.1).



We next consider the posterior distribution of p, and 1,. From the data likelihood, we can

derive the kernel of p,’s posterior,

1 R a1 R
bloy | Guoymy, (o) < ex{ 50y~ 0|2, (V)| (0, - 2},
where p, = (V,'JTV;,) _1VPTG . The next step is to make adjustments for the posterior covariance
matrix of p, due to the potentially autocorrelated wg V. A simple solution is given by Miiller
(2013), which proposes that we can replace op,, (VpTVp)_1 with the Newey and West (1987)

type of sandwich covariance matrix, denoted as 2,), as follows:

Py | G7012ug>7797{vt}g:1 ~N (ﬁg,i:p)7 3, = (VTVp)il[(T - 5‘)5’,)} (VTVp)ilv

P P
S",_l TAQVVT 1 l f d
p_T—SE%wM(Nm0+g%‘j:z)man

T

~ 1 o . .

Iy = T_5_] Z wg,twg,t—l(v;,tvp;,l + V-p,tfl‘/:gl) for [ >0, wy;=gs — ‘/:ot Pg;
t=1+5+1

where L, the number of lags in the Newey-West estimator, is chosen to be S since wy;V,; and
Wy 1—1 Vy—; are uncorrelated for [ > S.

We finish deriving the multivariate normal in equation (IA.2). A similar derivation can be
applied to the posterior distribution of 1, in equation (IA.3).

We now proceed to derive the posterior distribution of model parameters in r;’s equation.

We stack time series observations into the following matrices:

ril' 1 (o1 —p)’ T
R=| |, V,=|: : ,ama:<%>
roﬂ 1 (vr— ,uy)T !

and the data likelihood of asset returns is
_T 1 _ T
p(R ’ {vt}?:la Moy /Bva Ewr) X |2wr| 2 eXp{—EtT [Ew; (R - ‘/;Br) (R — ‘/;BT)] }
Under the prior distribution in equation (11), we first derive the posterior of 3,,,

TH+N+1

1
p<2wr ’ R, {Ut}?:la 278 ﬁv) (S8 ‘Ewrr 2 eXp{_itr [2;7{ (R - ‘/;"BT)T(R - ‘/;"Br)} }7




which implies the inverse-Wishart distribution of 3, in equation (IA.4). When X, is diagonal,

which is assumed in the high-dimensional setting, the inverse-Wishart distribution reduces to

2 N

independent inverse-gamma distributions of {o7 .} ;.

We next derive the posterior of (w,, By)
p(BT‘ ’ R> {vt}?:la Ewr) X exp{—%tr [E;i (Br - B’I”)TVT‘/;(BT - Br)} }7

where B, = (V.'V,)"'V TR, and the formula above is the kernel of the multivariate normal
distribution in equation (IA.5). However, when we implement equation (IA.5), we replace
(V.'V,)7! with (V."V, + D,)™!, where D, = diag{0,1,...,1}. The additional term D, is a
small penalty that preempts numerical difficulties in high-dimensional applications.

Finally, we derive the posterior distribution of latent factors and their means and covariance

matrix. The posterior distribution of wv; is

P(Vr | 7oy s Bus Zory oy 20)
X p(Tt ’ Uta“’raﬁv? Ewr)ﬂ'(lvt | My, Ev)

1 .
(8 6Xp{—§<’l"t — Hr + IBUIJ”U - ﬁvvt)TEwi ('r't - My + IB’UIJ”U - /vat)}

1 _ _
X eXp{_é ['v;r(ﬁ;rzwiﬁv)vt - QUtTﬁUTEwi (re — pr + ﬁvﬂv)] }7
which implies equation (IA.6). The posterior distribution of (u,,3,) is

, 1 d
Pl B | {orhl) o (Sl 5 exp{= 5t [E7 3 (0 = o) (00— ) ]},

t=1

which is the kernel of the normal-inverse-Wishart distribution in equations (IA.7) and (IA.8).

IA.1.2 Proof of Proposition A2

The only new ingredient in Proposition A2 is step 4, which estimates the model parameters in

the VAR(q) system of x;. First, we introduce the following matrix notations:

T
:c;rl 1 qu S ol

XW=|f |, xXO=]: |, and@ =1 ¢ |,
w; 1 x}fl w}fq q,’);r



and equation (22) implies that the data likelihood is
T 1 _ T
XY | X0 ® 3,) x B, 2 exp{—§t7’ = (XY - Xx08) (X - XOe)]}.

K+p+1

Under the prior distribution 7(®,%,,) x || 2 , we can easily show that (®,%.,)

follow the normal-inverse-Wishart distribution,

S | @, X1 xO) -l (T —q, (X - xOg)"(xM _ X<0><I>)> and (IA.9)

® |3, XD xO L MW\/(((X(O))TX(U))1(X(0))TX(1), S, ® ((X(O))TX(O))1>, (IA.10)

following similar derivations as in equations (IA.4)—(IA.5).

TA.2 Simulations: Time-Varying Risk Premia

In this section, we explore the finite-sample performance of our Bayesian estimator in Propo-
sition A2 when latent factors command time-varying risk premia. Different from the uncondi-

tional risk premia model, we simulate latent factors, ¥;, from the VAR(1) process,
- s iid
Uy = G101 + €5, €5 ~ N(0g, Ig),

where ¢ is calibrated by running the VAR(1) regression using the top five PCs of asset returns.
Next, we simulate the asset returns as before, assuming a five-factor model. Finally, we generate

g; such that it is driven by €3 instead of v;:

S
. 1
gy =¢C- Zpsftfs + Wyt , ft = _(17 07 17 07 1)6177&-
s=0 \/g
Similar to the simulations in the main text, we report the size, power, and time series fit
in g;’s equation (RZ) and the correlation between estimated and pseudo-true latent process f;
in Tables TA.IX-TA.VIII. Overall, our Bayesian estimator in Proposition A2 has satisfactory

finite-sample performance, delivering consistent estimates of unconditional risk premia when

the priced systematic factors follow a VAR(1) process.

'If a parameter in ¢ is not significant at the 10% level, we set it to be zero in ¢A>1.



IA.3 Data Description

We consider a cross-section of 275 equity portfolios collected from Ken French’s website (FF275):
25 (5 x b) portfolios sorted by (1) size and book-to-market ratio, (2) size and accrual, (3) size
and beta, (4) size and investment, (5) size and long-term reversals, (6) size and momentum,
(7) size and net issuance, (8) size and profitability, (9) size and residual variance, (10) size and
variance, and (11) size and short-term reversals. The sample ranges from Q3 1963 to Q4 2019.

Table IA.IT presents the factors studied in Section 4. We show each variable’s name, descrip-
tion, sample, and data source. When the sample of factors differs from that of asset returns,
we use the overlapping sample. Hence, different factors use different samples in estimation.
We briefly describe how we construct the macro PCs using FRED-QD. There are 246 macro
variables in the dataset, but we keep only those with complete observations. We next estimate
the correlation structure of the remaining 159 variables and use it to construct the five PCs,
which account for 25.5%, 9.4%, 5.3%, 4.7%, and 4.4% of the time series variations of this large
panel data.

IA.4 Term Structure of Risk Premia in Macro-Finance Models

The first model that we consider is the external habit model of Campbell and Cochrane (1999)

(CC henceforth). The model dynamics are summarized by the following equations:
log SDF:  myy1 =logd —vg+ (1 — @)(st — 5) — y[1 + A(s¢)]veta,
log consumption surplus ratio:  s;41 = (1 — @)S + ¢s¢ + A(s) v,
log consumption growth: Acpy1 = g+ Veg1, Uprl i N(0, 02), and

log dividend growth: Adii1 = g+ wir1, ween id N(0, 0121}), corr(wy, v¢) = p,

where v; and w; are shocks to consumption and dividend growth, respectively, and their corre-

lation equals p. CC choose the specification of A(s;) to ensure a constant risk-free rate:

1-2(s¢—5
@ - 17 St < Smax _ vy B 1 o
)‘(St): ,  where: S=o0 ﬂ, Smax:5+§(1—s )
0, St > Smaz

We simulate the dynamics of (my41, Si11, Acey1, Adpr1, A(s¢)) following the same parameter

choices as in Table 1 of CC, which are summarized in Panel A of Table TA.I.



Secondly, we consider the long-run risk model of Bansal and Yaron (2004) (BY henceforth),
in which they introduce slow-moving conditional mean and stochastic volatility of consumption

and dividend growth. We summarize the dynamics of the state variables as follows:
conditional consumption mean: ;11 = pxs + Qo€
log consumption growth: Ac; 1 = p+ x + o
log dividend growth: Adyi 1 = pg + ¢ars + 701 + Paoius1, and

stochastic volatility: o7, = 0 + 11(07 — %) + Tuwii1,

iid
where €y1, Upr, M1, Wit ~ N(0, 1).
To solve the model, BY consider the approximate solution for the price-consumption ratio,

that is, 2; = Ag + A1z + Ago?, where

Ao = logd + K —|—(1—l) +/€A(1—V)2+Q(/QA 2|, A= 1_i
0—1_,€1 2 0 wu 142 1o T 5 R1A20w) 1_1—/<c1p’
0.5-[(0—2)* + (0A1k10.)? .
AQI [( w) ( 1 1(/0)] eXp(Z) and HO:log(1+exp(§))_H12'

001 — ran) T T exp(3)
The steady state zZ can be found by numerically solving a fixed-point problem: z = Ay(z) +

Ay(z)o?. Finally, the shock in the log SDF is

me41 — Et(mt+1) = )‘m,natnt—f—l - Am,eo-tet—&—l - /\m,wgwwt—‘rl»

where A\, , = [— Z + 60— 1] =—7, Ame=(1-0) [/ﬂ (1 — ;) 1 _tp;p]’ and Ay = (1 — 0)Azk;.

We simulate the dynamics of (myq1, Acii1, Adsy1, 74, 02) using the parameter choices sum-

marized in Panel B of Table TA.I, following exactly the same calibration as in Bansal et al.
(2012).

We first simulate the monthly sequences from each model and aggregate them into quar-
terly observations. Using the quarterly data, we calculate the unconditional risk premia of

consumption (Ac) and dividend growth (Ad) as follows:

E [COVt (mt—>t+5’7 Gt—t+S )}
NS TA.11
g S - U(gt+1) 7 ( )

where my1 = myy1 —Ei(myy1), and we divide the covariance term by o(g,11) because we always



Table TA.I: Parameter Choices in Calibration

Parameter Variable Value
Panel A. Campbell and Cochrane (1999)

Mean consumption growth (%) g 1.89
Standard deviation of consumption growth (%) o 1.50
Log risk-free rate (%) Ty 0.94
Persistence coefficient 10) 0.87
Utility curvature y 2.00
Standard deviation of dividend growth (%) Ow 11.2
Correlation between Ac and Ad p 0.2

Subjective discount factor ) 0.89
Steady-state surplus consumption ratio S 0.057
Maximum surplus consumption ratio Smaz 0.094

Panel B. Bansal, Kiku, and Yaron (2012)
Subjective discount factor ) 0.9989

Risk-aversion parameter 5 10
IES parameter P 1.5
Unconditional mean of consumption growth W 0.0015
Persistence coefficient in x; p 0.975
Persistence coefficient in o7 2 0.999
Unconditional volatility o 0.0072
Zi11's loading on oresqq Ve 0.038
0?’s loading on w; Ow 0.0000028
Unconditional mean of dividend growth 1 0.0015
Ad;.1’s loading on x; bq 2.5
Adyy1’s loading on o111 T 2.6
Adyyq’s loading on oy ©Yd 5.96

The table presents the parameter values used in calibrating the term structure of risk premia in canonical
macro-finance models. Panel A shows the parameter choices used in Campbell and Cochrane (1999). Panel B
displays the parameter values used in Bansal et al. (2012).

normalize the single-period variable to have unit volatility in the empirical analysis.
Using equation (IA.11), we can obtain closed-form solutions for the term structure of con-

sumption and dividend risk premia in the external habit model,
Me =70 [L+EX(s)]], ARg = pyo [+ E[N(s0)]].2 (IA.12)

Therefore, the habit model implies flat term structures of risk premia for consumption and
dividend growth. We obtain a long sequence of A(s;), numerically approximate E[\(s;)], and

estimate A3, and A3, In contrast, we do not have simple closed-form solutions in the long-run

2These are monthly risk premia. The quarterly risk premia equal these monthly numbers multiplied by /3
due to the normalization.



risk model; hence, we numerically estimate the risk premia through simulations.

In our empirical analysis, we do not consider single-period dividend growth due to the
strong seasonality detected in the data. Instead, we calculate the sum of the lagged 12 monthly
dividends, denoted by D§12m , and calculate its growth rate as Ad (12m) _ 15 g( (12m) / D 12m )
To make our calibration exercise as close as to the empirical analysis as possible, we estimate

d™®™ in the habit and long-run risk models.

the risk premia of A

Why do we use my11 = myy1 — Ey(myyq) rather than my,; in equation (IA.11)? Intuitively,
E;(my41) captures the information in the risk-free rate, which is removed because we study
the risk premia/average excess returns. In our empirical analysis, we always normalize the log
SDF such that its unconditional and conditional means are constant. Using m;; to define risk
premia is consistent with our empirical strategy. We now formally show that we can ignore
E;(m+1) in equation (IA.11) assuming log normality.

Suppose that R; ;15 = Hle Ryt 7 1¢4- denotes the cumulative gross stock return, Ry 14
Hle Ry i+r—1-14+- denotes the gross risk-free rate, and M, g = Hle M, 144 is the multi-

period SDF that prices the multi-period stock return R; ;. g,

Eq [Mt t+SRt—>t+S |:HMt+T 1—>t+7’Rt+T 1—)t+7:| =1.
T=1

Miyr—15t47
Etqpr—1[Miyr—1-5t4r]

= Mt+771~>t+‘r : Rf,t+7'71%t+7'7 where E[Mt+T714>t+T:|

=Eir [Mt+7_1_>t+7] = 1. We can rewrite the fundamental asset pricing equation as,

Define My, 1 y1r =

S S

~ Rt+7—1—>t+7' : : :

Ky { H Mt+T—1—>t+TRt+T—1—>t+T:| =K { H Miyr 154475 | = 1, which implies
— — Rf,t+771~>t+'r

S

S
Rt+T 1—t+7 :| |: Rt+T 1—t+7 :|
E — 1= —cov My s - , IA.13

‘ |: H Rf t+1—1—t+T1 ! H A H Rf t+1—1—t+T7 ( )

where the left side is the multi-horizon excess stock return, and the right side is the covariance

between the demeaned cumulative SDF and the excess return.
We now assume that asset returns, macro variables, and the SDF follow log-normal distri-

butions and represent all variables in log units, as follows:

S S

S
Y ~ ~ Rt+771~>t+7 ~
H Mir 1tpr = eXp{ E mt+7’1%t+‘r} = eXp{mtatJrS}y H - = exp{rfﬁws}?
—1 Rf,t+7—1—>t+7'

=1 =1

S

Ry T ~e re 1 ry

[H thr 1ot } 1=E;[exp{Fi_, s} — 1 =exp{E(7{ . g) + =var, (i, s) } — 1, and
oo Brrr—1ot4r 2
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S

Rf+7' 1—=t471 ~ ~e
covt[H Miyr1st4r, H S — = covy | exp{mysiys}, exp{7f_ g}

= E¢[exp{Fi_, s + Musirst] — Ee[exp{Fi_ s} - Ee[exp{ri—its}]

1 1
= exp {Et (ﬁlt—>t+S) + ivart (ﬁlt_ng_;,_s) + Et (ff—ﬁ—&-s) + ivart (’Izte_m_,'_s) + covy (mt—HH-Sa /Fte—>t+s)}

~e 1 ~e
— exp {Et(rtat-i-s) T gvar (Tt—>t+s))}
~e 1 ~e ~ ~e ~e 1 e
= exp {Et (rt‘%tJrS) + §Vart (rtat+S) + covy (mt_>t+s, rtat+S)} — exp {Et (Ttat+5') + §Vart (rtHHS)) }
In the derivation above, we use the fact that exp{E, (mHtJrs) —i—%vart (mHHS)} =E, (MHHS) =

1. We remove the common component, exp{E,(7{,,g) + svar; (7, s)}, from both the left

and right sides of equation (IA.13). We have the following equation:

1
exp{ — E¢(7{115) — S vart (7 11g)} — 1 =exp {covt (mtﬁst,ffﬁﬁrs)} — 1, which implies

1
E; (ff—>t+s) + 5 vart (fte—>t+5) = —Covy (mt—“”fs ’ ff—)HS)'

Therefore, —covy (anHS, Ty, +s) properly quantifies the risk premia of the log multi-horizon
excess return, conditional on the assumption of log-normality as in our paper and also in many
macro-finance models.

We can express m;,1 as follows:

B B 1
Myt = M1 — log(Et[Mt—l—l]) = Miy1 — Et[mt—i—l] - §Vart[mt+1] = Miy1 — §Vart[mt+1]-

It is easy to show that var;[m; 1] does not correlate with consumption or dividend growth in the
habit and long-run risk formulations that we consider. Finally, dividing the multi-period risk
premia, —covy (mHHS, Ty it S), by the number of periods S, and normalizing by the volatility

of the single-period variable, leads to the definition in equation (IA.11).

IA.5 Connection to Dividend Strips

Let D, denote the dividend payment at time ¢, and F;,; denotes the time-¢ price of the dividend

strip delivering D, at time ¢ + s. The fundamental asset pricing equation implies that

Ps,t - Et[Mt,t+s . Dt+s]; (IA14)
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where M, 4, is the multi-period SDF between time ¢ and ¢ + s. Accordingly, the gross risk-free
rate with time-to-maturity s is Ry pys = 1/Ei[M;14s).

The s-period return on the dividend strip with time-to-maturity s can be expressed as

Diys Dy Dyys

Ripys = ——= , IA.15
b Py, Py D, ( )
which implies the following per-period log strip return:
1 1 D 1 Dy
Tits = g log(Rt,t—‘rs) = g log (P:t> + g log < Zt;; ) = €5t + Gdti+s (IA-16)

Dy
Pst

)

Dt+s

where e;; = ilog( ) is the spot equity yield for maturity s, and ggqt4+s = ilog (D_t) is

the per-period log growth rate of dividend payments. Equation (IA.16) also implies that the

conditional variance of r, ¢ is identical to that of gg; 115, that is, var,(ris) = vary(gar.ets)-

Ps,t

iy and

Assuming the joint log normality of dividend growth and the SDF, we can rewrite

es ¢ as follows:

P 1 1
Di,t _ Et |:emt,t+s+Adt,t+s:| = exp {Et [mtﬂg_,_s]—|—§Vart(mt7t+s)+Et [Adt7t+5]+§vart(Adt7t+3)+covt (mt7t+5, Adt,t+s)}7
t

which implies that the spot equity yield, es;, can be expressed as

1 1 1 1 1
€st = —; [Et [mt,t+s] + §Vart(mt,t+s):| - gEt [Adt,t—i—s] - gvart(Adt,t—&-s) - ECOVt(mt,Hs, Adt,t+s)-

This further implies that the expected per-period strip return is

1 1 1
[ [Tt+s] = €5t + By [9d,t,t+s] = ;rf,t,t—f—s - %Vart<Adt,t+s) - gcovt(mt,t-i-s; Adt,t—l—s)- (IA-17)

Note that var;(Ad;;.s) = s*vary(ris) and —%covt(mt7t+8, Ad; ) is the risk premium of the
dividend growth defined in equation (21); hence, we can express the expected per-period strip

return, after accounting for the Jensen’s correction term, as follows:

S 1
Ei[rees] + ivart(rtﬂ,) = grf7t7t+5 + Ay (TA.18)

Note that under the joint log normality assumption, Eq[r, | + Jvary(riis) = %log Ei[ Rt t4s)-

Therefore, \j,, which equals ilog Ei[Ri14s) — %rﬁtﬂs, can be interpreted as the per-period risk

12



premium on the hold-to-maturity dividend strips.

Using equation (IA.17), we can derive the forward equity yield, as follows:

1

1
eﬁ,t = €5t — grf,t,t—i-s = )\fzt - E [gd,t,t+s] - %Vart(Adt,t—ks)a (IA~19)

where the last term, %vart(Adt,Hs) is negligible in the empirical data.

TIA.6 Additional Tables

Table TA.I1: List of Factors

Source

Number and description of factors:

Sample

AEM intermediary factor (Adrian et al. (2014))

Capital share growth (Lettau et al. (2019))

Industrial production growth (log change in real per capita)
GDP growth (log change in real per capita)

Durable consumption growth (log change in real per capita)
Nondurable consumption growth (log change in real per capita)
Service consumption growth (log change in real per capita)
Labor income growth (defined in Lettau and Ludvigson (2001))
Macro PCs 1-5 (FRED-QD, McCracken and Ng (2020))

Q1 1968 — Q3 2017
Q3 1963 — Q4 2013
Q3 1963 — Q4 2019
Q3 1963 — Q4 2019
Q3 1963 — Q4 2019
Q3 1963 — Q4 2019
Q3 1963 — Q4 2019
Q3 1963 — Q3 2019
Q3 1963 — Q4 2019

Tyler Muir’s Website

Website of Journal of Finance
Federal Reserve Bank of St. Louis
BEA Table 7.1

BEA Table 7.1

BEA Table 7.1

BEA Table 7.1

Martin Lettau’s website

Michael W. McCracken’s website

Federal Reserve Bank of St. Louis
Federal Reserve Bank of St. Louis
Zhiguo He’s website

Lubos Pastor’s website

Federal Reserve Bank of St. Louis

Jan 1982 — Dec 2019
Jan 1986 — Dec 2019
Jan 1970 — Dec 2019
Jul 1963 — Dec 2019
Jan 1986 — Dec 2019

Oil price (log) change, Spot Crude Oil Price: WTISPLC
TED spread (log) change

(Non)traded HKM intermediary factors (He et al. (2017))

PS nontraded liquidity factor (Pastor and Stambaugh (2003))
Alog(VIX;) = log(VIX;) — log(VIX;_1)

Real dividend (log) growth of the S&P500 index
Price-earning ratio of the S&P500 index (PE;_;)
Term spread (7°S;—;) from FRED-QD/MD

Q3 1963 — Q4 2019
Q3 1963 — Q4 2019
Q3 1963 — Q4 2019

Robert Shiller’s website
Robert Shiller’s website
Michael W. McCracken’s website

Michael W. McCracken’s website
Ken French’s website
Ken French’s website

Default spread (DS,_1) from FRED-QD/MD
Value spread (V.S;_1)
MKT (market), SMB (size), HML (value), MOM (momentum)

Q3 1963 — Q4 2019
Q3 1963 — Q4 2019
Jul 1963 — Dec 2019

The table presents a list of factors used in Section 4. For each variable, we show the name, description, sample,
and data source. In particular, we download the monthly real dividend payments of the S&P500 index from
Robert Shiller’s website. To avoid the mechanical seasonality in dividend payments, we first calculate the sum
of the lagged 12 monthly dividends, denoted by Dy, and compute its growth rate as log(D;/D;_1). Term spread
is the difference between the 10-year and three-month Treasury yields. Default spread is the difference between
the yields of the BAA and AAA corporate bonds. The value spread is constructed following Campbell and
Vuolteenaho (2004) and Campbell et al. (2013).
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Table TA.III: Testing risk premia of strong factors at monthly frequencies (7" = 600)

S=0 2 4 6 8 10 12 14 16 18 20 22 24

Panel A: Rg = 30%

Number of Factors = 5
10% 0.075 0.112 0.102 0.104 0.103 0.099 0.103 0.103 0.101 0.102 0.099 0.102 0.095
5% 0.024 0.062 0.047 0.046 0.050 0.045 0.045 0.046 0.044 0.043 0.044 0.051 0.049
1% 0.002 0.016 0.019 0.015 0.015 0.014 0.015 0.013 0.013 0.014 0.013 0.013 0.013

Number of Factors = 4
10% 0.030 0.395 0.442 0.442 0.451 0.448 0.449 0.447 0.442 0.443 0.448 0.445 0.446
5% 0.007 0.293 0.331 0.333 0.338 0.327 0.327 0.332 0.332 0.330 0.331 0.330 0.333
1% 0.001 0.134 0.158 0.156 0.153 0.146 0.146 0.149 0.152 0.150 0.147 0.150 0.147

Number of Factors = 7
10% 0.070 0.110 0.100 0.102 0.106 0.102 0.105 0.101 0.099 0.098 0.093 0.097 0.094
5% 0.020 0.063 0.051 0.047 0.046 0.044 0.044 0.044 0.046 0.045 0.043 0.050 0.052
1% 0.001 0.016 0.017 0.015 0.015 0.017 0.016 0.014 0.016 0.016 0.016 0.015 0.016

Panel B: Rg =20%

Number of Factors = 5
10% 0.059 0.111 0.107 0.094 0.096 0.094 0.091 0.090 0.094 0.089 0.093 0.092 0.090
5% 0.028 0.061 0.051 0.054 0.049 0.049 0.044 0.047 0.052 0.053 0.056 0.053 0.051
1% 0.004 0.008 0.011 0.009 0.011 0.009 0.008 0.008 0.010 0.009 0.012 0.011 0.011

Number of Factors = 4
10% 0.026 0.390 0.432 0.421 0.420 0.424 0.417 0.429 0422 0.427 0.428 0.438 0.435
5% 0.008 0.275 0.312 0.311 0.310 0.308 0.312 0.316 0.312 0.303 0.310 0.309 0.305
1% 0.000 0.111 0.133 0.131 0.130 0.134 0.136 0.138 0.142 0.134 0.136 0.134 0.139

Number of Factors = 7
10% 0.051 0.126 0.102 0.101 0.097 0.096 0.092 0.092 0.091 0.090 0.091 0.089 0.092
5% 0.026 0.062 0.052 0.053 0.053 0.052 0.051 0.051 0.048 0.052 0.056 0.056 0.056
1% 0.003 0.009 0.011 0.010 0.011 0.012 0.010 0.011 0.010 0.011 0.013 0.011 0.010

Panel C: R? = 10%

Number of Factors = 5
10% 0.042 0.149 0.149 0.136 0.133 0.140 0.133 0.142 0.137 0.136 0.134 0.134 0.139
5% 0.017 0.070 0.076 0.086 0.082 0.083 0.085 0.082 0.082 0.083 0.077 0.079 0.090
1% 0.003 0.007 0.024 0.021 0.025 0.019 0.021 0.021 0.017 0.017 0.019 0.020 0.022

Number of Factors = 4
10% 0.018 0.313 0.373 0.376 0.382 0.384 0.378 0.386 0.384 0.379 0.375 0.369 0.366
5% 0.004 0.191 0.258 0.255 0.269 0.269 0.264 0.261 0.267 0.269 0.268 0.261 0.261
1% 0.002 0.037 0.110 0.111 0.117 0.119 0.121 0.121 0.117 0.108 0.107 0.108 0.112

Number of Factors = 7
10% 0.039 0.144 0.155 0.150 0.142 0.136 0.140 0.138 0.143 0.138 0.146 0.136 0.140
5% 0.013 0.075 0.089 0.086 0.088 0.093 0.093 0.089 0.090 0.093 0.087 0.087 0.087
1% 0.002 0.006 0.029 0.026 0.026 0.025 0.025 0.025 0.020 0.022 0.026 0.026 0.027

The table reports the frequency of rejecting the null hypothesis Hy : )\5 = )\57* based on the 90%, 95%, and
99% credible intervals of our Bayesian estimates in Proposition 1. A} is defined in equation (6), and X5 is AJ’s
pseudo-true value. We consider strong factors, with Rg € {10%, 20%, 30%}. We simulate monthly observations
of g; and r; by assuming that i) the true number of latent factors is 5, ii) the time series sample size is 600

quarters, and iii) the true S = 16. We estimate several model configurations with different numbers of factors
(4, 5, and 7), and S = 24. The number of Monte Carlo simulations is 1,000.
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Table IA.IV: Testing risk premia of useless factors at quarterly frequencies (7" = 200)

S=0 1 2 3 4 5 6 7 8 9 10 11 12

Panel A: Rg =30%

Number of Factors = 5
10% 0.032 0.036 0.043 0.047 0.052 0.051 0.057 0.056 0.060 0.067 0.072 0.073 0.073
5% 0.016 0.015 0.014 0.019 0.022 0.027 0.027 0.029 0.036 0.034 0.039 0.038 0.039
1% 0.003 0.001 0.002 0.005 0.007 0.008 0.008 0.007 0.010 0.012 0.012 0.012 0.012

Number of Factors = 4
10% 0.027 0.038 0.048 0.049 0.051 0.048 0.047 0.053 0.052 0.052 0.059 0.063 0.065
5% 0.011 0.016 0.021 0.027 0.027 0.026 0.027 0.027 0.031 0.028 0.030 0.030 0.031
1% 0.001 0.000 0.003 0.006 0.005 0.004 0.008 0.004 0.006 0.006 0.008 0.009 0.009

Number of Factors = 7
10% 0.023 0.029 0.040 0.040 0.046 0.053 0.049 0.054 0.054 0.056 0.060 0.062 0.063
5% 0.008 0.009 0.017 0.022 0.024 0.028 0.027 0.028 0.029 0.031 0.033 0.038 0.034
1% 0.002 0.001 0.002 0.004 0.005 0.006 0.006 0.012 0.009 0.008 0.009 0.009 0.010

Panel B: R, = 20%

Number of Factors = 5
10% 0.015 0.025 0.029 0.036 0.038 0.043 0.047 0.049 0.050 0.054 0.050 0.053 0.053
5% 0.006 0.011 0.013 0.014 0.019 0.021 0.021 0.025 0.023 0.025 0.028 0.028 0.030
1% 0.002 0.003 0.003 0.007 0.006 0.004 0.006 0.005 0.005 0.007 0.005 0.004 0.004

Number of Factors = 4
10% 0.027 0.028 0.034 0.040 0.043 0.043 0.045 0.047 0.050 0.053 0.053 0.051 0.051
5% 0.012 0.011 0.010 0.018 0.017 0.018 0.017 0.019 0.021 0.025 0.026 0.027 0.027
1% 0.001 0.002 0.002 0.002 0.001 0.003 0.003 0.004 0.004 0.005 0.005 0.006 0.004

Number of Factors = 7
10% 0.011 0.022 0.023 0.028 0.036 0.039 0.039 0.045 0.050 0.051 0.055 0.052 0.050
5% 0.006 0.008 0.013 0.018 0.018 0.022 0.023 0.023 0.024 0.026 0.023 0.022 0.019
1% 0.002 0.001 0.003 0.004 0.004 0.003 0.004 0.004 0.004 0.005 0.005 0.005 0.006

Panel C: Rg =10%

Number of Factors = 5
10% 0.026 0.022 0.027 0.030 0.033 0.034 0.033 0.033 0.032 0.031 0.033 0.036 0.035
5% 0.010 0.007 0.014 0.014 0.015 0.014 0.016 0.018 0.017 0.017 0.018 0.018 0.016
1% 0.001 0.000 0.000 0.002 0.002 0.001 0.002 0.002 0.003 0.000 0.002 0.003 0.003

Number of Factors = 4
10% 0.023 0.024 0.027 0.029 0.036 0.033 0.027 0.031 0.026 0.032 0.031 0.031 0.033
5% 0.010 0.010 0.019 0.016 0.019 0.013 0.013 0.014 0.013 0.013 0.015 0.015 0.014
1% 0.002 0.003 0.001 0.003 0.003 0.004 0.004 0.005 0.004 0.003 0.004 0.003 0.003

Number of Factors = 7
10% 0.025 0.017 0.021 0.022 0.025 0.019 0.022 0.021 0.021 0.019 0.021 0.025 0.022
5% 0.005 0.006 0.009 0.008 0.010 0.008 0.013 0.013 0.011 0.010 0.014 0.014 0.016
1% 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.002

The table reports the frequency of rejecting the null hypothesis Hy : )\5 = 0 based on the 90%, 95%, and 99%
credible intervals of our Bayesian estimates in Proposition 1. )\5 is defined in equation (6). We consider useless
factors with different degrees of persistency; that is, the persistent component in g; accounts for 10%, 20%, or
30% of time series variations. We simulate quarterly observations of g; and r; by assuming that i) the true
number of latent factors is 5, ii) the time series sample size is 200 quarters, and iii) g; is orthogonal to ;. We
estimate several model configurations with different numbers of factors (4, 5, and 7), and S = 12. The number
of Monte Carlo simulations is 1,000.
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Table IA.V: Testing risk premia of useless factors at monthly frequencies (7" = 600)

S=0 2 4 6 8 10 12 14 16 18 20 22 24

Panel A: Rg =30%

Number of Factors = 5
10% 0.019 0.038 0.046 0.051 0.055 0.061 0.066 0.078 0.083 0.085 0.086 0.090 0.089
5% 0.006 0.013 0.017 0.024 0.029 0.033 0.035 0.035 0.046 0.048 0.049 0.053 0.049
1% 0.001 0.001 0.002 0.003 0.006 0.006 0.007 0.007 0.009 0.013 0.013 0.014 0.013

Number of Factors = 4
10% 0.015 0.032 0.044 0.054 0.059 0.065 0.076 0.082 0.086 0.088 0.093 0.094 0.089
5% 0.009 0.013 0.019 0.024 0.032 0.033 0.039 0.043 0.045 0.051 0.051 0.049 0.050
1% 0.000 0.002 0.003 0.006 0.009 0.011 0.013 0.011 0.010 0.011 0.015 0.013 0.013

Number of Factors = 7
10% 0.013 0.024 0.029 0.041 0.050 0.053 0.063 0.065 0.075 0.077 0.089 0.088 0.082
5% 0.005 0.014 0.016 0.022 0.025 0.026 0.029 0.034 0.038 0.043 0.043 0.043 0.044
1% 0.000 0.000 0.002 0.004 0.005 0.006 0.007 0.007 0.008 0.011 0.014 0.016 0.017

Panel B: R, = 20%

Number of Factors = 5
10% 0.017 0.035 0.040 0.056 0.060 0.060 0.073 0.072 0.070 0.076 0.073 0.076 0.073
5% 0.003 0.016 0.026 0.027 0.040 0.040 0.035 0.042 0.045 0.045 0.042 0.044 0.042
1% 0.001 0.005 0.007 0.006 0.012 0.010 0.009 0.008 0.011 0.013 0.015 0.014 0.014

Number of Factors = 4
10% 0.020 0.037 0.052 0.052 0.062 0.068 0.072 0.075 0.076 0.079 0.074 0.081 0.079
5% 0.007 0.013 0.026 0.030 0.034 0.039 0.035 0.039 0.037 0.042 0.040 0.044 0.042
1% 0.001 0.004 0.004 0.005 0.008 0.009 0.008 0.007 0.012 0.010 0.009 0.010 0.010

Number of Factors = 7
10% 0.009 0.026 0.034 0.036 0.046 0.045 0.0563 0.057 0.053 0.054 0.058 0.058 0.063
5% 0.003 0.012 0.018 0.018 0.020 0.023 0.027 0.030 0.036 0.035 0.036 0.041 0.040
1% 0.000 0.003 0.003 0.004 0.006 0.007 0.007 0.008 0.006 0.009 0.010 0.007 0.008

Panel C: Rg =10%

Number of Factors = 5
10% 0.011 0.021 0.024 0.032 0.038 0.040 0.044 0.042 0.043 0.043 0.045 0.046 0.046
5% 0.003 0.005 0.008 0.010 0.013 0.011 0.014 0.021 0.017 0.018 0.018 0.022 0.021
1% 0.000 0.000 0.001 0.001 0.001 0.001 0.003 0.002 0.003 0.002 0.003 0.008 0.006

Number of Factors = 4
10% 0.018 0.029 0.028 0.035 0.037 0.037 0.041 0.047 0.049 0.045 0.054 0.044 0.040
5% 0.005 0.010 0.006 0.015 0.015 0.013 0.015 0.019 0.022 0.021 0.018 0.019 0.020
1% 0.000 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.002 0.004 0.004 0.003

Number of Factors = 7
10% 0.007 0.010 0.015 0.018 0.023 0.028 0.032 0.032 0.035 0.031 0.034 0.037 0.039
5% 0.001 0.005 0.003 0.007 0.009 0.007 0.010 0.010 0.012 0.009 0.010 0.013 0.013
1% 0.000 0.000 0.001 0.001 0.001 0.002 0.001 0.000 0.002 0.002 0.002 0.002 0.002

The table reports the frequency of rejecting the null hypothesis Hy : )\5 = 0 based on the 90%, 95%, and 99%
credible intervals of our Bayesian estimates in Proposition 1. )\5 is defined in equation (6). We consider useless
factors with different degrees of persistency; that is, the persistent component in g; accounts for 10%, 20%, or
30% of time series variations. We simulate quarterly observations of g; and r; by assuming that i) the true
number of latent factors is 5, ii) the time series sample size is 600 months, and iii) g; is orthogonal to r,. We
estimate several model configurations with different numbers of factors (4, 5, and 7), and S = 24. The number
of Monte Carlo simulations is 1,000.
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Table IA.VI: Bayesian estimates of Rg and corr( ft, ft) for strong and useless factors

Number of factors: K=4 K=5 K=7
True R; = 10%  20% 30% 10% 20% 30% 10% 20%  30%

Panel A. Posterior distributions of Rg
T = 200, strong factors

median 0.122 0.187 0.259 0.142 0.224 0.311 0.156 0.235 0.320

5th 0.065 0.109 0.155 0.081 0.142 0.206 0.094 0.152 0.217

95th 0.199 0.288 0.370 0.228 0.325 0.421 0.240 0.337 0.428
T = 600, strong factors

median 0.104 0.185 0.272 0.112 0.204 0.297 0.116 0.207 0.300

5th 0.064 0.130 0.201 0.073 0.148 0.227 0.074 0.151 0.231

95th 0.149 0.249 0.344 0.158 0.264 0.370 0.163 0.267 0.373
T = 200, useless factors

median 0.081 0.083 0.084 0.091 0.094 0.097 0.109 0.113 0.117

5th 0.045 0.046 0.045 0.054 0.055 0.054 0.069 0.072 0.073

95th 0.133 0.140 0.145 0.145 0.154 0.167 0.165 0.178 0.195
T = 600, useless factors

median 0.041 0.042 0.044 0.046 0.047 0.049 0.052 0.055 0.059

5th 0.027 0.026 0.026 0.030 0.031 0.030 0.035 0.037 0.037

95th 0.063 0.071 0.080 0.067 0.077 0.087 0.075 0.086 0.102

Panel B. Posterior distributions of corr(f;, f;)
T = 200, strong factors

median 0.702 0.810 0.842 0.773 0.902 0.937 0.677 0.855 0.910

5th 0.324 0.605 0.736 0.386 0.745 0.860 0.294 0.665 0.809

95th 0.849 0.883 0.895 0.910 0.951 0.967 0.864 0.926 0.951
T = 600, strong factors

median 0.885 0.916 0.927 0.919 0.960 0.972 0.882 0.944 0.963

5th 0.760 0.873 0.893 0.812 0.925 0.953 0.747 0.901 0.940

95th 0.928 0.944 0.950 0.955 0.974 0.980 0.934 0.964 0.974

The table reports the Bayesian estimates of RZ and corr( fi. f1) for strong and useless factors: (1) R measures the

percentage of g;’s time series variations explained by asset returns’ latent factors, and (2) corr( ft, f+) quantifies
the correlation between the true f; and its estimate, ft = ﬁ;ﬁt. For useless factors, we report only R;. In each
model, we report the median, 5th, and 95th percentiles based on 1,000 simulations. We consider strong and
useless factors with different degrees of persistency; that is, the persistent component in g; accounts for 10%,
20%, or 30% of time series variations. We simulate monthly or quarterly observations of g; and r; by assuming
that the true number of latent factors is 5. We estimate several model configurations with different numbers of
factors (K € {4,5,7}), and S = 12 for T = 200 (S = 24 for T = 600).
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Table TA.VII: Size and power of the Bayesian estimates and Giglio and Xiu (2021)

Bayesian Estimation Giglio and Xiu (2021)
Five factors Seven factors Five factors Seven factors

10% 5% 1% 10% 5% 1% 10% 5% 1%  10% 5% 1%

Panel A. Size

T =200
10% 0.066 0.030 0.012 0.068 0.026 0.009 0.072 0.033 0.012 0.075 0.029 0.012
20% 0.087 0.042 0.008 0.085 0.045 0.005 0.091 0.048 0.008 0.082 0.046 0.005
30% 0.095 0.058 0.008 0.089 0.053 0.008 0.096 0.059 0.009 0.093 0.055 0.008

T =600
10% 0.101 0.047 0.009 0.098 0.043 0.010 0.103 0.053 0.007 0.111 0.041 0.007
20% 0.100 0.050 0.011 0.097 0.048 0.008 0.099 0.051 0.009 0.100 0.056 0.008
30% 0.104 0.050 0.016 0.106 0.048 0.016 0.110 0.048 0.013 0.099 0.050 0.012

Panel B. Power

T =200
10% 0.278 0.190 0.051 0.267 0.160 0.046 0.286 0.188 0.045 0.288 0.189 0.040
20% 0.403 0.279 0.119 0.387 0.265 0.101 0.397 0.282 0.101 0.396 0.273 0.099
30% 0.484 0.371 0.169 0.466 0.358 0.154 0.478 0.359 0.151 0.480 0.370 0.155

T = 600
10% 0.520 0.410 0.186 0.499 0.391 0.189 0.523 0.414 0.174 0.507 0.391 0.176
20% 0.658 0.545 0.307 0.659 0.530 0.298 0.652 0.540 0.295 0.649 0.530 0.287
30% 0.715 0.598 0.365 0.708 0.583 0.364 0.711 0.590 0.343 0.699 0.581 0.334

Panel A reports the frequency of rejecting the null hypothesis Hy : A, = A; based on the 90%, 95%, and 99%
credible intervals given by (1) our Bayesian estimates in Proposition 1 and (2) the frequentist test statistics in
Theorem 1 of Giglio and Xiu (2021). A} is A;’s pseudo-true value. Differently, Panel B reports the frequency of
rejecting the null hypothesis Hy : Ay = 0. We consider strong factors, with R} € {10%,20%, 30%}. We simulate
quarterly (7' = 200) and monthly (T" = 600) observations of g; and 7; by assuming that i) the true number of
latent factors is five and ii) g; correlates with only on the contemporaneous @; (S = 0). We estimate several
model configurations with different numbers of factors (5, 7). The number of Monte Carlo simulations is 1,000.

Table TA.VIII: Bayesian estimates of Rg and corr( ft, fi) for strong and useless factors

Panel A. R? Panel B. corr(f,, f,)
Number of factors: K=5 K=7 K=5 K=7
True R = 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20%  30%
Quarterly frequency (T = 200)
median 0.146 0.223 0.310 0.157 0.232 0.318 0.762 0.883 0.921 0.677 0.831 0.888
5th 0.081 0.139 0.208 0.097 0.144 0.219 0.343 0.724 0.846 0.283 0.635 0.795
95th 0.219 0.328 0.424 0.229 0.333 0.428 0.893 0.936 0.953 0.842 0.905 0.931

Monthly frequency (7 = 600)

median 0.115 0.208 0.299 0.118 0.210 0.301 0.913 0.953 0.965 0.874 0.935 0.953
5th 0.069 0.148 0.227 0.074 0.151 0.229 0.794 0.916 0.942 0.717 0.888 0.928
95th 0.165 0.270 0.376 0.168 0.272 0.377 0.951 0.969 0.976 0.926 0.957 0.968

The table reports the Bayesian estimates of Rg and corr( ft, f#) for strong factors: (1) Rg measures the percentage
of g¢’s time series variations explained by €,:, and (2) corr( ft, f+) quantifies the correlation between the true f;
and its estimate, ft = ﬁ;évt. In each model, we report the median, 5th, and 95th percentiles based on 1,000
simulations. We consider several degrees of persistency; that is, the persistent component in g; accounts for
10%, 20%, or 30% of time series variations. We simulate monthly or quarterly observations of g; and 7; by

assuming that the true number of latent factors is 5. We estimate several model configurations with different
numbers of factors (K € {5,7}), and S =12 for T'= 200 (S = 24 for T = 600).
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Table TA.IX: Testing unconditional risk premia of strong factors at quarterly frequencies
(T = 200) when factors command time-varying risk premia in simulations

S=0 1 2 3 4 5 6 7 8 9 10 11 12

Panel A: Rg =30%

Number of Factors = 5
10% 0.088 0.099 0.102 0.111 0.115 0.115 0.111 0.114 0.113 0.115 0.111 0.113 0.112
5% 0.041 0.054 0.058 0.059 0.060 0.060 0.061 0.059 0.059 0.059 0.058 0.058 0.056
1% 0.010 0.013 0.017 0.015 0.015 0.016 0.016 0.017 0.019 0.017 0.017 0.018 0.019

Number of Factors = 7
10% 0.092 0.103 0.108 0.112 0.114 0.111 0.111 0.107 0.106 0.107 0.105 0.102 0.095
5% 0.048 0.050 0.056 0.056 0.053 0.055 0.057 0.055 0.057 0.053 0.054 0.054 0.055
1% 0.010 0.011 0.012 0.015 0.015 0.014 0.014 0.015 0.015 0.013 0.014 0.012 0.014

Panel B: Rg =20%

Number of Factors = 5
10% 0.103 0.104 0.103 0.097 0.096 0.100 0.103 0.099 0.103 0.108 0.110 0.114 0.103
5% 0.054 0.048 0.052 0.047 0.048 0.049 0.045 0.049 0.050 0.053 0.050 0.055 0.052
1% 0.008 0.013 0.014 0.011 0.008 0.008 0.011 0.013 0.013 0.012 0.013 0.012 0.013

Number of Factors = 7
10% 0.091 0.086 0.086 0.087 0.083 0.082 0.088 0.092 0.091 0.093 0.096 0.097 0.095
5% 0.048 0.045 0.046 0.048 0.045 0.044 0.044 0.043 0.047 0.050 0.054 0.051 0.051
1% 0.005 0.009 0.011 0.010 0.009 0.009 0.012 0.013 0.011 0.012 0.012 0.013 0.012

Panel C: R? = 10%

Number of Factors = 5
10% 0.084 0.118 0.121 0.127 0.127 0.132 0.124 0.133 0.132 0.127 0.122 0.124 0.125
5% 0.034 0.064 0.067 0.063 0.070 0.071 0.065 0.067 0.069 0.064 0.068 0.065 0.067
1% 0.007 0.015 0.016 0.015 0.018 0.015 0.012 0.014 0.014 0.014 0.012 0.012 0.012

Number of Factors = 7
10% 0.072 0.121 0.113 0.123 0.129 0.127 0.136 0.134 0.137 0.129 0.127 0.126 0.122
5% 0.027 0.066 0.069 0.069 0.072 0.072 0.071 0.064 0.069 0.071 0.069 0.066 0.065
1% 0.004 0.015 0.015 0.012 0.015 0.017 0.016 0.012 0.011 0.011 0.012 0.010 0.011

-
e . . sMy v . .
The table focuses on unconditional risk premia )\5 = Zf:() Zzzo pkln 5 and reports the frequency of rejecting

the null hypothesis Hy : )\5 = )\*gg’* based on the 90%, 95%, and 99% credible intervals of our Bayesian estimates
in Proposition A2. )\5’* is )\f’s pseudo-true value. We consider strong factors, with R; € {10%,20%, 30%}.
We simulate quarterly observations of g; and r; by assuming that i) the true number of latent factors is 5, ii)
the time series sample size is 200 quarters, iii) the true S = 8, and iv) the five latent factors follow a VAR(1)
process. We estimate several model configurations with different numbers of factors (5, 7), and S = 12. The
number of Monte Carlo simulations is 1,000.
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Table TA.X: Testing unconditional risk premia of strong factors at monthly frequencies (7'

600) when factors command time-varying risk premia in simulations

S=0 2 4 6 8 10 12 14 16 18 20 22 24
Panel A: Rg =30%
Number of Factors = 5
10% 0.080 0.107 0.127 0.117 0.121 0.121 0.121 0.117 0.119 0.118 0.119 0.115 0.116
5% 0.038 0.054 0.068 0.062 0.063 0.062 0.062 0.065 0.056 0.058 0.056 0.056 0.059
1% 0.005 0.012 0.012 0.016 0.016 0.017 0.017 0.017 0.015 0.016 0.016 0.017 0.017
Number of Factors = 7
10% 0.077 0.110 0.123 0.115 0.117 0.115 0.120 0.113 0.118 0.115 0.121 0.120 0.114
5% 0.038 0.054 0.062 0.065 0.062 0.058 0.056 0.058 0.053 0.053 0.054 0.052 0.049
1% 0.006 0.006 0.011 0.012 0.013 0.013 0.014 0.012 0.014 0.015 0.013 0.014 0.016
Panel B: Rg =20%
Number of Factors = 5
10% 0.075 0.092 0.107 0.107 0.106 0.109 0.112 0.110 0.111 0.109 0.117 0.112 0.110
5% 0.035 0.050 0.059 0.060 0.062 0.063 0.059 0.065 0.063 0.059 0.058 0.059 0.055
1% 0.004 0.011 0.013 0.011 0.011 0.011 0.012 0.012 0.013 0.013 0.012 0.013 0.013
Number of Factors = 7
10% 0.069 0.099 0.100 0.105 0.105 0.103 0.103 0.107 0.104 0.102 0.105 0.105 0.109
5% 0.027 0.050 0.054 0.054 0.059 0.057 0.058 0.061 0.060 0.056 0.057 0.057 0.053
1% 0.003 0.008 0.012 0.009 0.013 0.011 0.013 0.013 0.014 0.013 0.011 0.013 0.015
Panel C: R? = 10%
Number of Factors = 5
10% 0.045 0.104 0.102 0.111 0.117 0.116 0.117 0.116 0.116 0.119 0.118 0.110 0.114
5% 0.020 0.049 0.051 0.056 0.052 0.069 0.072 0.068 0.066 0.064 0.068 0.065 0.062
1% 0.004 0.003 0.018 0.014 0.012 0.012 0.017 0.017 0.016 0.017 0.014 0.013 0.011
Number of Factors = 7
10% 0.044 0.100 0.104 0.106 0.116 0.114 0.120 0.116 0.115 0.123 0.115 0.117 0.113
5% 0.022 0.057 0.052 0.061 0.057 0.060 0.063 0.061 0.060 0.060 0.059 0.064 0.061
1% 0.004 0.004 0.016 0.012 0.011 0.011 0.010 0.011 0.012 0.013 0.013 0.012 0.013
psm, Av

The table focuses on unconditional risk premia )\5 = Zf:() oo
the null hypothesis Hy : )\5 = )\*gg’* based on the 90%, 95%, and 99% credible intervals of our Bayesian estimates
in Proposition A2. )\g’* is )\g’s pseudo-true value. We consider strong factors, with RZ € {10%, 20%, 30%}. We
simulate monthly observations of g; and r; by assuming that i) the true number of latent factors is 5, ii) the

1+S

and reports the frequency of rejecting

time series sample size is 600 quarters, and iii) the true S = 16, and iv) the five latent factors follow a VAR(1)

process. We estimate several model configurations with different numbers of factors (5, 7), and S = 24. The

number of Monte Carlo simulations is 1,000.
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Table TA.XI: Factors’ risk premia: Six- and seven-factor models

Panel A. Quarterly variables, S = 12 quarters

S = 0 2 4 6 8 10 12 R:
Number of factors = 6
AEM intermediary 0.103***  0.115***  0.130** 0.124** 0.111 0.092 0.083 15.2%
Capital share growth 0.010 0.010 0.006 0.001 -0.001 -0.002 -0.005 11.1%
GDP growth 0.021 0.065* 0.100%* 0.123* 0.136* 0.146* 0.152* 24.1%
IP growth 0.001 0.053* 0.090%* 0.111%* 0.123* 0.128* 0.130%* 40.2%
Durable consumption growth -0.003 0.075%%  0.112**  0.129%%  0.136*%*  0.143**  0.150**  18.4%
Nondurable consumption growth 0.031**  0.082**  0.109**  0.138**  0.160**  0.175**  0.189**  23.3%
Service consumption growth 0.034 0.053 0.074 0.085 0.091 0.100 0.110 11.8%
Nondurable + service 0.041%* 0.086* 0.124* 0.153* 0.176* 0.194* 0.212* 18.6%
Labor income growth 0.011 0.007 0.006 0.007 0.008 0.009 0.013 10.5%
Dividend growth of S&P500 0.000 0.020 0.060* 0.106** 0.153** 0.195%* 0.232** 44.7%
Macro PC1 (FRED-QD) 0.013 0.076** 0.137** 0.184** 0.220** 0.251** 0.273** 48.7%
Macro PC2 (FRED-QD) 0.063 0.100 0.104 0.092 0.078 0.066 0.053 41.0%
Macro PC3 (FRED-QD) 0.001 -0.001 -0.003 -0.006 -0.012 -0.022 -0.034 17.8%
Macro PC4 (FRED-QD) -0.132%%% - _0.150%FF  -0.200%**  -0.255%*F*F  -0.305%** -0.353*** -0.397*** 48.0%
Macro PC5 (FRED-QD) 0.084** 0.095* 0.079 0.057 0.038 0.024 0.013 30.5%
Number of factors =7
AEM intermediary 0.114%%*%  0.115%**  (0.123**  0.113**  0.099* 0.079 0.067 16.5%
Capital share growth 0.006 0.006 0.004 0.001 0.000 -0.002 -0.003 10.3%
GDP growth 0.018 0.060* 0.094* 0.116* 0.127* 0.136* 0.142%* 24.5%
IP growth 0.002 0.051%* 0.086* 0.106* 0.118* 0.124* 0.126* 41.1%
Durable consumption growth -0.002 0.070*%*  0.105%**  0.123%**  0.131%**  (0.140%**  0.146***  18.7%
Nondurable consumption growth 0.027**  0.075**  0.102**  0.130**  0.150**  0.165**  0.179**  24.8%
Service consumption growth 0.027 0.046 0.065 0.075 0.080 0.089 0.099 11.8%
Nondurable + service 0.039* 0.083* 0.120* 0.150* 0.173* 0.191* 0.209%* 18.9%
Labor income growth 0.007 0.004 0.004 0.004 0.005 0.007 0.009 11.2%
Dividend growth S&P500 -0.001 0.014 0.051* 0.095** 0.139** 0.179** 0.215%* 46.4%
Macro PC1 (FRED-QD) 0.013 0.071** 0.129** 0.176** 0.211** 0.240** 0.263** 48.8%
Macro PC2 (FRED-QD) 0.061 0.095 0.098 0.086 0.074 0.062 0.050 41.4%
Macro PC3 (FRED-QD) 0.001 -0.002 -0.005 -0.008 -0.015 -0.027 -0.041 18.0%
Macro PC4 (FRED-QD) -0.134%%% - _0.153%FF  0.204%**  -0.262*FFF  -0.313***  _0.361F**F  -0.402*** 48.1%
Macro PC5 (FRED-QD) 0.044 0.063 0.061 0.056 0.051 0.047 0.044 36.5%
Panel B. Monthly variables, S = 24 months
S = 0 4 8 12 16 20 24 RZ
Number of factors = 6
Oil price change -0.018 -0.045* -0.056* -0.059* -0.064* -0.067* -0.068* 11.6%
TED spread change -0.005 -0.007 -0.005 -0.005 -0.005 -0.004 -0.004 12.9%
Nontraded HKM intermediary 0.102%FF  0.105%**  0.102%F*  0.097***  0.096***  0.094***  0.093***  61.4%
Traded HKM intermediary 0.117%F%  0.119%**  0.114%%*%  0.108***  0.105%%*  0.102***  0.101%**  71.5%
Nontraded liquidity 0.044** 0.065** 0.077** 0.087** 0.096** 0.104** 0.110** 15.4%
Alog(VIX) -0.126%** - -0.077FFF  -0.061***  -0.047FFF  -0.040*** -0.035*** -0.030*** 51.7%
Number of factors =7
Oil price change -0.016 -0.041* -0.052* -0.055* -0.058* -0.061* -0.063* 11.4%
TED spread change -0.006 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 18.6%
Nontraded HKM intermediary 0.100%**  0.103***  0.099*%**  0.096***  0.094***  0.092***  0.091***  61.5%
Traded HKM intermediary 0.116%*%*  0.118%** Q. 111%%F  0.105%**  0.102%%*  0.099***  0.097***  71.9%
PS liquidity 0.043** 0.063** 0.074** 0.083** 0.092** 0.099** 0.105%* 15.4%
Alog(VIX) -0.129%%%  _0.078%FF  _0.061***  -0.048***  _0.040*** _0.035%** -0.030**  51.6%

The table repeats the same analysis in Table 1 of the main text. However, unlike Table 1, we consider six- and
seven-factor models for asset returns in this table.
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Table TA.XII: Which principal components of returns drive the common component ﬁng)t?

pPC1 PC2 PC3 PC4

PC5 PC6 PC7 Total R?

AEM intermediary
Capital share growth
GDP growth

IP growth

Durable consumption growth
Nondurable consumption growth

Service consumption growt
Nondurable + service
Labor income growth
Dividend growth of SP500
Macro PC1 (FRED-QD)
Macro PC2 (FRED-QD)
Macro PC3 (FRED-QD)
Macro PC4 (FRED-QD)
Macro PC5 (FRED-QD)

Oil price change
TED spread change

h

Nontraded HKM intermediary

Traded HKM intermediary
PS liquidity
Alog(VIX)

0.09 021 042 0.06 0.06 0.07 0.05
0.21 0.13 0.13 0.08 0.07 0.28 0.05
0.66 0.02 0.02 0.07 0.15 0.03 0.03
0.69 0.01 0.01 0.04 0.17 0.04 0.03
0.38 0.07 0.16 0.18 0.09 0.07 0.03
0.67 0.02 0.06 0.02 0.12 0.04 0.06
0.20 0.07 0.07 0.34 0.10 0.09 0.08
0.53 0.04 0.05 0.15 0.10 0.05 0.05
0.05 0.06 0.07 0.13 0.07 0.20 0.28
0.56 0.04 0.07 0.12 0.14 0.01 0.04
0.76 0.01 0.01 0.01 0.17 0.01 0.02
0.78 0.03 0.01 0.03 0.06 0.07 0.02
0.14 0.05 0.07 023 0.11 0.28 0.06
0.77 0.07 0.07 0.01 0.06 0.01 0.01
0.40 0.05 0.05 0.02 0.02 0.13 0.22
Panel B. Monthly variables, S = 24 months
0.10 0.06 0.16 0.23 0.05 0.09 0.11
0.11 0.04 0.03 0.13 0.09 0.01 0.14
0.77 0.14 0.00 0.06 0.02 0.01 0.00
0.79 0.14 0.00 0.04 0.02 0.01 0.00
0.82 0.03 0.02 0.03 0.01 0.05 0.00
0.87 0.06 0.02 0.01 0.00 0.00 0.00

Panel A. Quarterly variables, S = 12 quarters

0.95
0.95
0.99
0.99
0.98
0.98
0.94
0.97
0.87
0.97
0.99
1.00
0.94
0.99
0.89

0.80
0.55
1.00
1.00
0.96
0.96

The table reports the posterior means of the squared correlation between the common component estimates,
ﬁ;f)t, and the first seven principal components of asset returns. The cross-section of test assets consists of
275 Fama-French characteristic-sorted portfolios. In the last column, we also report the sum of the first seven
columns and denote it as the total R2. All variables are standardized to have unit variances. We consider a
seven-factor model for asset returns. Panel A tabulates the estimates of quarterly factors, using a lag of 12
quarters in g;’s equations. Panel B tabulates the estimates of monthly factors, using a lag of 24 months in
estimation. Definition and data sources of factors and test assets can be found in Internet Appendix IA.3.

Table TA.XIII: Are MA components of macro factors similar? (six- and seven-factor models)

GDP growth IP growth Durable

Nondurable

Service

Dividend Macro PC1 Macro PC2 Macro PC4

GDP growth 1.00 0.89
IP growth 0.89 1.00
Durable 0.72 0.74
Nondurable 0.69 0.72
Service 0.48 0.38
Dividend growth 0.36 0.35
Macro PC1 0.89 0.84
Macro PC2 0.47 0.42
Macro PC4 -0.43 -0.23
GDP growth 1.00 0.90
IP growth 0.90 1.00
Durable 0.71 0.74
Nondurable 0.67 0.70
Service 0.50 0.40
Dividend growth 0.34 0.33
Macro PC1 0.89 0.84
Macro PC2 0.47 0.43
Macro PC4 -0.43 -0.25

Panel A. Number of factors = 6

0.72 0.69 0.48 0.36
0.74 0.72 0.38 0.35
1.00 0.69 0.36 0.31
0.69 1.00 0.45 0.45
0.36 0.45 1.00 0.14
0.31 0.45 0.14 1.00
0.64 0.71 0.48 0.63
0.38 0.41 0.15 -0.22
-0.22 -0.52 -0.33 -0.59
Panel B. Number of factors = 7
0.71 0.67 0.50 0.34
0.74 0.70 0.40 0.33
1.00 0.68 0.37 0.30
0.68 1.00 0.43 0.43
0.37 0.43 1.00 0.18
0.30 0.43 0.18 1.00
0.65 0.68 0.52 0.61
0.39 0.39 0.14 -0.26
-0.23 -0.52 -0.34 -0.55

0.89
0.84
0.64
0.71
0.48
0.63
1.00
0.17

-0.51

0.89
0.84
0.65
0.68
0.52
0.61
1.00
0.16

-0.52

0.47
0.42
0.38
0.41
0.15
-0.22
0.17
1.00
-0.17

0.47
0.43
0.39
0.39
0.14
-0.26
0.16
1.00
-0.17

-0.43
-0.23
-0.22
-0.52
-0.33
-0.59
-0.51
-0.17

1.00

-0.43
-0.25
-0.23
-0.52
-0.34
-0.55
-0.52
-0.17

1.00

The table reports the correlation among the moving average components spanned by asset returns’ latent factors,

2;9:0 psn;—vt,s, with S = 12 quarters. The cross-section of test assets consists of FF275. We consider six- and
Definition and data sources of factors and test assets can be found in

seven-factor models for asset returns.
Internet Appendix TA.3.
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Table TA.XIV: Can external variables predict principal components of asset returns?

Quarterly: Q3 1963 — Q4 2019 Monthly: July 1963 — Dec 2019
PC1, PC2 PC3, PC4, PC5, PC1, PC2, PC3, PC4, PC5,;
Panel A. Use only external predictors
PE;_; 0.058 -0.001 0.025 0.122 0.021 0.032 0.000 -0.002 -0.035 0.065
(0.08) (0.081) (0.081) (0.08) (0.081) (0.046) (0.046) (0.046) (0.046) (0.046)
TS;.1  -0.056 0.054 0.085 0.095 0.048 -0.037 0.023 -0.053 -0.043 0.05
(0.071)  (0.072) (0.072) (0.071) (0.072) (0.041) (0.041) (0.041) (0.041) (0.041)
DS,;  -0.077 -0.066 0.053 -0.092 -0.012 -0.054 -0.029 -0.032 0.038 -0.055
(0.08) (0.081) (0.08) (0.079) (0.081) (0.046) (0.046) (0.046) (0.046) (0.046)
VS -0.109 -0.020 -0.009 -0.030 -0.050 -0.088**  -0.017 0.028 0.060 0.005
(0.073)  (0.074) (0.074) (0.073) (0.074) (0.042) (0.042) (0.042) (0.042) (0.042)
Rﬁdj 0.92% -1.31% -0.72% 1.58% -1.49% 0.79% -0.49% -0.08% -0.07% 0.57%
Panel B. Use both external predictors and lagged PCs
PC1,-; -0.04 0.097 -0.069 -0.305***  0.036 0.128%**  0.227*** 0.075* S0.121%FF 0,162+
(0.067)  (0.067) (0.066) (0.064) (0.068) (0.038) (0.038) (0.039) (0.038) (0.037)
PC2;_, -0.154%% 0.024 0.042 0.059 -0.161%** -0.05 -0.02 -0.041 0.023 -0.189%**
(0.066)  (0.066) (0.065) (0.063) (0.067) (0.038) (0.038) (0.038) (0.038) (0.037)
PC3;, 0.061 -0.114* 0.253*F*  -0.028 0.053 -0.021 -0.051 0.118%** 0.05 0.008
(0.068)  (0.068) (0.067) (0.065) (0.069) (0.038) (0.038) (0.039) (0.039) (0.037)
PC4,, 0.005 0 -0.174%%% 0.047 0.044 -0.008 0.006 -0.043 -0.078%F (. 12%**
(0.067)  (0.067) (0.066) (0.064) (0.068) (0.038) (0.038) (0.038) (0.038) (0.037)
PC5_, 0.13* -0.226%**  -0.052 0.14** 0.075 0.09%* 0.025 0.02 -0.075%%  0.004
(0.067)  (0.067) (0.066) (0.065) (0.068) (0.038) (0.038) (0.038) (0.038) (0.037)
PE,_; 0.063 0.013 0.025 0.103 0.029 0.029 0.002 0.004 -0.032 0.067
(0.08) (0.08) (0.079) (0.077) (0.081) (0.046) (0.045) (0.046) (0.046) (0.045)
TS,y  -0.065 0.066 0.012 0.068 0.049 -0.036 0.03 -0.039 -0.041 0.044
(0.073)  (0.073) (0.071) (0.07) (0.074) (0.041) (0.04) (0.041) (0.041) (0.04)
DS;—;  -0.094 -0.021 0.055 -0.125 -0.016 -0.039 -0.015 -0.021 0.027 -0.061
(0.08) (0.08) (0.078) (0.077) (0.081) (0.046) (0.045) (0.046) (0.046) (0.044)
VSi1  -0.113 -0.003 0.064 -0.084 -0.042 -0.07* 0.016 0.017 0.036 -0.025
(0.075)  (0.075) (0.074) (0.072) (0.076) (0.042) (0.042) (0.042) (0.042) (0.041)
R? 3.34% 3.78% 6.88% 11.12% 0.05% 2.8% 4.21% 1.52% 2.11% 7.51%

adj

The table reports the empirical results of regressing principal components (PCs) of asset returns on their one-
period lags and external predictors. The cross-section of test assets consists of 275 Fama-French characteristic-
sorted portfolios. We consider the predictability of the five largest PCs at both quarterly (left side) and monthly
(right side) frequencies. External predictors include the price-earning ratio of the SP500 index (PFE;_1), term
spread (T'S;_1), default spread (DS;_1), and value spread (V' S;_1). The numbers without parentheses are
coeflicient estimates, with their standard errors in the parentheses. If the coefficient estimate is significant in
the 90% (95%, 99%) significance level, it will be highlighted by * (**, ***). The final row shows the adjusted
R-squared (dej) in each regression. In Panel A, we regress PCs on only the four external predictors, while we
further add the one-period lags of PCs in Panel B. Definition and data sources of factors and test assets can be
found in Internet Appendix TA.3.
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Figure TA.1: Power of identifying strong factors

25

The figure plots the frequency of rejecting the null hypothesis H : )\5 = 0 based on the 90%, 95%, and 99%
credible intervals based on our Bayesian estimates in Proposition 1. )\g is defined in equation (6). We consider
strong factors, with Rg € {10%,20%, 30%}, and two sample sizes, T € {200,600}. In each simulated scenario,
we estimate several model configurations with different numbers of factors and different S. The number of

Monte Carlo simulations is 1,000.
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Figure TIA.2: Per-period mean returns of horizon-specific mimicking portfolios

This figure plots the per-period mean returns of g;—1_,++s’s horizon-specific mimicking portfolio, where S ranges
from 0 to 12 quarters. In particular, we project nontraded risk factor onto PCs of asset returns across different
horizons: w¥? = cov(vi_1t45) tcov(Vi—1t4+8, Gr—1-t+5), Where v;_1_4+g are the cumulative returns on
the PCs between ¢ — 1 and ¢t + S. Next, we estimate time-series averages of (wW¥F)Twv,, 0 < § < 12. The
cross-section of test assets consists of 275 Fama-French characteristic-sorted portfolios. We consider the first

five, six, and seven PCs in constructing the horizon-specific mimicking portfolios.
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Figure IA.3: Term structure of factor’s risk premia: Quarterly variables
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Figure TA.3: Term structure of factor’s risk premia: Quarterly variables
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Figure TA.3: Term structure of factor’s risk premia: Quarterly variables

The figure plots the term structure of risk premia estimates using Proposition 1, where the risk premia over
S horizons ()\gs ) are defined in equation (6). The cross-section of test assets consists of 275 Fama-French
characteristic-sorted portfolios. We consider five-, six- and seven-factor models for asset returns. We study
quarterly factors, whose risk premia are estimated using a lag of 12 quarters in ¢;’s equations. In addition
to the point estimates, we show the 68% and 90% Bayesian credible intervals, highlighted in pink and blue,
respectively. Definition and data sources of factors and test assets can be found in Internet Appendix IA.3.
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Figure TA.4: Term structure of factor’s risk premia: Monthly variables
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Figure TA.4: Term structure of factor’s risk premia: Monthly variables

The figure plots the term structure of risk premia estimates using Proposition 1, where the risk premia over
S horizons ()\5 ) are defined in equation (6). The cross-section of test assets consists of 275 Fama-French
characteristic-sorted portfolios. We consider five-, six- and seven-factor models for asset returns. We study
monthly factors, whose risk premia are estimated using a lag of 24 months in g;’s equations. For Fama-French
five factors, we also include their in-sample monthly Sharpe ratios (see black dotted lines). In addition to the
point estimates, we show the 68% and 90% Bayesian credible intervals, highlighted in pink and blue, respectively.
Definition and data sources of factors and test assets can be found in Internet Appendix IA.3.
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Figure IA.5: Moving average components of some macro factors
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Figure IA.5: Moving average components of some macro factors

The figure plots the time series of (posterior means of) moving average components spanned by asset returns’ la-
tent factors: Zf:o pSn;vt,s, with S = 12 quarters. The cross-section of test assets consists of 275 Fama-French
characteristic-sorted portfolios. We consider five-, six- and seven-factor models for asset returns. Definition and
data sources of factors and test assets can be found in Internet Appendix TA.3.
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Figure TA.6: Term structure of unconditional risk premia in time-varying models

The figure plots the term structure of unconditional risk premia estimates using Propositions 1 and A2. The
cross-section of test assets consists of 275 Fama-French characteristic-sorted portfolios. We consider the five-
factor models for asset returns. For quarterly (monthly) factors, risk premia are estimated using a lag of 12
quarters (24 months) in g¢’s equations. The blue dotted lines and the light blue shaded areas present the risk
premia estimates and their 90% posterior credible intervals under the conditional models using the method
described in Section 2.2. In the time-varying models, we model the dynamics of latent systematic factors as a
VAR(1) process. For comparison, we include the purple dotted lines and the related shaded areas, showing the
risk premia estimated using the unconditional models described in Section 2.1. Definition and data sources of
factors and test assets can be found in Internet Appendix TA.3.
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Figure TA.7: Term structure of unconditional risk premia in time-varying models with only
external predictors: PE ratio of S&P 500, Term spread, default spread, and value spread
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Figure TA.7: Term structure of unconditional risk premia in time-varying models with only
external predictors: PE ratio of S&P 500, Term spread, default spread, and value spread

The figure plots the term structure of unconditional risk premia estimates using Propositions 1 and A2. The
cross-section of test assets consists of 275 Fama-French characteristic-sorted portfolios. We consider the five-
factor models for asset returns. For quarterly (monthly) factors, risk premia are estimated using a lag of 12
quarters (24 months) in g;’s equations. The blue dotted lines and the light blue shaded areas present the risk
premia estimates and their 90% posterior credible intervals under the conditional models using the method
described in Section 2.2. In the time-varying models, we model the dynamics of latent systematic factors as
a VAR(1) process, where both latent factors and four external predictors (PE ratio of S&P 500, Term spread,
default spread, and value spread) are driven by only the lagged external predictors. For comparison, we include
the purple dotted lines and the related shaded areas, showing the risk premia estimated using the unconditional
models described in Section 2.1. Definition and data sources of factors and test assets can be found in Appendix
TA.3.
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Figure IA.8: Term structure of unconditional risk premia in time-varying models with both
lagged latent factors and external predictors: PE ratio of S&P 500, Term spread, default spread,

and value spread
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Figure TA.8: Term structure of unconditional risk premia in time-varying models with both
lagged latent factors and external predictors: PE ratio of S&P 500, Term spread, default spread,

and value spread

The figure plots the term structure of unconditional risk premia estimates using Propositions 1 and A2. The
cross-section of test assets consists of 275 Fama-French characteristic-sorted portfolios. We consider the five-
factor models for asset returns. For quarterly (monthly) factors, risk premia are estimated using a lag of 12
quarters (24 months) in g;’s equations. The blue dotted lines and the light blue shaded areas present the risk
premia estimates and their 90% posterior credible intervals under the conditional models using the method
described in Section 2.2. In the time-varying models, we model the dynamics of latent systematic factors as a
VAR(1) process, with the PE ratio of the S&P500 index, term spread, default spread, and value spread as the
external predictor. For comparison, we include the purple dotted lines and the related shaded areas, showing
the risk premia estimated using the unconditional models described in Section 2.1. Definition and data sources
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Figure IA.9: Time-varying term structure of macroeconomic factor’s risk premia

This figure plots the time-varying term structure of risk premia following the method in Section 2.2. Risk premia
of latent factors are linear in four external predictors: PE ratio of S&P 500, Term spread, default spread, and
value spread. Estimates are based on the composite cross-section of 275 Fama-French characteristic-sorted
portfolios. Definition and data sources of factors and test assets can be found in Internet Appendix TA.3.
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Figure TA.10: Time-varying term structure of macroeconomic factor’s risk premia: VAR(1)
model with only latent factors
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Figure TA.10: Time-varying term structure of macroeconomic factor’s risk premia: VAR(1)
model with only latent factors

This figure plots the time-varying term structure of risk premia following the method in Section 2.2 and a
VAR(1) for the latent systematic risk factors. Estimates are based on the composite cross-section of 275 Fama-
French characteristic-sorted portfolios. Definition and data sources of factors and test assets can be found in
Internet Appendix TA.3.
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Figure IA.11: Term structure of unconditional dividend risk premia

This figure plots the term structure of dividend risk premia estimates. Unlike the estimates in Table 1, we do
not standardize the dividend growth. The cross-section of test assets consists of 275 Fama-French characteristic-
sorted portfolios. We consider a five-factor model for asset returns. We study the quarterly dividend growth,
whose risk premia are estimated using a lag of 20 quarters in g;’s equations. In addition to the point estimates,
we show the 68% and 90% Bayesian credible intervals, highlighted in pink and blue, respectively. The green
crosses are the risk premia estimates obtained from Table 4 of Bansal et al. (2021).
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Figure 1A.12: Expected dividend growth implied by the MA model: Constant risk premia
model

This figure plots the time-varying expected dividend growth. The conditional mean of dividend growth is
based on the MA model in equation (26), with S = 20 quarters. Dividend risk premia are assumed to be
constant. Estimates are based on the composite cross-section of 275 Fama-French characteristic-sorted portfolios.
Definition and data sources of factors and test assets can be found in Internet Appendix IA.3.
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Figure TA.13: Time series of estimated forward equity yields: Constant dividend risk premia

This figure displays the time series of estimated forward equity yields based on our MA model with 20 lags.
Dividend risk premia are assumed to be constant. We estimate a five-factor model of FF275 using the full
sample from 1963Q3 to 2019Q4. We plot the estimates in the subsample from 2004Q4, the date from which
we have the observed data of forward equity yields. The data of realised forward equity yields are from Bansal
et al. (2021).
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