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Abstract

Conventional wisdom suggests that informed investors benefit from colluding in their trad-
ing. However, we show that this may not hold when investors face uncertainty about other
traders’ behavior. In a Kyle (1985) framework, we compare trading profits under collusive and
competitive equilibria when informed investors face uncertainty about liquidity trading volatil-
ity. While low uncertainty favors collusion, we show that the expected profit of an individual
investor under competition can be higher than the total profits for all investors under collusion
when uncertainty is sufficiently high. This finding cautions against relying solely on profits to
detect collusive behavior.
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1 Introduction

Antitrust enforcement and the identification of collusive behavior are some of the primary objectives
of regulatory agencies worldwide. Recently such issues have come to the forefront as the implemen-
tation of machine learning, artificial intelligence, and big data in pricing and trading mechanisms
has sparked concerns regarding the potential for such algorithms to learn to collude tacitly. A
series of policy reports and proposed rules (e.g., OECD (2017), SEC (2023)), legal studies (e.g.,
Azzutti, Ringe, and Stiehl (2022)), and experimental works (e.g., Calvano, Calzolari, Denicolo, and
Pastorello (2020), Colliard, Foucault, and Lovo (2022), Dou, Goldstein, and Ji (2024)) have brought
attention to these issues. A common theme of the latter is that tacit collusion should result in, and
be identifiable via, excess profits relative to a competitive benchmark.

Such logic has merit. For example, antitrust enforcement in financial markets is often based
on the notion that informed investors are better off if they are able to collude and coordinate
their trading behavior. This common wisdom is derived from analysis of strategic trading models
which show that when investors with correlated information compete, they trade aggressively on
their signals and drive down trading profits (e.g., Holden and Subrahmanyam (1992), Foster and
Viswanathan (1996), Back, Cao, and Willard (2000)).

We show this may no longer be the case if traders face uncertainty about the volatility of
liquidity trading. Specifically, we consider a two-trader extension of Kyle (1985), where traders
observe conditionally independent signals about the terminal value of the risky security and submit
market orders. A risk neutral competitive market maker sets the price as the conditional expected
value of the security, given the total order flow from informed investors and liquidity (noise) traders.
Following Hong and Rady (2002), we assume that while the market maker knows the distribution
of noise trading, the informed investors do not — instead, they face uncertainty about whether
noise trading volatility is low or high. This reflects a realistic feature of many market settings:
while investors may be better informed about security fundamentals than the market maker, they
are likely to be less well-informed about market conditions, and, in particular, the trading behavior
of other participants.! Moreover, such uncertainty is particularly important for machine-learning
based algorithms, which are designed under the premise of uncertain trading environments and
payoffs.

We characterize the linear equilibrium in this setting under collusion and competition between
investors. In the collusive equilibrium, we assume investors can perfectly collude by pooling their
signals when choosing how to trade. In the competitive equilibrium, each investor conditions
only on her own signal and best responds to her conjectures about the other investor’s and the
market maker’s strategy. In either equilibrium, the intensity with which the investors trade on their
information depends on the precision of their signals and their expectation of the price impact they
will face, based on whether noise trading volatility is high or low. In contrast, the market maker

conditions on both the order flow and the volatility of noise trading when setting the price impact:

'For example, funds may outsource the evaluation of trade execution costs to third parties such as Investment
Technology Group, recently acquired by Virtu Financial.



when noise trading volatility is high (low), price impact is low (high, respectively).

We show that, holding fixed the average level of noise trading volatility, an increase in uncer-
tainty about noise trading volatility leads investors to trade less aggressively on their private signals.
Intuitively, this is because the average price impact they face is increasing in the uncertainty about
noise trading volatility.? As a result, trading profits also decrease with uncertainty about noise
trading volatility.

The key difference across the collusive and competitive equilibria is how quickly trading intensity
and profits decrease with uncertainty. When uncertainty is low, the standard intuition applies.
Trading intensity in the collusive equilibrium is lower than in the competitive equilibrium, and
as a result, trading profits are higher. However, higher uncertainty about noise trading volatility
(holding fixed the mean) implies that, in some states, noise trading volatility (and consequently
liquidity) will be very low and price impact will be very high. In the collusive equilibrium, investors’
strategies are perfectly coordinated and equivalent to that of a single strategic investor who observes
both signals. As a result, each investor internalizes the impact of their trading not only on the
order flow, but also on the trading intensity of the other investor, and so cuts back their trading
intensity sharply in response to their uncertainty. In fact, as uncertainty increases, the equilibrium
trading intensity and expected profits approach zero.

In contrast, each investor does not fully internalize the impact of their trades in the competitive
equilibrium, because they take the trading behavior of the other investor as given. As a result,
trading intensity and expected profits decrease more slowly as uncertainty increases. This implies
that while trading profits are higher under the collusive equilibrium when uncertainty is low, they
are eventually higher under the competitive equilibrium as uncertainty increases. Moreover, we
show that the greater trading intensity and liquidity in the competitive equilibrium translate to
greater expected price informativeness.

As such, our results point to a potential complication in identifying collusive behavior in financial
markets: the focus on speculative profits alone may be misleading. To the extent that speculators
face uncertainty about the behavior of liquidity traders, realized profits of competitive speculators
may exceed the profits of speculators colluding perfectly. Therefore, caution is warranted when
relying on profits as the primary measure of collusive behavior for regulatory purposes.

Our analysis also speaks to the recent literature on artificial intelligence and machine learning
that studies the potential for tacit collusion among algorithms in agent-based settings. A growing
number of papers study such effects not only in the financial market settings (e.g., Dou et al.
(2024), Colliard, Foucault, and Lovo (2023)) but also in the more traditional product-pricing sectors
(e.g., Cho and Williams (2024), Calvano et al. (2020)). These papers argue that, in simulations,
algorithms appear to implicitly converge to strategies that are consistent with collusive behavior,

even though they are unable to explicitly communicate or coordinate with each other.? Our analysis

2For fixed trading strategies, market liquidity (i.e., %) is linear in the variance of noise trading (¢2), which implies

that price impact (A) is convex in it. This implies average price impact is increasing in the uncertainty about ol
3Empirically identifying such effects is inherently challenging, although Assad, Clark, Ershov, and Xu (2024)
conjecture that collusive effects may be present in the German retail gasoline markets.



suggests a possible confound in such settings. In the presence of parameter uncertainty, as is likely
faced by such algorithms, profits may be high even in the absence of tacit collusion. As such,
our analysis suggests that one should account for the direct impact of parameter uncertainty when
interpreting the evidence from such simulations as being evidence of collusive behavior.

Our analysis extends the model in Hong and Rady (2002) by allowing investors to have condi-
tionally independent signals. As in this earlier work, we show that profits decrease with uncertainty
about the volatility of liquidity trading. However, our focus is on how uncertainty affects the rel-
ative profits of investors under competition and under collusion. In Section 4, we show that our
results also obtain when investors are perfectly informed about asset values and when the num-
ber of investors is arbitrarily high (but fixed): in either case, expected profits are higher under
competition when uncertainty about noise trading volatility is sufficiently high.

It is worth noting that our economic mechanism does not rely on ambiguity aversion (e.g.,
Caballero and Krishnamurthy (2008), Condie and Ganguli (2011), Easley and O’Hara (2009)) or
overconfidence (e.g., Kyle and Wang (1997), Benos (1998)). Instead, ours is a setting of two-sided
private information: investors are better informed about asset values while the market maker is
better informed about liquidity trading volatility.

The rest of the paper is organized as follows. Section 2 presents the description of the model
and a discussion of important assumptions. Section 3 presents the main analysis of the paper,
and Section 4 explores how our results change under different assumptions. Section 5 presents

concluding remarks. All proofs are in the Appendix.

2 Model

Our model is a single-period variant of the multi-trader Kyle model in Hong and Rady (2002),
where strategic traders face uncertainty about noise trading volatility. There are two assets: a
risky asset and a risk-free asset with interest rate normalized to zero. The risky asset pays off a
terminal value of v ~ N (O, 03) at the end of the period.

We extend the setting in Hong and Rady (2002) by assuming that traders have conditionally
independent, private signals about the value of the risky asset. Specifically, there are two strategic

traders, indexed by i € {1,2}. Trader ¢ observes a private signal of the form:
si=v+e;, whereeg;~ N (0, a?) , (1)

and submits market order x;. The aggregate trade from noise traders is denoted by z ~ NV (0, ag),

where the variance of noise trading is distributed according to:

1
056{52—5,52—#5}, where Pr(o'g:&Q—(S) =3 (2)
and > > 6§ > 0. Finally, there is a risk neutral, competitive market maker, who is privately

informed about the realization of o2, and sets the price P of the risky asset conditional on this



information and the total order flow, which we denote by y = 1 + z2 + 2. We assume that v, €1,
g9, and z, as governed by the realization of o2, are all mutually independent.

As in Hong and Rady (2002), we assume that the market maker knows the realization of o2
while the strategic traders do not. The above specification implies that the volatility of noise
trading variance is given by 4, since

Vo) = § (20 =& (3)
For ease of exposition, and with some abuse of notation, we will refer to the parameter § as the
uncertainty about noise trading volatility in what follows.

We restrict attention to symmetric, linear equilibria in which (i) the equilibrium trade by
investor i is given by x; = fs;, and (ii) the market maker’s pricing rule is (conditionally) linear in

the order flow y = 21 4+ x2 + z. Denote the pricing rule by:

=52 -0 =My ifoZ=05>-9

=624+ =Ny ifo?=5%+6

2.1 Discussion of Assumptions

Our goal is to explore the impact of uncertainty about noise trading volatility in a setting that
deviates minimally from the traditional Kyle (1985) framework. For instance, one could allow
for more general distributions over noise trading volatility, but this would make the analysis less
tractable and the intuition less transparent. It is worth distinguishing our setting from one in
which investors face ambiguity about the distribution of noise trading. Importantly, investors in
our setting know the true distribution of noise trading volatility (given by (2)) and are risk-neutral.
As such, our results are not driven by ambiguity or ambiguity aversion.

The key assumption in our analysis is that investors are less informed about the distribution of
noise trading than the market maker. The stronger assumption that the market maker knows the
volatility of noise trading perfectly is made for analytical tractability. In a setting where the market
maker faces uncertainty about noise trading volatility, he would update not only on the value of
the asset, but also on the volatility of noise trading from the order flow. However, (generically)
this would imply that the price would no longer be linear in the order flow, which in turn would
(generically) imply that the investors’ strategies are no longer linear in their signals, making the

analysis less tractable.

3 Analysis

In what follows, we compare the equilibrium when traders can collude to the equilibrium in which

they compete.



3.1 Collusion

We begin by considering a benchmark in which the two traders collude perfectly by pooling their
information when choosing how to trade. This is equivalent to a single strategic trader who can

observe both signals {s1, s2}, and trades zj; to maximize the following objective
E[zy (v — X (zas + 2)) |51, 52] = 2B [o]s1, 59] (%) 2, (5)

where the equality follows from the above conjecture for the market maker’s pricing rule. This

implies that the optimal trade is given by

1
1 1 o2
Ty = E|v|s1, s3] = = 81+ 82) = By (81 + s2), 6
since E [v]s1,s0] = =% . Notably, this implies that the collusive trading strategy puts equal

2 2

o

weight on the two traders’ signals.
Since the market maker can condition on the order flow and the noise trading volatility, o2, her

problem implies that

2y _ C(v,Bu(s1+s2)+2) 208002
A (J ) B V(B (s1+ s2) + 2) N 4@2\403 + 2512\/[0—52 + o2 (7)

Solving the above system of equations for {8, Aarn, Aari} gives us the following result.

Proposition 1. When traders collude perfectly, there exists a unique, linear equilibrium with xy; =

B (s1+ s2) and
AM.BY if02252—(5
P(y;Jg) = ) s (8)
/\M,ly lf0'325'2+5

where

By = —4 o AMp = 20103
V2,02 + Qgg’ ’ 433,02 + 282,02 + 02 —§’

QﬁMO'g
433,02 + 282,02 + 02+ 6

(9)

AM. BN .
M,h . Ml g

and Ay =

Moreover, By is decreasing in §, Ay is increasing in 6, Ay, is decreasing in 6, but

increasing in §. The investor’s expected trading profits are given by

FMZE[CUM(U—P)]:,BMUEZW, (10)

which is decreasing in §.

The above result highlights that the collusive trading intensity £j; and trading profits 7, are

decreasing in uncertainty about noise trading volatility, § — Figure 1 provides an illustration of



Figure 1: Equilibrium £, A and 7 versus uncertainty  with collusion versus competition.

The equilibrium is characterized by {8, A\, Anavr, T} for the collusive equilibrium and
{Bc, M., An,c, mo} for the competitive equilibrium. Other parameters are set to o, = 2, 0. = 1
and ¢ = 2.
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these results. The key to this intuition is that, for a fixed By, the price impact A(c?) is a convex
function of noise trade volatility o2, as highlighted by (7).* This implies that holding the mean
72 fixed, an increase in the variation of noise trading volatility increases the average price impact
the (collusive) strategic trader faces, i.e., % increases with 6. As a result, her trading intensity,
B, decreases with §. Finally, note that expected profits are proportional to trading intensity and,

therefore, decreasing in 9, since
WM:IE[:JJ (v—#xﬂ = Byo2, (11)

as we show in the proof of the proposition.

41t is worth noting that 8y; does not depend on the realized o2, but )\(ag) does.



3.2 Competition

Now consider the case where each trader is trading individually on her own signal, taking the

strategy of the other participants as given. Specifically, investor ¢ chooses to maximize:
E [i (v = i = A (B35 + 2)) Isi] = @i (1= 23208, ) Efv]si] — 252402, (12)
This implies that the optimal trade is given by

Ap+A Ap+A
-2pa),(-229) 2

T; = E|v|s;] = £ —s; = (;8i, 13
since E [v]s;] = % Symmetry implies
of o2
(1-228) & 3 (14)
r; = 35, = (8
S
and in a symmetric equilibrium, we have:
1 202
p1=p2 = Pc = . (15)

A+ A 202 + 302

Since the market maker can condition on the order flow and the noise trading volatility, o2, her
problem implies that

A\ (02 _ C(v,B151 + Pasa + 2) _ (Bi + B;) o (16)

)V G+ s+ ) (B + By) o2+ (82 + B2) o2 + 02

Solving the above system of equations for {8c, Ao n, Ay} after imposing 81 = B2 = B¢ gives us the

following result.

Proposition 2. When traders compete, there exists a unique, symmetric, linear equilibrium with
x; = Bes; and
)\th if Ug =52-§

P(y;02) = , (17)
Mgy ifol=62+0

where ,BC _ é\/\/a4(20§+303)2452(a§+30303+203)+0203

02430202420 ’
2Bc0? 2Bc0?
ACh = 1735 Bg sy MdACI= e 5(27 T oz s (18)
4pz05 + 280z +0° =0 4pz05 + 280z + 0+ 0
M. . . . .. . . . . . )\0_’;14»)\0’[ .
oreover, B¢ is decreasing in §, Ac, is increasing in 0, Aoy is decreasing in §, but =5 s



increasing in §. The investor’s expected trading profits are given by

mc =Elzc (v — P)] = feo? 512, (19)

v 2024302
which is decreasing in 6.

Figure 1 provides an illustration of these results. As in the collusive equilibrium, trading inten-

sity B¢ and profits are decreasing in uncertainty about noise trading volatility, because the average

Ac,ntAci
2

these equilibria differ in their response to uncertainty.

price impact that traders face (i.e., ) is increasing in . The next section characterizes how

3.3 Relative benefits of collusion

Given the characterization of equilibria in the previous subsections, we now characterize how un-

certainty affects the relative benefits of collusion.

Proposition 3. There exist 0 < § < § < &2 such that:

(i) if § < 9, collusion generates higher total profits than competition, i.e., Tpr > 27¢;

(ii) if 6 < 6 < 6, total profits are higher under competition than collusion, but individual profits
are not, i.e., 2wgc > My > WO,

(iii) if § < &, individual profits are higher under competition than total profits under collusion,

1.e., TC > T)f-

The above result highlights that the relative benefit of collusion among strategic traders depends
on the uncertainty they face about the distribution of noise trading. Specifically, we show that when
uncertainty about noise trading volatility is sufficiently high, expected profits for an individual
investor under competition can be higher than total profits for all investors under collusion.

The key difference between the competitive and collusive equilibria is how aggressively investors
trade on their private signals, and how this varies with uncertainty. Note that when § — 0, we

have B _
o o

————— and fo=———=
V2./02 + 202 V2./02 + o2

which reflects the fact that, in the absence of uncertainty, investors trade less aggressively on

By = > B,

their private information in the collusive equilibrium. This is consistent with the intuition from
the existing literature (e.g., Holden and Subrahmanyam (1992), Foster and Viswanathan (1996),
Back et al. (2000)), and implies that (total) expected profits are higher under collusion than under

competition i.e.,
e & 2(02+02) 2

v = —m———— B X o,
M \/5\/03—{-20% \/5\/0'?—&-0% 2024303 v

As ¢ increases, investors trade less aggressively under both equilibria i.e., both S¢o and 5y fall.

X 02 > 2o =

However, the response is steeper in the collusive equilibrium, because each investor internalizes not

only the impact of their trading on the price, but also on the trading of the other investor. To see



Figure 2: Best response functions

The figure plots the average price impact solid line) as a best response to the intensity
chosen by traders, and the trading intensities 8y, (dotted) and ¢ (dashed) as best responses to the
average price impact in the collusive and competitive equilibrium respectively. Panel (a) considers
a setting with no uncertainty (i.e., § = 0), while panel (b) considers a setting with high uncertainty
(i.e., 6 = 3.5). Other parameters are set to 0, =2, 0. = 1 and 7 = 2.
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why, it is useful to compare the best response functions of the market participants in each setting.
Figure 2 provides an illustration.

First, note that equations (7) and (16) immediately imply that given intensity § chosen by
traders, the best response choice of A(c?) for the market maker in either case is the same. In
Figure 2, this is plotted as a solid line. Comparing panels (a) and (b), we note that for any fixed

[, an increase in uncertainty increases the average price impact i.e., % )‘h;”\l > 0.

Second, note that in either equilibrium, the traders’ best response [ is a decreasing function of
the average price impact #, as illustrated by the dotted and dashed lines in Figure 2. Moreover,

%, the traders’ best response 3 is always higher under the

for a given average price impact
competitive equilibrium than under the collusive equilibrium (i.e., B¢ > Bar). Intuitively, this is
because in the collusive equilibrium, each investor internalizes not only the impact of their trading
on the price, but also on the trading of the other investor.

The equilibrium trading intensities in the collusive and competitive equilibria, 53; and B¢, are
characterized by the intersection of best response functions. In Figure 2, these correspond to the
points at which the solid line intersects the dotted and dashed lines, respectively. As the panels in
Figure 2 illustrate, when uncertainty increases, the drop in the equilibrium trading intensity (8as)
in the collusive equilibrium is larger than the corresponding drop in equilibrium intensity (8¢) in
the competitive equilibrium. Similarly, the difference between the equilibrium average price impact
faced by the competitive and collusive investors increases with greater uncertainty.

Intuitively, in the collusive equilibrium, one can think of the investors as acting as a single, “mo-

nopolistic” investor. Holding the mean noise trading volatility (52) fixed, an increase in uncertainty

10



implies that half the time, noise trading volatility is very low and the order flow is very informative
(i.e., Aarp is very high). The “monopolistic” trader responds to this by decreasing trading intensity
aggressively. In fact, in the limit, as § — &2, the trading intensity under the collusive equilibrium
drops to zero i.e., Bpy — 0. Moreover, in equilibrium, this behavior is reinforced by the market
maker’s response since, in the limit, Aps, — 00. As a result, the expected profit for investors in
the collusive equilibrium also drops to zero.

In the competitive equilibrium, each investor takes the other investor’s trading strategy as given,
and so does not fully internalize the impact of their own trading on the trading intensity of the
other investor. As a result, the trading intensity S¢ responds more slowly to changes in §. In
contrast to the collusive equilibrium, as § — &2, the equilibrium trading intensity remains strictly

positive in the limit i.e.,

i B o0y
1m = )
0O V202 + 02) (02 + 202)

and as a result, so does the expected profit for each trader.

3.4 Implications for price informativeness

Let PI(P) = —V[v|P] denote the price informativeness in a given equilibrium. The following lemma
establishes that, as in Hong and Rady (2002), price informativeness in either equilibrium depends

on the realization of the price when investors face uncertainty about the volatility of noise trading.

Lemma 1. Price informativeness can be expressed as
PI(P) = ~V[o[P] = — (6 (P) x 02 (1 — 28\) + (1 - 6 (P)) x 02 (1 — 28X))

where

1

$(P) = Pr(o? = % — §|P) = (20)

_ P2 Ap=N

R
1

and B = Bar, A\ = Aupn and Np = Ay for the collusive equilibrium, and B = Bco, A\n = Ac,n and

Al = Mgy for the competitive equilibrium.

Figure 3 provides an illustration of this dependence for the collusive and competitive equilib-
rium. As emphasized by Hong and Rady (2002), price informativeness is higher for larger absolute
realizations of P (larger |P|), since these realizations allow one to better distinguish the high noise
trading volatility state from the low noise trading volatility state. Specifically, one can show that
limp2_, . ¢(P) = 1, i.e., for sufficiently large realizations of P, one becomes arbitrarily certain that
02 =5%-0.

While price informativeness for a given realization of P varies with uncertainty J, as illustrated
by Figure 2, expected price informativeness is independent of §. The following result establishes

how this varies across equilibria in our setting.

11



Figure 3: Price informativeness PI(P) under the collusive and competitive equilibria

The equilibrium is characterized by {Bu, A\ s, Anvr} for the collusive equilibrium and
{Bc, Mo, Anc} for the competitive equilibrium. Other parameters are set to o, = 2, 0. = 1
and ¢ = 2.
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Proposition 4. Under the collusive equilibrium, expected price informativeness is given by:

2 2
e+ 0y

v 2 2
20; + of

E[PI(P)] = —o? ( > = Plyy,

while under the competitive equilibrium, expected price informativeness is given by:
202 + o2
E[PI(P)] = 02| ——% | = Plc.
PIP) = ot (5 T ) = P
Moreover, PIo > Plyy.
The above result establishes that expected price informativeness is higher under the competitive
equilibrium, even when investors are uncertain about noise trading volatility. While this might

initially appear to be at odds with our earlier results, note that one can express expected price

informativeness as

E[PI(P)] = E[-V[v|P]] = —o5(1 = B\ + An)),

as we verify in the proof of the above result. This implies that one can express expected profits

under collusion and competition as:

1 A + A -1
WM:ﬂMO'?): 5(03+PIM) X (M) , and (21)
2 2 _ 2 2
5 05+ 0% 1, 5 (/\C,h + /\C,l> 1 oy + o
— v E - Plo) x | ————= X —— 22
mo = Booy 202 +302 2 (o, + Plo) 2 202 + 302’ (22)

respectively, which implies that profits are positively related to expected price informativeness and
negatively related to expected market impact. Therefore, greater competitive profits are generated

in tandem with more informative prices and more liquid markets.

12



4 Robustness

Our benchmark analysis restricts attention to a simple setting with noisy signals and two investors
to facilitate exposition. In this section, we discuss how our results change when we modify these

assumptions.

4.1 Perfect information benchmark

One might wonder whether the result that expected profits are higher under competition when
uncertainty is sufficiently high is driven by the assumption that investors have noisy information
about payoffs. To explore the robustness of our results along this dimension, in this section, we
assume that the investors have access to perfect information, i.e., s; = v. This corresponds to the

limit of the equilibria as . — 0. In the limit, the price coefficients are given by:

Vet — 52 V951 —80% + 52

_ 23
My, 220, 2
Notably, when there is no uncertainty, we have
o o
=< — = ,
Bum 200 = Vi, Be
while in the limit, as § — 2, Byr — 0, while B¢ > 0.
Moreover, in this case, the ratio of profits is given by:
M 3\4/ ot — 52
p = = .
2mc /24/V951 — 852 + 52
Note that this implies:
lim p = 3 > 1 (24)
550" = 2¢/2
li =0 25
it (#)
dp 3662
= = < 0. 26

22 (54 — §2)%/4 \/(954 — 862) (m + 52)

This implies that, as in the benchmark analysis, there exists a § € (0,57) such that p () = 1, and
another § € (0, 62) such that p (5) = %

As such, we find that our main conclusion remains unchanged, i.e., while total expected profits
are higher under collusion when investors face no uncertainty, they are higher under competition

when uncertainty is sufficiently high.

13



4.2 Multiple informed traders

Another feature of our benchmark analysis is that we assume there are only two informed investors.
In this section, we explore how our results change when we instead assume there are an arbitrary
number of investors.

Suppose there are N > 1 traders who each observe s; = v 4 ¢;. The following result provides
a characterization of the equilibrium and the relative profits under the collusive and competitive

equilibrium.

Proposition 5. In either equilibrium, investor ¢ submits a trade x; = (8s; and the market maker
sets the price as

Aly ’L? Jz =0°+ 6

where
Npo? Npo?
Ay = bou A= o (28)
N23202 4+ NfB202 452 -6 N2B3262 + NB202 +62+6
In the collusive equilibrium, the trading intensity is given by
54 _ §2
A o
and the total expected profits are given by
1 2
™™ = QﬂMNUfu- (30)
In the competitive equilibrium, the trading intensity is given by
a [ \E (2024 (N+1)02)2—452(02+02) (02+No2)+(N—1)5202
B=pc= \/ 2N (02402)(02+No2) (31)
and the total expected profits are given by
2 2
o, t+0
Nme = ( Y E) ﬁcNU?). (32)

((N+1)02+202)

The above result generalizes the analysis in our main model. In fact, one can verify that the
expressions coincide if we set N = 2. The next result establishes how the relative benefit of collusion

depends on uncertainty and the number of investors.

Proposition 6. Let p(6,N) = ;—;‘fc denote the ratio of total expected profits under the collusive
and competitive equilibria. Then,
(i) for a fited N > 1, p(0,N) > 1, lims_,52 p (6, N) =0, and % < 0.
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(ii) for a fized §,
1
lim 7y = =0y V6% — 62 and lim N7o =0, (33)
N—o00 2 N—o00

so that imy_00 p (0, N) = 00.

For a fixed level of uncertainty, we show that expected profits under collusion are higher when the
number of investors is sufficiently high. Intuitively, for a fixed §, as N increases, investors compete
more aggressively in the competitive equilibrium — in the limit, as N — oo, total expected profits
reduce to zero in this case. In contrast, total expected profits stay strictly positive under the
collusive equilibrium. This result is consistent with earlier work (e.g., Holden and Subrahmanyam
(1992), Foster and Viswanathan (1996), Back et al. (2000)).

However, we also show that for a fixed number N of investors, investors have lower expected
profits under the collusive equilibrium when uncertainty about noise trading volatility is sufficiently
high. As such, the effects of uncertainty about noise trading volatility, which we highlight in our

benchmark analysis, obtain even if the number of investors in the economy is large.

5 Conclusions

We consider a multi-investor extension of the Kyle (1985) model in which investors face uncertainty
about the volatility of liquidity trading. We compare expected trading profits under a competitive
equilibrium to those under a perfectly collusive equilibrium, in which all investors combine their
information and coordinate perfectly. We show that when uncertainty is low, expected profits
are higher under the collusive equilibrium, consistent with existing analysis. However, we find
that when uncertainty increases, this may no longer be the case. In fact, when uncertainty about
liquidity trading volatility is sufficiently high, we show that the expected profit for an individual
investor in the competitive equilibrium can be higher than the total profit for all investors under the
collusive equilibrium. As such, uncertainty about liquidity trading can have a substantive impact
on the relative benefits of collusion among strategic investors.

Overall, our analysis has important policy implications for the identification of collusive behav-
ior and antitrust enforcement within the financial markets. We demonstrate that speculative profits
on their own many not be sufficient for such identification and should be considered jointly with
measures of informed trading intensity and market liquidity. Identifying such trading behavior em-
pirically and providing additional theoretical guidance provide fruitful avenues for future research.
It would also be interesting to consider the impact of investor uncertainty along other dimensions

(e.g., the number of other investors in the market or their risk aversion).
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A Proofs

A.1 Proof of Proposition 1

The solutions {8, Aarh, Aa} follow from solving the system of equations:

f=— G
A+ N %—I—U—Qg

\ 2p0,
" 4B202 + 28202 + 62 — 6
A\ = 2802

4B%02 4+ 26%02 + G2+ 46

(34)

(35)

(36)

There are four sets of solutions, but we select the set with Ay, A\; > 0 to ensure that the trader’s

4/=1_52
second order condition is satisfied. This yields § = —YZ="_
\/5\/ 2+20% ’

o2yt — 62 <\/&4 — 62 —52+ 5)

o2/t — 52 (52+5—\/W)

, and \; =

A =
" V26 (52 — 6) /o2 + 202

Note that
oB 1)

§
- = - B <0,

35 2y2(5t— 02t \JoT 1 202 200 — 257

which together with
oo L (=
An+ N\ % + %g
1
2

_ 2 9¢
AL+ N %—i—% ’

2)% + N\
06 2

implies that

> 0.

Moreover, note that

ony 208 (53 (32— 0) + 82825 (o2 + 207))

a5 (52 — 0 + 262 (02 + 202))?
502 (254 - 52 § (52 — 262 (02 4 202)))
ot — — 04282 (024 202))2
2
( <_2 <f14r;2+(52 ) (o2 + 203)))

V26 (52 +0) \/o2 + 202

?) (0% =0 +2B% (02 + 207)) ?
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Bo? (254 2 (52 N 52))

T (67— 62) (62— 0 + 282 (02 + 202)) 2
Bo? (26 — 6% — 652)

(04 —02) (32 — 6 + 262 (02 + 202)) 2

>

> 0,

since 2 > . Similarly,

Y 203( 9 (a2 +0) + B +232% (a§+2ag))

a5 (62 + 0 + 282 (0% + 202)) 2
| Bo? (=862 — 264 + 82 + 2825 (02 + 202))
(02 —5%) (62 4+ 0+ 252 (02 + 202)) 2
2
Bo? ( 662 — 26% + 6% + 26 (f\/;%) (J€2+2012,)>
T (02 — 54) (62 + 0 + 262 (02 + 202)) 2
Bo? (254 — 245 (52 ~ Vo))

(34 =02 (32 + 6+ 262 (02 + 202))2

Finally, note that expected trading profits are given by:

Ty =E [mM (v — @QSM)]
=K [ZCM (E [’U|81,82] - @
Apt+A
— SR (2}
= %ﬁ%ﬂ |:(81 + 82)2}

Bu > 2 2
=5 | 5= (407 + 202)

T2

9
= Bmo,

which implies profits are decreasing in 4.

A.2 Proof of Proposition 2

The equilibrium is characterized by the system of equation:

5= 202
(A +A) (202 + 302)
2802
Ah = T35 2.2 =2
45%02 + 28%02 + 6% — 9
2 2
\ o

48202 + 203202+ 52+ 6
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As before, there are four sets of solutions, but we select the set with Ay, A\; > 0 to ensure that the

trader’s second order condition is satisfied. This yields:

5= 1 Vo1 (202 + 302)2 — 452 (02 + 30202 + 20%) + 5202
2 ot + 30202 + 20 '

Let ' = 6* (202 + 302) ? — 462 (o2 + 30202 + 207). Note that
r>a! (203 + 303) 24 (64) ((721 + 30202 + 203) =502 >0

and o
25 = —8J (af + 03) (or? + 203) <0.

and that 8 = 1,/ Y52 %_ which implies

02+30202+20%

1
%:—Lx—<0.

00 2T B

This, together with

g 202
- (/\h + )\l) (202 + 30’12])

2
2 o

= X
A+ N 202+ 3027

implies that

0 An+ N
== > 0.
a6 2
Moreover, note that B
O' —
limf=———==70
6—0 \/i\/m
and
OO0y

lim 8 =
e’ = VAo ) T+ 27)

8

Next, note that

~2 2
,1_0’ +5 g
A= 2507 +6<2+02>>0

) 2
1 0°=9 oz
)‘h = 250’12} +ﬁ<2+03>>0

This implies

N _(, 0°+d P 9, 1
B 2202 96 2Bo?

20

(63)

(64)

(65)

(71)



5 1 o2 G2+94 1
T T B (” oz 2/5%5) " 3p02 "
I T 2+i§_62+5 VT (73)
- 2VTB of  20%%) o}
SO (P PO ) LA (74)

2VTB oy 2p%73 oy

1 (., &5%+96 o?
~5vm (49 5 (4 2) 2

1 PR ) o?
~ VTS ( o5z <2 * a?)) (76)

52 2 2
oeoy

which implies 93 < 0.
Similarly, note that:

ozt g2-0 o2\ o3 1
a5 (2 23202 * 03) 6 2602 (78)
) 1 52— o2 1
I (2‘ 2502 a?) - 2003 )
1 g2—§ ‘752 VT
“2\@(5(2‘%%3*03)*05) (80
1 )
=— (202 + §—>+ﬁ> 81
2ﬁﬁa§< (U I (81)
Let
_ 2 o 0234 JT
f@)=6(208+02 - S0 )+ VT (82)
VT (02 (5% 420) + 602) + 6 (02 +202) (26 (02 + 02) — 52 (202 + 02)) +T (s3)
B 5202 + T

Note that f(0) > 0 if and only if

vT (o2 (52 +26) + 50’52) > —6 (o2 + 20’12)) (26 (U? + 03) —5° (203 + 03)) -T (84)
=067 (02 + 2012,) (20? + 03) + 262 (O‘? + 012)) (ag +202) —&* (2‘752 + 303) 2
(85)

Next, note that RHS of (85) is given by

652 (052 + 203) (203 + 012)) + 262 (052 + 012}) (03 + 203) -t (203 + 3012)) 2 (86)
<g* ((752 + 2012}) (2%2 + 012)) + 25* (052 + (712)) (02 + 2(73) -t (2052 + 3012)) 2 (87)
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= (a§ + 303) <0

and so f (6) > 0 always. This implies % > 0.

Finally, note that expected profits for a single trader are given by:

2 2
1

An+ N o2 9 At AN o 9

= 1-— g & -
E [BC < 2 /BC> 0.712 + %Sz 2 /8081,

1

An+ A o2 A+ A 9

= 1-— 5 — E |s?
Be [< 9 ﬁC) %—F% 9 BC [Sz]

= Bc 5

O+ 00 B = e B [

o e )
2 2024302 "

_ Bc 20}

~ 2 202+ 302

_ 2_oyto?
- ’BCUU 202+302

(012, + 052)

which completes the proof.

The following Lemma is useful for proving Proposition 3.

Lemma 2. The trading intensity under collusion is lower than the trading intensity under compe-
2, 2 . .
tition i.e., Bo > Bar. Moreover, lims_o Bar/Bo = 4/ ;25:20;2, limg_,52 Bar/Bc = 0, and Brr/Be is

decreasing in J.
Proof. Let B = % Then, given the above expressions

2eT 8 (o2 + o2)

V5% (202 4+ 302)2 — 462 (02 + 02) (02 + 202) + 6202

B2

Now,

B2<1

& /64 (202 + 302) 2 — 462 (02 + 02) (02 + 202) + 5202 > 2V/54 — 62 (02 + o2)

& /64 (202 + 302)2 — 462 (02 + 02) (02 + 202) > 2V/5% — 62 (02 + 02) — 502
4 (o 2 2) 2 2(. 2 2\ (2 2
S 00 (202 + 30 —46° (0% + 02) (0% + 20%) >
(202 ) (02 +02) (o ) —4V51 — 6% (02 + 02) 5202

402 (6 = 6%) (02 + 02) > -4/ &4 — 62 (02 + 02) G20
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which always holds since 2 > §. This implies that 8¢ > Sar. Moreover,

1 2 2
lim B = = +o (102)
6—0 9 a2 oz + 203
2 =4 52 2 + 2
lim B2 = lim Vo (0% + 1) (103)
552 §-52 /54 (202 + 302)2 — 452 (02 + 02) (02 + 202) + 5202
2ot — 62 (02 + o2
= lim =2 (G2+03) _,, (104)
502 olot + %ol
and B2 55202
B _
__ 7 % B? <0, (105)
ol (64— 82) \/5* (202 + 302)2 — 452 (02 + 02) (02 + 202)
which completes the proof. ]

A.3 Proof of Proposition 3

Recall that in the monopolist case, we can express profits as my; = Sy02 and in the competitive
2_optol
v 20243032 "

case we have mo = Boo This implies

M Brro? B 202 + 302

= = =B . 106
*= onc " yppon i, 2034 202 (106)
Lemma 2 implies
202 302 2
lim p = (202 + 30,) >1 (107)
50 4(02 +02) (02 +202)
and
li =0 108
322 P .
and

dp OB 202+ 302
—=———"<0. 109
96 08 202 + 20?2 (109)
This implies there exists a § € (0,62) such that p(8) = 1, and another § € (0,62) such that

p(0) =3 O

A.4 Proof of Lemma 1

In either equilibrium, P = X\ (x 4 z) where x = 3 (s1 + s2) and s; = v + &;. This implies:

/\( 2) _ C (v,x—l—z|a§) _ 2302
7:) = V(z+zlo2)  4B%02 423202 + o2
C(v,z+ z]az)Q

V [v|P,0?] = 0% — 111
[U| aaz] U'u V($+Z|Uz) ( )

(110)
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45%52
2 v
= 1-— 112
Tv ( 45%02 4+ 2%02 + 02) (112)

=02 (1—2BX\) (113)

Moreover, this implies that conditional on o2, P is normally distributed with mean zero and

variance:
V [Plo?] = A (4B%07 4 2802 + 02) = 2BAo; (114)
Note that
¢ (P)=Pr (o2 =5 - 4|P) (115)
Pr(c?=062-6,P=
_Prlri=o 7) (116)
Pr (P =p)
B Pr(P = plo? = % — 6) Pr(c? = 5% — §) (117)
Pr(P =plo2 =52 — ) Pr(02 =352 —0) + Pr(P = plo2 =62+ 0) Pr(02 =52 +0)
e
2 2802 2B p02
V282" \ /280 (118)
1 1 P 1 1 P
2 % \/wha%f <\/25Aha,%> o \/zmlogf <\/2/J’>\zcr%>
1
= P2 Ap—A ) (119)

e £

where f(-) is the pdf of the standard normal distribution. The result follows from noting that:

V[u|P] =E [V [v|P,0?] |P] + V [E [v|P,0?] |P] (120)
=E [V [v|P,o?] |P] + V[P|P] (121)

=6 (P) x 0y (1-28X\) + (1= (P)) x 0 (1= 26X\). (122)

O

A.5 Proof of Proposition 4

Note that

BIVRIP] = [ (63— 283+ 6 (P) x 2035 (% = M) F (P)aP (123)

—0o0

where

1 1 P ! ! _
F(P)_§X \/25)\h012;f<\/25)\h012;>+2x\/mf<\/m> "
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is the unconditional distribution of P. This implies:

—2(] - e — !
E [V [U|PH =0y (1 2ﬁ>‘l) + /oo UUIB (Al )\h) X \/25)\]10'3]0 <\/2/3Ah(712)
=o;(1 —25)\1)+012,ﬁ (At = An)

(125)

(126)
(127)

The result follows from plugging in the expressions for {3, Ay, A} for each equilibrium and simpli-

fying.

O]

A.6 Proof of Proposition 5

The proof follows the same steps as the two investor benchmark analysis, so we present only a
sketch.
Collusive equilibrium Under collusion, the “representative” investor can combine all the signals

tos=>) . ss=Nv+> & ~N (Nv, Na?). In this case, the optimal trading strategy maximizes:

7wy = max E [z (v — Az) |5] (128)
x
An+ A
= max 2 [v|5] — 2T A (129)
x 2
and so )
1 No;
— 5 = S 130
M )\h + )\l NQO',% + NU?S /8M57 ( )
where )
1 No;
= ) 131
2 )\h—l-)\lNQUg-‘r-NO'g ( )
The market maker sets
\ Cw,Byisitz) _ NBo? (132)
V(B> s +2) N2B%262 + NB%02 + 02
which implies:
A = Npo, (133)
"7 N23262 + NB%02 + 62 — 6
Npo?
A= t 134
' TN+ N2 462 46 (134
Solving for the equilibrium gives us:
By = 1 (135)
M N2 024N )
Mot il
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and expected profits of

v =E |2E [v]3] — x2w (136)

“E [(An + \i) 27 (137)
1 No?

—— v E =2 1
QBMNQU% + No? ] (138)
1

N 2
- T (140)

94 /| N2(c24+No2)2
54-62

Competitive Equilibrium Each trader chooses her strategy given the behavior of others. Specif-

ically,
mi=maxE |z; | v —Az; — A Zﬂij—i-z (141)
i
=maxE [z; (1 — A8 (N — 1)) v — \z?|s;] (142)
= max; <1 - wﬁ (N — 1)> E [u]si] — wxf (143)
The FOC implies:
1— An+A N -1 2
= 2Bl )_% =g, (144)
An+ N O’% + 0'62
In equilibrium, 8; = 8 and so
2
p= - (145)
(20 ( o2
The market maker sets
.8 N Bo?
)\:(C(/UHBZ'LS +Z): BJU (146)
V(BY;si+z2) N23202 + NB202 + o2
This implies:
\/04 202+ (N+1)02)2—462(02+02)(02+No2)+(N—1)5202
N(<72+012})(02+N02)
(147)
V2
Insider profits in this case are given by
An+ A An+ A
nc=E [x (1 - %5 (N — 1)) E [v]si] — %wg (148)
A+ A
=E [%2 M +A) = 2 ;r lﬂﬁ?] (149)
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52 AL —l— )\l [SZ]

034—03

= Beos
(N +1)02+202)

This completes the characterization of the equilibria.

A.7 Proof of Proposition 6

Let
™
P= Nrmo
_ 202 + (N + 1)o2
V2 (02 4 02) \/ aQUJZN:;? \/\/04 (2024 (N+1)02 )(igifg(;igﬁ\)}ga%%+Nag)+(N,1)5.203
Note that
202 4+ (N +1)o?
lim p = 0 F IV + Doy = po
=0" 2y/(02 +0F) (02 + No})
li =0
L
9p _ §(N — 1)5%02 )
96 2 (64 — 62) \/5% (202 + (N + 1)02) 2 — 402 (62 + 02) (02 + No2) p
<0

Moreover, note

po > 1
& (202 + (N + 1)03)2 > 4(062 +012,) (02 +No§)
S0t + (N +1)2 02 +4(N +1) 0202 >4 (o + Noy+ (N +1) o202)
& (N+1)? >4N

which is true for N > 2. Thus for any fixed N, we have that

Note also that )
lim my = 30 Vot — §2

N—oo
but for

02+02
lim Nrc = lim foNo? o +oe
am Nme = lim SeNow 3y 07 907y

27

(150)

(151)

(152)

(153)

(154)
(155)
(156)
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Now,

\/04 202+ (N+1)02)2—462(02+02)(02+No2)+(N—1)5202

2+o2)(02+No?
lim o= lim Motton o+ Now) —0
N—oo \/5
and ) )
o, +0
1 N £ _ 2
Nose V(N +1)o2+202) v
so that
lim Nme =0,
Ngnoo e

which completes the proof.
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