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1 Introduction

In this paper, we develop a quantitative measure of preference for early resolution of uncertainty

(PER) that parallels the Arrow-Pratt measure of risk aversion in expected utility theory. As em-

phasized by Kreps and Porteus (1978), choice under uncertainty in a dynamic environment requires

decision makers to express a preference over the timing of the resolution of uncertainty. In fact,

dynamic preferences used in economics often exhibit a non-trivial preference over the timing of

resolution of uncertainty. Prominent examples are the recursive preference of Kreps and Porteus

(1978) and Epstein and Zin (1989), and the robust control preference of Hansen and Sargent (2008).

Despite its wide application, the literature lacks a quantitative measure of PER. This paper develops

one.

A theory of an Arrow-Pratt measure of PER is needed to study the quantitative impact of PER,

just like the Arrow-Pratt theory of risk aversion has been fundamental in the study of risk aversion.

The Arrow-Pratt measure of risk aversion has an intuitive interpretation. It is the additional amount

of consumption that is needed to compensate a risk-averse decision maker per unit of variance.

Analogously, our notion of elasticity of PER, or the Arrow-Pratt measure of PER, is defined as the

additional amount of utility needed to compensate a decision maker for delaying the resolution of

uncertainty for one period. The main purpose of the paper is to demonstrate how such a measure

can be used to quantify the impact of PER in preferences.

We focus on two applications, a welfare application, and an asset pricing application. We demon-

strate how to use our elasticity measure to compute welfare gains of one-period early resolution of

uncertainty and that of multiple-period early resolution of uncertainty through successive approxi-

mations. As in the case of risk aversion, the welfare gain computed using the Arrow-Pratt measure

of risk aversion is a local approximation. It is fully accurate only under special cases such as the

constant elasticity case. Our computation is also an approximation, but the advantage is that given

the elasticity measure, one does not need the knowledge of the entire utility function to compute

the welfare gain. In addition, such elasticity can be measured from the data without estimating the

entire utility function. We also show that our local approximation is quite accurate by comparing

it to global solutions.

In a second application, we show how to estimate our elasticity measure of PER from asset prices.

Our procedure builds on the previous work of Ai, Bansal, Guo, and Yaron (2023). Ai, Bansal, Guo,

and Yaron (2023) demonstrate that in a representative agent economy, PER is equivalent to the risk

premium for resolution of information quality is positive. We show how to use this risk premium

together with the volatility of the market portfolio to estimate the elasticity of PER. Taken together,

our two examples provide a procedure to estimate the structural parameter of the elasticity of PER

from the data and to use this parameter to answer welfare questions about the timing of resolution

of uncertainty.

Literature review The concept of PER is developed by Kreps and Porteus (1978). Strzalecki

(2013) studies PER in models with ambiguity aversion. As emphasized by Strzalecki (2013), many
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non-expected utility models exhibit PER, such as the recursive preference developed by Epstein

and Zin (1989), the robust control preference of Hansen and Sargent (2005, 2007), and the related

multiplier preference of Strzalecki (2011), the variational ambiguity-averse preference of Maccheroni,

Marinacci, and Rustichini (2006a,b), and the smooth ambiguity model of Klibanoff, Marinacci, and

Mukerji (2005, 2009). The only model of ambiguity aversion that is indifferent towards the timing

of resolution of uncertainty is the maxmin expected utility of Gilboa and Schmeidler (1989), the

dynamic version of which is studied by Chen and Epstein (2002) and Epstein and Schneider (2003).

Our approach to identify and estimate the elasticity of PER builds on the methodological con-

tributions of Ai and Bansal (2018) and Ai, Bansal, Guo, and Yaron (2023). Ai and Bansal (2018)

develop a test for generalized risk sensitivity from asset market data, and Ai, Bansal, Guo, and

Yaron (2023) provide an identification theorem for PER. Our estimation procedure for the elastic-

ity of PER first requires estimating an elasticity of generalized risk sensitivity. Relatedly, several

papers provide measures of PER in the context of recursive utility. Epstein, Farhi, and Strzalecki

(2014) calculate the welfare gain of PER based on calibrated long-run risk models. Kadan and

Manela (2019) estimate the value of information in a model with recursive utility. Schlag, Thimme,

and Weber (2021) find suggestive evidence for PER using options market data. These papers assume

the CES form of utility function and do not distinguish PER from GRS, or uncertainty aversion.

In contrast, our procedure does not require an assumption on the functional form of utility, as the

above papers do. However, our approach allows us to replicate the results of the above papers, in

particular those in Epstein, Farhi, and Strzalecki (2014).

Many asset pricing models are based on intertemporal preferences that feature PER. We refer

readers to Epstein and Schneider (2010) for a review of asset pricing studies with the maxmin

expected utility model, Ju and Miao (2012) for an application of the smooth ambiguity-averse

preference, Hansen and Sargent (2008) for the robust control preference, Routledge and Zin (2010)

for an asset pricing model with disappointment aversion, and Bansal and Yaron (2004), Bansal

(2007), and Hansen, Heaton, and Li (2008) for the long-run risk model that builds on recursive

preferences. Borovicka and Stachurski (2020) provide necessary and sufficient conditions for the

existence and uniqueness of recursive preferences with constant elasticities. Bhamara and Uppal

(2006) study the role of risk aversion and intertemporal elasticity of substitution in portfolio choice

problems. Bidder and Dew-Becker (2016) link ambiguity aversion to long-run risk models. Skiadas

(2009) provides an excellent textbook treatment of recursive-preferences-based asset pricing theory.

Our asset pricing application makes use of risk premium realized around macroeconomic an-

nouncement days. The previous literature, surveyed in Ai, Bansal, and Guo (2024), documents

that stock market returns and Sharpe ratios are significantly higher on days with macroeconomic

news releases both in the United States (Savor andWilson (2013)) and internationally (Brusa, Savor,

and Wilson (2020)). Lucca and Moench (2015) find similar patterns and document a pre-FOMC an-

nouncement drift. Mueller, Tahbaz-Salehi, and Vedolin (2017) document an FOMC announcement

premium on the foreign exchange market and attribute it to compensation to financially constrained

intermediaries. Fisher, Martineau, and Sheng (2022), Liu, Tang, and Zhou (2022), and Johannes,
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Kaeck, and Seeger (2023) develop ex-ante measures of macroeconomic announcement premium.

The rest of the paper is organized as follows. In Section 2, we develop the concept of Arrow-Pratt

measure of PER. We demonstrate how to use our measure of the elasticity of PER to compute the

welfare gain of early resolution of uncertainty in multiple periods and in infinite horizon settings in

Section 3. Section 4 provides a procedure for estimating the elasticities of PER from asset prices.

Section 5 concludes.

2 Elasticity of PER

2.1 An intuitive discussion

Our definition of the elasticity of PER parallels the development of the Arrow-Pratt measure of

risk aversion. To illustrate the basic idea, consider an expected utility consumer who evaluates

consumption by using a strictly increasing and weakly concave utility function u: E [u (C)]. We can

ask, what is the utility gain for eliminating all uncertainty in C, that is, consuming E [C] instead

of C? The utility gain, measured in consumption terms, is denoted as ϵ and has to solve:

u (E [C]− ϵ) = E [u (C)] . (1)

Using a Taylor approximation for u (C) around C̄ = E [C], we can write the right hand of (1) as

E [u (C)] ≈ E

[
u
(
C̄
)
+ u′

(
C̄
) (
C − C̄

)
+

1

2
u′′
(
C̄
) (
C − C̄

)2]
= u

(
C̄
)
+

1

2
u′′
(
C̄
)
V ar [C] . (2)

Similarly, a Taylor approximation for the left hand side of (1) gives

u (E [C]− ϵ) ≈ u
(
C̄
)
− u′

(
C̄
)
ϵ. (3)

Comparing (2) with (3), we can write the risk compensation ϵ as

ϵ ≈ 1

2
×

[
−
u′′
(
C̄
)

u′
(
C̄
) ]V ar [C] (4)

The equation above motivates the definition of Arrow-Pratt measure of risk aversion as Au
(
C̄
)
=

−u′′(C̄)
u′(C̄)

. It is the amount of consumption goods needed to compensate the agent per unit of variance.

To introduce an analogous notion of elasticity of PER, we consider the two-period example of

Kreps and Porteus (1978), which we illustrate in Figure 1. In both the top panel and the bottom

panel, consumption in period 2, denoted C2 (Z), is the only source of uncertainty. We use C0 = c̄0

and C1 = c̄1 to illustrate that consumption in periods 0 and 1 is deterministic. We use circles to

denote the agent’s information node. In both panels, the state variable Z can take on two values,

ZU and ZD, which determine consumption in period 2. The only difference between the two panels

is that the top panel represents early resolution of uncertainty: the agent receives a signal s in
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period 1 that fully reveals the value of Z. As a result, the consumer is able to distinguish node 1U

from 1D, that is, she knows the value of C2 at time 1. The bottom panel represents late resolution

of uncertainty. Here, the agent does not know the value of Z, and hence, the value of C2 until

period 2. We can interpret late resolution of uncertainty as the case in which the signal in period

1 is trivial, s = �. In summary, the distribution of consumption in both panels is identical. They

only differ in the timing of the resolution of uncertainty about Z.

Figure 1: Early versus late resolution of uncertainty
Early resolution of uncertainty: 𝑪𝑬 
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This future illustrates the notion of PER. The blue squares contain consumption and the orange circles represent
information sets. Both panels have identical unconditional distributions of consumption. The top panel features early
resolution, as the uncertainty about c2 is resolved one period earlier in period 1. The bottom panel corresponds to
the case of late resolution because the value of c2 is not revealed to the consumer until period 2.

We assume that the consumer’s preference can be represented recursively by

Vt = u (Ct) + βI [Vt+1] , (5)

where u is a utility that computes the current-period utility and I computes the certainty equivalent

of the continuation utility Vt+1. We further assume that the certainty equivalent functional I takes

the following form:

I [Vt+1] = h−1Et [h (Vt+1)] , (6)

where h is a strictly increasing function. The subscript t represents conditioning on information at

time t. Under the above notation, the intertemporal preference is represented by {u, h, β}, where u
and h are real valued functions and β is a discount rate.
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Using the above setup, the period-0 utility associated with early resolution is

V E
0 = u (C0) + βI [u (C1) + βu (C2)] = u (C0) + β h−1 {E [h {u (C1) + βu (C2)}]}︸ ︷︷ ︸

early resolution

, (7)

where the utility at time 1 is computed by first aggregating across time and then computing its

certainty equivalent using I. The period-0 utility for late resolution is

V L
0 = u (C0) + β {u (C1) + βI [u (C2)]} = u (C0) + β

{
u (C1) + βh−1E [h {u (C2)}]

}︸ ︷︷ ︸
late resolution

, (8)

where we first compute the certainty equivalent of u (C2) and then aggregate across time. As a

result, to compare the utility for early resolution to that of late resolution, it is enough to compare

the certainty equivalent of date-1 utility, which are bracketed in equations (7) and (8). We denote

the certainty equivalent for early and late resolution to be CEE = h−1 {E [h {u (C1) + βu (C2)}]}
and CEL = u (C1) + βh−1E [h {u (C2)}], respectively. To simplify notation, we denote u1 = u (C1)

and e = h (u (C2)). To compare early and late resolution, it is enough to compare their monotonic

transformations:

h
(
CEE

)
= E

[
h
{
u1 + βh−1e

}]
= E [f (e)] , (9)

and

h
(
CEL

)
= h

{
u1 + βh−1E [e]

}
= f (E [e]) , (10)

where we define

f (e) = h
{
u1 + βh−1 (e)

}
. (11)

In what follows, we provide a heuristic discussion on how to use an appropriate notion of elasticity

of PER to compute the difference between CEE and CEL via a local approximation.

Comparing Equation (9) with (10), by Jensen’s inequality, preference for early resolution is

equivalent to f (e) being a convex function. Intuitively, the elasticity of PER should be related to

the Arrow-Pratt measure of f . Using the risk compensation formula (4), we know that the solution

to E [f (e)] = f (E [e] + ϵ), or

E
[
h
{
u1 + βh−1 (e)

}]
= h

{
u1 + βh−1 (E [e] + ϵ)

}
(12)

is approximately

ϵ ≈ 1

2

f ′′ (E [e])

f ′ (E [e])
V ar [e] = −1

2
Af (E [e]|u1)V ar [e] , (13)

where we use the notation Af (E [e]) = −f ′′(E[e])
f ′(E[e]) for the Arrow Pratt measure of risk aversion of

f .1 The left-hand side of Equation (12) is the utility of early resolution and the right-hand side

of Equation (12) is the compensated utility for late resolution. PER corresponds to a convex f ,

1Here, ϵ has a negative sign, because Equation (1) and (12) differ in sign.
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in which case −Af (E [e]) > 0. For this reason, we use a different sign for ϵ in Equations (1) and

(12) to keep the convention that the compensation is positive for the case of preference for early

resolution.

Intuitively, in the case of late resolution, the consumer knows E [e] but not the value of e at

time 1. In the case of early resolution, the consumer knows the value of e. A preference for the

early resolution is essentially a preference for the conditional variance of e. Equation (12) provide

an approximate solution to the following question: suppose we compensate the consumer in units

of E [e], how much compensation is needed per unit of V ar [e]?

E [e] and V ar [e] are hard to interpret. It is more convenient to express this utility gain in terms

of units of continuation utility. We first work on V ar [e]. In period 1, after early resolution of

uncertainty, the consumer’s utility is V E
1 = u (C1) + βu (C2), which, using the definition of e, can

be written as:

V E
1 = u1 + βh−1 (e) . (14)

Using a first-order approximation of (14), we can write V E
1 = u1+β

[
h−1 (E [e]) + 1

h′{h−1(E[e])} (e− E [e])
]
,

which implies that, to a first-order approximation, V ar [V1] =
(

β
h′{h−1(E[e])}

)2
V ar [e]. This allows

us to write the solution ϵ in (13) as:

ϵ ≈ −1

2

(
h′
{
h−1 (E [e])

}
β

)2

Af (E [e]|u1)V ar
[
V E
1

]
. (15)

To translate compensation in terms of E [e] into certainty equivalent units, we apply a monotonic

transformation h−1 to both sides of (12) to compute the difference between CEE and CEL using a

first-order Taylor expansion:

h−1
{
E
[
h
{
u1 + βh−1 (e)

}]}
= u1 + βh−1 (E [e] + ϵ)

≈u1 + βh−1 (E [e]) + β
1

h′ {h−1 (E [e])}
ϵ,

where the second equality is a first-order approximation. Using the definition of CEE and CEL

and replacing ϵ in the above equation using Equation (15), we have:

CEE − CEL = β
1

h′ {h−1 (E [e])}
ϵ

=
1

2

[
−
h′
{
h−1 (E [e])

}
β

Af (E [e])

]
︸ ︷︷ ︸

ηPER

V ar
[
V E
1

]
.

This motivates defining the elasticity of PER as

ηPER = −
h′
{
h−1 (E [e])

}
β

Af (E [e]) , (16)
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which allows us to express the welfare gain of early resolution locally as a linear function of the

variance of continuation utility.

In the next sections, we first provide an analytical framework to formalize the above definition of

ηPER. We then demonstrate how ηPER can be used for various asset pricing and welfare calculations.

2.2 Elasticity of PER for dynamic preferences

We consider dynamic preferences defined by the recursive relation (5). Let (Ω,F , P ) be a probability
space from which all uncertainty is generated. Let {Zt}Tt=1 be a Markov process where for each t,

Zt : Ω → Z where Z is the state space of the Markov chain. Let C : Z → R be a bounded

function that takes values in R. Let u be a real-valued, strictly increasing, and bounded utility

function. With a slight abuse of notation, for any z ∈ Z, we denote u (C (z)) as u (z). That is,

u (z) is the per-period utility of consuming C (z). Let h be an analytic function on its domain with

strictly positive derivatives. We focus on recursive utility represented by {u, h, β} constructed in

the following way. Given a consumption process {C (Zt)}Tt=1, the continuation utility of the agent

at time t is defined recursively using recursion (5). That is, VT (z) = u (z) for all z ∈ Z, and for

t = T − 1, T − 2, · · · 1,

Vt (z) = u (z) + βh−1 {E [h ◦ Vt+1 (Zt+1)|Zt = z]} , (17)

where h ◦ V denotes the composition of h and V .

We think of the above construction of utility as a benchmark case where uncertainty about Zt

does not resolve until time t when consumption happens. In the language of Epstein, Farhi, and

Strzalecki (2014), this is the utility for gradual resolution of uncertainty. To incorporate general

patterns of early resolution of uncertainty, we define a utility process relative to a filtration. Let

{Ft}Tt=1 be a filtration that is weakly larger than the filtration generated by {Zt}Tt=1, that is, for all

t, Ft ⊇ σ {Zi : 1 ≤ i ≤ t}. We can define a utility process relative to filtration {Ft}Tt=1 recursively

by

Vt = u (C (Zt)) + βh−1 {E [h ◦ Vt+1| Ft]} . (18)

It is also useful to define the certainty equivalent process associated with the above construction of

the utility process: wt = h−1 {E [h ◦ Vt+1| Ft]}. Clearly, Vt = u (Ct) + βwt by definition. Below, we

provide a formal definition of preference for early resolution of uncertainty.

Definition. (Preference for early resolution of uncertainty)

A preference represented by {u, h, β} is said to have preference for early resolution of uncertainty

if for any two filtrations, {Ft}Tt=1 and
{
F̄t
}T
t=1

, such that i) both filtrations are weakly larger than the

filtration generated by {Zt}Tt=1; and ii) Ft ⊆ F̄t for all t = 1, 2, 3, · · ·T , h−1 {E [|h (V1)|Z1 = z]} ≤
h−1

{
E
[∣∣h (V̄1)∣∣Z1 = z

]}
for all z, where {Vt}Tt=1 is a utility process defined with respect to {Ft}Tt=1

and
{
V̄t
}T
t=1

is a utility process defined with respect to
{
F̄t
}T
t=1

.

The above definition generalizes the concept of the preference for early resolution of uncertainty
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in Kreps and Porteus (1978) and defines it as a preference over filtrations. In the above definition,

filtration F̄ =
{
F̄t
}T
t=1

has more information than F = {Ft}Tt=1, but to define the preference for early

resolution of uncertainty, we need to compare the certainty equivalent of period-1 utility conditioning

on the same information. If the preference can be represented by an additively separable utility

function, that is, h is linear, then it is indifferent towards the timing of the resolution of uncertainty.

In general, as we will see, PER depends on the properties of all three elements of {u, h, β}. In what

follows, we first focus on one-period early resolution of uncertainty, but we also provide a recursive

procedure to compute the welfare gain for an arbitrary number of periods.

To study one-period early resolution of uncertainty, we set Ft = F̄t = σ {Zi : 1 ≤ i ≤ t} for all

t = 2, 3, · · · , T . We set F1 = σ {Z1} as described above. To provide an approximation result, we

consider a sequence of decreasing σ algebras, {Gn}∞n=0 with Gn+1 ⊆ Gn for all n and ∩∞
n=0Gn = � .

We set F̄n
1 = G ∪ F1 for all n. That is, for each n, F̄n

1 contains more information than F1 and the

information content in F̄n
1 is a decreasing function of n. As a result, the filtration F̄n =

{
F̄n
t

}T
t=1

represents a sequence of early resolution of uncertainty experiments relative to F , which, in the

limit, has the same timing of resolution of uncertainty as F . Our main result is to provide a linear

approximation of welfare gain when n is large.

In the above setup, for each n, let
{
V̄ n
t

}∞
t=1

be the utility process associated with filtration F̄n

and let {Vt}∞t=1 be the utility process associated with filtration F . Clearly, V̄ n
t (Zt) = Vt (Zt) for all

t ≥ 2. At time 1, the utility for early resolution can be computed as

V̄ n
1 = u (C (Z1)) + βh−1

{
E
[
h (V2 (Z2))| F̄n

1

]}
. (19)

To compute welfare gains of PER, it is useful to define a certainty equivalent operator. Let B (Z)

be the space of bounded functions on Z (Because consumption is bounded, so are utility functions).

For any F̄n
1 , we define the associated certainty equivalent operator T̄n : B (Z) → B (Z) as:

[
T̄nV

]
(z) = h−1

{
E
[
h
{
u (z) + βh−1

{
E
[
h ◦ V (Z2)| F̄n

1

]}}∣∣Z1 = z
]}
. (20)

That is, given any period-2 continuation utility V , we construct V̄ n
1 as in Equation (19) with

period-2 continuation utility V .
[
T̄nV

]
(z) is then defined as the certainty equivalent of V̄ n

1 ,

h−1
{
E
[
h
{
V̄ n
1

}∣∣Z1 = z
]}

conditioning on period-1 information Z1 = z. We also define a T opera-

tor as

[TV ] (z) = u (z) + βh−1 {E [h ◦ V (Z2)|Z1 = z]} , (21)

for all V ∈ B (Z). Here, T̄nV (z) represents the certainty equivalent of a sequence of early resolution

experiments, where as n → ∞, the informativeness of the additional information, represented by

F̄n
1 , converges to zero. As we will show in the appendix, in the limit, limn→∞ T̄nV (z) converges to

the certainty equivalent for the late resolution case, [TV ] (z).

Both V̄ n
1 and

[
T̄nV

]
(z) represent the consumer’s life-time utility evaluated at time 1. The

difference is that V̄ n
1 is the utility after the uncertainty in F̄n

1 is resolved and therefore measurable

with respect to F̄n
1 .
[
T̄nV

]
(z) is the utility before the the uncertainty in F̄n

1 is resolved. It is the
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certainty equivalent of V̄ n
1 computed conditioning on a coarser information set, F1 = σ {Z1}. For

this reason, we will refer to V̄ n
1 as the ex post utility in period 1 and

[
T̄nV

]
(z) as the ex ante

utility in period 1. Preference for the timing of resolution of uncertainty is a comparison of ex ante

utilities for different flirtations. Below we demonstrate that as n becomes large enough, T̄nV (z)

can be obtained by a local linear approximation around [TV ] (z). The coefficient for the linear

approximation is the elasticity of PER. Using the definition of f in (11), it is not hard to show that

the ηPER defined in Equation (16) can be written as a function of the Arrow-Pratt measure of risk

aversion of h. Below is the definition.

Definition 1. Elasticity of PER

Give a dynamic preference represented as {u, h, β}, the Arrow-Pratt measure of absolute pref-

erence for early resolution of uncertainty, evaluated at (u,w) ∈ R2 is defined as

ηPER (u,w|β) =
{
1

β
[Ah] (w)− [Ah] (u+ βw)

}
, (22)

where ∀w ∈ R,[Ah] (w) = −h′′(w)
h′(w) denotes the Arrow-Pratt measure of risk aversion of h evaluated

at w. The Arrow-Pratt measure of relative PER, evaluated at (u,w), is defined as

η̄PER (u,w|β) = (u+ βw) ηPER (u,w|β) = (u+ βw)

{
1

β
[Ah] (w)− [Ah] (u+ βw)

}
. (23)

It is clear that the elasticity of PER depends on the Arrow-Pratt measure of risk aversion of h

and the discount rate β. To emphasize the dependence of ηPER on the discount rate β, we use the

notation ηPER (u,w|β), but we will suppress β below whenever the discount rate is clear from the

context. As we will show below, ηPER (u,w) provides a quantitative measure of the welfare gain of

one-period resolution of uncertainty. The length of a period is encoded in the discount rate β.

Having defined ηPER, we first present a lemma that provides an approximation of the dif-

ference between the certainty equivalent for early resolution, T̄nV , and that for late resolution

TV . As we show below, our approximation error is bounded by the third central moment of

continuation utility around its conditional mean. To formally state our result, it is useful to

introduce a notation for conditional central moments. For any random variable Z, we denote

M (n) [Z| F ] = E [{Z − E [Z| F ]}n| F ]and the nth conditional central moment of Z given F .

Proposition 1. Let T̄nV and TV be defined in (20) and (21), respectively. Then

1. For any z ∈ Z, T̄nV (z) → TV (z) a.s. and in L2. In addition, let w1 (n) be the certainty

equivalent of V (Z2) given F̄n
1 ,

w1 (n) = h−1
(
E
[
h ◦ V (Z2)| F̄n

1

])
, (24)

then limn→∞ V ar [w1 (n)|Z1 = z] = 0.

10



2. T̄nV (z) can be obtained from TV (z) by

TnV (z) = TV (z) +
1

2
ηPER (u (z) , w1 (z))V ar [u (z) + βw1 (n)|Z1 = z]

+O
(
M (3) [u (z) + βw1 (n)|Z1 = z]

)
, (25)

where w1 (z) is the certainty equivalent of V (Z2) given Z1 = z:

w1 (z) = h−1 (E [h ◦ V (Z2)|Z1 = z]) . (26)

and ηPER (u,w) is defined in (1).

3. In addition,

lnTnV (z) = lnTV (z) +
1

2
η̄PER (u (z) , w1 (z))V ar [ ln {u (z) + βw1 (n)}|Z1 = z]

+O
(
M (3) [ ln {u (z) + βw1 (n)}|Z1 = z]

)
. (27)

Proof. See Section 6.1 in the appendix.

In the above lemma, u (z) + βwn is the level of life-time utility upon early resolution of uncertainty

and depends on the information in F̄n
1 . TnV (z) is the certainty equivalent of u (z)+βwn before the

resolution of uncertainty, and therefore, is a function of z and does not depend on the information

in F̄n
1 . TV (z) is the certainty equivalent of later resolution, u (z) + βw (z). PER corresponds to

the condition TnV (z) ≥ TV (z). The above lemma expresses the difference between TnV (z) and

TV (z) as a (locally) linear function of the conditional variance of u (z) + βwn.

Proposition 1 allows for a very general notion of early resolution of uncertainty at time 1. That

is, the additional information received by the agent is modeled by an abstract σ algebra, F̄n
1 . A

special case of F̄1 is of particular interest, that is, F̄1 = σ (Z1, Z2). That is, the consumer receives

information about Z2 one period earlier, at time 1. This corresponds to the classical example of

early resolution of uncertainty of Kreps and Porteus (1978) as illustrated in Figure 1. Under the

assumption of F̄1 = σ (Z1, Z2), the early resolution operator T̄ V can be defined as in (20):

[
T̄ V
]
(z) = h−1 {E [h {u (z) + βV (Z2)}|Z1 = z]} . (28)

In this case, Equation (25) can be written as

[
T̄ V
]
(z)− [TV ] (z) =

1

2
ηPER (u (z) , w (z))V ar [u (z) + βV (Z2)|Z1 = z]

+O
(
M (3) [V (Z2)|Z1 = z]

)
(29)

11



In addition, Equation (27) becomes

ln
[
T̄ V
]
(z)− ln [TV ] (z) =

1

2
η̄PER (u (z) , w (z))V ar [ ln {u (z) + βV (Z2)}|Z1 = z] ,

+O
(
M (3) [ lnV (Z2)|Z1 = z]

)
(30)

where η̄PER (u,w) is the Arrow-Pratt measure of relative PER defined in (23).

Equations (29) and (30) express the welfare gain of early resolution of uncertainty as a linear

function of the conditional variance of the ex post continuation utility in period 1, u (z) + βV (Z2).

Here u (z) is known in period 1. The only non-trivial random variable is V (Z2). In applications,

it is sometimes more convenient to express welfare gain as a function of the variance of period-2

continuation utility, V ar [V (Z2)|Z1 = z]. The following corollary provides such a formula.

Corollary 1. Let the T̄ V operator be as defined in (28) and the TV operator is as defined in (21),

[
T̄ V
]
(z)− [TV ] (z) =

1

2
β2ηPER (u (z) , w (z)|β)V ar [V (Z2)|Z1 = z] +O

(
M (3) [V (Z2)|Z1 = z]

)
,

(31)

where w (z) is as defined in (26). In addition, in log term

ln
[
T̄ V
]
(z)− ln [TV ] (z) =

1

2

(
βw (z)

u (z) + βw (z)

)2

η̄PER (u (z) , w (z)|β)V ar [ lnV (Z2)|Z1 = z]

+O
(
M (3) [ lnV (Z2)|Z1 = z]

)
(32)

2.3 Examples of the elasticity of PER

In this section, we provide several examples to illustrate how to use the concept of ηPER together

with Lemma 1 to calculate the welfare gain for various experiments of early resolution of uncertainty.

An example with constant ηPER The multiplier robust control model of Hansen and Sargent

(2008) features constant ηPER. As a result, the welfare gain of early resolution for this class of model

is particularly simple to analyze. In the robust control model, the decision maker’s subjective

probability is represented by a probability distortion. Consider a discrete-time, infinite-horizon

setup. Let the conditional probability distortion at time t be represented by mt+1, in the sense that

the time-t conditional expectation of any random variable Z, under the subjective probability, is

computed as Et [mt+1Z], where Et represents expectation under the reference probability measure.

The robust control preference can be constructed through the following recursive relationship:

V (z) = u (z) + β min
mt+1

E [mt+1V (Zt+1)|Zt = z]− θEt [mt+1 lnmt+1|Zt = z]|Et[mt+1]=1 .

The interpretation is that the nature chooses the worst-case probability, represented by mt+1, to

minimize the expected utility, E [mt+1V (Zt+1)|Zt = z], but large probability distortions are subject

to a penalty for the relative entropy Et [mt+1 lnmt+1|Zt = z]. As shown in Hansen and Sargent

12



(2008), the above recursion can be conveniently represented in the form of (17) as:

V (z) = u (z)− βθ lnE
[
e−

1
θ
V (Zt+1)

∣∣∣Zt = z
]
.

That is, h (w) = −e−
1
θ
w. Clearly, Ah = 1

θ , and ηPER = β {[Ah] (w)− β [Ah] (u+ βw)} =

β (1− β) 1
θ . As shown in Ai, Bansal, Guo, and Yaron (2023), this preference has a preference

for early resolution of uncertainty if and only if β < 1. The Arrow-Pratt measure of PER is positive

under the same condition.

Recursive preferences As shown in Kreps and Porteus (1978), the recursive preference with

unit IES corresponds to the case where h (w) = −e(1−γ)w with γ > 0 and γ ̸= 1 being the relative

risk aversion of the recursive preference. From the definition above, because Ah = γ−1 is constant,

ηPER (u,w) =
(

1
β − 1

)
(γ − 1) is also a constant. Clearly, η̄PER (u,w) = (u+ βw)

(
1
β − 1

)
(γ − 1).

The recursive preference with general IES is defined by the recursion

U (Zt) =

(1− β)C (Zt)
1− 1

ψ + β
(
Et

[
U (Zt+1)

1−γ
]) 1− 1

ψ
1−γ


1

1−1/ψ

,

where γ is the relative risk aversion parameter (γ > 0 and γ ̸= 1), and ψ is the IES parameter

(ψ > 0 and ψ ̸= 1). Equivalently,

1

1− 1
ψ

U (Zt)
1− 1

ψ =
1− β

1− 1
ψ

C (Zt)
1− 1

ψ + β
1

1− 1
ψ

(
Et

[
U (Zt+1)

1−γ
]) 1− 1

ψ
1−γ

. (33)

Using a monotonic transformation, V = 1
1− 1

ψ

U
1− 1

ψ , we can write the above recursion as:

V (Zt) = u (Ct) + β
1

1− 1
ψ

(
Et

[((
1− 1

ψ

)
V (Zt+1)

) 1−γ
1− 1

ψ

]) 1− 1
ψ

1−γ

,

that is, V (Zt) satisfies recursion (17) with

h (w) =
1

1− γ

((
1− 1

ψ

)
w

) 1−γ
1− 1

ψ . (34)

In this case, the elasticities are written as:

ηPER (u,w) =
γ − 1

ψ

1− 1
ψ

u

βw (u+ βw)
; η̄PER (u,w) =

γ − 1
ψ

1− 1
ψ

u

βw
. (35)

In discounted utility models, the length of a period is encoded in the discount rate β. We

can think of β → 1 corresponds to the case in which the length of a period converges to zero.
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In this case, the above elasticity measures all converge to zero as β → 1. Clearly ηPER (u,w) =(
1
β − 1

)
(γ − 1) → 0 and η̄PER (u,w) = (u+ βw)

(
1
β − 1

)
(γ − 1) → 0 in the case of unit IES. In

the case of general recursive utility, we also have η̄PER (u,w) =
γ− 1

ψ

1− 1
ψ

u
βw → 0 as β → 1 because the

ratio of current period utility and the continuation utility u
βw → 0 as the discount factor β converges

to 1.

3 Long-horizon welfare gains

Multi-period welfare gain through successive approximations Corollary 1 provides a for-

mula to calculate the one-period welfare gain under a preference for early resolution of uncertainty.

In this section, we demonstrate how to apply this lemma recursively to compute the welfare gain of

resolving uncertainty for multiple periods.

In an infinite-horizon Markov setup, we define the value function V as the fixed point of the

following operator2

V (z) = u (z) + βh−1E [h ◦ V (Z2)|Z1 = z] . (36)

As in Epstein, Farhi, and Strzalecki (2014), the utility function V (z) constructed this way will be

called the utility associated with the gradual resolution of uncertainty. Our purpose is to compare

the above utility with the utility of early resolution defined as:3

V̄ (z) = h−1E

[
h

{ ∞∑
t=0

βtu (Zt+1)

}∣∣∣∣∣Z1 = z

]
. (37)

The interpretation of V̄ is that, at time 1, the decision maker receives an information that resolves

all uncertainty in the future. As a result, the time-1 ex post utility is just an infinite sum of

a deterministic stream of utilities,
∑∞

t=0 β
tu (Zt+1), where the sequence of {Zt+1}∞t=0 is known.

V̄ (Z1) represents the certainty equivalent of this infinite sum before any uncertainty about the

future, i.e., uncertainty about {Zt+1}∞t=1, resolves.

Our main idea for computing V̄ (z) − V (z) is to construct a series of approximations and

repeatedly apply Corollary 1. Consider the following one-period early resolution of uncertainty:

V (1) (z) = h−1E [h {u (z) + βV (Z2)}|Z1 = z] . (38)

Using Corollary 1, we can compare the utility for one-period early resolution of uncertainty in the

above equation with the utility for gradual resolution of uncertainty in (36):

V (1) (Z1)
.
= V (Z1) +

1

2
β2ηPER (u1 (Z1) , w (Z1)|β)V ar [V (Z2)|Z1] ,

2See Bloise, Van, and Vailakis (2024) and Werner (2024) for conditions for the existence and uniqueness of the
fixed point.

3Our formulation differs from the EFS formulation by one period. EFS compares u−1 + βh−1E [h ◦ V (z0)] with
u−1 + βh−1E

[
h ◦ V̄ (z0)

]
. As a result, our welfare gain number will differ from that of EFS by a factor of β:{

u−1 + βh−1E
[
h ◦ V̄ (z0)

]}
−

{
u−1 + βh−1E [h ◦ V (z0)]

}
≈ β

[
V̄ (z0)− V (z0)

]
.
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where we use “
.
=” to indicate that this is an approximation with an error bounded by that implied

by Proposition 1. In the above equation, u1 (Z1) = u (Z1), and w (Z1) = h−1E [h ◦ V (Z2)|Z1] as

in the Corollary.

Continue the above logic. Now compare one-period and two-period early resolution of uncer-

tainty. To save notation, whenever the expectation is taken conditioning on date-1 information,

that is, Z1 = z, I ignore the conditional expectation notation and write it as unconditional expec-

tation. Using (38) and writing V (Z2) as V (Z2) = u (Z2) + βh−1E [h ◦ V (Z3)|Z2], the utility for

one-period early resolution is given by:

V (1) (z) = h−1E
[
h
{
u (z) + βu (Z2) + β2h−1E [h ◦ V (Z3)|Z2]

}]
. (39)

Using the law of iterated expectations, the utility for two-period early resolution can be written as:

V (2) (z) = h−1E
[
h
{
u (z) + βu (Z2) + β2V (Z3)

}]
= h−1E

[
h ◦ h−1E

[
h
{
u (z) + βu (Z2) + β2V (Z3)

}∣∣Z2

]]
.

(40)

Using Corollary 25, comparing the highlighted part in V (1) (z) and V (2) (z), we have:

h−1E

h
u (Z1) + βu (Z2)︸ ︷︷ ︸

u(z) in Corollary

+ β2︸︷︷︸
β in Corollary

V (Z3)


∣∣∣∣∣∣∣Z2

 .
=
{
u (Z1) + βu (Z2) + β2h−1E [h ◦ V (Z3)|Z2]

}
+
1

2

(
β2
)2
ηPER

(
u2
(
Z2
)
, w (Z2)

∣∣β2)V ar [V (Z3)|Z2] ,

where we denote u2
(
Z2
)
= u (Z1) + βu (Z2) and w (Z2) = h−1E [h ◦ V (Z3)|Z2]. Due to the

Markov property, w (Z) does not need a subscript, but u2
(
Z2
)
depends on the entire history of

Z2 = (Z1, Z2). If the variance of the term ηPER
(
u2
(
Z2
)
, w (Z2)

∣∣β2)V ar [V (Z3)|Z2] is small, we

can use Lemma 2 in the appendix to write4

V (2) (z0)− V (1) (z0) =
1

2

(
β2
)2
E
[
ηPER

(
u2
(
Z2
)
, w (Z2)

∣∣β2)V ar [V (Z3)|Z2]
∣∣Z1 = z

]
. (41)

Continuing the above logic and iterating forward, we can compute the welfare gain for n-period

early resolution of uncertainty, which we summarize in the following proposition.

Proposition 2. (PER through Successive Approximations) In an infinite-horizon setup, let the

utility for gradual resolution of uncertainty be defined by (36).

4In our application of unit IES case, ηPER
(
u2

(
Z2

)
, w (Z2)

∣∣β2
)
V ar [V (Z3)|Z2] is a constant.
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1. The welfare gain for N -period early resolution of uncertainty is given by:

V (N) (z)− V (z) =
1

2

N∑
n=1

β2nE [ηPER (un (Z
n) , w (Zn)|βn)V ar [V (Zn+1)|Zn]|Z1 = z] (42)

+O
(
M (3) [V (Zn+1)|Zn]

)
,

and, in log terms,

lnV (N) (z)− lnV (z) =
1

2

N∑
n=1

ϵn (Z
n) +O

(
M (3) [ lnV (Zn+1)|Zn]

)
(43)

where ϵn (Z
n) in the above expression is defined as:

ϵn =
1

2

(
βw (Zn)

u (Zn) + βn+1w (Zn)

)2

η̄PER (u (Zn) , w (Zn)|βn)V ar [ lnV (Zn+1)|Zn] . (44)

2. In the limit, limN→∞ V (N) (z) = V̄ (z), where V̄ is the utility for one-time early resolution of

uncertainty defined in (37).

Examples of welfare gain calculations In this section, we illustrate how to use Proposition

2 to compute the welfare gain of early resolution for several examples. We demonstrate that our

approximation formulas are quite accurate by comparing local approximation results to global solu-

tions for several well-studied economies in the literature, including those studied in Epstein, Farhi,

and Strzalecki (2014).

The Epstein, Farhi, and Strzalecki (2014) example with unit IES We first consider

the unit IES example studied in Epstein, Farhi, and Strzalecki (2014). The welfare gain of early

resolution in this example has closed-form solutions. We show that our approximation formula

produces a fully accurate solution in this example that is identical to the closed-form solution in

Epstein, Farhi, and Strzalecki (2014). Unlike the Epstein, Farhi, and Strzalecki (2014) calculation,

our method does not require knowledge of the shape of the utility function. It depends only on the

elasticity parameter ηPER. It yields a fully accurate solution because the recursive preference with

constant IES has a constant ηPER.

Epstein, Farhi, and Strzalecki (2014) consider a long-run risk model with recursive preference

with unit IES. The consumption process is given by:

lnCt+1 − lnCt = µ+ xt + σϵC,t+1, (45)

where xt is a AR (1) process with

xt+1 = ρxt + ϕϵx,t+1. (46)

In this setup, the utility is defined by recursion (36) with u (C) = lnC, and h (w) = −e(1−γ)w.
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Because the h function is CARA, Ah = γ − 1. As a result, ηPER (u,w|β) =
(

1
β − 1

)
(γ − 1)

is a constant. In addition, the value function for gradual resolution of uncertainty has a constant

conditional variance. As a result, the expectation in Proposition 2 is not necessary. In this model

the Markov state variable is Z = (C, x). We can write (42) as

V (∞) (Z1)− V (Z1) =
1

2

∞∑
n=1

βn (1− βn) (γ − 1)V ar [V (Zn+1)|Zn]

=
1

2

β (γ − 1)

(1− β) (1 + β)
V ar [V (Zn+1)|Zn] .

As we show in the appendix,

V ar [V (Zn+1)|Zn] = σ2 +

(
β

1− βρ
ϕσ

)2

= σ2

[
1 +

(
β

1− βρ
ϕ

)2
]
,

which implies

V (∞) (Z1)− V (Z1) =
1

2

β

(1− β) (1 + β)
σ2

[
1 +

(
β

1− βρ
ϕ

)2
]
, (47)

which is identical to the solution given in Epstein, Farhi, and Strzalecki (2014).5

General recursive utility We first consider the case of i.i.d. consumption growth. In the

case of i.i.d. consumption growth, the value function for gradual resolution of uncertainty takes

the form V (C) = 1
1−1/ψHC

1− 1
ψ , where H is given in Equation (79) in the appendix. To apply the

approximation formula (43), we use the expression of η̄PER in Equation (35) to write ϵn in Equation

(44) as

ϵn =
1

2

γ − 1
ψ

1− 1
ψ

λn (1− λn)V ar [ lnV (Zn+1)|Zn] (48)

where λn is defined as

λn =
u (Zn)

u (Zn) + βnw (Zn)
, (49)

and u (Zn) and w (Zn) are given by:

u (Zn) =
n∑
j=1

βj−1 1

1− 1
ψ

C
1− 1

ψ

j , w (Zn) =
1

1− 1
ψ

w (xn)C
1− 1

ψ

n+1 .

5Our timing convention is different from Epstein, Farhi, and Strzalecki (2014). Epstein, Farhi, and Strzalecki
(2014) computes the time-0 utility, whereas our Lemma 1 computes the certainty equivalent of time-1 utility. Using

our notation, the welfare gain of early resolution in Epstein, Farhi, and Strzalecki (2014) is
{
u (C0) + βV (∞) (z0)

}
−

{u (C0) + βV (z0)}. As a result, the welfare gain in our model, (47) differ from that in Epstein, Farhi, and Strzalecki
(2014) by a factor of β.
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Table 1: Welfare gain of early resolution

ψ 1.5 1
γ 10 7.5 5 2 1 10 7.5 5 2 1

Panel A: IID Growth
Global solution 9.8% 7.4% 4.8% 1.5% 0.4% 7.6% 5.5% 3.4% 0.9% 0.0%

Approximation 10.1% 7.5% 4.9% 1.5% 0.4% 7.6% 5.5% 3.4% 0.9% 0.0%

Panel B: Long-run Risk
Global solution 31.0% 24.8% 17.5% 6.3% 1.7% 27.5% 20.7% 13.2% 3.5% 0.0%

Approximation 33.3% 26.3% 18.1% 6.2% 1.6% 27.3% 20.6% 13.2% 3.5% 0.0%

Approx w. adj 30.5% 24.7% 17.4% 6.2% 1.6% 27.3% 20.6% 13.2% 3.5% 0.0%

This table compares the welfare gain of early resolution of uncertainty obtained from global solutions and that using the
linear approximation in Proposition 2. The welfare gain of early resolution of uncertainty is measured in consumption
units as in Epstein, Farhi, and Strzalecki (2014). Panel A reports the results for the case in which consumption growth
is i.i.d.. The parameter values for the consumption process are σ = 0.0084, β = 0.998, and µ = 0.0015. Panel B
reports the results for the case with persistent consumption growth. The parameters for the xt process in (46) are
ϕ = 0.044, ρ = 0.9790. All other parameters are the same except we set σ = 0.0078 to be consistent with the example
reported in Epstein, Farhi, and Strzalecki (2014).

Because consumption growth is i.i.d., V ar [ lnV (Zn+1)|Zn] =
(
1− 1

ψ

)2
σ2 is a constant, and the

infinite sum in Equation (43) can be computed in closed form. The details are provided in the

appendix.

In the general case where xt is time-varying, we provide a more accurate approximation that

further improves upon Equation (43), and we compare our approximate result for all three case:

unit IES, general recursive utility with i.i.d. consumption growth, and general recursive utility with

persistent consumption growth, with those obtained from global solutions in Table 1.

As we demonstrate above, in the case of unit IES, the solution obtained from local approximation

coincides with the global solution. As a result, in the columns where ψ = 1, global solutions and local

solutions are identical. For the case ψ = 1.5, the global solution for the utility for gradual resolution

of uncertainty is computed using value function iteration. The global solution for early resolution of

uncertainty is computed by using Monte Carlo simulation to evaluate the expectation in (37). We

use 1,000,000 simulated samples, each consisting of 5,000 (monthly) periods of consumption growth.

In both panels, the approximations are computed according to equation 48 and summed across 5,000

monthly periods. In Panel A, V ar [ lnV (Zn+1)|Zn] is a constant and is analytically computed, and

λn is computed on the path of the steady state, assuming constant growth with no uncertainty.

In Panel B, V ar [ lnV (Zn+1)|Zn] is computed using a log-linearized value function. In the row

“Approximation”, λn is computed on the path of steady state which assumes constant growth with

no uncertainty. The row Approximation with adjustment uses a more accurate approximation that

takes into account of a covariance term that does not appear in the i.i.d. consumption growth case

but does appear in the more general case. The details of this adjustment are in Section 6.2 of the

appendix.

Propositions 1 and 2 express welfare in utility units. In Table 1, welfare gains are expressed
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in percentage consumption units. We provide the details of the relationship between utility and

consumption used in calculating Table 1 in Appendix 6.3.

The term structure of PER In Figure 2, we use Proposition 2 to plot the n-period welfare

gain of early resolution of uncertainty as a function of n, where one period is one month. That is,

we compute the fraction of life time consumption a representative consumer is willing to give up in

exchange for information that resolves all uncertainty in the next n months. We consider four cases.

The blue solid line (γ = 10, ψ = 1.5) and the blue dashed line (γ = 10, ψ = 1) represent long-run

risk economies where consumption growth is assumed to follow (45) and (46). The red solid line

(γ = 10, ψ = 1.5) and red dashed line (γ = 10, ψ = 1) represent economies with i.i.d. consumption

growth. That is, the consumption dynamics are given by (45) and (46) with ϕ = 0.

We make several observations. First, overall, the welfare gain are significantly larger in the long-

run risk economy than those in the economy with i.i.d. consumption growth. This is because the

quantity of risk is substantially higher in the long-run risk economy. Second, high IES parameter

configurations typically feature a higher welfare gain of resolution of uncertainty. This is consistent

with our calculation where η̄PER is an increasing function of IES. In addition, as n→ ∞, the welfare

gains converge to the infinite-horizon calculation listed in Table 1. However, the convergence takes a

long time. In the long-run economy, for example, the welfare gain of resolving 50 years of uncertainty

is roughly half of the infinite-horizon welfare gain. Even in the long-run risk economy, the welfare

gain of resolving uncertainty at the 20-year horizon is moderate, about 5% of life-time consumption.

4 Infer ηPER from asset prices

In this section, we provide a log-linearization framework that can be used to estimate ηPER from

asset prices. Our approach is based on the theoretical foundation for identifying PER developed in

Ai, Bansal, Guo, and Yaron (2023). As shown in Ai, Bansal, Guo, and Yaron (2023), the key iden-

tification assumption for PER is GRS. Under the assumption of GRS, Ai, Bansal, Guo, and Yaron

(2023) demonstrate that the risk premium for appropriately constructed option portfolios during

the resolution of information quality (ROIQ) period identifies PER. Our estimation procedure par-

allels the above development to quantify GRS and PER. We first develop a quantitative measure of

GRS, which we call the elasticity of GRS, η̄GRS . We demonstrate how to use the macroeconomic

announcement premium to quantify η̄GRS . This step is a quantitative implementation of Ai and

Bansal (2018). In the second step, we show that given η̄GRS , the risk premium for information

quality during the ROIQ period identifies η̄PER. This step is a quantitative implementation of Ai,

Bansal, Guo, and Yaron (2023).

4.1 Elasticity of GRS and the macroeconomic announcement premium

To illustrate the concept of GRS, we focus the top panel of Figure 1 and interpret the signal sthat

reveals uncertainty about Z as a macroeconomic announcement. The announcement in period 1
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Figure 2: The term structure of PER for different economies
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This figure plots, from top to bottom, the term structure of PER for four economies: i) γ = 10, ψ =
1.5 in a long-run risk economy; ii) γ = 10, ψ = 1 in a long-run risk economy; iii) γ = 10, ψ = 1.5 in
an iid economy; γ = 10, ψ = 1 in an iid economy.

leads to early resolution of uncertainty. In the figure, because the announcement reveals the true

value of Z at time 1, the utility at time 1 for the case of early resolution is a function of Z. In

the two-period setting in the figure, V1 (Z) = u (c̄1) + βu (C2 (Z)) (See also Equation (14)). More

generally, all the derivations below apply to the infinite-horizon case where u (C2 (Z)) is replaced

by the continuation utility at time 2 as a function of the state variable Z. In both cases, the utility

at time 0 can be defined as6

u (c̄0) + βh−1E [h ◦ V1 (Z)] .

The stochastic discount factor that prices period-1 consumption units into period-0 consumption

goods can be computed as ratios of marginal utilities:

ASDF0,1 (Z) = β
h′ (V1 (Z))

h′ (h−1E [h ◦ V1 (Z)])
u′ (c̄1)

u′ (c̄0)
, (50)

where we use ASDF as the announcement stochastic discount factor. In the above expression,

ASDF0,1 (Z) depends on Z through the continuation utility V1 (Z). The following proposition

provides a log-linear approximation of the ASDF and the definition of η̄GRS .

Proposition 3. The log ASDF can be written as

lnASDF0,1 (Z) = η0 − η̄GRS (w) lnV1 (Z) +M (2) [lnV1 (Z)] , (51)

6In the two-period setting, this definition coincides with Equation (7).
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where η̄GRS (w) = wAh (w) is the Arrow-Pratt measure of relative risk aversion of h evaluated at

w, and w = h−1 (E [h (V1 (Z))]) is the certainty equivalent of V1 (Z).

Proof. Consider the Taylor expansion of h′ (V1) around w:

lnh′ (V1) = lnh′ (w) +
wh′′ (w)

h′ (w)
(lnV1 − lnw) +O (lnV1 − lnw)2 .

Taking log on both sides of Equation (50), we can write lnASDF as in (51), where

η0 = ln

[
β
u′ (c̄1)

u′ (c̄0)

]
is a constant that does not depend on Z.

The Theorem of Generalized Risk Sensitivity in Ai and Bansal (2018) implies that a positive

announcement premium for all assets with pro-cyclical payoff is equivalent to the certainty equivalent

functional, I, being increasing in second-order stochastic dominance.7 This condition on I is defined

as GRS. In the special case where I has the representation (6), GRS is equivalent to the concavity

of h. Whenever h is concave, η̄GRS > 0. Proposition 3 implies that the Arrow-Pratt measure of

relative risk aversion of h is a quantitative measure of the magnitude of GRS. It represents the

elasticity of ASDF with respect to continuation utility.

Our main purpose is to use asset prices to infer properties of preferences, similar to Alvarez and

Jermann (2004). As in Alvarez and Jermann (2004), we focus on the risk premium on the claim to

aggregate consumption, or aggregate wealth, because aggregate wealth can be connected directly to

the representative investors’ utility and welfare. Let R0,1 denote the return on the trading strategy

of purchasing the aggregate wealth portfolio in period 0 and selling in period 1 upon the macroe-

conomic announcement. If we denote W1 as the value of aggregate wealth in period 1, then R0,1 =
W1

E0[ASDF0,1W1]
. Assuming that lnASDF0,1 and lnW1 are jointly normally distributed with variance

and covariance matrix

[
σ2W σW,ASDF

σW,ASDF σ2ASDF

]
. Using E [ASDF0,1 ×R0,1] = E [ASDF0,1 ×Rf ] =

1, we can write the (log) announcement premium as:

E [lnR0,1]− lnRf = −σW,ASDF − 1

2
σ2W . (52)

To link the return on aggregate wealth to utility and ASDF, we provide a general result on the

wealth-to-consumption ratio in representative-agent economies. We consider the general dynamic

setup in Section 2.2, where the representative consumer’s preference is defined through the recursive

relation (17). We assume that, in a competitive equilibrium, the utility maximization problem of

7In the context of the above two-period model, a procyclical payoff is defined as a payoff that is an increasing
function of continuation utility V E

1 .
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the representative consumer is given by:

Ut (Zt,Wt) = max
Ct,{ξj,t}Jj=1

{u (Ct) + βI [Ut+1 (Zt+1,Wt+1)]} (53)

Ct +
J∑
j=1

ξj,t =Wt

Wt+1 =
J∑
j=1

ξj,tRj,t+1 (Zt, Zt+1) ,

with UT (ZT ,WT ) = u (WT ).
8 That is, the consumer simply consumes all wealth in the last period.

The interpretation is that in each period t, the consumer optimally chooses consumption Ct and

investment in J assets to maximize life-time utility.

Lemma 1. Assume that the utility function defined through the recursive relationship (17) is ho-

mogenous. Then
Wt

Ct
=
Ut (Zt,Wt)

u (Ct)
.

Proof. See Appendix 6.3.

The above equation implies that in the two period model in Figure 1, the wealth-consumption

ratio can be written as W1(Z)
c̄1

= V1(Z)
u(c̄1)

. As a result, lnV1 (Z) = ln
(
u(c̄1)
c̄1

)
+ lnW1 (Z), where

ln
(
u(c̄1)
c̄1

)
is a constant and does not depend on the state variable Z. Using Equation (51) and the

log linear relationship between W and V , we can write

lnASDF0,1 = η0 − η̄GRS lnW1 (Z) , (54)

where η0 = ln
[
β u

′(c̄1)
u′(c̄0)

]
− η̄GRS ln

(
u(c̄1)
c̄1

)
is a constant that does not depend on Z.9 As a result,

Cov (lnASDF0,1, lnR0,1) = −η̄GRSV ar [lnR0,1]. We can use Equations (52) and (54) to write

E [lnR0,1]− lnRf = η̄GRSV ar [lnR0,1]−
1

2
V ar [lnR0,1] ,

which implies that η̄GRS can be written as a function of asset pricing moments:

η̄GRS =
E [lnR0,1]− lnRf +

1
2V ar [lnR0,1]

V ar [lnR0,1]
=

1

2
+
E [lnR0,1]− lnRf
V ar [lnR0,1]

. (55)

8In this section, we use Ut (Zt,Wt) to emphasize that from the consumer’s utility maximization perspective, the
value function is a function of two state variables (Zt,Wt). If, in equilibrium, Ct = C (Zt), then the equilibrium utility
{Vt (Zt)}Tt=1 constructed from {C (Zt)}Tt=1 via the relation (17) must coincide with Ut (Zt,Wt), meaning Ut (Zt,Wt) =
Vt (Zt) for all t. We use Ut (Zt,Wt) here, but we will use Vt (Zt) instead in the rest of the paper without explicitly
referencing Ut (Zt,Wt) to save notation.

9Because the value of the constant does not affect any of our calculations, we use η0 as a generic notation for
constants, even though the value of η0 in Equations (51) and (54) differ.
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This allows us to measure the structural parameter η̄GRS from moments of the return on the

aggregate wealth portfolio on macroeconomic announcement days.

4.2 PER premium

In this section, we demonstrate how to use PER premium in the data to provide a measure of the

structural parameter η̄PER. We first briefly review the identification exercise in Ai, Bansal, Guo,

and Yaron (2023). In Figure 3, we combine the top panel and the bottom panel in Figure 1 into

one event tree and add a period −1. To link our theoretical development to empirical exercises, we

interpret period 2 not as the terminal period of consumption but as a starting point of a continuation

utility in an infinite-horizon setting. To accommodate this interpretation and to give this event tree

empirical content, we make three changes to Figure 1. First, we denote the continuation utility in

period 2 as V2 (Z).

Second, we index the signal s in period 1 by an information quality parameter τ . A simple

example of information quality is that Z follows a log-normal distribution and s = lnZ + ϵ, where

ϵ ∼ N
(
0, τ−1

)
is a noise with a Gaussian distribution and τ is the inverse of the variance of ϵ. The

early resolution in the figure corresponds to the case in which τ → ∞ and s is fully revealing about

Z. The case of late resolution is τ → 0 and the signal is infinitely noisy. In general, we think of the

quality of the signal s as indexed by τ ∈ (0,∞), which is revealed in period 0. As in Ai, Bansal,

Guo, and Yaron (2023), period 1 is the announcement period where the signal s is revealed. Period

0 is the period of resolution of information quality, where the quality of s, τ is revealed, but the

content of s is not known until the announcement period.

Third, in empirical applications, we think of period 1 as an FOMC announcement day, and we

consider period 0 as the few days before FOMC announcements in which the information quality

of announcements becomes known to the market. As a result, the empirically relevant case is

that discounting across periods is small, and the flow utility in period −1, 0, and 1 is negligible

compared to the continuation utility V2 (Z). We nevertheless keep the notation of consumption and

discounting just to be consistent with the general framework developed in Section 2.

As in Ai, Bansal, Guo, and Yaron (2023), the identification of PER requires an asset the payoff

of which is a monotone function of τ . One such example is the variance of the log return on the

aggregate wealth portfolio in period 1. Intuitively, more informative announcements have a larger

impact on market prices and trigger higher realized volatility on announcement days. The variance

of log return is a convenient test asset for the PER premium, because in the data, the variance of

log return can be constructed from option prices (Bakshi, Kapadia, and Madan (2003)). We refer

to this portfolio as the variance portfolio.

We denote the value of the aggregate wealth portfolio in period 1 upon announcement as

W1 (s, τ). In period 1, both s and τ are revealed, and W1 (s, τ) is a function of both. We de-

note the period-0 market-expected variance of the return on W1 (s, τ) as V ar [ lnW1 (s, τ)| τ ]. The

period-0 market-expected variance is a function of τ because information quality τ is revealed in
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Figure 3: PER Premium 
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This figure represents our thought experiment of resolution of information quality. The blue squares contain con-
sumption and the orange circles represent information sets. At node 0E , the agent expects the uncertainty about
c2(s) to be resolved in period 1 with an informative macroeconomic announcement that reveals s. Node 0L represents
the situation in which the upcoming announcement is expected to be uninformative about c2(s).

period 0. The present value of the variance portfolio evaluated as of period −1 can be computed as

PV−1 = E−1 [ASDF−1,0 (τ)V ar [ lnW1 (s, τ)| τ ]] , (56)

where the announcement stochastic discount factor ASDF−1,0 (τ) prices the period 0 payoff into

period −1 consumption units. The return on a strategy that purchases the variance portfolio in

period -1 and sells it in period 0 upon the announcement of information quality τ is V ar[ lnW1(s,τ)|τ ]
PV−1

.

As in Ai, Bansal, Guo, and Yaron (2023), we call the risk premium of this strategy the PER

premium, because the sign of this risk premium identifies PER.

In what follows, we use our approximation result in Proposition 3 to provide an expression that

links the PER premium to the structural parameter η̄PER. We denote the agent’s utility in period

1 as V1 (s, τ). The last subsection, Section 4.1, considers the special case where the signal fully

reveals the value of Z and s = Z. In general, s may be a noisy signal of Z, and V1 (s, τ) can be

constructed using the recursion (18) as:

V1 (s, τ) = u (c̄1) + βh−1E [h ◦ u (Z)| s, τ ] .

At time 0, information quality τ is known but not s, and the time-0 utility of the agent is

V0 (τ) = u (c̄0) + βh−1E [h ◦ V1 (s, τ)| τ ] .

24



First, using Proposition 3, we can write lnASDF−1,0 as a linear function of log utility:

lnASDF−1,0 (τ) = η0 − η̄GRS lnV0 (τ) . (57)

Second, we use Equation 30 to relate period 0 utility V0 (τ) to the variance of continuation utility:10

lnV0 (τ) = lnV0 (0) + η̄PERV ar [ lnV1 (s, τ)| τ ] . (58)

Combing Equations (57) and (58), we can write

lnASDF−1,0 (τ) = η0 − η̄GRS η̄PERV ar [ lnV1 (s, τ)| τ ] , (59)

where η0 is a constant that does not depend on the value of the random variables, τ , s or Z.

Using the wealth-utility relationship in Lemma 1, lnV1 (s, τ) = lnW1 (s, τ) + constant. This

allows us to write an approximation of the present value calculation in (56) as

PV−1 = E−1

[
eη0−η̄GRS η̄PERV ar[ lnW1(s,τ)|τ ]V ar [ lnW1 (s, τ)| τ ]

]
.

The following lemma provides an expression for η̄PER by assuming that the payoff of the variance

portfolio follows a Gamma distribution. Consider the claim to the variance of the market return

realized on the announcement day, lnW1 in Figure 3. We denote conditional variance of lnW1 in

period 0 is V ar [ lnW1 (s, τ)| τ ] .

Proposition 4. (Measurement of η̄PER) Assuming that V ar [ lnW1 (s, τ)| τ ] follows a Gamma dis-

tribution, the Arrow-Pratt measure of relative PER is related to PER premium by:

η̄PER =
1

η̄GRS

E [V ar [ lnW1 (s, τ)| τ ]]
V ar [V ar [ lnW1 (s, τ)| τ ]]

{
E [R−1,0]

E [Rf ]
− 1

}
(60)

Proof. See appendix.

In the above proposition, E [R−1,0] is the expected return of the variance portfolio, that is,

E [R−1,0] =
E[V ar[ lnW1(s,τ)|τ ]]

PV−1
. The term

E[R−1,0]

E[Rf ]
− 1 is the risk premium for the variance portfolio.

The above lemma can therefore be interpreted as the quantitative version of the key result in Ai,

Bansal, Guo, and Yaron (2023), that PER if and only if the risk premium on the variance portfolio,
E[R−1,0]

E[Rf ]
− 1 is positive. Equation (60) links this risk premium to the magnitude of the Arrow-Pratt

measure of relative PER and is our key equation for the measurement of the structural parameter

of the elasticity of PER.

10Computing the log deviation of V0 (τ) around V0 (0), we have lnV0 (τ) − lnV0 (0) =
βw

u(c̄0)+βw

{
lnh−1E [h ◦ V1 (s, τ)| τ ]− lnh−1E [h ◦ V1 (0)]

}
. Here V1 (0) = u (c̄1) + βh−1E [h ◦ u (Z)] is the period-1

utility for the case where the signal s is completely uninformative. In our empirical exercise, the length of the
macroeconomic announcement period is small, flow utility is negligible compared to continuation utility, βw

u(c̄0)+βw
= 1.

We can apply 30 to compute the term lnh−1E [h ◦ V1 (s, τ)| τ ]− lnh−1E [h ◦ V1 (0)] to obtain Equation (58).
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5 Conclusion

In this paper, we develop a theory for the preference for early resolution of uncertainty that parallels

the Arrow-Pratt theory of risk aversion. We demonstrate that the elasticity of PER is a key

structural parameter that links the premium for resolution of information quality on asset markets

and the welfare cost of late resolution of uncertainty. We show how this parameter can be used

to compute the welfare gains of various thought experiments of early resolution of uncertainty and

we demonstrate how to use asset prices to estimate this parameter. We argue that the empirical

evidence for the macroeconomic announcement premium and that for the premium for resolution

of information quality requires better estimates for the elasticity parameters such as the elasticity

of GRS and elasticity of PER.

26



References

Ai, Hengjie, and Ravi Bansal, 2018, Risk Preferences and the Macroeconomic Announcement Premium,

Econometrica 86, 1383–1430.

Ai, Hengjie, Ravi Bansal, and Hongye Guo, 2024, Macroeconomic Announcement Premium, (in Oxford

Research Encyclopedia of Economics and Finance, ).

Ai, Hengjie, Ravi Bansal, Hongye Guo, and Amir Yaron, 2023, Identifying Preference for Early Resolution

of Uncertainty from Asset Prices, Working Paper, University of Wisconsin-Madison.

Alvarez, Fernando, and Urban Jermann, 2004, Using Asset Prices to Measure the Cost of Business Cycles,

Journal of Political Economy 112, 1223–1256.

Bakshi, Gurdip, Nikunj Kapadia, and Dilip Madan, 2003, Stock Return Characteristics, Skew Laws, and the

Differential Pricing of Individual Equity Options, Review of Financial Studies 16, 101–143.

Bansal, Ravi, 2007, Long Run Risks and Financial Markets, The Review of the St. Louis Federal Reserve

Bank 89, 1–17.

Bansal, Ravi, and Amir Yaron, 2004, Risk for the Long Run: A Potential Resolution of Asset Pricing Puzzles,

The Journal of Finance 59, 1481–1509.

Bhamara, Harjoat, and Raman Uppal, 2006, The role of risk aversion and intertemporal substitution in

dynamic consumption-portfolio choice with recursive utility, Journal of Economics Dynamics and Control

30, 967–991.

Bidder, Rhys, and Ian Dew-Becker, 2016, Long-run risk is the worse case scenario, American Economic

Review 106, 2594–2527.

Bloise, Gaetano, Cuong Le Van, and Yiannis Vailakis, 2024, Do not Blame Bellman: It Is Koopmans’ Fault,

Econometrica 92, 111–140.

Borovicka, Jaroslav, and John Stachurski, 2020, Necessary and Sufficient Conditions for Existence and

Uniqueness of Recursive Utilities, The Journal of Finance 75, 1457–1493.

Brusa, Francesca, Pavel Savor, and Mungo Wilson, 2020, One Central Bank to Rule Them All, Review of

Finance 24, 263–304.

Chen, Zengjing, and Larry Epstein, 2002, Ambiguity, Risk, and Asset Returns in Continuous Time, Econo-

metrica 70, 1403–1443.

Durrett, Rick, 2019, Probability: Theory and Examples, .

Epstein, Larry, Emmanuel Farhi, and Tomasz Strzalecki, 2014, How much would you pay to resolve long-run

risk?, American Economic Review 104, 2680–2697.

Epstein, Larry, and Martin Schneider, 2003, Recursive multiple-priors, Journal of Economic Theory 113,

1–31.

Epstein, Larry, and Martin Schneider, 2010, Ambiguity and Asset Markets, Annual Reviews of Financial

Markets 2, 315–334.

27



Epstein, Larry, and Stanley E. Zin, 1989, Substitution, Risk Aversion, and the Temporal Behavior of Con-

sumption and Asset Returns: A Theoretical Framework, Econometrica 57, 937–969.

Fisher, Adlai, Charles Martineau, and Jinfei Sheng, 2022, Macroeconomic Attention and Announcement Risk

Premia, The Review of Financial Studies 35, 5057–5093.

Gilboa, Itzhak, and David Schmeidler, 1989, Maxmin expected utility with non-unique prior, Journal of

Mathematical Economics 18, 141–153.

Hansen, Lars Peter, John C. Heaton, and Nan Li, 2008, Consumption strikes back? Measuring long-run risk,

Journal of Political Economy 116, 260–302.

Hansen, Lars Peter, and Thomas Sargent, 2008, Robustness. (Princeton, New Jersey: Princeton University

Press).

Hansen, Lars Peter, and Thomas J. Sargent, 2005, Robust Estimation and Control under Commitment,

Journal of Economic Theory 124, 258–301.

Hansen, Lars Peter, and Thomas J. Sargent, 2007, Recursive Robust Estimation and Control without Com-

mitment, Journal of Economic Theory 136, 1–27.

Johannes, Michael S., Andreas Kaeck, and Norman Seeger, 2023, FOMC Announcement Event Risk, SSRN:

https://ssrn.com/abstract=4484011.

Ju, Nengjiu, and Jianjun Miao, 2012, Ambiguity, Learning, and Asset Returns, Econometrica 80, 559–591.

Kadan, Ohad, and Asaf Manela, 2019, Estimating the Value of Information, Review of Financial Studies 32,

951–991.

Klibanoff, Peter, Massimo Marinacci, and Sujoy Mukerji, 2005, A Smooth Model of Decision Making under

Ambiguity, Econometrica 73, 1849–1892.

Klibanoff, Peter, Massimo Marinacci, and Sujoy Mukerji, 2009, Recursive Smooth Ambiguity Preferences,

Journal of Economic Theory 144, 930–976.

Kreps, David M., and Evan L. Porteus, 1978, Temporal Resolution of Uncertainty. and Dynamic Choice

Theory, Econometrica 46, 185–200.

Liu, Hong, Xiaoxiao Tang, and Guofu Zhou, 2022, Recovering the FOMC Risk Premium, Journal of Financial

Economics 145, 45–68.

Lucca, David O., and Emanuel Moench, 2015, The Pre-FOMC Announcement Drift, The Journal of Finance

70, 329–371.

Maccheroni, Fabio, Massimo Marinacci, and Aldo Rustichini, 2006a, Ambiguity Aversion, Robustness, and

the Variational Representation of Preferences, Econometrica 74, 1447–1498.

Maccheroni, Fabio, Massimo Marinacci, and Aldo Rustichini, 2006b, Dynamic variational preferences, Journal

of Economic Theory 128, 4–44.

Mueller, Philippe, Alireza Tahbaz-Salehi, and Andrea Vedolin, 2017, Exchange Rates and Monetary Policy

Uncertainty, Journal of Finance 72, 1213–1252.

28



Routledge, Bryan R., and Stanley E. Zin, 2010, Generalized Disappointment Aversion and Asset Prices, The

Journal of Finance 65, 1303–1332.

Savor, Pavel, and Mungo Wilson, 2013, How Much Do Investors Care About Macroeconomic Risk? Evidence

from Scheduled Economic Announcement, Journal of Financial and Quantitative Analysis 48, 343–375.

Schlag, Christian, Julian Thimme, and Rudiger Weber, 2021, Implied volatility duration: A measure for the

timing of uncertainty resolution, Journal of Financial Economics 140, 127–144.

Skiadas, Costis, 2009, Asset pricing theory. (Princeton University Press).

Strzalecki, Tomasz, 2011, Axiomatic Foundations of Multiplier Preferences, Econometrica 79, 47–73.

Strzalecki, Tomasz, 2013, Temporal resolution of uncertainty and recursive models ambiguity aversion, Econo-

metrica 81, 1039–1074.

Werner, Jan, 2024, Ordinal Representations and Properties of Recursive Utilities, Working Paper, University

of Minnesota.

29



6 Appendix

6.1 Proof of Lemma 1

Before we provide a proof for Lemma 1, we first state a result that computes the derivatives of f

defined in (11).

Lemma. (PER expansion)

Let f (e|u) be defined as in (11), then

f ′′ (e|u) =
βh′

(
u+ βh−1e

)
[h′ (h−1 (e))]2

{
[Ah]

(
h−1 (e)

)
− β [Ah]

(
u+ βh−1 (e)

)}
, (61)

where [Ah] (e) = −h′′(e)
h′(e) is the Arrow-Pratt measure of absolute risk aversion evaluated at z.

Proof. By the definition of f , its first order derivative is:

f ′ (z;u, β) = h′
(
u+ βh−1 (z)

)
βh−1′ (z) = β

h′
(
u+ βh−1 (z)

)
h′ (h−1 (z))

.

Taking second order derivative, we have:

f ′′ (z;u, β) = β
h′′
(
u+ βh−1 (z)

) β
h′(h−1(z))

h′
(
h−1 (z)

)
− h′

(
u+ βh−1 (z)

)
h′′
(
h−1 (z)

)
1

h′(h−1(z))

[h′ (h−1 (z))]2

=
βh′

(
u+ βh−1 (z)

)
[h′ (h−1 (z))]2

{
β
h′′
(
u+ βh−1 (z)

)
h′ (u+ βh−1 (z))

−
h′′
(
h−1 (z)

)
h′ (h−1 (z))

}
,

as needed.

Proof for Lemma 1

Proof. To simplify notation, we denote en as the conditional expectation of V (Z2) given F̄n
1 ,

en = E
[
h ◦ V (Z2)| F̄n

1

]
, (62)

and e∗ (z) as the conditional expectation of V (Z2) given Z1 = z:

e∗ (z) = E [h ◦ V (Zt+2)|Z1 = z] . (63)

Using the above notation and the definition of f in (11), we can write T̄nV (z) as

T̄nV (z) = h−1
{
E
[
h
{
u (z) + βh−1

{
E
[
h ◦ V (Z2)| F̄n

1

]}}∣∣Z1 = z
]}

=h−1 {E [f (en|u (z))|Z1 = z]} , (64)
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and TV (z) as:

TV (z) = h−1 {f (e∗|u (z))} . (65)

The law of iterated expectation implies that E [en|Z1 = z] = e∗ for all n. Note that {en}∞n=0

is a sequence of reverse martingales. As a result, en → e∗ a.s. and in Lp (see Section 4.7 in

Durrett (2019)). Convergence in L1 implies that T̄nV (z) → TV (z) and converge in L2 implies

limn→∞ V ar [vn|Z1 = z] = 0.

Because h is analytic with strictly positive derivatives, h−1 is analytic, and so is f , we can write

(64) using Taylor expansion:

T̄nV (z) = h−1

E
 ∞∑
j=0

1

j!
f (j) (e∗) (en − e∗)j

∣∣∣∣∣∣Z1 = z


=h−1

E
f (e∗) + 1

2
f ′′ (e∗)V ar [en|Z1 = z] +

∞∑
j=3

1

j!
f (j) (e∗)E

[
(en − e∗)j

∣∣∣Z1 = z
] ,

where the second line uses the fact that e∗ is Z1 measurable. Because en → e∗ a.s., (en − e∗)j =

o (en − e∗)2 for j ≥ 3, and E
[
(en − e∗)j

∣∣∣Z1

]
= o (V ar [en|Z1]). As a result,

T̄nV (z) = h−1 {f (e∗)}+ 1

h′ (h−1 {f (e∗)})
× 1

2
f ′′ (e∗)V ar [en|Z1 = z] +O

(
E
[
(en − e∗)3

∣∣∣Z1 = z
])

= TV (z) +
1

h′ (u (z) + βh−1 (e∗))
× 1

2
f ′′ (e∗)V ar [en|Z1 = z] +O

(
M (3) [en|Z1 = z]

)
.

(66)

where the second equality uses the definition of TV (z), (65), and uses (11) to simplify h−1 {f (e∗)}.
Because h−1 is analytical, we can write h−1 {en} = h−1 (e∗) +

∑∞
j=0

1
j!

(
h−1

)(j)
(e∗) (en − e∗)j .

This implies that

h−1 {en} − E
[
h−1 {en}

∣∣Z1 = z
]
=
(
h−1

)′
(e∗) (en − e∗) +O (en − e∗)2 .

Therefore,

V ar
[
h−1 (en)

∣∣Z1 = z
]
=

(
1

h′ (h−1 (e∗))

)2

V ar [en|Z1 = z] +O
(
M (3) [en|Z1 = z]

)
,

and

V ar
[
u (z) + βh−1 (en)

∣∣Z1 = z
]
=

(
β

h′ (h−1 (e∗))

)2

V ar [en|Z1 = z] +O
(
M (3) [en|Z1 = z]

)

31



Also, O
(
M (3) [en|Z1 = z]

)
= O

(
M (3)

[
h−1 (en)

∣∣Z1 = z
])
. This allows us to write (66) as 11

T̄nV (z)− TV (z) =
1

2

f ′′ (e∗)

h′ (u (z) + βh−1 (e∗))
×

(
h′
(
h−1 (e∗)

)
β

)2

V ar
[
u (z) + βh−1 (en)

∣∣Z1 = z
]

+O
(
M (3)

[
u (z) + βh−1 (en)

∣∣Z1 = z
])]

. (67)

Using Lemma 6.1, we can write the coefficient in the above equation as

f ′′ (e∗)

h′ (u (z) + βh−1 (e∗))
×

(
h′
(
h−1 (e∗)

)
β

)2

=
βh′

(
u (z) + βh−1e∗

)
[h′ (h−1 (e∗))]2

{
[Ah]

(
h−1 (e∗)

)
− β [Ah]

(
u+ βh−1 (e∗)

)}
×

[
h′
(
h−1 (e∗)

)]2
h′ (u (z) + βh−1 (e∗))

1

β2

=
1

β
[Ah]

(
h−1 (e∗)

)
− [Ah]

(
u+ βh−1 (e∗)

)
,

and write the welfare gain in (67) as

TnV (z)− TV (z) =
1

2

{
1

β
[Ah]

(
h−1 (e∗)

)
− [Ah]

(
u+ βh−1 (e∗)

)}
V ar

[
u (z) + βh−1 (en)

∣∣Z1 = z
]

+O
(
M (3)

[
u (z) + βh−1 (en)

∣∣Z1 = z
])]

.

Because en and wn are related by wn = h−1 (en), and e
∗ and w are related by e∗ = h−1 (w), this

proves Equation (25).

To prove equation (27), we note that

lnTnV (z)− lnTV (z) =
1

TV (z)
[TnV (z)− TV (z)] + o [TnV (z)− TV (z)]

=
1

TV (z)

1

2
ηPER (u (z) , w1 (z))V ar [u (z) + βw1 (n)|Z1 = z]

+O
(
M (3) [u (z) + βw1 (n)|Z1 = z]

)
, (68)

by (25). Also, using a log approximation for u (z) + βw1 (n) around u (z) + βw (z), we have:

ln [u (z) + βw1 (n)] = ln [u (z) + βw (z)] +
1

u (z) + βw (z)
β [w1 (n)− w (z)] .

+o |w1 (n)− w (z)|

11This may not be correct if h−1 (e) = e2, for example.
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We can write

V ar [ ln [u (z) + βw1 (n)]|Z1 = z] =
1

(u (z) + βw (z))2
V ar [u (z) + βw (z)|Z1 = z]

+O
(
M (3) [ ln [u (z) + βw1 (n)]|Z1 = z]

)
. (69)

Because TV (z) = u (z) + βw1 (z). Replacing the V ar [u (z) + βw1 (n)|Z1 = z] term in Equation

(68) with (69), we have

lnTnV (z)− lnTV (z) =
1

2
ηPER (u (z) , w1 (z)) [u (z) + βw (z)]V ar [ ln [u (z) + βw1 (n)]|Z1 = z]

O
(
M (3) [ ln [u (z) + βw1 (n)]|Z1 = z]

)
,

which is Equation (27).

Proof for Corollary 1 Using Equation (25) Proposition 1,

T̄ V (z)− [TV ] (z) =
1

2
ηPER (u (z) , w (z))V ar [u (z) + βV (Z2)|Z1 = z] +O

(
M (3) [u (z) + βV (Z2)|Z1 = z]

)
=
1

2
β2ηPER (u (z) , w (z))V ar [V (Z2)|Z1 = z] +O

(
M (3) [V (Z2)|Z1 = z]

)
,

as needed.

To prove (32), note that the variance term in (68) can be written as:

V ar [u (z) + βw1 (n)|Z1 = z] = β2V ar [w1 (n)|Z1 = z] .

Using a first order approximation,

lnw1 (n) = lnw (z) +
1

w (z)
[w1 (n)− w (z)] + o |w1 (n)− w (z)| , (70)

which implies

V ar [ lnw1 (n)|Z1 = z] =
1

w2 (z)
V ar [w1 (n)|Z1 = z] +O

(
M (3) [ lnw1 (n)|Z1 = z]

)
.

Combining this equation and (70), we have:

V ar [u (z) + βw1 (n)|Z1 = z] = β2w2 (z)V ar [ lnw1 (n)|Z1 = z] .
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Using this Equation to replace the variance term in Equation (68), we can write

lnTnV (z)− lnTV (z) =
1

u (z) + βw (z)

1

2
ηPER (u (z) , w1 (z))β

2w2 (z)V ar [ lnw1 (n)|Z1 = z]

+O
(
M (3) [u (z) + βw1 (n)|Z1 = z]

)
=
1

2
η̄PER (u (z) , w1 (z))

β2w2 (z)

(u (z) + βw (z))2
V ar [ lnw1 (n)|Z1 = z]

O
(
M (3) [ lnw1 (n)|Z1 = z]

)
,

as needed.

6.2 Successive approximations

Lemma 2. (Successive Approximation) Suppose h is analytic, u ∈ L1 and ϵ→ 0 in L2, then

h−1 {E [h (u+ ϵ)]} = h−1 {E [h (u)]}+ E [ϵ]

+
1

2

h′′ (ū)

h′ (ū)
{V ar [ϵ] + 2Cov [u, ϵ]}+O

(
M (3) [ϵ]

)
, (71)

where ū = E [u]. In addition,

lnh−1
{
E
[
h
(
elnu+ϵ

)]}
= lnh−1 {E [h (u)]}+ E [ϵ]

+
1

2

1 +
h′′
(
e

¯lnu
)
e

¯lnu

h′
(
e ¯lnu

)
 {V ar [ϵ] + 2Cov [lnu, ϵ]}+O

(
M (3) [ϵ]

)
, (72)

Proof. Using Taylor expansion of h (u+ ϵ) around ū = E [u], and taking expectations on both sides,

we can write E [h (u+ ϵ)] as:

E [h (u+ ϵ)] = h (ū) +
∞∑
j=1

1

j!
h(j) (ū)E [u− ū+ ϵ]j .

This allows to compute the Taylor expansion of h−1 {E [h (u (Z) + ϵ (Z))]} around h (ū):

h−1 {E [h (u+ ϵ)]} = h−1 {h (ū)}+ h−1′ (h (ū))


∞∑
j=1

1

j!
h(j) (ū)E [u− ū+ ϵ]j


+
1

2
h−1′′ (h (ū))


∞∑
j=1

1

j!
h(j) (ū)E [u− ū+ ϵ]j


2

+

∞∑
k=3

1

k!
h−1(k) (h (ū))


∞∑
j=1

1

j!
h(j) (ū)E [u− ū+ ϵ]j


k

. (73)
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Similarly, we can write the series representation for h−1 {E [h (u)]} as:

h−1 {E [h (u)]} = h−1 {h (ū)}+ h−1′ (h (ū))


∞∑
j=1

1

j!
h(j) (ū)E [u− ū]j


+
1

2
h−1′′ (h (ū))


∞∑
j=1

1

j!
h(j) (ū)E [u− ū]j


2

+
∞∑
k=3

1

k!
h−1(k) (h (ū))


∞∑
j=1

1

j!
h(j) (ū)E [u− ū]j


k

. (74)

Compute the difference between Equation (73) and (74), we have:

h−1 {E [h (u+ ϵ)]} = h−1 {E [h (u)]}+ h−1′ (h (ū))h′ (ū)E [ϵ]

+h−1′ (h (ū))
1

2
h′′ (ū)E

[
(u− ū+ ϵ)2 − (u− ū)2

]
+
1

2
h−1′′ (h (ū))

{
h′ (ū)E [u− ū+ ϵ]

}2
+O

(
M (3) [ϵ]

)
Using the fact that h−1′ (h (ū)) = 1

h′(ū) and h−1′′ (h (ū)) = − h′′(ū)

[h′(ū)]3
, we can write the above as

h−1 {E [h (u+ ϵ)]} = h−1 {E [h (u)]}+ E [ϵ] +
1

2

h′′ (ū)

h′ (ū)
E
[
ϵ2 + 2 (u− ū) ϵ

]
−1

2

h′′ (ḡ)

h′ (ḡ)
{E [ϵ]}2 +O

(
M (3) [ϵ (Z)]

)
=h−1 {E [h (u)]}+ E [ϵ] +

1

2

h′′ (ū)

h′ (ū)
{V ar [ϵ] + 2Cov [ϵ, u]} ,

which is (71).

Finally, to prove (72), we can compare lnh−1
{
E
[
h
(
eu(Z)+ϵ(Z)

)]}
with lnh−1

{
E
[
h
(
eu(Z)

)]}
by setting g (x) = h (ex) and applying (71).

Proof for Proposition 2 We first consider Equation (42). We use the same operation as in (39)

and (40). In general, the utility for n+ 1 period early resolution of uncertainty can be written as:

V (n+1) (z) = h−1Ez
[
h
{
u (Z1) + βu (Z2) + · · ·βn+1V (Zn+2)

}]
.

= h−1E
[
h ◦ h−1E

[
h
{
u (Z1) + βu (Z2) + · · ·βn+1V (Zn+2)

}∣∣Zn+1

]]
(75)

and that for n period early resolution is:

V (n) (z) = h−1Ez
[
h
{
u (Z1) + βu (Z2) + · · ·βn+1h−1E [hV (Zn+2)|Zn+1]

}]
.
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Using Corollary 25, where u0 + βu1 + · · ·βnun is interpreted as u and βn+1 is interpreted as β in

the Corollary, we have:

h−1E

h
u (Z1) + βu (Z2) + · · ·+ βnu (Zn+1)︸ ︷︷ ︸

un+1

+βn+1V (Zn+2)


∣∣∣∣∣∣∣Zn+1


.
= u (Z1) + βu (Z2) + · · ·+ βnu (Zn+1) + βn+1h−1E [hV (Zn+2)|Zn+1]

+
1

2

(
βn+1

)2
ηPER

(
un+1

(
Zn+1

)
, w (Zn+1)

∣∣βn+1
)
V ar [V (Zn+2)|Zn+1] (76)

Denoting u
(
Zn+1

)
= u (Z1)+βu (Z2)+· · ·+βnu (Zn+1), and w (Zn+1) = h−1E [hV (Zn+2)|Zn+1].

The above can be summarized as

V (n+1) (z) = h−1E
[
h
(
u
(
Zn+1

)
+ βn+1w (Zn+1) + ϵ

)]
,

with ϵn+1 =
1
2

(
βn+1

)2
ηPER

(
un+1

(
Zn+1

)
, w (Zn+1)

∣∣βn+1
)
V ar [V (Zn+2)|Zn+1], and

V (n+1) (z) = h−1E
[
h
(
u
(
Zn+1

)
+ βn+1w (Zn+1)

)]
.

We can apply Lemma 2 to get

V (n+1) (z)− V (n) (z) = E

[
1

2

(
βn+1

)2
ηPER

(
un+1

(
Zn+1

)
, w (Zn+1)

∣∣βn+1
)
V ar [V (Zn+2)|Zn+1]

]
.

We arrive at Equation (42) by summing up the first n terms of the above equation.

Equation (43) can be established similarly. Using (75), we can write the utility for n+1 period

early resolution of uncertainty as:

V (n+1) (z) = h−1E
[
h ◦ elnh−1E{h{u(Zn+1)+βn+1V (Zn+2)}|Zn+1}

]
=h−1E

[
h ◦ eln(u(Zn+1)+βn+1h−1E[hV (Zn+2)|Zn+1])+ϵn+1

]
,

where the second line use the log approximation formula in (32), and ϵn+1 is defined as in Equation

(44). Using Lemma 2 and ignore the variance and covariance terms, we obtain

lnV (n+1) (z)− lnV (n) (z) = E [ϵn+1] , (77)

We obtain Equation (43) by summing up the first n terms of the above equation.

Examples of successive approximations

The case of unit IES As shown in Epstein, Farhi, and Strzalecki (2014), in the case of unit

IES, the value function takes the form of V (x,C) = lnC + β
1−βρx+ cons, where cons is a constant.
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To compute conditional variance, we write

V (xt+1, Ct+1) = lnCt+1 +
β

1− βρ
xt+1 + cons

= lnCt + ln

(
Ct+1

Ct

)
+

β

1− βρ
(ρxt + ϕσϵx,t+1) + cons

= lnCt + µ+ xt + σϵC,t+1 +
β

1− βρ
(ρxt + ϕσϵx,t+1) + cons.

As a result, V ar [V (xt+1, Ct+1)|xt, Ct] = σ2 +
(

β
1−βρ

)2
ϕ2σ2, as needed.

General IES In the general IES case, the value function for gradual resolution of uncertainty

takes the form V (xt, Ct) =
1

1− 1
ψ

H (xt)C
1− 1

ψ

t , where the H (x) satisfies the recursion (33):

1

1− 1
ψ

H (xt)C
1− 1

ψ

t =
1

1− 1
ψ

C
1− 1

ψ

t + β
1

1− 1
ψ

(
Et

[(
H (xt+1)C

1− 1
ψ

t+1

) 1−γ
1− 1

ψ

]) 1− 1
ψ

1−γ

,

or equivalently, the H function satisfies the following functional equation:

H (x) = 1 + β

(
E

[
H

1−γ
1− 1

ψ (ρx+ ϕϵx) e
(1−γ)(µ+x+σϵC)

]) 1− 1
ψ

1−γ

, (78)

where ϵC and ϵx are i.i.d. standard Normal distributions. In addition, the certainty equivalent of

next period utility is 1
1− 1

ψ

w (xt)C
1− 1

ψ

t , and w (x) is given by:

w (x) =

(
Et

[
H

1−γ
1− 1

ψ (ρx+ ϕϵx) e
(1−γ)(µ+x+σϵC)

]) 1− 1
ψ

1−γ

.

In the case of i.i.d. consumption growth, that is, ϕ = 0 in (46), the H function in 78 is a constant

and does not depend on x. Equation (78) is simplified to

H = (1− β) + βHe

(
1− 1

ψ

)
(µ+ 1

2
(1−γ)σ2)

. (79)

Because the conditional variance V ar [ lnV (Zn+1)|Zn] =
(
1− 1

ψ

)2
σ2 is a constant, we apply (43)

directly. Here, we evaluate u (Zn) and w (Zn) at the steady state (which we denote as ū (Zn) and
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w̄ (Zn)):

ū (Zn) =
1

1− 1
ψ

[
C

1− 1
ψ

1 + βC
1− 1

ψ

2 + · · ·+ βn−1C
1− 1

ψ
n

]
=

1

1− 1
ψ

[
C

1− 1
ψ

1 + βC
1− 1

ψ

1 e

(
1− 1

ψ

)
(µ+σϵ2) + · · ·+ βn−1C

1− 1
ψ

1 e

(
1− 1

ψ

)∑n
j=2(µ+σϵj)

]
=

1

1− 1
ψ

C
1− 1

ψ

1

[
1 + βe

(
1− 1

ψ

)
µ
+ · · ·+ βn−1e

(
1− 1

ψ

)
(n−1)µ

]
,

where the last line evaluate the utility sum at the deterministic steady state.12 As a result, we have:

ū (Zn) =
1

1− 1
ψ

C
1− 1

ψ

1

1− e
n
(
lnβ+

(
1− 1

ψ

)
µ
)

1− e
lnβ+

(
1− 1

ψ

)
µ

.

Also, the certainty equivalent term can be computed as:

βnw̄ (Zn) = βn
1

1− 1/ψ
HC

1− 1
ψ

n e

(
1− 1

ψ

)
(µ+ 1

2
(1−γ)σ2)

=βn
1

1− 1/ψ
HC

1− 1
ψ

1 e
(n−1)

(
1− 1

ψ

)
µ+

(
1− 1

ψ

)
(µ+ 1

2
(1−γ)σ2)

.

This allows us to evaluate the weight λ̄n in Equation (49) at steady state:13

λ̄n =
ū (Zn)

ū (Zn) + βnw̄ (Zn)
=

1−en(ln β+(1−
1
ψ )µ)

1−eln β+(1−
1
ψ )µ

1−en(ln β+(1−
1
ψ )µ)

1−eln β+(1−
1
ψ )µ

+ βnHe

(
1− 1

ψ

)
[nµ+ 1

2
(1−γ)σ2]

.

The total welfare gain of early resolution can therefore be computed as:

ln V̄ (z)− lnV (z) =
1

2

(
γ − 1

ψ

)(
1− 1

ψ

)
σ2

∞∑
n=1

λ̄n
(
1− λ̄n

)
.

In the more general case with ϕ ̸= 0, we provide a more accurate approximation by including

the variance and covariance terms in Lemma 2. We write Equation (77) as:

lnV (n+1) (z) = lnV (n) (z) + E [ϵn+1]

+
1

2

1− γ

1− 1
ψ

{
V ar [ϵn+1] + 2Cov

[
ln
(
u
(
Zn+1

)
+ βn+1w

(
Zn+1

))
, ϵn+1

]}
12Hongye, we can instead write 1

1− 1
ψ

C
1− 1

ψ

1

[
1 + βe

(
1− 1

ψ

)
µ+ 1

2

(
1− 1

ψ

)2
σ2
C + · · ·+ βn−1e

(
1− 1

ψ

)
(n−1)µ+ 1

2

(
1− 1

ψ

)2
(n−1)σ2

C

]
.That

is, taking expectations of C
1− 1

ψ
n . Can you examine which approximation gives a better result? This is what I mean

by stochastic steady state.
13Our previous formula missed a term? Again, please check if we want to include the vol term for consumption so

that everything is evaluated at the stochastic steady state.
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where we use the functional form of h in (34) to get h
′′(eū)eū

h′(eū) =
1
ψ
−γ

1− 1
ψ

. The term Cov
[
ln
(
u
(
Zn+1

)
+ βn+1w

(
Zn+1

))
, ϵn+1

]
is of the same order as ϵn+1. We focus on this term and use (48) to write a log linear approximation

for ϵn+1: ϵn+1 = ϵ̄n+1 {1 + ln ϵn+1 − ln ϵ̄n+1}, where ϵ̄n+1 =
1
2

γ− 1
ψ

1− 1
ψ

λ̄n
(
1− λ̄n

)
V ar [ lnV (Zn+2)|Zn+1]

is the steady-state level of ϵn+1, and ln ϵn+1 − ln ϵ̄n+1 is the log deviation from steady state. The

conditional variance term V ar [ lnV (Zn+2)|Zn+1] is close to a constant. As a result, we focus on

the log deviation of the term λn (1− λn) =
u(Zn)βnw(Zn)

[u(Zn)+βnw(Zn)]
2 to write:

ln ϵn+1 − ln ϵ̄n+1 = û
(
Zn+1

)
+ ŵ (Zn+1)− 2

[
λ̄nû

(
Zn+1

)
+
(
1− λ̄n

)
ŵ (Zn+1)

]
, (80)

where for any random variable X, we use X̂ = lnX − ln X̄ to denote its log deviation.

Using the log linear approximation (80), the covariance term, Cov
[
ln
(
u
(
Zn+1

)
+ βn+1w

(
Zn+1

))
, ϵn+1

]
can be approximated by:

Cov
[
ln
(
u
(
Zn+1

)
+ βn+1w

(
Zn+1

))
, ϵn+1

]
=ϵ̄n+1Cov

[
λ̄nû

(
Zn+1

)
+
(
1− λ̄n

)
ŵ (Zn+1) , û

(
Zn+1

)
+ ŵ (Zn+1)− 2

[
λ̄nû

(
Zn+1

)
+
(
1− λ̄n

)
ŵ (Zn+1)

]]
=ϵ̄n+1

{
λ̄n
(
1− 2λ̄n

)
V ar

[
û
(
Zn+1

)]
+
(
1− λ̄n

) (
1− 2

(
1− λ̄n

))
V ar [ŵ (Zn+1)]

+
[
1− 4λ̄n

(
1− λ̄n

)]
Cov

[
û
(
Zn+1

)
, ŵ (Zn+1)

]}
. (81)

This leads to the following approximation formula:

lnV (n+1) (z)− lnV (n) (z)
.
= E [ϵn+1] +

1− γ

1− 1
ψ

Cov
[
ln
(
u
(
Zn+1

)
+ βn+1w

(
Zn+1

))
, ϵn+1

]
=ϵ̄n+1

{
1 +

1− γ

1− 1
ψ

χn+1

}
,

where χn+1 is defined using (81):

χn+1 = λ̄n
(
1− 2λ̄n

)
V ar

[
û
(
Zn+1

)]
−
(
1− λ̄n

) (
1− 2λ̄n

)
V ar [ŵ (Zn+1)]

+
[
1− 4λ̄n

(
1− λ̄n

)]
Cov

[
û
(
Zn+1

)
, ŵ (Zn+1)

]
.

6.3 Measurement of η̄PER

Proof for Lemma 1 First, under the assumption of the lemma, we can without loss generality

assume that the utility function (viewed as a function of consumption sequences, {Ct}Tt=1, is ho-

mogenous of degree ψ for some ψ > 0. This implies u (C) must be homogenous of degree ψ and

I must be homogenous of degree one. To see this, note that in the last period, VT (CT ) = u (CT ).

Homogeneity of V implies the homogeneity of u. To see I must be homogenous of degree one, for

any λ > 0,

VT−1 (λCT−1, λCT ) = λψVT−1 (CT−1, CT ) = λψ {u (CT−1) + βI [u (CT )]}
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by homogeneity. But the homogeneity of u implies

VT−1 (λCT−1, λCT ) = u (λCT−1) + βI [u (λCT )] = λψu (CT−1) + βI
[
λψu (CT )

]
.

Combine the above two equations, we must have λψI [u (CT )] = I
[
λψu (CT )

]
for all λ > 1, which

establishes the homogeneity of I.
The above properties imply that the value function in the dynamic program problem (53) must

be homogenous of degree ψ in W : Ut (z, λW ) = λψUt (z,W ) for all (z,W ). Homogeneity of u and

U implies that u′ (C)C = ψu (C) and ∂
∂W Ut (z,W )W = ψUt (z,W ) due to Euler’s theorem.

We can now write the wealth-to-consumption ratio as:

Wt

Ct
=
Wt

∂
∂W Ut (Zt,Wt)

Ctu′ (Ct)
=
ψUt (Zt,Wt)

ψu (Ct)
.

The first equality is due to the envelope condition for the maximization problem in (53): ∂
∂W Ut (Zt,Wt) =

u′ (Ct). The second equality applies Euler’s theorem to both the value function Ut (Zt,Wt) and the

utility function u (Ct). This proves the lemma.

Proof for Proposition 4 To save notation, we denote X = V ar [ lnW1 (s, τ)| τ ] and assume that

X follows a Gamma distribution with parameter (α, β). That is, the density of X is given by, for

x > 0,

f (x|α, β) = βα

Γ (α)
xα−1e−βx,

where Γ (α) is the Gamma function. Using Equation (59), We can write ASDF−1,0 = eη̂0−ηX , where

η = η̄GRS η̄PER. This allows us to compute the expected payoff of the variance portfolio as:

E [X] =
βα

Γ (α)

∫ ∞

0
x× xα−1e−βxdx =

α

β
,

the present value of the variance portfolio as

E
[
eη̂0−ηXX

]
=

βα

Γ (α)

∫ ∞

0
eη̂0−ηxx× xα−1e−βxdx = eη̂0

αβα

(η + β)α+1 ,

and the risk-free rate as

Rf =
1

E [ASDF−1,0]
=

[
βα

Γ (α)

∫ ∞

0
eη̂0−ηx × xα−1e−βxdx

]−1

=

[
eη0
(

β

η + β

)α]−1

.

The risk premium,
E[R−1,0]

Rf
− 1 can therefore be computed as

E [R−1,0]

Rf
− 1 =

E [X]

E [eη̂0−ηXX]

1

Rf
− 1 =

η

β
.
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As a result,

η = η̄GRS η̄PER = β ×
{
E [R−1,0]

Rf
− 1

}
.

To prove Equation (60), we note that β = E[X]
V ar[X] due to the property of the Gamma distribution.

Utility and consumption ratio Welfare gains are calculated in utility units in Propositions

1 and 2. The translation between utility units and its consumption equivalent units is straight-

forward for homothetic preferences. We continue to use the Markov setup in Section 2.2. Let

C = {C (Zt)}Tt=1 be a consumption process. Denote V (C) = {Vt (Zt)} be the associated utility

process constructed from the recursion (17). Denote λC be the consumption plan obtained by

multiplying C (Zt) by λ in all periods, that is, λC = {λC (Zt)}Tt=1. Clearly, if V (C) is homogenous

of degree 1− 1
ψ , then V (λC) = λV (C). This allows us to translate utility into consumption units

for general recursive utility with non-unit IES.

In the case of unit IES, utility function is homothetic but not homogenous. The following lemma

provides a relationship between utility and its comsumption equivalent. The recursive utility with

unit IES can be constructed from (17) with u (C) = (1− β) lnC, and h (V ) = −e−(γ−1)V .

Lemma 3. In the case of unit IES, under the above specification, V (λC) = lnλ+ V (C). That is,

increasing permanent consumption by λ times is equivalent to adding lnλ to life-time utility.

Proof. The above relationship clearly holds for the last period T , where VT (λC) = lnCT . Given

the recursive structure, it is enough to show the following: suppose Vt+1 (λC) = lnλ + Vt+1 (C),

then Vt (λC) = lnλ+ V (C). We have

Vt (λC) = (1− β) ln (λCt)− β (γ − 1) ln
{
E
[
e
− 1
γ−1

(Vt+1(λC))
]}

=(1− β) lnλ+ (1− β) lnCt − β (γ − 1) ln
{
E
[
e
− 1
γ−1

(lnλ+Vt+1(C))
]}

= (1− β) lnλ+ (1− β) lnCt + β lnλ− β (γ − 1) ln
{
E
[
e
− 1
γ−1

Vt+1(C)
]}

= lnλ+ Vt (C) ,

as needed.
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