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1 Introduction

In this paper, we develop a quantitative measure of preference for early resolution of uncertainty
(PER) that parallels the Arrow-Pratt measure of risk aversion in expected utility theory. As em-
phasized by Kreps and Porteus (1978), choice under uncertainty in a dynamic environment requires
decision makers to express a preference over the timing of the resolution of uncertainty. In fact,
dynamic preferences used in economics often exhibit a non-trivial preference over the timing of
resolution of uncertainty. Prominent examples are the recursive preference of Kreps and Porteus
(1978) and Epstein and Zin (1989), and the robust control preference of Hansen and Sargent (2008).
Despite its wide application, the literature lacks a quantitative measure of PER. This paper develops
one.

A theory of an Arrow-Pratt measure of PER is needed to study the quantitative impact of PER,
just like the Arrow-Pratt theory of risk aversion has been fundamental in the study of risk aversion.
The Arrow-Pratt measure of risk aversion has an intuitive interpretation. It is the additional amount
of consumption that is needed to compensate a risk-averse decision maker per unit of variance.
Analogously, our notion of elasticity of PER, or the Arrow-Pratt measure of PER, is defined as the
additional amount of utility needed to compensate a decision maker for delaying the resolution of
uncertainty for one period. The main purpose of the paper is to demonstrate how such a measure
can be used to quantify the impact of PER in preferences.

We focus on two applications, a welfare application, and an asset pricing application. We demon-
strate how to use our elasticity measure to compute welfare gains of one-period early resolution of
uncertainty and that of multiple-period early resolution of uncertainty through successive approxi-
mations. As in the case of risk aversion, the welfare gain computed using the Arrow-Pratt measure
of risk aversion is a local approximation. It is fully accurate only under special cases such as the
constant elasticity case. Our computation is also an approximation, but the advantage is that given
the elasticity measure, one does not need the knowledge of the entire utility function to compute
the welfare gain. In addition, such elasticity can be measured from the data without estimating the
entire utility function. We also show that our local approximation is quite accurate by comparing
it to global solutions.

In a second application, we show how to estimate our elasticity measure of PER from asset prices.
Our procedure builds on the previous work of Ai, Bansal, Guo, and Yaron (2023). Ai, Bansal, Guo,
and Yaron (2023) demonstrate that in a representative agent economy, PER is equivalent to the risk
premium for resolution of information quality is positive. We show how to use this risk premium
together with the volatility of the market portfolio to estimate the elasticity of PER. Taken together,
our two examples provide a procedure to estimate the structural parameter of the elasticity of PER
from the data and to use this parameter to answer welfare questions about the timing of resolution

of uncertainty.

Literature review The concept of PER is developed by Kreps and Porteus (1978). Strzalecki
(2013) studies PER in models with ambiguity aversion. As emphasized by Strzalecki (2013), many



non-expected utility models exhibit PER, such as the recursive preference developed by Epstein
and Zin (1989), the robust control preference of Hansen and Sargent (2005, 2007), and the related
multiplier preference of Strzalecki (2011), the variational ambiguity-averse preference of Maccheroni,
Marinacci, and Rustichini (2006a,b), and the smooth ambiguity model of Klibanoff, Marinacci, and
Mukerji (2005, 2009). The only model of ambiguity aversion that is indifferent towards the timing
of resolution of uncertainty is the maxmin expected utility of Gilboa and Schmeidler (1989), the
dynamic version of which is studied by Chen and Epstein (2002) and Epstein and Schneider (2003).

Our approach to identify and estimate the elasticity of PER builds on the methodological con-
tributions of Ai and Bansal (2018) and Ai, Bansal, Guo, and Yaron (2023). Ai and Bansal (2018)
develop a test for generalized risk sensitivity from asset market data, and Ai, Bansal, Guo, and
Yaron (2023) provide an identification theorem for PER. Our estimation procedure for the elastic-
ity of PER first requires estimating an elasticity of generalized risk sensitivity. Relatedly, several
papers provide measures of PER in the context of recursive utility. Epstein, Farhi, and Strzalecki
(2014) calculate the welfare gain of PER based on calibrated long-run risk models. Kadan and
Manela (2019) estimate the value of information in a model with recursive utility. Schlag, Thimme,
and Weber (2021) find suggestive evidence for PER using options market data. These papers assume
the CES form of utility function and do not distinguish PER from GRS, or uncertainty aversion.
In contrast, our procedure does not require an assumption on the functional form of utility, as the
above papers do. However, our approach allows us to replicate the results of the above papers, in
particular those in Epstein, Farhi, and Strzalecki (2014).

Many asset pricing models are based on intertemporal preferences that feature PER. We refer
readers to Epstein and Schneider (2010) for a review of asset pricing studies with the maxmin
expected utility model, Ju and Miao (2012) for an application of the smooth ambiguity-averse
preference, Hansen and Sargent (2008) for the robust control preference, Routledge and Zin (2010)
for an asset pricing model with disappointment aversion, and Bansal and Yaron (2004), Bansal
(2007), and Hansen, Heaton, and Li (2008) for the long-run risk model that builds on recursive
preferences. Borovicka and Stachurski (2020) provide necessary and sufficient conditions for the
existence and uniqueness of recursive preferences with constant elasticities. Bhamara and Uppal
(2006) study the role of risk aversion and intertemporal elasticity of substitution in portfolio choice
problems. Bidder and Dew-Becker (2016) link ambiguity aversion to long-run risk models. Skiadas
(2009) provides an excellent textbook treatment of recursive-preferences-based asset pricing theory.

Our asset pricing application makes use of risk premium realized around macroeconomic an-
nouncement days. The previous literature, surveyed in Ai, Bansal, and Guo (2024), documents
that stock market returns and Sharpe ratios are significantly higher on days with macroeconomic
news releases both in the United States (Savor and Wilson (2013)) and internationally (Brusa, Savor,
and Wilson (2020)). Lucca and Moench (2015) find similar patterns and document a pre-FOMC an-
nouncement drift. Mueller, Tahbaz-Salehi, and Vedolin (2017) document an FOMC announcement
premium on the foreign exchange market and attribute it to compensation to financially constrained
intermediaries. Fisher, Martineau, and Sheng (2022), Liu, Tang, and Zhou (2022), and Johannes,



Kaeck, and Seeger (2023) develop ex-ante measures of macroeconomic announcement premium.
The rest of the paper is organized as follows. In Section 2, we develop the concept of Arrow-Pratt
measure of PER. We demonstrate how to use our measure of the elasticity of PER to compute the
welfare gain of early resolution of uncertainty in multiple periods and in infinite horizon settings in
Section 3. Section 4 provides a procedure for estimating the elasticities of PER from asset prices.

Section 5 concludes.

2 Elasticity of PER

2.1 An intuitive discussion

Our definition of the elasticity of PER parallels the development of the Arrow-Pratt measure of
risk aversion. To illustrate the basic idea, consider an expected utility consumer who evaluates
consumption by using a strictly increasing and weakly concave utility function u: E [u (C')]. We can
ask, what is the utility gain for eliminating all uncertainty in C, that is, consuming F [C] instead

of C'7 The utility gain, measured in consumption terms, is denoted as € and has to solve:
u(E[C] —€¢) = Eu(C)]. (1)

Using a Taylor approximation for u (C') around C = E [C], we can write the right hand of (1) as

Elu(@)] % B |u(C) + (€) (€~ O) + 3u" (C) (€~ C)| =u(C) + g (O) Var[C]. (2

Similarly, a Taylor approximation for the left hand side of (1) gives

w(E[Cl—¢)mu(C)—u(C)e (3)
Comparing (2) with (3), we can write the risk compensation e as
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The equation above motivates the definition of Arrow-Pratt measure of risk aversion as Au (C’) =
u”(C_’)
u’(C’)

To introduce an analogous notion of elasticity of PER, we consider the two-period example of

. It is the amount of consumption goods needed to compensate the agent per unit of variance.

Kreps and Porteus (1978), which we illustrate in Figure 1. In both the top panel and the bottom
panel, consumption in period 2, denoted Cs (Z), is the only source of uncertainty. We use Cy = ¢y
and C] = ¢; to illustrate that consumption in periods 0 and 1 is deterministic. We use circles to
denote the agent’s information node. In both panels, the state variable Z can take on two values,
Zy and Zp, which determine consumption in period 2. The only difference between the two panels

is that the top panel represents early resolution of uncertainty: the agent receives a signal s in



period 1 that fully reveals the value of Z. As a result, the consumer is able to distinguish node 1y
from 1p, that is, she knows the value of Cy at time 1. The bottom panel represents late resolution
of uncertainty. Here, the agent does not know the value of Z, and hence, the value of Cy until
period 2. We can interpret late resolution of uncertainty as the case in which the signal in period
1 is trivial, s = &. In summary, the distribution of consumption in both panels is identical. They

only differ in the timing of the resolution of uncertainty about Z.

Figure 1: Early versus late resolution of uncertainty
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This future illustrates the notion of PER. The blue squares contain consumption and the orange circles represent
information sets. Both panels have identical unconditional distributions of consumption. The top panel features early
resolution, as the uncertainty about c2 is resolved one period earlier in period 1. The bottom panel corresponds to
the case of late resolution because the value of c3 is not revealed to the consumer until period 2.

We assume that the consumer’s preference can be represented recursively by
Vi =u(Cy) + BL[Viga] (5)

where u is a utility that computes the current-period utility and Z computes the certainty equivalent
of the continuation utility Viy1. We further assume that the certainty equivalent functional Z takes

the following form:
I [Vira] = h ' Er[h (Vig)] (6)

where h is a strictly increasing function. The subscript ¢ represents conditioning on information at
time ¢. Under the above notation, the intertemporal preference is represented by {u, h, 5}, where u

and h are real valued functions and § is a discount rate.



Using the above setup, the period-0 utility associated with early resolution is

Vi® = u(Co) + BZ [u(Ch) + Bu(Ca)] = u (Co) + BA™{E [l {u (C1) + Bu (Ca)}]}, (7)

/

early resolution

where the utility at time 1 is computed by first aggregating across time and then computing its

certainty equivalent using Z. The period-0 utility for late resolution is

Vi" = u(Co) + B {u(Cr) + BI [u(Co)l} = u(Co) + B {u(Cr) + B E[n{u(C2)}]},  (8)

late resolution

where we first compute the certainty equivalent of u (C2) and then aggregate across time. As a
result, to compare the utility for early resolution to that of late resolution, it is enough to compare
the certainty equivalent of date-1 utility, which are bracketed in equations (7) and (8). We denote
the certainty equivalent for early and late resolution to be CE¥ = h=' {E [h {u (C1) + Bu (C2)}]}
and CE* = u (Cy) + Bh~ E [h {u (Cy)}], respectively. To simplify notation, we denote u; = u (Ch)

and e = h (u (C3)). To compare early and late resolution, it is enough to compare their monotonic

transformations:
h(CE®) = E [h{u + Bh~"e}] = E[f (¢)], 9)
and
h(CEY) = h{u + Bh ' Ele]} = f(Ee]), (10)
where we define
f(e)=h{u+ph" (e)}. (11)

In what follows, we provide a heuristic discussion on how to use an appropriate notion of elasticity
of PER to compute the difference between CEF and CE' via a local approximation.

Comparing Equation (9) with (10), by Jensen’s inequality, preference for early resolution is
equivalent to f (e) being a convex function. Intuitively, the elasticity of PER should be related to
the Arrow-Pratt measure of f. Using the risk compensation formula (4), we know that the solution
to E[f (e)] = f(Ee] +¢), or

E[h{u+ph" (e)}] = h{ur+ Bh " (Ele] + €)} (12)
is approximately
LI (Ele]) _ 1
€~ imVar [e] = _QAJC (E[e]|w1) Varle], (13)
where we use the notation Af (E[e]) = —J}l,/((g[[:}])) for the Arrow Pratt measure of risk aversion of

f.1 The left-hand side of Equation (12) is the utility of early resolution and the right-hand side

of Equation (12) is the compensated utility for late resolution. PER corresponds to a convex f,

'Here, € has a negative sign, because Equation (1) and (12) differ in sign.



in which case —Af (E [e]) > 0. For this reason, we use a different sign for € in Equations (1) and
(12) to keep the convention that the compensation is positive for the case of preference for early
resolution.

Intuitively, in the case of late resolution, the consumer knows F [e] but not the value of e at
time 1. In the case of early resolution, the consumer knows the value of e. A preference for the
early resolution is essentially a preference for the conditional variance of e. Equation (12) provide
an approximate solution to the following question: suppose we compensate the consumer in units
of E[e], how much compensation is needed per unit of Var [e]?

E le] and Var [e] are hard to interpret. It is more convenient to express this utility gain in terms
of units of continuation utility. We first work on Var[e]. In period 1, after early resolution of
uncertainty, the consumer’s utility is Vi¥ = u (Cy) + Bu (Cy), which, using the definition of e, can
be written as:

V¥ =+ Bh" (e). (14)
Using a first-order approximation of (14), we can write Vi¥ = uj+8 [h_l (Ele]) + m (e — Ele])|,

2
which implies that, to a first-order approximation, Var [V]] = (W) Var [e]. This allows

us to write the solution € in (13) as:

1 (h’{h—l (Ele])}

Ex

5 5 ) Af (Ele]|ur) Var [VlE] . (15)

To translate compensation in terms of E [e] into certainty equivalent units, we apply a monotonic
transformation h~' to both sides of (12) to compute the difference between CE¥ and CE* using a

first-order Taylor expansion:

W E [h{u+Bh7 " (e)}]} =ur+ B (E[e] +¢)

1
R hY(E _
where the second equality is a first-order approximation. Using the definition of CEF and CE"

and replacing € in the above equation using Equation (15), we have:

1
CEY — CE' = Bme

1 {h~1(Ele])} 5
=5 | 3 Af (Ele]) Var[Vl].

NPER

This motivates defining the elasticity of PER as

ppion — — B(E D} ar 21, (16)




which allows us to express the welfare gain of early resolution locally as a linear function of the
variance of continuation utility.
In the next sections, we first provide an analytical framework to formalize the above definition of

nper- We then demonstrate how npgpgr can be used for various asset pricing and welfare calculations.

2.2 Elasticity of PER for dynamic preferences

We consider dynamic preferences defined by the recursive relation (5). Let (€2, F, P) be a probability
space from which all uncertainty is generated. Let {Zt}z;l be a Markov process where for each t,
Z; : Q0 — Z where Z is the state space of the Markov chain. Let C' : Z — R be a bounded
function that takes values in R. Let uw be a real-valued, strictly increasing, and bounded utility
function. With a slight abuse of notation, for any z € Z, we denote u (C (2)) as u(z). That is,
u (z) is the per-period utility of consuming C (z). Let h be an analytic function on its domain with
strictly positive derivatives. We focus on recursive utility represented by {u,h, 5} constructed in
the following way. Given a consumption process {C (Zt)}thl, the continuation utility of the agent
at time ¢ is defined recursively using recursion (5). That is, Vr (2) = u(z) for all z € Z, and for
t=T-1,T-2,---1,

Vi(2) = u(2) + Bh™ {E [ho Vg1 (Zis1)| 2o = 2]}, (17)

where h o V' denotes the composition of A and V.

We think of the above construction of utility as a benchmark case where uncertainty about Z;
does not resolve until time ¢t when consumption happens. In the language of Epstein, Farhi, and
Strzalecki (2014), this is the utility for gradual resolution of uncertainty. To incorporate general
patterns of early resolution of uncertainty, we define a utility process relative to a filtration. Let
{]—}}Z;l be a filtration that is weakly larger than the filtration generated by {Zt}g;l, that is, for all
t, Ft 2 0{Z;:1<1i<t}. We can define a utility process relative to filtration {.7-'t}tT:1 recursively
by

Vi = u(C (Z0) + Bh~{E [h o Viya | Fil} (18)

It is also useful to define the certainty equivalent process associated with the above construction of
the utility process: wy = h™* {E[ho Viy1| F]}. Clearly, V; = u (C;) + Bw; by definition. Below, we

provide a formal definition of preference for early resolution of uncertainty.

Definition. (Preference for early resolution of uncertainty)

A preference represented by {u, h, 3} is said to have preference for early resolution of uncertainty
if for any two filtrations, {ft}thl and {ft }thl, such that i) both filtrations are weakly larger than the
filtration generated by {Z;}L; and ii) F; C F; for all t = 1,2,3,---T, h"* {E[|h (V)| Z1 = 2]} <
WY {E[|h (V1)| Z1 = 2]} for all 2, where {Vi}]_, is a utility process defined with respect to {F;}/_,
and {Vt}tT:l is a utility process defined with respect to {ﬁt}thl‘

The above definition generalizes the concept of the preference for early resolution of uncertainty



in Kreps and Porteus (1978) and defines it as a preference over filtrations. In the above definition,
filtration F = {ﬁt}thl has more information than F = {F;}._,, but to define the preference for early
resolution of uncertainty, we need to compare the certainty equivalent of period-1 utility conditioning
on the same information. If the preference can be represented by an additively separable utility
function, that is, A is linear, then it is indifferent towards the timing of the resolution of uncertainty.
In general, as we will see, PER depends on the properties of all three elements of {u, h, 5}. In what
follows, we first focus on one-period early resolution of uncertainty, but we also provide a recursive
procedure to compute the welfare gain for an arbitrary number of periods.

To study one-period early resolution of uncertainty, we set F; = F; = 0 {Z; : 1 <1i <t} for all
t=23,---,T. Weset Fi = 0{Z1} as described above. To provide an approximation result, we
consider a sequence of decreasing o algebras, {G,} ", with G,11 C G, for all n and N2 (G, = & .
We set F' = G U Fy for all n. That is, for each n, F7 contains more information than F; and the
information content in F7' is a decreasing function of n. As a result, the filtration F* = {ﬁt”}tT:l
represents a sequence of early resolution of uncertainty experiments relative to J, which, in the
limit, has the same timing of resolution of uncertainty as F. Our main result is to provide a linear
approximation of welfare gain when n is large.

In the above setup, for each n, let {Vt"}::l be the utility process associated with filtration F
and let {V;};2, be the utility process associated with filtration F. Clearly, V;* (Z;) = V; (Z;) for all

t > 2. At time 1, the utility for early resolution can be computed as

V' =u(C(20) + b {E [h(Va (22)| ]} (19)

To compute welfare gains of PER, it is useful to define a certainty equivalent operator. Let B (Z)
be the space of bounded functions on Z (Because consumption is bounded, so are utility functions).

For any F7', we define the associated certainty equivalent operator T}, : B(Z) — B(Z) as:
[T,V] (z) = k" H{E [h{u(z) + Bh T {E [ho V (Z2)| FI']} }| 21 = 2] } . (20)

That is, given any period-2 continuation utility V, we construct Vj* as in Equation (19) with
period-2 continuation utility V. [TnV] (z) is then defined as the certainty equivalent of Vl",
h~1 {E [h {Vl”H Zy = z] } conditioning on period-1 information Z; = z. We also define a T opera-
tor as

TV](2) = u(z) + B {E [ho V (Z)| Z1 = 4]}, (21)

for all V € B(Z). Here, T,V (z) represents the certainty equivalent of a sequence of early resolution
experiments, where as n — 0o, the informativeness of the additional information, represented by
Fr. converges to zero. As we will show in the appendix, in the limit, lim,, ., 7,V (z) converges to
the certainty equivalent for the late resolution case, [TV] (z).

Both V{* and [TnV] (z) represent the consumer’s life-time utility evaluated at time 1. The
difference is that V;" is the utility after the uncertainty in FJ' is resolved and therefore measurable
with respect to Ff'. [T,V] (z) is the utility before the the uncertainty in FJ" is resolved. It is the



certainty equivalent of V/* computed conditioning on a coarser information set, 7; = o {Z;}. For
this reason, we will refer to V;* as the ex post utility in period 1 and [TnV] (z) as the ex ante
utility in period 1. Preference for the timing of resolution of uncertainty is a comparison of ex ante
utilities for different flirtations. Below we demonstrate that as n becomes large enough, T,V (2)
can be obtained by a local linear approximation around [T'V](z). The coefficient for the linear
approximation is the elasticity of PER. Using the definition of f in (11), it is not hard to show that
the nprgr defined in Equation (16) can be written as a function of the Arrow-Pratt measure of risk

aversion of h. Below is the definition.

Definition 1. Elasticity of PER
Give a dynamic preference represented as {u, h, 5}, the Arrow-Pratt measure of absolute pref-

erence for early resolution of uncertainty, evaluated at (u,w) € R? is defined as

1
pen (0] 8) = {5 1A (0) = 48] (u+ ) | 22
where Yw € R,[Ah] (w) = —];Ll,/((;j)) denotes the Arrow-Pratt measure of risk aversion of h evaluated

at w. The Arrow-Pratt measure of relative PER, evaluated at (u,w), is defined as

1

3 [AR] (w) — [AR] (u + ﬁw)} . (23)

een (.0 8) = (u+ Bu) ea (0,01 8) = (u+ ) {
It is clear that the elasticity of PER depends on the Arrow-Pratt measure of risk aversion of h
and the discount rate 8. To emphasize the dependence of nprr on the discount rate 3, we use the
notation nprr (u,w|B), but we will suppress 8 below whenever the discount rate is clear from the
context. As we will show below, npgr (u, w) provides a quantitative measure of the welfare gain of
one-period resolution of uncertainty. The length of a period is encoded in the discount rate .
Having defined npgr, we first present a lemma that provides an approximation of the dif-
ference between the certainty equivalent for early resolution, 7;,V, and that for late resolution
TV. As we show below, our approximation error is bounded by the third central moment of
continuation utility around its conditional mean. To formally state our result, it is useful to
introduce a notation for conditional central moments. For any random variable Z, we denote
MW [Z|F|] = E[{Z — E[Z| F]}"| Fland the nth conditional central moment of Z given F.

Proposition 1. Let T,V and TV be defined in (20) and (21), respectively. Then

1. For any z € Z, T,V (2) — TV (2) a.s. and in L2 In addition, let wy (n) be the certainty
equivalent of V' (Z3) given FP,

wi (n) =h™ (B [hoV (Z)| FT]), (24)

then lim,,_,o Var [w; (n)| Z1 = 2] = 0.

10



2. T,,V (2) can be obtained from TV (z) by

TV () = TV (2) + gnpen (u(z), wn (2)) Var [u (=) + B (0)] Z1 = 2]

40 (M<3> [u(2) + Bun (n)| Z1 = z]) : (25)
where wy (z) is the certainty equivalent of V' (Z2) given Z; = z:
wy (2) = h N (E[hoV (Z9)| Z1 = 2]). (26)

and nppr (u,w) is defined in (1).

3. In addition,

InT,V(z2)=InTV (z) + %ﬁpER (u(2),w; (2)) Var [In{u(z) + fwy (n)}| Z1 = Z]

+O (M<3> [n {u(2) + Bwi (n)}] Z; = z]) . (27)

Proof. See Section 6.1 in the appendix. O

In the above lemma, u (2) + Sw, is the level of life-time utility upon early resolution of uncertainty
and depends on the information in F7. T,,V (z) is the certainty equivalent of u (z) + Sw,, before the
resolution of uncertainty, and therefore, is a function of z and does not depend on the information
in F'. TV (z) is the certainty equivalent of later resolution, u (z) + Bw (z). PER corresponds to
the condition T,V (z) > TV (z). The above lemma expresses the difference between T,V (z) and
TV (z) as a (locally) linear function of the conditional variance of u (z) + Swy,.

Proposition 1 allows for a very general notion of early resolution of uncertainty at time 1. That
is, the additional information received by the agent is modeled by an abstract o algebra, FI'. A
special case of JF is of particular interest, that is, 71 = o (Z1, Z2). That is, the consumer receives
information about Zs one period earlier, at time 1. This corresponds to the classical example of
early resolution of uncertainty of Kreps and Porteus (1978) as illustrated in Figure 1. Under the

assumption of Fy = o (Z1, Zs), the early resolution operator TV can be defined as in (20):
[TV] (2) = b= {E[h{u(2) + BV (Z2)}| Z1 = ]} . (28)
In this case, Equation (25) can be written as

[TV] (2) = [TV)(2) = gnppn (u(2),w () Var [u (=) + 6V (2)] 21 = 2]

10 (M<3> [V (Z2)| Z1 = z]) (29)

11



In addition, Equation (27) becomes

In [TV] (2) = [TV] () = gpen (u(2), w (2)) Var [In {u(z) + BV (Z2)}] 71 = ),

+0 (M<3> [V (Z2)| Z1 = z]) (30)

where 7pggr (u, w) is the Arrow-Pratt measure of relative PER defined in (23).

Equations (29) and (30) express the welfare gain of early resolution of uncertainty as a linear
function of the conditional variance of the ex post continuation utility in period 1, u (2) + BV (Z3).
Here u (z) is known in period 1. The only non-trivial random variable is V' (Z2). In applications,
it is sometimes more convenient to express welfare gain as a function of the variance of period-2

continuation utility, Var [V (Z2)| Z1 = z]. The following corollary provides such a formula.

Corollary 1. Let the TV operator be as defined in (28) and the TV operator is as defined in (21),
_ 1

[TV] (2) - [TV](2) = £ Bnpmn (u(2) . w ()] B) Var [V (2)] 23 = 4 + 0 (M) [V ()| 21 = )

(31)
where w (z) is as defined in (26). In addition, in log term

2
In [TV] (2) —In[TV](z) = % <u(z)ﬁ1—1|)—(;121(z)> nper (u(z),w(2)|B) Var|[lnV (Z3)| Z1 = 2]
+0 (M(3) [0V (Zs)| Zy = z]) (32)

2.3 Examples of the elasticity of PER

In this section, we provide several examples to illustrate how to use the concept of nppgr together

with Lemma 1 to calculate the welfare gain for various experiments of early resolution of uncertainty.

An example with constant nppr The multiplier robust control model of Hansen and Sargent
(2008) features constant npppr. As a result, the welfare gain of early resolution for this class of model
is particularly simple to analyze. In the robust control model, the decision maker’s subjective
probability is represented by a probability distortion. Consider a discrete-time, infinite-horizon
setup. Let the conditional probability distortion at time ¢ be represented by myy1, in the sense that
the time-t conditional expectation of any random variable Z, under the subjective probability, is
computed as Fy [m;41Z], where E; represents expectation under the reference probability measure.

The robust control preference can be constructed through the following recursive relationship:

mip1]=1"

Vi(z)=u(z)+ BWI%LI} E[mun 1V (Zis1)| Ze = 2] = O0F; [mypr Inmyga | Z = 2] g,
The interpretation is that the nature chooses the worst-case probability, represented by m;41, to

minimize the expected utility, E' [m+1V (Zi41)| Z¢ = 2], but large probability distortions are subject

to a penalty for the relative entropy E;[myyilnmyi1| Z; = z]. As shown in Hansen and Sargent
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(2008), the above recursion can be conveniently represented in the form of (17) as:

V(z)=u(z)—BO0InE [e_%V(ZtH)

Zt:Z}.

That is, h(w) = —e 9%, Cleatly, Ah = 5. and npgr = B{[Ah] (w) — B[AR] (u+ Bw)} =
B(1—pB)%. As shown in Ai, Bansal, Guo, and Yaron (2023), this preference has a preference
for early resolution of uncertainty if and only if 8 < 1. The Arrow-Pratt measure of PER is positive

under the same condition.

Recursive preferences As shown in Kreps and Porteus (1978), the recursive preference with

unit IES corresponds to the case where h (w) = —e(I=% with 4 > 0 and v # 1 being the relative

risk aversion of the recursive preference. From the definition above, because Ah = v —1 is constant,

nper (u,w) = (% — 1) (v —1) is also a constant. Clearly, 7prgr (u, w) = (u+ fw) (% - 1) (v—1).
The recursive preference with general IES is defined by the recursion

-3 ) e

1—v

U(Zy)=4q 01~ B)C(Zt)l_i + B (Et [U (ZtH)I_WD ;

where 7 is the relative risk aversion parameter (y > 0 and v # 1), and ¢ is the IES parameter
(v > 0 and 9 # 1). Equivalently,

-1

1 B _1 T
v @ s mge@ e (e )T e

1

1
=3

1—1 . .
U™ ¥, we can write the above recursion as:

Using a monotonic transformation, V =

V(Z) =u(C)+ Ay (E
P

that is, V' (Z;) satisfies recursion (17) with

- (02

In this case, the elasticities are written as:

U _ ( ) ’Y—i U
: U, W) = —_
Bw (u + Bw) "IPER 1— i Bw

(35)

f}/_
nprer (u,w) = =

ASallRSRIE

In discounted utility models, the length of a period is encoded in the discount rate 5. We

can think of 8 — 1 corresponds to the case in which the length of a period converges to zero.
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In this case, the above elasticity measures all converge to zero as 8 — 1. Clearly npgpg (u,w) =
(% — 1) (v—1) = 0 and 7pgr (v, w) = (v + Pw) (% — 1) (v —1) — 0 in the case of unit IES. In

1

the case of general recursive utility, we also have 7pgr (u, w) = Z:E Biw — 0 as 8 — 1 because the
»

ratio of current period utility and the continuation utility ,BLw — 0 as the discount factor 8 converges
to 1.

3 Long-horizon welfare gains

Multi-period welfare gain through successive approximations Corollary 1 provides a for-
mula to calculate the one-period welfare gain under a preference for early resolution of uncertainty.
In this section, we demonstrate how to apply this lemma recursively to compute the welfare gain of
resolving uncertainty for multiple periods.
In an infinite-horizon Markov setup, we define the value function V' as the fixed point of the
following operator?
V(z) = () + B B[R oV (2) Z1 = . (36)

As in Epstein, Farhi, and Strzalecki (2014), the utility function V (z) constructed this way will be
called the utility associated with the gradual resolution of uncertainty. Our purpose is to compare

the above utility with the utility of early resolution defined as:3

h {Z Btu (Zt+1)}
=0

The interpretation of V' is that, at time 1, the decision maker receives an information that resolves

V(z)=h"'E AR (37)

all uncertainty in the future. As a result, the time-1 ex post utility is just an infinite sum of
a deterministic stream of utilities, > 7 B'u (Z¢11), where the sequence of {Z;y1};o, is known.
V (Z1) represents the certainty equivalent of this infinite sum before any uncertainty about the
future, i.e., uncertainty about {Z;;1};,, resolves.

Our main idea for computing V (z) — V (2) is to construct a series of approximations and

repeatedly apply Corollary 1. Consider the following one-period early resolution of uncertainty:
VO (2) = h 'E[h{u(z) + BV (Z2)}| Z1 = 2]. (38)

Using Corollary 1, we can compare the utility for one-period early resolution of uncertainty in the

above equation with the utility for gradual resolution of uncertainty in (36):

vV (2) =V (Z1) + %BZHPER (u1 (Z1),w(Z1)| B) Var [V (Z2)| Z1]

2See Bloise, Van, and Vailakis (2024) and Werner (2024) for conditions for the existence and uniqueness of the
fixed point.

30ur formulation differs from the EFS formulation by one period. EFS compares u_1 + Bh™'E [h oV (20)] with
u_1 + h7IE [ho I_/(zo)] As a result, our welfare gain number will differ from that of EFS by a factor of S:
{u1+BR'E[hoV (20)]} —{u—1+Bh'E[hoV (20)]} = B[V (20) = V (20)].
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where we use “=" to indicate that this is an approximation with an error bounded by that implied
by Proposition 1. In the above equation, u; (Z1) = u(Z1), and w(Z1) = h"*E[h o V (Z3)| Z1] as
in the Corollary.

Continue the above logic. Now compare one-period and two-period early resolution of uncer-
tainty. To save notation, whenever the expectation is taken conditioning on date-1 information,
that is, Z1 = z, I ignore the conditional expectation notation and write it as unconditional expec-
tation. Using (38) and writing V (Z3) as V (Z2) = u(Z2) + Bh™tE[h oV (Z3)| Zs], the utility for

one-period early resolution is given by:
VW (2) = b E [h{u(2) + Bu(Zs) + B2 E[ho V (Z3)| Za]}] - (39)
Using the law of iterated expectations, the utility for two-period early resolution can be written as:

VO (2) = h E [ {u(2) + Bu(Zs) + B2V (Z3)}] = W 'E [ho h ™ E [ {u(2) + Bu(Z2) + B*V (Z3)}| Zo]] -
(40)

Using Corollary 25, comparing the highlighted part in V(Y (2) and V® (z), we have:

h1E | h{u(Zy)+ Bu(Za) + fi/ V(Z3) p| Za| = {u(Z1) + Bu(Z2) + B*h ' E[ho V (Z3)| Z5]}

u(z) in Corollary B in Corollary

+ (52)2 nper (u2 (Z2°%) ,w(22)| B%) Var [V (Z3)| Z1]

DN | =

where we denote us (Z%) = u(Z1) + Bu(Z2) and w(Zy) = h™'E[hoV (Z3)| Z]. Due to the
Markov property, w (Z) does not need a subscript, but us (ZQ) depends on the entire history of
7% = (Zy, Z»). If the variance of the term npgr (u2 (Z22) ,w(Z2)| B%) Var [V (Z3)| Zs] is small, we

can use Lemma 2 in the appendix to write?

2

V(Q) (Zo) — V(l) (2’0) = % (52) E [T]pER (’u,g (ZQ) , W (ZQ)‘ ,82) Var [V (Z3)‘ ZQH Zl = Z] . (41)

Continuing the above logic and iterating forward, we can compute the welfare gain for n-period

early resolution of uncertainty, which we summarize in the following proposition.

Proposition 2. (PER through Successive Approrimations) In an infinite-horizon setup, let the
utility for gradual resolution of uncertainty be defined by (36).

4In our application of unit IES case, NPER (ug (Z2) S W (Zg)’ BQ) Var [V (Z3)| Z2] is a constant.
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1. The welfare gain for N-period early resolution of uncertainty is given by:

1 N

VIV (2) =V (2) = 3 Y BPE[nper (un (Z27),w (Za)| B*) Var [V (Zui)| Zu]| Z1 = 2] (42)

n=1

+0 (MO [V (Zns1)| Z1))

and, in log terms,
|
V™ (2) =V (2) = 5> e (2) +0 (M“” [0V (Zni1)| Zn]) (43)
n=1

where €, (Z") in the above expression is defined as:

€np =

1 Pw (Zn) 2

- z" Zn)| B") Var[InV (Z, Zn) - 44

2<U(Zn)+ﬂn+1w(zn)> nPER(u( )7w( )‘/8 ) ar[n ( +1)‘ ] ( )
2. In the limit, limy_,o V™) (2) = V (2), where V is the utility for one-time early resolution of

uncertainty defined in (37).

Examples of welfare gain calculations In this section, we illustrate how to use Proposition
2 to compute the welfare gain of early resolution for several examples. We demonstrate that our
approximation formulas are quite accurate by comparing local approximation results to global solu-
tions for several well-studied economies in the literature, including those studied in Epstein, Farhi,
and Strzalecki (2014).

The Epstein, Farhi, and Strzalecki (2014) example with unit IES We first consider
the unit TES example studied in Epstein, Farhi, and Strzalecki (2014). The welfare gain of early
resolution in this example has closed-form solutions. We show that our approximation formula
produces a fully accurate solution in this example that is identical to the closed-form solution in
Epstein, Farhi, and Strzalecki (2014). Unlike the Epstein, Farhi, and Strzalecki (2014) calculation,
our method does not require knowledge of the shape of the utility function. It depends only on the
elasticity parameter npgpgr. It yields a fully accurate solution because the recursive preference with
constant IES has a constant npgpg.

Epstein, Farhi, and Strzalecki (2014) consider a long-run risk model with recursive preference

with unit IES. The consumption process is given by:
In Ct+1 —1In Ct = U+ x¢ + O€EC t+1, (45)

where z; is a AR (1) process with

Tpy1 = PTy + Qep - (46)

In this setup, the utility is defined by recursion (36) with « (C) =InC, and h (w) = —e(l=v,
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Because the h function is CARA, Ah = v — 1. As a result, npgr (u,w|8) = (% — 1) (y—1)
is a constant. In addition, the value function for gradual resolution of uncertainty has a constant
conditional variance. As a result, the expectation in Proposition 2 is not necessary. In this model
the Markov state variable is Z = (C, x). We can write (42) as

Vel (z) —V (21) = %Z A=) (v =) Var [V (Zni1)| Zal
n=1

1 By—1)

:5—(1 — A 1+5) Var [V (Zn41)| Zy) -

As we show in the appendix,

which implies

2
Var [V (Zn+1)| Zn) 202—1—( 5 ¢U) =o?
V(o) (Z1) =V (Zy) = 15)02

1—08p
ﬂ 2
T21-B)(1+7 1+<1ﬁp¢>]’ o

which is identical to the solution given in Epstein, Farhi, and Strzalecki (2014).5

General recursive utility We first consider the case of i.i.d. consumption growth. In the

case of i.i.d. consumption growth, the value function for gradual resolution of uncertainty takes

1
the form V (C) = 1_1/11} HC'™ %, where H is given in Equation (79) in the appendix. To apply the

approximation formula (43), we use the expression of 7pgr in Equation (35) to write €, in Equation
(44) as

1
17— 5
=757 Y (1= M) Var IV (Zpi1)| Z (48)
R
where )\, is defined as
ZTL
A, = u(Z") (49)

~u(Zm) + Brw (Za)
and u (Z"™) and w (Z,,) are given by:

. A | 11 _1
w(Z" =>_p 1icj v w(Zn)zl_ w (2,) Cppt -
j=1 P

®QOur timing convention is different from Epstein, Farhi, and Strzalecki (2014). Epstein, Farhi, and Strzalecki
(2014) computes the time-0 utility, whereas our Lemma 1 computes the certainty equivalent of time-1 utility. Using

our notation, the welfare gain of early resolution in Epstein, Farhi, and Strzalecki (2014) is {u (Co) + BV (zo)} -

{u (Co) + BV (20)}. As a result, the welfare gain in our model, (47) differ from that in Epstein, Farhi, and Strzalecki
(2014) by a factor of .
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Table 1: Welfare gain of early resolution

¥ 15 1
v 10 75 5 2 1 10 75 5 2 1

Panel A: IID Growth

Global solution  9.8% 7.4% 4.8% 1.5% 0.4% 7.6% 5.5% 34% 09% 0.0%
Approximation 10.1% 7.5% 4.9% 1.5% 0.4% 7.6% 55%  34% 09% 0.0%

Panel B: Long-run Risk

Global solution 31.0% 24.8% 17.5% 6.3% 1.7% 27.5% 20.7% 132% 3.5% 0.0%
Approximation 33.3% 26.3% 18.1% 6.2% 1.6% 27.3% 20.6% 132% 3.5% 0.0%
Approx w. adj  30.5% 24.7% 174% 6.2% 1.6%  27.3% 20.6% 132% 3.5% 0.0%

This table compares the welfare gain of early resolution of uncertainty obtained from global solutions and that using the
linear approximation in Proposition 2. The welfare gain of early resolution of uncertainty is measured in consumption
units as in Epstein, Farhi, and Strzalecki (2014). Panel A reports the results for the case in which consumption growth
is i.i.d.. The parameter values for the consumption process are ¢ = 0.0084, 5 = 0.998, and p = 0.0015. Panel B
reports the results for the case with persistent consumption growth. The parameters for the x: process in (46) are
¢ = 0.044, p = 0.9790. All other parameters are the same except we set o = 0.0078 to be consistent with the example
reported in Epstein, Farhi, and Strzalecki (2014).

2 is a constant, and the

Because consumption growth is i.i.d., Var[InV (Z,41)| Zy] = (1 - i)Q o
infinite sum in Equation (43) can be computed in closed form. The details are provided in the
appendix.

In the general case where x; is time-varying, we provide a more accurate approximation that
further improves upon Equation (43), and we compare our approximate result for all three case:
unit TES, general recursive utility with i.i.d. consumption growth, and general recursive utility with
persistent consumption growth, with those obtained from global solutions in Table 1.

As we demonstrate above, in the case of unit IES, the solution obtained from local approximation
coincides with the global solution. As a result, in the columns where ¢ = 1, global solutions and local
solutions are identical. For the case ¢ = 1.5, the global solution for the utility for gradual resolution
of uncertainty is computed using value function iteration. The global solution for early resolution of
uncertainty is computed by using Monte Carlo simulation to evaluate the expectation in (37). We
use 1,000,000 simulated samples, each consisting of 5,000 (monthly) periods of consumption growth.
In both panels, the approximations are computed according to equation 48 and summed across 5,000
monthly periods. In Panel A, Var [InV (Z,+1)| Z,] is a constant and is analytically computed, and
An is computed on the path of the steady state, assuming constant growth with no uncertainty.
In Panel B, Var[InV (Z,41)| Z,] is computed using a log-linearized value function. In the row
“Approximation”, A\, is computed on the path of steady state which assumes constant growth with
no uncertainty. The row Approximation with adjustment uses a more accurate approximation that
takes into account of a covariance term that does not appear in the i.i.d. consumption growth case
but does appear in the more general case. The details of this adjustment are in Section 6.2 of the
appendix.

Propositions 1 and 2 express welfare in utility units. In Table 1, welfare gains are expressed
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in percentage consumption units. We provide the details of the relationship between utility and

consumption used in calculating Table 1 in Appendix 6.3.

The term structure of PER In Figure 2, we use Proposition 2 to plot the n-period welfare
gain of early resolution of uncertainty as a function of n, where one period is one month. That is,
we compute the fraction of life time consumption a representative consumer is willing to give up in
exchange for information that resolves all uncertainty in the next n months. We consider four cases.
The blue solid line (y = 10,¢ = 1.5) and the blue dashed line (v = 10,4 = 1) represent long-run
risk economies where consumption growth is assumed to follow (45) and (46). The red solid line
(v =10,% = 1.5) and red dashed line (v = 10,1 = 1) represent economies with i.i.d. consumption
growth. That is, the consumption dynamics are given by (45) and (46) with ¢ = 0.

We make several observations. First, overall, the welfare gain are significantly larger in the long-
run risk economy than those in the economy with i.i.d. consumption growth. This is because the
quantity of risk is substantially higher in the long-run risk economy. Second, high IES parameter
configurations typically feature a higher welfare gain of resolution of uncertainty. This is consistent
with our calculation where pgp is an increasing function of IES. In addition, as n — oo, the welfare
gains converge to the infinite-horizon calculation listed in Table 1. However, the convergence takes a
long time. In the long-run economy, for example, the welfare gain of resolving 50 years of uncertainty
is roughly half of the infinite-horizon welfare gain. Even in the long-run risk economy, the welfare

gain of resolving uncertainty at the 20-year horizon is moderate, about 5% of life-time consumption.

4 Infer nppr from asset prices

In this section, we provide a log-linearization framework that can be used to estimate npgr from
asset prices. Our approach is based on the theoretical foundation for identifying PER, developed in
Ai, Bansal, Guo, and Yaron (2023). As shown in Ai, Bansal, Guo, and Yaron (2023), the key iden-
tification assumption for PER is GRS. Under the assumption of GRS, Ai, Bansal, Guo, and Yaron
(2023) demonstrate that the risk premium for appropriately constructed option portfolios during
the resolution of information quality (ROIQ) period identifies PER. Our estimation procedure par-
allels the above development to quantify GRS and PER. We first develop a quantitative measure of
GRS, which we call the elasticity of GRS, grs. We demonstrate how to use the macroeconomic
announcement premium to quantify 7jgrs. This step is a quantitative implementation of Ai and
Bansal (2018). In the second step, we show that given 7jgrg, the risk premium for information
quality during the ROIQ period identifies 7pggr. This step is a quantitative implementation of Ai,
Bansal, Guo, and Yaron (2023).

4.1 Elasticity of GRS and the macroeconomic announcement premium

To illustrate the concept of GRS, we focus the top panel of Figure 1 and interpret the signal sthat

reveals uncertainty about Z as a macroeconomic announcement. The announcement in period 1
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Figure 2: The term structure of PER for different economies
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This figure plots, from top to bottom, the term structure of PER for four economies: i) v = 10, =
1.5 in a long-run risk economys; ii) v = 10,7 = 1 in a long-run risk economys; iii) v = 10,¢ = 1.5 in
an iid economy; v = 10,9 = 1 in an iid economy.

leads to early resolution of uncertainty. In the figure, because the announcement reveals the true
value of Z at time 1, the utility at time 1 for the case of early resolution is a function of Z. In
the two-period setting in the figure, Vi (Z) = u (¢1) + fu (C2 (Z)) (See also Equation (14)). More
generally, all the derivations below apply to the infinite-horizon case where u (Co (Z)) is replaced
by the continuation utility at time 2 as a function of the state variable Z. In both cases, the utility
at time 0 can be defined as®

u (o) + R E[ho Vi (Z2)].

The stochastic discount factor that prices period-1 consumption units into period-0 consumption

goods can be computed as ratios of marginal utilities:

WVi(2)) (@)
W (hTE[ho Vi (Z)]) u (o)’

ASDFy1 (Z) =8 (50)

where we use ASDF as the announcement stochastic discount factor. In the above expression,
ASDFy ;1 (Z) depends on Z through the continuation utility Vi (Z). The following proposition
provides a log-linear approximation of the ASDF and the definition of jgrs.

Proposition 3. The log ASDF can be written as

InASDFy1 (Z) = no — Nars (w) Vi (2) + MP) n V1 (2)], (51)

5In the two-period setting, this definition coincides with Equation (7).
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where Nigrs (w) = wAh (w) is the Arrow-Pratt measure of relative risk aversion of h evaluated at
w, and w = h=Y (E[h (V1 (2))]) is the certainty equivalent of V1 (Z).

Proof. Consider the Taylor expansion of A’ (V1) around w:

"
Inh" (Vi) =Inh' (w) + m(ln% —Inw)+O0(InV; —Inw)?.

Taking log on both sides of Equation (50), we can write In ASDF as in (51), where

M =In [ﬁu/ ((31)]

u' (o)

is a constant that does not depend on Z. O

The Theorem of Generalized Risk Sensitivity in Ai and Bansal (2018) implies that a positive
announcement premium for all assets with pro-cyclical payoff is equivalent to the certainty equivalent
functional, Z, being increasing in second-order stochastic dominance.” This condition on 7 is defined
as GRS. In the special case where Z has the representation (6), GRS is equivalent to the concavity
of h. Whenever h is concave, fjigrs > 0. Proposition 3 implies that the Arrow-Pratt measure of
relative risk aversion of h is a quantitative measure of the magnitude of GRS. It represents the
elasticity of ASDF with respect to continuation utility.

Our main purpose is to use asset prices to infer properties of preferences, similar to Alvarez and
Jermann (2004). As in Alvarez and Jermann (2004), we focus on the risk premium on the claim to
aggregate consumption, or aggregate wealth, because aggregate wealth can be connected directly to
the representative investors’ utility and welfare. Let Rp 1 denote the return on the trading strategy
of purchasing the aggregate wealth portfolio in period 0 and selling in period 1 upon the macroe-

conomic announcement. If we denote Wy as the value of aggregate wealth in period 1, then Ry =

Wi

To[ASDF, 1WA Assuming that In ASDFp 1 and In Wy are jointly normally distributed with variance

2
. . 9 OW,ASDF
and covariance matrix w

9 . Using E [ASDFOJ X RO,l] =F [ASDFUJ X Rf] =
OW,ASDF  0ASDF
1, we can write the (log) announcement premium as:

1
EnRo1] —InRy = —owaspr — 50124,. (52)

To link the return on aggregate wealth to utility and ASDF, we provide a general result on the
wealth-to-consumption ratio in representative-agent economies. We consider the general dynamic
setup in Section 2.2, where the representative consumer’s preference is defined through the recursive

relation (17). We assume that, in a competitive equilibrium, the utility maximization problem of

"In the context of the above two-period model, a procyclical payoff is defined as a payoff that is an increasing
function of continuation utility ViZ.
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the representative consumer is given by:

U (26 W) = max, {u(Ct) + BLUrs1 (Ze1, Wi)]} (53)
t51S7,t j=1

J
Cy + Zﬁj,t =W
j=1

J
Wip1 =Y &uRjur1 (Ze, Ziga),
=1

with Uz (Z1, Wr) = u (Wr).® That is, the consumer simply consumes all wealth in the last period.
The interpretation is that in each period ¢, the consumer optimally chooses consumption C; and

investment in J assets to maximize life-time utility.

Lemma 1. Assume that the utility function defined through the recursive relationship (17) is ho-

mogenous. Then
Wi Ui (Z, W)

Ct o u (Ct)
Proof. See Appendix 6.3. O

The above equation implies that in the two period model in Figure 1, the wealth-consumption
ratio can be written as W167§Z) = % As a result, InV; (Z) = In (UE—?)> + InW; (Z), where
In (ﬁ) is a constant and does not depend on the state variable Z. Using Equation (51) and the

C1

log linear relationship between W and V', we can write

In ASDFy1 = no — jgrs Imn W1 (Z), (54)

where 19 = In [5 Z;%;] — Ngrs In (@> is a constant that does not depend on Z.° As a result,

C1

Cov(In ASDFy1,In Ry 1) = —figrsV ar [In Ry 1]. We can use Equations (52) and (54) to write

1
ElnRy1]l —InRy = fgrsVar[In Ry 1] — §Var [In Ry 1],

which implies that ngrs can be written as a function of asset pricing moments:

) ElnRoi)—InRy+3VarnRo1] 1  E[lnRyy] —InRy
NGRS = =5+ : (55)
Var[ln Ry ] 2 Var[ln Ry ]

8In this section, we use Uy (Z¢, W) to emphasize that from the consumer’s utility maximization perspective, the
value function is a function of two state variables (Z¢, Wy). If, in equilibrium, Cy = C (Z;), then the equilibrium utility
{V% (Zt)}thl constructed from {C' (Zt)}tT:1 via the relation (17) must coincide with Uy (Z;, W), meaning Uy (Z;, W) =
Vi (Zy) for all t. We use U (Zy, W) here, but we will use V; (Z;) instead in the rest of the paper without explicitly
referencing Uy (Z;, W}) to save notation.

9Because the value of the constant does not affect any of our calculations, we use 7no as a generic notation for
constants, even though the value of 7o in Equations (51) and (54) differ.
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This allows us to measure the structural parameter fjgrs from moments of the return on the

aggregate wealth portfolio on macroeconomic announcement days.

4.2 PER premium

In this section, we demonstrate how to use PER premium in the data to provide a measure of the
structural parameter 7pgr. We first briefly review the identification exercise in Ai, Bansal, Guo,
and Yaron (2023). In Figure 3, we combine the top panel and the bottom panel in Figure 1 into
one event tree and add a period —1. To link our theoretical development to empirical exercises, we
interpret period 2 not as the terminal period of consumption but as a starting point of a continuation
utility in an infinite-horizon setting. To accommodate this interpretation and to give this event tree
empirical content, we make three changes to Figure 1. First, we denote the continuation utility in
period 2 as V2 (Z).

Second, we index the signal s in period 1 by an information quality parameter 7. A simple
example of information quality is that Z follows a log-normal distribution and s = In Z + €, where
e~N (0, 7*1) is a noise with a Gaussian distribution and 7 is the inverse of the variance of €. The
early resolution in the figure corresponds to the case in which 7 — oo and s is fully revealing about
Z. The case of late resolution is 7 — 0 and the signal is infinitely noisy. In general, we think of the
quality of the signal s as indexed by 7 € (0,00), which is revealed in period 0. As in Ai, Bansal,
Guo, and Yaron (2023), period 1 is the announcement period where the signal s is revealed. Period
0 is the period of resolution of information quality, where the quality of s, 7 is revealed, but the
content of s is not known until the announcement period.

Third, in empirical applications, we think of period 1 as an FOMC announcement day, and we
consider period 0 as the few days before FOMC announcements in which the information quality
of announcements becomes known to the market. As a result, the empirically relevant case is
that discounting across periods is small, and the flow utility in period —1, 0, and 1 is negligible
compared to the continuation utility V2 (Z). We nevertheless keep the notation of consumption and
discounting just to be consistent with the general framework developed in Section 2.

As in Ai, Bansal, Guo, and Yaron (2023), the identification of PER requires an asset the payoff
of which is a monotone function of 7. One such example is the variance of the log return on the
aggregate wealth portfolio in period 1. Intuitively, more informative announcements have a larger
impact on market prices and trigger higher realized volatility on announcement days. The variance
of log return is a convenient test asset for the PER premium, because in the data, the variance of
log return can be constructed from option prices (Bakshi, Kapadia, and Madan (2003)). We refer
to this portfolio as the variance portfolio.

We denote the value of the aggregate wealth portfolio in period 1 upon announcement as
Wi (s, 7). In period 1, both s and 7 are revealed, and W7 (s,7) is a function of both. We de-
note the period-0 market-expected variance of the return on Wi (s,7) as Var [InW; (s,7)|7]. The

period-0 market-expected variance is a function of 7 because information quality 7 is revealed in
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Figure 3: PER Premium

Period —1 | Period 0 l Period 1 | Period 2
| Resolution of information quality \ Resolution of uncertainty | Realization of outcome
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This figure represents our thought experiment of resolution of information quality. The blue squares contain con-
sumption and the orange circles represent information sets. At node Og, the agent expects the uncertainty about
c2(s) to be resolved in period 1 with an informative macroeconomic announcement that reveals s. Node Oz represents
the situation in which the upcoming announcement is expected to be uninformative about ca(s).

® -

period 0. The present value of the variance portfolio evaluated as of period —1 can be computed as
PV_1=E_1[ASDF_,o(7) Var [InW; (s,7)| 1], (56)

where the announcement stochastic discount factor ASDF_; ¢ (7) prices the period 0 payoff into
period —1 consumption units. The return on a strategy that purchases the variance portfolio in
period -1 and sells it in period 0 upon the announcement of information quality 7 is %ﬁ«w)lﬂ_
As in Ai, Bansal, Guo, and Yaron (2023), we call the risk premium of this strategy the PER
premium, because the sign of this risk premium identifies PER.

In what follows, we use our approximation result in Proposition 3 to provide an expression that
links the PER premium to the structural parameter 7prpr. We denote the agent’s utility in period
1 as Vi (s,7). The last subsection, Section 4.1, considers the special case where the signal fully
reveals the value of Z and s = Z. In general, s may be a noisy signal of Z, and Vj (s,7) can be

constructed using the recursion (18) as:
Vi(s,7) =u(é)+ Bh 'E[hou(Z)|s,7].
At time 0, information quality 7is known but not s, and the time-0 utility of the agent is

Vo (1) =u(e) + Bh™'E[hoVi(s,7)|7].

24



First, using Proposition 3, we can write In ASDF_  as a linear function of log utility:
InASDF_1 (1) =m0 — figrs In Vp (7). (57)
Second, we use Equation 30 to relate period 0 utility Vp (7) to the variance of continuation utility:!'°
InVy (7) =In Vo (0) + 7pprVar [In Vi (s, 7)| 7]. (58)
Combing Equations (57) and (58), we can write
InASDF_; o (1) = no — igrsperVar [InVy (s,7)| 1], (59)

where 7 is a constant that does not depend on the value of the random variables, 7, s or Z.
Using the wealth-utility relationship in Lemma 1, InVj (s,7) = InWj (s, 7) + constant. This

allows us to write an approximation of the present value calculation in (56) as
PV_, = E_; |en—crsiperVar[nWi(s1)lrly, g [In W (s,7)| 7]

The following lemma provides an expression for npggr by assuming that the payoff of the variance
portfolio follows a Gamma distribution. Consider the claim to the variance of the market return
realized on the announcement day, In W7 in Figure 3. We denote conditional variance of In W7 in
period 0 is Var [Iln Wy (s, 7)| 7] .

Proposition 4. (Measurement of ippr) Assuming that Var [Iln Wy (s, 7)| 7] follows a Gamma dis-

tribution, the Arrow-Pratt measure of relative PER is related to PER premium by:

(60)

T 1 EVar[lnWi(s,7)|7]] {E [R_1,0] B 1}

Ners Var [Var [InWy (s,7)|7]] | E[Ry]
Proof. See appendix. O

In the above proposition, E[R_;] is the expected return of the variance portfolio, that is,
E[R 1] = E[Vw[ggl(s’ﬂ'ﬂ]. The term Eg%_l’o] — 1 is the risk premium for the variance portfolio.

1 Rf(l
The above lemma can therefore be interpreted as the quantitative version of the key result in Ai,

Bansal, Guo, and Yaron (2023), that PER if and only if the risk premium on the variance portfolio,
E[Rflyo]

B[R] . . .
measure of relative PER and is our key equation for the measurement of the structural parameter

of the elasticity of PER.

— 1 is positive. Equation (60) links this risk premium to the magnitude of the Arrow-Pratt

Computing the log deviation of Vo(r) around V5(0), we have InVy(r) — InV;(0) =
s Anh T E[ho Vi (s,7)| 7] —Inh~'E[ho Vi (0)]}. Here V1 (0) = u (1) + Sh™'E[hou(Z)] is the period-1
utility for the case where the signal s is completely uninformative. In our empirical exercise, the length of the
macroeconomic announcement period is small, flow utility is negligible compared to continuation utility, u(a(’f)i’iﬁw =1.
We can apply 30 to compute the term Inh ™ E [ho Vi (s,7)| 7] — Inh™*E [h o V; (0)] to obtain Equation (58).
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5 Conclusion

In this paper, we develop a theory for the preference for early resolution of uncertainty that parallels
the Arrow-Pratt theory of risk aversion. We demonstrate that the elasticity of PER is a key
structural parameter that links the premium for resolution of information quality on asset markets
and the welfare cost of late resolution of uncertainty. We show how this parameter can be used
to compute the welfare gains of various thought experiments of early resolution of uncertainty and
we demonstrate how to use asset prices to estimate this parameter. We argue that the empirical
evidence for the macroeconomic announcement premium and that for the premium for resolution
of information quality requires better estimates for the elasticity parameters such as the elasticity
of GRS and elasticity of PER.
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6 Appendix

6.1 Proof of Lemma 1

Before we provide a proof for Lemma 1, we first state a result that computes the derivatives of f
defined in (11).

Lemma. (PER expansion)
Let f (e|u) be defined as in (11), then

" ﬁh, (u + Bh ) _ -1
P (el) = T (AN (071 (0) = 914 (917 0)), (o1
where [Ah] (e) = —};Ll,,—((:)) is the Arrow-Pratt measure of absolute risk aversion evaluated at z.

Proof. By the definition of f, its first order derivative is:

W (u+ Bh™t(2)) .

7z f) = (s B ) B0 () = B

Taking second order derivative, we have:

W' (u+ Bh(2)) palryh! (B () = B (w+ B (2) B (h™1(2)) ey

= W )P
_ BH (u+ Bh~t(2)) ﬁh” (u+ Bh™ (2)) B r' (k1 (2))
[ (=1 (2)))? W(utBh=t(2) N(ht(2) |’
as needed. ]

Proof for Lemma 1

Proof. To simplify notation, we denote e,, as the conditional expectation of V (Z2) given ]-_T ,
en = E [hoV (Z)| FT], (62)
and e* (z) as the conditional expectation of V' (Z3) given Z; = z:
e (2) = ElhoV (Z)| Z1 = 2]. (63)
Using the above notation and the definition of f in (11), we can write T,V (2) as

T,V (2) = ' {E [h{u(z) + Bh {E [ho V (Z2)| FI'| } }| Z1 = 2]}
=h"H{E[f (en|u(2))] Z1 = 2]}, (64)
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and TV (z) as:
TV (2) = b= {f (e"|u(2))} - (65)

The law of iterated expectation implies that F[e,|Z; = z] = €* for all n. Note that {e,}
is a sequence of reverse martingales. As a result, e, — €* a.s. and in LP (see Section 4.7 in
Durrett (2019)). Convergence in L! implies that T,V (z) — TV (z) and converge in L? implies
lim,, 00 Var [v,| Z1 = 2] = 0.

Because h is analytic with strictly positive derivatives, h~! is analytic, and so is f, we can write

(64) using Taylor expansion:

T,V (2)=h '{E i

Jj=0

1 . :
ﬁf(j) (€*)(en —€") | Z1 =2

1 <1 . A
=h"'SE | f(e") + if” (e) Var[en| Z1 = 2] + Z ,—'f(]) (e E [(en - e*)]‘ 7 = z} ,
- J:
7j=3
where the second line uses the fact that e* is Z; measurable. Because e, — €* a.s., (e, — e*)j =
o(en —e*)? for j >3, and E {(en - e*)j‘ Zl} = o (Var|[ey| Z1]). As a result,

TV (2) = K F )} + g ;f S %f” () Var[en 71 = 1+ 0 (B [ (e — | 22 = ]
=TV (2) + (a2 —I—IBh_l @) X %f" (e)Var|e,| Z1 =2]+ 0O (M(?’) [en] Z1 = z]) .

(66)

where the second equality uses the definition of TV (2), (65), and uses (11) to simplify A= {f (e*)}.

Because h~! is analytical, we can write h™! {e,} = h™! (e*) + Z;io% (hil)(]) (e*) (en — €*).
This implies that

e} —E[h {en}| 21 = 2] = (hil)/ (") (en — €*) 4 O (en — €*)?.
Therefore,
2
Var [h_l (en)‘ Zy=z] = <h’(h_11(e*))) Varlen| Z1 = 2]+ O (M(3) len| Z1 = z]) ,
and

3 2
Var [u(z) + Bh1 (en)‘ Zy=z] = <h’(h—1(e*))) Varley| Z1 = 2]+ O (M(g) len] Z1 = z])
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Also, O (M(?’) [en| Z1 =2]) = O (M(S) [nt (en)‘ Zy = z]). This allows us to write (66) as !

1" % "(h1 e* ?
1" (e*) « (h (h ( ))> Var[u(z)—F,Bh_l(en)‘Zl:Z]

- 1
T.V(2) =TV (z) = 2H (u(2) + Bh=1 (e*)) B

+0 <M(3) [u(2) + Bh~* (en)| Z1 = z])} . (67)

Using Lemma 6.1, we can write the coefficient in the above equation as
1" % / —1 (% 2
1" (€) [T (e)
' (u(z) + Bh= (e*)) B

:Bh’ (u(z) + Bh~te*)
(B (b= (e9)))?

[AR] (W (e*)) — [AR] (u+ B~ (e¥)),

—1 (%
{[Ah] (h_1 (e*)) — [ [Ah] (u + Bh1 (e*))} X —
_1
B

and write the welfare gain in (67) as

T,V (2) =TV (2) = % {; [AR] (W1 (e*)) — [AR] (u+ B~ (e*))} Var [u(z) + Bh™" (en)| Z1 = 2]

+0 (M(g) [u(2) + Bh™" (en)| Z1 = z])} )

Because e, and w, are related by w, = h~!(e,), and e* and w are related by e* = h~! (w), this
proves Equation (25).

To prove equation (27), we note that

T,V (2) — In TV (2) = Tvl 5 IV () =TV ()] +o[TV (2) =TV (2)
:TV'l(z) %UPER (u(z),w1 (2)) Var|u(z) + Bwi (n)| Z1 = 2]
+0 (M<3> [u(2) + Bwy (n)| Z1 = z]) , (68)

by (25). Also, using a log approximation for u (z) + Sw; (n) around u (z) + fw (2), we have:

1

Infu(2) + fwy (n)] = Infu(z) + fw (2)] + u(z) + puw (2)

Blwr(n) —w ()]

+olwi (n) —w(2)|

" This may not be correct if R~ (e) = €2, for example.
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We can write

1
Var[In[u(z) + fw; (n)]| Z1 = 2| = ((2) 1 Bw () Var[u(z) + pw (2)| Z1 = 7]

+O (M<3> [ [u(2) + Bur (n)]| Z1 = z]) . (69)

Because TV (z) = u(z) + fwi1 (z). Replacing the Var [u(z) + w1 (n)] Z1 = 2] term in Equation
(68) with (69), we have

InT,V(2) —InTV (2) = %TZPER (u(2),w; (2))[u(z) + Pw (2)] Var [ln[u(2) + pwr (n)]| Z1 = 2]

O (M® [in [u(2) + Bur ()] 21 = ).,
which is Equation (27). O

Proof for Corollary 1 Using Equation (25) Proposition 1,

TV (2) = [TV] () = e (u(2) w0 (2) Var [u(2) + BV (Z2)] 21 = 2]+ O (MO [u(2) + BV (Z2)] 71 = 2]
1

:iﬂQWPER (u(z),w(2))Var|V (Z3)| Z1 = z] + O (M(3) [V (22)| Z1 = Z]) )

as needed.

To prove (32), note that the variance term in (68) can be written as:
Var [u(z) + fwi ()| Z1 = 2] = f*Var [wy (n)| Z1 = 2].

Using a first order approximation,

Inw; (n) =lnw(z) + [wy (n) —w (2)] 4+ o|wy (n) —w(2)], (70)
which implies

Var[lnwy (n)| Z1 = z] = Var[wi; (n)| Zy = 2]+ O (M(g) [lnwy (n)| 21 = z]) :

L
w? (2)

Combining this equation and (70), we have:

Var [u(z) + Bw (n)| Z) = 2] = *w? (2) Var [Inw; (n)| Z1 = 2].
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Using this Equation to replace the variance term in Equation (68), we can write

1 1
W 77PER( ()
+0 (M® [u(2) + fun ()| 21 = 2]
_1_ ul\z w y4 /82w2 (Z)
—277PER( (2),w1 (2)) (4 (2) + B (2))

o) (M<3> [lnws (n)] Z1 = z}) :

InT,V(z) —InTV (2) = wy (2)) B2w? (2) Var [Inw; (n)| Z; = 2]

5Var [Inwy (n)| Z1 = 2]

as needed.

6.2 Successive approximations
Lemma 2. (Successive Approzimation) Suppose h is analytic, uw € L* and € — 0 in L?, then
W HEh(u+e)} =h  {E[h (w)]} + B

1h" (u)
2 1/ ()

{Var[e] +2Cov [u, €]} + O (M(g) [e]) , (71)
where w = E [u]. In addition,

Inh~ {E [h (elnw)} } =W {E[h W)} + E

1 h (elnu) elnu
+ 3 (1 + h’(elnu)) {Var[e] +2Cov[Inu, €|} + O (M(g) [6]) , (72)

Proof. Using Taylor expansion of h (u + €) around @ = FE [u], and taking expectations on both sides,
we can write E [h (u + €)] as

E[h(u+e¢)] +Z hU) [u—a+ €.

This allows to compute the Taylor expansion of h™' {E [h (u (Z) + ¢ (Z))]} around h (@):

[e.9]

W HER(u+ e} =h™" {h (@)} +h™" (h (7)) {
2
+ h 1" {Z h(] a4+ e]j}

k
+kzgl;h—1(k> (h (u)){ X6 (u)E[uu-I—e]j} : (73)
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Similarly, we can write the series representation for h=1 {E [h (u)]} as:

WHER @] = b (R @)+ A {E:; uuw}
N - 2
oo [§ o asie-o)
=17
o0 0 k
n Z %h—l(k) (h (@) { ,l'h(j) (u) E [u — U]J} . (74)
k=3 =

Compute the difference between Equation (73) and (74), we have:

W H{Eh(u+ e} =h  {E[h(w)]} + -7 (h(a) b (a) E[€]
+hV (h (1)) %h” @) E (w140~ (u— )]

57 (@) (W (@) Blu—u+ ) +0 (M©[d)

Using the fact that h=Y (h (u)) =

ﬁ and h= V" (h (1)) = — [Z;g])g, we can write the above as

1" (u)
2 W ()

(B[} +0 (MO [e(2)]

BUE R (u+ )} = b {E b ()]} + E[d +

11 (9)
2 1 (9)

=h"H{E [h ()]} + E e +

E[e2+2(u—ﬂ)e]

{Var[e] +2Cov [e,ul},

which is (71).
Finally, to prove (72), we can compare Inh™' {E [h (e“(z)+€(z))]} with Inh~! {E [h (e“(Z))]}
by setting g (x) = h (e*) and applying (71). O

Proof for Proposition 2 We first consider Equation (42). We use the same operation as in (39)

and (40). In general, the utility for n + 1 period early resolution of uncertainty can be written as:

VIt (2) = W E; [h{u(Z1) + Bu(Zo) + -~ "1V ( n+2)H
=h 1 E[hoh 'E [h{u(Z1) + Bu(Zs) + -+ BV (Zny2) }| Znta]] (75)

and that for n period early resolution is:

VW (2) = h B, [h{u(Z1) + Bu(Za) + - BT W B [WV (Zyso)| Znia]}] -
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Using Corollary 25, where ug + Buj + - - - 3™u, is interpreted as u and S"*! is interpreted as 3 in

the Corollary, we have:

hAE | h$u(Zy) + Bu(Za) + - + B"u(Zpy 1) + BV (Znio) 2| Znsa

Up41
= u(Zy) 4 Bu(Za) 4 - + B (Zpy1) + B"TWTLE (WY (Zyi0)| Zni]
+ % (5"“)2 npeR (Uni1 (Z"Y) s w (Zns1)| BT Var [V (Zns2)| Znsa] (76)

Denoting u (Z") = w (Z1)+Bu (Zo)+ - -+B"u (Zn+1), and w (Zyy1) = R E [RV (Zny2)| Znt1)-

The above can be summarized as
VO () = kT E [h (u (Z27FY) 4 B w (Zg) +€)]
with €n1 = 3 (8" nper (uni1 (2771) ,w (Zos1)| B7HY) Var [V (Zns2)| Znya), and
VO ) = h B [h (w (27 + 8w (Za))] -

We can apply Lemma 2 to get

1

vt ) v () = E {2

(B npgr (unsr (2771w (Znsd)| B Var [V (Zoyo)| Znﬂ]} .

We arrive at Equation (42) by summing up the first n terms of the above equation.
Equation (43) can be established similarly. Using (75), we can write the utility for n + 1 period

early resolution of uncertainty as:

VO (2) = o1 o () 4V e} )

:h—lE [h o eln(U(Z"+1)+ﬁ"+1h_1E[hV(Z7L+2)‘Zn+1])+€n+1:| ’

where the second line use the log approximation formula in (32), and €,,41 is defined as in Equation

(44). Using Lemma 2 and ignore the variance and covariance terms, we obtain
VD (2) —In V™ (2) = Eleny1], (77)
We obtain Equation (43) by summing up the first n terms of the above equation.

Examples of successive approximations

The case of unit IES As shown in Epstein, Farhi, and Strzalecki (2014), in the case of unit

IES, the value function takes the form of V (z,C) =InC + 1_#%33 + cons, where cons is a constant.
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To compute conditional variance, we write

Vv (l't—i-l; Ct+1) =In Ct+1 + Tt+1 + cons

B
1—Bp

B Cti1 B
=InC; +1n ( c, > + 1= 4 (pxt + Ppo€g 1) + cons

=InCi+p+a+oecip1 +

(pxt + o€y 141) + cons.

B
1-8p

2
As a result, Var [V (ziy1, Cey1)| o, C) = 0 + <1_L%p) $?0?, as needed.

General IES In the general IES case, the value function for gradual resolution of uncertainty

1—1
takes the form V (x4, Cy) = 1_1;H () C, ¥, where the H (x) satisfies the recursion (33):
W

1—

1—% 11:% T
H (z441) Ct+1 )

or equivalently, the H function satisfies the following functional equation:

=

2 1 -1 1
1 TH(z)C V= G w+51 1(Et

K K K

1—

Hl—% (pl'+¢€x) e(l—y)(u—&-x—l—aec)

H(z) =1+ (E (78)

2
.
SN—

-

|

2

where e and €, are i.i.d. standard Normal distributions. In addition, the certainty equivalent of

1—1
next period utility is iw (x;)C, ¥, and w(z) is given by:
v

In the case of i.i.d. consumption growth, that is, ¢ = 0 in (46), the H function in 78 is a constant

and does not depend on z. Equation (78) is simplified to
H = (1= B)+ pHe1=8) (r30-1%) (79)

2
Because the conditional variance Var [InV (Z,41)| Z,] = (1 - %) 02 is a constant, we apply (43)
directly. Here, we evaluate u (Z™) and w (Z,,) at the steady state (which we denote as @ (Z™) and
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— n 1 1_i 1-3 n—1 1_i
a(Z") = —— |V 4 ey 4y g

1-1
¥
=1 (111 gcll_%e(l‘ﬂ(““?)+...+/3n*1011_i6(1‘i) 2o lptoes)
= 70 [l—i—ﬁe( LI W ) T ]

P
where the last line evaluate the utility sum at the deterministic steady state.'? As a result, we have:

SR CEA GO

-5 L o1

a(Z") =

Also, the certainty equivalent term can be computed as:
; L i (1) o)
n Zn — I = P M v
50 (Z0) = B g HOn e
1 = =0 (1=F )t (1-) (w5 (1=2)?)

:B”l_l/wHC

This allows us to evaluate the weight A, in Equation (49) at steady state:

L (ns+ (- )0)
()

u(Z™) B
@(Zn) + 5”’[@ (Zn) N 7en(1"5+(1*l)u) . 0 +%(1_ i )
: 1nﬁ+(1_;)# + He( ’/))[ o 7)o?]

A =

1—e

The total welfare gain of early resolution can therefore be computed as:

an(z)—an(z):;<7—;> <1_) Z

=1

In the more general case with ¢ # 0, we provide a more accurate approximation by including

the variance and covariance terms in Lemma 2. We write Equation (77) as:

VD (2) = In V™ (2) + E [ens1]

; 11 — 1 {Var [€nt1] + 2Cov [ln( (Z”+1) + "l (Z”'H)) ,en+1]}
&

1—L _1 1(1-1)2%,2 1) (o 1(1_1)2 (h_1)e2
*Hongye, we can instead write —4+C, " [14-5@(1 F)rts(i-3) C+...+ﬁ”—1e(1 ) =Dt 3 (1-3) (1) C} That

1—L
is, taking expectations of C,, “. Can you examine which approximation gives a better result? This is what I mean
by stochastic steady state.
B0ur previous formula missed a term? Again, please check if we want to include the vol term for consumption so

that everything is evaluated at the stochastic steady state.
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oo L
where we use the functional form of i in (34) to get h§(63§ = i—z The term Cov [In (u (Z™1) + grHiw (Z7 1)),
v

is of the same order as €,1. We focus on this term and use (48) to write a log linear approximation
1

_ V-
forepy1: €n41 = €np1 {1 +In€yp1 — Inéyyq}, where é,41 = 1 -9 A\ ( Y ) Var [InV (Zyi2)| Zn1]
is the steady-state level of €,41, and Ine€p1 — Inépyq is the log deviation from steady state. The

conditional variance term Var [InV (Z,12)| Zn41] is close to a constant. As a result, we focus on

_ _ _u(Z™)B"w(Zn)
the log deviation of the term A, (1 — \,) Mz w2 to write:
ety — &y =0 (Z") + @ (Zng1) — 2 M@ (2771 + (1= ) @ (Zny1)] (80)

where for any random variable X, we use X =InX —In X to denote its log deviation.
Using the log linear approximation (80), the covariance term, C'ov [ln (u (Z"‘H) + Bty (Z"‘H)) ;€n+l]

can be approximated by:

Cov [ln (u (Z”“) + 8w (Z”“)) 76n+1}
=En11C00 M@ (Z"1) 4+ (1= M) @ (Zngr) . 0 (Z77) + 0 (Zpga) — 2 Mt (Z277) + (1= X)) @ (Zns)]]
=En1 { M (1=2N,) Var [a (2] + (1= X)) (1 =2 (1= Xy)) Var [ (Z11)]

+[1 =4\, (1= X\,)] Cov [ (Z™HY) 4 (Zns1)] } - (81)

This leads to the following approximation formula:

VO (2) VO (2) = Blea] + 11 Cov [l (u (27) + 8" (27)) ]

b
1-—
=€n+1 {1 + YXn+1}
B

where yp+1 is defined using (81):

Xnt1 = An (1 —2)\,) Var [0 (Z")] = (1= X\y) (1= 2X,) Var [0 (Zy41))
+ [1—4X, (1= X)] Cov [a (2" ;b (Zta)] -

6.3 Measurement of 7pggr

Proof for Lemma 1 First, under the assumption of the lemma, we can without loss generality
assume that the utility function (viewed as a function of consumption sequences, {C’t}thl, is ho-
mogenous of degree ¢ for some ¢ > 0. This implies u (C) must be homogenous of degree ) and
Z must be homogenous of degree one. To see this, note that in the last period, Vy (Cr) = u (Cr).
Homogeneity of V' implies the homogeneity of u. To see Z must be homogenous of degree one, for
any A > 0,

Vir_1 ()\CT—l, )\CT) = )\wVT_l (CT—1, CT) = /\1/1 {u (CT—l) + BT [u (CT)]}
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by homogeneity. But the homogeneity of u implies
Vi1 (ACr—1,ACr) = w(ACr—1) + BT [u (ACr)] = AYu (Cr_1) + BT P\wu (CT)} :

Combine the above two equations, we must have AYZ [u (Cr)] = T [A\Yu (Cr)] for all A > 1, which
establishes the homogeneity of Z.

The above properties imply that the value function in the dynamic program problem (53) must
be homogenous of degree v in W: Uy (2, \W) = A¥U; (z, W) for all (2, W). Homogeneity of u and
U implies that v’ (C) C = ¢u (C) and %Ut (z, W)W = U, (z, W) due to Euler’s theorem.

We can now write the wealth-to-consumption ratio as:

Wi _ Wi 52Uy (Zy, W) _ YU (Z, W)
Ct C’tu’ (Ct) 1/}’& (Ct)

The first equality is due to the envelope condition for the maximization problem in (53): %Ut (Ze, Wy) =
u’ (Cy). The second equality applies Euler’s theorem to both the value function Uy (Z;, W;) and the

utility function w (Cy). This proves the lemma.

Proof for Proposition 4 To save notation, we denote X = Var [Iln W) (s, 7)| 7] and assume that
X follows a Gamma distribution with parameter («, ). That is, the density of X is given by, for
x>0,

f(ala,f) = g™ le .

where T () is the Gamma function. Using Equation (59), We can write ASDF_; o = =% where

1N = NarsTper- This allows us to compute the expected payoff of the variance portfolio as:

_ B a-1 o, _ &
E[X}—F(a)/o x Xzt e d:c—ﬁ,

the present value of the variance portfolio as

E [eﬁo_”XX} = s /OO ey s g le™ PPy = eﬁoaiﬁaw_l,
' (a) Jo (n+8)

and the risk-free rate as

_ 1 _ [ B [T iene o pa-1,-80 ]1:[770( B )a]_l
Ry ETASDF 14 [F(a)/o e x x4 e Prdx e " .

The risk premium, w — 1 can therefore be computed as
f
Ry Eleo—nXX| Ry B
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As a result,
UZUGRSUPER=5X{R 1}.
f

E[X]
Var[X]

To prove Equation (60), we note that 8 = due to the property of the Gamma distribution.

Utility and consumption ratio Welfare gains are calculated in utility units in Propositions
1 and 2. The translation between utility units and its consumption equivalent units is straight-
forward for homothetic preferences. We continue to use the Markov setup in Section 2.2. Let
C = {C(Z)}]_, be a consumption process. Denote V (C) = {V; (Z;)} be the associated utility
process constructed from the recursion (17). Denote AC be the consumption plan obtained by
multiplying C' (Z;) by A in all periods, that is, AC' = {\C (Zt)};f:l. Clearly, if V' (C) is homogenous
of degree 1 — i, then V (AC) = AV (C). This allows us to translate utility into consumption units
for general recursive utility with non-unit TES.

In the case of unit IES, utility function is homothetic but not homogenous. The following lemma
provides a relationship between utility and its comsumption equivalent. The recursive utility with
unit IES can be constructed from (17) with u (C) = (1 — 8)InC, and h (V) = —e~(0=DV,

Lemma 3. In the case of unit IES, under the above specification, V (AC) =In A+ V (C). That is,

increasing permanent consumption by A times is equivalent to adding In X to life-time utility.

Proof. The above relationship clearly holds for the last period T', where Vp (AC) = InCp. Given
the recursive structure, it is enough to show the following: suppose Vi1 (AC) = In X + Vg (O),
then V; (AC) =In A+ V (C). We have

1

V,(AC) =(1=B)In(AC;) — B(y—1)In {E [e—mmmw»} }
=(1-8)InA+(1-8)InC—B(y—1)n {E [e*ﬁOHHVtH(CD} }

= (1= A A+ (- )G+ Blnd— By~ )l {B [ @]
=InA+V; (C),

as needed. O
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