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Abstract

We present improved out-of-sample predictability of future fund flows using state-of-the-art
machine learning methods. Nonlinear machine learning models significantly outperform
linear models in terms of out-of-sample R-squared. Using interpretable ML methods, we
identify past flows and the Morningstar rating as the most important predictors for net-
flows, while other past performance variables are of minor importance. We find that the
importance of Morningstar ratings and expenses has increased over time. In addition,
the interaction effect of past flows with the Morningstar rating has a substantial impact
on future flows. Furthermore, our results demonstrate that machine learning-based fund
flow predictions can be used to ex-ante differentiate between high and low-performing
mutual funds and that an improvement in liquidity management using ML-based fund
flow predictions can eventually lead to better fund performance.
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1 Introduction

Open-end mutual funds offer liquidity to investors by allowing them to redeem fund shares

at their daily net asset value. This feature can create problems for fund managers if flows are

unpredictable and volatile, as it makes the liquidity management of the fund difficult. Prior

literature has shown that large unexpected flows can negatively influence fund performance

(Edelen, 1999) and eventually even lead to distorted asset prices (Coval and Stafford, 2007).

Thus, it is of great importance to precisely predict future flows.

In this paper, we study the investment decisions of mutual fund investors, reflected in fund

flows, and reveal new evidence about the predictability of fund flows based on mutual fund

characteristics and other variables. According to the literature, numerous variables impact

flows, and these relationships are often nonlinear (Sirri and Tufano, 1998; Chevalier and Ellison,

1997). This setting creates an ideal scenario for applying machine learning (ML) methods.

These models are not only able to capture the impact of nonlinearities and interactions between

a large set of fund characteristics but also mitigate the risk of in-sample model overfitting when

meaningfully calibrated. In the same fashion as Gu et al. (2020), DeMiguel et al. (2023)

and Bali et al. (2023) in the context of return predictions, we apply a linear OLS regression

(baseline model) and ML methods to obtain improved fund flow predictions. Our analysis

using state-of-the-art ML techniques also allows us to identify nonlinear and hitherto unknown

interaction effects that have an impact on predicted flows, thus also contributing to a better

understanding of mutual fund investors’ decision making. Finally, building on the hypothesis

that flow pressure can lead to return effects on the underlying stocks a fund holds and eventually

to performance persistence, we aim to differentiate between high and low performing mutual

funds (out-of-sample) based on machine learning implied monthly fund flow predictions.

We start our empirical analyses by comparing the predictive power of simple OLS regressions

and different ML models for future equity fund flows in the US over the period from January

2000 to December 2023. To this end, we use the out-of-sample R2 statistic to benchmark

our predictions against a fund’s simple historical mean flows. To assess whether some models

deliver significantly better predictions than other models we conduct pairwise comparisons of

1



the predictive accuracy of different forecasting models by utilizing the model-free modified

Diebold and Mariano (1995) and West (1996) test statistic.

For our empirical exercise, we use a semi-structured systematic approach to first identify 55

variables that might have an influence on flows based on the prior literature. These variables

are mainly linked to past performance and other fund characteristics. In addition, we use nine

variables that proxy for aggregate financial market and macroeconomic conditions that might

have an influence on aggregate flows into equity funds. To provide a fair comparison between

OLS and ML methods the specification of the OLS model is guided by the literature on mutual

fund flows and accounts for the well-known nonlinear impact of past performance on fund

flows (Sirri and Tufano, 1998; Chevalier and Ellison, 1997). We find that linear models like

OLS and elastic net achieve a positive out-of-sample R2 of about 17% to 18% percent for the

full sample using a historical mean flow benchmark. Nonlinear ML-models like random forest

and gradient boosting improve this measure by about 4 percentage points, i.e., by more than a

fifth, while neural networks also lead to an improvement which is however smaller. These results

remain robust across different economic conditions and market environments, indicating that

the predictive accuracy of the forecasting models holds steady even during economic downturns,

which are often marked by increased outflows from risky asset classes (e.g., Jank, 2012; Pástor

and Vorsatz, 2020). Among all statistical models, the forecasts obtained by random forest are

the most precise and significantly better (at the 1% level) than the predictions obtained from

any other forecasting method based on pairwise forecast accuracy tests using modified Diebold

and Mariano (1995) and West (1996) tests.

While early ML prediction approaches were often criticized for being a black box with hard

to interpret results, over the recent years considerable progress has been made that allows for

an analysis of the specific factors that drive fund flow predictability. We build upon these

results to quantify the relative importance of fund characteristics and their interactions for the

prediction of fund flows. For that purpose, we estimate model-agnostic SHAP values (Lundberg

and Lee, 2017; Lundberg et al., 2020) to determine the contribution of each predictor to the

respective fund flow forecasts.1 Based on the best performing model, random forest, our results
1SHAP values break down a model’s prediction for a single data point, showing how much each variable
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indicate that past flows over the last month are the most influential variable predicting flows,

followed by the average flows over the past six and 12 months, the Morningstar rating, and total

net assets (TNA). The importance of past flows is consistent with stable fund characteristics

being important flow drivers.2 We also document that various measures of past performance

(e.g., alpha, value added, market-adjusted returns) are less important in predicting future fund

flows, which is consistent with Ben-David et al. (2022) who show that fund returns and more

sophisticated performance measures have little impact on flows once Morningstar ratings are

included in OLS regressions. Interestingly, this is the case for both retail and institutional

investor fund share classes. While most other variables are of similar importance for both types

of share classes, expense ratios are more important for institutional share class flow predictions.

Looking at the strength of the impact of these predictors over time, we find that flow-

related predictors are consistently ranked as the most important predictors over the whole

sample period, while the Morningstar rating is not as important in the very early sample years

as it later becomes. This pattern is consistent with the increased popularity of these ratings

over time. While most other variables do not show a clear time trend, we do find that expense

ratios have become more influential in predicting fund flows. Our results also indicate that in

the bottom decile of the predicted flow distribution costs seem to play a more important role,

i.e., outflows are more cost-sensitive than inflows.

SHAP values also allow us to determine the directional impact of each variable. We find

that our most important predictor variable, past monthly flows, usually affects future flow

predictions positively, but in some cases also negatively. This finding suggests a nonlinear

relationship on fund flow forecasts. In contrast, the directional impact of average flows over

the past six and 12 months is typically positively related to predicted flows. The Morningstar

rating usually has a positive impact on flow predictions. All of these patterns are quite stable

over time. Furthermore, while expense ratios were of marginal relevance at the beginning of the

contributes to the final outcome by comparing it to an average baseline prediction. Essentially, they explain
which variables affect the prediction positively or negatively and by how much relative to the baseline forecast,
hence providing an interpretable "fair share" of each variable’s impact.

2In traditional OLS-based mutual fund flow studies stable fund characteristics are often captured by including
fund fixed effects in flow regressions. However, in our predictive machine learning framework, it is unclear how
to account for such fixed-effects equivalently.
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sample period with no clear directional impact, they became clearly negatively related to future

flow predictions from 2006 onward. This finding suggests an increased cost-awareness of fund

investors, potentially driven by the competitive pressure from low-cost index funds (Cremers

et al., 2016).

Motivated by the nonlinear impact of past performance on flows documented in earlier

studies (see, e.g., Sirri and Tufano, 1998), we also assess the functional form of the relationship

between the Morningstar rating and predicted flows. We document that both, past flows and

the Morningstar rating have a convex impact on predicted flows.

SHAP values can also be used to analyze the importance of the impact of interactions

between variables.3 We analyze the importance of all possible interactions between our pre-

dictor variables and find the interaction of past flows with the Morningstar rating to have the

strongest impact on flow forecasts among all non-entirely flow-related interactions.4 Analyzing

the functional form for the impact of this relationship, we document that high past inflows and

a high Morningstar rating imply a positive impact on predicted flows, while high past inflows

and a low Morningstar rating are associated with a negative impact, suggesting that new money

(proxied for by recent past flows) is more attentive to performance information contained in

ratings.

In the last step of our analysis, we investigate whether the predictability of fund flows

through ML models can help in differentiating high- from low-performing funds out-of-sample

and find this to be the case: Long-short decile portfolios based on predicted flows from the ML

models with the highest forecasting accuracy, random forest and gradient boosting, generate an

alpha of 1.92% and 2.52% per year, respectively, which is statistically significant at the 5% and

1% levels. This outperformance is very similar to the results obtained by Kaniel et al. (2023),

that are based on computationally more intense feedforward neural networks and a richer

information set to directly predict the fund alpha distribution rather than flows. Consistent

with our findings, they identify fund flows as one of the most important predictors of future risk-
3SHAP interaction values show how pairs of variables jointly impact a model’s prediction. This approach

not only reveals how each variable influences the prediction on its own but also how the combination of two
variables shifts the outcome differently than if they acted independently.

4The strongest interactions are found between lagged monthly flows and lagged 6-month and lagged 12-month
flows, respectively.
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adjusted fund performance. The predictive power of flow predictions for future performance is

consistent with a smart money effect (see, e.g., Zheng, 1999). We also analyze the performance

implications of the higher forecast accuracy offered by ML models relative to more basic flow

prediction methods such as OLS or historical mean flows. We find that funds where flow

forecasts from basic methods are less accurate than those from random forest tend to perform

worse. This suggests that for these funds adopting more sophisticated forecasting techniques

could lead to improved liquidity management and, ultimately, superior fund performance.

Overall, our paper contributes to two streams of the literature. First, we contribute to the

broad literature on the flow determinants of mutual funds. Since the early work of Chevalier

and Ellison (1997) and Sirri and Tufano (1998), many papers have analyzed the impact of

various performance measures, fund and fund manager characteristics on flows. We extend this

literature by providing evidence that combining information from many individual fund charac-

teristics, allowing for nonlinearities and by uncovering new evidence on the impact of hithertho

unnoticed interaction effects, helps to significantly improve mutual fund flow predictions. Using

interpretable ML methods, we are also able to contribute to a better understanding of the in-

tricate impact of the interplay between past ratings and past flows on flow predictions. Second,

we also contribute to a growing literature of applying ML techniques in finance.5 So far, the

majority of papers apply ML models to predict stock returns (see, among others, Gu et al.,

2020; Chen et al., 2024; Neuhierl et al., 2022; Leippold et al., 2022). Bianchi et al. (2021) and

Bali et al. (2022) forecast bond returns, while the predictability of delta-hedged option returns

is examined by Bali et al. (2023). Medeiros et al. (2021) and Hauzenberger et al. (2023) use

ML techniques to forecast inflation and Goulet Coulombe et al. (2022) provide evidence that

nonlinearities in features, exploited by ML models, help to predict macroeconomic variables.

Finally, in the mutual fund literature, ML techniques have mainly been applied to predict fund

performance (Li and Rossi, 2021; DeMiguel et al., 2023; Kaniel et al., 2023). We complement

this literature by showing how ML techniques can be used to improve flow forecasts.

The remainder of the paper is structured as follows. Section 2 describes the data used in the

empirical analysis. In Section 3, we provide information about the statistical methods used for
5For a review on this topic, see Giglio et al. (2022) as well as Kelly and Xiu (2023).
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prediction and discuss the performance evaluation metrics to evaluate our forecasts. Section 4

presents the main empirical results of the paper. We look at the out-of-sample predictive ability

and discuss which predictors matter most. We also analyze the predictive ability of fund flow

forecasts to differentiate ex-ante between high and low performing mutual funds. Finally, we

conclude in Section 5.

2 Data

Our primary data sources are the Center for Research in Security Prices (CRSP) Survivor-

Bias-Free US Mutual Fund database and MorningstarDirect.

2.1 Sample data

Many funds have different share classes with different management fees, expense ratios or

loads (Khorana et al., 2008). To account for this heterogeneity, our analyses are performed

at the share class level. Our sample includes all institutional and retail share classes that

focus on the US equity market. Because data coverage on monthly fund TNAs prior to 1991

is scarce and incomplete (see, e.g., Dou et al., 2024) our sample spans from January 1991 to

December 2023. We restrict our analyses to share classes of actively managed funds, excluding

ETFs and passive funds. More specifically, for all share classes available before 2003 we follow

the approach suggested by Gil-Bazo and Ruiz-Verdú (2009) and exclude all share classes that

contain specific keywords indicating passively managed funds. Beginning in 2003, we use the

corresponding identifier provided by CRSP to select these share classes. Second, we require

that each included share class invests more than 70 percent of their total net assets (TNA) into

equities. Third, to avoid incubation bias, we only consider share classes reaching at least 36

monthly observations since inception and exceed a threshold of 15 million in TNA after this

incubation period, which is a commonly used cutoff in the literature (see, among others, Elton

et al., 2001; Evans, 2010; Doshi et al., 2015; Kaniel et al., 2023).

To extend the set of characteristics we rely on fund and fund manager data provided by

Morningstar. According to Massa et al. (2010), Morningstar is a more important source of
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information for investors than CRSP and provides us with the Morningstar rating which seems

to be an important flow determinant (Del Guercio and Tkac, 2008; Reuter and Zitzewitz, 2021;

Ben-David et al., 2022). To match the share classes between these two databases, we use the

fund’s nine-digit CUSIP (Hillert et al., 2024) as a common unique identifier. To avoid well-

known inconsistencies between the two databases (Elton et al., 2001; Berk and van Binsbergen,

2015) we perform various robustness checks. Our final data set contains 13,376 unique share

classes. Based on this sample Table 1 reports the number of share classes for each year and

the corresponding flow distribution described by its mean, standard deviation, lower (Q1) and

upper quantile (Q3). It is notable, that the average (median) fund recorded outflows of -0.47%

(-0.65%)6 throughout the sample period. More specifically, every year since 2004 has seen

negative fund flows indicating that the market for actively managed equity mutual funds in the

U.S. has been shrinking over the last two decades, while it was characterized by strong external

growth during the previous years (Sirri and Tufano, 1998).

To be comprehensive in objectively selecting the most important determinants of fund flows,

we follow a systematic semi-structured approach. We search for studies on mutual fund flows

in the top finance and related journals. We identify potential predictor variables from these

studies and focus on variables that can be computed based on readily available information on

fund characteristics and historical returns and are thus relatively easy to calculate using data

provided by CRSP and Morningstar. We thus exclude holding-based characteristics. Based on

this approach, we identify 55 mutual fund characteristics. In addition, we use nine variables

that proxy for macroeconomic conditions. In total, we construct a dataset of 64 predictors,

shown in Table 2, to be used in forecasting fund flows using machine learning techniques.

2.2 Mutual fund characteristics

Our main variable of interest is monthly fund flows determined as

flowi,t =
TNAi,t − TNAi,t−1 (1 +Ri,t)

TNAi,t−1

, (2.1)

6Note that these numbers differ slightly from the descriptive statistics reported in Table 3, which are based
on the training sample.
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where Ri,t denotes the monthly net return of share class i. To account for possible outliers

caused by fund mergers and splits, and as common in the literature, monthly flows are cross-

sectionally winsorized at the 0.01 and 0.99 percentiles (see, among others, Huang et al., 2022;

Hillert et al., 2024). As in Cen et al. (2024), we use the natural logarithm of one plus the

monthly flows in our computations since flows are the relative growth in the share class TNA

adjusted for net returns.

Using data provided by CRSP, for each share class i in month t we obtain the total net

assets (TNAi,t), expense ratio (ERi,t, Barber et al. (2016)), the turnover ratio (Ivković and

Weisbenner, 2009) as well as front-end and back-end loads (Ivković and Weisbenner, 2009; Chen

et al., 2010).7 The return volatility (Franzoni and Schmalz, 2017) for each share class, using

returns net of fees, is calculated based on a rolling window approach with the requirement of

at least 30 months of non-missing return observations over the last 36 months. In addition,

we compute the Agei,t of each share class (Chevalier and Ellison, 1997), which is the rounded

number of months between its inception date and the last calendar date of month t. Following

Barber et al. (2016), we estimate the market-adjusted return (MARi,t) by subtracting the

market return from the fund return.

Several characteristics used in our analyses are based on time-series regressions of share-

class excess returns on well-known systematic risk factors (Fama and French, 1993; Carhart,

1997; Fama and French, 2015).8 While there is still a debate about which asset pricing model

is used for risk adjustment by mutual fund investors (Berk and van Binsbergen, 2016; Barber

et al., 2016; Jegadeesh and Mangipudi, 2021), as Barber et al. (2016), we rely on five different

factor models: the capital asset pricing model (CAPM), the Fama and French (1993) three-

factor model (FF3), the Carhart (1997) four-factor model (FF4), the Fama and French (2015)

five-factor model (FF5) and the Fama and French (2015) five-factor model plus momentum

(FF6). The time-series regression, estimated over a 36-month rolling estimation window, for

the FF6 factor model is
7If no information about front-end or back-end loads is provided by CRSP we assume that no such loads are

charged and set the corresponding variable to 0.
8Excess returns (Re

i,t) are computed by subtracting the one-month T-bill yield which serves as a proxy for
the risk-free rate. The monthly risk-free rate data are obtained from Ken French’s data library.
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Re
i,t = αi,t+bi,t(RM,t −Rf,t) + si,tSMBt + hi,tHMLt

+ ri,tRMWt + ci,tCMAt +mi,tMoMt + εi,t,

(2.2)

where Re
i,t is the excess return on share class i for month t, Rf,t is the risk-free rate, RM,t

is the market return, SMBt and HMLt are the size and value-growth returns, MoMt is the

momentum return, αi,t is the return left unexplained by the asset pricing model and εi,t is the

regression residual.9 The other applied factor models are nested in Equation 2.2 and are the

CAPM in which (dropping time subscript) RM − Rf is the only factor, the Fama and French

(1993) three-factor model (FF3) that adds SMB and HML, the Carhart (1997) four-factor

model (FF4) that considers MoM as an additional explanatory variable, the Fama and French

(2015) five-factor extension (FF5) that adds RMW and CMA to the three-factor model, and

the six-factor model (FF6) that adds MoM to the five-factor model. We compute the monthly

realized alpha, αr
i,t, of share class i in month t for the six-factor model in Equation 2.2 as

αr
i,t = Re

i,t − b̂i,t(RM,t −Rf,t)− ŝi,tSMBt − ĥi,tHMLt

−r̂i,tRMWt − ĉi,tCMAt − m̂i,tMoMt,

(2.3)

where b̂i,t, ŝi,t, ĥi,t, r̂i,t, ĉi,t and m̂i,t are the factor loadings of the ith share class excess

return with respect to the six-factor model estimated using a rolling-window regression from

t− 36 to t− 1. Monthly realized alphas for the other factor models are calculated following the

same methodology. As in Barber et al. (2016) we account for the impact of past performance on

fund flows (flow-performance sensitivity)10 by including lagged alphas of the five different factor

models introduced above. While Barber et al. (2016) use an exponential decay model to weight

the sum of the realized alphas over the prior 18 months, we instead use a simple average of the

realized alphas over the past three, six, twelve and 18 months. For market-adjusted returns,

the same procedure is applied. Our decisions are primarily driven by the predictive framework
9Note that our computations are based on log-returns and we require at least 30 months of non-missing

return observations over the last 36 months.
10See, among others, Ippolito (1992); Chevalier and Ellison (1997); Sirri and Tufano (1998); Del Guercio and

Tkac (2002); Huang et al. (2007); Frazzini and Lamont (2008); Berk and van Binsbergen (2016); Barber et al.
(2016); Goldstein et al. (2017); Roussanov et al. (2020).
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using machine learning and avoiding any form of forward-looking bias by estimating the decay

factor using data not available at the time of the forecast. Furthermore, our approach allows

for more flexibility in modeling the impact of performance over different horizons. In addition

to the monthly realized factor model alphas we also consider the factor loadings of the FF6

model as predictive variables (Barber et al., 2016).11 Furthermore, as in DeMiguel et al. (2023)

we use valued added and the adjusted adj. R2
i,t as additional performance-related predictors.

More specifically, following Amihud and Goyenko (2013), for each forecasting horizon, we use

the adjusted adj. R2
i,t from the FF6 factor model rolling-window regression as a predictor of

future fund flows. The adj. R2
i,t is a measure of activeness and a lower adj. R2

i,t means that

the share class tracks the benchmark less closely. Value added as suggested by Berk and van

Binsbergen (2015) is computed as

vai,t = (αi,t + ERi,t/12) · (TNAi,t−1), (2.4)

where we use the realized αi,t defined in Equation 2.3 and ERi,t denotes the annual expense

ratio of share class i.12

Based on information provided by Morningstar we define a dummy variable, management

team, which is set to 1 if the share class is team-managed, and 0 otherwise, to consider the

impact of the organizational structure on future fund flows (Dass et al., 2013). We also add the

Morningstar rating (Del Guercio and Tkac, 2008; Reuter and Zitzewitz, 2021; Evans and Sun,

2021) to the set of fund characteristics used to predict mutual fund flows. The Morningstar

rating assigns one (worst) to five (best) stars, with fixed proportions (10%, 22.5%, 35%, 22.5%,

and 10%), based on a mutual fund’s historical risk and load-adjusted returns versus category

peers.13 Moreover, we consider variables that account for fund flow persistence (Dou et al.,
11Barber et al. (2016) compute the fund’s return related to each risk factor using the exponential decay model

analogous to the weighting of alphas explained above. In contrast, we directly use the factor loadings of the
FF6 factor model based on rolling-window regressions from t− 36 to t.

12This version of value added follows DeMiguel et al. (2023) and differs from Berk and van Binsbergen (2015)
which estimate before-fee alpha using passively managed index funds as benchmarks.

13Morningstar launched its mutual fund rating system in 1985. In June 2002, Morningstar revised its rankings
significantly. From its inception until the revision, Morningstar ranked all funds against each other based on
their returns, while in June 2002 the new rating methodology was that funds were ranked within style categories
rather than against the entire fund universe. Ben-David et al. (2022) show that this change in rating methodology
did not affect the relationship between flows and ratings and that investors continued to rely on the star rating
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2024). These predictors include past flows over the previous month, past mean flows over a six

and 12 months horizon, respectively, and one year lagged monthly fund flows, i.e., flows in the

same calendar month in the previous year to account for fund-specific seasonalities in fund flows

(Kamstra et al., 2017). Additionally, we include an integer between 1 and 12 indicating the

calendar month as a characteristic to capture aggregate seasonalities. Moreover, we compute the

volatility of flows as the standard deviation of monthly flows using a rolling window approach

with the requirement of at least 30 months of non-missing return observations over the last

36 months. Including lagged flows also captures the impact of non- or slowly varying fund

characteristics and is thus to be viewed as analogous to adding fund fixed effects in regression

frameworks typically used in fund flow studies (which would be inconsistent with the predictive

nature of our ML approach). Finally, we use monthly changes in the Morningstar rating

(Del Guercio and Tkac, 2008) as an additional predictor.

2.3 Macroeconomic information

The basic econometric model in fund flow studies (see, e.g., Nanda et al., 2004; Barber et al.,

2016; Ben-David et al., 2022) are panel regressions controlling for time-fixed effects. However,

how to account for the equivalent of time-fixed effects in a predictive machine learning frame-

work is unclear. Instead, we include various measures of financial markets and macroeconomic

uncertainty that may have an impact on aggregate flows in the next period. Ferson and Kim

(2012), and in a more recent study, Dou et al. (2024) show that fund flows share a significant

degree of common time-series variation with such factors. Guided by these studies we include

the following variables: short-term interest rates (3-month T-bill rates), long-term government

bond yields, the term spread as the difference between the long term yield on government

bonds and the treasury-bill, the credit spread as the difference between long-term corporate

bond and long-term government bond yields, stock market returns and stock market volatility

based on the CRSP value-weighted index composed of NYSE, Amex and Nasdaq stocks as

well as the volatility index VIX (Ben-Rephael et al., 2012). The data are obtained from Amit

despite the change in its economic meaning.
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Goyal’s webpage, Ken French’s data library and the Chicago Board Options Exchange. To take

macroeconomic uncertainty into account, we include the risk aversion and uncertainty (annual

volatility percentage) indices of Bekaert et al. (2022) as additional predictors.14

In Table 3 we provide the descriptive statistics for our final sample (training sample) used

in the empirical analysis. Fund-related variables are measured at the share class level. During

our sample period, the average share class has a negative monthly flow (-0.52%) with a standard

deviation of 5.63% and an interquartile range of 2.44%, which indicates that there is considerable

cross-sectional variation in fund flows. These flow-related summary statistics are similar to

the previous literature (see, e.g., Barber et al., 2016; Ben-David et al., 2022) except that the

standard deviation in our sample period (January 1991 to December 2023) is larger. Consistent

with the mutual-fund literature the average realized alphas of all factor models in our sample

are negative and returns load positively on the market and size factor. The average adjusted R2

of the FF6 factor model is 0.89, suggesting that it explains a substantial part of the time-series

variation in equity mutual fund returns. At the fund level, the average TNA is USD 3.59 billion,

while the median TNA is considerably smaller at 695 million. The average annual expense ratio

is 1.24% and the average front-end (back-end) loads are 1.05% (0.64%), respectively, with a

standard deviation of 2.14% (1.28%). As discussed above, if no information about front-end or

back-end loads is provided in CRSP we impute this variable with 0. As a result, the median

share class does not charge any loads. The average age is 168 months (14 years). The average

Morningstar rating is 3.06, while the first quartile (Q1) corresponds to a Morningstar rating of

2.0 and the third quartile (Q3) is equivalent to a rating of 4.0. The vast majority of changes in

the Morningstar rating are upgrades or downgrades of one star (Del Guercio and Tkac, 2008).

In our sample, the mean and median change in the Morningstar rating is 0 with a standard

deviation of 0.37. Overall, our sample descriptive statistics are consistent with other studies

in the mutual-fund literature (e.g. Barber et al., 2016; Ben-David et al., 2022; DeMiguel et al.,

2023).

Figure 1 shows the correlation coefficients of predictor variables that exceed a threshold of
14These data are provided by Nancy Xu on https://www.nancyxu.net/risk-aversion-index.
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|0.6| and are thus considered substantially correlated.15 High correlations (> 0.9) are observed

between various factor model alphas as well as between the VIX and the risk aversion index.

The target variable, fund flows (t+ 1), has correlations with the lagged predictors that are all

below the 0.6 threshold. The largest correlations with monthly flows (our target variable) are

observed with mean flows over the past 6 (0.31) and 12 months (0.31), lagged monthly flows

(0.20) and the Morningstar rating (0.17). All other correlations are below 0.15.

2.4 Data preprocessing

Before we can apply machine learning methods for predicting future mutual fund flows, we

need to preprocess the data to generate the target and predictor variables which requires us to

make several implementation decisions. The target variable is defined as winsorized monthly

mutual fund flows, flowi,t+h for a forecasting horizon of h = 1 month. The predictor variables

correspond to the mutual fund characteristics outlined in Subsection 2.2 and the macroeconomic

information in Subsection 2.3. For our analyses, we use non-imputed data and thus avoid relying

on a specific imputation method, which implies omitting any observation for which at least one

characteristic or the target variable is not available in a given month.16 Moreover, to determine

the predicted flow distribution we build an additional data set, the prediction sample, that

is used for the actual prediction and includes share classes with missing target variables to

avoid any form of forward-looking bias. More specifically, when utilizing the training dataset

to generate predictions at time t, it is important to note that no predictive inference would

be obtained for share classes lacking a corresponding target variable at time t + h. This is an

implication of excluding share classes with missing target variables from the training sample.

After all these adjustments, our training sample consists of 1,183,518 observations (10,557

unique share classes) and the prediction sample contains 1,185,094 observations and 10,562

unique share classes. Both samples range from January 1991 to December 2023.

To ensure scale invariant predictors, we follow Green et al. (2017) and standardize each
15We do not show the full correlation matrix due to size and readability restrictions.
16We deviate from this approach in the case of front-end or back-end loads. If no information is available in

CRSP, we assume that no such loads are charged and impute the corresponding variable with 0.
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variable17 used in OLS and the applied machine learning algorithms in this paper, except for

the neural networks18, to have a mean of zero and a standard deviation of one. To avoid a

look-ahead bias, this standardization is based on the data used in the training set specific to

the forecasting cycle.

3 Prediction framework and performance evaluation

Our data are organized in a panel structure, with months indexed as t = 1, 2, . . . , T and

share classes as i = 1, 2, . . . , N . In this section, we briefly describe our prediction framework, the

five-fold cross-validation approach used for hyperparameter tuning as well as the performance

evaluation methodology. Our out-of-sample period spans from January 2000 to December 2023.

3.1 Linear regression - baseline model

The simple linear predictive regression model serves as a benchmark in our prediction

exercise. The model is estimated via ordinary least squares (OLS) by solving the following

optimization problem, which yields the pooled OLS estimator:

min
θ
L(θ) = min

θ

T−h∑
t=1

N∑
i=1

(
flowi,t+h − z′i,t−1θt−1

)2 (3.1)

where flowi,t+h are the realized fund flows of the ith share class in month t + h, zi,t−1 is a

P -dimensional vector of standardized characteristics (features) for the ith share class in month

t− 1, and θt−1 = (θ0,t−1, θ1,t−1, . . . , θP,t−1)
′ is the P -dimensional parameter vector. The forecast

of fund flow in month t+ h is then obtained as:

f̂ lowi,t+h = z′i,tθ̂t−1. (3.2)

If the number of predictors P is relatively small, the OLS estimate of θ is unbiased and effi-
17No standardization is required for the variable size of the management team since this predictor is a dummy

variable.
18In the context of neural networks, we adopt a min-max scaling technique between the range of -1 and 1.
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cient. However, the basic OLS model tends to perform poorly when the number of the predictors

is large (overfitting) and when nonlinearities and interactions among predictors are important

to the forecast. In our empirical analysis, we consider three machine-learning methods that

have been recently used in the empirical asset pricing literature: elastic net, tree-based meth-

ods (e.g., decision tree, random forest, gradient boosting) and feed-forward neural networks.

All these methods can handle large numbers of predictor variables with less risk of overfitting

compared to OLS.

To provide a conservative estimate of the improvements possible based on modern ML

methods, we let the existing literature inform our benchmark OLS model and saturate it with

variables capturing the well-known nonlinear impact of past performance on fund flows (Sirri

and Tufano, 1998; Chevalier and Ellison, 1997). Specifically, we include quadratic terms of the

predictors realized alpha (αr
i,t) for various factor models and market-adjusted return (MARi,t)

as well as the corresponding means of these variables over the past three, six, twelve and

18 months to account for the convexity of the flow-performance relationship. We also create

dummy variables for Morningstar ratings (two-star, three-star, four-star, and five-star, where

one-star rated share classes form a reference group) to capture a potential nonlinear impact of

MS ratings.

Since our realized alpha estimates are based on five different factor models (see Subsec-

tion 2.2), for each forecasting period, we train all factor models on the training set and use

5-fold cross-validation (CV)19 to eventually determine the factor model used to estimate the

realized monthly alpha that minimizes the out-of-sample mean squared forecast error (MSFE)

for the respective month. The resulting model, using alphas from possibly different factor mod-

els in each forecast period, is then re-trained using all data in the training set and applied to

predict fund flows using data from the test set. Such an approach is similar to the ML paradigm

of using CV to find the best possible set of hyperparameters and guarantees a fair comparison

between OLS and ML algorithms. We refer to this model as OLS mixed model. In addition,

as a robustness check, we consider one model specification consisting of all predictor variables

(full model) and five additional OLS models where each specification uses alphas from one of
19A more detailed description of k-fold CV for hyperparameter tuning is provided in Subsection 3.3.
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the five factor models introduced above (CAPM, FF3, FF4, FF5 and FF6) in combination with

the remaining predictor variables.

3.2 Machine learning algorithms

ML methods are well-suited for predictive tasks and have recently been applied in the

context of empirical asset pricing. Compared to traditional econometric methods the ML

literature has focused heavily on out-of-sample performance as the main criterion of interest

(Athey and Imbens, 2019). We complement the growing literature on the application of ML in

finance (see, among others, Gu et al., 2020; Li and Rossi, 2021; Bali et al., 2022; DeMiguel et al.,

2023; Kaniel et al., 2023; Cao et al., 2024; Murray et al., 2024) by comparing and evaluating

a variety of machine learning algorithms in their ability to predict future fund flows. The

ML models implemented in this paper, in an increasing degree of complexity, are elastic net,

decision trees, random forest, gradient boosting, and feedforward neural networks (FFNNs).20

We primarily rely on these supervised ML methods as they are reported to exhibit strong

predictive performance in regression tasks using structured (panel) data (Chen and Guestrin,

2016; Lundberg et al., 2020) and are known as the most effective machine learning algorithms

in various financial studies (e.g., among others Gu et al., 2020; Bianchi et al., 2021; Li and

Rossi, 2021; Bali et al., 2022; DeMiguel et al., 2023).

We now very shortly describe the ML model approaches that we implement. For a more

detailed description, we refer the reader to Appendix A. The elastic net (Zou and Hastie, 2005)

is a linear method like OLS but uses regularization and variable selection to reduce overfitting.

As the elastic net cannot handle nonlinearities independently, it follows the specification of the

full OLS model and is based on all predictor variables including the nonlinear terms for the

impact of past performance to allow for a fair comparison. The other machine learning methods

are able to identify and exploit nonlinearities and higher order interactions that are undetected

by OLS and linear machine learning models, such as elastic net, and thus may result in more

accurate forecasts. Moreover, tree ensemble methods (random forest and gradient boosting)
20All algorithms are implemented in Python using the scikit-learn package, except for neural networks, for

which we rely on TensorFlow.
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are very effective at eliminating irrelevant features while neural networks are more sensitive

to those predictors. In addition, neural networks are based on a large number of parameters

and therefore require a large number of observations to provide accurate estimates. In an

empirical asset pricing setting measuring equity risk premia, Gu et al. (2020) identify tree-

based methods and neural networks as the best-performing algorithms. In another application,

Kaniel et al. (2023) use feed-forward neural networks (FFNNs) for predicting the performance

(alpha) of actively managed mutual funds. In this context, we also evaluate the forecasting

performance of two different FFNNs and compare it to the other machine learning algorithms

and the baseline OLS models.21 However, for application on tabular-style datasets (e.g. panel

data sets) using individually meaningful predictors, tree-based models consistently outperform

standard deep learning models (Chen and Guestrin, 2016; Lundberg et al., 2020).

3.3 Cross-validation, hyperparameter tuning and performance evalu-

ation

Hyperparameter tuning and training: To find the hyperparameters22 with the best

model fit, we use k-fold CV23 (Hastie et al., 2009), except for the neural network, where we rely

on a randomly selected validation set to minimize computation time. As shown by Bergmeir

et al. (2018) and Goulet Coulombe et al. (2022) k-fold CV performs favorably to alterna-

tive techniques that explicitly account for the time-series properties of the data. DeMiguel

et al. (2023) confirm this finding when predicting mutual fund alpha using machine learning

methods. The k-fold CV approach involves dividing the data set randomly into five folds of

approximately equal size. Four folds are used as a training sample with a given combination

of hyperparameters and the remaining fold is used as a validation set to evaluate the out-of-

sample performance of the trained model based on the chosen hyperparameters using the MSFE
21The first FFNN consists of one to three hidden layers and two to 32 neurons per hidden layer. In contrast,

the second FFNN is a more complex network with three to ten hidden layers and 32 to 1,024 neurons per hidden
layer.

22The specific hyperparameters that undergo tuning for each machine learning (ML) algorithm are outlined
in Appendix A.

23In our application, we set k = 5.
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(cross-validation error). After completing this procedure for each of the five folds, the hyper-

parameters that minimize the average cross-validation error are selected for the corresponding

ML algorithms. For all algorithms we rely on the Optuna hyper-parameter tuning approach

suggested by Akiba et al. (2019). Compared to commonly used greedy grid-search and random-

search approaches, Optuna provides more sophisticated sampling approaches based on Bayesian

optimization techniques to find the best possible set of hyperparameters. In this context, we

use the tree-structured Parzen estimator approach (TPE) based on independent sampling sug-

gested by Bergstra et al. (2011). In particular, the TPE sampler models the search space by

using one Gaussian mixture model l(x) to the set of parameter values associated with the best

objective values, and another Gaussian mixture model g(x) to the remaining parameter values.

Finally, the parameter value x that maximizes the ratio l(x)/g(x) is chosen.24 To optimize the

computational time for the hyperparameter tuning of the neural networks, we additionally use

the hyperband algorithm proposed by Li et al. (2017) as a pruning mechanism and a callback

function that stops the training of the neural network if the value of the MSFE on the validation

set does not further decrease after five epochs.

As machine learning algorithms are computationally intensive, we determine the best pos-

sible set of hyperparameters of the predictive models every two years instead of every month

(similar as in Gu et al., 2020; Leippold et al., 2022). However, after each monthly forecast,

we extend the training sample by one month and retrain the algorithms using the previously

obtained hyperparameters. In particular, the hyperparameters used in the first forecast of

fund flows in January 2000 are based on the training sample using data from January 1991

to November 1999 and the prediction set of December 1999. These hyperparameters remain

unchanged for all monthly fund flow forecasts until December 2001 while the training sample

is extended every month.25 For predictions in January 2002, new hyperparameters using an

extended training sample from January 1991 to November 2001 are determined. This procedure

is repeated until the end of the sample period.
24In our application, for all ML algorithms, except random forest and neural networks, we set the number of

trials required for the optimization routine to choose a suitable set of hyperparameter values from a given range
to 150. For random forest and neural networks, 100 and 200 trials are used, respectively.

25To check the robustness of the obtained results we also apply a rolling window approach of 12-, 36-, and
60-months and find our results to hold.
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Evaluating out-of-sample predictive ability: To gauge the out-of-sample predictive ability

of all applied machine learning models and the benchmark OLS model we compute the out-of-

sample R2 (OOS R2) statistic on a share class level, which is defined as

R2
OOS = 1−

∑
(i,t)∈τOOS

(
flowi,t+h − f̂ lowi,t+h

)2
∑

(i,t)∈τOOS

(
flowi,t+h − flowi,t

)2 (3.3)

and measures the reduction in the MSFE compared to a benchmark consisting of the historical

mean flow for fund i up to period t, flowi,t. The forecasting horizon is h = 1 month. The

predictive power is evaluated on a sample, τOOS, that is disjoint from the data used in model es-

timation and hyperparameter tuning. The OOS R2 statistics pools forecast errors across share

classes and over time into a panel-level assessment of each model. We compute the statistic for

each monthly forecasting cycle as well as for the entire out-of-sample period. To evaluate the

statistical significance of each model we apply the Clark and West (2007) statistic (two-sided

test) to test H0 : R
2
OOS = 0 against H1 : R

2
OOS ̸= 0.

Forecast comparison: To compare the predictive performance of two forecasting methods,

m = 1, 2, consisting of machine learning methods and linear models, we apply the Diebold-

Mariano-West (DMW) pairwise test (Diebold and Mariano, 1995; West, 1996). For this purpose,

we define the loss differential as

d̂
(1,2)
t =

(
ê
(1)
i,t+h

)2
−
(
ê
(2)
i,t+h

)2
(3.4)

where ê
(m)
i,t+h = flowi,t+h − f̂ lowi,t+h refers to the forecast error on share class i at time t + h

for method m. The DMW statistic to test the null hypothesis of equal predictive accuracy,

H0 : E
(
d̂
(1,2)
t

)
= 0, against the two-sided alternative is obtained as the t-statistic of a regression

with intercept only, d̂(1,2)t = µ+ εt:
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DMW (1,2) =
µ̂(1,2)

σ̂
(1,2)
µ̂

(3.5)

where µ̂(1,2) denotes the estimated coefficient (time series average of d̂
(1,2)
t ) and σ̂

(1,2)
µ̂ is the

corresponding Newey and West (1987) HAC standard error. It is well known that the DMW

test can reject the null hypothesis too often, depending on the sample size and the degree of

serial correlation in the forecast errors. To address this issue and obtain improved small-sample

properties we follow Harvey et al. (1997) and make a bias correction to the DMW statistic in

(3.5). The corrected test statistic is obtained as

HLN −DMW (1,2) =

√
T + 1− 2h+ T−1h(h− 1)

T
DMW (1,2). (3.6)

which is compared to the critical values of a Student t-distribution.

4 Empirical analysis

In our empirical analysis, we explore the predictive ability of the applied statistical models

via out-of-sample R2 and discuss the importance of fund characteristics and their interactions in

predicting future fund flows. Finally, we evaluate whether fund flow prediction can be utilized

to consistently differentiate high-performing from low-performing mutual funds. Although our

analyses are conducted at the share class level, for simplicity, we refer to share classes as funds

in the remainder of this paper.

4.1 Out-of-sample predictability comparison

We begin our analysis by reporting the out-of-sample results of applying OLS regressions

and state-of-the-art machine learning algorithms to predict future monthly fund flows. The

obtained results are evaluated using the out-of-sample R2 statistic described in Subsection 3.3.

In addition, to discriminate between the forecasting performance of two competing models, we

apply the DMW test.
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Table 4 reports the forecasting performance, measured by the out-of-sample R2 statistic, for

the different baseline OLS specifications for a one-month forecasting horizon for the full sample.

Additionally, we also report the forecasting performance for the 10% of the share classes with

the largest (top) and lowest (bottom) monthly flows. Predicting extreme flows is of particular

interest for fund managers in the context of their liquidity management.

The out-of-sample performance of OLS is fairly robust among the various model specifica-

tions. For the full sample, R2
OOS is very similar across model specifications and varies between

17.85% (OLS full model) and 18.21% (OLS-FF4). Interestingly, the mixed model specification

does not perform particularly well. All reported out-of-sample R2 are statistically significant

at the 1% level, indicating that each applied model specification performs significantly better

relative to the corresponding historical mean flow benchmark. For all models, out-of-sample

R2 is considerably higher for the funds with the 10% predicted largest outflows (ranging from

18.75% and 19.41%) than for funds receiving the 10% of predicted largest inflows, where R2
OOS

is only between 1.31% to 1.39%.

Table 5 shows the forecasting performance of all applied machine learning models based on

the out-of-sample R2 for the full sample and the 10% of the share classes with the largest (top)

and lowest (bottom) predicted monthly flows. For the full sample, all machine learning al-

gorithms achieve statistically highly significant positive R2
OOS and show predictive ability for

one-month future fund flows. In terms of linear statistical methods, the elastic net performs

slightly worse than the baseline OLS models, implying that the effect of dimension reduction

inherent to the algorithm does not lead to improved out-of-sample forecasts.

Compared to the best-performing OLS model (OLS - FF4, 18.21%), which serves as our

OLS benchmark model in the remainder of the paper, the decision tree (18.07%) achieves a

slightly lower R2
OOS. In contrast, a substantial increase in predictive accuracy is achieved by

the random forest and gradient boosting models, improving the R2
OOS to above 22%. While the

two neural networks perform better than the decision tree, they do not beat random forest and

gradient boosting. A comparison of the predictive accuracy of NN I and NN II reveals that the

less complex NN I achieves an out-of-sample R2 which is 1.07 percentage points higher than
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that of NN II. Therefore, the increased computational effort associated with the more complex

neural network, NN II, is not justified given its inferior performance.

Similar to OLS, the predictive accuracy for machine learning algorithms is much higher

for the funds in the bottom decile of the predicted flow distribution. However, the two best

performing machine learning methods, random forest and gradient boosting, deliver a R2
OOS in

the top decile of the predicted flow distribution that is 9.57 and 8.94 percentage points higher

compared to the OLS benchmark model. This shows that the best machine learning methods

are much better in predicting extreme flows.

Generally, the improved predictive ability of machine learning methods like random forest

and gradient boosting demonstrate their effectiveness and dominance in capturing nonlinearities

and complex interactions between predictors that appear to be relevant in achieving higher

prediction accuracy.

Overall, the magnitude of improvement in out-of-sample R2 is comparable to those achieved

in studies from the asset pricing literature using machine learning to forecast monthly stock

returns (Gu et al., 2020; Leippold et al., 2022). While our best-performing forecasting model,

random forest, yields an improvement in R2
OOS for the full sample of 4.57 percentage points, the

previously mentioned papers on mutual fund performance prediction report an improvement in

out-of-sample R2, based on a comparison of nonlinear ML methods relative to OLS, of between

1.90 (from 0.81 to 2.71, Leippold et al. (2022)) and 3.86 (from -3.46 to 0.40, Gu et al. (2020))

percentage points.

The results are robust when we benchmark our R2 metric against a forecast value of zero

instead of the historical mean. The out-of-sample R2 of the best-performing ML method, ran-

dom forest, is now 4.87 percentage points higher relative to the OLS benchmark. Interestingly,

the overall level of R2 for all models drops by about 5 percentage points when we use zero as

naive forecast. This suggests that a forecast of zero is a superior naive forecast compared to

the historical mean (Table B1).

Instead of applying an expanding window, we repeat the above analysis for the full sample

using a 12-, 36-, and 60-month rolling window for training the algorithms (and hyperparameter
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tuning) to demonstrate the robustness of the forecasting performance documented in Table 5.

The results are shown in Table 6 and provide three important insights. First, a longer training

window implies higher predictive accuracy, documented by a larger R2
OOS measure. Second,

the forecasting ability of machine learning algorithms, with the exception of neural networks, is

relatively robust regardless of the corresponding training window, while the baseline OLS model

shows considerably inferior performance based on the short 12-month training window. Finally,

neural networks employ a larger number of hyperparameters and thus require a large number

of observations to provide accurate forecasts. In our setting, neural networks are associated

with inferior forecasting performance compared to tree-based ensemble models but outperform

linear methods (OLS, elastic net) on larger training windows.

To statistically evaluate the difference in the forecasting abilities of two competing fore-

casting models we apply modified Diebold and Mariano (1995), West (1996) tests following

Equation 3.6. The results of the pairwise tests of predictive accuracy are shown in Table 7. We

find that different classes of linear and nonlinear models differ considerably in their predictive

performance. Based on the HLN − DMW statistic suggested by Harvey et al. (1997), ma-

chine learning methods that capture nonlinearities and allow for interactions outperform linear

models. Regarding neural networks, the more complex network structure of NN II surprisingly

delivers inferior predictive performance (1% significance level) compared to the relatively sim-

ple architecture of NN I. However, gradient boosting and random forest manage to beat both

neural networks. Among the linear models, OLS-FF4 significantly outperforms the predictions

made by the elastic net. In terms of nonlinear models, the forecasts produced by random forest

are significantly better than the predictions obtained by any other machine learning algorithm.

Overall, random forest is found to be the best-performing model with the highest predictive

accuracy, followed by gradient boosting. While gradient boosting is computationally less expen-

sive, random forest takes the most computing time of all applied ML algorithms. In conclusion,

these results further corroborate the findings obtained by the out-of-sample R2 analysis above.

Next, we explore whether the predictive ability of our models depends on the state of the

economy and is stable over different economic regimes. As described in Jank (2012), investors
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react to macroeconomic news by leaving riskier asset classes and entering less risky ones when

there is news of an economic downturn. This is empirically confirmed by Pástor and Vor-

satz (2020), as during the COVID-19 crisis, actively managed mutual funds experienced rapid

outflows during and after the crash. Relatedly, Warther (1995) reports positive correlations

between aggregate equity market returns and fund flows. In a more recent study, Ben-Rephael

et al. (2012) find that aggregate monthly net exchanges to equity funds, as a proxy for shifts

between bond and equity funds, are positively contemporaneously correlated with aggregate

stock market returns. Furthermore, fund managers are particularly interested in precisely pre-

dicting potential outflows during periods of aggregate outflows, where returns and liquidity are

typically under increased stress.

Hence, to examine whether our results depend on different market conditions based on

the business cycle, monthly aggregate flows, and the return of the aggregate stock market, we

compute the out-of-sample R2 for each algorithm and month, yielding a total of 288 obser-

vations. Subsequently, we separate these observations according to the corresponding market

conditions (e.g., expansion and recession) and employ Welch (1947) tests to evaluate whether

the mean R2
OOS in two states differs significantly. The results are reported in Table 8.26 Panel A

(business cycle) refers to the state of the business cycle and separates the sample in expansions

and recessions as defined by the NBER. All forecasting models except gradient boosting and

NN (II) perform slightly better during recessions than expansions based on their R2
OOS, but

the differences are not statistically significant based on Welch (1947) tests. As in the overall

sample, random forest performs best in both states. Panel B splits the sample into periods

where monthly aggregate flows are positive (inflows) or negative (outflows). Results are stable

across the two regimes. Although some models perform better during periods of aggregate

inflows and some worse, the differences in R2
OOS are small and never statistically significant.

Again, random forest remains the best-performing model independent of market conditions. In

panel C we divide the sample into periods of positive and negative aggregate monthly stock

market returns using the CRSP value-weighted index. All statistical models, except random
26Note that these results differ marginally from the ones obtained in Table 5, as the reported mean R2

OOS is
based on monthly means.
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forest and gradient boosting (which are still the best performing models in both regimes), show

statistically significant higher accuracy in months with negative stock market returns.

Overall, our findings from Table 8 suggest that the predictive power of our best-performing

ML methods in forecasting fund flows, random forest and gradient boosting, is robust and

independent of the state of the economy or market regime.

4.2 Characteristic importance and interactions

In this subsection, we study the importance of fund characteristics and their interactions

for the predictions obtained by random forest, which we identified as the machine learning

method with the highest forecasting accuracy in the previous section. For that purpose, we

estimate model-agnostic SHAP (SHapley Additive exPlanations) values (Lundberg and Lee,

2017; Lundberg et al., 2020). More specifically, for each forecasting cycle, share class, and

characteristic (predictor), a SHAP value is calculated, reflecting the predictor’s main effect

on the respective prediction along with the averaged interaction effects between the predictor

and the remaining 63 characteristics. A positive SHAP value indicates that the characteristic

has a positive influence on the respective prediction relative to the average forecast, whereas a

negative SHAP value indicates that the characteristic has a negative influence. To evaluate the

overall importance of each characteristic, we calculate the mean absolute SHAP values, which

represent the average strength of that predictor’s influence on the model’s predictions.27 In

our analysis, we rely on the treeSHAP algorithm28 which delivers accurate estimates of SHAP

values for random forest (Lundberg et al., 2020).

Table 9 reports the mean of the absolute SHAP values across all observations over the

out-of-sample period from January 2000 to December 2023 for the 30 most important char-

acteristics. We find that past monthly flows is the most influential fund characteristic for

predicting future fund flows followed by the average flows over the past six and 12 months,

respectively. This finding suggests that relatively stable fund characteristics and/or the rela-

tively stable investment behavior of a fund’s clientele explain a large part of the predicted flows
27A general discussion of SHAP can be found in Molnar (2019).
28We use the FastTreeSHAP package of Yang (2022) implemented in Python for computing the SHAP values.
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(which thus are relatively persistent). This finding is also consistent with the strong impact

of adding fund fixed effects in standard OLS regression models for flows on the models’ R2

observed in previous studies.

The next most important predictors are the Morningstar rating and the size of the share

class measured by its TNA. It is noteworthy that various measures of past performance, includ-

ing realized alpha for various factor models, market-adjusted returns and value added seem to

be less important in predicting future fund flows. These model-based implications are consis-

tent with the literature showing that mutual fund investors react strongly to simplistic fund

rankings (Del Guercio and Tkac, 2008; Reuter and Zitzewitz, 2021; Evans and Sun, 2021) rather

than to more sophisticated performance measures based on the CAPM or other commonly used

asset pricing models (Ben-David et al., 2022) when allocating capital to mutual funds.

In the following, we will analyze the stability of these findings for top-10% and bottom-10%-

flow fund share classes as well as for fund share classes targeted towards retail and institutional

investors, respectively. Panels A and B of Table 10 show the mean of the absolute SHAP

values for the funds in the top (panel A) and bottom (panel B) deciles of the predicted fund

flow distribution. For both deciles, flow-related predictors are identified as the most important

characteristics, followed by the Morningstar rating and TNA. In the bottom decile of the

predicted flow distribution, costs seem to play a more important role: back-end loads and

the expense ratio are ranked among the ten most important characteristics for funds with

predicted outflows, while they do not appear among the top 15 for funds with the highest

predicted inflows.

Panel C and D show the corresponding mean absolute SHAP values for institutional

(panel C) and retail (panel D) share classes. The results between these two types of share

classes are very similar and flow-related variables and the Morningstar rating are the most

relevant features in predicting fund flows. Interestingly, even for institutional investors the

Morningstar rating is more important than alphas based on factor models. Furthermore, for

institutional investors, the expense ratio is of importance in predicting flows, while for retail

funds cost-related characteristics (front-end and back-end loads, expense ratio) are not among
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the most important predictors of flows. This pattern suggests that our forecasting model as-

sumes that institutional investors are more fee-sensitive than retail investors.

To analyze the time variability in the importance of fund characteristics in predicting mutual

fund flows, Figure 2 depicts the importance of the 15 most relevant predictors (according to

Table 9) using the monthly mean absolute SHAP values for random forest. The figure illustrates

that from November 2011 onwards, past monthly flows is consistently the most influential fund

characteristic for flow predictions over time. However, from January 2000 to October 2011,

average flows over the past six months was identified as the most important predictor in the

vast majority of months and remained in second place for the rest of the out-of-sample period.

These two are followed by the average flows over the past 12 months.

The Morningstar rating is less important during the earlier years of the out-of-sample

period, but gained in relevance over time. Starting in the late 2000s, it consistently ranks

among the top five variables. This period coincides with the years when Morningstar became a

media staple, with mainstream media regularly reporting Morningstar ratings and Morningstar

analysts prominently appearing on financial news programs.

While the importance of flow-related measures and the Morningstar rating is generally

relatively stable over time, all other predictor variables show a much greater degree of time

variation in the out-of-sample period. The most pronounced change in characteristic importance

is observed for the expense ratio, which was of marginal relevance at the beginning of the sample

and has become much more influential for fund flow predictions recently. To the best of our

knowledge, the increased importance of the expense ratio is a new finding and is consistent

with investors being more fee-sensitive in more recent years. One possible explanation could

be the increased competition from low-cost, passive investment products that have gained in

importance over recent years. In this context Cremers et al. (2016) find that actively managed

funds charge lower fees when they face more competitive pressure from low-cost index funds.

We also observe that monthly flows lagged by 12 months increased in importance over time,

suggesting that fund-specific seasonalities have become more important in more recent years.

This effect is likely to be driven by the increased popularity of savings plans, where recurring
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investments are often automatically made in the same calendar month.

While the SHAP values presented hitherto give us some insights into which variables gener-

ally matter for flow predictions, they do not tell us anything about the direction in which they

influence flows. Thus, we now focus on a better understanding of how various fund character-

istics affect the predictions made by random forest in greater detail and analyze the directional

impact of these predictors. Figure 3 shows a beeswarm SHAP plot of the 15 most important

features identified by their mean absolute SHAP values over the whole out-of-sample period

from January 2000 to December 2023 implied by Table 9. Each point represents a SHAP value

for one observation from a forecast cycle for a specific predictor. If this point is on the positive

domain of the horizontal axis, this means that the respective predictor has a positive impact on

predicted flows (as compared to the average prediction). The color of the corresponding points

indicates whether the realization of the characteristic that led to the respective prediction was

high (violet) or low (yellow). The plots for the various predictors are sorted in descending order

with the most important variables at the top. We obtain information on the magnitude (low

or high feature value) and the directional impact on the fund flow prediction (SHAP value)

for each of these characteristics. More specifically, the beeswarm plot does not only reveal the

relative importance of features, but also their actual relationships with the predicted outcome.

With the exception of monthly flows, most variables have a relatively clear relationship.

Typically, a positive impact can be seen for features with high values and vice versa. Average

flows over longer horizons, Morningstar ratings as well as average realized CAPM alphas over

various horizons show a predominantly positive directional impact on predicted flows if the

feature value is high. This is consistent with the flow-performance relationship in which flows

are positively related to past performance (Chevalier and Ellison, 1997; Sirri and Tufano, 1998;

Del Guercio and Tkac, 2002; Huang et al., 2007). A similar finding is observed for market-

adjusted returns. Additionally, we find that the relationship of feature value and directional

impact of the expense ratio on flow predictions is negative, meaning that expensive funds are

predicted to incur outflows. While these findings are consistent with economic rationality of

investors, several older studies on mutual fund flows show that funds that charge higher fees
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typically enjoy higher flows (Sirri and Tufano, 1998; Gil-Bazo and Ruiz-Verdú, 2009; Ivković

and Weisbenner, 2009).

However, it is noteworthy that the relationship between the feature value and the directional

impact of our most important predictor variable (with the highest mean SHAP value), previous

month flows, is ambiguous. In some cases, a positive relationship is observed between high past

monthly flows and predicted flows, while in other instances a negative directional impact is

found, meaning that high past flows are associated with low predicted flows. This finding can

be interpreted as evidence of a more complex, nonlinear underlying true relationship between

previous month flows and predicted flows or a significant change in the directional impact of

this variable over time. We will discuss this pattern in greater detail below.

To first analyze the temporal stability of the results documented in Figure 3, we divide

the out-of-sample period into consecutive two-year intervals. Figure 4 shows the corresponding

SHAP values. As in the overall out-of-sample period shown above, the relationship between past

monthly flows and their impact on predicted flows is ambiguous for most two-year subperiods.

This suggests that the relationship documented in the overall sample is not just driven by some

periods with positive and some periods with negative relationships. Rather, these findings are

consistent with a nonlinear relationship between past monthly flows and predicted flows.

In contrast, the directional impact of average flows over the past six and 12 months is fairly

stable across sub-periods, such that higher average past flows are positively related to predicted

flows. Additionally, we observe that a higher Morningstar rating consistently leads to a positive

impact on the prediction of fund flows in all sub-periods. Moreover, a high expense ratio is

negatively related to predicted flows, and the directional importance has become stronger over

the out-sample period.

As discussed above, the relationship between flows in the previous month and predicted

flows appears to be nonlinear. Hence, in Figure 5, we further explore the functional form of

past monthly flows in more detail by plotting the SHAP value as a function of the correspond-

ing feature value over the whole out-of-sample period. We observe a non-linear relationship

between past monthly flows and predicted flows. More specifically, in quadrant I (III) a positive
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(negative) feature value is associated with a positive (negative) impact on predicted flows, while

in quadrant II (IV) a negative (positive) feature value implies a positive (negative) predictive

impact.29 Such a complex non-linear pattern may be influenced by either the main effect or an

interaction effect with other predictors. We will explore this possibility in the following.

A major advantage of most modern machine learning methods is their ability to model

a large number of potentially relevant interaction terms. Thus, we next analyze interaction

effects for all possible combinations of predictor variables.30 Table 11 shows the strength of

the ten most important interactions based on mean absolute SHAP interaction values for gra-

dient boosting.31 Interactions among the flow-related variables are the three most important

interactions, with the strongest interaction found between monthly flows and average flows over

the past six months. The table further reveals that monthly flows interacted with the Morn-

ingstar rating is the next most important interaction that is not entirely flow related, followed

by interactions between mean flows (six months) and the Morningstar rating as well as the

interactions of TNA with value added. Interestingly, while value added was not among the

top-thirty variables in Table 9, it is important when interacting with TNA in forecasting fund

flows. Past performance measures such as the realized alpha of various asset pricing models

(CAPM, FF3, FF4) possess some importance as individual predictors as shown in Table 9 but

are not important through their interactions with past fund flows or any other combination of

predictor variables among the ten most important interactions. However, some fund character-

istics like TNA and the expense ratio are not only important as individual predictors but are

also important drivers of flows when interacting with each other.

As documented in earlier studies (see, e.g., Sirri and Tufano, 1998), there is evidence of a

nonlinear relationship between past performance metrics and subsequent fund flows. Building

on these findings, we examine this relationship in our predictive framework for the Morningstar

rating which has been identified to be both, the most important performance metric as well

as the most important non purely flow-related interaction. For that purpose, we use a violin
29About 93% of the observations are located in quadrant I and III.
30This corresponds to (64× (64− 1))/2 = 2, 016 interactions.
31While random forest is the best performing ML algorithm in our horse race of prediction models, we report

in this version of the paper the SHAP interaction values for gradient boosting as preliminary results due to the
substantially lower computational burden.
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plot32 and display for all funds the five Morningstar rating categories and their associated

SHAP value over the entire out-of-sample period for random forest, displayed in Figure 6. We

observe that the four- and five-star rated funds are predominantly associated with positive flow

predictions, as indicated by positive SHAP values, while the lower rated funds are all primarily

associated with negative predicted flows. This suggests that the level of the Morningstar rating

is fundamentally important in predicting fund flows. Overall, the relationship between the

Morningstar rating and its associated SHAP value is convex. The predictions for the funds

in the two highest rating categories are on average (median) positively impacted, while for all

other funds, the Morningstar rating has a negative impact on the forecast, resulting in lower

predicted fund flows.

We now further examine the non-linear relationship between past monthly flows and the

associated SHAP values from Figure 5 to verify if this pattern could be influenced by the

non-linear impact of the most important non-flow related interacted variable, the Morningstar

rating. Figure 7 is based on Figure 5, showing the convex relationship between past flows and

predicted flows (functional form) and adds the interaction effect with the Morningstar rating

(colored dots) for the whole out-of-sample period from January 2000 to December 2023. This

figure provides two main insights: First, high past inflows and a high Morningstar rating imply

a positive impact on predicted flows, while high past inflows and a low Morningstar rating are

associated with a negative impact. This might be due to ’new money’ being more sensitive to

easily digestible performance information as mirrored in the Morningstar rating. Second, while

high past outflows positively impact predictions, low past outflows are mostly associated with

negative predicted flows. Overall, this analysis highlights the usefulness of jointly modeling

nonlinearities and interaction effects.

4.3 Predicted fund flows and performance

The academic literature documents a significantly positive relationship between past fund

flows and future fund performance. One strand of the literature attributes this empirically
32Note that to better visualize the results, the violin plot does not show data (outliers) that are 1.5 × the

interquartile range (IQR) above the third quartile and below the first quartile.
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observed flow-performance relationship to investors’ ability to identify managerial skill, known

as smart money effect (see, among others, Gruber, 1996; Zheng, 1999; Keswani and Stolin,

2008), while another strand attributes it to the persistence of fund flows (see, among others,

Coval and Stafford, 2007; Frazzini and Lamont, 2008; Lou, 2012). Our goal in this section is

not to analyze the drivers of the positive flow-performance relationship, but rather to evaluate

whether machine learning-based fund flow predictions can be used out-of-sample to consistently

differentiate mutual funds with high and low future net returns. We follow Gu et al. (2020), Bali

et al. (2023), DeMiguel et al. (2023) and Kaniel et al. (2023) and form portfolios using machine

learning forecasts. Specifically, we first sort individual share classes into equally weighted top

and bottom decile portfolios based on their predicted fund flows for the next month. Second, we

compute the average realized return for each portfolio in the corresponding month. For every

successive month, we follow the procedure outlined in Subsection 3.3 and expand the training

sample by one month, train the algorithm on the expanded sample and construct new portfolios

using one-month ahead machine learning implied fund flow predictions. As a result, we obtain

a time series of monthly out-of-sample net returns of the top and bottom decile (percentile)

portfolios over the period from January 2000 to December 2023 (288 monthly observations).

Finally, we construct a long-short prediction portfolio of each top and bottom decile (percentile)

portfolio to evaluate whether sorting based on high and low fund flow forecasts results in positive

mutual fund alpha. The out-of-sample performance of all fund portfolios is evaluated by running

a time-series regression of the 288 out-of-sample monthly portfolio excess returns on various

risk-factor returns. The portfolio alpha is obtained as the intercept of the time-series regression.

We use four risk-factor models to evaluate portfolio performance: the Carhart (1997) four-factor

model (FF4), the Fama and French (2015) five-factor model (FF5), the FF5 model augmented

with the momentum factor (FF6) and the FF6 model enhanced by the liquidity factor of Pástor

and Stambaugh (2003) (FF7). The fund flow predictions are obtained using our baseline OLS

model with the highest forecasting accuracy (OLS - FF4) as well as the machine learning

algorithms used above. For comparison, the result of a naïve portfolio strategy consisting of an

equally weighted portfolio of all share classes is used as a benchmark.
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Panel A of Table 12 reports out-of-sample alphas based on net-returns of the top and bottom

decile portfolios and the corresponding long-short portfolio implied by the predicted fund flow

distribution based on one-month ahead forecasts. Our results reveal three main findings. First,

by using fund-flow predictions we are able to ex-ante separate high from low-performing funds

resulting in positive and often significant out-of-sample alphas for the long-short portfolios.

The best performing model is gradient boosting which achieves a significant positive alpha

relative to all applied factor models. For example relative to the FF5 and FF6 model gradient

boosting delivers a highly significant alpha of 21 bp per month (2.52% per year). Interestingly,

this number is virtually identical to the outperformance achieved by Kaniel et al. (2023) in

their analysis aimed at directly predicting fund performance (rather than flows).33 However,

it is important to note that linear models (OLS, elastic net) perform reasonably well for long-

short portfolios based on the top and bottom decile of the predicted fund flow distribution

and achieve higher long-short alphas compared to the decision tree, random forest and the two

neural networks. Second, unlike DeMiguel et al. (2023), our machine learning implied fund

flow predictions do not allow us to select long-only fund portfolios that provide statistically

significant out-of-sample alphas. Thus, the approach of DeMiguel et al. (2023) to directly

predict performance (rather than flows) seems to be superior in identifying outperforming

funds. Third, our approach does allow investors to identify the worst-performing funds implied

by the predicted fund flow distribution. For the bottom decile portfolio and the FF5, FF6 and

FF7 factor model all of the applied predictive models yield a statistically significant negative

alpha at the 5% level or higher. This shows that funds associated with high predicted inflows

subsequently outperform funds associated with high predicted outflows.

Moving to the extremes of the predicted fund flow distribution and analyzing the perfor-

mance implications of high and low fund flow forecasts for the top and bottom percentiles

yields very favorable results for machine learning regarding long-short portfolios. Panel B of

Table 12 reports that at the 5% level or higher gradient boosting delivers a significant alpha of

about 28 bp per month (3.36% per year) relative to all factor models. Slightly weaker results
33Depending on the factor model analyzed and using only fund-specific predictor variables, they document

an outperformance ranging from 1.80% to 2.52%. They further show that adding stock-specific characteristics
and sentiment does not result in long-short portfolios with higher alpha.
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are obtained for the other non-linear ML models, while the linear models OLS and elastic net

completely fail to do so.

4.4 Fund Flow Prediction Accuracy and Performance

In the final part of our paper, we analyze whether the higher forecast accuracy offered by

ML models has an impact on performance. If ML models can improve the accuracy of flow

prediction for a given fund compared to more basic flow prediction methods (that fund managers

might use), then the liquidity management of that fund can potentially be improved by using

ML methods instead. In contrast, if the basic prediction rules applied by fund managers work

just as well as more advanced methods, there is little to be gained by employing ML models. In

the following, we analyze whether liquidity management is indeed suboptimal and performance

eventually worse for funds where ML models would deliver better flow predictions than basic

forecasts. The underlying assumption of this analysis is that fund managers were not yet using

sophisticated ML-based flow forecasts during our sample period.

More specifically, we assume mutual fund managers may either predict future flows with

historical averages or based on OLS regression models. To evaluate the predictive advantage of

our most accurate ML method (random forest), relative to these simple prediction benchmarks,

we compare the predicted flows to the actual flows at the aggregate fund level for each period

and forecasting model (historical mean, OLS, and random forest).

To quantify a potential performance effect of higher prediction accuracy, in each period

t we build a long-short portfolio with a one-month holding period (t + 1) where a fund is

assigned to the long leg if the respective simple benchmark model used for fund flow predictions

produced a more accurate forecast than random forest in t, and to the short leg otherwise. The

rationale behind this approach is that if the corresponding benchmark model is more accurate

in predicting fund flows, the fund manager is already using the best possible approach and

no further improvement is achievable. However, if the benchmark model is less accurate, a

random forest based forecast could prevent large flow surprises that might adversely affect

fund performance (Edelen, 1999). Assuming that fund managers did not use such models in
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the past, we should see that performance for funds where ML models would increase prediction

accuracy performed worse. Using this methodology, we generate a time series of monthly out-of-

sample long-short portfolio returns, which allows us to assess the potential performance effects

of potential liquidity management improvements by estimating a regression of these returns

on various factor models. The results are reported in Table 13. For the OLS benchmark, the

difference in performance in terms of forecasting accuracy of random forest is positive and highly

significant, ranging from 2.8 bp to 3.7 bp per month (0.34% to 0.44% per year) with respect

to all considered factor models. These magnitudes are not huge, but seem of realistic size for

the potential impact of improved liquidity management. For the historical mean benchmark,

the outperformance of random forest is again economically substantial, ranging from 2.1 bp to

3.0 bp per month (0.25% to 0.36%) but only statistically significant at the 10% level (CAPM,

FF6). Overall, our results are mildly suggestive that an improvement in liquidity management

using ML-based fund flow predictions can eventually lead to better fund performance.

5 Conclusion

In this paper, we apply machine learning techniques and a large set of predictors to forecast

one-month ahead fund flows. Our results show that nonlinearities and interactions that can

be taken into account by modern machine learning models prove to be important in predicting

future fund flows. Hence, these models significantly outperform standard linear frameworks in

terms of out-of-sample R2. We find that random forest is the best performing machine learning

algorithm, followed by gradient boosting. However, other machine learning methods such as

neural networks also possess a good forecasting ability and still also clearly outperform the

baseline OLS model, while less complex machine learning algorithms such as elastic net and

decision tree are inferior in their predictive ability compared to OLS.

Our results also show that predictors based on previous flows (past 1-month flows, average

flows over six and 12 months), the Morningstar rating, and TNA are the most important

variables for predicting future fund flows. In contrast, measures of past performance such as

realized alpha from various factor models, value added, or market-adjusted returns are only of
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minor importance when controlling for the Morningstar rating. These findings are consistent

with the recent literature showing that investors react strongly to simplistic fund rankings

rather than to more sophisticated performance measures based on commonly used asset pricing

models.

Moreover, our results reveal that over time the expense ratio became much more influential

in predicting fund flows and - in contrast to the earlier literature - can be shown to have a

strong negative impact on flows. We also identify a convex relationship between past flows and

predicted flows as well as a nonlinear impact of the Morningstar rating on predicted flows. In

addition, the interaction effect of past flows with the Morningstar rating substantially impacts

the forecasts. This effect reveals that high past flows and a high Morningstar rating are asso-

ciated with higher predicted flows, while high past inflows and a low Morningstar rating are

associated with a negative impact, suggesting that ’new money’ is strongly rating sensitive.

While not the main focus of our paper, we also show that ML-based fund flow predictions

can be used to ex-ante separate high- and low-performing mutual funds. Furthermore, funds

where flow prediction accuracy can be improved based on ML models as compared to more

basic flow forecasts perform significantly worse, suggesting that fund managers did not employ

these methods on a large scale during our sample period.

Overall, our findings highlight the importance of the complex interplay between various

variables in predicting flows. They show how asset managers could use state-of-the-art ML

techniques to better predict flows and optimize their liquidity policy as well how investors can

use these predictions to ex-ante separate high from low-performing funds.
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Figure 1: Correlation matrix between fund characteristics

This figure shows the correlation coefficients of predictor variables that exceed a threshold of 0.6 and are thus
considered substantially correlated. The sample period spans from January 1991 to December 2023.
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Figure 2: Evolution of characteristic importance for random forest over time

This figure plots the time-variation of characteristic importance of the 15 most important predictors identified
by their mean absolute SHAP value over the whole out-of-sample period (January 2000 to December 2023) and
a one-month forecasting horizon for random forest. Characteristics are ranked according to their importance
and range from 1 for the most important predictor and 64 for the least important predictor.
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Figure 3: Directional impact of the characteristics for random forest

This figure shows a beeswarm SHAP plot which indicates the directional impact of the 15 most important
characteristics identified by their mean absolute SHAP value over the whole out-of-sample period (2000 to
2023) and a one-month forecasting horizon for random forest. Predictors are sorted in descending order with
the most important variables at the top. Each dot on the chart corresponds to one SHAP value for a prediction
and feature. The magnitude of feature values is color-coded from yellow (low) to purple (high). The points are
distributed horizontally according to their SHAP values which measure each feature’s directional impact on the
predictive model outcome (flow prediction).
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Figure 4: Directional impact of the characteristics for random forest over time

This figure shows a beeswarm SHAP plot indicating the directional impact of the 15 most important characteris-
tics identified by their mean absolute SHAP value for consecutive two-year periods and a one-month forecasting
horizon for random forest. Predictors are sorted in descending order with the most important variables at the
top, Each dot on the chart corresponds to one SHAP value for a prediction and feature. The magnitude of fea-
ture values is color-coded from yellow (low) to purple (high). The points are distributed horizontally according
to their SHAP values which measure each feature’s directional impact on the predictive model outcome (flow
prediction).
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Figure 5: Functional form of past fund flows

This figure plots the nonlinear (convex) relationship for each observation between past monthly fund flows
for the whole out-of-sample period (January 2000 to December 2023) and a one-month forecasting horizon for
random forest.
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Figure 6: Nonlinear impact of the Morningstar Rating

This figure plots the five rating categories (stars) of the Morningstar rating and their corresponding SHAP values
for the whole out-of-sample period (January 2000 to December 2023) and a one-month forecasting horizon for
random forest. The Morningstar rating is based on a scale of one to five stars, with one being the worst and
five being the best.
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Figure 7: Interaction effect of past fund flows and Morningstar rating

This figure plots the nonlinear (convex) relationship for each observation between past fund flows (predictor)
and the associated SHAP value as well as the interaction with the Morningstar rating for the whole out-of
sample period (January 2000 to December 2023) and a one-month forecasting horizon for random forest.
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Table 1: Number of share classes per year with monthly average, median and
quantile flows

This table reports the number of share classes for each year in our sample and the corresponding
flow distribution (in percent) described by its mean, lower (Q1) and upper quantile (Q3). The
sample period spans from January 1991 to December 2023.

Flow distribution

Year Number of share classes Mean Std Q1 Median Q3

1991 309 0.98 5.10 -0.89 0.15 2.00
1992 339 1.27 4.75 -0.54 0.48 2.24
1993 536 1.33 6.76 -0.78 0.39 2.29
1994 618 0.77 5.73 -1.01 0.12 1.75
1995 787 0.79 6.66 -1.10 0.05 1.74
1996 1,033 0.87 6.28 -1.01 0.21 1.97
1997 1,263 1.00 6.89 -1.03 0.22 2.02
1998 1,611 0.52 6.77 -1.33 -0.03 1.69
1999 1,923 -0.06 6.47 -2.11 -0.44 1.27
2000 2,237 0.50 7.17 -1.67 -0.15 1.76
2001 2,236 0.38 5.77 -1.30 -0.27 1.14
2002 2,374 -0.27 5.60 -1.91 -0.69 0.68
2003 3,753 0.40 6.41 -1.41 -0.24 1.30
2004 4,038 -0.05 5.77 -1.81 -0.54 0.98
2005 4,434 -0.13 7.39 -2.13 -0.75 0.88
2006 4,686 -0.30 5.76 -2.13 -0.73 0.81
2007 4,929 -0.51 5.90 -2.22 -0.79 0.64
2008 6,461 -0.85 5.84 -2.51 -1.00 0.32
2009 6,379 -0.50 5.77 -1.93 -0.70 0.55
2010 6,312 -0.47 5.97 -1.84 -0.73 0.49
2011 6,311 -0.45 6.17 -1.92 -0.75 0.56
2012 6,002 -0.73 5.54 -1.97 -0.85 0.31
2013 6,107 -0.12 5.57 -1.49 -0.44 0.84
2014 6,281 -0.33 5.23 -1.52 -0.51 0.62
2015 6,575 -0.42 5.57 -1.55 -0.54 0.55
2016 6,624 -0.90 5.68 -1.99 -0.87 0.15
2017 6,945 -0.98 6.60 -1.94 -0.82 0.17
2018 6,936 -0.83 5.37 -1.74 -0.73 0.26
2019 6,953 -0.93 5.03 -1.85 -0.80 0.16
2020 6,984 -0.98 5.13 -2.13 -0.89 0.19
2021 7,041 -0.51 4.30 -1.49 -0.53 0.43
2022 7,080 -0.66 3.73 -1.46 -0.57 0.26
2023 7,104 -0.85 3.46 -1.56 -0.66 0.14
Total 13,376 -0.47 5.62 -1.79 -0.65 0.55
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Table 2: Predictor variables by category

This table shows all 64 predictor variables sorted into two categories. The first category repre-
sents fund-specific characteristics, while the second set of characteristics is related to macroe-
conomic variables.

Fund characteristics

(1) Flows (33) FF4 alpha
(2) Flows (mean past 6 months) (34) FF4 alpha (mean past 3 months)
(3) Flows (mean past 12 months) (35) FF4 alpha (mean past 6 months)
(4) Flows (lagged 12 months) (36) FF4 alpha (mean past 12 months)
(5) Volatility of flows (37) FF4 alpha (mean past 18 months)
(6) Month (38) FF5 alpha
(7) Expense ratio (39) FF5 alpha (mean past 3 months)
(8) Front-end load (40) FF5 alpha (mean past 6 months)
(9) Back-end load (41) FF5 alpha (mean past 12 months)
(10) Turnover ratio (42) FF5 alpha (mean past 18 months)
(11) Age (43) FF6 alpha
(12) Size of management team (44) FF6 alpha (mean past 3 months)
(13) Morningstar rating (45) FF6 alpha (mean past 6 months)
(14) Change in Morningstar rating (46) FF6 alpha (mean past 12 months)
(15) Volatility of return (47) FF6 alpha (mean past 18 months)
(16) TNA (48) Factor loading RMRF (FF6)
(17) TNA (Fund) (49) Factor loading SMB (FF6)
(18) MAR (50) Factor loading HML (FF6)
(19) MAR (mean past 3 months) (51) Factor loading RMW (FF6)
(20) MAR (mean past 6 months) (52) Factor loading CMA (FF6)
(21) MAR (mean past 12 months) (53) Factor loading MoM (FF6)
(22) MAR (mean past 18 months) (54) Value added
(23) CAPM alpha (55) Adjusted R2 (FF6)
(24) CAPM alpha (mean past 3 months)

Macroeconomic variables(25) CAPM alpha (mean past 6 months)
(26) CAPM alpha (mean past 12 months)
(27) CAPM alpha (mean past 18 months) (56) Short-term interest rate
(28) FF3 alpha (57) Long-term yield
(29) FF3 alpha (mean past 3 months) (58) Term spread
(30) FF3 alpha (mean past 6 months) (59) Credit spread
(31) FF3 alpha (mean past 12 months) (60) Stock market return
(32) FF3 alpha (mean past 18 months) (61) Volatility of stock market return

(62) VIX
(63) Risk aversion index
(64) Uncertainty index
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Table 3: Summary statistics of predictor variables

This table reports monthly descriptive statistics of all fund characteristics (except lags and
means of various variables) and macroeconomic variables considered in the empirical analysis
except the expense and turnover ratio which are reported based on annual data. The size of
management team is represented as a dummy variable taking a value of zero if the fund is
single-managed and one otherwise. All fund-related variables are measured at the share-class
level for actively managed US domestic equity funds and the sample spans the period from
January 1991 to December 2023.

Characteristic Mean Std Q1 Median Q3

Flows -0.52% 5.63% -1.91% -0.66% 0.53%
Volatility of flows 4.31% 4.13% 1.59% 3.07% 5.63%
Month 6.50 3.44 4.00 7.00 9.00
Expense ratio 1.24% 0.54% 0.88% 1.16% 1.55%
Front-end load 1.05% 2.14% 0.00% 0.00% 0.00%
Back-end load 0.64% 1.28% 0.00% 0.00% 1.00%
Turnover ratio 70.87% 86.05% 28.00% 51.00% 88.00%
Age 168.02 121.47 89.00 137.00 208.00
Size of Management Team 0.71 0.45 0.00 1.00 1.00
Morningstar rating 3.06 1.03 2.00 3.00 4.00
Change in Morningstar rating 0.00 0.37 0.00 0.00 0.00
Volatility of return 5.00% 2.05% 3.51% 4.70% 6.07%
TNA 815.79 3447.95 33.30 116.00 461.00
TNA (Fund) 3,588.93 13,454.07 199.50 695.00 2,124.00
MAR -0.10% 2.71% -1.20% -0.12% 0.98%
CAPM alpha -0.16% 2.70% -1.21% -0.14% 0.93%
FF3 alpha -0.19% 2.27% -1.03% -0.14% 0.70%
FF4 alpha -0.20% 2.28% -1.03% -0.15% 0.69%
FF5 alpha -0.16% 2.34% -1.02% -0.14% 0.73%
FF6 alpha -0.18% 2.35% -1.03% -0.15% 0.71%
Factor loading RMRF (FF6) 0.98 0.19 0.90 0.98 1.06
Factor loading SMB (FF6) 0.19 0.35 -0.07 0.08 0.43
Factor loading HML (FF6) 0.01 0.35 -0.17 0.02 0.19
Factor loading RMW (FF6) -0.05 0.32 -0.18 -0.02 0.11
Factor loading CMA (FF6) -0.11 0.41 -0.29 -0.09 0.08
Factor loading MoM (FF6) 0.01 0.18 -0.06 0.00 0.08
Value added -0.40 47.28 -1.05 -0.02 0.83
Adjusted R2 (FF6) 0.89 0.14 0.89 0.94 0.96
Short-term interest rate 1.65% 1.83% 0.09% 0.95% 2.74%
Long-term yield 3.56% 1.48% 2.55% 3.44% 4.75%
Term spread 1.91% 1.43% 0.84% 1.85% 3.06%
Credit spread 1.01% 0.40% 0.78% 0.92% 1.13%
Stock market return 0.73% 4.58% -1.77% 1.33% 3.54%
Volatility of stock market return 4.31% 1.33% 3.05% 4.37% 5.56%
VIX 19.93 8.03 13.95 18.00 23.84
Risk-aversion index 3.07 0.75 2.67 2.86 3.17
Uncertainty index 2.16 0.52 1.86 2.11 2.42
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Table 4: Out-of-sample OLS model comparison based on R2
OOS

This table reports the out-of-sample performance measured by the out-of-sample R2 statistic,
as defined in Equation 3.3, for the different baseline OLS models for a one-month forecasting
horizon for the full sample including all predictions and the monthly top (bottom) 10% of the
share classes with the highest (lowest) flows. The statistical significance of the R2

OOS measure
is evaluated by the Clark and West (2007) statistic (two-sided test). The level of significance
is displayed as *, ** and ***, indicating statistical significance at the 10%, 5%, and 1% level,
respectively. The out-of-sample period spans from January 2000 to December 2023.

Out-of-sample R2

Full sample Top 10% Bottom 10%

OLS - Full Model 0.1785∗∗∗ 0.0138∗∗∗ 0.1875∗∗∗

OLS - CAPM 0.1800∗∗∗ 0.0139∗∗∗ 0.1886∗∗∗

OLS - FF3 0.1819∗∗∗ 0.0131∗∗∗ 0.1937∗∗∗

OLS - FF4 0.1821∗∗∗ 0.0131∗∗∗ 0.1941∗∗∗

OLS - FF5 0.1820∗∗∗ 0.0134∗∗∗ 0.1939∗∗∗

OLS - FF6 0.1819∗∗∗ 0.0135∗∗∗ 0.1938∗∗∗

OLS - Mixed Model 0.1788∗∗∗ 0.0133∗∗∗ 0.1882∗∗∗

Observations 1,106,802 110,686 110,686
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Table 5: Out-of-sample machine learning model comparison based on R2
OOS

This table reports the out-of-sample performances measured by the out-of-sample R2 statistic,
as defined in Equation 3.3, for the applied machine learning methods for a one-month forecasting
horizon for the full sample including all predictions and the monthly top (bottom) 10% of the
share classes with the highest (lowest) flows. The statistical significance of the R2

OOS measure
is evaluated by the Clark and West (2007) statistic (two-sided test). The level of significance
is displayed as *, ** and ***, indicating statistical significance at the 10%, 5%, and 1% level,
respectively. The out-of-sample period spans from January 2000 to December 2023.

Out-of-sample R2

Full sample Top 10% Bottom 10%

Elastic net 0.1721∗∗∗ -0.0186∗∗∗ 0.1760∗∗∗

Decision tree 0.1807∗∗∗ 0.0375∗∗∗ 0.1739∗∗∗

Random forest 0.2278∗∗∗ 0.1088∗∗∗ 0.2010∗∗∗

Gradient boosting 0.2237∗∗∗ 0.1025∗∗∗ 0.1980∗∗∗

Neural network (I) 0.1963∗∗∗ 0.0407∗∗∗ 0.2005∗∗∗

Neural network (II) 0.1856∗∗∗ 0.0204∗∗∗ 0.1937∗∗∗

Observations 1,106,802 110,686 110,686
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Table 6: Out-of-sample machine learning model comparison based on R2
OOS using

a 12-, 36-, and 60-month rolling-window on the training data

This table reports the out-of-sample performances measured by the out-of-sample R2 statistic,
as defined in Equation 3.3, for the applied machine learning methods for a one-month forecasting
horizon for the full sample including all predictions using a 12-, 36-, and 60-month rolling
window for the training data. The statistical significance of the R2

OOS measure is evaluated by
the Clark and West (2007) statistic (two-sided test). The level of significance is displayed as *,
** and ***, indicating statistical significance at the 10%, 5%, and 1% level, respectively. The
out-of-sample period spans from January 2000 to December 2023.

Out-of-sample R2

12 Months 36 Months 60 Months

OLS - FF4 -0.0558∗∗∗ 0.1756∗∗∗ 0.1774∗∗∗

Elastic net 0.1719∗∗∗ 0.1737∗∗∗ 0.1733∗∗∗

Decision tree 0.1600∗∗∗ 0.1711∗∗∗ 0.1776∗∗∗

Random forest 0.2158∗∗∗ 0.2228∗∗∗ 0.2254∗∗∗

Gradient boosting 0.2081∗∗∗ 0.2188∗∗∗ 0.2222∗∗∗

Neural network (I) -0.2475∗∗∗ 0.1761∗∗∗ 0.2019∗∗∗

Neural network (II) 0.1231∗∗∗ 0.1719∗∗∗ 0.1836∗∗∗

Observations 1,106,802 1,106,802 1,106,802
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Table 7: Forecast comparison based on the modified DMW statistic

This table shows a comparison of the predictive performance of the applied machine learning
methods and the best performing OLS model (OLS-FF4) according to the R2

OOS using the
modified Diebold and Mariano (1995), West (1996) test statistic defined in Equation 3.6. A
positive number indicates that the model in the column outperforms the model in the row. The
forecasting horizon corresponds to one month. The level of significance of this outperformance
is displayed as *, ** and ***, indicating statistical significance at the 10%, 5%, and 1% level,
respectively. The out-of-sample period spans from January 2000 to December 2023.

Elastic
Net

Decision
Tree

Random
Forest

Gradient
Boosting

Neural
Network

(I)

Neural
Network

(II)

OLS - FF4 -23.78∗∗∗ -0.64 33.04∗∗∗ 25.99∗∗∗ 14.78∗∗∗ 3.39∗∗∗

Elastic Net 4.21∗∗∗ 40.87∗∗∗ 32.36∗∗∗ 26.52∗∗∗ 13.98∗∗∗

Decision Tree 24.47∗∗∗ 19.79∗∗∗ 7.80∗∗∗ 2.40∗∗

Random Forest -4.22∗∗∗ -28.56∗∗∗ -36.49∗∗∗

Gradient Boosting -20.37∗∗∗ -27.30∗∗∗

Neural Network (I) -14.00∗∗∗
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Table 9: Mean of absolute SHAP values for random forest

This table reports the mean absolute SHAP values over all forecasting periods for the 30 most
important fund characteristics for a one-month forecasting horizon for random forest. SHAP
values are calculated over the out-of-sample period from January 2000 to December 2023.

Rank Characteristic Mean

1 Flows 0.1102
2 Flows (mean 6M) 0.1000
3 Flows (mean 12M) 0.0630
4 Morningstar Rating 0.0267
5 TNA 0.0137
6 Realized CAPM alpha (mean 6M) 0.0125
7 Flows (lag 12M) 0.0110
8 Volatility of flows 0.0105
9 Realized CAPM alpha (mean 3M) 0.0103
10 Realized CAPM alpha (mean 12M) 0.0102
11 Market-adjusted return (mean 12M) 0.0091
12 Market-adjusted return (mean 6M) 0.0091
13 Market-adjusted return (mean 3M) 0.0077
14 Expense ratio 0.0072
15 Realized FF3 alpha (mean 12M) 0.0070
16 Realized CAPM alpha 0.0063
17 Realized FF4 alpha (mean 12M) 0.0063
18 Long-term yield 0.0062
19 Month 0.0062
20 TNA (Fund) 0.0060
21 Market-adjusted return 0.0058
22 Back-end load 0.0054
23 Market return 0.0053
24 Market-adjusted return (mean 18M) 0.0052
25 Volatility of market return 0.0047
26 Age 0.0042
27 Realized FF3 alpha (mean 18M) 0.0039
28 Turnover ratio 0.0037
29 Realized CAPM alpha (mean 18M) 0.0036
30 Realized FF4 alpha (mean 18M) 0.0036
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Table 10: Mean of absolute SHAP values for random forest - Top and bottom
decile of the predicted fund flow distribution and for institutional and retail share
classes

This table reports the mean absolute SHAP values over all forecasting periods for the 15 most
important fund characteristics for a one-month forecasting horizon for random forest. SHAP
values are calculated over the out-of-sample period from January 2000 to December 2023.
Panels A and B report SHAP values for the share classes in the top and bottom decile of the
predicted fund flow distribution. Panels C and D show the corresponding SHAP values for
institutional and retail share classes.

A. Top 10% B. Bottom 10%

Rank Characteristic Mean Characteristic Mean

1 Flows 0.3006 Flows (mean 6M) 0.1923
2 Flows (mean 6M) 0.2331 Flows (mean 12M) 0.1636
3 Flows (mean 12M) 0.1065 Flows 0.1471
4 Morningstar Rating 0.0583 Morningstar Rating 0.0236
5 TNA 0.0367 TNA 0.0174
6 Volatility of flows 0.0307 Volatility of flows 0.0171
7 Realized CAPM alpha (mean 6M) 0.0197 Flows (lag 12M) 0.0169
8 Flows (lag 12M) 0.0172 Realized CAPM alpha (mean 6M) 0.0142
9 Realized CAPM alpha (mean 3M) 0.0171 Back-end load 0.0127
10 TNA (Fund) 0.0146 Expense ratio 0.0124
11 Realized CAPM alpha 0.0145 Market-adjusted return (mean 6M) 0.0123
12 Realized CAPM alpha (mean 12M) 0.0143 Realized CAPM alpha (mean 12M) 0.0121
13 Turnover ratio 0.0135 Market-adjusted return (mean 12M) 0.0120
14 Market-adjusted return (mean 6M) 0.0128 Realized CAPM alpha (mean 3M) 0.0104
15 Market-adjusted return (mean 12M) 0.0127 Month 0.0097

C. Institutional D. Retail

Rank Characteristic Mean Characteristic Mean

1 Flows 0.1188 Flows 0.1049
2 Flows (mean 6M) 0.1020 Flows (mean 6M) 0.0988
3 Flows (mean 12M) 0.0676 Flows (mean 12M) 0.0602
4 Morningstar Rating 0.0318 Morningstar Rating 0.0236
5 TNA 0.0147 TNA 0.0131
6 Flows (lag 12M) 0.0131 Realized CAPM alpha (mean 6M) 0.0125
7 Realized CAPM alpha (mean 6M) 0.0126 Volatility of flows 0.0116
8 Realized CAPM alpha (mean 3M) 0.0103 Realized CAPM alpha (mean 3M) 0.0104
9 Realized CAPM alpha (mean 12M) 0.0102 Realized CAPM alpha (mean 12M) 0.0102
10 Market-adjusted return (mean 6M) 0.0097 Flows (lag 12M) 0.0098
11 Market-adjusted return (mean 12M) 0.0092 Market-adjusted return (mean 12M) 0.0090
12 Volatility of flows 0.0088 Market-adjusted return (mean 6M) 0.0088
13 Expense ratio 0.0085 Market-adjusted return (mean 3M) 0.0074
14 Market-adjusted return (mean 3M) 0.0080 Realized FF3 alpha (mean 12M) 0.0068
15 Realized FF3 alpha (mean 12M) 0.0073 Realized CAPM alpha 0.0067
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Table 11: Mean absolute SHAP interaction values

This table reports the mean absolute SHAP interaction values for all monthly forecasting
periods (equally weighted) for the ten most important interactions for gradient boosting. SHAP
interaction values are calculated over the out-of-sample period from January 2000 to December
2023.

Rank Characteristic I Characteristic II Mean

1 Flows Flows (mean 6M) 0.0256
2 Flows Flows (mean 12M) 0.0088
3 Flows (mean 6M) Flows (mean 12M) 0.0081
4 Flows Morningstar Rating 0.0079
5 Flows (mean 6M) Morningstar Rating 0.0061
6 TNA Value added 0.0057
7 Flows TNA 0.0051
8 Expense ratio TNA 0.0041
9 TNA Volatility of Flows 0.0039
10 Morningstar Rating TNA 0.0037
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A Machine Learning Methods

A.1 Elastic net

A common approach to mitigate the overfitting issue is achieved by adding a penalty term

to the OLS loss function in Equation 3.1:

min
θ
L(θ; ·) = min

θ
[L(θ) + ϕ(θ; ·)], (A.1)

where ϕ(θ; ·) is the penalty on θ. We follow Zou and Hastie (2005) and use the elastic net

penalty, which consists of two regularization terms and takes the form

ϕ(θ;λ, ρ) = λ (1− ρ)
P∑

j=1

|θj|+
1

2
λρ

P∑
j=1

θ2j . (A.2)

The elastic net has two positive hyperparameters, λ > 0 and ρ > 0, which are determined

separately by cross-validation. The loss function in Equation A.1 reduces to OLS when λ = 0.

ρ = 0 corresponds to the Least Absolute Sum of Squares (LASSO) operator and uses the l1

norm or absolute value penalties for penalized regression. LASSO imposes sparsity on the

model specification in the sense that a subset of the parameters θ is exactly zero and can be

used for variable selection. ρ = 1 corresponds to a ridge regression model, which relies on l2-

norm parameter penalization, which shrinks all coefficients closer to zero, but does not impose

exact zeros anywhere. For values of ρ ∈ (0, 1), both shrinkage and selection are imposed on the

model. Moreover, the elastic net has good properties in handling highly-correlated predictors

(Zou and Hastie, 2005; Diebold and Shin, 2019).

A.2 Decision tree

Decision trees are flexible, nonparametric models that split the feature space into K parti-

tions based on one of the predictive variables:
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g (zi,t; θ,K, L) =
K∑
k=1

θ
(k)
t−11{zi,t∈Ck(L)} (A.3)

where K denotes the number of terminal nodes, L is the depth, Ck (L) is one of the K partitions

of the data, 1{·} is an indicator function and θ
(k)
t−1 is defined as the sample average of outcomes

within the corresponding partition k ∈ K.

Decision trees are able to jointly incorporate categorical and numerical predictors, are

invariant to monotonic transformations, and capture interactions and nonlinearities. Decision

trees are grown using the CART algorithm of Breiman et al. (1984), and the decision on which

predictor and value to use for a split is determined based on minimizing the l2 norm. The

algorithm recursively splits observations into smaller subsets (decision nodes) until no further

split is possible. The predicted flow for each leaf reflects the average of the realized flowt+1 of

the share classes in the training sample sorted into this leaf. Due to the complexity of the tree,

a greedy approach tends to overfit the training data, and thus requires strong regularization

to obtain better prediction results. To reduce the complexity of the decision tree, we apply a

pre-pruning approach based on a given early stopping criterion. The stopping criterion is based

on the maximum depth of the tree L that has, on average, the lowest mean squared forecast

error in the data set used for cross-validation.

A.3 Random forest

Random forests are a modification of bootstrap aggregation or bagging (Breiman, 2001).

The basic idea is to randomly draw b ∈ B bootstrap samples, {(zi,t, αi,t+h) , (i, t) ∈ Bootstrap (b)}

from the original data set and grow a decision tree

gb (zi,t; θb,t−1, K, L) =
K∑
k=1

θ
(k)
b,t−11{zi,t∈Ck(L)}. (A.4)

The final prediction of the random forest is given by the average of the outputs of all B decision

trees resulting in an ensemble forecast:
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g (zi,t;K,L,B) =
1

B

B∑
b=1

gb (zi,t; θb,t−1, K, L). (A.5)

To estimate θ
(k)
b,t−1, we follow the algorithm of Breiman et al. (1984). The hyperparameters

to be tuned are the depth of trees L, the number of predictors P considered as split variables

at each node, the size of each bootstrapped sample b and the number of bootstrapped samples

B to grow a decision tree.

A.4 Gradient boosting

Gradient boosting is a method that combines multiple oversimplified (shallow) decision

trees, known as weak learners, into a single strong learner with potentially greater stability

than a single complex tree (Hastie et al., 2009). It is based on an iterative procedure. In the

first step, an oversimplified tree with a high forecast error (flowi,t+h − f̂ lowi,t+h) is computed

to predict f̂ lowi,t+h. As suggested by Hastie et al. (2009) the loss function to be optimized is

based on the l2 norm since the target value is continuous. In the next step, a second shallow

tree is used to fit the forecast residuals from the first tree. The predictions from these two trees

are then added together to form an ensemble prediction. To prevent the model from overfitting

the forecast residuals, the forecast component from the second tree is shrunken by a factor

ν ∈ (0, 1). This hyperparameter corresponds to the learning rate and determines the weight

the ensemble gives to the most recent decision tree. Furthermore, the risk of overfitting is also

controlled by the depth of the tree L. At each iteration step, b ∈ B, an additional shallow

tree is fitted to the residuals from the preceding ensemble prediction based on the model with

b−1 trees, and its residual forecast is added to the total ensemble forecast with the pre-defined

shrinkage weight of ν, resulting in a stronger model. This iteration continues until there are a

total of B trees in the ensemble.

More formally, starting with ĝ0 (zi,t) = 0, for each boosting iteration b from 1 to B, for each

i = 1, 2, . . . , N and t = 1, 2, . . . , T the negative gradient of the loss function l(·, ·) based on the

l2 norm
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εi,t+h ← −
∂l (flowi,t+h, g)

∂g
|g = ĝb−1 (zi,t) (A.6)

is computed and a shallow regression tree of depth L is fit to the training data {(zi,t, εi,t+h) : ∀i,∀t}

f̂b(zi,t)← g (zi,t; θ, L) . (A.7)

ĝb (zi,t) is updated by adding a shrunken version of the new tree together with an update of the

residuals:

ĝb (zi,t)← ĝb−1 (zi,t) + νf̂b(zi,t), (A.8)

εi,t+h ← εi,t+h − νf̂b(zi,t). (A.9)

The output of the boosted model is

ĝB (zi,t;B, ν, L) =
B∑
b=1

νf̂b(zi,t). (A.10)

The final result is thus an additive model of shallow trees. The three tuning parameters (L, ν,

B) are determined by cross-validation. We rely on histogram-based gradient boosting because

it is known to reduce computational time while maintaining high accuracy (Ke et al., 2017).

A.5 Feedforward neural network

Feedforward neural networks (FFNN) are very flexible and highly parameterized methods

for solving complex machine learning problems due to their ability to entangle many overlapping

layers of nonlinear predictor interactions. These algorithms are very often referred to as deep

learning. In our empirical analysis, we follow Gu et al. (2020) and Kaniel et al. (2023), and rely

on multi-layer feedforward neural networks. These consist of an input layer of raw predictors at
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least one hidden layer that interacts and nonlinearly transforms the predictors, and an output

layer that aggregates hidden layers into a prediction (Svozil et al., 1997).

In a FFNN, each neuron is connected to all neurons in the previous layer, and the connec-

tions are one-way from the input layer to the output layer. The number of units in the input

layer is equal to the P -dimensional vector of predictor variables zi defined in Subsection 2.2.

The nonlinear transformation applied to the predictor variables is based on an element-wise

activation function. More specifically, each neuron k ∈ K in the hidden layer j transforms

inputs from the previous hidden layer, x(j−1)
i , into output according to:

x
(j)
k = f

(
θ
(j)
k,0 +

P∑
i=1

xi
(j−1)θ

(j)
k,i

)
(A.11)

where f (·) represents a nonlinear activation function, θ is a P -dimensional parameter vector

that includes an intercept θ
(j)
k,0 (bias term) and one weight parameter for each predictor (θ(j)k,i ).

Since multiple options for the nonlinear activation function exist, we aim to identify the optimal

function for each hidden layer during the tuning process by considering rectified linear unit

(ReLU), sigmoid and tanh. The chosen activation function will be implemented across all

neurons within the corresponding hidden layer. A deep neural network that combines multiple

layers uses the outputs of one hidden layer as an input to the next hidden layer. In the final

hidden layer, the results from each activation are then fed into the output layer, resulting in

g (z; θ) = θ0 +
K∑
k=1

xkθk, (A.12)

a linear regression model in the K activations, providing the ultimate prediction of f̂ lowi,t+h.

The (weight) parameters in our FFNN are computed iteratively using the back-propagation

algorithm Adam suggested by Kingma and Ba (2014). The algorithm is initialized by assigning

random weights to each connection of neurons. In the learning process, after each epoch34,

the algorithm sequentially updates the weights and biases of the FFNN based on minimizing

a mean squared error loss function. To find the best possible architecture of our network, we
34Epochs refer to the number of times the fitting algorithm passes through the full training set.
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search for the optimal number of hidden layers, the optimal number of neurons per hidden

layer, the optimal activation function per hidden layer, the dropout rate per hidden layer, the

number of epochs the model is trained on and the learning rate35 which determines the iterative

update of weights based on minimizing the MSFE. By not deciding ex-ante on the nonlinear

activation function, fixing the number of hidden layers or by choosing the number of neurons in

each hidden layer according to the geometric pyramid rule (Masters, 1993) we allow for a lot of

flexibility in building the network architecture. In particular, we employ two types of FFNNs

that solely differ in the number of hidden layers and number of neurons per hidden layer. Neural

network I (NN I) permits a lower set hidden layers (between 1 and 3) and neurons per hidden

layer (ranging from 2 to 32) while neural network II (NN II) is a more complex model with 3

to 10 hidden layers and 32 to 1,024 neurons per hidden layer. Due to the stochastic nature and

similar to Kaniel et al. (2023) and Chen et al. (2024), all our neural networks are averaged over

10 model fits after finding the optimal hyperparameters.

35We start with a learning rate of 0.003 and reduce it with a factor of 0.5 if the mean-squared forecast error
(MSFE ) does not decrease for two consecutive epochs.
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B Additional Robustness Check

Table B1: Out-of-sample machine learning model comparison based on R2
OOS,Null

This table reports the out-of-sample performances measured by the out-of-sample R2 statistic,
based on a null forecast, for the applied machine learning methods for a one-month forecasting
horizon for the full sample including all predictions and the monthly top (bottom) 10% of
the share classes with the highest (lowest) flows. The statistical significance of the R2

OOS,Null

measure is evaluated by the Clark and West (2007) statistic (two-sided test). The level of
significance is displayed as *, ** and ***, indicating statistical significance at the 10%, 5%, and
1% level, respectively. The out-of-sample period spans from January 2000 to December 2023.

Out-of-sample R2

Full sample Top 10% Bottom 10%

OLS - FF4 0.1285∗∗∗ 0.1232∗∗∗ 0.1389∗∗∗

Elastic net 0.1179∗∗∗ 0.0951∗∗∗ 0.1195∗∗∗

Decision tree 0.1271∗∗∗ 0.1449∗∗∗ 0.1172∗∗∗

Random forest 0.1772∗∗∗ 0.2082∗∗∗ 0.1463∗∗∗

Gradient boosting 0.1728∗∗∗ 0.2026∗∗∗ 0.1430∗∗∗

Neural network (I) 0.1436∗∗∗ 0.1477∗∗∗ 0.1457∗∗∗

Neural network (II) 0.1322∗∗∗ 0.1297∗∗∗ 0.1384∗∗∗

Observations 1,106,802 110,686 110,686
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