Dark Crypto*

Thomas Ernst[†], Bryan Routledge[‡], Chester Spatt[§], and Ariel Zetlin-Jones[¶]

March 4, 2025

Abstract

We study \$550 billion in dark crypto trades: off-exchange trades which do not appear on any exchange dataset. These trades are proprietary to a large brokerage firm, which routes orders to a number of competing off-exchange wholesalers. Dark crypto liquidity frequently provides price improvement over and above a hypothetical "NBBO," and we estimate customers save between \$38 and \$74 million per year. A lack of cryptocurrency regulation means the benefits of a cryptocurrency broker, and associated access to dark crypto liquidity, are not widely known.

^{*}For helpful comments and feedback we are thankful to Marius Zoican and seminar participants at Carnegie Mellon University and the University of Maryland.

[†]University of Maryland, Robert H. Smith School of Business: ternst@umd.edu

[‡]Carnegie Mellon University, Tepper School of Business: rout@andrew.cmu.edu

[§]Carnegie Mellon University, Tepper School of Business: cspatt@andrew.cmu.edu

 $[\]P$ Carnegie Mellon University, Tepper School of Business: azj@andrew.cmu.edu

I. Introduction

Bitcoin launched in 2009 in part to disintermediate the payment system (Nakamoto (2008)). This ethos of disintermediation is reflected in much of the subsequent development of not just blockchain technology, but the entire cryptocurrency industry. Even though centralized exchanges run counter to the peer-to-peer philosophy of Bitcoin's launch, they offer retail traders direct access to a central limit order book for trading cryptocurrencies. Retail traders have driven much of the growth in volume at cryptocurrency exchanges. For example, BitMEX added 600,000 users in early 2017 (Soska, Dong, Khodaverdian, Zetlin-Jones, Routledge, and Christin (2021)), Binance added 7.5 million new customer accounts in ten months between September, 2020 and July, 2021 (Kawai, Christin, Routledge, Soska, and Zetlin-Jones (2023)), and the bankruptcy of FTX in November of 2022 impacted over one million individual accounts.

Interestingly, even though many traders choose the disintermediated direct access to centralized exchanges, many other retail traders opt to trade through an intermediated channel via a broker. Presumably, the choice between an exchange and a broker is related to the complexity of direct trading and perhaps to the uncertain and evolving regulation surrounding cryptocurrencies. A broker may also offer more convenient transactions (e.g., the ability to purchase bitcoin using a Paypal account).

The choice of intermediated or direct access to a centralized exchange contrasts with U.S. equities markets, where retail trade is only conducted through a broker. In the equities market, brokers must seek the best possible prices for their customers, taking into account liquidity both from exchanges and from off-exchange wholesalers, and, subject to Regulation NMS, generally must execute at the National Best Bid or Offer (NBBO) or better. There is no current analogous rule for brokers in cryptocurrency to seek the crypto-equivalent of the

NBBO.

Cryptocurrency regulation in the U.S. is in its infancy, with unresolved questions about the basic definitions of cryptocurrency assets. In contrast, retail investors in equity markets obtain a variety of regulatory protections. Chief among them, retail investors work through a broker who has a duty of best execution, pursuant to which the broker must seek the best possible prices for its customers across both exchanges and off-exchange liquidity. With cryptocurrencies, many cryptocurrency exchanges directly offer trading accounts to retail customers, but they do not have a best execution duty or provide any of the quote protection of Reg NMS. As a result, retail customers trading with an exchange obtain only the prices offered by that exchange, which may not be the best prices in the market.

We study proprietary data on \$550 billion in dark crypto trades In contrast to "lit" liquidity (e.g. displayed quotes on public exchanges), this dark liquidity is non-displayed, off-exchange liquidity which is only accessible through a broker, and does not appear in exchange data nor is it necessarily discernible from blockchain data. These trades are placed through a large brokerage firm who in turn routes these orders to a number of competing off-exchange wholesalers. We evaluate these orders against a hypothetical NBBO—a national best bid or offer price—from the major U.S. cryptocurrency exchanges. Trading through a large brokerage firm enables substantial savings for retail customers, both because they are not locked in to the prices of an individual exchange, and because the prices they obtain are frequently better than that of a hypothetical NBBO. Limited cryptocurrency regulation, including a lack of best-execution requirements for firms that act as broker-dealers to individual retail customers, means that the benefits of a broker are not universally shared, as many clients opt to be direct customers of exchanges rather than use a broker. For the trades which do occur through dark crypto, there is no current reporting infrastructure

for dark crypto trades, nor for execution quality generally. Consequently, most customers would not have an opportunity to observe or evaluate the potential value of dark liquidity in crypto.

Total price improvement provided by off-exchange cryptocurrency liquidity is substantial. Compared to the best bid or offer at individual exchanges, customers saved a total of 10 to 60 million USD in 2023 across the top three coins (Bitcoin, Ethereum, and Doge). Against the fee-adjusted NBBO, customers saved an average of \$6,400 per day in 2023. Trading fees for cryptocurrencies are high, and which exchange dominates the NBBO is often a function of the fixed trading fees at that exchange rather than differences in on-exchange liquidity. Fees from moving cash or assets between exchanges can be substantial, and these transfer fees may prohibit customers taking advantage of changes in exchange trading fees. To capture this effect, we consider two alternative benchmarks for the NBBO. The first would be to compare each off-exchange dark crypto trade with a randomly selected exchange's fee-adjusted quote, while the second is to compare each off-exchange dark crypto trade with the fee-adjusted quote of the exchange with the second-best price. Across Bitcoin, Ethereum, and Doge trades from January 1, 2022 to December 31, 2023, we find that the broker's off-exchange liquidity resulted in price improvement to customers of \$147 million compared to a randomly selected exchange's fee-adjusted quote, and \$75 million compared to the second-best exchange's feeadjusted quote.

Dark cryptocurrency liquidity is sourced from a variety of wholesalers. The number of wholesalers has increased over time, from two major wholesalers in 2020 to four major wholesalers in 2023. Top wholesaler's order share and the volatility of average effective

¹As a point of comparison, U.S. Equities have Trade Reporting Facilities which report all off-exchange trades to a consolidated tape, and all market centers, including off-exchange venues, must report monthly Rule 605 statistics on execution quality for any covered orders.

spreads have decreased substantially over this time. Wholesaler order shares are decreasing in the average effective spread charged, that is, wholesalers who charge higher average effective spreads obtain a smaller share of order flow.

In total, our results point to two major findings. First, there is substantial dark liquidity in cryptocurrencies. This liquidity is less transparent than traditional off-exchange trade in more regulated markets like US equities; while on-chain cryptocurrency transfers are public on the ledger, there are almost no reporting requirements and little transparency into dark cryptocurrency transactions off-chain. Second, customers may at times obtain substantial savings through broker intermediation. While an individual exchange wants customers to trade at only that exchange (and without an equivalent to Reg NMS, crypto exchanges are able to ignore trade-throughs or competing exchange quotes), a broker can seek the best price possible for a customer, including from exchanges and from off-exchange liquidity. While the SEC has pursued many enforcement actions in cryptocurrencies, it has provided few formal rules or regulations. Our paper highlights how brokers, who can competitively source liquidity from multiple venues, have the potential to save customers millions per year.

II. Literature Review

While best execution in cryptocurrencies is a new topic, there is extensive academic literature and ongoing regulatory interest in regulating best execution in US equity markets. Dyhrberg, Shkilko, and Werner (2022), Battalio and Jennings (2022), and Ernst, Malenko, Spatt, and Sun (2024) analyze competition in equities between wholesalers for broker order flow, while Battalio and Jennings (2023) and Ernst, Spatt, and Sun (2023) examine the SEC's proposed order-by-order auctions. The nature of trading and intermediation in crypto

markets and equity markets is fundamentally different. In equity markets customers do not have direct access to the exchanges and trading platforms, and trade through brokers. The brokers in equity have best execution responsibilities with respect to routing customer orders and the exchanges and other trading centers are generally restricted by Regulation NMS to execute at prices at least as good as the best price available across all exchanges. The SEC has expressed considerable concern over off-exchange dark trading, but in the crypto space we document that a broker using dark trading has resulted in substantial savings relative customer direct accounts at exchanges. In effect, off-exchange trading through a broker is substantially enhancing the liquidity of the crypto market, and therefore intermediation by brokers is useful.

The SEC has historically capped access fees in US equity markets at 30 cents per hundred shares traded. Bryzgalova, Pavlova, and Sikorskaya (2023), Ernst and Spatt (2022), and Battalio, Griffith, and Van Ness (2021) examine high transaction-based charges (as either maker-taker fees/rebates or payment for order flow (PFOF)) in options markets. While the SEC has recently proposed a much lower limit on access fees in equity markets, it has not done anything similar for options or cryptocurrency markets.

The pseudonymous nature of cryptocurrency allows some ability to unmask which wallets are associated with which players, as in Makarov and Schoar (2021). Not all wallets can be mapped, however, and many dark trades can be netted into a single on-exchange transfer. Dark crypto is considerably darker, therefore, than both US equity markets (where nearly all trades are reported in milliseconds) and US bond markets, where efforts to introduce more transparency are well studied, including Bessembinder, Maxwell, and Venkataraman (2006) and Edwards, Harris, and Piwowar (2007). The SEC has recently increased equity reporting under Rule 605, which requires market centers to report aggregate monthly statistics, and

this reporting has produced useful insights into how off-exchange venues compete, including in Dyhrberg et al. (2022) and Topbas and Ye (2024). Our data on dark crypto is the first we are aware of. This market, and the potential savings for customers from accessing dark liquidity, are not well known nor easily discovered by customers.

III. Data

We analyze trading records of all cryptocurrency trades placed through a major brokerage firm from January 1, 2020 to December 31, 2023. These trades total \$550 billion in trading volume for the 19 USD-denominated symbols. The exact coins and summary statistics on average daily volumes are presented in Table I. Top cryptocurrencies include DOGE (\$235 billion), Bitcoin (\$115 billion), Ether (\$105 billion of Ether and \$40 billion of Ether-classic), and Litecoin (\$20 billion).

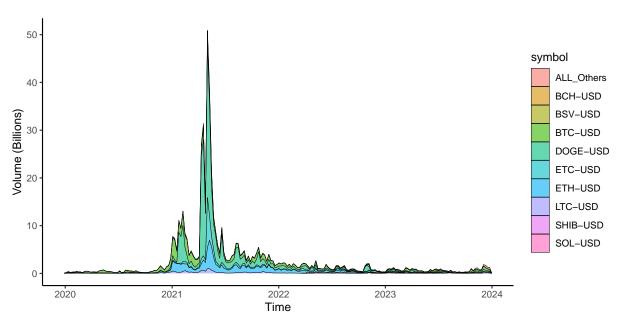
Trades placed with this broker are routed to a wholesaler (market makers which specialize in executing retail trades). Wholesalers pay a 0.35% fee (0.2% prior to May 4, 2022) to the broker for each order they obtain; all wholesalers pay an equal fee. Orders are allocated to wholesalers based on streamed quotations; for each incoming order, the wholesaler with the best quoted price obtains the order. Wholesaler market shares are plotted in Figure 6. Transactions between the broker and wholesaler are dark to other market participants, as they are not reported by a major exchange data feed. The broker and wholesalers frequently settle up with an on-blockchain transfer of coins, but this transfer may include netted volume and does not provide price information to other market participants.

Total order flow is fairly balanced: our sample period has a total of \$280 billion of buy

²Quotes are streamed for several different possible nominal quantities, with a 1-cent tick size for most cryptocurrencies. In the event of a quote tie, the broker evenly distributes order flow at the per-order level.

volume and \$270 billion of sell volume. Weekly imbalances, however, can deviate significantly from zero. Figure 2 presents weekly buy imbalances, defined as $\frac{\sum buy - \sum sell}{\sum buy + \sum sell}$. This weekly imbalance measure reaches as high as $\pm 40\%$ per week, with retail customers trading strongly directional positions in some weeks.

Average per-customer trading volume is rather modest. Table II presents summary statistics provided by the broker on monthly trading volumes across customers for the last six months of 2023. The median customer has less than \$100 per month in trading volume, and trading volume by the 95th percentile of customers, by month, is less than \$10,000 for five of the last six months of 2023 (and is just barely above, at \$10,195, in the remaining month).


Table I: Nominal Volume. Panel A presents mean, standard deviation, and percentiles for daily trading volume in millions of USD.

Panel A: USD Symbol Nominal Volume (in Millions USD)

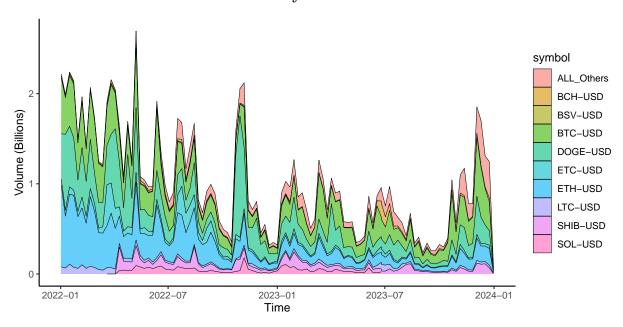
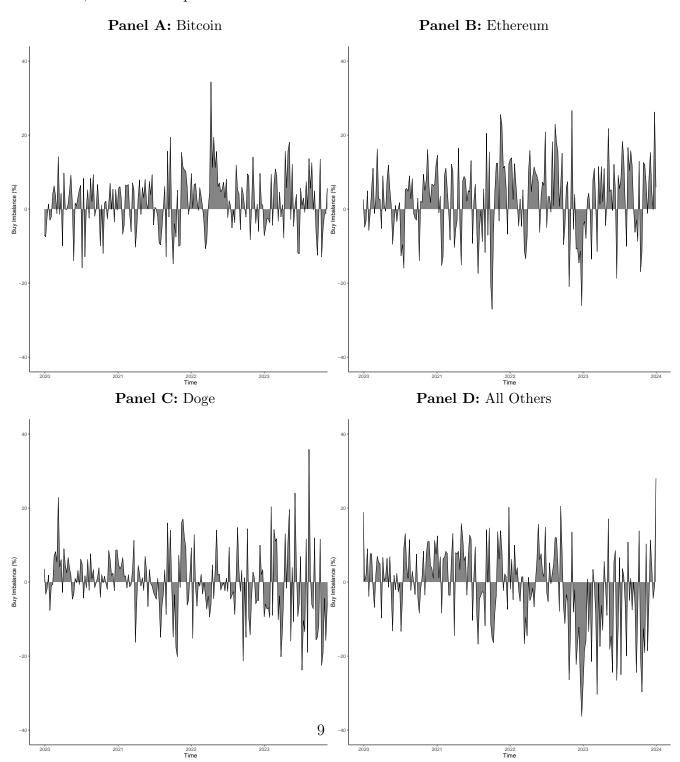

Symbol	Total	Mean	SD	25th Percentile	Median	75th Percentile
DOGE-USD	235331.3	161.1	639.8	5.7	22.7	78.7
BTC-USD	114604.3	78.4	110.3	19.9	41.0	87.6
ETH-USD	105678.2	72.3	123.7	9.5	25.2	89.4
ETC-USD	40489.9	27.7	149.3	2.3	5.2	15.5
LTC-USD	19750.3	13.5	24.2	2.2	4.3	12.9
SHIB-USD	5962.3	9.4	10.3	4.1	6.9	11.6
BCH-USD	9892.7	6.8	15.5	1.3	2.4	5.7
SOL-USD	2912.7	6.4	5.5	2.9	4.9	8.7
BSV-USD	5626.0	5.0	10.0	1.0	2.1	4.7
MATIC-USD	2198.7	4.9	5.0	2.2	3.4	5.5
AVAX-USD	1961.9	3.8	8.8	0.7	1.1	2.4
LINK-USD	1470.2	2.6	3.0	1.0	1.6	2.8
ADA-USD	648.0	2.1	1.6	1.1	1.7	2.7
COMP-USD	1331.8	2.1	2.0	0.7	1.4	2.7
XLM-USD	704.0	1.4	2.3	0.5	0.9	1.6
UNI-USD	554.4	1.0	1.3	0.3	0.6	1.1
AAVE-USD	353.2	0.8	1.0	0.2	0.4	1.0
USDC-USD	57.7	0.5	0.6	0.2	0.4	0.6
XTZ-USD	184.8	0.4	0.4	0.2	0.3	0.5

Figure 1.: Trading Volumes. We plot the weekly trading volume across all coins.


Panel A: All Time Horizons

Panel B: January 2022-December 2024

Figure 2. : Order Flow Imbalance. We plot the weekly order flow buy imbalance over time, which is the quantity $\frac{\sum buy - \sum sell}{\sum buy + \sum sell}$. We divide imbalances by coin: Panel A presents Bitcoin imbalances, Panel B presents Ethereum imbalances, Panel C presents DOGE imbalances, and Panel D presents imbalances for all other coins.

Table II: User Trading Volumes. This table presents the average, median, and 75th, 90th, and 95th percentile of cryptocurrency trading volume, in USD, across users at the broker for the last six months of 2023. Exchange pricing is based on a user's historical trade volume; to compare broker versus exchange prices, we need an estimate of the fees each user would pay on an exchange. While we do not have individual user-level data, we obtained summary statistics from the broker, including average account-level trading volumes.

Month	Average	Median	75%	90%	95%
2023-07	3,457	81	485	2,595	7,450
2023-08	2,391	81	464	2,311	6,079
2023-09	1,713	65	356	1,715	4,407
2023 - 10	2,725	80	490	2,543	6,799
2023 - 11	4,169	86	549	3,047	8,588
2023-12	5,106	95	635	3,559	10,195

IV. Broker Value

A broker is not tied to any particular exchange, but can source liquidity from any venue, including both exchanges and off-exchange wholesalers. As a result, brokers offer substantial potential savings. First, brokers can offer a product equivalent to a national best bid or offer, which is the best price across all competing exchanges. Second, with access to off-exchange dark liquidity, brokers can potentially obtain prices which are superior to that of displayed liquidity. In this section, we quantify these and analyze the components of these savings.

We first consider the construction of a hypothetical national best bid or offer (NBBO). This NBBO would be the best bid or offer price across all exchanges. One difficulty with cryptocurrency assets is that, unlike U.S. equities, they are not centrally cleared. Purchasing cryptocurrency at an exchange does not default to a transfer of cryptocurrency to a customer's private wallet, but instead creates a claim to the customer to a cryptocurrency held in the exchange's wallet. Limited cryptocurrency regulation means there can be substantial differences in how the value of this liability is determined (as the bankruptcy of FTX).

illustrates). To minimize some of these differences, we focus our construction of an NBBO on U.S. or E.U.-domiciled cryptocurrency exchanges, specifically the firms Coinbase, Kraken, Gemini, Bitstamp, Binance-US, and FTX-US.

Cryptocurrency fees are considerably higher than trading fees of U.S. Exchanges.³ To account for these fees, we construct a fee-adjusted NBBO, which accounts for taker fees charged to marketable orders by each exchange. These fees are typically volume-tiered, with higher-volume clients obtaining lower fees. Across all the exchanges we consider, the lowest volume needed to obtain any discount is more than \$10,000 in monthly trading volume; as we note in Table II, over 95% of all customers of the broker would fail to qualify for any discounts in trading volume, even if their volume were concentrated at a single exchange.

Exchange fees are a large share of exchange trading costs. Figure 3 plots the share of time that each exchange sets the fee-adjusted NBBO. During several time periods, one specific exchange will have a lower trading fee, and set the fee-adjusted NBBO close to 100% of the time, which persists until either that exchange or a rival exchange adjusts trading fees.

Trades from off-exchange liquidity sourced by the broker are almost always better than the fee-adjusted NBBO. We plot an sample of broker trades against the NBBO in Figure 3, using Ethereum trades for two hours on December 1, 2023. In this sample, the average broker buy order executes at a price 0.2% better than the fee-adjusted NBBO, while the average broker sell order executes at a price 0.6% better than the fee-adjusted NBBO.

Figure 5 plots total price improvement from dark liquidity sourced by the broker over time. Panel A calculates price improvement against the fee-adjusted quotes of each individual exchange. Savings can be as high as \$20 million per week against some exchanges, but are largely driven by high fees at those specific exchanges. Binance-US, briefly has very low

³U.S. exchanges typically charge a liquidity taking fee of 30 cents per hundred shares. For a \$25 stock, this is a 1.2 basis point charge.

fees in early 2022 and has apparently superior prices to off-exchange liquidity during this time, but Binance-US trading fees return to a price closer to the industry average in August 2022, with Binance-US charging considerably higher prices than off-exchange liquidity for the remainder of our sample period. Total savings for 2022 and 2023 are reported in Table III.

Exchange fees change over time, and moving cryptocurrency assets or cash between exchanges to take advantage of lower fees can be prohibitively costly when these transfer fees exceed any potential trading fee savings. To account for the unpredictability of future fees, we consider two alternative measures to the NBBO. The first is to compare each off-exchange dark crypto trade with a randomly selected exchange's fee-adjusted quote, while the second is to compare each off-exchange dark crypto trade with the fee-adjusted quote of the exchange with the second-best price. Results of this exercise are presented in Figure 5, Panel B. Across Bitcoin, Ethereum, and Doge trades from January 1, 2022 to December 31, 2023, we find that the broker's off-exchange liquidity resulted in price improvement to customers of \$147 million compared to a randomly selected exchange's fee-adjusted quote, and \$75 million compared to the second-best fee-adjusted quote.

Dark liquidity in cryptocurrencies offers substantial savings over and above displayed (or lit) liquidity. To understand drivers of this price improvement, we estimate the following regression:

REGRESSION 1: For each day t in cryptocurrency i we estimate:

 $Total Price Improvement PCT_{ijt} = \alpha_0 + \alpha_1 Imbalance_{ijt} + Wholes aler HHI_{ij} + \epsilon_{ijt}$

TotalPriceImprovementPCT measures the total amount of price improvement, as a percentage

of total traded value, obtained by all broker trades on that day. Imbalance measures the absolute value of order imbalance on that day, defined as $\left|\frac{\sum Buy - \sum Sell}{\sum Buy + \sum Sell}\right|$. WholesalerHHI measures the Herfindahl-Hirschman Index of wholesaler market shares, defined as a number between 0 and 1, with 1 representing a very concentrated (monopolist) market.

Results of Regression 1 are presented in Table IV. More concentration among wholesalers is associated with slightly less price improvement, with a change from 0 (perfect competition) to 1 (monopoly) associated with a decrease in price improvement of 7 to 9 basis points. Order imbalances are associated with increases in price improvement, with a 1% larger imbalance associated with a 6 to 7 basis point increase in price improvement.

We investigate competition between wholesalers in detail in Section V. Wholesalers offer price improvement when trading against retail order flow off-exchange. Their willingness to offer price improvement reflects, in part, their willingness to interact with this retail order flow, and by offering price improvement they are more likely to obtain these orders in their inventory. We therefore examine how the market forces that shape price improvement also affect the price impact of retail trades. We re-estimate Regression 1 with average price impact of retail trades as the dependent variable.

Results are presented in Table V. Larger imbalances are associated with larger average price impacts, with a 1% increase in order imbalance associated with a 1 basis point increase in price impacts at the 30-second time horizon, and a 11 basis point increase in price impacts at the 1 hour horizon. These increases in price impact are suggestive evidence that off-exchange dark cryptocurrency trades have impacts on displayed liquidity, likely mediated via wholesalers on-exchange market-making behavior. Kogan, Makarov, Niessner, and Schoar (2024) document that many cryptocurrency traders are momentum traders, and large momentum price movement could generate additional order imbalances from

retail customers; these imbalances, however, would provide an economic justification for a continuation of price movements.

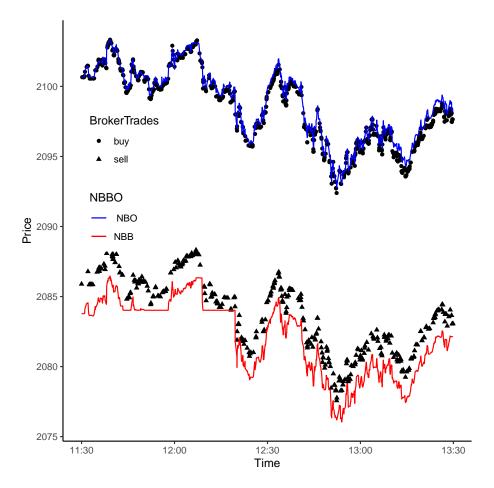

Wholesaler concentration is weakly associated with larger price impacts, consistent with a potential limitation to the ability of concentrated wholesalers to fully absorb price impacts.

Table III: Total Price Improvement. We calculate the total price improvement obtained from the broker's sourcing of off-exchange crypto liquidity compared to each exchanges fee-adjusted quote for three cryptocurrencies: Bitcoin, Ethereum, and Doge. All figures are in millions of USD.

Exchange	2022 Price Improvement	2023 Price Improvement
Coinbase	117	59.6
Binance-US	-21	64.9
Kraken	431	11.5
Gemini	-	25.8
FTX-US	22	-
Bitstamp	26	2.2
Randomly Selected Exchange	109	38.2
Second-Best Exchange	46	28.6

V. Wholesaler Competition

Figure 3.: Broker Trades Against NBBO. We plot a sample of broker trades in Ethereum from two hours on December 1, 2023. The solid blue line represents the fee-adjusted National Best Offer (NBO) while the solid red line represents the fee-adjusted National Best Bid (NBB); we calculate this fee-adjusted spread from quote data from Coinbase, Kraken, Binance-US, Bitstamp, and Gemini.

Figure 4.: **NBBO Shares**. Across each day of our sample, we calculate the share of time each exchange accounts for the fee-adjusted NBBO. Panel A presents results for Bitcoin, Panel B for Ethereum, and Panel C for Doge Coin. An exchange's competitiveness in the fee-adjusted NBBO is heavily dependent on fees charged by the exchange.

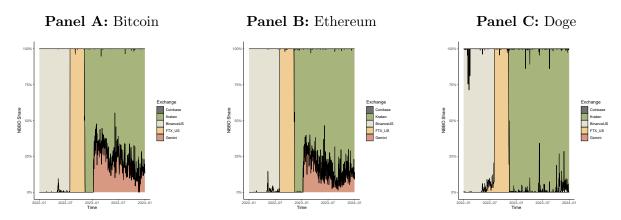
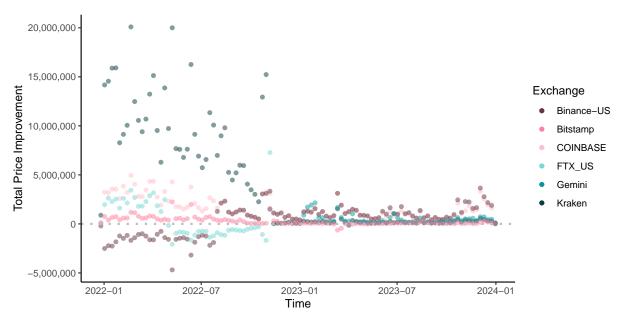



Table IV: Estimation of Regression on Price Improvement. We estimate Regression 1, which examines the relationship between market conditions and price improvement obtained through off-exchange liquidity. TotalPriceImprovementPCT measures the total amount of price improvement, as a percentage of total traded value, obtained by all broker trades on that day. $TotalPIPCT_2nd$ is the same measure but with price improvement from the second-best priced exchange. Imbalance is the absolute value of order imbalance $\left|\frac{\sum Buy-\sum Sell}{\sum Buy+\sum Sell}\right|$. WholesalerHHI measures the Herfindahl-Hirschman Index of wholesaler market shares, defined between 0 and 1. Observations are at the coin-day symbol, and include Bitcoin, Ethereum, and Doge from January 1, 2022 to December 31, 2023.

	Dependent variable:		
	Total Price Improvement PCT	TotalPIPCT_2nd	
	(1)	(2)	
Imbalance	0.068***	0.058***	
	(0.020)	(0.017)	
WholesalerHHI	-0.072^{***}	-0.090***	
	(0.022)	(0.019)	
Observations	2,190	2,190	
\mathbb{R}^2	0.013	0.208	
Note:	*p<0.1; '	**p<0.05; ***p<0.01	

Figure 5.: **Total Price Improvement**. We plot the weekly total price improvement obtained by customers across Bitcoin, Ethereum, and Doge. Panel A plots price improvement against each exchange's individual fee-adjusted quotes. Panel B plots price improvement against two hybrid calculations, the first calculates price improvement for each trade against the fee-adjusted quote of a randomly selected exchange, while the second calculates price improvement for each trade against the second-best fee-adjusted quote.

Panel A: Individual Exchanges

Panel B: Random Exchange and Second-Best Quote

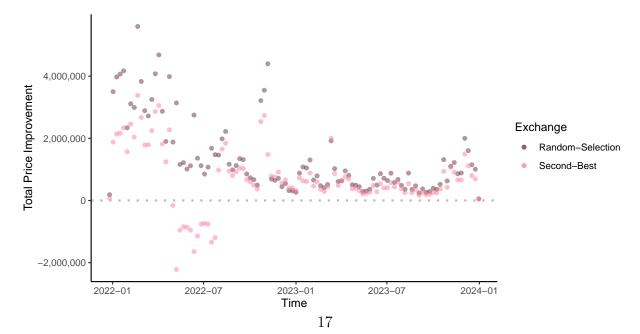


Table V: Estimation of Regression on Price Impact. We estimate Regression 1 with Price Impact as the Dependent variable. Impact measures the total price impact divided by the total days' trading volume, as a percentage, with impact measured at thirty seconds (Column 1) or one hour (Column 2). Imbalance is the absolute value of order imbalance $\left|\frac{\sum Buy - \sum Sell}{\sum Buy + \sum Sell}\right|$. Wholesaler HHI measures the Herfindahl-Hirschman Index of wholesaler market shares, defined between 0 and 1. Observations are at the coin-day symbol, and include Bitcoin, Ethereum, and Doge from January 1, 2022 to December 31, 2023.

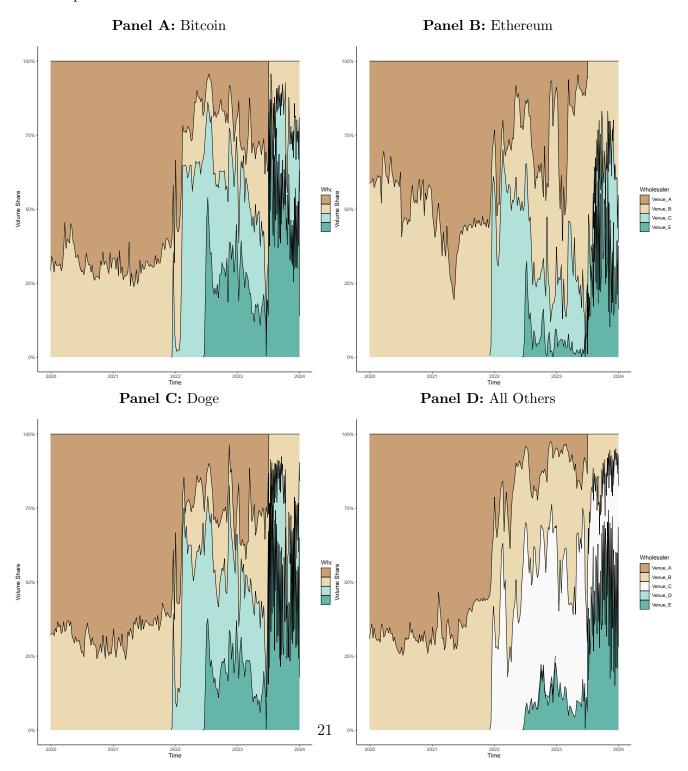
	Dependent variable:	
	$Impact_30s$	$Impact_1H$
	(1)	(2)
AbsImbalance	-0.011^{***}	-0.113***
	(0.004)	(0.018)
WS_HHI	0.002	-0.035^{*}
	(0.005)	(0.020)
Observations	2,190	2,190
\mathbb{R}^2	0.281	0.523
Adjusted R^2	-0.081	0.283
Residual Std. Error (df = 1456)	0.015	0.069
Note:	*p<0.1; **p<	0.05; ***p<0.01

When a retail customer places an order, the broker routes the order to a wholesaler for execution. This process is a competitive one: wholesalers offering better prices obtain more order flow, while wholesalers offering worse prices obtain less order flow. Wholesaler market shares are plotted in Figure 6. The number of active wholesalers has grown over time, with two major wholesalers in 2020-2021 and three major wholesalers in 2022-2023. Two wholesalers entered during this time, and one large wholesaler exited. These dynamics are roughly similar to the market for equity wholesaling, with the entry of one large wholesaler and exit of two wholesalers.

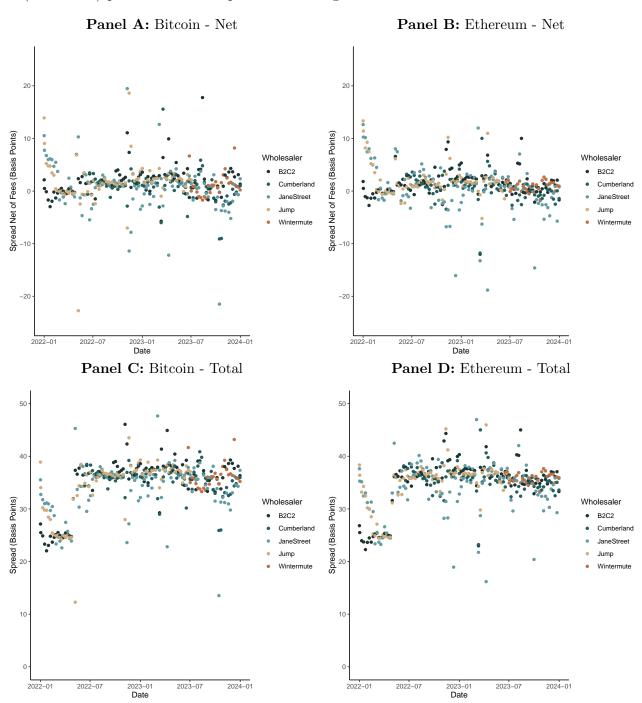
Wholesalers compete to fill orders on price. Figure 7 plots the average weekly spread charged by each wholesaler over time. The entry of additional wholesalers coincides with a considerable tightening of variation in average spreads. To analyze the relationship between spreads and performance, we estimate the following regression:

REGRESSION 2: For each wholesaler i, time period t and crytocurrency j, we estimate:

$$WholesalerOrderShare_{ijt} = \alpha_0 + \alpha_1 EFF_{ijt} + X_{ij} + \epsilon_{ijt}$$


Wholesaler Order Share is the percentage of orders obtained by wholesaler i in cryptocurrency j on date t, demeaned by cryptocurrency and date. Spread is the average effective spread, in basis points, charged by each wholesaler, demeaned by cryptocurrency and date. Controls include the average order size of orders executed by wholesaler i in cryptocurrency j on date t, measured as a percentage of total average order size across all wholesalers and demeaned by cryptocurrency and date, and either a date fixed effect or cryptocurrency fixed effect. If brokers route according to performance, wholesalers offering lower effective spreads should obtain a larger share of order flow.

Results of Regression 2 are presented in Table VI. Higher spreads charged by wholesalers are strongly associated with lower future order share. For each 1 basis point increase in spread charged, a wholesaler can expect to receive 0.7% less order share. Larger order sizes are associated with much larger spreads, with a 1% higher average order size (relative to the mean across all wholesalers) associated with a 12.6% higher effective spread.


Table VI: Wholesaler Order Share Regression. We estimate Regression 2, which examines the relationship between wholesaler order shares and wholesaler effective spreads. Observations are at the day-coin-wholesaler level, with all data from May 5, 2022-Dec 31, 2023. Wholesaler Order Share is the percentage of orders obtained by wholesaler i in cryptocurrency j on date t, demeaned by cryptocurrency and date. Spread is the average effective spread, in basis points, charged by each wholesaler, demeaned by cryptocurrency and date.

	Dependent variable: Wholesaler Order Share (Demeaned)		
	(1)	(2)	
Spread (BPS, demeaned)	-0.747***	-0.747***	
	(0.043)	(0.043)	
Average Order Size (demeaned)	12.643***	12.643***	
	(0.208)	(0.210)	
Observations	32,150	32,150	
\mathbb{R}^2	0.107	0.107	
Note:	*p<0.1; **p<0.05; ***p<0.01		

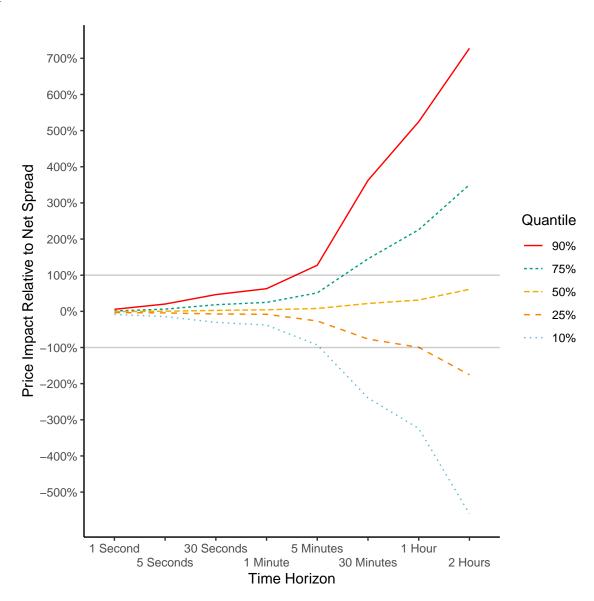

Figure 6. : Wholesaler Market Shares. We plot the weekly market share of each wholesaler over time. We divide market shares by coin: Panel A presents Bitcoin market share, Panel B presents Ethereum market share, Panel C presents DOGE market share, and Panel D presents market share for all other coins.

Figure 7.: Wholesaler Effective Spreads. We plot the weekly average effective spread over time. Panel A presents Bitcoin effective spreads net of transaction costs, Panel B presents Ethereum effective spreads net of transaction costs. Panel C (Bitcoin) and Panel D (Ethereum) present effective spreads including transaction costs.

Figure 8. : Wholesaler Net Realized Spreads. We calculate total net realized spread as the daily realized spreads, summed across all trades from all wholesalers, minus the total transaction payments paid. We calculate the quantiles of total net realized spreads across days, and plot these quantiles across seven possible time horizons for calculating realized spreads.

VI. Conclusion

Cryptocurrencies have off-exchange trading just like US equities, but it is considerably more opaque as there is almost no reporting infrastructure for off-exchange trades. These trades primarily consist of retail trades, intermediated through a broker, with large market-making wholesalers. We analyze proprietary data on \$550 billion in dark crypto trades placed with a large retail broker, and to our knowledge are the first to document trading in dark liquidity in cryptocurrencies.

Customers earn substantial savings through these broker-intermediated trades. Across all the major US exchanges we study, over the total period of 2020-2024, customers obtain better average prices through the broker than they would through any individual exchange. Against a hypothetical NBBO, customers saved an average of \$6,400 per day in 2023. Compared to a randomly selected exchange, customers saved \$147 million from 2022-2023, and \$75 million against whichever exchange has the second-best quote at the time of trade.

Our results highlight the benefits of a broker as an intermediary. Unlike exchanges, which seek to keep trading on their own platform regardless of better quotes at competitors, a broker has an incentive to source any liquidity, including off-exchange dark liquidity. The broker routes orders to wholesalers according to performance. Wholesalers compete for order flow, and price improvement accrues to retail customers in a similar manner to more regulated equity markets.

REFERENCES

- Battalio, Robert, Todd Griffith, and Robert Van Ness, 2021, Do (Should) Brokers Route Limit Orders to Options Exchanges that Purchase Order Flow?, *Journal of Financial and Quantitative Analysis* 56, 183–211.
- Battalio, Robert, and Robert Jennings, 2022, Why do brokers who do not charge payment for order flow route marketable orders to wholesalers?, Technical report, Working Paper.
- Battalio, Robert, and Robert Jennings, 2023, On the potential cost of mandating qualified auctions for marketable retail orders, Available at SSRN: 4403047.
- Bessembinder, Hendrik, William Maxwell, and Kumar Venkataraman, 2006, Market Transparency, Liquidity Externalities, and Institutional Trading Costs in Corporate Bonds, *Journal of Financial Economics* 82, 251–288.
- Bryzgalova, Svetlana, Anna Pavlova, and Taisiya Sikorskaya, 2023, Retail trading in options and the rise of the big three wholesalers, *Journal of Finance* 78, 3465–3514.
- Dyhrberg, Anne Haubo, Andriy Shkilko, and Ingrid M. Werner, 2022, The retail execution quality landscape, Fisher College of Business Working Paper.
- Edwards, Amy K, Lawrence E Harris, and Michael S Piwowar, 2007, Corporate Bond Market Transaction Costs and Transparency, *Journal of Finance* 62, 1421–1451.
- Ernst, Thomas, Andrey Malenko, Chester S. Spatt, and Jian Sun, 2024, What Does Best Execution Look Like?, Working Paper.
- Ernst, Thomas, and Chester S. Spatt, 2022, Payment for Order Flow and Option Internalization, NBER Working Paper 29883.
- Ernst, Thomas, Chester S Spatt, and Jian Sun, 2023, Would Order-by-Order Auctions Be Competitive?, *Journal of Finance, Forthcoming*.
- Kawai, D., N. Christin, B. Routledge, K. Soska, and A. Zetlin-Jones, 2023, User participation in cryptocurrency derivative markets, in *Proceedings of the 5th International Conference on Advances in Financial Technologies (AFT'23)*, Princeton, NJ.

- Kogan, Shimon, Igor Makarov, Marina Niessner, and Antoinette Schoar, 2024, Are Cryptos Different? Evidence From Retail Trading, *Journal of Financial Economics* 159, 103897.
- Makarov, Igor, and Antoinette Schoar, 2021, Blockchain Analysis of the Bitcoin Market, $Available\ at\ SSRN\ 3942181$.
- Nakamoto, Satoshi, 2008, Bitcoin: A Peer-to-Peer Electronic Cash System, Accessed: 2015-07-01.
- Soska, Kyle, Jin-Dong Dong, Alex Khodaverdian, Ariel Zetlin-Jones, Bryan Routledge, and Nicolas Christin, 2021, Towards Understanding Cryptocurrency Derivatives: A Case Study of BitMEX, in *Proceedings of the 30th international conference on World Wide Web*.
- Topbas, Yunus, and Mao Ye, 2024, When Exchanges Are Not Exchanges: Evidence From Two Types of Dark Trading, $Available\ at\ SSRN$.