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Abstract

We propose a new model of expected stock returns that incorporates quantity
information from market trading activities into the factor pricing framework.
We posit that the expected return of a stock is determined by not only its factor
risk exposures (/) but also the factor’s quantity fluctuations (¢) induced by noise
trading flows, and hence term the model beta times quantity (BTQ). The rationale
is that a factor’s premium should be higher when sophisticated investors have
absorbed flows of stocks with high exposure to that factor. The BTQ model
provides a compelling risk-based explanation for stock returns, which is otherwise
obscured without considering the quantity information. The cross-sectional risk-
return association, which is nearly flat unconditionally, strongly depends on the
quantity variable. The structured BT(Q model reliably predicts monthly stock
returns out of sample, and addresses the factor zoo problem by selecting a small

number of factors.
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1 Introduction

Explaining the expected returns of different stocks is a central question in asset pricing.
The theoretical answer is clear—risk—investors are averse to risk and require compensa-
tion for bearing risk. Therefore, riskier investments should earn higher expected returns in
equilibrium. However, the empirical answer has proven more complicated: evidence of the
risk-return tradeoff, such as their positive association in the cross section, is elusive in data;
and risk-based models hardly predict individual stock returns, in contrast to unstructured
predictions using firm characteristics and machine learning models.? A revamped model is
critically needed for the risk-based approach to expected returns.

This paper makes headway in this important area by incorporating a new aspect of risk’s
economic role in determining asset prices—the quantity variation in investors’ risk holdings
induced by trading flows. Many existing efforts focus on the statistical aspects of risk, such as
identifying the common factors and estimating factor premiums, and on the properties of the
securities per se, such as risk exposures and firm characteristics.? In contrast, we show that
the canonical risk framework equipped with the quantity variables, which are constructed
from market trading activities and are about sophisticated investors’ risk-holding conditions,
yields a compelling explanation for the cross section of expected returns.

We integrate quantity into factor pricing by considering market trading activity’s effect
on sophisticated investors’ risk holdings and, in turn, their required compensation for bear-
ing risk. First, we acknowledge that the market is not populated with representative agents
but is modeled with two groups of investors: noise investors (such as retail investors) and
sophisticated investors (such as hedge funds and market makers). Noise investors generate

large and correlated flows in individual stocks. Sophisticated investors take the other side of

Lopez-Lira and Roussanov (2023), for example, question whether factor exposure can explain the cross
section of expected stock returns. See Footnote 4 for other papers reporting an elusive risk-return relationship
and Footnote 6 for those focused on predicting stock returns.

2These related topics constitute a large and growing body of literature. We contribute to three sub-areas
with references listed in Footnotes 4, 6, and 7, respectively.



these trades, which causes fluctuations in the quantities of their holdings of the underlying
systematic risks. For example, if noise investors sell a large quantity of value stocks with
high HML (high-minus-low) loadings, sophisticated investors’ holdings of the HML risk will
increase. The sophisticated investors are the marginal investors whose demand determines
asset prices. We posit that they require greater compensation for a systematic risk factor
when they hold more of it. This leads to a key innovation in factor model specification:
a factor’s premium varies with the factor’s quantity fluctuations induced by trading flows.
Meanwhile, sophisticated investors enforce no-arbitrage pricing across stocks, so the canon-
ical factor pricing condition still holds. These two forces combined give rise to our main
empirical model, in which the expected return of a stock is determined by the interactions of
its factor risk exposures (/) and the factors’ quantity fluctuations induced by trading flows
(shortened to “quantity” or ¢ throughout the paper), which we term the beta times quantity
(BTQ) model.

This framework, though abstracted from many details of the market microstructure,
captures a significant economic force central to risk aversion that has long been missing in
empirical studies of risk and return. Our approach draws from the literature that studies
the price impacts of noise trading flows.> The novelty lies in integrating quantities into the
factor pricing framework and adapting the “price impacts” mechanism to explain expected
future stock returns. This advance enhances the empirical power of workhorse methods in
cross-sectional asset pricing, addresses previous limitations, and leads to important empirical
discoveries in three aspects.

First, quantity information elicits risk-return tradeoff relationships that would otherwise
be obscured. Previous studies report a flat security market line (SML, which plots expected
return Er against market ), inconsistent with the theoretical premise of high-risk-high-

return.* However, a significant positive S-Er association emerges conditional on high levels

3See Gabaix and Koijen (2022) for a review. We discuss related papers in detail further below.

4Black (1972), Black, Jensen, and Scholes (1972), and Frazzini and Pedersen (2014) report a flat SML.
Along this direction but with more involved investigations, Lopez-Lira and Roussanov (2023) question
whether common factor exposure () really explains the cross-sectional variation in expected returns.



of market factor q. That is, the risk-aversion implied high-risk-high-return association holds
when sophisticated investors have absorbed more market factor quantity. In this view, the
previously reported flat SML is an unconditional average when the quantity information is
ignored.® This positive association between the factor-level ¢ and the factor’s risk-return
tradeoff (i.e., factor premium) holds across SMLs of other factors and in Fama-MacBeth
regressions conditional on quantity information.

Second, quantity information enables a risk-based model that predicts individual stock
returns. A central goal of asset pricing is to explain conditional expected returns, with
the statistical prediction of individual stock returns serving as a touchstone for proposed
explanations. This task is empirically difficult, and researchers have only recently achieved
significant progress by using unstructured machine learning models designed for forecasting
and a large number of firm characteristics, which inevitably sacrifice interpretability. The
state-of-the-art machine learning methods can reliably predict stock returns at the monthly
horizon, although the explained variation is small given the low signal-to-noise nature of

market prices.5

In contrast, we build an economically grounded predictor that interacts
stock-level factor exposures () with factor-level quantity fluctuations (q). The resulting
beta times quantity (BTQ) model reliably predicts the panel of monthly individual stock
returns with an out-of-sample (OOS) R? of around 1% in various robustness settings, a level
comparable to high-dimensional machine learning models. The predictability is robust to
different sample periods, firm size groups, and model specifications. Without quantity, the
“B-only” model exhibits no predictive power, aligning with the reported null result that

using risk alone hardly explains expected stock returns (Lopez-Lira and Roussanov, 2023).

Third, quantity offers a new perspective for addressing the factor zoo problem and pro-

°Relatedly, Hong and Sraer (2016), Jylhi (2018), and Hendershott, Livdan, and Rosch (2020) find varying
slopes of the SML conditional on investor disagreement, margin requirements, and whether returns occur
during the day or night.

6Studies on stock (and equity portfolio) return forecasting include Fama and French (2008), Welch and
Goyal (2008), Koijen and Van Nieuwerburgh (2011), Rapach and Zhou (2013), and Lewellen (2015). More
recent advances with machine learning methods include Gu, Kelly, and Xiu (2020), Feng, He, and Polson
(2018), Freyberger, Neuhierl, and Weber (2020), Choi, Jiang, and Zhang (2023), and Kelly, Malamud, and
Zhou (2024).



viding new results on factor selection. The proliferation of proposed factors challenges the
asset pricing literature in identifying factors that are important for expected returns and
investors’ pricing decisions. The traditional tests focus on the existence of factor premium:
essentially, whether there is a positive spread in expected returns between stocks with high
and low factor exposures in the cross section.” Our new test asks an upgraded question
about changes in factor premium driven by quantity: whether the expected return spread
widens when the sophisticated investors’ factor quantity (g) is high (and vice versa).® For
one, using quantity as an instrument for factor premium should provide more variation and,
hence, greater identification power. More importantly, this upgrade is more informative
of the economic mechanism through which risk aversion takes place and, therefore, should
lead us closer to identifying the fundamental risks to investors. We find the market fac-
tor is the most prominent across various specifications, while other selected factors include
betting-against-beta, volatility, idiosyncratic risk, and value. These results are obtained by
conducting variable selection (Lasso) from a BTQ configuration that includes a large number
of candidate factors (including 153 factors from Jensen, Kelly, and Pedersen, 2023, hence-
forth JKP). Alternatively, pre-processing the candidate factors with principal component
analysis (PCA) to “shrink the cross section” (Kozak, Nagel, and Santosh, 2020) leads to a
similar but even more parsimonious result in which only the first two principal components
are selected, and the return predictive power is equally strong.

In summary, these three key results highlight the importance of incorporating quantity

into the factor pricing framework to empirically establish a risk-based explanation of expected

"The proliferation of proposed factors to explain the cross section of expected stock returns (a.k.a. the
factor zoo problem) is noted by Cochrane (2011), Harvey, Liu, and Zhu (2016), McLean and Pontiff (2016),
and Hou, Xue, and Zhang (2017). Existing studies address the problem by selecting or “shrinking” the
factors (broadly speaking, estimating a low-dimensional factor space), including Feng, Giglio, and Xiu (2020),
Lettau and Pelger (2020), Kozak, Nagel, and Santosh (2020), Giglio, Liao, and Xiu (2021), and Giglio and
Xiu (2021). Essentially, they discipline a factor by whether its factor premium is positive (i.e., positive
cross-sectional risk-return association). In this sense, these are developments of the more traditional Fama
and MacBeth (1973) method.

8The new test is analogous to the difference-in-differences (DID) analysis commonly used in applied
microeconomics: 3 captures the cross-sectional variation while ¢ provides the time-series variation in expected
returns. In this analogy, the “S-only” model has only one dimension of “difference” and assumes constant
factor premiums.



returns. To sharpen this argument, we compare the BTQ model with two alternative baseline
models that contain only risk or only quantity, respectively.

The first alternative, the “gB-only” model, represents the traditional factor pricing frame-
work where risk (specifically, ) is the sole determinant of differences in expected stock
returns. Our main results benchmark BT(Q against the “f-only” baseline, and show com-
pelling empirical improvements in various familiar workhorse asset pricing settings: the secu-
rity market line (SML), Fama-MacBeth regressions, and stock return prediction. Moreover,
as discussed earlier, incorporating quantity provides an additional perspective for selecting
factors from the “zoo” based on their economic relevance. Future studies can easily test
newly proposed factors, as a factor’s BTQ term can be easily constructed from the factor’s
return series. These properties highlight the advantages and broad applicability of incorpo-
rating quantity into factor pricing for future research.

Second, relative to the “quantity-only” alternative, the emphasis on risk is embedded in
our construction of the ¢ variables. They track the fluctuations of sophisticated investors’
factor risk holdings induced by retail trading flows. This is achieved by aggregating stock-
level flows to the factor level according to each stock’s factor exposure (), in a way similar
to “portfolio beta” in risk management.? For example, if noise investors sell a large quantity
of value stocks with high HML loadings, then from the perspective of sophisticated investors,
the ¢ of HML increases accordingly. This construction underscores the economic mechanism
in which investors are averse to systematic risk, with their degree of aversion adjusting based
on the amount of systematic risk they bear.°

This setup is contrasted with the “quantity-only” model, where stock-level flows and
quantity variations directly affect stocks’ expected returns, bypassing the factor structure
(see Figure 6 for a comparison of the architectures). This alternative model does not adhere

to the cross-sectional no-(statistical)-arbitrage condition and implies that investors are averse

9Stock-level noise trading flows from retail investors are constructed using mutual fund holdings and flow
data, following standard procedures in the literature (Coval and Stafford, 2007; Froot and Ramadorai, 2008;
Lou, 2012). See Section 3.2 for the complete construction procedure of q.

10 Appendix A provides the theoretical foundation that formalizes this statement.



to the physical quantity of stocks rather than the systematic risk they represent. Empirically,
we find little to no predictive power for stock returns in various implementations of the
“quantity-only” model. This comparison highlights the critical role of risk in the BTQ
model. It is consistent with the view that statistical arbitrage activities by some sophisticated
investors are effective in determining the cross section of expected returns, even in the
presence of significant impacts of noise trading flows on prices (Kozak, Nagel, and Santosh,
2018). It is also related to the distinction between micro and macro elasticities: stocks with
similar risk loadings are close substitutes, whereas the demand for systematic risks is more
inelastic to price (Gabaix and Koijen, 2022; Li and Lin, 2022).

We provide further evidence to support the economic interpretation that quantity ex-
plains expected stock returns through factor risk. We find that different factors’ ¢ variables
provide distinct pricing information along their respective risk dimensions, and that BT(Q
variants crossing one factor’s ¢ with other factors’ § terms fail to predict future stock re-
turns. This result highlights that the quantity-risk premium association is independently
robust across factors. We also find that no other conditioning variables—such as factor mo-
mentum signals and a comprehensive set of macroeconomic variables (dividend yield, default
spread, income growth, etc.)—can substitute for ¢ in reproducing BTQ’s predictive power.
This result rejects the idea that the factor premium variation we report is driven by other
underlying economic forces and that the quantity variable is merely a facade.

In summary, the core message is that both quantity and risk matter for expected stock
returns. At a high level, this naturally stems from the interaction between sophisticated
investors and noise traders (Shleifer and Summers, 1990). Considering the interaction al-
lows us to bridge factor pricing (which emphasizes rational agents’ aversion to risk) and the
price impact of noise flows (which emphasizes noise traders’ non-fundamental flows cause
price dislocation). The contribution of this empirical paper is providing a playbook for inte-
grating quantity information into the canonical factor framework and showing its significant

improvement to factor pricing models’ empirical relevance.



Literature. This paper is related to two frameworks in the literature but has differences
in its objective and approach. First, we do not treat flow or quantity fluctuations as a source
of risk, and the constructed quantity time-series variables are not new risk factors, as in a
recent paper by Dou, Kogan, and Wu (2022).!' Instead, we still use previously proposed
factors, and the newly proposed factor-level quantity variables work together with risks in
the form of “beta times quantity.”

Second, this paper belongs to the growing literature on demand-based asset pricing,
which shows that investor demand plays a critical role in determining asset prices and that
incorporating flow and quantity data can improve empirical asset pricing research (Koijen
and Yogo, 2019; Gabaix and Koijen, 2022; Koijen, Richmond, and Yogo, 2024; Haddad,
Huebner, and Loualiche, 2024, etc.). In particular, a strand of the literature estimates
factor-level price multipliers, including Teo and Woo (2004), Peng and Wang (2021), Ben-
David, Li, Rossi, and Song (2022a), Li (2022), Li and Lin (2022), and Huang, Song, and
Xiang (2024). We focus on the empirical study of expected future stock returns rather than

impacts on contemporaneous prices.?

In this regard, our goal and approach align more
closely with the factor pricing literature: we explicitly model the factor structure of returns;
maintain the associated factor pricing condition; and take return prediction accuracy as the
central criterion of empirical success.!?

Additionally, our use of the no-arbitrage factor pricing (APT) condition to link the cross-

sectional quantity-return relationship also differs from existing approaches, such as nested

11 Other papers that treat flow or quantity information as sources of risk include De Long, Shleifer, Sum-
mers, and Waldmann (1990), Shleifer and Vishny (1997), Lo and Wang (2000), Hasbrouck and Seppi (2001),
Adrian, Etula, and Muir (2014), and He, Kelly, and Manela (2017).

12 Appendix A discusses the connection between flow/quantity’s impact on contemporaneous prices and
expected future returns (risk premiums) with a formal theoretical microfoundation.

13Koijen and Yogo’s (2019) demand system models a stock’s demand elasticities with respect to a) the
stock’s price (or the market capitalization) and b) the stock’s factor risk exposures (proxied by the stock’s
characteristics). Neither is exactly our channel: a) operates at the stock level, rather than the factor level, and
b) is about the cross-sectional demand variation related to a stock’s factor loadings or characteristics, rather
than time-series demand variation driven by aggregated factor risk quantity. They use the factor framework
as a microfoundation for the characteristic-based demand system. Related to our research objective, one of
their applications shows that mean reversion in latent demand introduces a new source of predictability for
cross-sectional variation in stock returns.



logit demand systems in Koijen and Yogo (2020), Bretscher, Schmid, Sen, and Sharma
(2024), and Jiang, Richmond, and Zhang (2024), controlling for close substitutes as in
Chaudhary, Fu, and Li (2023), and mean-variance optimization as in Vayanos and Vila
(2021), Davis, Kargar, and Li (2024), and Jansen, Li, and Schmid (2024).'

In the remainder of the paper, Section 2 provides the theoretical motivation, empirical
model, and methods; Section 3 constructs the quantity and other empirical measures; Sec-
tion 4 presents the main empirical results; Section 5 shows that quantity must be combined
with risk to forecast returns; Section 6 investigates alternative economic channels; Section 7

concludes.

2 Theoretical motivation, empirical model, and methods

2.1 Theoretical motivation

The theoretical rationale for integrating quantity information into factor pricing to explain
expected stock return is that market trading activities affect sophisticated investors’ risk
holdings and, in turn, their required compensation for bearing risks. We focus on a promi-
nent channel where the noise trading flows—a significant type of trading activities—matter
for the central element of asset pricing, namely the factor premium, although there can
be many other market microstructure mechanisms in which trading activities generate con-
temporaneous price impacts. We outline this theoretical channel below, and Appendix A
provides the formal microfoundation.

Suppose the market is populated with two groups of investors: noise investors and so-
phisticated investors. Noise investors, such as retail traders, generate uninformed flows in

and out of individual stocks over time. The noise flows are large and correlated across stocks,

l4Relatedly, Berk and Van Binsbergen (2016), Barber, Huang, and Odean (2016), and Ben-David, Li, Rossi,
and Song (2022b) use a revealed preference approach to determine which factors investors care about, and
Bretscher, Lewis, and Santosh (2023) show that betas measured relative to institutional investor portfolios
explain stock returns.



which can induce significant fluctuations when aggregated to the factor level.!s
Sophisticated investors, such as hedge funds and market makers, take the other side
of the retail trades by absorbing the noise flows and supplying liquidity. Therefore, noise
flows induce fluctuations in the sophisticated investors’ holding quantities of the underlying
systematic risks. For example, if retail investors sell lots of value stocks with high HML
exposures, then sophisticated investors will accumulate more HML risk holdings. The ag-
gregation from stock-level flows to factor-level quantities accounts for each stock’s factor
exposure () in the fashion of “portfolio beta” commonly used in risk management practice
(see Section 3.2 for aggregation details). The sophisticated investors are the marginal in-
vestors whose risk-holding conditions drive asset prices. They have limited capacity to bear
risk and absorb flows, and require greater compensation for a systematic risk factor when

they hold more of it.'¢

This gives rise to the key model specification that a factor’s premium
varies with the factor’s quantity fluctuations induced by trading flows, and we hypothesize
that the relationship is positive.!” Meanwhile, sophisticated investors enforce no-arbitrage
pricing across stocks, so the canonical factor pricing condition still holds.'® These two forces

combined imply the main empirical model specified below, in which both the stock’s factor

risk exposures (/3) and factor quantity (¢) determine its expected return.

5Previous studies report (which we also confirm empirically) that the retail flows are not only significant
in magnitude but also correlated across stocks due to the commonality in retail investors’ trading behaviors.
The correlation aligns with investment styles, such that, say in one period, retails tend to sell growth stocks
and in the next, they buy small stocks (Li, 2022; Huang, Song, and Xiang, 2024). This fact supports that
retail flows can induce significant fluctuations in the quantity of risk when aggregated to the factor level.

16 imited risk-bearing capacity can stem from liquidity or balance-sheet constraints (e.g., Adrian, Etula,
and Muir, 2014; Gabaix and Maggiori, 2015; He, Kelly, and Manela, 2017; Kondor and Vayanos, 2019;
Haddad and Muir, 2021). In particular, Eisfeldt, Herskovic, and Liu (2024) and Kargar (2021) emphasize
that heterogeneity within the intermediary sector can further lead to risk misallocation, offering a novel
explanation for why liquidity is priced.

17 Appendix A provides the formal theoretical model to microfound the quantity-factor premium association
(Eq. 3 specified further below). This specification is related to the demand-based literature, which emphasizes
the “price multiplier” is high, or, in other words, the demand is inelastic to price (Gabaix and Koijen,
2022). The empirical distinction is that our goal is explaining the expected future returns, rather than the
contemporaneous price impact (although the two are theoretically connected as high expected returns imply
low current prices).

18Enforcing the cross-sectional APT condition is consistent with Kozak, Nagel, and Santosh (2018), who
argue that cross-sectional no-arbitrage conditions are still valid in the presence of noise traders as long as
there exist some sophisticated investors. This is in contrast to those models that directly link each individual
stock’s flow to its price. See Section 5.1 for the comparison against this benchmark.



2.2 Empirical model

The empirical model starts with the canonical factor pricing framework, in which the cross

section of stock returns follows a factor structure

K
Tit+l = Zﬁi,k,tfk,t+l + €41, Vi, t, (1)

k=1

where 7; ;11 is the excess return of stock 7 in month ¢+ 1, k indexes factors, f is factor return
(zero-cost or excess return), and [ is the stock’s factor exposure, which is subsequently
estimated using realized daily returns. According to the APT (Ross, 1976), the cross section

of expected return follows the factor pricing condition,

K
Ei[ri 1] = Zﬁi,k,tuk,t, Vi, t, (2)
=1

where E;[r; ++1] is the conditional expected stock return, our research object, and fy, is the
factor premium conditional on time-¢ information.

The departure from the canonical framework lies in the modeling of the factor premium.
According to the theoretical motivation above, we specify that the factor premium is not a

constant but varies with the factor’s quantity fluctuations induced by trading flows.

Pt = o (Qrt) = o + Mt Vk,t, (3)

where the first is a general non-parametric form in which p( - ) is an unspecified function
of g, while the second is the parametric linear specification, which is implemented in most
empirical settings.'® Parameter j; corresponds to the constant factor premium, which is the
key interest of estimation in traditional factor pricing tests. The linear coefficient Ay is the

new central parameter of interest, which measures the sensitivity of the factor premium to

19The various parametric and non-parametric empirical methods are detailed further below in Section 2.3.

10



the factor’s quantity fluctuations.?’

Plugging the factor premium specification into the factor pricing condition (Eq. 3 into
Eq. 2), we arrive at the main empirical model, the beta times quantity (BTQ) model of

expected stock returns:

K K
Ei[ript] = (Z Mkﬁi,k,t) ) MeBikahs, Vi, t. (4)
s k=1

The first summation term is the traditional factor pricing model, which we refer to as the
“B-only” model, serving as the baseline in empirical comparisons. The second is the new
beta times quantity (BTQ) term. In empirical implementation, we often find the [-only
term is so close to zero (and so noisy for explaining expected returns) that including it in
the BTQ model can even hurt the empirical fit. Therefore, the BTQ model typically omits
the [-only term in parentheses and only includes the beta times quantity term.

The key hypothesis implied by the theoretical motivation is that, for a “true” fundamental
risk factor k, A\, > 0. The hypothesis means that the cross-sectional return dispersion
between high and low [ stocks widens when the factor’s quantity is high. This is similar
to the difference-in-differences (DID) analysis: [ captures the cross-sectional variation in
expected returns while ¢ provides the time-series variation. In other words, the observed
factor risk aversion is stronger when ¢ is high. This offers a new perspective compared to
the traditional hypothesis p > 0, which asks whether higher exposure to that factor is
associated with higher average returns, i.e., only the first “difference” in the DID analysis.
The new test has more identification power provided by the time-series variation in q. More
importantly, this test has more economic relevance since the ¢ variation tracks sophisticated
investors’ risk-holding conditions. Hence, we are no longer inferring investors’ risk pricing

process from asset and asset price information alone. Therefore, the new framework can lead

20 Appendix A.3 provides a microfoundation for the linear specification and the economic interpretation
of its parameters. The parameter \; reflects the inelasticity of sophisticated investors’ demand for factor
risk. This inelasticity is further attributed to two primitives: high risk aversion and the limited capital of
sophisticated investors relative to the aggregate stock market.

11



us closer to identifying the fundamental risks that investors care about.

The model allows for multiple factors and allows each to have a different A\, coefficient.
This is useful for testing each factor’s marginal importance in a joint setting, controlling for
other factors’ contribution to expected returns.?!

An important property of the sign of A, is noted. Regardless of the sign of the factor (e.g.,
small-minus-big or big-minus-small), the sign of A\ should, theoretically speaking, always be
positive. This is because when factor return f flips its sign, both g and ¢ flip their signs,
and [ times ¢ remains unchanged. A positive A\, estimate, nonetheless, is not empirically
guaranteed. Thus, it provides another layer of testing for the risk-based theory, regardless
of the specification of the factor’s sign. A negative \; estimate would be an unambiguous
rejection of the risk-based theory, and the empiricist could not blame the “wrong” sign of
the factor as an excuse. Notice that u in the traditional S-only model does not have this
property: big-minus-small would have a negative .

We focus on testing the hypothesis “A\; > 0”7 in the cross-sectional setting of the BT(Q
model (Eq. 4), not in the time series context of predicting factor returns fy 11 with gy,.
Although the BTQ model is theoretically motivated by the time-series specification of factor
premium (Eq. 3), empirically, a positive time-series predictive coefficient between g, and
fra+1 is far from implying the cross-sectional hypothesis of Ay > 0. The gap between the
two is the cross-sectional variation of the risk exposures ((3), which is not present in the
time series setting. A similar gap is familiar in the traditional factor pricing framework: a
long-short portfolio with a high average return does not guarantee that it is a priced factor

in cross-sectional tests, such as the Fama-MacBeth regressions.

21The model (Eq. 3) specifies that factor k’s premium gy ¢ is affected only by its own quantity g ¢+, not by
the quantities of other factors ¢; ;. Allowing for cross-factor impacts would complicate the model, increasing
the number of parameters from K to K2, which becomes impractical for large K. Our most salient empirical
results are attained with single-factor settings, where cross-factor impacts are irrelevant.

12



2.3 Empirical methods

We use a series of empirical methods to estimate and test the BT (Q model. The methods are
presented as upgrades of familiar procedures in asset pricing, such as the security market
line, Fama-MacBeth factor premium estimates, and return prediction exercises, for ease of
comparison and to demonstrate the value of incorporating quantity information into the
factor model. We present an overview of the methods here, while the details are provided
when presenting the empirical results in Section 4.

From the methodological perspective, the progression of the methods can be seen as
gradually adding parameterization to the model of expected stock returns. To start with,
the familiar security market line (SML) can be seen as a simple non-parametric model,
Ey[ri11] = Er(Bikt), where Er( - ) is an unspecified function. (The SML is typically esti-
mated with the market beta, i.e., k = MKT, but we implement it with other factors as well.)
The conditional SML (Section 4.1) upgrades it to a bi-variate non-parametric model that
includes ¢, Ei[r; 1] = Er(Bikt, qrt). We estimate this non-parametric model with a simple
kernel method by binning observations of § and ¢. This method is easy to interpret via the
familiar SML plot, and clearly shows that ¢ is a highly relevant variable in the expected
return function (Er) with significant effects on the risk-return (8-Er) relation.

The second method, the quantity upgraded Fama-MacBeth factor premium estimates,
is semi-parametric (Section 4.2). It imposes a linear relationship between risk (3) and ex-
pected return according to APT, but is still non-parametric about ¢’s effect: Er(5; ks, qrt) =
Bi ke titk(qr.t), where the factor premium function g ( - ) is left unspecified. It is still estimated
non-parametrically by binning ¢ and then averaging the returns of the Fama-MacBeth factor
mimicking portfolio (FMP, which are coefficients from the cross-sectional regression 7; ;41 on
Bi k) within each bin.

Third, once the u( - ) function is also specified as linear, we arrive at the parametric BTQ
model Ev(Bixt, Q) = MeBiktqre- The parametric setting easily accommodates multiple

factors, and is estimated with a linear predictive regression on the panel of monthly stock

13



returns r; ;41 = Zszl MeBi ket + error; 11 (Section 4.3). Notice that each factor’s beta
times quantity (BTQ) term together serves as a predictor, and the BT(Q terms of different
factors serve as multivariate predictors. Predicting stock returns has experienced significant
progress with firm characteristics and machine learning models. We follow the literature’s
stock-month panel setup and use the same measure of empirical success: the monthly stock
return predictive R? evaluated out-of-sample (OOS). This is our (and also the literature’s)
key evaluation metric for “explaining expected stock returns.”

Lastly, in response to the factor zoo problem, when the number of candidate factors
(K) is large, the number of BTQ predictors grows accordingly to more than 100. In such
a setting, we use machine learning methods designed for high-dimensional prediction, such
as Lasso, to select a small number of priced factors (Section 4.4). By inducing sparsity
in the )\, coefficients, Lasso allows us to select a small number of BT(Q terms and reveal
which factors are priced in a joint setting, controlling for other factors. Additionally, we
follow Kozak, Nagel, and Santosh (2020) and pre-process the candidate factors with principal
component analysis (PCA). Then, we supply the principal component factors to the same
BTQ construction and Lasso prediction exercise (Section 4.5). The potential benefit of
this method is to “shrink the cross section” of factors and elicit latent factors that capture
most of the time-series return variation among the many candidates. According to existing
literature, such latent factors are often more reliable for explaining expected returns.

In summary, we put forward the message that integrating quantity information into
various empirical methods can lead to significant empirical discoveries. We implement the
methods outlined above to support this message, but they are far from exhaustive given the
vast asset pricing literature. We believe these quantity variables can similarly interact with

many other existing methods, opening a broad avenue for further empirical discoveries.
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3 Constructing quantity (¢) and other variables

The data to run a BTQ predictive regression include the (unbalanced) panel of monthly
excess stock returns 7; 441, along with a panel of 3; ;; and a time series of g for each factor
k, which serve as right-hand side predictors. Among these, f3;x is constructed from the
time series of factor return f;, as in the first stage of the Fama-MacBeth procedure. The
construction of g is new. It requires the stock-level retail flow in the same unbalanced
panel structure as the returns, which is then aggregated to the factor level according to each
stock’s factor exposure measures. In summary, the source data are only the panel of returns
and the panel of flows at the stock level, from which one can calculate both § and ¢ for any

factor, given the time series of factor returns fy ;.

3.1 Return, risk, and flow variables constructed with standard procedures

The factor and stock return, risk exposure, and stock-level dollar flow variables are all
constructed using data sources and procedures standard in the literature.

We use delisting-adjusted stock returns from CRSP. The six Fama-French-Carhart (i.e.,
Fama and French, 1993, 2015; Carhart, 1997) factors are from Kenneth French’s website,
and the 153 Jensen, Kelly, and Pedersen (2023, JKP) factors are from the authors’ website.
All returns are obtained in both daily and monthly frequencies in excess of the risk-free rate.

Each stock’s exposure to factor k in month ¢ is

> &)\Vt(ﬁ't,fk t) .
’L' :: —~ : : ) VZ,t,k, 5
ﬂ kot Vart(fk,t) ( )

where cov; and var; are realized covariance and variance estimated with daily returns in a

12-month rolling window up to month ¢.%2

22Notice B\i,k,t corresponds to the regression coefficient of a single-factor model. This differs from the
original Fama-MacBeth procedure, where the first stage is a multi-factor regression. A single-factor beta is
simply the realized covariance normalized by scalar variance and offers two advantages. First, multi-factor
regressions can be unreliable even with a moderately high number of factors. Second, a single-factor beta,
and consequently each factor’s BTQ term, can be constructed independently of other factors in the model,
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We construct the stock-level dollar flow $ﬂow§ft00k panel using the mutual fund flow-

induced trading (FIT) metric, proposed by Coval and Stafford (2007), Froot and Ramado-
rai (2008), and Lou (2012). We use the standard mutual fund data source but carefully
clean data errors by cross-validating several sources. In particular, we obtain monthly mu-
tual fund returns and characteristics from the CRSP Survivorship-Bias-Free Mutual Fund
database and quarterly holdings data from the Thomson/Refinitiv Mutual Fund Holdings
Data (S12). Our sample period spans from January 2000 through December 2022.2% The
mutual fund sample comprises both active and passive mutual funds. To ensure accuracy
in our flow measure, we cross-validate mutual funds’ monthly returns and total net assets
(TNA) obtained from the CRSP database with corresponding data from Morningstar and
Thomson/Refinitiv. In the process, we manually correct several data input inaccuracies.
Details regarding this process are in Appendix B.1.

The standard $ﬂ0w;°-‘ft°Ck construction procedure has three steps. First, dollar mutual fund

flows are

$ﬂOqund = TNAm,t — TNAm’t,1(1 -+ ,rfund)’ (6)

m,t m,t

where TNA,, ; is the total net assets of mutual fund m at the end of month ¢, and rﬁ,‘jﬁd is
mutual fund m’s net-of-fee return in month ¢.

Second, we allocate mutual fund flows to dollar stock-level flows, based on the established
assumption in the literature that mutual funds buy or sell stocks in proportion to their prior
holdings,

$Howfy = — Z $tlow, ey weight;n : (7)

i,m,quarter(t)—2
fund m

The negative sign is used to shift the perspective from retail investors to sophisticated in-

allowing for a more convenient empirical procedure. See Feng, Giglio, and Xiu (2020) for a related discussion,
who also use covariances rather than multi-variate betas.

23We start the sample period in 2000, following the convention in the literature. The mutual fund industry
experienced significant growth and sustained inflows throughout the 1990s (Lou, 2012; Ben-David, Li, Rossi,
and Song, 2022a). Since 2000, the size of the mutual fund sector has remained stable relative to the total
equity market, resulting in stationary monthly flow shocks.
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vestors when accounting for the flow. Specifically, a positive $ﬂow§fka dollar value indi-
cates that retail investors are selling stock ¢ in month ¢, while sophisticated investors are

buying. Moreover, we use the two-quarter-lagged mutual fund holding weight, denoted as

fund

1 24
i,m,quarter(t)—2"

weight, For instance, quarter(July) — 2 = Q1.
In total, we have around 1,644,000 stock-month observations in a full sample of 276
months from January 2000 to December 2022, or on average around 6,000 stock-month

observations per month.

3.2 Constructing quantity variables

The construction of g, is guided by the theoretical motivation outlined in Section 2.1 and
the microfoundation detailed in Appendix A.3. It involves two steps. First, we aggregate

stock-level flows to the factor level, using the same risk measures, cov,(r; ¢, fi+), from Eq. 5:

facmr : Z $ﬂOWSt°Ckcovt (Tity frr) = Z $ﬂovvStOC 5i7k7t@t(fk,t)a Vi, t.  (8)

The aggregation accounts for each stock’s factor exposure, in a similar spirit to calculating
the portfolio beta commonly used in risk management. The second expression in Eq. 8 is
for explaining the intuition: every month, sophisticated investors add a marginal portfolio to
their existing holdings in response to retail flows, and $ﬂowthCk is the dollar weights of this
portfolio. The portfolio’s risk characteristics are determined by its composition (portfolio

StOCk) as well as each constituent stock’s factor exposures (@kt) For example, if

weights $flow
retail investors sell a large quantity of value stocks with high HML loadings, the sophisticated

investors’ HML quantity would experience a positive flow shock.?> Moreover, multiplying

24The use of a two-quarter lag deviates from the conventional one-quarter lag (Lou, 2012) to be more
conservative and ensures that the constructed $ﬂoWStOCk is observable with information up to month ¢. In
particular, mutual fund holding is reported with a maximum statutory delay of 45 days (Christoffersen,
Danesh, and Musto, 2015), which means the end of Q2 holdings may not be observable in July. By using
a two-quarter lag, July relies on the end of Q1 holdings, which are guaranteed to be available. Our results
remain robust when we apply the one-quarter lag commonly used in the literature. These results are available
upon request.

ZNotice we aggregate flow to the factor level (HML in this example) based on each stock’s HML exposure
(8), not on the stock’s characteristics (the book-to-market ratio) or its weight in the HML portfolio. This
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by var;(fr.) modulates the portfolio’s risk by the time-series fluctuation in factor return
variance.? In this sense, we are indeed tracking the quantity of factor risk, not the physical
quantity of securities or portfolios.?

factor

Second, the flow shocks flow;;™" are normalized by the lagged total US stock market

capitalization and accumulated in a six-month lookback window,

h—1 factor

~ 1 flow, %
=— ’ : vk, t, with h = 6. 9
Tt h hZZ:O total stock market cap,_j,/_; )

This normalization accounts for the upward trend in dollar flows, which reflects the overall
growth of the equity market, as well as the increasing capacity of sophisticated investors to
absorb these flows.?® Accumulating ﬂow%t?or over time accounts for the persistent effects
of older flows on future returns. What matters for the expected return in month ¢ + 1 is
the factor quantity held at the end of month ¢, which is impacted by flow shocks in all
previous periods, ﬂowfjﬁmr, ﬂowfft?_olr, ﬁowfjfft_‘g ... The speed at which sophisticated investors
can absorb these shocks and eliminate their effect on risk premiums is not our research focus.
We accumulate past flows in a 6-month lookback window for simplicity and transparency to
avoid a more involved study of the speed. The empirical results are robust to alternative
specifications (see Section 4.6).

In many empirical exercises, we standardize the raw gy, time series as qy; := @r+/0(qrt),

where o(qy,) is the full-sample time-series standard deviation, for ease of interpreting the

regression coefficients.

choice is based on the theoretical motivation that sophisticated investors are averse to factor risk, not the
factor portfolio itself. The goal is to measure the quantity variation in each factor’s risk, not the factor
portfolio itself. Li (2022) aggregates using portfolio weights, which can be reconciled with our framework if
characteristics are viewed as proxies for factor exposures.

26More specifically, the variance term arises in the theoretical model that assumes CARA utility for
sophisticated investors (see Appendix A.3).

27 Appendix B.1.4 discusses an alternative method that directly constructs factor-level flows from mutual
fund flows.

28 Appendix A.3 provides a theoretical justification for normalizing by the total stock market capitalization
under the assumption that the fraction 7 of sophisticated investors relative to the total stock market remains
constant over time. The smaller this fraction (7), the more sensitive the risk premium (the higher \).
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Figure 1: Quantity (gx,) time series plot
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Note: Time series of the constructed quantity (gy,.) variables for the Fama-French-Carhart factors. The
monthly observations span from January 2000 to December 2022.

3.3 Basic properties of the constructed quantity variables

Next, we present the summary statistics of the flow-induced quantity, gx:, the key new
variable introduced in this paper. Figure 1 shows the time-series plots of g, for the Fama-
French-Carhart (FF3C) factors. We plot the pre-standardized series ¢ to show magnitudes.?
Table 1 presents the full-sample statistics of FF3C’s ¢ and summaries of these statistics across
the 153 JKP factors.

Examining the basic time series properties of g, we find that variation dominates its
trend, making quantity fluctuation the primary feature compared to the secular trend in
retail flows. The series also exhibits dynamic volatility clustering, similar to that seen in
more familiar factor return time series.

Among the four factors plotted in Figure 1, MKT’s quantity (in blue) has the most time-

29The magnitudes of ¢ are in the unit of 1076, The absolute level is irrelevant for empirical analysis, as
the variables are standardized in regressions. To understand this magnitude, we know the monthly mutual
fund flows are in the order of tens of billions of dollars, and the total market capitalization is in the order of
tens of trillions of dollars (see Appendix Figure A.2). So the first term in Eq. 8 is in the order of 10~2 (given
market 3 around 1). The last term, monthly var;(fy ¢) is in the order of 1073, so ¢ is in the order of 107°.

19



Table 1: Summary statistics of quantity gz, (unit: 107°%)

Fama-French-Carhart factors Across 153 JKP factors
MKT SMB HML MOM Q25 Median Q75
Mean 0.29 0.04 0.13 -0.15 -0.05 -0.01 0.03
Std 1.88 0.29 0.65 0.82 0.23 0.39 0.76

Note: The mean and standard deviation of the constructed quantity time series g ¢ for the Fama-French-
Carhart factors and JKP factors.

series variation. The reason is that most stocks have positive market beta centered around
one, so gukr,: roughly aggregates the overall retail flows into (and out of) the entire mutual
fund sector. In contrast, the three long-short factors have stock betas that are more evenly
distributed around zero, so their gy, series reflect the net retail flows into (and out of) stocks
of particular investment styles. Therefore, these series are not mechanically correlated, even
though they are all constructed from the same retail flow panel data.

Appendix C.1 reports that the pairwise correlations of the four g, series are far from +1,
indicating that series are not collinear. It also reports a principal component analysis (PCA)
on the g series for the 153 JKP factors. These ¢ series have a multi-factor structure with
independent variation along various principal dimensions as well as substantial idiosyncratic
variation. Section 5.2 further shows each factor’s ¢ provides distinct and independent pricing
information along its respective risk dimension. These results suggest BTQ’s consistent
predictive power across different factors is not mechanically driven by one (or a few) special
“secrete sauce” ¢ series, highlighting the robustness of the underlying economic mechanism.

Turning to notable spikes in the plot, we note vk experiences significant increases dur-
ing the Global Financial Crisis and the COVID-19 pandemic in the spring of 2020. These
spikes are attributed to significant outflows from mutual fund investors during these peri-
ods. As a result, the sophisticated investors’ risk holding quantity increases, making them
more “averse” to the market risk, which can be related to market crashes and subsequent

rebounds. However, this is a highly simplified and anecdotal explanation of the main eco-
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nomic mechanism, as it does not consider cross-sectional variation in factor exposures, more

nuanced fluctuations, or factors beyond MKT. Next, we turn to formal empirical analysis.

4 Main empirical results

4.1 Security market line (SML) depends on quantity

The security market line is a simple and commonly used tool to visualize the relationship
between systematic risk exposure and expected return (5-Er) in the cross section of stocks,
without relying on parametric modeling. We construct the empirical SML and its conditional
versions based on factor g. We show that the S-Er relationship is nearly flat unconditionally,
which is consistent with the existing empirical results that factor exposure alone cannot ad-
equately explain the cross-sectional variation in stock returns. However, once conditional on
quantity information, the SML reveals interesting risk-return patterns that strongly support
a risk-based explanation.

The unconditional SML displays the S-Er relationship in the non-parametric regression
model: Ei[r; ;1] = Er(Bi ). We estimate it with a simple kernel method by sorting stock-
month observations into twenty quantile bins by BZ-’M, and then plotting the average of r; ;14
against the average B\lkt within each bin. Notice that return r; ;1 leads B\zkt by one month,
so that it estimates conditional expected returns.

The upgraded SML conditional on quantity estimates the bi-variate non-parametric
model: E;[r;141] = Er(Bikt, @re). Our purpose is to show that the second entry, ¢, matters
for the risk-return relationship. Again, we conduct a simple non-parametric estimation for
transparency and intuitiveness. The estimation procedure is the same as the unconditional
SML, but we further split each bin of stock-month observations into two sub-bins by the

time-series median of ¢, and plot sub-bin average r; ;11 against average ﬁi,k,t.?’o

30Formally, an unconditional bin is defined as {(i,t) s.t. Bm,t € [a,b)}, where a and b are boundaries
of the 20 quantiles of f3; j s, for example, the first pair is [quantile(. x,.,0%), quantile(3. x,.,5%)). A “high

¢” bin is defined as {(i,t) s.t. @kt € [a,b) and qx; > median(gx¢)}, where median(gy,.) is the time-series
median of g;+. And, “low ¢” is the same as “high ¢” but with “>" replaced by “<”.
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Figure 2: Security market line (SML) conditioning on quantity: E.[r;;11] = Er(Bi ks, Qrt)
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Note: Security market line (SML) plots expected stock returns against 8. The unconditional SML (black):
sorts the stock-month observations into twenty quantile bins of Bi,k,t and plots the average return 7;+11
against average B\i,k,t within each bin. The conditional SMLs (red for high ¢, blue for low ¢): the same
process but split bins by the time-series median of ¢ ;. Notice the scales of the x- and y-axes in the bottom
two panels are zoomed out by a factor of two to accommodate the larger ranges of HML and MOM S’s.

Figure 2 presents single-factor models using the Fama-French-Carhart factors (MKT,
SMB, HML, MOM). The black curves represent the unconditional SMLs, while the red and
blue curves correspond to conditional SMLs for high and low ¢, respectively.

We find that the unconditional SML is nearly flat for the market factor, with a slight

downward slope in the higher beta range. This implies that the market beta alone cannot

explain the cross-sectional variation in expected returns, which is consistent with similar
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reports in the existing literature. Similar null results for unconditional SMLs are observed
for SMB and MOM, while HML’s SML is slightly upward-sloping.

In contrast, the conditional SMLs show interesting risk-return patterns that are not
observable without conditioning on ¢. The high-¢ SMLs (red) exhibit a strong positive
slope, while the low-q (blue) SMLs are downward sloping. The unconditional SML (black)
lies in between these conditional SMLs as the mixed average. The gaps in the slopes suggest
that sophisticated investors’ risk-holding conditions matter for their demand for risk, which
in turn significantly impacts the pricing of factor risks in the cross section. Notice the four
plots are produced with different ¢4, time series and szt panels, yet the slope patterns
are consistent across factors. This consistency suggests that quantity’s effects on factor
premiums are general and robust, reflecting a stable underlying economic mechanism.

The positive high-q slope suggests that sophisticated investors demand higher additional
compensation for high systematic risk in high-q environments. Conversely, the negative low-¢
slope indicates high-risk investments have low expected returns (or high concurrent prices).
This is likely because sophisticated investors are more willing to hold high-risk investments
when they are required to sell lots of such stocks to retail traders in low-¢ months, i.e., when
they are in a relatively short position of the factor.!

The magnitude of ¢’s effects is economically large. For instance, a market beta-neutral
stock has an unconditional expected return of around 0.75% per month. In contrast, for a
stock with a market beta of 1, the expected return is as high as 1.25% in high-¢g months or as
low as 0.25% in low-¢ months, with the average still around 0.75%. The high vs. low-q gap
is around 1% per month or more than 10% annualized. This gap is even greater for stocks
with higher market betas. For HML, the gap is even more pronounced: a By = 1 stock
is expected to earn around 30% annually, while an HML-neutral stock’s expected return
remains unaffected by ¢, as evidenced by the crossing of the three curves at Sy, = 0. This

result reveals that HML is a salient fundamental factor for sophisticated investors, as both

31The sophisticated investors’ risk management mechanisms as described in Frazzini and Pedersen (2014)
can provide a potential explanation for the pricing behavior in the low-¢ months.
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high 8 exposure and high quantity holdings are compensated by significantly higher risk
premiums. For the SMB factor, while the general patterns of SML slopes remain consistent,
the effects of both § and ¢ are smaller in magnitude compared to the other factors. We
provide additional support for these findings and present more precise point estimates using
parametric estimations further below.32

All SMLs, regardless of their slopes, are approximately straight lines, regardless of their
slopes, particularly around the central range of 3, where most stocks are concentrated, and
sampling noise is less pronounced. This linearity in § is consistent with the cross-sectional
law of one price (LOOP), even as the slope (risk premium) varies significantly with ¢. Next,
we specify the linearity of expected returns in 3, while still leaving the effect of ¢ non-

parametric.

4.2 Fama-MacBeth factor premium increases with quantity

We specify a linear relationship between factor exposure (5) and expected return, where
the linear coefficient (factor premium) is allowed to vary with quantity: Ev(5; s, qet) =
ﬁi,k,tuk(%,t)-

To estimate this model, the first stage of the Fama-MacBeth regressions provides factor
risk exposures Bk,i,t from time-series regression (already detailed in Section 3.1). The second

stage of the Fama-MacBeth regressions runs cross-sectional regression for each t:

Tit+1 = Yout+1 + Vi1 Bijt + €770 141, Vi, (10)

where ;441 is the Fama-MacBeth factor mimicking portfolio (FMP) return. Canonically,
the factor premium is estimated as the time-series average of v;,11. It measures the average

cross-sectional association between factor loading and stock return. The average factor

321t is also interesting to note that the crossings of the high/low-¢ and unconditional SMLs are almost
exactly at 8 = 0 for MKT and HML, and somewhat near zero for SMB and MOM. Crossing at f = 0 is
consistent with the parametric BT'Q model and the theoretical motivation: the expected return of a factor
risk-neutral stock should not be affected by that factor’s quantity fluctuations.
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Figure 3: Fama-MacBeth factor premium conditioning on quantity, fu(qk+)
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Note: Fama-MacBeth factor mimicking portfolio returns (FMP, v, ;41) averaged unconditionally (dashed
line) and averaged within unit bins of g, (solid line).

premiums are often found to be close to zero, challenging factor pricing (Lopez-Lira and
Roussanov, 2023).

The innovation of our approach is to estimate the mean of 7,11 conditional on g,. To
achieve this, we form four unit bins of g;, (which is already standardized) and calculate the
average of 7j;+1 within each bin. Figure 3 presents the conditional (solid lines) and the
unconditional (dashed lines) factor premiums for each of the four FF3C factors.

The plot shows strong and consistent evidence that the Fama-MacBeth factor premium
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is not zero but increasing in factor quantity ¢x,. Specifically, the cross-sectional risk-return
relationship is strong and positive when quantity g, is high, while the factor premium
becomes negative when ¢, is low, suggesting that the risk-return tradeoff is reversed in
low-q environments. On average, the unconditional premium is close to zero, but this masks
the significant dynamics that only unfold when we condition on quantity information.

The increasing relationship in ju;(gx,¢) is consistent across the four factors, with the market
factor exhibiting the most substantial variation. The market factor premium varies from less
than —2% per month when market g, is in the lowest (—2, —1) standard deviation range
to nearly +3% per month when market ¢ is in the (1,2) range. Consistent with the SML
results, the magnitude of factor premium fluctuation driven by ¢x, can reach double-digit
annualized percentages, highlighting the economic relevance of quantity in driving factor

premiums.

4.3 Beta times quantity (BTQ) forecasts individual stock returns

The empirical results so far from non-parametric plots show that the quantity information
significantly impacts the cross-sectional risk-return relationship. We now turn to the para-
metric BTQ model, which allows us to include multiple factors, provide more formal point
estimates, and conduct OOS model fit evaluation and factor selection tests. We show that
the BTQ model provides a compelling explanation for the expected return of individual
stocks.

Once the factor premium function pg(gx.) is specified in linear form as fu(qrt) = A\eGr.t
we arrive at the parametric BT(Q model, which is estimated using the following return

predictive regression with a panel of individual stocks:
K

Tit+1 = Z )\ka,tﬂi,k,t + error; i1, Vi, t. (11)
k=1
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Table 2: Predicting stock returns with and without quantity, single factor

Fama-French-Carhart factors Across 153 JKP factors
MKT SMB HML MOM Q25 Median Q75

Panel A: IS R? comparison, full sample 2000-2022 (%)

BTQ 1.01 0.30 1.00 0.91 0.39 0.62 0.95
[-only 0.05 0.05 0.12 0.06 0.02 0.06 0.10

Panel B: OOS R? comparison, evaluation window 2010-2022 (%)

BTQ 0.75 0.60 0.84 0.65 0.20 0.38 0.67
[B-only 0.05 -0.10 0.15 0.02 -0.03 0.04 0.11

Panel C: full-sample coefficient comparison: 2000-2022

BTQ
Ak (%) 1.80 0.72 1.48 1.77 0.62 0.99 1.48
t-stat (4.18) (2.76) (3.52) (3.38) (2.24) (2.96) (3.69)
[-only
i (%) 0.38 0.31 0.56 -0.50 -0.33 -0.14 0.22
t-stat (1.07) (1.25) (1.71) (-1.23) (-1.52) (-0.71) (1.11)

Note: BTQ and f-only return predictions (Eq. 11 and 12), single-factor models (K = 1). The first four
columns repeat the same prediction exercises with k¥ = MKT, SMB, HML, MOM, respectively. The last
three columns report the summary statistics across the 153 JKP factors. The t-statistics (in parentheses) are
calculated using standard errors clustered by month. Return prediction R? is calculated without demeaning
(R?:=1-32, , (Pie41 — Firg1)/ > it i1, Where 7y 44y is predicted return) throughout the paper following
Gu, Kelly, and Xiu (2020).

We compare it with the “S-only” model, which is implied by a constant factor premium pu:
K

Pianl = 3 Biks + errorip, Vi, . (12)
k=1

We first present the results of the single-factor predictive regressions (K = 1), using
each of the four Fama-French-Carhart factors (MKT, SMB, HML, MOM) and the 153 JKP
factors (Table 2).

The key finding is that the BTQ model significantly outperforms the $-only model in
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predicting stock returns, with substantial R? improvements across different factor choices

33 Even with only one factor, the

and in both in-sample and out-of-sample evaluations.
BTQ model’s OOS return predictive R?’s are around 0.8% for MKT and HML, which are
among the highest fit within the 153 JKP factors. The median OOS R? across the 153 JKP
factors is around 0.4%, and 139 out of the 153 factors yield a positive OOS R2.3* This
return predictability at the individual stock level is economically significant and comparable
to unstructured state-of-the-art machine learning models that use a large number of firm
characteristics to predict stock returns, which typically achieve an OOS R? of 1% to 2%. In
contrast, the 3-only models have a low R? close to zero, with the median OOS R? across the
153 JKP factors at 0.04% and even the 75th percentile reaching only 0.11%.

Turning to the coefficients estimates, the BTQ model’s \; are significantly positive for
all four Fama-French-Carhart factors and for most of the 153 JKP factors. The economic
magnitude of the \; estimates is substantial. For example, Ayikr = 1.8%, meaning that
for one standard deviation increase in market factor ¢, the expected return of a stock with
a market beta of 1 increases by 1.8% per month, or 1.8% x 2 = 3.6% per month for a
stock with a market beta of 2, and so on.>® In contrast, the 3-only model’s u;, coefficients
are mostly statistically insignificant, with 90 out of the 153 JKP factors even exhibiting
negative coefficient point estimates.

In summary, the single-factor results show that the BT(Q model reliably predicts stock
returns, with coefficients consistent with the risk-based explanation, while the S-only model

fails in both model fit and coefficient estimates.

33For OOS evaluations, we estimate the model parameters (A, and u) using the sample period from
2000 to 2009 and apply these estimates to calculate the OOS R? for the period from 2010 to 2022. Return
prediction R? :=1— Zi’t (P41 — in\i7t+1)2 />0 riﬂ_l, where 7; 141 is the predicted return. These standards
are maintained throughout the paper.

34 Appendix C.5 provides further interpretation of the economic magnitude of these R? values. Roughly
speaking, with various simplifications, a one-monthly standard deviation shock in quantity corresponds to 1%
of the mutual fund sector’s market capitalization or about 0.2% of the total U.S. stock market capitalization.
Assuming a price multiplier of 5 (Gabaix and Koijen, 2022), this translates to approximately 1% = 5 x 0.2%
of expected return fluctuation, which fits about R? = 1% of the monthly variation of realized stock returns.

35See Appendix C.5 for additional details showing that the magnitude of the Ay estimates is comparable
to those reported in the literature.
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In addition, Appendix Table A.1 presents an incidental empirical finding regarding factor
returns: each factor’s return fy,41 is predictable by its quantity gx,, with the predictive
coefficients predominantly positive and statistically significant. However, the OOS R?’s are
unstable and mostly negative, due to the limited statistical power of the simple time-series
prediction of factor returns. As discussed in Section 2.2, while this time-series predictability
is consistent with the BTQ model’s cross-sectional return predictability, it is a much weaker
argument for the pricing power of quantity and is peripheral to our primary research focus
(see further discussion in Appendix C.2).

Moving onto multi-factor models, Table 3 presents the results for these models while
maintaining a relatively low dimensionality with /K < 6. This is achieved by using various
combinations of the Fama-French-Carhart (FF5C) factors. The BTQ model continues to
significantly outperform the [S-only model across all multi-factor specifications. Allowing
for multiple factors further boosts BTQ’s predictive accuracy, with the best OOS R? values
exceeding 1%. In contrast, the S-only model still struggles to predict stock returns, with low
R? values even within the sample.

Regarding factor importance, MKT stands out as the most prominent after controlling
for the contributions of other factors. It has the highest and most statistically significant
coefficients across all multi-factor models, despite an attenuation in Ayt as more factors
are included. HML and MOM also have positive coefficients but lack statistical significance.
The inclusion of these factors in the BTQ model increases both IS and OOS R?, indicating
that their BTQ terms provide additional predictive power and that they are priced factors.
Conversely, the coefficients for SMB, CMA, and RMW are either near zero or negative,
indicating they are not priced factors according to the BT(Q model. This is also evidenced
in the fact that the OOS R? drops when these factors are added to the model. The S-only
model’s py, coefficients are all insignificant or negative. (These numbers are relegated to
Appendix Table A.2.)

Comparing BTQ’s IS vs. OOS model fits, we observe slight reductions in R? when mov-
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Table 3: Predicting stock returns with and without quantity: multi-factor models

CAPM FF3 FF3C FF5 FF5C
K=1 3 4 ) 6
Panel A: IS R? comparison, full sample 2000-2022 (%)
BTQ 1.01 1.17 1.19 1.17 1.21
B-only 0.05 0.17 0.21 0.18 0.22
Panel B: OOS R? comparison, evaluation window 2010-2022 (%)
BTQ 0.75 1.03 1.07 0.44 0.65
B-only 0.05 0.15 0.22 -0.26 -0.05

Panel C: coefficients, full sample 2000-2022
BTQ, A\, (%) and t-statistics in parentheses

MKT 1.80 1.27 1.15 1.28 1.16
(4.18) (2.08) (1.96) (2.00) (1.98)

SMB -0.23 -0.16 -0.20 -0.10
(-0.77) (-0.59) (-0.69) (-0.38)

HML 0.82 0.50 0.80 0.50
(1.43) (0.70) (1.55) (0.73)

MOM 0.53 0.74
(0.71) (0.93)

CMA 0.10 0.08
(0.35) (0.28)

RMW -0.09 -0.25
(-0.28) (-0.68)

[-only

— see Appendix Table A.2 —

Note: BTQ and S-only return predictions (Eq. 11 and 12). Same as Table 2 but with multi-factor models

(K >1). The coefficients of the S-only model are relegated to Appendix Table A.2.

ing from IS to OOS for CAPM, FF3, and FF3C models, indicative of mild overfitting or

parameter instability. This underscores the robustness of the BT(Q model’s predictive power,

especially considering the inherent difficulty of forecasting monthly stock returns due to the

low signal-to-noise ratio in stock prices. For FF5 and FF5C, the IS R? continues to in-

crease slightly, while the OOS R? reverses to lower values of 0.5% and 0.7%. These levels

of prediction accuracy are still economically significant, but the gap between IS and OOS

R? indicates an overfitting issue. It suggests the ordinary least squares (OLS) estimation
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method has limitations for moderately higher-dimensional BT(Q models. The additional fac-
tors might be noisy or redundant and introduce sample estimation errors. Next, we adopt a

regularization method to select factors from a much greater number of candidates.

4.4 Taming the factor zoo with BTQ

The proliferation of proposed factors challenges the asset pricing literature, and the BTQ
model offers a new method to select factors. This method has stronger identification power
and economic relevance than traditional factor premium tests.

To implement this approach, we use the same return prediction framework (Eq. 11) but
overload it with a large number of proposed factors (K = 159, including six from FF5C and
153 from JKP). It is well expected that many of these factors are noisy or redundant when
controlling for other factors for pricing stock returns. To address this, we use the Lasso
method to induce sparsity in the predictive model and filter out the factors that are not
priced according to the BT(Q model.

Lasso is a regularization method that adds a penalty term to the OLS objective function
to shrink and threshold the coefficients towards zero. Specifically, the parameter estimates

solve the following optimization problem:

K

K 2
1 —~ 1
in —— E it] — E e B +w E — |\, 13
/\Ilnlx{l}( 2|1S| <r s — b ’k’tQk’t> o (qryt) Al 13)

3,telS k=1

where |IS| is the number of stock-month observations in the training sample, and w is the
regularization parameter that controls the strength of the penalty term.3¢
Figure 4 plots the model fit and factor selection results for the BTQ and S-only models

as the regularization parameter (w) varies. (The [-only model’s Lasso implementation is

similar; see technical details in Appendix B.2.) As w increases, the fitted BT(Q model

36The penalty on A is normalized by the standard deviation of gk, for technical reasons. It allows the
economic interpretation of A\, with respect to the standardized g as used throughout the paper. See
technical details in Appendix B.2, where the Lasso essentially is conducted with the pre-standardized gy +,
and these two forms are mathematically equivalent.
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Figure 4: Return prediction with factor selection from the factor zoo
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Note: Model fit and parameter estimates as the regularization parameter (w, horizontal axis) varies. In
Panels A and B, the IS R? is evaluated in the training window (2000-2009), and the OOS R? is the same
model evaluated in the testing window (2010-2022). Panels C and D plot the parameter estimates from
the training window, which are also brought out of the sample for evaluating the OOS R? in Panels A and
B. The selected factors (colored curves) are, for BTQ: market (mkt), betting against beta (betabab_126d),
return volatility (rvol_21d), idiosyncratic volatility from HXZ g-factor model (ivol hxz4 21d), and book-
to-market enterprise value (bev_mev); and for S-only, percent operating accruals (oaccuruals ni). The
unselected factors are in gray, reported in Appendix C.4 with factor importance measures. The vertical
black line indicates the tuned w based on cross-validation; see Appendix B.2 for details.

becomes more parsimonious, as shown by the decreasing IS R? (Panel A, blue curve) and
the decreasing number of selected factors (those with non-zero \;, in Panel C). This behavior

is expected from Lasso. More importantly, the OOS R? (Panel A, red curve) displays a hump
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shape, with a broad and relatively stable peak that reaches around 1.0%. This suggests that
the BTQ model’s predictive power is strong and robust to the choice of w. In contrast,
the B-only model’s OOS R? never exceeds 0.3% and is only positive in a smaller range of
w values. This comparison once again highlights that quantity is essential for a risk-based
explanation of expected stock returns.

The most important application of the BT(Q + Lasso setup is a new way to investigate
which factors are important for pricing stock returns. We find that only a few factors out
of the factor zoo are sufficient for the models’ high predictive power. The selected factors
(those with non-zero Ay when OOS R? peaks) are colored in Panel C. We find that MKT is
the first and most important factor, consistent with the observations in previous sections (4.1
to 4.3). The MKT factor is central to multi-factor pricing theories such as Merton’s (1973)
ICAPM model, and has historically been the most important factor in workhorse empirical
models such as the CAPM and Fama-French models. Nevertheless, some research casts
doubt on whether market beta is indeed related to expected returns (Black, 1972; Black,
Jensen, and Scholes, 1972; Frazzini and Pedersen, 2014). Our results show that the market
factor equipped with quantity variation remains highly effective in explaining expected stock
returns. However, this conclusion cannot be reached with -only models.

The other selected factors include three based on technical information, betting against
beta, return volatility, and idiosyncratic volatility from Hou, Xue, and Zhang’s (2015) g-
factor model, and one based on fundamental information, book-to-market enterprise value
(which is a variant of the HML factor). These are among the usual suspects in the literature,
while our results reinforce their importance when considering quantity. Moreover, it is worth
noting that the A\ estimates of these selected factors from the BTQ model are all positive,
which is consistent with the risk-based explanation discussed in Section 2.2. On the other
hand, SMB and other size-related factors are excluded by the Lasso selection process. The
unselected factors are in gray and can be found in Appendix C.4 with factor importance

measures.
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The S-only model only selects one factor, percent operating accruals (Panel D), with a
negative coefficient. This result is inconsistent with the risk-based explanation and likely
reflects the model’s misspecification, as indicated by its low model fit.

Additionally, choosing w based on the OOS R? peak is sufficient for the purpose of
interpreting the BTQ model’s factor selection. However, for the purpose of forecasting stock
returns, it has a look-ahead bias. To address the problem, we provide the tuned w using only
IS information via ten-fold cross-validation, as shown by the vertical black lines in Figure
4 (see technical details in Appendix B.2). The IS tuned w is close to the OOS R? peak,

suggesting the robustness of prediction and selection results.

4.5 BTQ with latent factors

Latent factors estimated using statistical methods to fit the realized time-series variation
of returns have shown superior explanatory power for expected returns.®” We demonstrate
that the BTQ framework can be applied to latent factors as well, and it leads to a strong
two-factor structure with high predictive power for stock returns that is unattainable with
the S-only counterpart.

We extract the principal components (PC) of the factor zoo portfolio returns, which are
the linear combinations of the factor returns that capture the most time-series variation.?®
Then, we construct E and, in turn, the quantity ¢ for each of these PC factors from scratch,
following the same procedure reported in Section 3. Based on these variables, we conduct the
same BTQ predictive regression with Lasso as in the previous section. The new set of B\ and
q variables provides some external validation of our method’s robustness and generalizability.

Figure 5 shows that the BTQ model with PC factors has strong predictive power for stock
returns, with the OOS R? peaking at around 1.0%, similar to the previous Figure 4 using

original factors. The high OOS R? is, once again, robust to the choice of w, as evidenced by

37See, e.g., Kelly, Pruitt, and Su (2019, 2020), Kozak, Nagel, and Santosh (2020), Lettau and Pelger
(2020), Chen, Roussanov, and Wang (2023), and Chen, Roussanov, Wang, and Zou (2024).

38Gpecifically, we use the first 50 principal components estimated from the monthly returns of the FF5C
and 153 JKP factors from 1970 to 2009.
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Figure 5: Return prediction with PC and factor selection
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Note: Model fit and parameter estimates as the regularization parameter (w, horizontal axis) varies. In
Panels A and B, the IS R? is evaluated in the training window (2000-2009), and the OOS R? is the same
model evaluated in the testing window (2010-2022). Panels C and D plot the parameter estimates from the
training window, which are also brought out of the sample for evaluating the OOS R? in Panels A and B.
We perform Lasso regression using the first 50 principal components derived from the monthly returns of
the FF5C and JKP factors from 1970 to 2009. The unselected factors are in gray. The vertical black line
indicates the tuned w based on ten-fold cross-validation; see Appendix B.2 for tuning details.

the broad peak of the OOS R? hump-shaped curve. In contrast, the S-only model with PC
factors hardly delivers any predictive power, with OOS R? remaining below zero for almost

all w values.

More importantly, Panel C reveals a strong two-factor structure, with PC1 and PC2
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emerging as the most important factors for predicting stock returns. The magnitude of their
A estimates dominates those of subsequent PC factors (depicted as gray curves). This par-
simonious structure attained with the BT(Q model with latent factors can explain expected
stock returns well with high OOS R2. This is consistent with the literature that suggests
latent factors are helpful in “shrinking the cross section” and reducing the dimensionality of
the factor zoo (Kozak, Nagel, and Santosh, 2020).

Notably, the signs of the A\ estimates for the selected factors, PC1 and PC2, are both
positive. This is required by the risk-based theory, regardless of how the signs of the PCs
are specified, and further reinforces the validity of the BTQ model. In contrast, the S-only
model’s selection and parameter estimates exhibit no discernible pattern, which likely stems

from estimation noise, as the S-only model is misspecified.

4.6 Robustness of the main predictive results above

This subsection reports robustness checks that validate the BTQ model’s predictive power
reported above. We have already shown the BT(Q model is robust to different factor speci-
fications, including single-factor, multi-factor, selected factors, and latent factors extracted
from the factor zoo. We further change the specifications in different dimensions, including

various sub-sample evaluations and alternative constructions of the quantity variable.

Subsamples. We first evaluate the forecasts of the BTQ models reported above in dif-
ferent size and time sub-samples. Table 4 Panel A breaks down the OOS panel into five
size groups according to NYSE market capitalization quintiles and reports the OOS R? in
each size group. Panel B similarly breaks down the OOS evaluation into three sub-periods:
2010-2014, 2015-2018, and 2019-2022. Panel C reports the original joint OOS (2010-2022)
evaluation for reference. This table evaluates the BT Q models with factors selected from the

factor zoo (initially reported in Section 4.4) and with selected PC factors (in Section 4.5).%

39Table 4 evaluates the OOS forecasts (7; ;1) produced with the in-sample cross-validated hyperparameter
w. That is, Panel C reports the same OOS R? values at the vertical black line in Figures 4 and 5 Panel A.
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Table 4: BTQ OOS prediction accuracy (R* in %) in size and time sub-samples

evaluation sample # of obs. selection PC+selection

Panel A: size group evaluation

1 (small) 323,617 0.46 0.44
2 165,059 1.12 1.07
3 141,153 1.48 1.40
4 115,763 2.02 1.91
5 (big) 103,927 2.16 2.09
Panel B: sub-period evaluation

2010-2014 321,425 1.16 1.18
2015-2018 255,959 0.15 0.14
2019-2022 272,135 1.00 0.92

Panel C: original benchmark OOS evaluation
OO0S (2010-2022) 849,519 0.81 0.77

Note: OOS R? evaluated in different size and time sub-samples for the BTQ models with factors selected
from the factor zoo (in Section 4.4) and with selected PC factors (in Section 4.5). Panel A breaks down the
OO0S panel into five size groups according to NYSE market capitalization quintiles and reports the OOS R?
in each size group. Panel B breaks down the OOS evaluation into three sub-periods: 2010-2014, 2015-2018,
and 2019-2022. Panel C reports the original joint OOS (2010-2022) evaluation for reference.

Appendix C.6 contains the same sub-sample robustness evaluations for the Fama-French-
Carhart factors (in Section 4.3), and the results are mostly the same.

Table 4 shows the BTQ model’s predictive results reported above are consistent in most
size and time sub-samples. In particular, Panel A shows the accuracy is higher in large stocks,
which are usually the most challenging section for stock return prediction. Characteristics-
based anomalies and machine learning models typically find stronger predictive power in
the small groups due to stronger limits to arbitrage in small stocks, including illiquidity
and information asymmetry. This result indicates that BTQ’s predictive power can be more
reliably implemented in investment strategies in practice, given liquidity costs and trading

constraints are typically weaker for larger stocks.”

40Cf. Jensen, Kelly, Malamud, and Pedersen (2024); Goyenko, Kelly, Moskowitz, Su, and Zhang (2024).
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Table 5: BTQ OOS R? (%) robustness to lookback window length in g construction

lookback (h)  selection PC+selection lookback (h) selection PC+selection

1 0.36 0 7 0.78 0.88
2 0.41 0.42 8 0.62 0.70
3 0.65 -0.15 9 0.62 0.10
4 0.49 0.38 10 0.33 0.11
S 0.85 0.82 11 0.48 0.19
6 (benchmark) 0.81 0.77 12 0.48 0.25

Note: O0S R? evaluated for BTQ models with gy ; constructed with alternative lookback window lengths
(h) using factors selected from the factor zoo (in Section 4.4) and selected PC factors (in Section 4.5).

Regarding sub-periods, the BTQ model’s predictive power is mostly stable over time.
The first and the last sub-periods (2010-2014 and 2019-2022) have higher R? values than the
middle sub-period (2015-2018) in both model specifications. We attribute this to the fact

that quantity fluctuations in the middle sub-period are less volatile, as shown in Figure 1.%!

Alternative constructions of the quantity variable. Next, we evaluate the robustness
of the BT(Q model to alternative specifications in constructing the quantity time series gy .
In particular, there is no explicit theoretical guidance on whether factor-level flows have
immediate or lagged effects on factor premium, or how fast past flows’ effects decay. The
benchmark specification of the quantity variables (in Section 3) accumulates past flows in a
six-month lookback window, which aligns with the common expectation. We now change the
specification by constructing the quantity variables using lookback windows ranging from 1
to 12 months. That is, in Eq. 9, h = 6 is replaced by A = 1 to h = 12. The same empirical
analyses from the previous sections are re-run with these alternative quantity variables.
Table 5 shows the BTQ model’s predictive accuracy is robust to alternative lookback

window lengths in constructing the quantity variables. Certain perturbations (such as h =5

4INotice for each model specification, the predictive model is trained once with the 2000-2009 training
sample (IS). Repeated size group-specific training (a.k.a. expert models) and rolling-window training have
the potential to further improve the R? in OOS sub-samples above. We leave these extensions for future
research due to their focus on forecasting engineering.

38



or 7) can even improve the R? meaning the benchmark results are not sensitive to the exact
specification of the quantity variable. Having an h that is too short or too long will hurt the
predictive performance, but the OOS R? values are mostly significant and positive, especially
for the method that directly selects factors from the factor zoo.

Additionally, Table 5 offers suggestive evidence regarding the speed and persistence with
which factor flows influence sophisticated investors’ pricing of factor risks. Flow shocks
likely have an immediate impact on the factor premium next month, given that h = 1
already has some predictive power. The R? is higher with an intermediate window (h =
5, 6, or 7), suggesting the lagged flows in the recent few months also have impacts on
factor premium, and that accumulating flows in a lookback window has, at least, statistical
benefits in smoothing the predictors. On the other hand, longer windows near one year
suppress prediction accuracy, suggesting that flows older than seven months have attenuated
impacts on factor premiums. The attenuation is likely related to mechanisms through which
sophisticated investors can gradually unwind their absorbed positions and adjust their risk
holdings over time. A more detailed investigation of the dynamics between factor flows
and factor premiums is left for future research, which likely requires models and data more

focused on investor holdings.

5 Quantity must be combined with risk to forecast returns

This paper emphasizes a risk-based explanation of expected stock returns that incorporates
quantity information. But is the risk modeling essential? Can quantity information alone
explain expected stock returns? This section makes the case that risk and quantity must
operate in tandem to forecast returns effectively. First, stock-level quantity information
must be aggregated at the factor level to predict stock returns. Second, almost all factor-
level ¢ variables in the “factor zoo” exhibit predictive power; however, each ¢ is effective
only in explaining the cross-sectional return dispersion along its corresponding factor’s own

risk dimension—any mismatch between § and ¢ significantly diminishes prediction accuracy.
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These results show that previously reported empirical success is unique to the factor risk

structure, supporting our economic interpretation.

5.1 “Quantity-only” models do not explain expected returns

We examine an alternative economic model in which stock-level flow and quantity variations
directly affect the expected stock returns without considering the factor structure and the
arbitrage pricing condition. This exercise is important for understanding the joint economic
role of quantity and risk in asset pricing. The main results presented earlier compare the
benchmark BTQ model against the “#-only” baseline that accounts for risk without quantity;
here, we demonstrate that an alternative “quantity-only” baseline—relying solely on quantity
while disregarding risk—also falls far short in explaining expected stock returns.

In the benchmark model (BTQ), stock-level quantity variations are first aggregated to
the factor-level quantities, which affect factor premiums, and then feed back to stock-level
expected returns. In contrast, the “quantity-only” model specifies that stock-level flow and
quantity variations directly affect expected stock returns, short-circuiting the factor premium

adjustment mechanism (see the contrast in Figure 6). Specifically, the alternative model is:

Eeriern = XG0, Vi, t, (14)

where ¢t is a stock-specific flow or quantity measure, and A\$*°° is the sensitivity coefficient

of stock returns to q,fft“k. (Astok may or may not vary across stocks, to be specified below.)

This “quantity-only” model implies a fundamentally different economic mechanism, al-
though Eq. 14 is similar in form to the main model’s factor premium specification in Eq. 3.
In the main model, factor premiums vary dynamically, yet the cross-sectional no-(statistical)
arbitrage pricing condition (with respect to the factors) holds each period. In contrast, the

alternative model dispenses with the APT condition. For instance, two stocks with identical

risk exposures but differing noise flow shocks are priced differently by the alternative model,
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Figure 6: Comparison of predictive architectures of the two models

A. BTQ (benchmark) B. “quantity-only” (alternative)
quantity 1 Er 1 quantity 1 Er1
factors
quantity 2 Er 2 quantity 2 Er 2
quantity N Er N quantity N Er N

Note: A. BTQ model: stock-level quantity variations affect expected stock returns wvia quantities of fac-
tor risks and factor premiums. B. “quantity-only” alternative model: stock-level quantity directly affects
expected stock returns, short-circuiting the factor premium mechanism.

creating an immediate arbitrage opportunity. The “quantity-only” model implies a lack of
cross-sectional substitution, such that each stock is priced independently of its factor expo-
sures. This might be the case if rigid frictions prevent cross-sectional arbitrage; or if stocks’
idiosyncratic risks are not diversifiable and individually priced.

We experiment with various specifications of Eq. 14 and find that none come close to the

stock,h

BTQ model’s explanatory power for expected stock returns. Specifically, stock-level ¢;,

is constructed similarly to that of the factor-level in Eq. 9:

stock
$ﬂ0wi,t—h’

h—1
stock,h , 1 2 :
N h 2~ market_cap; , ;_j’

Vit, and h=1,...,12.2 (15)

We explore different specifications of the sensitivity coefficient A% with varying de-

grees of parameter freedom. Table 6 Panel A specifies A% as a constant for all stocks:

_ )\stock stock,h

Tit+1 q;,  +error;;1;. Panel B allows a size-dependent sensitivity coefficient such

that A5 is indexed by the NYSE size quintile of the stock: r; ;1 = AStock gotodkh 4

size_quintile(s,t) 1,t

error;+1. Panel C allows stock-specific )\ft“k, which is the most flexible specification:

42We normalize the dollar stock-level mutual fund flow ($flowS’y ¢ see Eq. 7) by the stock’s one-month-

lagged market capitalization, so that the sensitivity coefficients are more interpretable. We accumulate past
flows over various lookback windows, since we are agnostic about whether flow shocks have immediate or
lagged effects on expected returns.
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Table 6: “Quantity-only” alternative model does not forecast stock returns

A. constant \stock B. Mstock by size quintile  C. XSk by stock

h IS R2(%) 00S R*(%) Atk tstat IS RX(%) O0S R*(%) 1S R*(%) O0S R*(%)

1 0.000 0.000 -0.10 -0.27 0.003 -0.001 0.47 -232
2 0.000 -0.001 0.05 0.12 0.002 -0.003 0.44 -215
3 0.000 0.000 0.17 0.29 0.003 0.000 0.39 -155
6 0.005 0.006 0.75 1.01 0.007 0.006 0.41 -107
9 0.004 0.004 0.75 0.99 0.006 0.006 0.38 -96
12 0.003 -0.007 0.77 1.01 0.006 -0.004 0.38 -81

— )\stockq:tOCkﬁ

Note: Panel A: univariate predictive regression, r; 41 + error; ;1. B: size-dependent pre-

stock stock,h

dictive regression, r; ;11 = /\size,quintile(i, it

size_quintile(z,¢
:, + error; 4+1. The R?

t
+ error; t41, where \Stock ) is indexed by the NYSE
size quintile of the stock. C: stock-specific predictive regression, r; 441 = )\ﬁto‘:kqsttmk’h
values are in percentages, e.g., 0.005 in row h = 6 means 0.005%, a very small value. The table skips some
rows to save space, see complete results (h =1 ~ 12) in Appendix Table A 4.

_ )\stock stock,h
7

43
Tit+1 Qi ¢ + error; 1.

The “quantity-only” models are too weak and unreliable to predict stock returns in any

Astock specification’s

alternative specification, as shown in Table 6. In Panel A, the constant
in-sample R? values are about 100 times smaller than the BTQ model’s. The out-of-sample
R? values are not only small in magnitude, but also negative for some lookback lengths (h).
The Ms*°% estimates are mostly positive, consistent with the existing literature—outflows
from noise traders have negative concurrent price impacts and positively predict future
returns.** However, the estimates are statistically insignificant, and too weak to offer a

/\stock

meaningful R? in predicting stock returns. Allowing size-dependent slightly improves

these predictive power evaluations, but no qualitative changes (Panel B). The low R? values

43The specification in Panel B (size-dependent \**°°) effectively runs five separate univariate predictive
regressions, one for each size bin (“mixture of experts” in machine learning terms). The specification in Panel
C (stock-specific )\ftOCk) effectively runs stock-by-stock time-series predictive regressions. To address the
unbalanced panel, we restrict the analysis to stocks with more than 80% of monthly observations available
in both the in-sample and out-of-sample windows. Stocks with fewer observations would be even more
challenging to forecast.

44Gee Appendix C.5 for additional details showing that the magnitude of these A"k estimates is compa-
rable to those reported in the literature.
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suggest that these two specifications are too restrictive, and that the model is underfitting
the data. In Panel C, stock-specific A3 allows a much greater degree of freedom in param-
eterization (thousands of stocks vs. one or five parameters). The in-sample R? mechanically
increases but is still smaller than the BTQ model. More importantly, the out-of-sample R?
values are extremely negative, suggesting the in-sample R? values are greatly exaggerated
by overfitting.

The poor performance of the “quantity-only” alternative model underscores that the em-
pirical success of the BT(Q model is not driven by quantity alone, highlighting the necessity
of combining quantity and risk to explain expected stock returns. In particular, the compari-
son implies that the factor structure is still essential in modeling expected stock returns, and
that cross-sectional quantity-driven mispricing (alpha) is too weak to detect.?® This is con-
sistent with the view that statistical arbitrage activities by some sophisticated investors are
effective in enforcing the cross-sectional APT condition, even in the presence of noise traders
(Kozak, Nagel, and Santosh, 2018). The differing performance of BTQ and “quantity-only”
models mirrors the contrast of macro vs. micro elasticities in Gabaix and Koijen (2022). At
the stock level, securities are highly substitutable, whereas quantity’s effect on prices is more
salient at the factor level due to greater inelasticity of factor demand (e.g., Peng and Wang,
2021; Li and Lin, 2022).

From a statistical and machine learning perspective, we can view both the BTQ and the
“quantity-only” alternative as prediction models of stock returns based on the stock-level
quantity information, i.e., they use the same predictors to predict the same targets. The
difference is that the BT(Q model employs a dimension reduction, aggregating predictors
to the factor level, which, in turn, are used to predict the whole cross section. This is an
encoder-decoder architecture in machine learning terms, where the low-dimensional “code”

is the factor-level ¢ (see Figure 6 Panel A for the encoder-decoder illustration). In this

45The “quantity-only” model (Eq. 14) can be viewed as a quantity-driven alpha, especially when viewed
in conjunction with the BTQ predictors: Eyri i1 = AR % + 37, AfBikeqre. The term A§tockgstiock
captures dynamic alpha, the part of the quantity-driven expected stock return that is not explained by the
risk channel (BTQ, or the second term).
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perspective, BTQ performs well in forecasting because encoding reduces the noise in the
predictors and captures the economically meaningful quantity variation aggregated at the
factor level. In contrast, the “quantity-only” model is limited by the noisy inputs at the

stock level .6

5.2 Different factors’ ¢’s explain risk-return tradeoffs along different dimensions

The analysis above highlights the need to aggregate the quantity information at the factor
level to effectively predict stock returns, consistent with our risk-based explanation. In
addition, the theory also imposes a corresponding structure between a factor’s exposure and
the factor’s quantity—BT(Q must be built with each factor’s own g times its own ¢q. We
show that dispensing with this corresponding structure does not unleash more statistical
power but, to the contrary, reduces it significantly, further validating the risk-return tradeoff
channel of quantity’s role in expected stock returns.

We know that stock returns exhibit a multi-factor risk structure. A remarkable aspect
of BTQ is that its pricing power holds independently across a diverse array of factors in the
“factor zoo” (see Table 2 and repeated in Figure 7 Panel A). We now show that each factor’s
q provides distinct pricing information along its respective risk dimension. Mismatching one
factor’s 8 to another factor’s ¢ significantly reduces the prediction accuracy, meaning that
a factor’s ¢ pertains to explaining the cross-sectional return dispersion only along its own
risk direction. Each dimension of risk provides independent evidence on the ¢-u association,
supporting the robustness of the economic interpretation. This result refutes the idea that
the main results are driven by one (or a few) special “secret sauce” ¢ series.

In detail, Figure 7 Panel A plots the benchmark distributions of the 159 OOS R? values
for the single-factor BTQ models, with each factor’s § times its own ¢ (repeating the result

in Table 2). More than 90% of these factors yield positive OOS R? values, demonstrating

46See Gu, Kelly, and Xiu (2021) and Kelly, Malamud, and Pedersen (2023) for applications of encoder-
decoder structures in asset pricing. Notice that BTQ specifies both the encoding and decoding weights as (8
according to economic theory, rather than solely relying on statistical estimation.
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Figure 7: BTQ vs. mismatched BT(Q variants in predicting stock returns

A. Benchmark BTQ: each factor’s 8 times its ¢ m

B. Mismatched: each factor’s 3 times;n\kth/\

Cross mismatched: 8;.q;, Vk # j /)
C. Each factor’s S times the first PC of the ¢ variables Jﬂ
.. PC2 P

e PO ~—

-5 —4 -3 -2 -1 0 1
00S R?* (%)
Note: Each distribution represents the outcomes (OOS R? values) of (A) 159 single-factor BTQ models,
or (B, C) 159 mismatched BTQ variants, except Line “Cross mismatched” has 159 x 159 — 159 = 25,122

OO0S R? values. Kernel density estimates’ (KDE) areas under the curve are standardized across all the 8
distributions. Vertical lines, thin: 10, 90 quantiles; thick: 25, 50, 75 quantiles.

the effectiveness of the BT(Q model when correctly specified.

The subsequent panels are BTQ variants where $ and ¢ are mismatched in various ways.
The first variant in Panel B pairs each factor’s 3; x, with the market factor’s quantity gums -
The second distribution is for the “cross mismatched” BT(Q variants: each factor’s § is
paired with the ¢ of every other factor (5;x: X gj¢, Vj # k), resulting in 159 x 159 — 159 =
25,122 mismatched models. Panel C examines any underlying common signal among the
159 ¢ series, by pairing each factor’s 3 with a principal component of the g series.*”

The mismatched variants perform significantly worse than the benchmark BT(Q model.
When correctly specified, more than 90% of the factors in the “zoo” yield BTQ models with
positive OOS R? values. However, the mismatched variants have approximately half of their
density below zero, often with long left tails of highly negative R? values. In particular, the
market factor’s ¢ does not generalize to other factors. This means that the market factor’s

q is not a special series that gives rise to other factors’ BT(Q results, despite its dominant

4TNotice, we conduct PCA of the 159 ¢ series here, rather than calculating the quantities for the PCs of
the factor returns as in Section 4.5. Appendix Figure A.3 Panel B reports the properties of the PC g series.
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time-series variation (Figure 1) and leading prominence in factor selection (Figure 4). Other
factors’ ¢’s are essential to explain the risk-return tradeoff along their respective risk dimen-
sions. The same conclusion holds for each principal component ¢ variant.*® These results
highlight the independence of each factor’s risk-return tradeoff and its unique association
with its own ¢, providing robust evidence against the idea that our main results are driven

by some particular signals in the ¢ series.

6 Quantity or alternative channels driving factor premiums?

In the economic framework of the BTQ model, we argue that quantity is associated with
factor premiums, representing the degree of cross-sectional risk-return trade-offs. Can alter-
native economic channels explain the observed empirical success of the BTQ model? What
if some other underlying state variables drive the reported variation in factor premiums and,
with quantity variables merely reflecting those state variables? If that is the case, the BTQ’s
reported empirical performance is merely a facade, and quantity would not be the direct
driver of factor premiums.

To investigate this possibility, we examine alternative variables, including factor momen-
tum signals and a large set of macroeconomic variables, both of which are well-documented
in previous studies as predictors of factor returns. We find that their empirical performance
is far behind the BTQ model across a wide range of empirical specifications. These findings
suggest factor quantity variation is directly associated with factor premiums and further
validate the BT(Q model’s economic channel.

The first exercise considers factor momentum and retail flow’s “performance chasing”
behavior. Factor momentum implies past factor performances are positively associated with
future factor returns. Meanwhile, retail mutual fund flows also positively respond to past

performances.*® Can these two forces combined explain BTQ’s reported empirical perfor-

48In terms of the right tails, the market ¢ and the second principal component ¢ retain some factors’
predictive power from the benchmark BTQ model, likely due to the two’s commonality with those factors.
49Factor momentum is well-documented in the literature (e.g., Moskowitz, Ooi, and Pedersen, 2012; Gupta

46



Table 7: BTQ vs. “beta times momentum”

CAPM FF3 FF3C FF5 FF5C selction PC+selection

BTQ, benchmark results reported in Section 4

0.75 1.03 1.07 0.44 0.65 0.81 0.77
“beta times momentum”, best of 1- to 12-month momentum signal formation periods
0.01 -0.05 -0.04 0.12 0.09 0 0

Note: All numbers are OOS predictive R? in %. To save space, we only report the best R? values across
the lookback window lengths. The complete results are available upon request, where most of the R? values
are negative and with no discernible pattern across varying formation length h = 1 ~ 12. R? = 0 is because
Lasso selects no predictors, and the model forecasts zero return for all stock-months.

mance?

The answer is no. First, this channel would imply a negative ¢-u association, which is
opposite to the BTQ model’s prediction and our empirical findings. Performance-chasing
behavior of retail investors would reduce sophisticated investors’ holdings (¢) when past
factor returns are high. Under factor momentum, this reduction would be associated with
high future factor returns—contradicting the observed positive association. Regardless of the
sign restriction, the data show that replacing g, in the BT(Q model with a variety of factor-
level momentum /reversal signals fails to yield reliable predictions of stock returns. Even
the best “beta times momentum” predictor specifications (f;x: X momy;, where momy , is
the past return of factor k in 1- to 12-month windows) have only slightly positive OOS R?
values, with most cases yielding negative values (see Table 7). Our interpretation is that while
factor momentum and performance-chasing are respectively valid phenomena supported in
the literature, they are insufficient to reproduce the explanatory power of BT(Q, and that
our g variable captures quantity variation beyond performance-chasing alone.

The second exercise examines whether macroeconomic variables or aggregate financial

metrics, used individually or combined linearly, can replace the ¢ variables and provide pre-

and Kelly, 2018; Ehsani and Linnainmaa, 2022; Arnott, Kalesnik, and Linnainmaa, 2023). Relatedly, Hueb-
ner (2023) demonstrates the generation of price momentum in equilibrium driven by investor demands.
Mutual fund performance chasing has also been extensively studied (e.g., Lou, 2012; Ben-David, Li, Rossi,
and Song, 2024).
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Table 8: BTQ vs. “beta times macro variables”

A. BTQ (benchmark: market beta times market q)
0.75

B. Market beta times each macro variable (126 FRED-MD variables one at a time)

best of the 126  95th percentile 75th percentile 50th percentile 25th percentile
0.28 0.18 0.00 -0.12 -0.63

C. Market beta times the principal component of the macro variables

PC1 PC2 PC3 pPC4 PC5h
-0.17 0.01 -1.05 -0.09 -0.46

D. Market beta times the best linear combination of the macro variables

OLS (best in-sample fit, no regularization) LASSO (best among reg. param.)
< —100 0

Note: Predicting stock returns with conditional CAPM predictors in the form of “market beta times ...”.

All numbers are OOS R? in percentage. Multi-factor results in Appendix Table A.5 are similar. Details of
Panel D results across regularization parameters are in Appendix Figure A.5.

dictive power comparable to the BTQ model. We explore the FRED-MD dataset (McCracken
and Ng, 2016), which contains a comprehensive set of 126 monthly macroeconomic variables,
including dividend yield, default spread, and personal income growth. These are frequently
used as conditioning variables in conditional factor models (Jagannathan and Wang, 1996;
Lettau and Ludvigson, 2001; Petkova and Zhang, 2005; Daniel and Titman, 2011).°

The results show that neither these variables nor their linear combinations come close to
q’s predictive power. When tested individually in the form of “market beta times a macro
variable,” even the best-performing macroeconomic variable among the 126 series achieves an
OOS predictive R? that is only a fraction of the “market beta times market ¢” specification.
Most macroeconomic variables yield negative OOS R? (Table 8 Panels A vs. B).5! For linear
combinations of the macroeconomic variables, neither unsupervised principal components

(Panel C) nor supervised combinations fitted on stock returns (Panel D, fitting details in

50We pre-process the Fred-MD series following standard procedures, detailed in Appendix C.7.

51The best macro variable, with R? = 0.28%, is unemployment insurance initial claims. The second and
third are housing starts in the northeast and personal consumption expenditures on services, respectively.
These variables offer no coherent economic explanation, as they were chosen ex post.
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Appendix Figure A.5) yield any predictive power.”® Multi-factor specifications report similar

results in Appendix Table A.5.

7 Conclusion

This paper considers a new but important aspect of risk’s economic role in determining
asset prices—the quantity variation in investors’ risk holdings induced by trading flows. The
economic rationale is simple: when sophisticated investors hold more of a systematic risk
factor, they require greater compensation for bearing that risk, which in turn drives the
expected return of every stock exposed to the factor. Yet the empirical model yields a
compelling risk-based explanation for expected stock returns.

We show that incorporating quantity into canonical factor pricing has important impli-
cations for asset pricing studies with three new findings. First, quantity variation elicits
risk-return tradeoff relationships, which have been hard to capture with g only and thereby
cast doubt on whether risk explains expected returns. We find the cross-sectional relation-
ship between factor exposures and expected returns (S-Er relationship) strongly depends
on factor quantity variation, and the previous null result is a mixed average unconditional
on quantity. Second, quantity enables a risk-based predictive model (termed beta times
quantity, BTQ) for monthly stock returns. The model delivers high prediction accuracy
in this hard empirical task dominated by unstructured machine learning models and firm
characteristics. Third, incorporating quantity provides a new way for factor selection and,
thereby, new answers to the factor zoo problem. Instrumenting factor premiums with quan-
tity variation has not only greater identification power but also more economic relevance
than traditional factor premium tests. We find that a few factors out of the factor zoo are
selected for the model’s high predictive power, and in a latent factor setting, the first two

principal components overwhelmingly dominate the remaining components.

52Principal components of the macroeconomic series are used for forecasting in, for example, Stock and
Watson (2002) and Ludvigson and Ng (2009) for the bond market.
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Besides showing the improvements against the [-only baseline, we also implement var-
ious versions of the “quantity-only” model, which directly relates stock-level quantity to
expected stock returns. We find this alternative baseline also falls short by far in explain-
ing expected stock returns. This result implies that the stock returns’ factor structure and
the no-arbitrage pricing condition are important for modeling expected returns, even in the
presence of significant price impacts from noise flows.

In summary, we show both quantity and risk should work together for modeling expected
stock returns. At a high level, this is a natural result given the interaction between sophis-
ticated investors and noise traders. It bridges factor pricing (which emphasizes rational
agents’ aversion to risk) and the price impact of noise flows (which emphasizes the price
dislocation effects of non-fundamental flows and inelastic demand). The contribution of this
empirical paper is providing a simple and actionable way to integrate quantity information
into canonical factor models and showing its significant improvement to the factor model’s
empirical relevance.

We are confident that future research can similarly incorporate quantity information into
other existing asset pricing methods to yield new insights for various research questions.
Another interesting direction for further research is to explore a richer set of asset hold-
ings information to construct other quantity variables; a concurrent paper (Gabaix, Koijen,

Richmond, and Yogo, 2023) is highly relevant for this potential direction.
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Online Appendix of “Quantity, Risk, and Return”

A Equilibrium theory and microfoundation of quantity-factor pre-

mium relationship

In this section, we develop a theoretical model to provide a formal and explicit interpre-
tation of the empirical framework and findings. This model formalizes key concepts such
as sophisticated investors’ inelastic demand, noise traders’ flows, and how their interaction
in equilibrium determines factor premiums. The microfoundation delivers the main empir-
ical specification that observed factor premiums (which are the equilibrium outcomes) are
positively related to factor quantities (Eq. 3). The model highlights two theoretical un-
derpinnings that support the strong explanatory power of BTQ for expected stock returns
(i.e., high R?): 1) sophisticated investors exhibit sufficiently inelastic demand, driven by two
primitive conditions: high factor-level risk aversion and limited risk-bearing capacity relative
to the aggregate stock market; and 2) the noise traders’ flows are indeed noisy and exhibit

sufficient variation.

A.1 Factor pricing identities when factor premium is an equilibrium outcome

We first provide basic factor pricing identities when the factor premium is allowed to be an
endogenous equilibrium outcome. We show that a high factor premium and a low price of
the factor risk are two sides of the same coin. The model has two periods ¢t and ¢ + 1, and
the risk-free rate is r.

Random state variable f;+1, with Et[ﬁH] = 0, represents the physical systematic risk of
a factor, independent of time-t equilibrium trading outcomes. For simplicity and without
loss of generality, we omit subscript £ for variables fas well as ¢, i etc. below, as the theory
applies generically to any factor.

Let fi+1(q:) be the payoff of a zero-cost factor portfolio that has a unit exposure to ﬁﬂ.
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This variable represents the observed long-short portfolio return (e.g., the SMB series from
French’s website). With “(¢;),” we allow for a general form where the payoff random variable

depends on the equilibrium quantity variable ¢;. By construction,

feri(a) = ﬁ+1 + (), Vg, (A1)

where pi(q) = E[fi+1(q:)] is the factor premium, the focus of this section. In the cross
section, by the APT, a stock with exposure f; to systematic risk ﬁ+1 has expected excess
return S (q;) (assuming no exposure to other systematic risks).

Turning to time-t prices, we define Ptf (@) = Pricet[ﬁ+1](qt) as the price of the state
contingent payoff f,.1, where Price,| - |(q;) := E¢[My1(q) - | is the payoff pricing operator
with the stochastic discount factor (SDF) M;,1(q;). Once again, “(¢;)” indicates that the
prices are endogenous to ¢;.

By construction, the price of the factor portfolio payoff is 0: Price;[fi11(q:)](q:) = 0, Vg;.
This leads to the intuitive identity between equilibrium factor premium and factor risk price.
Applying the pricing operator to both sides of the factor return decomposition (A.1), by the

law of one price, we obtain 0 = Price; [fi11(q)] = Ptf(qt) + pe(q) /(1 + 7). Therefore,

(@) = —(1+ ) P (q), Vg (A.2)

This expression captures the canonical inverse relationship between the zero-cost factor pre-
mium and the price of zero-mean factor risk. Our model extends the canonical relationship

by allowing both sides of the equation to be endogenous equilibrium outcomes.

A.2 Demand functions and the equilibrium

Next, we introduce the demand and supply functions of the sophisticated and noise investors,
along with their equilibrium interactions, as illustrated in Figure A.1.

Sophisticated investors obey factor pricing and enforce the law of one price. The afore-
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Figure A.1: Demand functions and the equilibrium

(A) sophisticated hold more ¢, price drops... (B) ... and factor premium rises
A noise investors' supply is noisy noise investors' supply is noisy
buy«—»sell ouy«————>sell
_ . ' sophisticated
Pf investors'
! K demand
price factor is inelastic
of pre-
factor sophisticated mium
risk investors'
demand
is inelastic
qt g ai !
sophisticated investors' risk quantity sophisticated investors' risk quantity

Note: Two forces for strong quantity-factor premium empirical relationship are 1) inelastic sophisticated
investors’ demand (sloped, not flat), and 2) significant fluctuations in noise traders’ supply (shifts left and
right). The two panels are equivalent illustrations with price or factor premium—just flip everything upside
down according to Eq. A.2.

mentioned SDF, M, (q;), and the pricing operator are interpreted as theirs, which are

influenced by their quantity holdings: ¢°°™

Price[fr41](6°7") = Ee[ M1 (4°") fi)-

Both P/( - ) and p( - ) are equivalent representations of demand, connected by Eq. A.2.

. Hence, their demand function is: P/ (g™ =

The theory can be equivalently stated with either one. This equivalence indicates that the
realized zero-cost returns fi11(q;), such as those from Fama-French, should be modeled as
the equilibrium outcome of time-t trading activities, rather than exogenous variables.
Empirically, typical demand-based asset pricing studies target concurrent price impacts.
They model investors’ demand curves as Price, [)~(t+1](qt), where a payoff Xt—i—l (in our case
ﬁﬂ) is independent of the time-t equilibrium quantity. In this paper, we shift the focus
from concurrent price impact to risk premiums, aligning more closely with factor pricing
literature’s emphasis on expected future returns. With the identity in Eq. A.2, we explicitly
show how our and the literature’s focuses are related. Shifting from concurrent price impact
to future returns also dispenses with the endogeneity issue between ¢; and Ptf (such as flow

chasing concurrent return), which necessitates instrumental variable methods in Gabaix and
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Koijen (2024). Nonetheless, our model still requires the exogeneity of time-t trading to future
risk ﬁH realization, which is easier to justify.

Inelastic demand by sophisticated investors is key to the reported empirical relationships.
That is, P/, (- ) is downward sloping (or p( - ) is upward sloping). Perfectly elastic demand
(a flat line where price remains constant regardless of quantity) would imply that the sophis-
ticated investors have unlimited risk-bearing capacity or “deep pockets,” inconsistent with
real-world observations. The microfoundation in the next subsection connects inelasticity to
sophisticated investors’ risk aversion and their capital share in the market.

Since sophisticated investors trade with noise traders, the “supply” function of noise
traders (how much ¢ they sell) is q?Oise(Pf ) = DeterministicSupply(Ptf ) + 1, where 1 is the
noise supply component and unspecified function DeterministicSupply(Pt’? ) is the determin-
istic component of supply that can respond elastically to price.

We are agnostic about most aspects of the noise traders’ supply, but require that the noise
component 7, exhibits significant variation and is indeed noisy in the sense of not predicting
the future factor risk ﬁﬂ. It does not affect the result whether DeterministicSupply(-)
is perfectly inelastic (meaning noise traders are completely insensitive to price, vertical in
Figure A.1) or somewhat elastic (meaning they partially adjust supply to price). This is
because the observed equilibrium quantity is ¢;, and that 7; is unobserved and unmodelled
anyway. It is implausible that DeterministicSupply(-) is or near perfectly elastic (horizontal
in Figure A.1), as it would imply that the noise traders are not only “sophisticated” about

price but also “deep-pocketed.” We are also agnostic about the sources of the “noise,” which

could be driven by various factors such as investor sentiment, beliefs, or media narratives

(e.g., Zhou, 2024).
The equilibrium is obtained by market clearing: ¢ = ¢ = ¢’ given the two
demand (supply) functions. Equilibrium ¢; is determined by noise trading shock 7, (with an

unspecified function).

The empirical model additionally assumes that sophisticated investors’ demand curve
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is time-invariant: Ptf (@) = pPf (qi), or equivalently p(q;) = p(q:) for any t and ¢;. This
is largely an empirical restriction stating that, besides qf(’phi, the demand function is not
affected by any other time-varying variables. Section 6 explores alternative variables, such
as factor momentum and macro variables, but finds none with reliable empirical power for
pricing the cross section of stock returns. The next subsection provides a theoretical demand
function with this property, under appropriate assumptions.

With all these setups, we conclude that the observed equilibrium outcomes, {¢;, Ptf }, lie
on the sophisticated investors’ demand curve pl (- ), and equivalently, the observed {q;, u; }

on u( - ). This establishes that, across periods, the factor premium g, is positively related

to the factor quantity ¢;.

A.3 A microfoundation of the inelastic demand function

In this subsection, we provide a specific microfoundation for sophisticated investors’ pricing
kernel, which results in an inelastic, downward-sloping demand function with a closed-form
expression, (q;) = p + Aq, consistent with the empirical model in Eq. 3. The inelasticity
arises from two key factors: 1) the risk aversion of sophisticated investors and 2) their limited
total capital for absorbing the factor risk. Here, we derive an analytical expression for these
two forces, providing one simple mechanism for inelastic demand, though other mechanisms,
such as investment mandates (Gabaix and Koijen, 2022), are also possible.

Suppose sophisticated investors’ total wealth (AUM) is $W; and their existing portfolio
has a random payoff $WW,, 1, with a return rﬁl := Wi /Wi—1. A representative sophisticated
investor with $1 AUM has CARA utility with risk aversion v, Ei—exp(—yrY;)]. The
utility and demand have identical functional forms across sophisticated investors and scale
proportionally with their individual AUMs, under the standard assumption that CARA risk
aversion scales inversely with the AUM.

Taking zero-cost factor payoff f,1(q;) as given, the representative sophisticated investor
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optimally allocates additional exposure to systematic risk factors b by solving:

b = arg max By [— exp(—y(ri}y + bfi1(q)) ] (A.3)

Assuming that the wealth return TXVH and factor return f;1(q;) are jointly normally dis-

tributed, the first-order condition of Eq. A.3 implies:

pe(qe) = Ee[frra ()] = veove(rly, frea(ae)) + vbevare(fia(ar))

= yeovi(r)ly, fier) + vbvar,(fia), (A.4)

where the last equality uses Eq. A.1. Given per AUM demand b;, the aggregated demand of
additional factor exposure is b, W;.

Up to this point, we have established the demand function connecting the factor premium
to the sophisticated investors’ risk holdings measured in terms of their factor exposure: b, W;.
The empirical counterpart of this measure is the flow-induced factor beta: ). $ﬂ0w§fka@7k7t,
the intermediate term in constructing the quantity variable in Eq. 8. To connect the demand
function in this measure to the quantity variable ¢; in the empirical model, we assume that
the aggregate stock market capitalization at time t is AGG;, and sophisticated investors’
total wealth W; is a constant fraction m of AGGy, such that W; = tAGG;. Therefore, the

factor quantity defined in Section 3.2 can be simplified as

G = bWivary[ fii1(q)]/AGGy = byvary[fii1(q)]m. (A.5)

Substituting into Eq. A.4, we have the demand function in terms of ¢;:

pe(qe) = ’YCOVt(T:,Xu ﬁ+1) + %E]vt (A.6)

In the empirical implementation, we also standardize ¢; as ¢; = ¢;/0(q;), so that the estimated
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linear coefficient A can be more intuitively interpreted as the price effect per standard-
deviation shock in ;. (The magnitude of g; tends to be very small, because this raw measure
is normalized by the aggregate stock market capitalization.)

Finally, the demand function matches the empirical specification in Eq. 3:

ular) = reovi(rily, forn) + Lo (@) (A7)

with p := yeovy(r,, fis1) and X := (/7)o (q).

Both terms in Eq. A.7 have clear interpretations. In the first term, we assume
vcovt(rﬂl,ﬁﬂ) = u. That is, the background factor risk premium (the risk premium
when no additional factor exposure is taken, b, = ¢; = 0) is constant. Empirically, it implies
that no conditioning variables other than ¢; affect the factor premium. Section 6 supports
this assumption and finds no reliable alternative conditioning variables for pricing the cross
section of stock returns. In fact, the main empirical results show, via the “beta-only” bench-
mark, that u is indistinguishable from zero, suggesting that other conditioning variables have
effects too weak to be empirically detected.

The second term, A\ := (y/m)o(q), shows the conditions underlying the strong empir-
ical relationship between quantity and factor premium. The first condition requires that
sophisticated investors’ demand is sufficiently inelastic. This inelasticity is governed by two
primitive parameters: 1) high risk-aversion (high ) and 2) a small share of sophisticated
investors relative to the stock market (low 7). Specifically, the factor premium multiplier
is «v/m; and the price multiplier, according to Eq. A.2, is v/(7(1 + 7)), inversely related to
the elasticity of the demand function. This aligns with Gabaix and Koijen (2022), who also
highlight the limited share of hedge funds capital (around 5% of total investors) as a key
driver of the inelastic demand. The second condition requires noise traders’ supply to exhibit

significant variation (large o(g;)). Greater variation in the noise trading—reflected in large

AT



left-right shifts in the supply curve—translates to greater variation in the factor premium

attributed to the quantity channel, which this paper captures empirically.

B Technical details

B.1 Construction and cleaning of mutual fund flows

In this appendix, we present details related to constructing and cleaning mutual fund flows.
Our primary data source is the CRSP Survivorship-Bias-Free Mutual Fund database. We
start with all funds’ return and total net assets (TNA) data at the share-class level. A
mutual fund may include multiple share classes. We first drop observations with no valid
CRSP identifier, crsp_fundno. A few fund-share classes report multiple TNAs in a given
month. These are likely data duplicates, so we keep only the first observation of the month.
In what follows, we discuss the cleaning steps for returns and TNA at the share-class level.

After cleaning, we aggregate the share-class level data to the fund level.

B.1.1 Return cleaning

We first correct data errors in monthly mutual fund net returns, mret.

First, we address extremely positive returns. We study the case in which a particular
fund share has returns greater than 100% and has existed for more than one year.! We
manually check the entire time series of each share class in this subsample. Most of these
extreme returns reflect misplaced decimal points, which confound returns in decimal and
percentage formats. For these cases, we divide the faulty returns by 100.

Second, we address extreme negative returns. Similarly, we study the case in which
a particular fund share has existed for more than one year and has returns lower than

—50%. With extremely negative returns, we need to distinguish data errors from significantly

'We use the one-year threshold because mutual fund return and TNA during the first year are sometimes
inaccurate in the CRSP database. For example, return and TNA can be stale or reported using a placeholder
number such as 0.1. We address these issues by cross-checking with the alternative database.
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negative returns before a fund’s closure. Thus, we manually check only the subsample of
negative returns that occur at least one year prior to the last observation of a closed fund. We
manually check whether these extreme returns reflect data-input errors for this subsample.

For the cases with misplaced decimal points, we divide the faulty returns by 100.

B.1.2 TNA cleaning

Unlike many prior studies that construct percentage mutual fund flows, we study dollar-value
flows to preserve the cross-sectional relative magnitudes. The mutual fund size distribution
features a very long right tail. Winsorizing the extreme dollar-value TNA likely removes
both valid large values and input errors, generating significant bias. We devise an algorithm

to identify and correct erroneous observations of TNA:

1. Using the sample with corrected returns, we calculate dollar flows as in Eq. 6 at the

share-class level.

2. We study the top and bottom 0.5% of all dollar flows.? We manually check this

subsample’s TNA time series of all share classes. We identify several common errors:

e Misplaced decimal points (usually by hundredths or thousandths).

e Stale TNA observations from CRSP, typically when a fund reorganizes its share
class offering (e.g., adding a new share class and moving assets into a single share

class).
o CRSP sometimes sets TNA = 0.1 for the first few months of a new fund or a new

share class.

We correct the misplaced decimal issue. For funds suffering from the latter two

problems, we obtain their TNA from Morningstar.®> Morningstar’s TNA data

2The choice of the top and bottom 0.5% is motivated by the distribution of dollar flows, where most
extreme values tend to occur at these tails.
3We merge the CRSP and Morningstar databases using a fund’s ticker.
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(Net_Assets_ShareClass Monthly) suffer to a lesser extent from these issues than
CRSP’s TNA data. We conclude by further cross-checking other third-party vendors
(e.g., Yahoo Finance and Bloomberg Terminal). Hence, whenever a fund’s CRSP TNA

deviates more than 50% from its Morningstar TNA, we use the Morningstar TNA.

3. We repeat the previous steps one more time to ensure that we have accounted for most,

if not all, extreme errors.

4. We compare our cleaned TNA with total assets (assets) from Thomson/Refinitiv
Holdings data.? Following Coval and Stafford (2007) and Lou (2012), we drop obser-
vations whenever our cleaned TNA deviate more than 50% from assets from Thom-

son/Refinitiv.

Using cleaned return and TNA data, we calculate dollar flows at the share-class level using
equation (6). We obtain a fund’s flows by adding up the flows of all share classes in the same

fund. The final sample contains 1,707,742 fund x month observations.

B.1.3 Cross-validating the data-cleaning procedure

We cross-validate our data-cleaning procedure by comparing our aggregated mutual fund
flows with alternative sources. We compute the quarterly aggregate flows in dollar amounts
from our main sample and compare them with data from the Investment Company Institute
(ICI) and the Flow of Funds (FoF).

The ICI publishes aggregate monthly mutual fund flows, from which we extract quarterly
data spanning from 2007 to 2022. Specifically, we use the ICI’s Total Equity mutual fund
flows, which align closely with the coverage of mutual funds in our sample. Additionally,
we draw on data from the Federal Reserve Board’s Financial Accounts of the United States
— 7.1 (formerly known as the Flow of Funds or FoF) from the same time period, providing

quarterly observations. For our analysis, we focus on mutual fund flows (Line 28) within

4We merge the two databases via the linking table MFLINKS, which WRDS provides.
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Figure A.2: Time series of aggregate mutual fund flows from various sources

“\NMM"‘MMN%

5004 =™ Our measure
= |CI

250 1

o
L

-250 1

Quarterly aggregate flows ($billion)

FoF

2010 2015 2020
Date

Note: The figure plots the quarterly time series of our measure, ICI flows, and Flow of Funds (FoF) flows.

Corporate Equities (Table 223) and use unadjusted flows (FU).

Figure A.2 plots the quarterly time series of aggregate mutual fund flows from all three
sources. Our measure of aggregate mutual fund flows is broadly consistent with the other
two sources. The correlation between our aggregate flow measure and ICI flow is 0.63, while
the correlation between our measure and FoF flow is 0.47.

The differences observed in Figure A.2 among the three measures likely reflect variations
in mutual fund coverage. Specifically, the ICI flow tracks virtually all U.S. equity mutual
funds that invest in both domestic and world equity markets.® The FoF flow, sourced from
unpublished ICI data, aggregates unadjusted flows into and out of all U.S. mutual funds
(including variable annuity long-term mutual funds). It is calculated based on mutual fund
assets in common stock, preferred stock, and rights and warrants.® In comparison, our

mutual fund sample contains U.S. mutual funds covered by CRSP, which collects historical

5The ICI is a trade association for the mutual fund industry, and virtually all U.S. mutual funds are ICI
members (Warther, 1995).
6See https://www.federalreserve.gov/apps/fof/SeriesAnalyzer.aspx?s=FA653064100&t=F.223&suf=Q.
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data from various sources.” Due to the nature of the data collection process, CRSP’s coverage

is smaller than ICI’s coverage.

B.1.4 Alternative method to construct factor-level flow directly from mutual

fund flow

fund
m,t

In an alternative method, flows into mutual funds, $flow can be directly aggregated into

factor

flows into factors, flow;’;™, by substituting Eq. 7 into Eq. 8. This approach approximately

fund

mt based on each fund’s beta to each factor. Specifically, we have

aggregates $flow

factor fund : fund ) —
ﬂowk,t = - Z Z $ﬂovvm,t Welghti,m,quarter(t)726i7k,tvart(fk,t>‘ (A9>

¢ fund m

The alternative is

= $fowl i B kAT (fie), (A.10)

fund m

where B\m,k,t is the beta of fund m to factor k£ in month ¢. These two are approximately the
same because ) . Weightgfnﬁflquarter(t)72@-,“ ~y Weightgfnr;‘ft@&t = Bmkt

We do not use the alternative method for two reasons. First, our method follows the
literature and can help exclude potential informed trading by mutual fund managers. The
direct approach is only an approximation because we use lagged, not current, mutual fund
holdings to construct $ﬂow§ff k an important detail to exclude potential informed trading
by mutual fund managers (Lou, 2012). Second, starting from stock-level flows and building
upward (Eq. 8) is more general and extends beyond mutual fund flow-induced trading. For
example, retail investor order flow imbalance, a widely used measure of noise trading in the

literature (Lee and Ready, 1991; Boehmer, Jones, Zhang, and Zhang, 2021; Li and Lin,

2022), is constructed directly at the stock level.

"The sources include the Fund Scope Monthly Investment Company Magazine, the Investment Dealers
Digest Mutual Fund Guide, Investor’s Mutual Fund Guide, the United and Babson Mutual Fund Selector,
and the Wiesenberger Investment Companies Annual Volumes.
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B.2 Technical details of Lasso implementation

In optimization (13), adding the term “1/0(gx.)” is technically necessary because we have
already standardized gy to grt = Qr.t/0(qrt) (see Section 3.2). Optimization (13) therefore

is equivalent to running the standard Lasso on the pre-standardized BT(Q (B X q)

(A.11)

)\1 /\K Q‘IS| Z (th—&-l ZAkﬁzthkt> +WZ‘>\k

i,t€IS

and then standardizing the coefficients for economic interpretation: A\, = Xka(ﬁk,t). Although
we standardize g, for interpretability, we do not want to lose the information contained in
the original quantity g, during the Lasso selection process. A factor with greater variation in
qr, will have an inflated \; after being standardized to g, but it should not be additionally
penalized for this reason. Standard Lasso implementation where the economic interpretation
is not a priority would typically standardize the predictor (BTQ together) across the {i,t}
panel. Here, we customize the standardization based on the required economic interpretation.

Similarly, for the S-only model, the Lasso implementation is

K 2 K
Pitp1 — B; : A12
3 Z( 2 ) Fe o

telS

We perform ten-fold cross-validation to tune hyperparameter w based on only in-sample
information from 2000 to 2009. In each fold, we exclude one year of observations and solve
the Lasso problem (A.11) using the remaining nine years of in-sample data. The model is
evaluated in the left-out year to form predicted returns ?z[ctvll After enumerating all folds
and forming predicted returns for all in-sample observations, we calculate the cross-validated

2
(CV) in-sample mean squared errors (MSE) as >, 1 (rmﬂ — ?Z[CL]A) . Hyperparameter w

is tuned by choosing the one with the minimum CV MSE.

A3



C Additional empirical results

C.1 Additional properties of the quantity variable g,

Figure A.3 reports various statistics of the constructed quantity variables g, to show the
extent to which these time-series variables comove. Panel A shows the pairwise correlation
matrix of the four Fama-French-Carhart factors. The results reveal some comovement (both
positive and negative) among the four variables, which is also evidenced in the time series plot
in Figure 1 in the main text. HML-MOM has the greatest (in absolute value) correlation
of —0.75. Nonetheless, all pairwise correlations are far from =+1, indicating that the g,
variables are far from collinear, and each captures unique information about the underlying
quantity variations.

Panel B shows a similar pattern of limited comovement among the 153 JKP factors.
Instead of reporting pairwise correlations, we conduct a principal component analysis (PCA)
on the g, variables of the 153 JKP factors and report the cumulative explained variances by
principal components. The plot reveals a clear factor structure among the 153 factor-level
qx,¢ variables, yet also indicates significant unique information across different dimensions of
grt- The first principal component explains around half of the total variance, and the first
two principal components in total explain around 77% of the total variance. It requires five
principal components to explain 90% of the total variance, and seven to explain 95% of the
total variance. We also note that these in-sample PC statistics are likely exaggerated due to
overfitting.

In summary, the ¢, variables are not collinear and capture unique information about
the underlying quantity variations. This feature indicates the paper’s main result on BTQ’s
predictive power is not driven by a few special g, variables. The fact that BTQ’s predic-
tive power is consistent across various factor specifications speaks to the robustness of the

underlying economic mechanism.
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Figure A.3: Degree of comovement among the quantity variables (q) of different factors

A. Correlation matrix B. PC variances for ¢’s of 153 JKP factors
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Note: Panel A: pairwise correlation for gj; of the four Fama-French-Carhart factors. Panel B: cumulative
explained variances by principal components of g+ series of the 153 JKP factors.

C.2 Predicting factor returns with factor quantity

This appendix subsection presents the results of using factor quantities to predict factor
returns. While time-series predictability is not the main focus of this paper, it is naturally
implied by the paper’s theoretical framework, particularly the factor premium modeling in
Eq. 3. Empirically, we successfully detect the predictability to a certain extent, consistent
with the theoretical motivation. However, we also note the apparent methodological limita-
tions of predicting factor returns with simple time-series regressions.

Table A.1 presents the results of the time-series regression fi ;11 = g + NGt +€7707% 111
for various factors. The estimated \; coefficients are predominantly positive and statistically
significant for all Fama-French-Carhart factors and the majority of JKP factors. This indi-
cates that each factor’s expected return is positively related to its quantity, consistent with
our theoretical motivation. The full-sample R? values are around 5%, which is relatively
high for factor return prediction at the monthly frequency (see Welch and Goyal, 2008).

However, the OOS R? values are mostly negative, with the exception of the market fac-
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Table A.1: Predicting factor return fj ;11 using quantity g

Fama-French-Carhart factors Across 153 JKP factors

MKT SMB HML MOM Q25 Median Q75

e (%) 1.04 0.49 0.82 1.10 0.25 0.66 1.00
t-stat (325)  (245)  (2.89)  (1.76) (1.41) (2.00) (2.64)
1, (%) 0.38 0.19 0.08 0.36 -0.20 -0.01 0.27
t-stat (1.39)  (1.16)  (0.38)  (1.41)  (-1.41)  (-0.10)  (1.63)
R* (%) 5.05 2.48 5.59 4.35 1.45 4.74 7.36
00S R* (%)  6.74 1.05  -14.70  -1.29 -7.08 -0.95 2.07

Note: Factor return predictive regressions (fr¢t41 = fe + AeQr,t + errory41) for k = each of the Fama-
French-Carhart factors and JKP factors. The point estimates are in percentage terms. That is, the first
cell indicates a one standard deviation increase in gy, predicts a 1.04% increase in market return in the
following month. The t-statistics are based on Newey-West standard errors. The first five rows are full-
sample regressions (2000-2022) with R? evaluated in the same full sample. The ordinary IS R? with a

constant term is reported: R?* =1 — >, (fr 41 — ﬁ,t+1)2/ > (frt+1 — k). The last row “O0S R?” is
with the regressions estimated in 2000-2009 and evaluated in 2010-2022, and we benchmark the R? against
predicting zero: OOS R? =1 — Doi(frir1 — fk7t+1)2/zt f,itﬂ.

tor, which achieves a higher R? of 6.8%. Nonetheless, we should interpret this high R? with
caution as the time-series R? metric may contain significant noise. These results under-
score the apparent limitations of using simple univariate time-series regression for predicting
aggregate factor returns. The construction of the factor quantity series is not designed for
time-series return prediction, which is understood to be a challenging task that requires more

sophisticated methods and richer predictor data (Kelly and Pruitt, 2013; Kelly, Malamud,

and Zhou, 2024).8

C.3 Additional results on stock return forecasting

This appendix subsection contains additional empirical results on stock return forecasting
that are omitted in the main text Subsection 4.3. Table A.2 completes Table 3 by providing

the full-sample coefficient estimates for the $-only model.

8Dynamic regime shift models can further enhance prediction accuracy by accounting for structural breaks
(Smith, Bulkley, and Leslie, 2020; Smith and Timmermann, 2021; Gao and Zhang, 2023).

A.16



Table A.2: Table 3 continued, S-only model’s coefficient estimates

CAPM FF3 FF3C FF5 FF5C
B-only model: py, (%, monthly), t-statistics in parentheses

MKT 0.38 0.45 0.35 0.55 0.50
(1.07) (0.90) (0.75) (1.21) (1.15)

SMB -0.05 0.06 -0.04 0.09
(-0.15) (0.19) (-0.11) (0.27)

HML 0.58 0.51 0.56 0.44
(1.74) (1.59) (1.49) (1.23)

MOM -0.41 -0.48
(-1.09) (-1.26)

CMA 0.04 0.10
(0.17) (0.51)

RMW 0.09 0.13
(0.34) (0.52)

Note: Table 3 in the main text reports the R? values for the BTQ and the 3-only models, as well as the
coefficients for the BTQ model. This table reports the S-only model’s coefficient estimates. Same as the
main text table, the uy coefficients are in percentage terms, and the t-statistics are based on standard errors
clustered by month.

Table 3 in the main text already shows that the S-only model has weak predictive power,
with low and even negative R? values in some OOS cases. Table A.2 further shows that
the p coefficients in the (-only model are either statistically insignificant or negative in
various factor specifications. This, once again, shows the empirical difficulty in establishing

a positive risk-return association using § only without quantity information.

C.4 Additional results on factor selection

This appendix subsection presents a more formal factor importance analysis and reports
other important factors besides the top five reported in Section 4.4 for the Lasso estimation
(Eq. 13). Factor importance is measured using a feature selection metric from the Lasso
regressions. In particular, we measure the importance of factor k£ by w;®*, the largest w
value at which factor k is still selected. Specifically, wi® = sup{w : Xk(w) # 0}, where

//\\k (w) is the Lasso estimate of A, at hyperparameter w. Figure A.4 reports w;"®* for the top
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Figure A.4: Factor importance in Lasso factor selection

market

betting against beta (low risk)

return volatility (low risk)
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Note: We measure the importance of factor k by w;**, the largest w value at which factor k is still selected.
max

Specifically, wi®* := sup{w : Xk(w) # 0}, where Xk.(w) is the Lasso estimate of A\, at hyperparameter w.
This figure reports w® for the top 24 factors in the JKP factor zoo, omitting the rest with w** < 1077,
The vertical black line indicates the tuned w based on ten-fold cross-validation.

24 factors in the JKP factor zoo, omitting the rest with w* < 1077,

The most significant factor is unambiguously the market factor, followed by the low-risk
factors constructed with technical (past return) information, the value factor constructed
with fundamental information, and a version of the momentum factors. The remaining
less important factors are related to investment style clusters such as the value, quality,
investment, seasonality, etc. Specifically, the top 24 factors’ full names, the factor clusters

they belong to, and code names (as in JKP data) are detailed below:

market — mkt,

betting against beta low risk betabab_1260d,
return volatility low risk rvol_ 214,
idiosyncratic volatility g-factor low risk ivol_hxz4 21d,
book-to-market enterprise value bev_mev,

current price to high price over last year =~ momentum prc_highprc_252d,
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short-term reversal skewness ret_1.0,

debt-to-market value debt_me,

gross profits-to-lagged assets quality gp-atll,

net operating assets debt issuance noa_at,
liquidity of book assets investment aliq_at,
change in long-term net operating assets  investment lnoa_gria,
change in long-term investments seasonality 1ti gria,
change in quarterly return on equity profit growth niq_be_chgl,
firm age low leverage age,

cash-based operating profits-to-book assets quality cop-at,

market equity size market_equity,
Amihud measure size ami_126d,
change in current operating working capital accruals cowc_grla,
price momentum t-12 to t-1 momentum ret 121,
highest 5 days of return scaled by volatility skewness rmax5_rvol 21d,
Ohlson O-score profitability o_score,
quality minus junk: growth quality qmj_growth,
years 11-15 lagged returns, nonannual seasonality seas_11_15na.

C.5 Interpreting the magnitude of )\ estimates and connection to the literature

This appendix shows that the magnitude of the A\ estimates—reported at the factor level in
Tables 2 and 3 and at the stock level in Table 6—is consistent with the market reality and
recent estimates from the literature. This alignment further supports our interpretation of
the economic channel, although identifying the coefficient per se is not our goal; rather, the
focus is on demonstrating the predictive power.

The estimated market-level A\ykr, presented in Tables 2 and 3, ranges from 1.2 to 1.8
across various univariate and multivariate settings. This implies that for a one standard
deviation increase in the quantity (q) of the market factor, the expected return of a stock
with a market beta of 1 increases by 1.2% to 1.8% per month.

Our A coefficient can be converted to the “price multiplier” in the demand-based asset
pricing literature. The A coefficient is the sensitivity between risk premium (u) and the
quantity (g, constructed in Section 3). In the literature, the price multiplier is typically
defined as (AP/P)/(AQ/Q), where AQ/Q is the percentage change in the security’s quantity
(Gabaix and Koijen, 2022).
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To relate the magnitude of our A coefficient to that of the price multiplier, consider
the following conversions. The monthly standard deviation of ¢ is 1.88 x 107% in terms of
the pre-standardized ¢ measure (see Table 1). According to Eq. 8, this is roughly 0.22%
of (p-aggregated) monthly dollar flow shock as a fraction of the total U.S. stock market
capitalization, after adjusting for the market factor’s monthly variance: 0.22% = v/6 x
1.88x107%/(16%?% +12). In terms of the price multiplier measure, let the numerator be the
flow shock, dQ/Q = 0.22%, then the price multiplier itself is between 1.2%/0.22% = 5.5 and
1.8%/0.22% = 8.2, which matches in magnitude with the estimate of 5 reported in Gabaix
and Koijen (2022).

The magnitude of the ¢ variation is also consistent with market realities.! As shown
above, a one-standard-deviation increase in market ¢ corresponds to a 0.22% increase in
dollar flow as a fraction of the total stock market capitalization. Considering that the
mutual fund sector holds about 20 ~ 30% of the total U.S. stock market capitalization (Ben-
David, Li, Rossi, and Song, 2022a), this one standard deviation flow shock corresponds to
about 0.7% = 0.22/30 ~ 1.1% = 0.22/20 of the mutual fund sector’s total AUM, which is a
reasonable level.

From the opposite direction, we can also justify the magnitude of our predictability using
the literature’s price multiplier estimates. Assuming that a one-standard-deviation change in
q captures a flow shock of about 1% of the total mutual fund sector’s AUM, which multiplies
to about 0.2% = 1% x 20% of the total stock market capitalization. With a market-level price
multiplier of 5 (Gabaix and Koijen, 2022), this implies a monthly market factor premium
variation of about 1% = 0.2% x 5. Under a one-factor model, this factor premium variation

matches the observed total stock return variation, with a monthly standard deviation of

10%, at an R? ~ 1% = (1%)?/(10%)2.

9The annualized standard deviation of the market factor return during our sample period is 16%. We
multiply by /6 because our pre-standardized § measure in Eq. 9 uses a 6-month lagged average of flow
shocks, and we assume these monthly shocks are independent.

10Gignificant noise in ¢ fluctuation is also one of the two requirements for our channel to have a significant
empirical impact, as shown in Appendix A.
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At the stock level, the coefficients in Table 6 column A\**°% are also comparable to the
price multipliers of stocks to flows reported in the literature. This is because we have
normalized $ﬂowf~f,f’Ck by the stock’s own market cap in constructing the qfft“k predictors (see
Eq. 15). The magnitude of our A\*"°?k stabilizes between 0.5 and 0.8 for larger h values, which
is close to the multiplier estimates in the literature, generally ranging from 0.5 to 1 (e.g., Lou,

2012; Chang, Hong, and Liskovich, 2015; Da, Larrain, Sialm, and Tessada, 2018; Hartzmark
and Solomon, 2022; Pavlova and Sikorskaya, 2023; Li, Pearson, and Zhang, 2024).

C.6 Additional robustness checks on return predictability

Table A.3 evaluates the robustness of the BTQ model’s predictive power across different size
and time sub-samples for the Fama-French-Carhart factors. Panel A breaks down the stock-
month observations in the OOS evaluation panel into five size groups using concurrent NYSE
market capitalization breakpoints. The same OOS predicted returns (7 ;11) are respectively
evaluated in each size group. Panel B breaks down the OOS panel by time into three sub-
periods: 2010-2014, 2015-2018, and 2019-2022, and reports sub-sample R? similarly. Panel
C repeats the original joint OOS (2010-2022) evaluation reported in the main text Table 3
Panel B Line “BTQ” for ease of reference.

Table A.3 shows that the BT(Q model’s predictive power reported in Table 3 is robust
in most size and time sub-samples. In particular, the FF3 and FF3C specifications perform
even better in large stocks, which are usually the most challenging group for stock return
prediction. Across sub-periods, the BT(Q model’s predictive power is relatively stable over
time. The first and the last sub-periods (2010-2014 and 2019-2022) have higher R?* values
than the middle sub-period (2015-2018) across various model specifications. These size
and time sub-sample results for the Fama-French-Carhart factors are very similar to those
reported for the factors selected from the factor zoo and the selected PC factors in main text
Table 4.

Table A.4 extends the main text Table 6 to all A from 1 to 12 and confirms that the
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Table A.3: BTQ OOS prediction accuracy (R? in %) in size and time sub-samples

evaluation sample  # of obs. CAPM FF3 FF3C FF5 FF5C
K=1 3 4 5 6

Panel A: size group evaluation

1 (small) 323,617 0.69 0.72 0.72 0.58 0.64
2 165,059 0.99 1.37 1.44 0.51 0.79
3 141,153 1.16 1.74 1.83 0.42 0.82
4 115,763 0.76 1.97 2.20 -0.33 0.46
5 (big) 103,927 -0.56 1.66 2.00 -1.18 -0.17
Panel B: sub-period evaluation

2010-2014 321,425 1.10 1.33 1.34 1.03 0.98
2015-2018 255,959 0.17 0.11 0.11 0.07 0.07
2019-2022 272,135 0.90 1.38 1.47 0.37 0.81

Panel C: original OOS evaluation (in Table 3 Panel B)
OO0S (2010-2022) 849,519 0.75 1.03 1.07 0.44 0.65

Note: OOS R? evaluated in different size and time sub-samples for the Fama-French-Carhart factors. Panel
A breaks down the OOS panel into five size groups according to NYSE market capitalization quintiles and
reports the OOS R? in each size group. Panel B breaks down the OOS evaluation into three sub-periods:
2010-2014, 2015-2018, and 2019-2022. Panel C repeats the original joint OOS (2010-2022) evaluation reported
in the main text Table 3 Panel B Line “BTQ” for ease of reference.

“quantity-only” alternative model does not forecast stock returns.

C.7 Details for macroeconomic variables as alternatives to factor quantity

The second exercise in Section 6 examines the use of macroeconomic variables as alternatives
to factor quantity (¢) in the BTQ model. This subsection reports the accompanying technical
details and additional results.

We preprocess the 126 FRED-MD macro series following standard procedures. We first
transform each raw series to a stationary process according to the transformation code pro-
vided by FRED-MD. We then standardize these macro variables by demeaning them and

dividing by their standard deviations, using the mean and standard deviation estimated
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Table A.4: “Quantity-only” alternative model does not forecast stock returns: expanding
Table 6 to all A from 1 to 12

A. constant \stock B. Mtk by size quintile  C. A$*°k by stock

h IS R2(%) 008 R2(%) Aok tstat IS RY(%) O0S R2(%) 1S R2(%) 00S R*(%)

1 0.000 0.000 -0.10 -0.27 0.003 -0.001 0.47 -232
2 0.000 -0.001 0.05 0.12 0.002 -0.003 0.44 -215
3 0.000 0.000 0.17 0.29 0.003 0.000 0.39 -155
4 0.000 -0.001 0.20 0.33 0.004 -0.002 0.39 -156
5 0.003 0.001 0.51 0.75 0.006 0.002 0.41 -150
6 0.005 0.006 0.75 1.01 0.007 0.006 0.41 -107
7 0.006 0.008 0.82 1.12 0.008 0.008 0.41 -107
8 0.003 0.003 0.66 0.87 0.006 0.005 0.37 -142
9 0.004 0.004 0.75 0.99 0.006 0.006 0.38 -96
10 0.003 0.000 0.69 0.96 0.006 0.003 0.38 -101
11 0.003 -0.003 0.73 0.95 0.006 0.000 0.38 -98
12 0.003 -0.007 0.77 1.01 0.006 -0.004 0.38 -81

_ )\stock qstock N

Note: Panel A: univariate predictive regression, r; +41 = + errority1. B: size-dependent pre-

stock,h ) stock .
dictive regression, r; ;11 = )\me quintile(i,t) i, +error; 41, where A5°F quintile(i,t) is indexed by the NYSE

size quintile of the stock. C: stock-specific predictive regression, r; 441 = )\StOqujttOCk Mty error t+1. The R?
values are expressed as percentages, e.g., 0.005 in row h = 6 means 0.005%, a very small value.

during the in-sample period (2000-2009).

Table 8 in the main text reports the comparisons in the single-factor setting by predicting
stock returns with predictors in the form of market beta times a macro variable (or linear
combinations of the macro variables). In this appendix, Table A.5 expands the analysis to
the multi-factor settings. The predictors are [&’MKTJ%J, @VSMBij,t, @,HMwmj,t, ...|, where
x;; is the j-th macroeconomic variable, or a full-sample principal component (PC) of the
126 macroeconomic variables. We observe that beta times macro variables in multi-factor
settings also do not predict stock returns.

Table 8 Panel D searches for the optimal linear combinations of the 126 FRED-MD macro

variables that can substitute for the g, variables in the single-factor CAPM BTQ model.
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Table A.5: “Beta times macro variables”, expanding Table 8 to multi-factor settings

CAPM FF3 FF3C FF5 FF5C

A. Benchmark

BTQ 0.75 1.03 1.07 0.44 0.65

B. Multi-factor beta times each macro-variable

Mean -0.63 -1.85 -2.11 -8.69 -8.60
Q10 -1.88 -6.08 -6.81 -19.43 -18.27
Q25 -0.63 -1.67 -2.65 -4.04 -5.92
Q50 -0.12 -0.47 -0.57 -1.25 -1.28
Q75 0.00 -0.08 -0.12 -0.31 -0.38
Q90 0.13 0.02 0.01 -0.07 -0.12
Q95 0.18 0.11 0.12 0.01 0.00
Max 0.28 0.38 0.37 0.41 0.39

C. Multi-factor beta times PCs of macro-variables

PC1 -0.17 -0.67 -2.82 -20.07 -15.37
PC2 0.01 0.02 -0.06 -0.26 -0.26
PC3 -1.05 -5.93 -5.90 -5.70 -4.43
PC4 -0.09 -1.88 -1.87 -6.41 -9.73
PC5 -0.46 -0.82 -0.81 0.04 -0.24

Note: Predicting stock returns using conditional multi-factor predictors in the form of “market beta times
.7, “SMB beta times ...”, “HML beta times ...”, and so on. All numbers are OOS R? in percentage.

In particular, we minimize the following predictive least squares loss:

2
min Tit+1 — B\i,mkt,t Z bijj,t ) (A-13)
{bs} itels

JEFRED-MD

where z;, is the j-th macro variable at time ¢, and b; is the coefficient to be estimated. This
search is equivalent to an OLS regression of r; ;41 on 126 predictors B\i,mkt,tl'j,t-

This OLS setup drastically overfits with an extremely negative OOS predictive R?, as
shown in Table 8 Panel D, which is expected given the large number of predictors. To

address the overfitting issue, we apply regularization to the linear combination search by
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Figure A.5: Market beta times the best linear combination of the macro variables, prediction
accuracy along regularization path

40 ——IS R |]
g —a—00S R?

.50 I
10 102 107
regularization parameter

Note: Model fit and parameter estimates as the regularization parameter (w, horizontal axis) varies. The
IS R? is evaluated in the training window (2000-2009), and the OOS R? is the same model evaluated in the
testing window (2010-2022). The vertical black line indicates the tuned w based on ten-fold cross-validation.

regressing r;,41 on Bi,mktytxj,t with LASSO penalty on the coefficients. Note that x;, has
already been demeaned and standardized using the in-sample period estimates. In detail,

the Lasso optimization problem is:

2

.1 ~
Wi o] > s = B > by tw o Y bl (A.14)
J

itels JEFRED-MD JEFRED-MD

where w is the regularization parameter.

Figure A.5 plots both the IS and OOS R? values across different regularization parame-
ters. The OOS R? values remain below 0 across all w values and only approach 0 at large w
values, where all coefficients are shrunk to zero, resulting in a model that predicts zero re-
turns for all stock-months. This result suggests the fitted dimension reduction combinations

of macro variables do not have predictive power either.
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