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Abstract

We propose a new model of expected stock returns that incorporates quantity

information from market trading activities into the factor pricing framework.

We posit that the expected return of a stock is determined by not only its factor

risk exposures (β) but also the factor’s quantity fluctuations (q) induced by noise

trading flows, and hence term the model beta times quantity (BTQ). The rationale

is that a factor’s premium should be higher when sophisticated investors have

absorbed flows of stocks with high exposure to that factor. The BTQ model

provides a compelling risk-based explanation for stock returns, which is otherwise

obscured without considering the quantity information. The cross-sectional risk-

return association, which is nearly flat unconditionally, strongly depends on the

quantity variable. The structured BTQ model reliably predicts monthly stock

returns out of sample, and addresses the factor zoo problem by selecting a small

number of factors.
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1 Introduction

Explaining the expected returns of different stocks is a central question in asset pricing.

The theoretical answer is clear—risk—investors are averse to risk and require compensa-

tion for bearing risk. Therefore, riskier investments should earn higher expected returns in

equilibrium. However, the empirical answer has proven more complicated: evidence of the

risk-return tradeoff, such as their positive association in the cross section, is elusive in data;

and risk-based models hardly predict individual stock returns, in contrast to unstructured

predictions using firm characteristics and machine learning models.1 A revamped model is

critically needed for the risk-based approach to expected returns.

This paper makes headway in this important area by incorporating a new aspect of risk’s

economic role in determining asset prices—the quantity variation in investors’ risk holdings

induced by trading flows. Many existing efforts focus on the statistical aspects of risk, such as

identifying the common factors and estimating factor premiums, and on the properties of the

securities per se, such as risk exposures and firm characteristics.2 In contrast, we show that

the canonical risk framework equipped with the quantity variables, which are constructed

from market trading activities and are about sophisticated investors’ risk-holding conditions,

yields a compelling explanation for the cross section of expected returns.

We integrate quantity into factor pricing by considering market trading activity’s effect

on sophisticated investors’ risk holdings and, in turn, their required compensation for bear-

ing risk. First, we acknowledge that the market is not populated with representative agents

but is modeled with two groups of investors: noise investors (such as retail investors) and

sophisticated investors (such as hedge funds and market makers). Noise investors generate

large and correlated flows in individual stocks. Sophisticated investors take the other side of

1Lopez-Lira and Roussanov (2023), for example, question whether factor exposure can explain the cross
section of expected stock returns. See Footnote 4 for other papers reporting an elusive risk-return relationship
and Footnote 6 for those focused on predicting stock returns.

2These related topics constitute a large and growing body of literature. We contribute to three sub-areas
with references listed in Footnotes 4, 6, and 7, respectively.
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these trades, which causes fluctuations in the quantities of their holdings of the underlying

systematic risks. For example, if noise investors sell a large quantity of value stocks with

high HML (high-minus-low) loadings, sophisticated investors’ holdings of the HML risk will

increase. The sophisticated investors are the marginal investors whose demand determines

asset prices. We posit that they require greater compensation for a systematic risk factor

when they hold more of it. This leads to a key innovation in factor model specification:

a factor’s premium varies with the factor’s quantity fluctuations induced by trading flows.

Meanwhile, sophisticated investors enforce no-arbitrage pricing across stocks, so the canon-

ical factor pricing condition still holds. These two forces combined give rise to our main

empirical model, in which the expected return of a stock is determined by the interactions of

its factor risk exposures (β) and the factors’ quantity fluctuations induced by trading flows

(shortened to “quantity” or q throughout the paper), which we term the beta times quantity

(BTQ) model.

This framework, though abstracted from many details of the market microstructure,

captures a significant economic force central to risk aversion that has long been missing in

empirical studies of risk and return. Our approach draws from the literature that studies

the price impacts of noise trading flows.3 The novelty lies in integrating quantities into the

factor pricing framework and adapting the “price impacts” mechanism to explain expected

future stock returns. This advance enhances the empirical power of workhorse methods in

cross-sectional asset pricing, addresses previous limitations, and leads to important empirical

discoveries in three aspects.

First, quantity information elicits risk-return tradeoff relationships that would otherwise

be obscured. Previous studies report a flat security market line (SML, which plots expected

return Er against market β), inconsistent with the theoretical premise of high-risk-high-

return.4 However, a significant positive β-Er association emerges conditional on high levels

3See Gabaix and Koijen (2022) for a review. We discuss related papers in detail further below.
4Black (1972), Black, Jensen, and Scholes (1972), and Frazzini and Pedersen (2014) report a flat SML.

Along this direction but with more involved investigations, Lopez-Lira and Roussanov (2023) question
whether common factor exposure (β) really explains the cross-sectional variation in expected returns.
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of market factor q. That is, the risk-aversion implied high-risk-high-return association holds

when sophisticated investors have absorbed more market factor quantity. In this view, the

previously reported flat SML is an unconditional average when the quantity information is

ignored.5 This positive association between the factor-level q and the factor’s risk-return

tradeoff (i.e., factor premium) holds across SMLs of other factors and in Fama-MacBeth

regressions conditional on quantity information.

Second, quantity information enables a risk-based model that predicts individual stock

returns. A central goal of asset pricing is to explain conditional expected returns, with

the statistical prediction of individual stock returns serving as a touchstone for proposed

explanations. This task is empirically difficult, and researchers have only recently achieved

significant progress by using unstructured machine learning models designed for forecasting

and a large number of firm characteristics, which inevitably sacrifice interpretability. The

state-of-the-art machine learning methods can reliably predict stock returns at the monthly

horizon, although the explained variation is small given the low signal-to-noise nature of

market prices.6 In contrast, we build an economically grounded predictor that interacts

stock-level factor exposures (β) with factor-level quantity fluctuations (q). The resulting

beta times quantity (BTQ) model reliably predicts the panel of monthly individual stock

returns with an out-of-sample (OOS) R2 of around 1% in various robustness settings, a level

comparable to high-dimensional machine learning models. The predictability is robust to

different sample periods, firm size groups, and model specifications. Without quantity, the

“β-only” model exhibits no predictive power, aligning with the reported null result that

using risk alone hardly explains expected stock returns (Lopez-Lira and Roussanov, 2023).

Third, quantity offers a new perspective for addressing the factor zoo problem and pro-

5Relatedly, Hong and Sraer (2016), Jylhä (2018), and Hendershott, Livdan, and Rösch (2020) find varying
slopes of the SML conditional on investor disagreement, margin requirements, and whether returns occur
during the day or night.

6Studies on stock (and equity portfolio) return forecasting include Fama and French (2008), Welch and
Goyal (2008), Koijen and Van Nieuwerburgh (2011), Rapach and Zhou (2013), and Lewellen (2015). More
recent advances with machine learning methods include Gu, Kelly, and Xiu (2020), Feng, He, and Polson
(2018), Freyberger, Neuhierl, and Weber (2020), Choi, Jiang, and Zhang (2023), and Kelly, Malamud, and
Zhou (2024).
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viding new results on factor selection. The proliferation of proposed factors challenges the

asset pricing literature in identifying factors that are important for expected returns and

investors’ pricing decisions. The traditional tests focus on the existence of factor premium:

essentially, whether there is a positive spread in expected returns between stocks with high

and low factor exposures in the cross section.7 Our new test asks an upgraded question

about changes in factor premium driven by quantity: whether the expected return spread

widens when the sophisticated investors’ factor quantity (q) is high (and vice versa).8 For

one, using quantity as an instrument for factor premium should provide more variation and,

hence, greater identification power. More importantly, this upgrade is more informative

of the economic mechanism through which risk aversion takes place and, therefore, should

lead us closer to identifying the fundamental risks to investors. We find the market fac-

tor is the most prominent across various specifications, while other selected factors include

betting-against-beta, volatility, idiosyncratic risk, and value. These results are obtained by

conducting variable selection (Lasso) from a BTQ configuration that includes a large number

of candidate factors (including 153 factors from Jensen, Kelly, and Pedersen, 2023, hence-

forth JKP). Alternatively, pre-processing the candidate factors with principal component

analysis (PCA) to “shrink the cross section” (Kozak, Nagel, and Santosh, 2020) leads to a

similar but even more parsimonious result in which only the first two principal components

are selected, and the return predictive power is equally strong.

In summary, these three key results highlight the importance of incorporating quantity

into the factor pricing framework to empirically establish a risk-based explanation of expected

7The proliferation of proposed factors to explain the cross section of expected stock returns (a.k.a. the
factor zoo problem) is noted by Cochrane (2011), Harvey, Liu, and Zhu (2016), McLean and Pontiff (2016),
and Hou, Xue, and Zhang (2017). Existing studies address the problem by selecting or “shrinking” the
factors (broadly speaking, estimating a low-dimensional factor space), including Feng, Giglio, and Xiu (2020),
Lettau and Pelger (2020), Kozak, Nagel, and Santosh (2020), Giglio, Liao, and Xiu (2021), and Giglio and
Xiu (2021). Essentially, they discipline a factor by whether its factor premium is positive (i.e., positive
cross-sectional risk-return association). In this sense, these are developments of the more traditional Fama
and MacBeth (1973) method.

8The new test is analogous to the difference-in-differences (DID) analysis commonly used in applied
microeconomics: β captures the cross-sectional variation while q provides the time-series variation in expected
returns. In this analogy, the “β-only” model has only one dimension of “difference” and assumes constant
factor premiums.
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returns. To sharpen this argument, we compare the BTQ model with two alternative baseline

models that contain only risk or only quantity, respectively.

The first alternative, the “β-only” model, represents the traditional factor pricing frame-

work where risk (specifically, β) is the sole determinant of differences in expected stock

returns. Our main results benchmark BTQ against the “β-only” baseline, and show com-

pelling empirical improvements in various familiar workhorse asset pricing settings: the secu-

rity market line (SML), Fama-MacBeth regressions, and stock return prediction. Moreover,

as discussed earlier, incorporating quantity provides an additional perspective for selecting

factors from the “zoo” based on their economic relevance. Future studies can easily test

newly proposed factors, as a factor’s BTQ term can be easily constructed from the factor’s

return series. These properties highlight the advantages and broad applicability of incorpo-

rating quantity into factor pricing for future research.

Second, relative to the “quantity-only” alternative, the emphasis on risk is embedded in

our construction of the q variables. They track the fluctuations of sophisticated investors’

factor risk holdings induced by retail trading flows. This is achieved by aggregating stock-

level flows to the factor level according to each stock’s factor exposure (β), in a way similar

to “portfolio beta” in risk management.9 For example, if noise investors sell a large quantity

of value stocks with high HML loadings, then from the perspective of sophisticated investors,

the q of HML increases accordingly. This construction underscores the economic mechanism

in which investors are averse to systematic risk, with their degree of aversion adjusting based

on the amount of systematic risk they bear.10

This setup is contrasted with the “quantity-only” model, where stock-level flows and

quantity variations directly affect stocks’ expected returns, bypassing the factor structure

(see Figure 6 for a comparison of the architectures). This alternative model does not adhere

to the cross-sectional no-(statistical)-arbitrage condition and implies that investors are averse

9Stock-level noise trading flows from retail investors are constructed using mutual fund holdings and flow
data, following standard procedures in the literature (Coval and Stafford, 2007; Froot and Ramadorai, 2008;
Lou, 2012). See Section 3.2 for the complete construction procedure of q.

10Appendix A provides the theoretical foundation that formalizes this statement.
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to the physical quantity of stocks rather than the systematic risk they represent. Empirically,

we find little to no predictive power for stock returns in various implementations of the

“quantity-only” model. This comparison highlights the critical role of risk in the BTQ

model. It is consistent with the view that statistical arbitrage activities by some sophisticated

investors are effective in determining the cross section of expected returns, even in the

presence of significant impacts of noise trading flows on prices (Kozak, Nagel, and Santosh,

2018). It is also related to the distinction between micro and macro elasticities: stocks with

similar risk loadings are close substitutes, whereas the demand for systematic risks is more

inelastic to price (Gabaix and Koijen, 2022; Li and Lin, 2022).

We provide further evidence to support the economic interpretation that quantity ex-

plains expected stock returns through factor risk. We find that different factors’ q variables

provide distinct pricing information along their respective risk dimensions, and that BTQ

variants crossing one factor’s q with other factors’ β terms fail to predict future stock re-

turns. This result highlights that the quantity-risk premium association is independently

robust across factors. We also find that no other conditioning variables—such as factor mo-

mentum signals and a comprehensive set of macroeconomic variables (dividend yield, default

spread, income growth, etc.)—can substitute for q in reproducing BTQ’s predictive power.

This result rejects the idea that the factor premium variation we report is driven by other

underlying economic forces and that the quantity variable is merely a facade.

In summary, the core message is that both quantity and risk matter for expected stock

returns. At a high level, this naturally stems from the interaction between sophisticated

investors and noise traders (Shleifer and Summers, 1990). Considering the interaction al-

lows us to bridge factor pricing (which emphasizes rational agents’ aversion to risk) and the

price impact of noise flows (which emphasizes noise traders’ non-fundamental flows cause

price dislocation). The contribution of this empirical paper is providing a playbook for inte-

grating quantity information into the canonical factor framework and showing its significant

improvement to factor pricing models’ empirical relevance.
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Literature. This paper is related to two frameworks in the literature but has differences

in its objective and approach. First, we do not treat flow or quantity fluctuations as a source

of risk, and the constructed quantity time-series variables are not new risk factors, as in a

recent paper by Dou, Kogan, and Wu (2022).11 Instead, we still use previously proposed

factors, and the newly proposed factor-level quantity variables work together with risks in

the form of “beta times quantity.”

Second, this paper belongs to the growing literature on demand-based asset pricing,

which shows that investor demand plays a critical role in determining asset prices and that

incorporating flow and quantity data can improve empirical asset pricing research (Koijen

and Yogo, 2019; Gabaix and Koijen, 2022; Koijen, Richmond, and Yogo, 2024; Haddad,

Huebner, and Loualiche, 2024, etc.). In particular, a strand of the literature estimates

factor-level price multipliers, including Teo and Woo (2004), Peng and Wang (2021), Ben-

David, Li, Rossi, and Song (2022a), Li (2022), Li and Lin (2022), and Huang, Song, and

Xiang (2024). We focus on the empirical study of expected future stock returns rather than

impacts on contemporaneous prices.12 In this regard, our goal and approach align more

closely with the factor pricing literature: we explicitly model the factor structure of returns;

maintain the associated factor pricing condition; and take return prediction accuracy as the

central criterion of empirical success.13

Additionally, our use of the no-arbitrage factor pricing (APT) condition to link the cross-

sectional quantity-return relationship also differs from existing approaches, such as nested

11Other papers that treat flow or quantity information as sources of risk include De Long, Shleifer, Sum-
mers, and Waldmann (1990), Shleifer and Vishny (1997), Lo and Wang (2000), Hasbrouck and Seppi (2001),
Adrian, Etula, and Muir (2014), and He, Kelly, and Manela (2017).

12Appendix A discusses the connection between flow/quantity’s impact on contemporaneous prices and
expected future returns (risk premiums) with a formal theoretical microfoundation.

13Koijen and Yogo’s (2019) demand system models a stock’s demand elasticities with respect to a) the
stock’s price (or the market capitalization) and b) the stock’s factor risk exposures (proxied by the stock’s
characteristics). Neither is exactly our channel: a) operates at the stock level, rather than the factor level, and
b) is about the cross-sectional demand variation related to a stock’s factor loadings or characteristics, rather
than time-series demand variation driven by aggregated factor risk quantity. They use the factor framework
as a microfoundation for the characteristic-based demand system. Related to our research objective, one of
their applications shows that mean reversion in latent demand introduces a new source of predictability for
cross-sectional variation in stock returns.
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logit demand systems in Koijen and Yogo (2020), Bretscher, Schmid, Sen, and Sharma

(2024), and Jiang, Richmond, and Zhang (2024), controlling for close substitutes as in

Chaudhary, Fu, and Li (2023), and mean-variance optimization as in Vayanos and Vila

(2021), Davis, Kargar, and Li (2024), and Jansen, Li, and Schmid (2024).14

In the remainder of the paper, Section 2 provides the theoretical motivation, empirical

model, and methods; Section 3 constructs the quantity and other empirical measures; Sec-

tion 4 presents the main empirical results; Section 5 shows that quantity must be combined

with risk to forecast returns; Section 6 investigates alternative economic channels; Section 7

concludes.

2 Theoretical motivation, empirical model, and methods

2.1 Theoretical motivation

The theoretical rationale for integrating quantity information into factor pricing to explain

expected stock return is that market trading activities affect sophisticated investors’ risk

holdings and, in turn, their required compensation for bearing risks. We focus on a promi-

nent channel where the noise trading flows—a significant type of trading activities—matter

for the central element of asset pricing, namely the factor premium, although there can

be many other market microstructure mechanisms in which trading activities generate con-

temporaneous price impacts. We outline this theoretical channel below, and Appendix A

provides the formal microfoundation.

Suppose the market is populated with two groups of investors: noise investors and so-

phisticated investors. Noise investors, such as retail traders, generate uninformed flows in

and out of individual stocks over time. The noise flows are large and correlated across stocks,

14Relatedly, Berk and Van Binsbergen (2016), Barber, Huang, and Odean (2016), and Ben-David, Li, Rossi,
and Song (2022b) use a revealed preference approach to determine which factors investors care about, and
Bretscher, Lewis, and Santosh (2023) show that betas measured relative to institutional investor portfolios
explain stock returns.
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which can induce significant fluctuations when aggregated to the factor level.15

Sophisticated investors, such as hedge funds and market makers, take the other side

of the retail trades by absorbing the noise flows and supplying liquidity. Therefore, noise

flows induce fluctuations in the sophisticated investors’ holding quantities of the underlying

systematic risks. For example, if retail investors sell lots of value stocks with high HML

exposures, then sophisticated investors will accumulate more HML risk holdings. The ag-

gregation from stock-level flows to factor-level quantities accounts for each stock’s factor

exposure (β) in the fashion of “portfolio beta” commonly used in risk management practice

(see Section 3.2 for aggregation details). The sophisticated investors are the marginal in-

vestors whose risk-holding conditions drive asset prices. They have limited capacity to bear

risk and absorb flows, and require greater compensation for a systematic risk factor when

they hold more of it.16 This gives rise to the key model specification that a factor’s premium

varies with the factor’s quantity fluctuations induced by trading flows, and we hypothesize

that the relationship is positive.17 Meanwhile, sophisticated investors enforce no-arbitrage

pricing across stocks, so the canonical factor pricing condition still holds.18 These two forces

combined imply the main empirical model specified below, in which both the stock’s factor

risk exposures (β) and factor quantity (q) determine its expected return.

15Previous studies report (which we also confirm empirically) that the retail flows are not only significant
in magnitude but also correlated across stocks due to the commonality in retail investors’ trading behaviors.
The correlation aligns with investment styles, such that, say in one period, retails tend to sell growth stocks
and in the next, they buy small stocks (Li, 2022; Huang, Song, and Xiang, 2024). This fact supports that
retail flows can induce significant fluctuations in the quantity of risk when aggregated to the factor level.

16Limited risk-bearing capacity can stem from liquidity or balance-sheet constraints (e.g., Adrian, Etula,
and Muir, 2014; Gabaix and Maggiori, 2015; He, Kelly, and Manela, 2017; Kondor and Vayanos, 2019;
Haddad and Muir, 2021). In particular, Eisfeldt, Herskovic, and Liu (2024) and Kargar (2021) emphasize
that heterogeneity within the intermediary sector can further lead to risk misallocation, offering a novel
explanation for why liquidity is priced.

17Appendix A provides the formal theoretical model to microfound the quantity-factor premium association
(Eq. 3 specified further below). This specification is related to the demand-based literature, which emphasizes
the “price multiplier” is high, or, in other words, the demand is inelastic to price (Gabaix and Koijen,
2022). The empirical distinction is that our goal is explaining the expected future returns, rather than the
contemporaneous price impact (although the two are theoretically connected as high expected returns imply
low current prices).

18Enforcing the cross-sectional APT condition is consistent with Kozak, Nagel, and Santosh (2018), who
argue that cross-sectional no-arbitrage conditions are still valid in the presence of noise traders as long as
there exist some sophisticated investors. This is in contrast to those models that directly link each individual
stock’s flow to its price. See Section 5.1 for the comparison against this benchmark.
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2.2 Empirical model

The empirical model starts with the canonical factor pricing framework, in which the cross

section of stock returns follows a factor structure

ri,t+1 =
K∑
k=1

βi,k,tfk,t+1 + ϵi,t+1, ∀i, t, (1)

where ri,t+1 is the excess return of stock i in month t+1, k indexes factors, f is factor return

(zero-cost or excess return), and β is the stock’s factor exposure, which is subsequently

estimated using realized daily returns. According to the APT (Ross, 1976), the cross section

of expected return follows the factor pricing condition,

Et[ri,t+1] =
K∑
k=1

βi,k,tµk,t, ∀i, t, (2)

where Et[ri,t+1] is the conditional expected stock return, our research object, and µk,t is the

factor premium conditional on time-t information.

The departure from the canonical framework lies in the modeling of the factor premium.

According to the theoretical motivation above, we specify that the factor premium is not a

constant but varies with the factor’s quantity fluctuations induced by trading flows.

µk,t = µk(qk,t) = µk + λkqk,t, ∀k, t, (3)

where the first is a general non-parametric form in which µk( · ) is an unspecified function

of qk,t, while the second is the parametric linear specification, which is implemented in most

empirical settings.19 Parameter µk corresponds to the constant factor premium, which is the

key interest of estimation in traditional factor pricing tests. The linear coefficient λk is the

new central parameter of interest, which measures the sensitivity of the factor premium to

19The various parametric and non-parametric empirical methods are detailed further below in Section 2.3.
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the factor’s quantity fluctuations.20

Plugging the factor premium specification into the factor pricing condition (Eq. 3 into

Eq. 2), we arrive at the main empirical model, the beta times quantity (BTQ) model of

expected stock returns:

Et[ri,t+1] =

(
K∑
k=1

µkβi,k,t

)
+

K∑
k=1

λkβi,k,tqk,t, ∀i, t. (4)

The first summation term is the traditional factor pricing model, which we refer to as the

“β-only” model, serving as the baseline in empirical comparisons. The second is the new

beta times quantity (BTQ) term. In empirical implementation, we often find the β-only

term is so close to zero (and so noisy for explaining expected returns) that including it in

the BTQ model can even hurt the empirical fit. Therefore, the BTQ model typically omits

the β-only term in parentheses and only includes the beta times quantity term.

The key hypothesis implied by the theoretical motivation is that, for a “true” fundamental

risk factor k, λk > 0. The hypothesis means that the cross-sectional return dispersion

between high and low β stocks widens when the factor’s quantity is high. This is similar

to the difference-in-differences (DID) analysis: β captures the cross-sectional variation in

expected returns while q provides the time-series variation. In other words, the observed

factor risk aversion is stronger when q is high. This offers a new perspective compared to

the traditional hypothesis µk > 0, which asks whether higher exposure to that factor is

associated with higher average returns, i.e., only the first “difference” in the DID analysis.

The new test has more identification power provided by the time-series variation in q. More

importantly, this test has more economic relevance since the q variation tracks sophisticated

investors’ risk-holding conditions. Hence, we are no longer inferring investors’ risk pricing

process from asset and asset price information alone. Therefore, the new framework can lead

20Appendix A.3 provides a microfoundation for the linear specification and the economic interpretation
of its parameters. The parameter λk reflects the inelasticity of sophisticated investors’ demand for factor
risk. This inelasticity is further attributed to two primitives: high risk aversion and the limited capital of
sophisticated investors relative to the aggregate stock market.
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us closer to identifying the fundamental risks that investors care about.

The model allows for multiple factors and allows each to have a different λk coefficient.

This is useful for testing each factor’s marginal importance in a joint setting, controlling for

other factors’ contribution to expected returns.21

An important property of the sign of λk is noted. Regardless of the sign of the factor (e.g.,

small-minus-big or big-minus-small), the sign of λk should, theoretically speaking, always be

positive. This is because when factor return f flips its sign, both β and q flip their signs,

and β times q remains unchanged. A positive λk estimate, nonetheless, is not empirically

guaranteed. Thus, it provides another layer of testing for the risk-based theory, regardless

of the specification of the factor’s sign. A negative λk estimate would be an unambiguous

rejection of the risk-based theory, and the empiricist could not blame the “wrong” sign of

the factor as an excuse. Notice that µk in the traditional β-only model does not have this

property: big-minus-small would have a negative µk.

We focus on testing the hypothesis “λk > 0” in the cross-sectional setting of the BTQ

model (Eq. 4), not in the time series context of predicting factor returns fk,t+1 with qk,t.

Although the BTQ model is theoretically motivated by the time-series specification of factor

premium (Eq. 3), empirically, a positive time-series predictive coefficient between qk,t and

fk,t+1 is far from implying the cross-sectional hypothesis of λk > 0. The gap between the

two is the cross-sectional variation of the risk exposures (β), which is not present in the

time series setting. A similar gap is familiar in the traditional factor pricing framework: a

long-short portfolio with a high average return does not guarantee that it is a priced factor

in cross-sectional tests, such as the Fama-MacBeth regressions.

21The model (Eq. 3) specifies that factor k’s premium µk,t is affected only by its own quantity qk,t, not by
the quantities of other factors qj,t. Allowing for cross-factor impacts would complicate the model, increasing
the number of parameters from K to K2, which becomes impractical for large K. Our most salient empirical
results are attained with single-factor settings, where cross-factor impacts are irrelevant.
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2.3 Empirical methods

We use a series of empirical methods to estimate and test the BTQ model. The methods are

presented as upgrades of familiar procedures in asset pricing, such as the security market

line, Fama-MacBeth factor premium estimates, and return prediction exercises, for ease of

comparison and to demonstrate the value of incorporating quantity information into the

factor model. We present an overview of the methods here, while the details are provided

when presenting the empirical results in Section 4.

From the methodological perspective, the progression of the methods can be seen as

gradually adding parameterization to the model of expected stock returns. To start with,

the familiar security market line (SML) can be seen as a simple non-parametric model,

Et[ri,t+1] = Er(βi,k,t), where Er( · ) is an unspecified function. (The SML is typically esti-

mated with the market beta, i.e., k = MKT, but we implement it with other factors as well.)

The conditional SML (Section 4.1) upgrades it to a bi-variate non-parametric model that

includes q, Et[ri,t+1] = Er(βi,k,t, qk,t). We estimate this non-parametric model with a simple

kernel method by binning observations of β and q. This method is easy to interpret via the

familiar SML plot, and clearly shows that q is a highly relevant variable in the expected

return function (Er) with significant effects on the risk-return (β-Er) relation.

The second method, the quantity upgraded Fama-MacBeth factor premium estimates,

is semi-parametric (Section 4.2). It imposes a linear relationship between risk (β) and ex-

pected return according to APT, but is still non-parametric about q’s effect: Er(βi,k,t, qk,t) =

βi,k,tµk(qk,t), where the factor premium function µk( · ) is left unspecified. It is still estimated

non-parametrically by binning q and then averaging the returns of the Fama-MacBeth factor

mimicking portfolio (FMP, which are coefficients from the cross-sectional regression ri,t+1 on

βi,k,t) within each bin.

Third, once the µk( · ) function is also specified as linear, we arrive at the parametric BTQ

model Er(βi,k,t, qk,t) = λkβi,k,tqk,t. The parametric setting easily accommodates multiple

factors, and is estimated with a linear predictive regression on the panel of monthly stock
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returns ri,t+1 =
∑K

k=1 λkβi,k,tqk,t + errori,t+1 (Section 4.3). Notice that each factor’s beta

times quantity (BTQ) term together serves as a predictor, and the BTQ terms of different

factors serve as multivariate predictors. Predicting stock returns has experienced significant

progress with firm characteristics and machine learning models. We follow the literature’s

stock-month panel setup and use the same measure of empirical success: the monthly stock

return predictive R2 evaluated out-of-sample (OOS). This is our (and also the literature’s)

key evaluation metric for “explaining expected stock returns.”

Lastly, in response to the factor zoo problem, when the number of candidate factors

(K) is large, the number of BTQ predictors grows accordingly to more than 100. In such

a setting, we use machine learning methods designed for high-dimensional prediction, such

as Lasso, to select a small number of priced factors (Section 4.4). By inducing sparsity

in the λk coefficients, Lasso allows us to select a small number of BTQ terms and reveal

which factors are priced in a joint setting, controlling for other factors. Additionally, we

follow Kozak, Nagel, and Santosh (2020) and pre-process the candidate factors with principal

component analysis (PCA). Then, we supply the principal component factors to the same

BTQ construction and Lasso prediction exercise (Section 4.5). The potential benefit of

this method is to “shrink the cross section” of factors and elicit latent factors that capture

most of the time-series return variation among the many candidates. According to existing

literature, such latent factors are often more reliable for explaining expected returns.

In summary, we put forward the message that integrating quantity information into

various empirical methods can lead to significant empirical discoveries. We implement the

methods outlined above to support this message, but they are far from exhaustive given the

vast asset pricing literature. We believe these quantity variables can similarly interact with

many other existing methods, opening a broad avenue for further empirical discoveries.
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3 Constructing quantity (q) and other variables

The data to run a BTQ predictive regression include the (unbalanced) panel of monthly

excess stock returns ri,t+1, along with a panel of βi,k,t and a time series of qk,t for each factor

k, which serve as right-hand side predictors. Among these, βi,k,t is constructed from the

time series of factor return fk,t as in the first stage of the Fama-MacBeth procedure. The

construction of qk,t is new. It requires the stock-level retail flow in the same unbalanced

panel structure as the returns, which is then aggregated to the factor level according to each

stock’s factor exposure measures. In summary, the source data are only the panel of returns

and the panel of flows at the stock level, from which one can calculate both β and q for any

factor, given the time series of factor returns fk,t.

3.1 Return, risk, and flow variables constructed with standard procedures

The factor and stock return, risk exposure, and stock-level dollar flow variables are all

constructed using data sources and procedures standard in the literature.

We use delisting-adjusted stock returns from CRSP. The six Fama-French-Carhart (i.e.,

Fama and French, 1993, 2015; Carhart, 1997) factors are from Kenneth French’s website,

and the 153 Jensen, Kelly, and Pedersen (2023, JKP) factors are from the authors’ website.

All returns are obtained in both daily and monthly frequencies in excess of the risk-free rate.

Each stock’s exposure to factor k in month t is

β̂i,k,t :=
ĉovt(ri,t, fk,t)

v̂art(fk,t)
, ∀i, t, k, (5)

where ĉovt and v̂art are realized covariance and variance estimated with daily returns in a

12-month rolling window up to month t.22

22Notice β̂i,k,t corresponds to the regression coefficient of a single-factor model. This differs from the
original Fama-MacBeth procedure, where the first stage is a multi-factor regression. A single-factor beta is
simply the realized covariance normalized by scalar variance and offers two advantages. First, multi-factor
regressions can be unreliable even with a moderately high number of factors. Second, a single-factor beta,
and consequently each factor’s BTQ term, can be constructed independently of other factors in the model,
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We construct the stock-level dollar flow $flowstock
i,t panel using the mutual fund flow-

induced trading (FIT) metric, proposed by Coval and Stafford (2007), Froot and Ramado-

rai (2008), and Lou (2012). We use the standard mutual fund data source but carefully

clean data errors by cross-validating several sources. In particular, we obtain monthly mu-

tual fund returns and characteristics from the CRSP Survivorship-Bias-Free Mutual Fund

database and quarterly holdings data from the Thomson/Refinitiv Mutual Fund Holdings

Data (S12). Our sample period spans from January 2000 through December 2022.23 The

mutual fund sample comprises both active and passive mutual funds. To ensure accuracy

in our flow measure, we cross-validate mutual funds’ monthly returns and total net assets

(TNA) obtained from the CRSP database with corresponding data from Morningstar and

Thomson/Refinitiv. In the process, we manually correct several data input inaccuracies.

Details regarding this process are in Appendix B.1.

The standard $flowstock
i,t construction procedure has three steps. First, dollar mutual fund

flows are

$flowfund
m,t := TNAm,t − TNAm,t−1(1 + rfundm,t ), (6)

where TNAm,t is the total net assets of mutual fund m at the end of month t, and rfundm,t is

mutual fund m’s net-of-fee return in month t.

Second, we allocate mutual fund flows to dollar stock-level flows, based on the established

assumption in the literature that mutual funds buy or sell stocks in proportion to their prior

holdings,

$flowstock
i,t := −

∑
fund m

$flowfund
m,t weight

fund
i,m,quarter(t)−2 . (7)

The negative sign is used to shift the perspective from retail investors to sophisticated in-

allowing for a more convenient empirical procedure. See Feng, Giglio, and Xiu (2020) for a related discussion,
who also use covariances rather than multi-variate betas.

23We start the sample period in 2000, following the convention in the literature. The mutual fund industry
experienced significant growth and sustained inflows throughout the 1990s (Lou, 2012; Ben-David, Li, Rossi,
and Song, 2022a). Since 2000, the size of the mutual fund sector has remained stable relative to the total
equity market, resulting in stationary monthly flow shocks.
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vestors when accounting for the flow. Specifically, a positive $flowstock
i,t dollar value indi-

cates that retail investors are selling stock i in month t, while sophisticated investors are

buying. Moreover, we use the two-quarter-lagged mutual fund holding weight, denoted as

weightfundi,m,quarter(t)−2. For instance, quarter(July)− 2 = Q1.24

In total, we have around 1,644,000 stock-month observations in a full sample of 276

months from January 2000 to December 2022, or on average around 6,000 stock-month

observations per month.

3.2 Constructing quantity variables

The construction of qk,t is guided by the theoretical motivation outlined in Section 2.1 and

the microfoundation detailed in Appendix A.3. It involves two steps. First, we aggregate

stock-level flows to the factor level, using the same risk measures, ĉovt(ri,t, fk,t), from Eq. 5:

flowfactor
k,t :=

∑
i

$flowstock
i,t ĉovt(ri,t, fk,t) =

∑
i

$flowstock
i,t β̂i,k,tv̂art(fk,t), ∀k, t. (8)

The aggregation accounts for each stock’s factor exposure, in a similar spirit to calculating

the portfolio beta commonly used in risk management. The second expression in Eq. 8 is

for explaining the intuition: every month, sophisticated investors add a marginal portfolio to

their existing holdings in response to retail flows, and $flowstock
i,t is the dollar weights of this

portfolio. The portfolio’s risk characteristics are determined by its composition (portfolio

weights $flowstock
i,t ), as well as each constituent stock’s factor exposures (β̂i,k,t). For example, if

retail investors sell a large quantity of value stocks with high HML loadings, the sophisticated

investors’ HML quantity would experience a positive flow shock.25 Moreover, multiplying

24The use of a two-quarter lag deviates from the conventional one-quarter lag (Lou, 2012) to be more
conservative and ensures that the constructed $flowstock

i,t is observable with information up to month t. In
particular, mutual fund holding is reported with a maximum statutory delay of 45 days (Christoffersen,
Danesh, and Musto, 2015), which means the end of Q2 holdings may not be observable in July. By using
a two-quarter lag, July relies on the end of Q1 holdings, which are guaranteed to be available. Our results
remain robust when we apply the one-quarter lag commonly used in the literature. These results are available
upon request.

25Notice we aggregate flow to the factor level (HML in this example) based on each stock’s HML exposure
(β), not on the stock’s characteristics (the book-to-market ratio) or its weight in the HML portfolio. This
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by v̂art(fk,t) modulates the portfolio’s risk by the time-series fluctuation in factor return

variance.26 In this sense, we are indeed tracking the quantity of factor risk, not the physical

quantity of securities or portfolios.27

Second, the flow shocks flowfactor
k,t are normalized by the lagged total US stock market

capitalization and accumulated in a six-month lookback window,

q̃k,t :=
1

h

h−1∑
h′=0

flowfactor
k,t−h′

total stock market capt−h′−1

, ∀k, t, with h = 6. (9)

This normalization accounts for the upward trend in dollar flows, which reflects the overall

growth of the equity market, as well as the increasing capacity of sophisticated investors to

absorb these flows.28 Accumulating flowfactor
k,t over time accounts for the persistent effects

of older flows on future returns. What matters for the expected return in month t + 1 is

the factor quantity held at the end of month t, which is impacted by flow shocks in all

previous periods, flowfactor
k,t , flowfactor

k,t−1 , flow
factor
k,t−2 . . . The speed at which sophisticated investors

can absorb these shocks and eliminate their effect on risk premiums is not our research focus.

We accumulate past flows in a 6-month lookback window for simplicity and transparency to

avoid a more involved study of the speed. The empirical results are robust to alternative

specifications (see Section 4.6).

In many empirical exercises, we standardize the raw q̃k,t time series as qk,t := q̃k,t/σ(q̃k,t),

where σ(q̃k,t) is the full-sample time-series standard deviation, for ease of interpreting the

regression coefficients.

choice is based on the theoretical motivation that sophisticated investors are averse to factor risk, not the
factor portfolio itself. The goal is to measure the quantity variation in each factor’s risk, not the factor
portfolio itself. Li (2022) aggregates using portfolio weights, which can be reconciled with our framework if
characteristics are viewed as proxies for factor exposures.

26More specifically, the variance term arises in the theoretical model that assumes CARA utility for
sophisticated investors (see Appendix A.3).

27Appendix B.1.4 discusses an alternative method that directly constructs factor-level flows from mutual
fund flows.

28Appendix A.3 provides a theoretical justification for normalizing by the total stock market capitalization
under the assumption that the fraction π of sophisticated investors relative to the total stock market remains
constant over time. The smaller this fraction (π), the more sensitive the risk premium (the higher λ).
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Figure 1: Quantity (q̃k,t) time series plot
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Note: Time series of the constructed quantity (q̃k,t) variables for the Fama-French-Carhart factors. The
monthly observations span from January 2000 to December 2022.

3.3 Basic properties of the constructed quantity variables

Next, we present the summary statistics of the flow-induced quantity, q̃k,t, the key new

variable introduced in this paper. Figure 1 shows the time-series plots of q̃k,t for the Fama-

French-Carhart (FF3C) factors. We plot the pre-standardized series q̃ to show magnitudes.29

Table 1 presents the full-sample statistics of FF3C’s q̃ and summaries of these statistics across

the 153 JKP factors.

Examining the basic time series properties of q̃k,t, we find that variation dominates its

trend, making quantity fluctuation the primary feature compared to the secular trend in

retail flows. The series also exhibits dynamic volatility clustering, similar to that seen in

more familiar factor return time series.

Among the four factors plotted in Figure 1, MKT’s quantity (in blue) has the most time-

29The magnitudes of q̃ are in the unit of 10−6. The absolute level is irrelevant for empirical analysis, as
the variables are standardized in regressions. To understand this magnitude, we know the monthly mutual
fund flows are in the order of tens of billions of dollars, and the total market capitalization is in the order of
tens of trillions of dollars (see Appendix Figure A.2). So the first term in Eq. 8 is in the order of 10−3 (given
market β around 1). The last term, monthly v̂art(fk,t) is in the order of 10−3, so q̃ is in the order of 10−6.
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Table 1: Summary statistics of quantity q̃k,t (unit: 10
−6)

Fama-French-Carhart factors Across 153 JKP factors

MKT SMB HML MOM Q25 Median Q75

Mean 0.29 0.04 0.13 -0.15 -0.05 -0.01 0.03

Std 1.88 0.29 0.65 0.82 0.23 0.39 0.76

Note: The mean and standard deviation of the constructed quantity time series q̃k,t for the Fama-French-
Carhart factors and JKP factors.

series variation. The reason is that most stocks have positive market beta centered around

one, so q̃MKT,t roughly aggregates the overall retail flows into (and out of) the entire mutual

fund sector. In contrast, the three long-short factors have stock betas that are more evenly

distributed around zero, so their q̃k,t series reflect the net retail flows into (and out of) stocks

of particular investment styles. Therefore, these series are not mechanically correlated, even

though they are all constructed from the same retail flow panel data.

Appendix C.1 reports that the pairwise correlations of the four qk,t series are far from ±1,

indicating that series are not collinear. It also reports a principal component analysis (PCA)

on the qk,t series for the 153 JKP factors. These q series have a multi-factor structure with

independent variation along various principal dimensions as well as substantial idiosyncratic

variation. Section 5.2 further shows each factor’s q provides distinct and independent pricing

information along its respective risk dimension. These results suggest BTQ’s consistent

predictive power across different factors is not mechanically driven by one (or a few) special

“secrete sauce” q series, highlighting the robustness of the underlying economic mechanism.

Turning to notable spikes in the plot, we note q̃MKT,t experiences significant increases dur-

ing the Global Financial Crisis and the COVID-19 pandemic in the spring of 2020. These

spikes are attributed to significant outflows from mutual fund investors during these peri-

ods. As a result, the sophisticated investors’ risk holding quantity increases, making them

more “averse” to the market risk, which can be related to market crashes and subsequent

rebounds. However, this is a highly simplified and anecdotal explanation of the main eco-
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nomic mechanism, as it does not consider cross-sectional variation in factor exposures, more

nuanced fluctuations, or factors beyond MKT. Next, we turn to formal empirical analysis.

4 Main empirical results

4.1 Security market line (SML) depends on quantity

The security market line is a simple and commonly used tool to visualize the relationship

between systematic risk exposure and expected return (β-Er) in the cross section of stocks,

without relying on parametric modeling. We construct the empirical SML and its conditional

versions based on factor q. We show that the β-Er relationship is nearly flat unconditionally,

which is consistent with the existing empirical results that factor exposure alone cannot ad-

equately explain the cross-sectional variation in stock returns. However, once conditional on

quantity information, the SML reveals interesting risk-return patterns that strongly support

a risk-based explanation.

The unconditional SML displays the β-Er relationship in the non-parametric regression

model: Et[ri,t+1] = Er(βi,k,t). We estimate it with a simple kernel method by sorting stock-

month observations into twenty quantile bins by β̂i,k,t, and then plotting the average of ri,t+1

against the average β̂i,k,t within each bin. Notice that return ri,t+1 leads β̂i,k,t by one month,

so that it estimates conditional expected returns.

The upgraded SML conditional on quantity estimates the bi-variate non-parametric

model: Et[ri,t+1] = Er(βi,k,t, qk,t). Our purpose is to show that the second entry, q, matters

for the risk-return relationship. Again, we conduct a simple non-parametric estimation for

transparency and intuitiveness. The estimation procedure is the same as the unconditional

SML, but we further split each bin of stock-month observations into two sub-bins by the

time-series median of qk,t, and plot sub-bin average ri,t+1 against average β̂i,k,t.
30

30Formally, an unconditional bin is defined as {(i, t) s.t. β̂i,k,t ∈ [a, b)}, where a and b are boundaries

of the 20 quantiles of β̂i,k,t, for example, the first pair is
[
quantile(β̂·,k,·, 0%), quantile(β̂·,k,·, 5%)

)
. A “high

q” bin is defined as {(i, t) s.t. β̂i,k,t ∈ [a, b) and qk,t ≥ median(qk,t)}, where median(qk,t) is the time-series
median of qk,t. And, “low q” is the same as “high q” but with “≥” replaced by “<”.
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Figure 2: Security market line (SML) conditioning on quantity: Et[ri,t+1] = Er(βi,k,t, qk,t)

-0.5 0 0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-0.5 0 0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3

-5

-4

-3

-2

-1

0

1

2

3

4

5

-3 -2 -1 0 1 2 3

-5

-4

-3

-2

-1

0

1

2

3

4

5

Note: Security market line (SML) plots expected stock returns against β. The unconditional SML (black):

sorts the stock-month observations into twenty quantile bins of β̂i,k,t and plots the average return ri,t+1

against average β̂i,k,t within each bin. The conditional SMLs (red for high q, blue for low q): the same

process but split bins by the time-series median of qk,t. Notice the scales of the x- and y-axes in the bottom

two panels are zoomed out by a factor of two to accommodate the larger ranges of HML and MOM β’s.

Figure 2 presents single-factor models using the Fama-French-Carhart factors (MKT,

SMB, HML, MOM). The black curves represent the unconditional SMLs, while the red and

blue curves correspond to conditional SMLs for high and low qk,t, respectively.

We find that the unconditional SML is nearly flat for the market factor, with a slight

downward slope in the higher beta range. This implies that the market beta alone cannot

explain the cross-sectional variation in expected returns, which is consistent with similar
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reports in the existing literature. Similar null results for unconditional SMLs are observed

for SMB and MOM, while HML’s SML is slightly upward-sloping.

In contrast, the conditional SMLs show interesting risk-return patterns that are not

observable without conditioning on q. The high-q SMLs (red) exhibit a strong positive

slope, while the low-q (blue) SMLs are downward sloping. The unconditional SML (black)

lies in between these conditional SMLs as the mixed average. The gaps in the slopes suggest

that sophisticated investors’ risk-holding conditions matter for their demand for risk, which

in turn significantly impacts the pricing of factor risks in the cross section. Notice the four

plots are produced with different qk,t time series and β̂i,k,t panels, yet the slope patterns

are consistent across factors. This consistency suggests that quantity’s effects on factor

premiums are general and robust, reflecting a stable underlying economic mechanism.

The positive high-q slope suggests that sophisticated investors demand higher additional

compensation for high systematic risk in high-q environments. Conversely, the negative low-q

slope indicates high-risk investments have low expected returns (or high concurrent prices).

This is likely because sophisticated investors are more willing to hold high-risk investments

when they are required to sell lots of such stocks to retail traders in low-q months, i.e., when

they are in a relatively short position of the factor.31

The magnitude of q’s effects is economically large. For instance, a market beta-neutral

stock has an unconditional expected return of around 0.75% per month. In contrast, for a

stock with a market beta of 1, the expected return is as high as 1.25% in high-q months or as

low as 0.25% in low-q months, with the average still around 0.75%. The high vs. low-q gap

is around 1% per month or more than 10% annualized. This gap is even greater for stocks

with higher market betas. For HML, the gap is even more pronounced: a βHML = 1 stock

is expected to earn around 30% annually, while an HML-neutral stock’s expected return

remains unaffected by q, as evidenced by the crossing of the three curves at βHML = 0. This

result reveals that HML is a salient fundamental factor for sophisticated investors, as both

31The sophisticated investors’ risk management mechanisms as described in Frazzini and Pedersen (2014)
can provide a potential explanation for the pricing behavior in the low-q months.
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high β exposure and high quantity holdings are compensated by significantly higher risk

premiums. For the SMB factor, while the general patterns of SML slopes remain consistent,

the effects of both β and q are smaller in magnitude compared to the other factors. We

provide additional support for these findings and present more precise point estimates using

parametric estimations further below.32

All SMLs, regardless of their slopes, are approximately straight lines, regardless of their

slopes, particularly around the central range of β, where most stocks are concentrated, and

sampling noise is less pronounced. This linearity in β is consistent with the cross-sectional

law of one price (LOOP), even as the slope (risk premium) varies significantly with q. Next,

we specify the linearity of expected returns in β, while still leaving the effect of q non-

parametric.

4.2 Fama-MacBeth factor premium increases with quantity

We specify a linear relationship between factor exposure (β) and expected return, where

the linear coefficient (factor premium) is allowed to vary with quantity: Er(βi,k,t, qk,t) =

βi,k,tµk(qk,t).

To estimate this model, the first stage of the Fama-MacBeth regressions provides factor

risk exposures β̂k,i,t from time-series regression (already detailed in Section 3.1). The second

stage of the Fama-MacBeth regressions runs cross-sectional regression for each t:

ri,t+1 = γ0,t+1 + γk,t+1β̂i,k,t + errori,t+1, ∀i, (10)

where γk,t+1 is the Fama-MacBeth factor mimicking portfolio (FMP) return. Canonically,

the factor premium is estimated as the time-series average of γk,t+1. It measures the average

cross-sectional association between factor loading and stock return. The average factor

32It is also interesting to note that the crossings of the high/low-q and unconditional SMLs are almost
exactly at β = 0 for MKT and HML, and somewhat near zero for SMB and MOM. Crossing at β = 0 is
consistent with the parametric BTQ model and the theoretical motivation: the expected return of a factor
risk-neutral stock should not be affected by that factor’s quantity fluctuations.
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Figure 3: Fama-MacBeth factor premium conditioning on quantity, µk(qk,t)
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Note: Fama-MacBeth factor mimicking portfolio returns (FMP, γk,t+1) averaged unconditionally (dashed
line) and averaged within unit bins of qk,t (solid line).

premiums are often found to be close to zero, challenging factor pricing (Lopez-Lira and

Roussanov, 2023).

The innovation of our approach is to estimate the mean of γk,t+1 conditional on qk,t. To

achieve this, we form four unit bins of qk,t (which is already standardized) and calculate the

average of γk,t+1 within each bin. Figure 3 presents the conditional (solid lines) and the

unconditional (dashed lines) factor premiums for each of the four FF3C factors.

The plot shows strong and consistent evidence that the Fama-MacBeth factor premium
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is not zero but increasing in factor quantity qk,t. Specifically, the cross-sectional risk-return

relationship is strong and positive when quantity qk,t is high, while the factor premium

becomes negative when qk,t is low, suggesting that the risk-return tradeoff is reversed in

low-q environments. On average, the unconditional premium is close to zero, but this masks

the significant dynamics that only unfold when we condition on quantity information.

The increasing relationship in µk(qk,t) is consistent across the four factors, with the market

factor exhibiting the most substantial variation. The market factor premium varies from less

than −2% per month when market qk,t is in the lowest (−2,−1) standard deviation range

to nearly +3% per month when market q is in the (1, 2) range. Consistent with the SML

results, the magnitude of factor premium fluctuation driven by qk,t can reach double-digit

annualized percentages, highlighting the economic relevance of quantity in driving factor

premiums.

4.3 Beta times quantity (BTQ) forecasts individual stock returns

The empirical results so far from non-parametric plots show that the quantity information

significantly impacts the cross-sectional risk-return relationship. We now turn to the para-

metric BTQ model, which allows us to include multiple factors, provide more formal point

estimates, and conduct OOS model fit evaluation and factor selection tests. We show that

the BTQ model provides a compelling explanation for the expected return of individual

stocks.

Once the factor premium function µk(qk,t) is specified in linear form as µk(qk,t) = λkqk,t,

we arrive at the parametric BTQ model, which is estimated using the following return

predictive regression with a panel of individual stocks:

ri,t+1 =
K∑
k=1

λkqk,tβ̂i,k,t + errori,t+1, ∀i, t. (11)
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Table 2: Predicting stock returns with and without quantity, single factor

Fama-French-Carhart factors Across 153 JKP factors

MKT SMB HML MOM Q25 Median Q75

Panel A: IS R2 comparison, full sample 2000-2022 (%)

BTQ 1.01 0.30 1.00 0.91 0.39 0.62 0.95

β-only 0.05 0.05 0.12 0.06 0.02 0.06 0.10

Panel B: OOS R2 comparison, evaluation window 2010-2022 (%)

BTQ 0.75 0.60 0.84 0.65 0.20 0.38 0.67

β-only 0.05 -0.10 0.15 0.02 -0.03 0.04 0.11

Panel C: full-sample coefficient comparison: 2000-2022

BTQ

λk (%) 1.80 0.72 1.48 1.77 0.62 0.99 1.48

t-stat (4.18) (2.76) (3.52) (3.38) (2.24) (2.96) (3.69)

β-only

µk (%) 0.38 0.31 0.56 -0.50 -0.33 -0.14 0.22

t-stat (1.07) (1.25) (1.71) (-1.23) (-1.52) (-0.71) (1.11)

Note: BTQ and β-only return predictions (Eq. 11 and 12), single-factor models (K = 1). The first four
columns repeat the same prediction exercises with k = MKT, SMB, HML, MOM, respectively. The last
three columns report the summary statistics across the 153 JKP factors. The t-statistics (in parentheses) are
calculated using standard errors clustered by month. Return prediction R2 is calculated without demeaning
(R2 := 1−

∑
i,t (ri,t+1 − r̂i,t+1)

2
/
∑

i,t r
2
i,t+1, where r̂i,t+1 is predicted return) throughout the paper following

Gu, Kelly, and Xiu (2020).

We compare it with the “β-only” model, which is implied by a constant factor premium µk:

ri,t+1 =
K∑
k=1

µkβ̂i,k,t + errori,t+1, ∀i, t. (12)

We first present the results of the single-factor predictive regressions (K = 1), using

each of the four Fama-French-Carhart factors (MKT, SMB, HML, MOM) and the 153 JKP

factors (Table 2).

The key finding is that the BTQ model significantly outperforms the β-only model in
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predicting stock returns, with substantial R2 improvements across different factor choices

and in both in-sample and out-of-sample evaluations.33 Even with only one factor, the

BTQ model’s OOS return predictive R2’s are around 0.8% for MKT and HML, which are

among the highest fit within the 153 JKP factors. The median OOS R2 across the 153 JKP

factors is around 0.4%, and 139 out of the 153 factors yield a positive OOS R2.34 This

return predictability at the individual stock level is economically significant and comparable

to unstructured state-of-the-art machine learning models that use a large number of firm

characteristics to predict stock returns, which typically achieve an OOS R2 of 1% to 2%. In

contrast, the β-only models have a low R2 close to zero, with the median OOS R2 across the

153 JKP factors at 0.04% and even the 75th percentile reaching only 0.11%.

Turning to the coefficients estimates, the BTQ model’s λk are significantly positive for

all four Fama-French-Carhart factors and for most of the 153 JKP factors. The economic

magnitude of the λk estimates is substantial. For example, λMKT = 1.8%, meaning that

for one standard deviation increase in market factor q, the expected return of a stock with

a market beta of 1 increases by 1.8% per month, or 1.8% × 2 = 3.6% per month for a

stock with a market beta of 2, and so on.35 In contrast, the β-only model’s µk coefficients

are mostly statistically insignificant, with 90 out of the 153 JKP factors even exhibiting

negative coefficient point estimates.

In summary, the single-factor results show that the BTQ model reliably predicts stock

returns, with coefficients consistent with the risk-based explanation, while the β-only model

fails in both model fit and coefficient estimates.

33For OOS evaluations, we estimate the model parameters (λk and µk) using the sample period from
2000 to 2009 and apply these estimates to calculate the OOS R2 for the period from 2010 to 2022. Return
prediction R2 := 1−

∑
i,t (ri,t+1 − r̂i,t+1)

2
/
∑

i,t r
2
i,t+1, where r̂i,t+1 is the predicted return. These standards

are maintained throughout the paper.
34Appendix C.5 provides further interpretation of the economic magnitude of these R2 values. Roughly

speaking, with various simplifications, a one-monthly standard deviation shock in quantity corresponds to 1%
of the mutual fund sector’s market capitalization or about 0.2% of the total U.S. stock market capitalization.
Assuming a price multiplier of 5 (Gabaix and Koijen, 2022), this translates to approximately 1% = 5× 0.2%
of expected return fluctuation, which fits about R2 = 1% of the monthly variation of realized stock returns.

35See Appendix C.5 for additional details showing that the magnitude of the λMKT estimates is comparable
to those reported in the literature.
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In addition, Appendix Table A.1 presents an incidental empirical finding regarding factor

returns: each factor’s return fk,t+1 is predictable by its quantity qk,t, with the predictive

coefficients predominantly positive and statistically significant. However, the OOS R2’s are

unstable and mostly negative, due to the limited statistical power of the simple time-series

prediction of factor returns. As discussed in Section 2.2, while this time-series predictability

is consistent with the BTQ model’s cross-sectional return predictability, it is a much weaker

argument for the pricing power of quantity and is peripheral to our primary research focus

(see further discussion in Appendix C.2).

Moving onto multi-factor models, Table 3 presents the results for these models while

maintaining a relatively low dimensionality with K ≤ 6. This is achieved by using various

combinations of the Fama-French-Carhart (FF5C) factors. The BTQ model continues to

significantly outperform the β-only model across all multi-factor specifications. Allowing

for multiple factors further boosts BTQ’s predictive accuracy, with the best OOS R2 values

exceeding 1%. In contrast, the β-only model still struggles to predict stock returns, with low

R2 values even within the sample.

Regarding factor importance, MKT stands out as the most prominent after controlling

for the contributions of other factors. It has the highest and most statistically significant

coefficients across all multi-factor models, despite an attenuation in λMKT as more factors

are included. HML and MOM also have positive coefficients but lack statistical significance.

The inclusion of these factors in the BTQ model increases both IS and OOS R2, indicating

that their BTQ terms provide additional predictive power and that they are priced factors.

Conversely, the coefficients for SMB, CMA, and RMW are either near zero or negative,

indicating they are not priced factors according to the BTQ model. This is also evidenced

in the fact that the OOS R2 drops when these factors are added to the model. The β-only

model’s µk coefficients are all insignificant or negative. (These numbers are relegated to

Appendix Table A.2.)

Comparing BTQ’s IS vs. OOS model fits, we observe slight reductions in R2 when mov-
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Table 3: Predicting stock returns with and without quantity: multi-factor models

CAPM FF3 FF3C FF5 FF5C
K = 1 3 4 5 6

Panel A: IS R2 comparison, full sample 2000-2022 (%)

BTQ 1.01 1.17 1.19 1.17 1.21
β-only 0.05 0.17 0.21 0.18 0.22

Panel B: OOS R2 comparison, evaluation window 2010-2022 (%)

BTQ 0.75 1.03 1.07 0.44 0.65
β-only 0.05 0.15 0.22 -0.26 -0.05

Panel C: coefficients, full sample 2000-2022

BTQ, λk (%) and t-statistics in parentheses

MKT 1.80 1.27 1.15 1.28 1.16
(4.18) (2.08) (1.96) (2.00) (1.98)

SMB -0.23 -0.16 -0.20 -0.10
(-0.77) (-0.59) (-0.69) (-0.38)

HML 0.82 0.50 0.80 0.50
(1.43) (0.70) (1.55) (0.73)

MOM 0.53 0.74
(0.71) (0.93)

CMA 0.10 0.08
(0.35) (0.28)

RMW -0.09 -0.25
(-0.28) (-0.68)

β-only
— see Appendix Table A.2 —

Note: BTQ and β-only return predictions (Eq. 11 and 12). Same as Table 2 but with multi-factor models
(K ≥ 1). The coefficients of the β-only model are relegated to Appendix Table A.2.

ing from IS to OOS for CAPM, FF3, and FF3C models, indicative of mild overfitting or

parameter instability. This underscores the robustness of the BTQ model’s predictive power,

especially considering the inherent difficulty of forecasting monthly stock returns due to the

low signal-to-noise ratio in stock prices. For FF5 and FF5C, the IS R2 continues to in-

crease slightly, while the OOS R2 reverses to lower values of 0.5% and 0.7%. These levels

of prediction accuracy are still economically significant, but the gap between IS and OOS

R2 indicates an overfitting issue. It suggests the ordinary least squares (OLS) estimation
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method has limitations for moderately higher-dimensional BTQ models. The additional fac-

tors might be noisy or redundant and introduce sample estimation errors. Next, we adopt a

regularization method to select factors from a much greater number of candidates.

4.4 Taming the factor zoo with BTQ

The proliferation of proposed factors challenges the asset pricing literature, and the BTQ

model offers a new method to select factors. This method has stronger identification power

and economic relevance than traditional factor premium tests.

To implement this approach, we use the same return prediction framework (Eq. 11) but

overload it with a large number of proposed factors (K = 159, including six from FF5C and

153 from JKP). It is well expected that many of these factors are noisy or redundant when

controlling for other factors for pricing stock returns. To address this, we use the Lasso

method to induce sparsity in the predictive model and filter out the factors that are not

priced according to the BTQ model.

Lasso is a regularization method that adds a penalty term to the OLS objective function

to shrink and threshold the coefficients towards zero. Specifically, the parameter estimates

solve the following optimization problem:

min
λ1...λK

1

2|IS|
∑
i,t∈IS

(
ri,t+1 −

K∑
k=1

λkβ̂i,k,tqk,t

)2

+ ω
K∑
k=1

1

σ(q̃k,t)
|λk| , (13)

where |IS| is the number of stock-month observations in the training sample, and ω is the

regularization parameter that controls the strength of the penalty term.36

Figure 4 plots the model fit and factor selection results for the BTQ and β-only models

as the regularization parameter (ω) varies. (The β-only model’s Lasso implementation is

similar; see technical details in Appendix B.2.) As ω increases, the fitted BTQ model

36The penalty on λk is normalized by the standard deviation of q̃k,t for technical reasons. It allows the
economic interpretation of λk with respect to the standardized qk,t as used throughout the paper. See
technical details in Appendix B.2, where the Lasso essentially is conducted with the pre-standardized q̃k,t,
and these two forms are mathematically equivalent.
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Figure 4: Return prediction with factor selection from the factor zoo

(A) BTQ, R2
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(B) β-only, R2
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(C) BTQ, factor selection
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Note: Model fit and parameter estimates as the regularization parameter (ω, horizontal axis) varies. In
Panels A and B, the IS R2 is evaluated in the training window (2000-2009), and the OOS R2 is the same
model evaluated in the testing window (2010-2022). Panels C and D plot the parameter estimates from
the training window, which are also brought out of the sample for evaluating the OOS R2 in Panels A and
B. The selected factors (colored curves) are, for BTQ: market (mkt), betting against beta (betabab 126d),
return volatility (rvol 21d), idiosyncratic volatility from HXZ q-factor model (ivol hxz4 21d), and book-
to-market enterprise value (bev mev); and for β-only, percent operating accruals (oaccuruals ni). The
unselected factors are in gray, reported in Appendix C.4 with factor importance measures. The vertical
black line indicates the tuned ω based on cross-validation; see Appendix B.2 for details.

becomes more parsimonious, as shown by the decreasing IS R2 (Panel A, blue curve) and

the decreasing number of selected factors (those with non-zero λk in Panel C). This behavior

is expected from Lasso. More importantly, the OOS R2 (Panel A, red curve) displays a hump
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shape, with a broad and relatively stable peak that reaches around 1.0%. This suggests that

the BTQ model’s predictive power is strong and robust to the choice of ω. In contrast,

the β-only model’s OOS R2 never exceeds 0.3% and is only positive in a smaller range of

ω values. This comparison once again highlights that quantity is essential for a risk-based

explanation of expected stock returns.

The most important application of the BTQ + Lasso setup is a new way to investigate

which factors are important for pricing stock returns. We find that only a few factors out

of the factor zoo are sufficient for the models’ high predictive power. The selected factors

(those with non-zero λk when OOS R2 peaks) are colored in Panel C. We find that MKT is

the first and most important factor, consistent with the observations in previous sections (4.1

to 4.3). The MKT factor is central to multi-factor pricing theories such as Merton’s (1973)

ICAPM model, and has historically been the most important factor in workhorse empirical

models such as the CAPM and Fama-French models. Nevertheless, some research casts

doubt on whether market beta is indeed related to expected returns (Black, 1972; Black,

Jensen, and Scholes, 1972; Frazzini and Pedersen, 2014). Our results show that the market

factor equipped with quantity variation remains highly effective in explaining expected stock

returns. However, this conclusion cannot be reached with β-only models.

The other selected factors include three based on technical information, betting against

beta, return volatility, and idiosyncratic volatility from Hou, Xue, and Zhang’s (2015) q-

factor model, and one based on fundamental information, book-to-market enterprise value

(which is a variant of the HML factor). These are among the usual suspects in the literature,

while our results reinforce their importance when considering quantity. Moreover, it is worth

noting that the λ estimates of these selected factors from the BTQ model are all positive,

which is consistent with the risk-based explanation discussed in Section 2.2. On the other

hand, SMB and other size-related factors are excluded by the Lasso selection process. The

unselected factors are in gray and can be found in Appendix C.4 with factor importance

measures.
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The β-only model only selects one factor, percent operating accruals (Panel D), with a

negative coefficient. This result is inconsistent with the risk-based explanation and likely

reflects the model’s misspecification, as indicated by its low model fit.

Additionally, choosing ω based on the OOS R2 peak is sufficient for the purpose of

interpreting the BTQ model’s factor selection. However, for the purpose of forecasting stock

returns, it has a look-ahead bias. To address the problem, we provide the tuned ω using only

IS information via ten-fold cross-validation, as shown by the vertical black lines in Figure

4 (see technical details in Appendix B.2). The IS tuned ω is close to the OOS R2 peak,

suggesting the robustness of prediction and selection results.

4.5 BTQ with latent factors

Latent factors estimated using statistical methods to fit the realized time-series variation

of returns have shown superior explanatory power for expected returns.37 We demonstrate

that the BTQ framework can be applied to latent factors as well, and it leads to a strong

two-factor structure with high predictive power for stock returns that is unattainable with

the β-only counterpart.

We extract the principal components (PC) of the factor zoo portfolio returns, which are

the linear combinations of the factor returns that capture the most time-series variation.38

Then, we construct β̂ and, in turn, the quantity q for each of these PC factors from scratch,

following the same procedure reported in Section 3. Based on these variables, we conduct the

same BTQ predictive regression with Lasso as in the previous section. The new set of β̂ and

q variables provides some external validation of our method’s robustness and generalizability.

Figure 5 shows that the BTQ model with PC factors has strong predictive power for stock

returns, with the OOS R2 peaking at around 1.0%, similar to the previous Figure 4 using

original factors. The high OOS R2 is, once again, robust to the choice of ω, as evidenced by

37See, e.g., Kelly, Pruitt, and Su (2019, 2020), Kozak, Nagel, and Santosh (2020), Lettau and Pelger
(2020), Chen, Roussanov, and Wang (2023), and Chen, Roussanov, Wang, and Zou (2024).

38Specifically, we use the first 50 principal components estimated from the monthly returns of the FF5C
and 153 JKP factors from 1970 to 2009.
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Figure 5: Return prediction with PC and factor selection

(A) BTQ, R2

10
-9

10
-8

10
-7

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(B) β-only, R2
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(C) BTQ, factor selection
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(D) β-only, factor selection
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Note: Model fit and parameter estimates as the regularization parameter (ω, horizontal axis) varies. In
Panels A and B, the IS R2 is evaluated in the training window (2000-2009), and the OOS R2 is the same
model evaluated in the testing window (2010-2022). Panels C and D plot the parameter estimates from the
training window, which are also brought out of the sample for evaluating the OOS R2 in Panels A and B.
We perform Lasso regression using the first 50 principal components derived from the monthly returns of
the FF5C and JKP factors from 1970 to 2009. The unselected factors are in gray. The vertical black line
indicates the tuned ω based on ten-fold cross-validation; see Appendix B.2 for tuning details.

the broad peak of the OOS R2 hump-shaped curve. In contrast, the β-only model with PC

factors hardly delivers any predictive power, with OOS R2 remaining below zero for almost

all ω values.

More importantly, Panel C reveals a strong two-factor structure, with PC1 and PC2
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emerging as the most important factors for predicting stock returns. The magnitude of their

λ estimates dominates those of subsequent PC factors (depicted as gray curves). This par-

simonious structure attained with the BTQ model with latent factors can explain expected

stock returns well with high OOS R2. This is consistent with the literature that suggests

latent factors are helpful in “shrinking the cross section” and reducing the dimensionality of

the factor zoo (Kozak, Nagel, and Santosh, 2020).

Notably, the signs of the λ estimates for the selected factors, PC1 and PC2, are both

positive. This is required by the risk-based theory, regardless of how the signs of the PCs

are specified, and further reinforces the validity of the BTQ model. In contrast, the β-only

model’s selection and parameter estimates exhibit no discernible pattern, which likely stems

from estimation noise, as the β-only model is misspecified.

4.6 Robustness of the main predictive results above

This subsection reports robustness checks that validate the BTQ model’s predictive power

reported above. We have already shown the BTQ model is robust to different factor speci-

fications, including single-factor, multi-factor, selected factors, and latent factors extracted

from the factor zoo. We further change the specifications in different dimensions, including

various sub-sample evaluations and alternative constructions of the quantity variable.

Subsamples. We first evaluate the forecasts of the BTQ models reported above in dif-

ferent size and time sub-samples. Table 4 Panel A breaks down the OOS panel into five

size groups according to NYSE market capitalization quintiles and reports the OOS R2 in

each size group. Panel B similarly breaks down the OOS evaluation into three sub-periods:

2010-2014, 2015-2018, and 2019-2022. Panel C reports the original joint OOS (2010-2022)

evaluation for reference. This table evaluates the BTQ models with factors selected from the

factor zoo (initially reported in Section 4.4) and with selected PC factors (in Section 4.5).39

39Table 4 evaluates the OOS forecasts (r̂i,t+1) produced with the in-sample cross-validated hyperparameter
ω. That is, Panel C reports the same OOS R2 values at the vertical black line in Figures 4 and 5 Panel A.
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Table 4: BTQ OOS prediction accuracy (R2 in %) in size and time sub-samples

evaluation sample # of obs. selection PC+selection

Panel A: size group evaluation

1 (small) 323,617 0.46 0.44

2 165,059 1.12 1.07

3 141,153 1.48 1.40

4 115,763 2.02 1.91

5 (big) 103,927 2.16 2.09

Panel B: sub-period evaluation

2010-2014 321,425 1.16 1.18

2015-2018 255,959 0.15 0.14

2019-2022 272,135 1.00 0.92

Panel C: original benchmark OOS evaluation

OOS (2010-2022) 849,519 0.81 0.77

Note: OOS R2 evaluated in different size and time sub-samples for the BTQ models with factors selected
from the factor zoo (in Section 4.4) and with selected PC factors (in Section 4.5). Panel A breaks down the
OOS panel into five size groups according to NYSE market capitalization quintiles and reports the OOS R2

in each size group. Panel B breaks down the OOS evaluation into three sub-periods: 2010-2014, 2015-2018,
and 2019-2022. Panel C reports the original joint OOS (2010-2022) evaluation for reference.

Appendix C.6 contains the same sub-sample robustness evaluations for the Fama-French-

Carhart factors (in Section 4.3), and the results are mostly the same.

Table 4 shows the BTQ model’s predictive results reported above are consistent in most

size and time sub-samples. In particular, Panel A shows the accuracy is higher in large stocks,

which are usually the most challenging section for stock return prediction. Characteristics-

based anomalies and machine learning models typically find stronger predictive power in

the small groups due to stronger limits to arbitrage in small stocks, including illiquidity

and information asymmetry. This result indicates that BTQ’s predictive power can be more

reliably implemented in investment strategies in practice, given liquidity costs and trading

constraints are typically weaker for larger stocks.40

40Cf. Jensen, Kelly, Malamud, and Pedersen (2024); Goyenko, Kelly, Moskowitz, Su, and Zhang (2024).
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Table 5: BTQ OOS R2 (%) robustness to lookback window length in qk,t construction

lookback (h) selection PC+selection

1 0.36 0

2 0.41 0.42

3 0.65 -0.15

4 0.49 0.38

5 0.85 0.82

6 (benchmark) 0.81 0.77

lookback (h) selection PC+selection

7 0.78 0.88

8 0.62 0.70

9 0.62 0.10

10 0.33 0.11

11 0.48 0.19

12 0.48 0.25

Note: OOS R2 evaluated for BTQ models with qk,t constructed with alternative lookback window lengths
(h) using factors selected from the factor zoo (in Section 4.4) and selected PC factors (in Section 4.5).

Regarding sub-periods, the BTQ model’s predictive power is mostly stable over time.

The first and the last sub-periods (2010-2014 and 2019-2022) have higher R2 values than the

middle sub-period (2015-2018) in both model specifications. We attribute this to the fact

that quantity fluctuations in the middle sub-period are less volatile, as shown in Figure 1.41

Alternative constructions of the quantity variable. Next, we evaluate the robustness

of the BTQ model to alternative specifications in constructing the quantity time series qk,t.

In particular, there is no explicit theoretical guidance on whether factor-level flows have

immediate or lagged effects on factor premium, or how fast past flows’ effects decay. The

benchmark specification of the quantity variables (in Section 3) accumulates past flows in a

six-month lookback window, which aligns with the common expectation. We now change the

specification by constructing the quantity variables using lookback windows ranging from 1

to 12 months. That is, in Eq. 9, h = 6 is replaced by h = 1 to h = 12. The same empirical

analyses from the previous sections are re-run with these alternative quantity variables.

Table 5 shows the BTQ model’s predictive accuracy is robust to alternative lookback

window lengths in constructing the quantity variables. Certain perturbations (such as h = 5

41Notice for each model specification, the predictive model is trained once with the 2000-2009 training
sample (IS). Repeated size group-specific training (a.k.a. expert models) and rolling-window training have
the potential to further improve the R2 in OOS sub-samples above. We leave these extensions for future
research due to their focus on forecasting engineering.
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or 7) can even improve the R2, meaning the benchmark results are not sensitive to the exact

specification of the quantity variable. Having an h that is too short or too long will hurt the

predictive performance, but the OOS R2 values are mostly significant and positive, especially

for the method that directly selects factors from the factor zoo.

Additionally, Table 5 offers suggestive evidence regarding the speed and persistence with

which factor flows influence sophisticated investors’ pricing of factor risks. Flow shocks

likely have an immediate impact on the factor premium next month, given that h = 1

already has some predictive power. The R2 is higher with an intermediate window (h =

5, 6, or 7), suggesting the lagged flows in the recent few months also have impacts on

factor premium, and that accumulating flows in a lookback window has, at least, statistical

benefits in smoothing the predictors. On the other hand, longer windows near one year

suppress prediction accuracy, suggesting that flows older than seven months have attenuated

impacts on factor premiums. The attenuation is likely related to mechanisms through which

sophisticated investors can gradually unwind their absorbed positions and adjust their risk

holdings over time. A more detailed investigation of the dynamics between factor flows

and factor premiums is left for future research, which likely requires models and data more

focused on investor holdings.

5 Quantity must be combined with risk to forecast returns

This paper emphasizes a risk-based explanation of expected stock returns that incorporates

quantity information. But is the risk modeling essential? Can quantity information alone

explain expected stock returns? This section makes the case that risk and quantity must

operate in tandem to forecast returns effectively. First, stock-level quantity information

must be aggregated at the factor level to predict stock returns. Second, almost all factor-

level q variables in the “factor zoo” exhibit predictive power; however, each q is effective

only in explaining the cross-sectional return dispersion along its corresponding factor’s own

risk dimension—any mismatch between β and q significantly diminishes prediction accuracy.
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These results show that previously reported empirical success is unique to the factor risk

structure, supporting our economic interpretation.

5.1 “Quantity-only” models do not explain expected returns

We examine an alternative economic model in which stock-level flow and quantity variations

directly affect the expected stock returns without considering the factor structure and the

arbitrage pricing condition. This exercise is important for understanding the joint economic

role of quantity and risk in asset pricing. The main results presented earlier compare the

benchmark BTQ model against the “β-only” baseline that accounts for risk without quantity;

here, we demonstrate that an alternative “quantity-only” baseline—relying solely on quantity

while disregarding risk—also falls far short in explaining expected stock returns.

In the benchmark model (BTQ), stock-level quantity variations are first aggregated to

the factor-level quantities, which affect factor premiums, and then feed back to stock-level

expected returns. In contrast, the “quantity-only” model specifies that stock-level flow and

quantity variations directly affect expected stock returns, short-circuiting the factor premium

adjustment mechanism (see the contrast in Figure 6). Specifically, the alternative model is:

Etri,t+1 = λstock
i qstocki,t , ∀i, t, (14)

where qstocki,t is a stock-specific flow or quantity measure, and λstock
i is the sensitivity coefficient

of stock returns to qstocki,t . (λstock
i may or may not vary across stocks, to be specified below.)

This “quantity-only” model implies a fundamentally different economic mechanism, al-

though Eq. 14 is similar in form to the main model’s factor premium specification in Eq. 3.

In the main model, factor premiums vary dynamically, yet the cross-sectional no-(statistical)

arbitrage pricing condition (with respect to the factors) holds each period. In contrast, the

alternative model dispenses with the APT condition. For instance, two stocks with identical

risk exposures but differing noise flow shocks are priced differently by the alternative model,
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Figure 6: Comparison of predictive architectures of the two models

A. BTQ (benchmark)

quantity 1

quantity 2

quantity N

factors
Er 1

Er 2

Er N

B. “quantity-only” (alternative)

quantity 1

quantity 2

quantity N

Er 1

Er 2

Er N

Note: A. BTQ model: stock-level quantity variations affect expected stock returns via quantities of fac-
tor risks and factor premiums. B. “quantity-only” alternative model: stock-level quantity directly affects
expected stock returns, short-circuiting the factor premium mechanism.

creating an immediate arbitrage opportunity. The “quantity-only” model implies a lack of

cross-sectional substitution, such that each stock is priced independently of its factor expo-

sures. This might be the case if rigid frictions prevent cross-sectional arbitrage; or if stocks’

idiosyncratic risks are not diversifiable and individually priced.

We experiment with various specifications of Eq. 14 and find that none come close to the

BTQ model’s explanatory power for expected stock returns. Specifically, stock-level qstock,hi,t

is constructed similarly to that of the factor-level in Eq. 9:

qstock,hi,t :=
1

h

h−1∑
h′=0

$flowstock
i,t−h′

market capi,t−1−h′
, ∀i, t, and h = 1, . . . , 12.42 (15)

We explore different specifications of the sensitivity coefficient λstock, with varying de-

grees of parameter freedom. Table 6 Panel A specifies λstock as a constant for all stocks:

ri,t+1 = λstockqstock,hi,t + errori,t+1. Panel B allows a size-dependent sensitivity coefficient such

that λstock is indexed by the NYSE size quintile of the stock: ri,t+1 = λstock
size quintile(i,t)q

stock,h
i,t +

errori,t+1. Panel C allows stock-specific λstock
i , which is the most flexible specification:

42We normalize the dollar stock-level mutual fund flow ($flowstock
i,t , see Eq. 7) by the stock’s one-month-

lagged market capitalization, so that the sensitivity coefficients are more interpretable. We accumulate past
flows over various lookback windows, since we are agnostic about whether flow shocks have immediate or
lagged effects on expected returns.
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Table 6: “Quantity-only” alternative model does not forecast stock returns

A. constant λstock B. λstock by size quintile C. λstock
i by stock

h IS R2(%) OOS R2(%) λstock t-stat IS R2(%) OOS R2(%) IS R2(%) OOS R2(%)

1 0.000 0.000 -0.10 -0.27 0.003 -0.001 0.47 -232

2 0.000 -0.001 0.05 0.12 0.002 -0.003 0.44 -215

3 0.000 0.000 0.17 0.29 0.003 0.000 0.39 -155

6 0.005 0.006 0.75 1.01 0.007 0.006 0.41 -107

9 0.004 0.004 0.75 0.99 0.006 0.006 0.38 -96

12 0.003 -0.007 0.77 1.01 0.006 -0.004 0.38 -81

Note: Panel A: univariate predictive regression, ri,t+1 = λstockqstock,hi,t + errori,t+1. B: size-dependent pre-

dictive regression, ri,t+1 = λstock
size quintile(i,t)q

stock,h
i,t + errori,t+1, where λstock

size quintile(i,t) is indexed by the NYSE

size quintile of the stock. C: stock-specific predictive regression, ri,t+1 = λstock
i qstock,hi,t + errori,t+1. The R2

values are in percentages, e.g., 0.005 in row h = 6 means 0.005%, a very small value. The table skips some
rows to save space, see complete results (h = 1 ∼ 12) in Appendix Table A.4.

ri,t+1 = λstock
i qstock,hi,t + errori,t+1.

43

The “quantity-only” models are too weak and unreliable to predict stock returns in any

alternative specification, as shown in Table 6. In Panel A, the constant λstock specification’s

in-sample R2 values are about 100 times smaller than the BTQ model’s. The out-of-sample

R2 values are not only small in magnitude, but also negative for some lookback lengths (h).

The λstock estimates are mostly positive, consistent with the existing literature—outflows

from noise traders have negative concurrent price impacts and positively predict future

returns.44 However, the estimates are statistically insignificant, and too weak to offer a

meaningful R2 in predicting stock returns. Allowing size-dependent λstock slightly improves

these predictive power evaluations, but no qualitative changes (Panel B). The low R2 values

43The specification in Panel B (size-dependent λstock) effectively runs five separate univariate predictive
regressions, one for each size bin (“mixture of experts” in machine learning terms). The specification in Panel
C (stock-specific λstock

i ) effectively runs stock-by-stock time-series predictive regressions. To address the
unbalanced panel, we restrict the analysis to stocks with more than 80% of monthly observations available
in both the in-sample and out-of-sample windows. Stocks with fewer observations would be even more
challenging to forecast.

44See Appendix C.5 for additional details showing that the magnitude of these λstock estimates is compa-
rable to those reported in the literature.
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suggest that these two specifications are too restrictive, and that the model is underfitting

the data. In Panel C, stock-specific λstock
i allows a much greater degree of freedom in param-

eterization (thousands of stocks vs. one or five parameters). The in-sample R2 mechanically

increases but is still smaller than the BTQ model. More importantly, the out-of-sample R2

values are extremely negative, suggesting the in-sample R2 values are greatly exaggerated

by overfitting.

The poor performance of the “quantity-only” alternative model underscores that the em-

pirical success of the BTQ model is not driven by quantity alone, highlighting the necessity

of combining quantity and risk to explain expected stock returns. In particular, the compari-

son implies that the factor structure is still essential in modeling expected stock returns, and

that cross-sectional quantity-driven mispricing (alpha) is too weak to detect.45 This is con-

sistent with the view that statistical arbitrage activities by some sophisticated investors are

effective in enforcing the cross-sectional APT condition, even in the presence of noise traders

(Kozak, Nagel, and Santosh, 2018). The differing performance of BTQ and “quantity-only”

models mirrors the contrast of macro vs. micro elasticities in Gabaix and Koijen (2022). At

the stock level, securities are highly substitutable, whereas quantity’s effect on prices is more

salient at the factor level due to greater inelasticity of factor demand (e.g., Peng and Wang,

2021; Li and Lin, 2022).

From a statistical and machine learning perspective, we can view both the BTQ and the

“quantity-only” alternative as prediction models of stock returns based on the stock-level

quantity information, i.e., they use the same predictors to predict the same targets. The

difference is that the BTQ model employs a dimension reduction, aggregating predictors

to the factor level, which, in turn, are used to predict the whole cross section. This is an

encoder-decoder architecture in machine learning terms, where the low-dimensional “code”

is the factor-level q (see Figure 6 Panel A for the encoder-decoder illustration). In this

45The “quantity-only” model (Eq. 14) can be viewed as a quantity-driven alpha, especially when viewed
in conjunction with the BTQ predictors: Etri,t+1 = λstock

i qstocki,t +
∑

k λkβi,k,tqk,t. The term λstock
i qstocki,t

captures dynamic alpha, the part of the quantity-driven expected stock return that is not explained by the
risk channel (BTQ, or the second term).
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perspective, BTQ performs well in forecasting because encoding reduces the noise in the

predictors and captures the economically meaningful quantity variation aggregated at the

factor level. In contrast, the “quantity-only” model is limited by the noisy inputs at the

stock level.46

5.2 Different factors’ q’s explain risk-return tradeoffs along different dimensions

The analysis above highlights the need to aggregate the quantity information at the factor

level to effectively predict stock returns, consistent with our risk-based explanation. In

addition, the theory also imposes a corresponding structure between a factor’s exposure and

the factor’s quantity—BTQ must be built with each factor’s own β times its own q. We

show that dispensing with this corresponding structure does not unleash more statistical

power but, to the contrary, reduces it significantly, further validating the risk-return tradeoff

channel of quantity’s role in expected stock returns.

We know that stock returns exhibit a multi-factor risk structure. A remarkable aspect

of BTQ is that its pricing power holds independently across a diverse array of factors in the

“factor zoo” (see Table 2 and repeated in Figure 7 Panel A). We now show that each factor’s

q provides distinct pricing information along its respective risk dimension. Mismatching one

factor’s β to another factor’s q significantly reduces the prediction accuracy, meaning that

a factor’s q pertains to explaining the cross-sectional return dispersion only along its own

risk direction. Each dimension of risk provides independent evidence on the q-µ association,

supporting the robustness of the economic interpretation. This result refutes the idea that

the main results are driven by one (or a few) special “secret sauce” q series.

In detail, Figure 7 Panel A plots the benchmark distributions of the 159 OOS R2 values

for the single-factor BTQ models, with each factor’s β times its own q (repeating the result

in Table 2). More than 90% of these factors yield positive OOS R2 values, demonstrating

46See Gu, Kelly, and Xiu (2021) and Kelly, Malamud, and Pedersen (2023) for applications of encoder-
decoder structures in asset pricing. Notice that BTQ specifies both the encoding and decoding weights as β
according to economic theory, rather than solely relying on statistical estimation.
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Figure 7: BTQ vs. mismatched BTQ variants in predicting stock returns

Note: Each distribution represents the outcomes (OOS R2 values) of (A) 159 single-factor BTQ models,

or (B, C) 159 mismatched BTQ variants, except Line “Cross mismatched” has 159 × 159 − 159 = 25,122

OOS R2 values. Kernel density estimates’ (KDE) areas under the curve are standardized across all the 8

distributions. Vertical lines, thin: 10, 90 quantiles; thick: 25, 50, 75 quantiles.

the effectiveness of the BTQ model when correctly specified.

The subsequent panels are BTQ variants where β and q are mismatched in various ways.

The first variant in Panel B pairs each factor’s βi,k,t with the market factor’s quantity qmkt,t.

The second distribution is for the “cross mismatched” BTQ variants: each factor’s β is

paired with the q of every other factor (βi,k,t × qj,t,∀j ̸= k), resulting in 159× 159 − 159 =

25,122 mismatched models. Panel C examines any underlying common signal among the

159 q series, by pairing each factor’s β with a principal component of the q series.47

The mismatched variants perform significantly worse than the benchmark BTQ model.

When correctly specified, more than 90% of the factors in the “zoo” yield BTQ models with

positive OOS R2 values. However, the mismatched variants have approximately half of their

density below zero, often with long left tails of highly negative R2 values. In particular, the

market factor’s q does not generalize to other factors. This means that the market factor’s

q is not a special series that gives rise to other factors’ BTQ results, despite its dominant

47Notice, we conduct PCA of the 159 q series here, rather than calculating the quantities for the PCs of
the factor returns as in Section 4.5. Appendix Figure A.3 Panel B reports the properties of the PC q series.
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time-series variation (Figure 1) and leading prominence in factor selection (Figure 4). Other

factors’ q’s are essential to explain the risk-return tradeoff along their respective risk dimen-

sions. The same conclusion holds for each principal component q variant.48 These results

highlight the independence of each factor’s risk-return tradeoff and its unique association

with its own q, providing robust evidence against the idea that our main results are driven

by some particular signals in the q series.

6 Quantity or alternative channels driving factor premiums?

In the economic framework of the BTQ model, we argue that quantity is associated with

factor premiums, representing the degree of cross-sectional risk-return trade-offs. Can alter-

native economic channels explain the observed empirical success of the BTQ model? What

if some other underlying state variables drive the reported variation in factor premiums and,

with quantity variables merely reflecting those state variables? If that is the case, the BTQ’s

reported empirical performance is merely a facade, and quantity would not be the direct

driver of factor premiums.

To investigate this possibility, we examine alternative variables, including factor momen-

tum signals and a large set of macroeconomic variables, both of which are well-documented

in previous studies as predictors of factor returns. We find that their empirical performance

is far behind the BTQ model across a wide range of empirical specifications. These findings

suggest factor quantity variation is directly associated with factor premiums and further

validate the BTQ model’s economic channel.

The first exercise considers factor momentum and retail flow’s “performance chasing”

behavior. Factor momentum implies past factor performances are positively associated with

future factor returns. Meanwhile, retail mutual fund flows also positively respond to past

performances.49 Can these two forces combined explain BTQ’s reported empirical perfor-

48In terms of the right tails, the market q and the second principal component q retain some factors’
predictive power from the benchmark BTQ model, likely due to the two’s commonality with those factors.

49Factor momentum is well-documented in the literature (e.g., Moskowitz, Ooi, and Pedersen, 2012; Gupta
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Table 7: BTQ vs. “beta times momentum”

CAPM FF3 FF3C FF5 FF5C selction PC+selection

BTQ, benchmark results reported in Section 4

0.75 1.03 1.07 0.44 0.65 0.81 0.77

“beta times momentum”, best of 1- to 12-month momentum signal formation periods

0.01 -0.05 -0.04 0.12 0.09 0 0

Note: All numbers are OOS predictive R2 in %. To save space, we only report the best R2 values across
the lookback window lengths. The complete results are available upon request, where most of the R2 values
are negative and with no discernible pattern across varying formation length h = 1 ∼ 12. R2 = 0 is because
Lasso selects no predictors, and the model forecasts zero return for all stock-months.

mance?

The answer is no. First, this channel would imply a negative q-µ association, which is

opposite to the BTQ model’s prediction and our empirical findings. Performance-chasing

behavior of retail investors would reduce sophisticated investors’ holdings (q) when past

factor returns are high. Under factor momentum, this reduction would be associated with

high future factor returns—contradicting the observed positive association. Regardless of the

sign restriction, the data show that replacing qk,t in the BTQ model with a variety of factor-

level momentum/reversal signals fails to yield reliable predictions of stock returns. Even

the best “beta times momentum” predictor specifications (βi,k,t ×momk,t, where momk,t is

the past return of factor k in 1- to 12-month windows) have only slightly positive OOS R2

values, with most cases yielding negative values (see Table 7). Our interpretation is that while

factor momentum and performance-chasing are respectively valid phenomena supported in

the literature, they are insufficient to reproduce the explanatory power of BTQ, and that

our q variable captures quantity variation beyond performance-chasing alone.

The second exercise examines whether macroeconomic variables or aggregate financial

metrics, used individually or combined linearly, can replace the q variables and provide pre-

and Kelly, 2018; Ehsani and Linnainmaa, 2022; Arnott, Kalesnik, and Linnainmaa, 2023). Relatedly, Hueb-
ner (2023) demonstrates the generation of price momentum in equilibrium driven by investor demands.
Mutual fund performance chasing has also been extensively studied (e.g., Lou, 2012; Ben-David, Li, Rossi,
and Song, 2024).
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Table 8: BTQ vs. “beta times macro variables”

A. BTQ (benchmark: market beta times market q)

0.75

B. Market beta times each macro variable (126 FRED-MD variables one at a time)

best of the 126 95th percentile 75th percentile 50th percentile 25th percentile
0.28 0.18 0.00 -0.12 -0.63

C. Market beta times the principal component of the macro variables

PC1 PC2 PC3 PC4 PC5
-0.17 0.01 -1.05 -0.09 -0.46

D. Market beta times the best linear combination of the macro variables

OLS (best in-sample fit, no regularization) LASSO (best among reg. param.)
< −100 0

Note: Predicting stock returns with conditional CAPM predictors in the form of “market beta times ...”.
All numbers are OOS R2 in percentage. Multi-factor results in Appendix Table A.5 are similar. Details of
Panel D results across regularization parameters are in Appendix Figure A.5.

dictive power comparable to the BTQmodel. We explore the FRED-MD dataset (McCracken

and Ng, 2016), which contains a comprehensive set of 126 monthly macroeconomic variables,

including dividend yield, default spread, and personal income growth. These are frequently

used as conditioning variables in conditional factor models (Jagannathan and Wang, 1996;

Lettau and Ludvigson, 2001; Petkova and Zhang, 2005; Daniel and Titman, 2011).50

The results show that neither these variables nor their linear combinations come close to

q’s predictive power. When tested individually in the form of “market beta times a macro

variable,” even the best-performing macroeconomic variable among the 126 series achieves an

OOS predictive R2 that is only a fraction of the “market beta times market q” specification.

Most macroeconomic variables yield negative OOS R2 (Table 8 Panels A vs. B).51 For linear

combinations of the macroeconomic variables, neither unsupervised principal components

(Panel C) nor supervised combinations fitted on stock returns (Panel D, fitting details in

50We pre-process the Fred-MD series following standard procedures, detailed in Appendix C.7.
51The best macro variable, with R2 = 0.28%, is unemployment insurance initial claims. The second and

third are housing starts in the northeast and personal consumption expenditures on services, respectively.
These variables offer no coherent economic explanation, as they were chosen ex post.
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Appendix Figure A.5) yield any predictive power.52 Multi-factor specifications report similar

results in Appendix Table A.5.

7 Conclusion

This paper considers a new but important aspect of risk’s economic role in determining

asset prices—the quantity variation in investors’ risk holdings induced by trading flows. The

economic rationale is simple: when sophisticated investors hold more of a systematic risk

factor, they require greater compensation for bearing that risk, which in turn drives the

expected return of every stock exposed to the factor. Yet the empirical model yields a

compelling risk-based explanation for expected stock returns.

We show that incorporating quantity into canonical factor pricing has important impli-

cations for asset pricing studies with three new findings. First, quantity variation elicits

risk-return tradeoff relationships, which have been hard to capture with β only and thereby

cast doubt on whether risk explains expected returns. We find the cross-sectional relation-

ship between factor exposures and expected returns (β-Er relationship) strongly depends

on factor quantity variation, and the previous null result is a mixed average unconditional

on quantity. Second, quantity enables a risk-based predictive model (termed beta times

quantity, BTQ) for monthly stock returns. The model delivers high prediction accuracy

in this hard empirical task dominated by unstructured machine learning models and firm

characteristics. Third, incorporating quantity provides a new way for factor selection and,

thereby, new answers to the factor zoo problem. Instrumenting factor premiums with quan-

tity variation has not only greater identification power but also more economic relevance

than traditional factor premium tests. We find that a few factors out of the factor zoo are

selected for the model’s high predictive power, and in a latent factor setting, the first two

principal components overwhelmingly dominate the remaining components.

52Principal components of the macroeconomic series are used for forecasting in, for example, Stock and
Watson (2002) and Ludvigson and Ng (2009) for the bond market.
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Besides showing the improvements against the β-only baseline, we also implement var-

ious versions of the “quantity-only” model, which directly relates stock-level quantity to

expected stock returns. We find this alternative baseline also falls short by far in explain-

ing expected stock returns. This result implies that the stock returns’ factor structure and

the no-arbitrage pricing condition are important for modeling expected returns, even in the

presence of significant price impacts from noise flows.

In summary, we show both quantity and risk should work together for modeling expected

stock returns. At a high level, this is a natural result given the interaction between sophis-

ticated investors and noise traders. It bridges factor pricing (which emphasizes rational

agents’ aversion to risk) and the price impact of noise flows (which emphasizes the price

dislocation effects of non-fundamental flows and inelastic demand). The contribution of this

empirical paper is providing a simple and actionable way to integrate quantity information

into canonical factor models and showing its significant improvement to the factor model’s

empirical relevance.

We are confident that future research can similarly incorporate quantity information into

other existing asset pricing methods to yield new insights for various research questions.

Another interesting direction for further research is to explore a richer set of asset hold-

ings information to construct other quantity variables; a concurrent paper (Gabaix, Koijen,

Richmond, and Yogo, 2023) is highly relevant for this potential direction.
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Online Appendix of “Quantity, Risk, and Return”

A Equilibrium theory and microfoundation of quantity-factor pre-

mium relationship

In this section, we develop a theoretical model to provide a formal and explicit interpre-

tation of the empirical framework and findings. This model formalizes key concepts such

as sophisticated investors’ inelastic demand, noise traders’ flows, and how their interaction

in equilibrium determines factor premiums. The microfoundation delivers the main empir-

ical specification that observed factor premiums (which are the equilibrium outcomes) are

positively related to factor quantities (Eq. 3). The model highlights two theoretical un-

derpinnings that support the strong explanatory power of BTQ for expected stock returns

(i.e., high R2): 1) sophisticated investors exhibit sufficiently inelastic demand, driven by two

primitive conditions: high factor-level risk aversion and limited risk-bearing capacity relative

to the aggregate stock market; and 2) the noise traders’ flows are indeed noisy and exhibit

sufficient variation.

A.1 Factor pricing identities when factor premium is an equilibrium outcome

We first provide basic factor pricing identities when the factor premium is allowed to be an

endogenous equilibrium outcome. We show that a high factor premium and a low price of

the factor risk are two sides of the same coin. The model has two periods t and t + 1, and

the risk-free rate is rrf.

Random state variable f̃t+1, with Et[f̃t+1] = 0, represents the physical systematic risk of

a factor, independent of time-t equilibrium trading outcomes. For simplicity and without

loss of generality, we omit subscript k for variables f̃ as well as q, µ etc. below, as the theory

applies generically to any factor.

Let ft+1(qt) be the payoff of a zero-cost factor portfolio that has a unit exposure to f̃t+1.
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This variable represents the observed long-short portfolio return (e.g., the SMB series from

French’s website). With “(qt),” we allow for a general form where the payoff random variable

depends on the equilibrium quantity variable qt. By construction,

ft+1(qt) = f̃t+1 + µt(qt), ∀qt, (A.1)

where µt(qt) = Et[ft+1(qt)] is the factor premium, the focus of this section. In the cross

section, by the APT, a stock with exposure βt to systematic risk f̃t+1 has expected excess

return βtµt(qt) (assuming no exposure to other systematic risks).

Turning to time-t prices, we define P f̃
t (qt) := Pricet[f̃t+1](qt) as the price of the state

contingent payoff f̃t+1, where Pricet[ · ](qt) := Et[Mt+1(qt) · ] is the payoff pricing operator

with the stochastic discount factor (SDF) Mt+1(qt). Once again, “(qt)” indicates that the

prices are endogenous to qt.

By construction, the price of the factor portfolio payoff is 0: Pricet[ft+1(qt)](qt) = 0,∀qt.

This leads to the intuitive identity between equilibrium factor premium and factor risk price.

Applying the pricing operator to both sides of the factor return decomposition (A.1), by the

law of one price, we obtain 0 = Pricet [ft+1(qt)] = P f̃
t (qt) + µt(qt)/(1 + rrf). Therefore,

µt(qt) = −(1 + rrf)P
f̃
t (qt), ∀qt. (A.2)

This expression captures the canonical inverse relationship between the zero-cost factor pre-

mium and the price of zero-mean factor risk. Our model extends the canonical relationship

by allowing both sides of the equation to be endogenous equilibrium outcomes.

A.2 Demand functions and the equilibrium

Next, we introduce the demand and supply functions of the sophisticated and noise investors,

along with their equilibrium interactions, as illustrated in Figure A.1.

Sophisticated investors obey factor pricing and enforce the law of one price. The afore-
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Figure A.1: Demand functions and the equilibrium
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Note: Two forces for strong quantity-factor premium empirical relationship are 1) inelastic sophisticated
investors’ demand (sloped, not flat), and 2) significant fluctuations in noise traders’ supply (shifts left and
right). The two panels are equivalent illustrations with price or factor premium—just flip everything upside
down according to Eq. A.2.

mentioned SDF, Mt+1(qt), and the pricing operator are interpreted as theirs, which are

influenced by their quantity holdings: qsophit . Hence, their demand function is: P f̃
t (q

sophi
t ) =

Pricet[f̃t+1](q
sophi
t ) = Et[Mt+1(q

sophi
t )f̃t+1].

Both P f̃
t ( · ) and µt( · ) are equivalent representations of demand, connected by Eq. A.2.

The theory can be equivalently stated with either one. This equivalence indicates that the

realized zero-cost returns ft+1(qt), such as those from Fama-French, should be modeled as

the equilibrium outcome of time-t trading activities, rather than exogenous variables.

Empirically, typical demand-based asset pricing studies target concurrent price impacts.

They model investors’ demand curves as Pricet[X̃t+1](qt), where a payoff X̃t+1 (in our case

f̃t+1) is independent of the time-t equilibrium quantity. In this paper, we shift the focus

from concurrent price impact to risk premiums, aligning more closely with factor pricing

literature’s emphasis on expected future returns. With the identity in Eq. A.2, we explicitly

show how our and the literature’s focuses are related. Shifting from concurrent price impact

to future returns also dispenses with the endogeneity issue between qt and P f̃
t (such as flow

chasing concurrent return), which necessitates instrumental variable methods in Gabaix and
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Koijen (2024). Nonetheless, our model still requires the exogeneity of time-t trading to future

risk f̃t+1 realization, which is easier to justify.

Inelastic demand by sophisticated investors is key to the reported empirical relationships.

That is, P f̃ ( · ) is downward sloping (or µ( · ) is upward sloping). Perfectly elastic demand

(a flat line where price remains constant regardless of quantity) would imply that the sophis-

ticated investors have unlimited risk-bearing capacity or “deep pockets,” inconsistent with

real-world observations. The microfoundation in the next subsection connects inelasticity to

sophisticated investors’ risk aversion and their capital share in the market.

Since sophisticated investors trade with noise traders, the “supply” function of noise

traders (how much q they sell) is qnoiset (P f̃
t ) = DeterministicSupply(P f̃

t ) + ηt, where ηt is the

noise supply component and unspecified function DeterministicSupply(P f̃
t ) is the determin-

istic component of supply that can respond elastically to price.

We are agnostic about most aspects of the noise traders’ supply, but require that the noise

component ηt exhibits significant variation and is indeed noisy in the sense of not predicting

the future factor risk f̃t+1. It does not affect the result whether DeterministicSupply(·)

is perfectly inelastic (meaning noise traders are completely insensitive to price, vertical in

Figure A.1) or somewhat elastic (meaning they partially adjust supply to price). This is

because the observed equilibrium quantity is qt, and that ηt is unobserved and unmodelled

anyway. It is implausible that DeterministicSupply(·) is or near perfectly elastic (horizontal

in Figure A.1), as it would imply that the noise traders are not only “sophisticated” about

price but also “deep-pocketed.” We are also agnostic about the sources of the “noise,” which

could be driven by various factors such as investor sentiment, beliefs, or media narratives

(e.g., Zhou, 2024).

The equilibrium is obtained by market clearing: qt = qsophit = qnoiset , given the two

demand (supply) functions. Equilibrium qt is determined by noise trading shock ηt (with an

unspecified function).

The empirical model additionally assumes that sophisticated investors’ demand curve
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is time-invariant: P f̃
t (qt) = P f̃ (qt), or equivalently µt(qt) = µ(qt) for any t and qt. This

is largely an empirical restriction stating that, besides qsophit , the demand function is not

affected by any other time-varying variables. Section 6 explores alternative variables, such

as factor momentum and macro variables, but finds none with reliable empirical power for

pricing the cross section of stock returns. The next subsection provides a theoretical demand

function with this property, under appropriate assumptions.

With all these setups, we conclude that the observed equilibrium outcomes, {qt, P f̃
t }, lie

on the sophisticated investors’ demand curve P f̃ ( · ), and equivalently, the observed {qt, µt}

on µ( · ). This establishes that, across periods, the factor premium µt is positively related

to the factor quantity qt.

A.3 A microfoundation of the inelastic demand function

In this subsection, we provide a specific microfoundation for sophisticated investors’ pricing

kernel, which results in an inelastic, downward-sloping demand function with a closed-form

expression, µ(qt) = µ + λqt, consistent with the empirical model in Eq. 3. The inelasticity

arises from two key factors: 1) the risk aversion of sophisticated investors and 2) their limited

total capital for absorbing the factor risk. Here, we derive an analytical expression for these

two forces, providing one simple mechanism for inelastic demand, though other mechanisms,

such as investment mandates (Gabaix and Koijen, 2022), are also possible.

Suppose sophisticated investors’ total wealth (AUM) is $Wt and their existing portfolio

has a random payoff $Wt+1, with a return rWt+1 := Wt+1/Wt−1. A representative sophisticated

investor with $1 AUM has CARA utility with risk aversion γ, Et[− exp(−γrWt+1)]. The

utility and demand have identical functional forms across sophisticated investors and scale

proportionally with their individual AUMs, under the standard assumption that CARA risk

aversion scales inversely with the AUM.

Taking zero-cost factor payoff ft+1(qt) as given, the representative sophisticated investor
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optimally allocates additional exposure to systematic risk factors b by solving:

bt = argmax
b

Et[− exp(−γ(rWt+1 + bft+1(qt)).] (A.3)

Assuming that the wealth return rWt+1 and factor return ft+1(qt) are jointly normally dis-

tributed, the first-order condition of Eq. A.3 implies:

µt(qt) = Et[ft+1(qt)] = γcovt(r
W
t+1, ft+1(qt)) + γbtvart(ft+1(qt))

= γcovt(r
W
t+1, f̃t+1) + γbtvart(f̃t+1), (A.4)

where the last equality uses Eq. A.1. Given per AUM demand bt, the aggregated demand of

additional factor exposure is btWt.

Up to this point, we have established the demand function connecting the factor premium

to the sophisticated investors’ risk holdings measured in terms of their factor exposure: btWt.

The empirical counterpart of this measure is the flow-induced factor beta:
∑

i $flow
stock
i,t β̂i,k,t,

the intermediate term in constructing the quantity variable in Eq. 8. To connect the demand

function in this measure to the quantity variable qt in the empirical model, we assume that

the aggregate stock market capitalization at time t is AGGt, and sophisticated investors’

total wealth Wt is a constant fraction π of AGGt, such that Wt = πAGGt. Therefore, the

factor quantity defined in Section 3.2 can be simplified as

q̃t = btWtvart[ft+1(qt)]/AGGt = btvart[ft+1(qt)]π. (A.5)

Substituting into Eq. A.4, we have the demand function in terms of q̃t:

µt(qt) = γcovt(r
W
t+1, f̃t+1) +

γ

π
q̃t. (A.6)

In the empirical implementation, we also standardize q̃t as qt = q̃t/σ(q̃t), so that the estimated
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linear coefficient λ can be more intuitively interpreted as the price effect per standard-

deviation shock in q̃t. (The magnitude of q̃t tends to be very small, because this raw measure

is normalized by the aggregate stock market capitalization.)

Finally, the demand function matches the empirical specification in Eq. 3:

µ(qt) = γcovt(r
W
t+1, f̃t+1) +

γ

π
σ(q̃t)qt (A.7)

= µ+ λqt, (A.8)

with µ := γcovt(r
W
t+1, f̃t+1) and λ := (γ/π)σ(q̃t).

Both terms in Eq. A.7 have clear interpretations. In the first term, we assume

γcovt(r
W
t+1, f̃t+1) = µ. That is, the background factor risk premium (the risk premium

when no additional factor exposure is taken, bt = qt = 0) is constant. Empirically, it implies

that no conditioning variables other than qt affect the factor premium. Section 6 supports

this assumption and finds no reliable alternative conditioning variables for pricing the cross

section of stock returns. In fact, the main empirical results show, via the “beta-only” bench-

mark, that µ is indistinguishable from zero, suggesting that other conditioning variables have

effects too weak to be empirically detected.

The second term, λ := (γ/π)σ(q̃t), shows the conditions underlying the strong empir-

ical relationship between quantity and factor premium. The first condition requires that

sophisticated investors’ demand is sufficiently inelastic. This inelasticity is governed by two

primitive parameters: 1) high risk-aversion (high γ) and 2) a small share of sophisticated

investors relative to the stock market (low π). Specifically, the factor premium multiplier

is γ/π; and the price multiplier, according to Eq. A.2, is γ/(π(1 + rrf)), inversely related to

the elasticity of the demand function. This aligns with Gabaix and Koijen (2022), who also

highlight the limited share of hedge funds capital (around 5% of total investors) as a key

driver of the inelastic demand. The second condition requires noise traders’ supply to exhibit

significant variation (large σ(q̃t)). Greater variation in the noise trading—reflected in large
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left-right shifts in the supply curve—translates to greater variation in the factor premium

attributed to the quantity channel, which this paper captures empirically.

B Technical details

B.1 Construction and cleaning of mutual fund flows

In this appendix, we present details related to constructing and cleaning mutual fund flows.

Our primary data source is the CRSP Survivorship-Bias-Free Mutual Fund database. We

start with all funds’ return and total net assets (TNA) data at the share-class level. A

mutual fund may include multiple share classes. We first drop observations with no valid

CRSP identifier, crsp fundno. A few fund-share classes report multiple TNAs in a given

month. These are likely data duplicates, so we keep only the first observation of the month.

In what follows, we discuss the cleaning steps for returns and TNA at the share-class level.

After cleaning, we aggregate the share-class level data to the fund level.

B.1.1 Return cleaning

We first correct data errors in monthly mutual fund net returns, mret.

First, we address extremely positive returns. We study the case in which a particular

fund share has returns greater than 100% and has existed for more than one year.1 We

manually check the entire time series of each share class in this subsample. Most of these

extreme returns reflect misplaced decimal points, which confound returns in decimal and

percentage formats. For these cases, we divide the faulty returns by 100.

Second, we address extreme negative returns. Similarly, we study the case in which

a particular fund share has existed for more than one year and has returns lower than

−50%. With extremely negative returns, we need to distinguish data errors from significantly

1We use the one-year threshold because mutual fund return and TNA during the first year are sometimes
inaccurate in the CRSP database. For example, return and TNA can be stale or reported using a placeholder
number such as 0.1. We address these issues by cross-checking with the alternative database.
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negative returns before a fund’s closure. Thus, we manually check only the subsample of

negative returns that occur at least one year prior to the last observation of a closed fund. We

manually check whether these extreme returns reflect data-input errors for this subsample.

For the cases with misplaced decimal points, we divide the faulty returns by 100.

B.1.2 TNA cleaning

Unlike many prior studies that construct percentage mutual fund flows, we study dollar-value

flows to preserve the cross-sectional relative magnitudes. The mutual fund size distribution

features a very long right tail. Winsorizing the extreme dollar-value TNA likely removes

both valid large values and input errors, generating significant bias. We devise an algorithm

to identify and correct erroneous observations of TNA:

1. Using the sample with corrected returns, we calculate dollar flows as in Eq. 6 at the

share-class level.

2. We study the top and bottom 0.5% of all dollar flows.2 We manually check this

subsample’s TNA time series of all share classes. We identify several common errors:

• Misplaced decimal points (usually by hundredths or thousandths).

• Stale TNA observations from CRSP, typically when a fund reorganizes its share

class offering (e.g., adding a new share class and moving assets into a single share

class).

• CRSP sometimes sets TNA = 0.1 for the first few months of a new fund or a new

share class.

We correct the misplaced decimal issue. For funds suffering from the latter two

problems, we obtain their TNA from Morningstar.3 Morningstar’s TNA data

2The choice of the top and bottom 0.5% is motivated by the distribution of dollar flows, where most
extreme values tend to occur at these tails.

3We merge the CRSP and Morningstar databases using a fund’s ticker.
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(Net Assets ShareClass Monthly) suffer to a lesser extent from these issues than

CRSP’s TNA data. We conclude by further cross-checking other third-party vendors

(e.g., Yahoo Finance and Bloomberg Terminal). Hence, whenever a fund’s CRSP TNA

deviates more than 50% from its Morningstar TNA, we use the Morningstar TNA.

3. We repeat the previous steps one more time to ensure that we have accounted for most,

if not all, extreme errors.

4. We compare our cleaned TNA with total assets (assets) from Thomson/Refinitiv

Holdings data.4 Following Coval and Stafford (2007) and Lou (2012), we drop obser-

vations whenever our cleaned TNA deviate more than 50% from assets from Thom-

son/Refinitiv.

Using cleaned return and TNA data, we calculate dollar flows at the share-class level using

equation (6). We obtain a fund’s flows by adding up the flows of all share classes in the same

fund. The final sample contains 1,707,742 fund×month observations.

B.1.3 Cross-validating the data-cleaning procedure

We cross-validate our data-cleaning procedure by comparing our aggregated mutual fund

flows with alternative sources. We compute the quarterly aggregate flows in dollar amounts

from our main sample and compare them with data from the Investment Company Institute

(ICI) and the Flow of Funds (FoF).

The ICI publishes aggregate monthly mutual fund flows, from which we extract quarterly

data spanning from 2007 to 2022. Specifically, we use the ICI’s Total Equity mutual fund

flows, which align closely with the coverage of mutual funds in our sample. Additionally,

we draw on data from the Federal Reserve Board’s Financial Accounts of the United States

– Z.1 (formerly known as the Flow of Funds or FoF) from the same time period, providing

quarterly observations. For our analysis, we focus on mutual fund flows (Line 28) within

4We merge the two databases via the linking table MFLINKS, which WRDS provides.
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Figure A.2: Time series of aggregate mutual fund flows from various sources
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Note: The figure plots the quarterly time series of our measure, ICI flows, and Flow of Funds (FoF) flows.

Corporate Equities (Table 223) and use unadjusted flows (FU).

Figure A.2 plots the quarterly time series of aggregate mutual fund flows from all three

sources. Our measure of aggregate mutual fund flows is broadly consistent with the other

two sources. The correlation between our aggregate flow measure and ICI flow is 0.63, while

the correlation between our measure and FoF flow is 0.47.

The differences observed in Figure A.2 among the three measures likely reflect variations

in mutual fund coverage. Specifically, the ICI flow tracks virtually all U.S. equity mutual

funds that invest in both domestic and world equity markets.5 The FoF flow, sourced from

unpublished ICI data, aggregates unadjusted flows into and out of all U.S. mutual funds

(including variable annuity long-term mutual funds). It is calculated based on mutual fund

assets in common stock, preferred stock, and rights and warrants.6 In comparison, our

mutual fund sample contains U.S. mutual funds covered by CRSP, which collects historical

5The ICI is a trade association for the mutual fund industry, and virtually all U.S. mutual funds are ICI
members (Warther, 1995).

6See https://www.federalreserve.gov/apps/fof/SeriesAnalyzer.aspx?s=FA653064100&t=F.223&suf=Q.
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data from various sources.7 Due to the nature of the data collection process, CRSP’s coverage

is smaller than ICI’s coverage.

B.1.4 Alternative method to construct factor-level flow directly from mutual

fund flow

In an alternative method, flows into mutual funds, $flowfund
m,t , can be directly aggregated into

flows into factors, flowfactor
k,t , by substituting Eq. 7 into Eq. 8. This approach approximately

aggregates $flowfund
m,t based on each fund’s beta to each factor. Specifically, we have

flowfactor
k,t = −

∑
i

∑
fund m

$flowfund
m,t weight

fund
i,m,quarter(t)−2β̂i,k,tv̂art(fk,t). (A.9)

The alternative is

−
∑

fund m

$flowfund
m,t β̂m,k,tv̂art(fk,t), (A.10)

where β̂m,k,t is the beta of fund m to factor k in month t. These two are approximately the

same because
∑

iweight
fund
i,m,quarter(t)−2β̂i,k,t ≈

∑
i weight

fund
i,m,tβ̂i,k,t = β̂m,k,t.

We do not use the alternative method for two reasons. First, our method follows the

literature and can help exclude potential informed trading by mutual fund managers. The

direct approach is only an approximation because we use lagged, not current, mutual fund

holdings to construct $flowstock
i,t , an important detail to exclude potential informed trading

by mutual fund managers (Lou, 2012). Second, starting from stock-level flows and building

upward (Eq. 8) is more general and extends beyond mutual fund flow-induced trading. For

example, retail investor order flow imbalance, a widely used measure of noise trading in the

literature (Lee and Ready, 1991; Boehmer, Jones, Zhang, and Zhang, 2021; Li and Lin,

2022), is constructed directly at the stock level.

7The sources include the Fund Scope Monthly Investment Company Magazine, the Investment Dealers
Digest Mutual Fund Guide, Investor’s Mutual Fund Guide, the United and Babson Mutual Fund Selector,
and the Wiesenberger Investment Companies Annual Volumes.
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B.2 Technical details of Lasso implementation

In optimization (13), adding the term “1/σ(q̃k,t)” is technically necessary because we have

already standardized q̃k,t to qk,t = q̃k,t/σ(q̃k,t) (see Section 3.2). Optimization (13) therefore

is equivalent to running the standard Lasso on the pre-standardized BTQ (β̂ × q̃)

min
λ̃1...λ̃K

1

2|IS|
∑
i,t∈IS

(
ri,t+1 −

K∑
k=1

λ̃kβ̂i,k,tq̃k,t

)2

+ ω
K∑
k=1

∣∣∣λ̃k

∣∣∣ , (A.11)

and then standardizing the coefficients for economic interpretation: λk = λ̃kσ(q̃k,t). Although

we standardize q̃k,t for interpretability, we do not want to lose the information contained in

the original quantity q̃k,t during the Lasso selection process. A factor with greater variation in

q̃k,t will have an inflated λk after being standardized to qk,t, but it should not be additionally

penalized for this reason. Standard Lasso implementation where the economic interpretation

is not a priority would typically standardize the predictor (BTQ together) across the {i, t}

panel. Here, we customize the standardization based on the required economic interpretation.

Similarly, for the β-only model, the Lasso implementation is

min
µ1...µK

1

2|IS|
∑
i,t∈IS

(
ri,t+1 −

K∑
k=1

µkβ̂i,k,t

)2

+ ω
K∑
k=1

|µk| . (A.12)

We perform ten-fold cross-validation to tune hyperparameter ω based on only in-sample

information from 2000 to 2009. In each fold, we exclude one year of observations and solve

the Lasso problem (A.11) using the remaining nine years of in-sample data. The model is

evaluated in the left-out year to form predicted returns r̂
[cv]
i,t+1. After enumerating all folds

and forming predicted returns for all in-sample observations, we calculate the cross-validated

(CV) in-sample mean squared errors (MSE) as
∑

i,t∈IS

(
ri,t+1 − r̂

[cv]
i,t+1

)2
. Hyperparameter ω

is tuned by choosing the one with the minimum CV MSE.
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C Additional empirical results

C.1 Additional properties of the quantity variable qk,t

Figure A.3 reports various statistics of the constructed quantity variables qk,t to show the

extent to which these time-series variables comove. Panel A shows the pairwise correlation

matrix of the four Fama-French-Carhart factors. The results reveal some comovement (both

positive and negative) among the four variables, which is also evidenced in the time series plot

in Figure 1 in the main text. HML-MOM has the greatest (in absolute value) correlation

of −0.75. Nonetheless, all pairwise correlations are far from ±1, indicating that the qk,t

variables are far from collinear, and each captures unique information about the underlying

quantity variations.

Panel B shows a similar pattern of limited comovement among the 153 JKP factors.

Instead of reporting pairwise correlations, we conduct a principal component analysis (PCA)

on the qk,t variables of the 153 JKP factors and report the cumulative explained variances by

principal components. The plot reveals a clear factor structure among the 153 factor-level

qk,t variables, yet also indicates significant unique information across different dimensions of

qk,t. The first principal component explains around half of the total variance, and the first

two principal components in total explain around 77% of the total variance. It requires five

principal components to explain 90% of the total variance, and seven to explain 95% of the

total variance. We also note that these in-sample PC statistics are likely exaggerated due to

overfitting.

In summary, the qk,t variables are not collinear and capture unique information about

the underlying quantity variations. This feature indicates the paper’s main result on BTQ’s

predictive power is not driven by a few special qk,t variables. The fact that BTQ’s predic-

tive power is consistent across various factor specifications speaks to the robustness of the

underlying economic mechanism.
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Figure A.3: Degree of comovement among the quantity variables (q) of different factors

A. Correlation matrix

MKT SMB HML MOM
MKT 1
SMB 0.55 1
HML 0.47 0.57 1
MOM-0.47 -0.23 -0.75 1

B. PC variances for q’s of 153 JKP factors
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Note: Panel A: pairwise correlation for qk,t of the four Fama-French-Carhart factors. Panel B: cumulative
explained variances by principal components of qk,t series of the 153 JKP factors.

C.2 Predicting factor returns with factor quantity

This appendix subsection presents the results of using factor quantities to predict factor

returns. While time-series predictability is not the main focus of this paper, it is naturally

implied by the paper’s theoretical framework, particularly the factor premium modeling in

Eq. 3. Empirically, we successfully detect the predictability to a certain extent, consistent

with the theoretical motivation. However, we also note the apparent methodological limita-

tions of predicting factor returns with simple time-series regressions.

Table A.1 presents the results of the time-series regression fk,t+1 = µk+λkqk,t+errork,t+1

for various factors. The estimated λk coefficients are predominantly positive and statistically

significant for all Fama-French-Carhart factors and the majority of JKP factors. This indi-

cates that each factor’s expected return is positively related to its quantity, consistent with

our theoretical motivation. The full-sample R2 values are around 5%, which is relatively

high for factor return prediction at the monthly frequency (see Welch and Goyal, 2008).

However, the OOS R2 values are mostly negative, with the exception of the market fac-
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Table A.1: Predicting factor return fk,t+1 using quantity qk,t

Fama-French-Carhart factors Across 153 JKP factors

MKT SMB HML MOM Q25 Median Q75

λk (%) 1.04 0.49 0.82 1.10 0.25 0.66 1.00

t-stat (3.25) (2.45) (2.89) (1.76) (1.41) (2.00) (2.64)

µk (%) 0.38 0.19 0.08 0.36 -0.20 -0.01 0.27

t-stat (1.39) (1.16) (0.38) (1.41) (-1.41) (-0.10) (1.63)

R2 (%) 5.05 2.48 5.59 4.35 1.45 4.74 7.36

OOS R2 (%) 6.74 -1.05 -14.70 -1.29 -7.08 -0.95 2.07

Note: Factor return predictive regressions (fk,t+1 = µk + λkqk,t + errork,t+1) for k = each of the Fama-
French-Carhart factors and JKP factors. The point estimates are in percentage terms. That is, the first
cell indicates a one standard deviation increase in qk,t predicts a 1.04% increase in market return in the
following month. The t-statistics are based on Newey-West standard errors. The first five rows are full-
sample regressions (2000-2022) with R2 evaluated in the same full sample. The ordinary IS R2 with a

constant term is reported: R2 = 1 −
∑

t(fk,t+1 − f̂k,t+1)
2/
∑

t(fk,t+1 − µ̂k)
2. The last row “OOS R2” is

with the regressions estimated in 2000-2009 and evaluated in 2010-2022, and we benchmark the R2 against
predicting zero: OOS R2 = 1−

∑
t(fk,t+1 − f̂k,t+1)

2/
∑

t f
2
k,t+1.

tor, which achieves a higher R2 of 6.8%. Nonetheless, we should interpret this high R2 with

caution as the time-series R2 metric may contain significant noise. These results under-

score the apparent limitations of using simple univariate time-series regression for predicting

aggregate factor returns. The construction of the factor quantity series is not designed for

time-series return prediction, which is understood to be a challenging task that requires more

sophisticated methods and richer predictor data (Kelly and Pruitt, 2013; Kelly, Malamud,

and Zhou, 2024).8

C.3 Additional results on stock return forecasting

This appendix subsection contains additional empirical results on stock return forecasting

that are omitted in the main text Subsection 4.3. Table A.2 completes Table 3 by providing

the full-sample coefficient estimates for the β-only model.

8Dynamic regime shift models can further enhance prediction accuracy by accounting for structural breaks
(Smith, Bulkley, and Leslie, 2020; Smith and Timmermann, 2021; Gao and Zhang, 2023).
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Table A.2: Table 3 continued, β-only model’s coefficient estimates

CAPM FF3 FF3C FF5 FF5C

β-only model: µk (%, monthly), t-statistics in parentheses

MKT 0.38 0.45 0.35 0.55 0.50
(1.07) (0.90) (0.75) (1.21) (1.15)

SMB -0.05 0.06 -0.04 0.09
(-0.15) (0.19) (-0.11) (0.27)

HML 0.58 0.51 0.56 0.44
(1.74) (1.59) (1.49) (1.23)

MOM -0.41 -0.48
(-1.09) (-1.26)

CMA 0.04 0.10
(0.17) (0.51)

RMW 0.09 0.13
(0.34) (0.52)

Note: Table 3 in the main text reports the R2 values for the BTQ and the β-only models, as well as the
coefficients for the BTQ model. This table reports the β-only model’s coefficient estimates. Same as the
main text table, the µk coefficients are in percentage terms, and the t-statistics are based on standard errors
clustered by month.

Table 3 in the main text already shows that the β-only model has weak predictive power,

with low and even negative R2 values in some OOS cases. Table A.2 further shows that

the µ coefficients in the β-only model are either statistically insignificant or negative in

various factor specifications. This, once again, shows the empirical difficulty in establishing

a positive risk-return association using β only without quantity information.

C.4 Additional results on factor selection

This appendix subsection presents a more formal factor importance analysis and reports

other important factors besides the top five reported in Section 4.4 for the Lasso estimation

(Eq. 13). Factor importance is measured using a feature selection metric from the Lasso

regressions. In particular, we measure the importance of factor k by ωmax
k , the largest ω

value at which factor k is still selected. Specifically, ωmax
k := sup{ω : λ̂k(ω) ̸= 0}, where

λ̂k(ω) is the Lasso estimate of λk at hyperparameter ω. Figure A.4 reports ωmax
k for the top
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Figure A.4: Factor importance in Lasso factor selection
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Note: We measure the importance of factor k by ωmax
k , the largest ω value at which factor k is still selected.

Specifically, ωmax
k := sup{ω : λ̂k(ω) ̸= 0}, where λ̂k(ω) is the Lasso estimate of λk at hyperparameter ω.

This figure reports ωmax
k for the top 24 factors in the JKP factor zoo, omitting the rest with ωmax

k < 10−9.
The vertical black line indicates the tuned ω based on ten-fold cross-validation.

24 factors in the JKP factor zoo, omitting the rest with ωmax
k < 10−9.

The most significant factor is unambiguously the market factor, followed by the low-risk

factors constructed with technical (past return) information, the value factor constructed

with fundamental information, and a version of the momentum factors. The remaining

less important factors are related to investment style clusters such as the value, quality,

investment, seasonality, etc. Specifically, the top 24 factors’ full names, the factor clusters

they belong to, and code names (as in JKP data) are detailed below:

market – mkt,
betting against beta low risk betabab 1260d,
return volatility low risk rvol 21d,
idiosyncratic volatility q-factor low risk ivol hxz4 21d,
book-to-market enterprise value bev mev,
current price to high price over last year momentum prc highprc 252d,
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short-term reversal skewness ret 1 0,
debt-to-market value debt me,
gross profits-to-lagged assets quality gp atl1,
net operating assets debt issuance noa at,
liquidity of book assets investment aliq at,
change in long-term net operating assets investment lnoa gr1a,
change in long-term investments seasonality lti gr1a,
change in quarterly return on equity profit growth niq be chg1,
firm age low leverage age,
cash-based operating profits-to-book assets quality cop at,
market equity size market equity,
Amihud measure size ami 126d,
change in current operating working capital accruals cowc gr1a,
price momentum t-12 to t-1 momentum ret 12 1,
highest 5 days of return scaled by volatility skewness rmax5 rvol 21d,
Ohlson O-score profitability o score,
quality minus junk: growth quality qmj growth,
years 11-15 lagged returns, nonannual seasonality seas 11 15na.

C.5 Interpreting the magnitude of λ estimates and connection to the literature

This appendix shows that the magnitude of the λ estimates—reported at the factor level in

Tables 2 and 3 and at the stock level in Table 6—is consistent with the market reality and

recent estimates from the literature. This alignment further supports our interpretation of

the economic channel, although identifying the coefficient per se is not our goal; rather, the

focus is on demonstrating the predictive power.

The estimated market-level λMKT, presented in Tables 2 and 3, ranges from 1.2 to 1.8

across various univariate and multivariate settings. This implies that for a one standard

deviation increase in the quantity (q) of the market factor, the expected return of a stock

with a market beta of 1 increases by 1.2% to 1.8% per month.

Our λ coefficient can be converted to the “price multiplier” in the demand-based asset

pricing literature. The λ coefficient is the sensitivity between risk premium (µ) and the

quantity (q, constructed in Section 3). In the literature, the price multiplier is typically

defined as (∆P/P )/(∆Q/Q), where ∆Q/Q is the percentage change in the security’s quantity

(Gabaix and Koijen, 2022).
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To relate the magnitude of our λ coefficient to that of the price multiplier, consider

the following conversions. The monthly standard deviation of q is 1.88 × 10−6 in terms of

the pre-standardized q̃ measure (see Table 1). According to Eq. 8, this is roughly 0.22%

of (β-aggregated) monthly dollar flow shock as a fraction of the total U.S. stock market

capitalization, after adjusting for the market factor’s monthly variance: 0.22% =
√
6 ×

1.88×10−6/(16%2÷12).9 In terms of the price multiplier measure, let the numerator be the

flow shock, dQ/Q = 0.22%, then the price multiplier itself is between 1.2%/0.22% = 5.5 and

1.8%/0.22% = 8.2, which matches in magnitude with the estimate of 5 reported in Gabaix

and Koijen (2022).

The magnitude of the q variation is also consistent with market realities.10 As shown

above, a one-standard-deviation increase in market q corresponds to a 0.22% increase in

dollar flow as a fraction of the total stock market capitalization. Considering that the

mutual fund sector holds about 20 ∼ 30% of the total U.S. stock market capitalization (Ben-

David, Li, Rossi, and Song, 2022a), this one standard deviation flow shock corresponds to

about 0.7% = 0.22/30 ∼ 1.1% = 0.22/20 of the mutual fund sector’s total AUM, which is a

reasonable level.

From the opposite direction, we can also justify the magnitude of our predictability using

the literature’s price multiplier estimates. Assuming that a one-standard-deviation change in

q captures a flow shock of about 1% of the total mutual fund sector’s AUM, which multiplies

to about 0.2% = 1%×20% of the total stock market capitalization. With a market-level price

multiplier of 5 (Gabaix and Koijen, 2022), this implies a monthly market factor premium

variation of about 1% = 0.2% × 5. Under a one-factor model, this factor premium variation

matches the observed total stock return variation, with a monthly standard deviation of

10%, at an R2 ≈ 1% = (1%)2/(10%)2.

9The annualized standard deviation of the market factor return during our sample period is 16%. We
multiply by

√
6 because our pre-standardized q̃ measure in Eq. 9 uses a 6-month lagged average of flow

shocks, and we assume these monthly shocks are independent.
10Significant noise in q fluctuation is also one of the two requirements for our channel to have a significant

empirical impact, as shown in Appendix A.
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At the stock level, the coefficients in Table 6 column λstock, are also comparable to the

price multipliers of stocks to flows reported in the literature. This is because we have

normalized $flowstock
i,t by the stock’s own market cap in constructing the qstocki,t predictors (see

Eq. 15). The magnitude of our λstock stabilizes between 0.5 and 0.8 for larger h values, which

is close to the multiplier estimates in the literature, generally ranging from 0.5 to 1 (e.g., Lou,

2012; Chang, Hong, and Liskovich, 2015; Da, Larrain, Sialm, and Tessada, 2018; Hartzmark

and Solomon, 2022; Pavlova and Sikorskaya, 2023; Li, Pearson, and Zhang, 2024).

C.6 Additional robustness checks on return predictability

Table A.3 evaluates the robustness of the BTQ model’s predictive power across different size

and time sub-samples for the Fama-French-Carhart factors. Panel A breaks down the stock-

month observations in the OOS evaluation panel into five size groups using concurrent NYSE

market capitalization breakpoints. The same OOS predicted returns (r̂i,t+1) are respectively

evaluated in each size group. Panel B breaks down the OOS panel by time into three sub-

periods: 2010-2014, 2015-2018, and 2019-2022, and reports sub-sample R2 similarly. Panel

C repeats the original joint OOS (2010-2022) evaluation reported in the main text Table 3

Panel B Line “BTQ” for ease of reference.

Table A.3 shows that the BTQ model’s predictive power reported in Table 3 is robust

in most size and time sub-samples. In particular, the FF3 and FF3C specifications perform

even better in large stocks, which are usually the most challenging group for stock return

prediction. Across sub-periods, the BTQ model’s predictive power is relatively stable over

time. The first and the last sub-periods (2010-2014 and 2019-2022) have higher R2 values

than the middle sub-period (2015-2018) across various model specifications. These size

and time sub-sample results for the Fama-French-Carhart factors are very similar to those

reported for the factors selected from the factor zoo and the selected PC factors in main text

Table 4.

Table A.4 extends the main text Table 6 to all h from 1 to 12 and confirms that the
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Table A.3: BTQ OOS prediction accuracy (R2 in %) in size and time sub-samples

evaluation sample # of obs. CAPM FF3 FF3C FF5 FF5C

K = 1 3 4 5 6

Panel A: size group evaluation

1 (small) 323,617 0.69 0.72 0.72 0.58 0.64

2 165,059 0.99 1.37 1.44 0.51 0.79

3 141,153 1.16 1.74 1.83 0.42 0.82

4 115,763 0.76 1.97 2.20 -0.33 0.46

5 (big) 103,927 -0.56 1.66 2.00 -1.18 -0.17

Panel B: sub-period evaluation

2010-2014 321,425 1.10 1.33 1.34 1.03 0.98

2015-2018 255,959 0.17 0.11 0.11 0.07 0.07

2019-2022 272,135 0.90 1.38 1.47 0.37 0.81

Panel C: original OOS evaluation (in Table 3 Panel B)

OOS (2010-2022) 849,519 0.75 1.03 1.07 0.44 0.65

Note: OOS R2 evaluated in different size and time sub-samples for the Fama-French-Carhart factors. Panel
A breaks down the OOS panel into five size groups according to NYSE market capitalization quintiles and
reports the OOS R2 in each size group. Panel B breaks down the OOS evaluation into three sub-periods:
2010-2014, 2015-2018, and 2019-2022. Panel C repeats the original joint OOS (2010-2022) evaluation reported
in the main text Table 3 Panel B Line “BTQ” for ease of reference.

“quantity-only” alternative model does not forecast stock returns.

C.7 Details for macroeconomic variables as alternatives to factor quantity

The second exercise in Section 6 examines the use of macroeconomic variables as alternatives

to factor quantity (q) in the BTQ model. This subsection reports the accompanying technical

details and additional results.

We preprocess the 126 FRED-MD macro series following standard procedures. We first

transform each raw series to a stationary process according to the transformation code pro-

vided by FRED-MD. We then standardize these macro variables by demeaning them and

dividing by their standard deviations, using the mean and standard deviation estimated
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Table A.4: “Quantity-only” alternative model does not forecast stock returns: expanding
Table 6 to all h from 1 to 12

A. constant λstock B. λstock by size quintile C. λstock
i by stock

h IS R2(%) OOS R2(%) λstock t-stat IS R2(%) OOS R2(%) IS R2(%) OOS R2(%)

1 0.000 0.000 -0.10 -0.27 0.003 -0.001 0.47 -232

2 0.000 -0.001 0.05 0.12 0.002 -0.003 0.44 -215

3 0.000 0.000 0.17 0.29 0.003 0.000 0.39 -155

4 0.000 -0.001 0.20 0.33 0.004 -0.002 0.39 -156

5 0.003 0.001 0.51 0.75 0.006 0.002 0.41 -150

6 0.005 0.006 0.75 1.01 0.007 0.006 0.41 -107

7 0.006 0.008 0.82 1.12 0.008 0.008 0.41 -107

8 0.003 0.003 0.66 0.87 0.006 0.005 0.37 -142

9 0.004 0.004 0.75 0.99 0.006 0.006 0.38 -96

10 0.003 0.000 0.69 0.96 0.006 0.003 0.38 -101

11 0.003 -0.003 0.73 0.95 0.006 0.000 0.38 -98

12 0.003 -0.007 0.77 1.01 0.006 -0.004 0.38 -81

Note: Panel A: univariate predictive regression, ri,t+1 = λstockqstock,hi,t + errori,t+1. B: size-dependent pre-

dictive regression, ri,t+1 = λstock
size quintile(i,t)q

stock,h
i,t + errori,t+1, where λstock

size quintile(i,t) is indexed by the NYSE

size quintile of the stock. C: stock-specific predictive regression, ri,t+1 = λstock
i qstock,hi,t + errori,t+1. The R2

values are expressed as percentages, e.g., 0.005 in row h = 6 means 0.005%, a very small value.

during the in-sample period (2000-2009).

Table 8 in the main text reports the comparisons in the single-factor setting by predicting

stock returns with predictors in the form of market beta times a macro variable (or linear

combinations of the macro variables). In this appendix, Table A.5 expands the analysis to

the multi-factor settings. The predictors are
[
β̂i,MKT,txj,t, β̂i,SMB,txj,t, β̂i,HML,txj,t, . . .

]
, where

xj,t is the j-th macroeconomic variable, or a full-sample principal component (PC) of the

126 macroeconomic variables. We observe that beta times macro variables in multi-factor

settings also do not predict stock returns.

Table 8 Panel D searches for the optimal linear combinations of the 126 FRED-MD macro

variables that can substitute for the qmkt,t variables in the single-factor CAPM BTQ model.
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Table A.5: “Beta times macro variables”, expanding Table 8 to multi-factor settings

CAPM FF3 FF3C FF5 FF5C

A. Benchmark

BTQ 0.75 1.03 1.07 0.44 0.65

B. Multi-factor beta times each macro-variable

Mean -0.63 -1.85 -2.11 -8.69 -8.60

Q10 -1.88 -6.08 -6.81 -19.43 -18.27

Q25 -0.63 -1.67 -2.65 -4.04 -5.92

Q50 -0.12 -0.47 -0.57 -1.25 -1.28

Q75 0.00 -0.08 -0.12 -0.31 -0.38

Q90 0.13 0.02 0.01 -0.07 -0.12

Q95 0.18 0.11 0.12 0.01 0.00

Max 0.28 0.38 0.37 0.41 0.39

C. Multi-factor beta times PCs of macro-variables

PC1 -0.17 -0.67 -2.82 -20.07 -15.37

PC2 0.01 0.02 -0.06 -0.26 -0.26

PC3 -1.05 -5.93 -5.90 -5.70 -4.43

PC4 -0.09 -1.88 -1.87 -6.41 -9.73

PC5 -0.46 -0.82 -0.81 0.04 -0.24

Note: Predicting stock returns using conditional multi-factor predictors in the form of “market beta times
...”, “SMB beta times ...”, “HML beta times ...”, and so on. All numbers are OOS R2 in percentage.

In particular, we minimize the following predictive least squares loss:

min
{bj}

∑
i,t∈IS

(
ri,t+1 − β̂i,mkt,t

( ∑
j∈FRED-MD

bjxj,t

))2

, (A.13)

where xj,t is the j-th macro variable at time t, and bj is the coefficient to be estimated. This

search is equivalent to an OLS regression of ri,t+1 on 126 predictors β̂i,mkt,txj,t.

This OLS setup drastically overfits with an extremely negative OOS predictive R2, as

shown in Table 8 Panel D, which is expected given the large number of predictors. To

address the overfitting issue, we apply regularization to the linear combination search by
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Figure A.5: Market beta times the best linear combination of the macro variables, prediction
accuracy along regularization path
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Note: Model fit and parameter estimates as the regularization parameter (ω, horizontal axis) varies. The
IS R2 is evaluated in the training window (2000-2009), and the OOS R2 is the same model evaluated in the
testing window (2010-2022). The vertical black line indicates the tuned ω based on ten-fold cross-validation.

regressing ri,t+1 on β̂i,mkt,txj,t with LASSO penalty on the coefficients. Note that xj,t has

already been demeaned and standardized using the in-sample period estimates. In detail,

the Lasso optimization problem is:

min
{bj}

1

2|IS|
∑
i,t∈IS

(
ri,t+1 − β̂i,mkt,t

( ∑
j∈FRED-MD

bjxj,t

))2

+ ω
∑

j∈FRED-MD

|bj|, (A.14)

where ω is the regularization parameter.

Figure A.5 plots both the IS and OOS R2 values across different regularization parame-

ters. The OOS R2 values remain below 0 across all ω values and only approach 0 at large ω

values, where all coefficients are shrunk to zero, resulting in a model that predicts zero re-

turns for all stock-months. This result suggests the fitted dimension reduction combinations

of macro variables do not have predictive power either.

A.25


	Introduction
	Theoretical motivation, empirical model, and methods
	Theoretical motivation
	Empirical model
	Empirical methods

	Constructing quantity (q) and other variables
	Return, risk, and flow variables constructed with standard procedures
	Constructing quantity variables
	Basic properties of the constructed quantity variables

	Main empirical results
	Security market line (SML) depends on quantity
	Fama-MacBeth factor premium increases with quantity
	Beta times quantity (BTQ) forecasts individual stock returns
	Taming the factor zoo with BTQ
	BTQ with latent factors
	Robustness of the main predictive results above

	Quantity must be combined with risk to forecast returns
	``Quantity-only'' models do not explain expected returns
	Different factors' q's explain risk-return tradeoffs along different dimensions

	Quantity or alternative channels driving factor premiums?
	Conclusion
	Equilibrium theory and microfoundation of quantity-factor premium relationship
	Factor pricing identities when factor premium is an equilibrium outcome
	Demand functions and the equilibrium
	A microfoundation of the inelastic demand function

	Technical details
	Construction and cleaning of mutual fund flows
	Return cleaning
	TNA cleaning
	Cross-validating the data-cleaning procedure
	Alternative method to construct factor-level flow directly from mutual fund flow

	Technical details of Lasso implementation

	Additional empirical results
	Additional properties of the quantity variable qk,t
	Predicting factor returns with factor quantity
	Additional results on stock return forecasting
	Additional results on factor selection
	Interpreting the magnitude of  estimates and connection to the literature
	Additional robustness checks on return predictability
	Details for macroeconomic variables as alternatives to factor quantity


