
Dissecting the Aggregate Market Elasticity∗

Victor Duarte† Mahyar Kargar‡ Jiacui Li§ Dejanir Silva¶

February 18, 2025

Abstract

We examine the price elasticity of demand for the aggregate stock market in a general equi-
librium framework that incorporates rich investor heterogeneity, passive demand, and financial
constraints. Using global perturbation techniques, we analytically characterize market elastic-
ity and find that it critically depends on investors’ cross-price elasticity—that is, the sensitivity
of demand for risky assets to changes in the interest rate. When cross-elasticity is nonzero,
the market remains infinitely elastic if passive investors hold the efficient share of risky assets,
regardless of how price-inelastic individual investors are. In contrast, portfolio inflows have a
positive price impact when risk is misallocated in the economy.

Keywords: Aggregate market elasticity, risk missallocation, demand shocks, demand shifters,
excess volatility, asset pricing.

JEL Classification: G12, G11, G21.

∗We thank Andy Atkeson, Tim Johnson, Ralph Koĳen, Wenhao Li, Tyler Muir, Stavros Panageas, Fabrice Tourre,
and Pierre-Olivier Weill; and conference and seminar participants at Liquidity in Macroeconomics Workshop at St.
Louis Fed, UIUC, UCLA macro-finance lunch, and University of Zurich for valuable comments and suggestions. All
errors are our own.

†Gies College of Business, University of Illinois Urbana-Champaign, vduarte@illinois.edu.
‡Gies College of Business, University of Illinois Urbana-Champaign, kargar@illinois.edu.
§David Eccles School of Business, University of Utah; jiacui.li@eccles.utah.edu.
¶Mitchell E. Daniels, Jr. School of Business, Purdue University, dejanir@purdue.edu.

mailto:vduarte@illinois.edu
mailto:kargar@illinois.edu
mailto:jiacui.li@eccles.utah.edu
dejanir@purdue.edu


1 Introduction

Why is the stock market so volatile? This question has long been the subject of extensive research

and debate. Existing explanations often invoke the so-called “dark matter of asset pricing,” where

unobserved factors account for the majority of price fluctuations.1 More recent demand-based

evidence highlights the role of asset price movements in response to portfolio flows as a potential

explanation for the origins of the excess market volatility. Given the relatively small magnitude of

these flows in the data, as shown in the left panel of Figure 1, this hypothesis requires markets to

be highly inelastic on average, meaning that even small changes in quantities lead to large price

responses (Gabaix and Koĳen, 2020). Moreover, as illustrated in the right panel of Figure 1,

the volatility multiplier—defined as the ratio of return volatility to flows—is time-varying and

countercyclical, spiking during crisis periods.

This new evidence naturally raises several important questions: Why is the aggregate stock

market so inelastic? Can standard frictionless asset pricing models generate such low levels of

market elasticity? If not, what frictions are necessary to quantitatively explain the impact of portfolio

flows on asset prices and match the observed dynamics of the volatility multiplier? Addressing

these questions is key to understanding and disentangling the forces driving inelastic markets and,

consequently, high market volatility.

This paper develops a general equilibrium model with investor heterogeneity and portfolio

frictions to address the questions outlined above. The general equilibrium (GE) perspective is

essential, as the key object for studying the price impact of flows is the macro (aggregate) elasticity—

the change in the aggregate stock market value in response to a $1 flow from bonds into stocks.2

When deriving the expression for aggregate elasticity, we account for market-wide adjustments

in investors’ portfolio holdings across stocks and risk-free bonds, emphasizing the simultaneous

response of both the interest rate and the risk premium to flows.3 Understanding these general

1For work on excess volatility tests, see, e.g., LeRoy and Porter (1981), Shiller (1981, 1992), and Cochrane (1992).
See Chen, Dou, and Kogan (2024) for the discussion of “dark matter" in asset pricing.

2Throughout the paper, we use the terms “aggregate elasticity” and “macro elasticity” interchangeably.
3This contrasts with micro elasticity, which focuses on flows between individual stocks, where changes in the

money market play a smaller role.

1



0.00

0.01

0.02

0.03

0.04

0.05

0.0

0.1

0.2

0.3

0.4

0.5

1950 1960 1970 1980 1990 2000 2010 2020

Q
ua

rte
rly

flo
w

Return
volatility

(annualized)

mean = 7.81

0

10

20

30

1950 1960 1970 1980 1990 2000 2010 2020

Vo
la

til
ity

m
ul

tip
lie

r

Figure 1. Quarterly flows and return volatility.
The left panel plots quarterly flows (in blue) and return volatility (in red). The right panel plots the “volatility
multiplier,” defined as the ratio of return volatility to flows. Source: Flow of Funds and CRSP.

equilibrium effects—particularly the impact of flows on the risk-free rate and risk premium—is

crucial for characterizing the macro elasticity.

Allowing the interest rate to endogenously respond to portfolio-flow shocks plays a crucial

role in determining the aggregate market elasticity.4 If investors’ cross-price elasticity is zero—

meaning that demand for the risky asset is independent of the interest rate—then aggregate market

elasticity is simply an average of individual investors’ price elasticities, consistent with Gabaix and

Koĳen (2020). In this case, the market remains inelastic as long as investor demand is relatively

unresponsive to price changes. Importantly, the behavioral element of their general equilibrium

model leads to a constant interest rate. In contrast, we show that if cross-elasticity is nonzero,

and interest rates are allowed to move, the market can become infinitely elastic, regardless of how

price-inelastic individual investors are.5

The disconnect between individual and market elasticities arises from a general equilibrium

effect. In partial equilibrium, when passive investors shift funds from the risky asset to the riskless

asset, the price of the risky asset tends to decline, increasing the risk premium and incentivizing

active investors to raise their exposure. However, in general equilibrium, the interest rate must

adjust to clear the bond market in response to the higher demand for the riskless asset. The decline

4A portfolio-flow shock corresponds to an asymmetric shock to the demand of risky assets, affecting only a subset
of investors and leading to a portfolio reallocation in equilibrium.

5Johnson (2006) studies equilibrium price changes in response to shifts in risky asset supply. While his definition
of liquidity differs from ours, it also allows for interest rate adjustments when stock prices change.
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in interest rates counteracts the effect of the risk premium on the price of the risky asset. We show

that if passive investors initially hold an efficient share of the risky asset, the drop in interest rates

fully counteracts the change in the risk premium, resulting in no impact on the price of the risky

asset following a portfolio flow shock.

This result highlights that individual investors being price-inelastic, as the evidence suggests,

is not sufficient to generate inelastic markets. This raises the question of what drives low aggregate

market elasticity in general equilibrium. We find that the initial allocation of risk in the econ-

omy plays a crucial role. A shock to the portfolio of passive investors effectively redistributes

risk between active and passive investors. If risk is initially allocated efficiently, small portfo-

lio adjustments have no impact on aggregate savings behavior, which ultimately determines the

price-dividend ratio. In equilibrium, the interest rate fully offsets the change in the risk premium.

However, if risk is initially misallocated, portfolio reallocation directly impacts aggregate savings

behavior, preventing the interest rate from fully offsetting changes in the risk premium. Through

the lens of the model, inelastic markets serve as an indicator of inefficiencies in risk allocation.

We first derive these results within a simple two-period model and then demonstrate that the

same intuition extends to a fully dynamic framework. Unlike much of the existing macro-finance

literature, we go beyond a two-agent setting and incorporate rich investor heterogeneity. By

considering a broader set of investors, we capture the effects of asset reallocations across different

sectors, such as mutual funds, households, broker-dealers, and foreign investors.

Several factors can contribute to market inelasticity, including passive demand, institutional

investment mandates, and limits to arbitrage.6 We introduce two key frictions: passive investment

and margin constraints. Households are assumed to follow a passive investment strategy rather

than actively trading in financial markets, consistent with empirical evidence (e.g., Brunnermeier

and Nagel, 2008). The economy also includes active investors who face margin constraints, which

are widely recognized in the literature as crucial for market outcomes and the behavior of financial

6See Gabaix and Koĳen (2020) for more details.
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intermediaries.7

We show that, in addition to the wealth distribution among agents, market volatility is influenced

by both passive flow shocks and aggregate market elasticity. To explain excess market volatility, both

factors are necessary. In highly inelastic markets, flow shocks are required to generate additional

volatility; without them, inelasticity alone does not increase volatility. Likewise, if markets are

infinitely elastic, even large flow shocks do not create excess volatility.

Studying market elasticity in economies with frictions is challenging, as closed-form solutions

are typically unavailable. To address this, we apply global perturbation techniques to derive

closed-form expressions for market elasticity. Our analysis reveals that aggregate elasticity is both

state-dependent and time-varying, influenced not only by the wealth distribution between active

and passive investors but also by how wealth is allocated among active agents. In the absence of

frictions, the market is infinitely elastic. However, the introduction of passive investors increases the

price impact of flows relative to frictionless markets. Preference heterogeneity makes the aggregate

market more elastic due to risk misallocation, as more risk-averse passive investors require a higher

risk premium to absorb additional risky asset supply. Finally, binding leverage constraints amplify

the price impact of flows. Our findings highlight the crucial role of general equilibrium effects and

investor heterogeneity in driving market inelasticity.

We then decompose the aggregate elasticity into components driven by the impact of passive

flows on the risk premium, the risk-free rate, and the drift of the risky asset price. This decom-

position highlights the general equilibrium effects of passive flows, as the risk-free rate and risk

premium influence aggregate elasticity in opposing directions.

Lastly, we conduct a quantitative assessment of the model, which involves solving and estimating

a high-dimensional asset pricing framework. A key contribution of our work is demonstrating how

to computationally manage this complexity. We then evaluate the role of various frictions in

explaining excess market volatility.

7See, e.g., Brunnermeier and Pedersen (2009), Garleanu and Pedersen (2011), Chabakauri (2013), and Adrian and
Shin (2014).
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Related literature

Our work relates to the literature on macro demand elasticity that studies the impact of asset

flows on the aggregate stock market price. The papers closest to ours are Johnson (2006) and Gabaix

and Koĳen (2020). In a representative agent model, Johnson (2006) conducts a different exercise

than ours by perturbing the risky asset supply and finds finite elasticity even in the frictionless

Lucas economy. Gabaix and Koĳen (2020) present a model with a behavioral element that leads

to constant interest rates to achieve a large price impact in a setting with representative households

who can invest in funds subject to mandates. We present a general equilibrium model with rich

investor heterogeneity and financial constraints and show that both GE effects and frictions are

essential for obtaining inelastic markets.8

The macro elasticity literature contrasts with the much larger one on micro elasticity, which

examines the change in the relative price of two stocks if one buys $1 of one and sells $1 of the

other (e.g., Shleifer, 1986; Harris and Gurel, 1986; Chang, Hong, and Liskovich, 2015; Pavlova

and Sikorskaya, 2023; Schmickler, 2020). The evidence in the literature suggests that the micro

elasticity is much larger than the aggregate elasticity, which is the object of interest in our paper,

given that different stocks are closer substitutes than the stock and bond market indices.

Finally, our paper is related to the theoretical microstructure literature (e.g., Kyle, 1985).

However, unlike this literature, in our setting, asset flows affect the macro elasticity through their

impact on the risk premium and risk-free rate. Campbell and Kyle (1993) look at the interaction

of noise traders and smart money, analogous to our discussion of the interaction between passive

and active investors. However, they consider a model with CARA preferences and constant interest

rates, thus, abstracting from the role of wealth distribution and the GE effects we emphasize.

8For more on macro elasticity, see Johnson (2008, 2009), Deuskar and Johnson (2011), Li, Pearson, and Zhang
(2020), Hartzmark and Solomon (2021), and other.
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2 A simple model of the aggregate market elasticity

In this section, we study the determination of the aggregate market elasticity in a simple general

equilibrium demand-based asset pricing model. To keep the discussion as simple as possible, we

directly specify investors’ demands, without deriving them from utility functions. In Section 3, we

provide a micro-founded version of investors’ demands in a dynamic heterogeneous-agents model.

2.1 A 2 × 2 × 2 asset pricing model

Consider a two-period economy with two assets, a risky asset and a riskless asset, and two

agents, a passive investor (𝑝) and an active investor (𝑎). A fraction 𝜔 𝑗 of investors is of type

𝑗 ∈ {𝑎, 𝑝}. The risky asset pays a random dividend 𝑌 ′ in the second period. The price of the risky

asset is denoted by 𝑃, and the price of the riskless asset is denoted by 𝑅−1
𝑓

.

Investors’ budget constraints in the two periods are given by 𝑃𝑄 𝑗 + 𝑅−1
𝑓
𝐵 𝑗 + 𝐶 𝑗 = 𝑊 𝑗 and

𝐶′
𝑗
= 𝑌 ′𝑄 𝑗 + 𝐵 𝑗 , where 𝑄 𝑗 denotes the number of shares of the risky asset held by investor 𝑗 , 𝐵 𝑗 is

the number of riskless bonds, 𝐶 𝑗 denotes initial consumption, and 𝐶′
𝑗

denotes consumption in the

second period. Initial wealth is given by 𝑊 𝑗 = (𝑃 + 𝑌 )𝑄 𝑗 ,−1 > 0.

Let 𝛼 𝑗 ≡ 𝑃𝑄 𝑗

𝑊 𝑗−𝐶 𝑗
denote the portfolio share of the risky asset for investor 𝑗 . For the passive

investor, the portfolio share is exogeneously given, that is, 𝛼𝑝 = 𝛼𝑝, where 𝛼𝑝 ≥ 0 is a fixed

parameter. For the active investor, the portfolio share is a function of the risk premium: 𝛼𝑎 = 𝑔𝑎 (𝜋),

where 𝜋 ≡ log 1
𝑅 𝑓
E[𝑌 ′

𝑃
] represents the log risk premium and 𝑔′𝑎 (·) ≥ 0.

Investor 𝑗’s consumption is given by 𝐶 𝑗 = 𝑐 𝑗 (𝑟, 𝜋)𝑊 𝑗 , where 𝑟 ≡ log 𝑅 is the log risk-free rate.

The consumption-wealth ratio 𝑐 𝑗 depends on both the interest rate and risk premium. If 𝑐 𝑗 (𝑟, 𝜋)

decreased (increased) with 𝑟, then the investor saves more (less) when the interest rate is high,

reflecting a standard substitution (income) effect. Note that, as an initial benchmark, we assume

that 𝑐 𝑗 (·, ·) does not depend directly on passive portfolio share 𝛼𝑝.
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The market clearing conditions are given by

∑︁
𝑗∈{𝑝,𝑎}

𝜔 𝑗𝐶 𝑗 = 𝑌,
∑︁

𝑗∈{𝑝,𝑎}
𝜔 𝑗𝑄 𝑗 = 1,

∑︁
𝑗∈{𝑝,𝑎}

𝜔 𝑗𝐵 𝑗 = 0,

and the initial endowment of the risky asset satisfies
∑

𝑗∈{𝑝,𝑎} 𝜔 𝑗𝑄 𝑗 ,−1 = 1.

Market for risky assets. Let 𝑝 = log 𝑃
𝑌

denote the log dividend-price ratio and 𝜇 ≡ log E[𝑌
′]

𝑌
the

log dividend growth. From the definition of the risk premium, we obtain the pricing condition

𝜋 = 𝜇 − 𝑝 − 𝑟. (1)

Thus, given 𝑝 and 𝑟, we can solve for the risk premium.

The demand for the risky asset for investor 𝑗 is given by 𝑄 𝑗 = 𝛼 𝑗 [1 − 𝑐 𝑗 (𝑟, 𝜋)]
𝑊 𝑗

𝑃
. Using

Equation (1), we can express the demand for the risky asset as a function of 𝑝, 𝑟, and 𝛼𝑝:

𝑄 𝑗 = 𝐹𝑗 (𝑝, 𝑟, 𝛼𝑝). We can write the market clearing condition for the risky asset as follows:

𝜔𝑎𝐹𝑎 (𝑝, 𝑟, 𝛼𝑝)︸             ︷︷             ︸
active demand

= 1 − 𝜔𝑝𝐹𝑝 (𝑝, 𝑟, 𝛼𝑝)︸                  ︷︷                  ︸
net supply

. (2)

The market for the risky asset reaches equilibrium when demand from active investors equals the

net supply available to them—that is, the total supply minus the amount held by passive investors.

Notably, active demand is independent of 𝛼𝑝, meaning that changes in 𝛼𝑝 lead to shifts of the net

supply curve.

Market for goods. The sensitivity of the consumption-wealth ratio to changes in the interest rate

and the risk premium plays an important role in the analysis. In our dynamic model in Section 3,

the average consumption-wealth ratio depends on 𝑟 + 𝜋, meaning that sensitivity to interest rates is

equal to sensitivity to the risk premium. Assumption 1 below ensures that the consumption-wealth

ratio in our simple model remains consistent with standard micro-founded models.
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Assumption 1. The average consumption-wealth ratio is a function of the expected return in the

risky asset 𝑟 + 𝜋, that is,
∑

𝑗∈{𝑝,𝑎} 𝑥 𝑗𝑐 𝑗 (𝑟, 𝜋) = 𝑐(𝑟 + 𝜋), where 𝑥 𝑗 ≡
𝜔 𝑗𝑊 𝑗

𝜔𝑎𝑊𝑎+𝜔𝑝𝑊𝑝
is the wealth share.

Intuitively, since bonds are in zero net supply, the average return on investors’ portfolios

corresponds to the return on the risky asset. The market-clearing condition for goods is given by:

𝑐(𝜇 − 𝑝) = 1
1 + 𝑒𝑝

. (3)

Assumption 1 implies that the system determining 𝑝 and 𝑟 satisfies an important recursivity

property: condition (3) depends only on 𝑝, while condition (2) depends on both 𝑝 and 𝑟.

2.2 The general equilibrium implications of portfolio flows

We are interested in examining how the price of the risky asset 𝑝 and the return on the riskless

asset 𝑟 respond to a portfolio flow toward the risky asset and away from the riskless bond. Let 𝛼∗
𝑝

denote the portfolio share of passive investors in an initial equilibrium, with corresponding prices

(𝑝∗, 𝑟∗). For a small deviation of the passive portfolio, 𝛼𝑝 = 𝛼∗
𝑝𝑒

𝛼̂𝑝 , we linearized the demand

around the initial equilibrium to obtain 𝑞 𝑗 ≡ log𝑄 𝑗/𝑄∗
𝑗
:

𝑞 𝑗 = −𝜁𝑞
𝑗,𝑝

(𝑝 − 𝑝∗) − 𝜁
𝑞

𝑗,𝑟
(𝑟 − 𝑟∗) + 𝑓 𝑗 , (4)

where 𝜁
𝑞

𝑗,𝑝
≡ − 𝜕 log 𝐹𝑗

𝜕𝑝
represents investor 𝑗’s price elasticity, and 𝜁

𝑞

𝑗,𝑟
≡ − 𝜕 log 𝐹𝑗

𝜕𝑟
denotes investor

𝑗’s cross-elasticity, which measures the sensitivity of demand for the risky asset to changes in the

price of the riskless asset. The term 𝑓 𝑗 ≡
𝜕 log 𝐹𝑗

𝜕 log𝛼𝑝
𝛼̂𝑝 represents a flow shock, capturing an exogenous

flow from bonds to stocks. Since active demand is independent of 𝛼𝑝, we have 𝑓𝑎 = 0, meaning

only passive investors’ demand is affected by the flow shock. Moreover, because 𝛼𝑝 is independent

of the risk premium, the cross-elasticity for the passive investor is zero.

The right panel in Figure 2 illustrates the equilibrium in the market for the risky asset. The solid

downward-sloping curve represents active demand. An increase in 𝑝, given 𝑟, reduces asset demand
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Figure 2. Equilibrium in the goods and risky asset markets

by active investors, as it corresponds to a decline in the risk premium. The net supply of risky

assets is depicted as the solid upward-sloping curve. The net supply curve will be upward-sloping

provided that 𝑐′𝑝 (𝑟∗ + 𝑝∗) is negative or sufficiently small.9

The market-clearing condition for the goods market can be written as

𝜁 𝑐𝑝 (𝑝 − 𝑝∗) = − 𝑒𝑝
∗

(1 + 𝑒𝑝
∗)2 (𝑝 − 𝑝∗),

where 𝜁 𝑐𝑝 ≡ −𝑐′(𝜇 − 𝑝∗). The left-panel of Figure 2 shows the equilibrium in the goods market.

The inelastic markets hypothesis. First, consider a partial equilibrium version of this model,

where we set 𝑟 = 𝑟∗ and drop the market clearing condition for goods. Alternatively, we could take

the limit as 𝑥𝑝 → 1, in which case the cross-elasticity equals zero, 𝜁𝑞𝑟 = 0.10 Under this setup, the

price of the risky asset satisfies:

𝑝 − 𝑝∗ =
1
𝜁
𝑞
𝑝︸︷︷︸

inverse market
elasticity

× 𝑓︸︷︷︸
flow shock

, (5)

where 𝜁
𝑞
𝑝 ≡ ∑

𝑗∈{𝑎,𝑝} 𝑥 𝑗 𝜁
𝑞

𝑗,𝑝
and 𝑓 ≡ 𝑥𝑝 𝑓𝑝.

9Notice that the net supply would be vertical if we assumed that 𝑄𝑝 was exogenously given instead of 𝛼𝑝 .
10For this limit to be well-defined, we require 𝜁 𝑐𝑝 + 𝑒𝑝∗

(1+𝑒𝑝∗ )2 = 0, making the interest indeterminate.
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Equation (5) shows that the price-dividend ratio responds to portfolio flows, with the price

impact given by the inverse of market elasticity. This elasticity depends on the average price

elasticity across all investors. This result is consistent with the inelastic market hypothesis of

Gabaix and Koĳen (2020), who estimate the price impact of flows into the stock market and find a

large price response, suggesting that investors are relatively inelastic.

Figure 2 illustrates the intuition behind this result. When passive investors reallocate funds

from the risky asset to the riskless asset, the net supply curve effectively shifts to the right, as

shown by the upward-sloping dashed line in the right panel. To incentivize active investors to hold

more of the risky asset, its expected return must increase—meaning the price-dividend ratio must

decline. If both passive and active investors are relatively inelastic, then even a small flow shock

can lead to a substantial price drop.

The crucial role of the cross-elasticity. The partial equilibrium analysis abstracts from the role of

cross-elasticity. The proposition below shows that the aggregate market elasticity is fundamentally

different in the general equilibrium model where 𝑟 and 𝑝 are allowed to adjust.

Proposition 1 (Infinite market elasticity). Suppose 𝜁𝑞𝑟 ≡ ∑
𝑗∈{𝑎,𝑝} 𝑥 𝑗 𝜁

𝑞

𝑗,𝑟
≠ 0. Then, a portfolio flow

shock has no price impact, 𝑝 − 𝑝∗ = 0. Moreover, the portfolio flow shock has opposite effects on

the risk premium and the interest rate: 𝑟 − 𝑟∗ = 1
𝜁
𝑞
𝑟
𝑓 and 𝜋 − 𝜋∗ = − 1

𝜁
𝑞
𝑟
𝑓 .

Give a non-zero cross-elasticity, 𝜁
𝑞
𝑟 ≠ 0, the market is infinitely elastic, regardless of how

price-inelastic individual investors are. Even if investors are extremely price-inelastic (𝜁𝑞𝑝 ≈ 0),

the market elasticity remains infinite. Moreover, the result holds for any non-zero value of the

cross-elasticity. Markets would be infinitely elastic even with a small cross-elasticity (𝜁𝑞𝑟 ≈ 0).

The disconnect between individual price elasticity and market elasticity arises from a general

equilibrium effect. Figure 2 illustrates this mechanism.

In the goods market, the price-dividend ratio is determined by consumption behavior. This

is clearly the case in models with unit elasticity of intertemporal substitution (EIS), where the

price-dividend ratio is pinned down by the investor’s discount rate. Our formulation generalizes

10



this approach. To restore equilibrium in the market for the risky asset, the interest rate must adjust

until the demand from active investors meets the net supply at the initial price. This adjustment

is represented in the right panel by the dashed downward-sloping curve, which shifts upward until

it intersects the new net supply curve at the original price. Since the interest rate fully offsets

movements in the risk premium, the price-dividend ratio remains unaffected by the flow shock.

Intuitively, as funds shift towards riskless bonds, the increased supply of bonds pushes interest

rates down. Similarly, the reduction in the demand for risky assets (or the increase in net supply)

raises the risk premium. In this economy, these two effects exactly offset each other, regardless

of how price-inelastic individual investors are. If the decline in 𝑟 were smaller than the increase

in risk premium, it would create excess demand for goods or, equivalently, an excess supply of

bonds. Thus, in this economy, achieving simultaneous equilibrium in the markets for both risky

and riskless assets requires an infinite market elasticity.

The need for a micro-founded demand system. The analysis above highlights the importance

of the cross-price elasticity. In particular, it provides an example where the market can be infinitely

elastic, regardless of how price-inelastic investors are. It is essential for this result that the average

consumption-wealth ratio is independent of the portfolio flow shock 𝑓 . If a portfolio flow shock

were to simultaneously shift the net supply curve and the average consumption-wealth ratio, then

the price impact would not be zero, and the market elasticity would be finite. 11

Therefore, to understand the determinants of the aggregate market elasticity, we need a theory

of how portfolio reallocation shocks affect not only the demand for risky assets, but also the demand

for safe bonds, which is ultimately driven by investors’ savings behavior. To obtain a micro-founded

demand system, we next consider a dynamic asset pricing model with heterogeneous agents and

introduce a new methodology to derive investor demand in this setting.

11Similar logic applies to the effects of an increase in uncertainty. Higher uncertainty has no impact on the price
when the EIS is equal to one, given a constant consumption-wealth ratio. A high EIS is necessary for higher uncertainty
to reduce the price, as it reduces the consumption-wealth ratio in this case (see, e.g., Bansal and Yaron 2004).
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3 A dynamic asset pricing model with passive investors

In this section, we consider a general equilibrium continuous-time economy with rich investor

heterogeneity. Investors differ in their risk aversion and the extent to which they participate in

financial markets, where they can be either active or passive. Active investors are also subject to a

state-dependent leverage constraint. This occasionally binding constraint limits the maximum risk

exposure of active investors. The presence of passive investors allows us to study the price impact

of (passive) portfolio flows from one asset class into another. Investor heterogeneity and financial

frictions are essential in assessing (active) market participants’ responses to portfolio flow shocks.

3.1 Environment

3.1.1 Endowment and financial markets

The aggregate endowment, 𝑌𝑡 , follows a geometric Brownian motion:

𝑑𝑌𝑡

𝑌𝑡
= 𝜇𝑑𝑡 + 𝜎𝑑𝑍𝑡 , (6)

where 𝜇 ∈ R and the 1×𝑑 vector𝜎 ∈ R𝑑 are constants, and the 𝑑×1 vector 𝑍 =
{
𝑍𝑡 ∈ R𝑑;F𝑡 , 𝑡 ≥ 0

}
is a standard Brownian motion defined in a probability space (Ω, 𝑃, F ) equipped with a filtration

F = {F𝑡 , 𝑡 ≥ 0} with the usual conditions. 𝑍 is multi-dimensional, enabling us to capture an

arbitrary correlation between endowment shocks and portfolio-flow shocks, which we describe

below.

Investors can trade a risky asset in unit-supply which is a claim to the aggregate endowment 𝑌𝑡 .

The (cumulative) return on the risky asset 𝑅𝑡 satisfies:

𝑑𝑅𝑡 =
𝑑𝑃𝑡 + 𝑌𝑡𝑑𝑡

𝑃𝑡

≡ 𝜇𝑅,𝑡𝑑𝑡 + 𝜎𝑅,𝑡 𝑑𝑍𝑡 , (7)

where 𝑃𝑡 is the price of the risky claim, 𝜇𝑅,𝑡 is the expected return on the risky asset, and the 1× 𝑑

vector 𝜎𝑅,𝑡 represents its exposure to the different shocks, all to be determined in equilibrium. The
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instantaneous return volatility is given by | |𝜎𝑅,𝑡 | |.

Investors have also access to a instantaneous risk-free asset paying interest rate 𝑟𝑡 . In equilibrium,

asset prices are a function of the aggregate state variable 𝑋𝑡 ∈ R𝑁 , which allow us to write e.g.,

𝑟𝑡 = 𝑟 (𝑋𝑡), 𝜇𝑃,𝑡 = 𝜇𝑃 (𝑋𝑡), and 𝜎𝑅,𝑡 = 𝜎𝑅 (𝑋𝑡), with some abuse of notation. The aggregate state

variable evolves according to

𝑑𝑋𝑡 = 𝜇𝑋,𝑡𝑑𝑡 + 𝜎𝑋,𝑡 𝑑𝑍𝑡 , (8)

where 𝜇𝑋,𝑡 ∈ R𝑁 is the vector of drifts, and 𝜎𝑋,𝑡 ∈ R𝑁×𝑑 is the matrix of exposures, both determined

in equilibrium.

3.1.2 Investors and financial constraints

The economy is populated by (𝐽 +1) types of investors, indexed by 𝑗 = 0, 1, . . . , 𝐽. The mass of

type 𝑗 investors is denoted by 𝜔 𝑗 . Investors die with Poisson intensity 𝜅 and a mass 𝜅𝜔 𝑗 of type 𝑗

agents are born every period, such that total population is constant and normalized to one. Newborn

agents inherit the wealth from their parents. The purpose of this overlapping generation structure is

to guarantee that a non-degenerate stationary distribution of wealth exists in our economy. Investors

have Duffie and Epstein (1992) recursive preferences, where investor 𝑗 has risk aversion coefficient

𝛾 𝑗 and all investors have a common EIS equal to 𝜓. Investors choose a process for consumption,

𝐶 𝑗 ,𝑡 , and the share of wealth invested in the risky asset, 𝛼 𝑗 ,𝑡 , subject to portfolio constraints. Given

the wealth of investor 𝑗 , 𝑊 𝑗 ,𝑡 , the demand for the risky asset is given by 𝑄 𝑗 ,𝑡 = 𝛼 𝑗 ,𝑡𝑊 𝑗 ,𝑡/𝑃𝑡 and the

demand for the riskless asset is 𝐵 𝑗 ,𝑡 = (1 − 𝛼 𝑗 ,𝑡)𝑊 𝑗 ,𝑡 .

Passive investors. Investors face different financial constraints. Agents of type 𝑗 = 0 are passive

investors, that is their portfolio share is given by 𝛼0,𝑡 = 𝛼𝑝,𝑡 , for a given process 𝛼𝑝,𝑡 . Outside a

boundary region, 𝛼𝑝,𝑡 follows an exogenous square-root process (Cox, Ingersoll, and Ross, 1985):

𝑑𝛼𝑝,𝑡 = 𝜃𝑝 (𝛼 − 𝛼𝑝,𝑡)𝑑𝑡 + 𝜎𝑝

√︃
𝛼𝑝,𝑡 𝑑𝑍𝑡 , (9)
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where 𝛼 is the long-run mean and 𝜃𝑝 is the mean-reversion parameter that controls the speed which

passive investors rebalance their portfolios. We refer to the innovations to 𝛼𝑝,𝑡 as portfolio flow

shocks, capturing fluctuations in the amount that passive investors allocate to the risky asset.12

These movements in portfolio positions may happen in response to aggregate shocks, potentially

amplifying the effect of shocks to endowments. Alternatively, they could represent an independent

source of fluctuation. Our specification in Equation (9) accommodates both cases. For instance,

suppose 𝑑 = 2, 𝜎 = (𝜎1, 0), and 𝜎𝑝 =
(
𝜎𝑝1, 𝜎𝑝2

)
. In this case, the first element of the Brownian

motion 𝑑𝑍 captures aggregate endowment shocks, while the second element of the Brownian

motion captures pure portfolio flow shocks.

The formulation above is meant to capture the various forms of passive investor behavior

documented in the literature. For instance, Ameriks and Zeldes (2004) and Brunnermeier and

Nagel (2008) document substantial inertia in households’ portfolios, with very limited or slow

rebalancing. This implies that portfolio shares would move with shocks to returns, consistent with

the exposure of 𝛼𝑝 to aggregate shocks in Equation (9). Additionally, Parker, Schoar, and Sun

(2023) show that the introduction of target-date funds (TDF) has led to a relatively stable portfolio

share. Gabaix and Koĳen (2020) document similar behavior for the equity share of different

institutional investors, consistent with the idea that these investors do not actively adjust their

portfolio share as market conditions vary. Moreover, Parker, Schoar, Cole, and Simester (2022)

show that changes in regulation led to an sharp increase in the share of stocks held by households,

as TDFs became widely adopted, consistent with the idea that portfolio flows may be driven by

factors that are orthogonal to changes in fundamentals.

Behavior at the boundary region. For technical regions, we specify a different behavior for the

portfolio share as the wealth share of passive investors approaches one. If passive investors hold

nearly all the wealth, but a disproportionately smaller share of the risky assets, the average portfolio

share of active investors would increase without bound. This behavior can lead to equilibrium

12Alternatively, one could allow for shocks in the mass of passive investors 𝜔0. Ultimately, it is the total amount of
risky assets held by passive investors that will be relevant in equilibrium.
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multiplicity, and even failures of no-arbitrage conditions (see, e.g., Hugonnier 2012). To avoid

these pathologies, we assume that passive investors increase their portfolio share when their wealth

share exceeds a threshold, so the active investors’ leverage remains bounded.13 This ensures that

the portfolio share of passive investors converges to one as their wealth also converges to one. In

our calibration, the economy spends nearly all its time away from this boundary region.

Active investors. We refer to investors of type 𝑗 = 1, . . . , 𝐽 as active investors. Active investors

continuously rebalance their portfolios subject to state-dependent leverage constraints. Following

the literature on leverage or margin constraints, we assume that the maximum portfolio share for

an active investor is decreasing in aggregate volatility:14

𝛼 𝑗 ,𝑡 ≤
𝜎

∥𝜎𝑅,𝑡 ∥
, (10)

where we assume 𝜎 ≥ ∥𝜎∥.

Constraint (10) resembles a Value-at-Risk (VaR) constraint, which is common for banks and

other leveraged financial institutions. It captures the fact that either margin requirements or

financial intermediaries’ regulatory or risk-management constraints become tighter in periods of

high volatility. Allowing for leverage constraints plays a potential important role in determining

the aggregate market elasticity, as they may limit the ability of some active investors to provide an

elastic response to shocks during periods of high volatility.

Investors’ problem. The problem of an investor of type 𝑗 = 0, . . . , 𝐽 is given by

𝑉 𝑗 ,𝑡 = max
[𝐶 𝑗 ,𝛼 𝑗 ]

E𝑡

[∫ ∞

𝑡

𝑓 𝑗 (𝐶 𝑗 ,𝑠, 𝑉 𝑗 ,𝑠)𝑑𝑠
]
, (11)

13This is analogous to the free-entry mechanism in Khorrami (2022), who shows that these pathologies are avoided
in models with entry.

14See e.g., Brunnermeier and Pedersen (2009), Garleanu and Pedersen (2011), and Adrian and Shin (2014).
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subject to the flow budget constraint,

𝑑𝑊 𝑗 ,𝑡 =
[
(𝑟𝑡 + 𝜋𝑡𝛼 𝑗 ,𝑡)𝑊 𝑗 ,𝑡 − 𝐶 𝑗 ,𝑡

]
𝑑𝑡 + 𝛼 𝑗 ,𝑡𝑊 𝑗 ,𝑡𝜎𝑅,𝑡𝑑𝑍𝑡 , (12)

a non-negativity condition on wealth, 𝑊 𝑗 ,𝑡 ≥ 0, and the portfolio constraint 𝛼 𝑗 ,𝑡 ∈ Ω 𝑗 ,𝑡 , where

Ω0,𝑡 =
{
𝛼0 : 𝛼0 = 𝛼𝑝,𝑡

}
and Ω 𝑗 ,𝑡 = {𝛼 𝑗 : 𝛼 𝑗 ≤ 𝜎

∥𝜎𝑅,𝑡 ∥ } for 𝑗 = 1, . . . , 𝐽, where 𝛼𝑝,𝑡 follows the

process (9), and 𝜋𝑡 = 𝜇𝑅,𝑡 − 𝑟𝑡 denotes the risk premium. The aggregator for investor 𝑗 , 𝑓 𝑗 (𝐶,𝑉),

is given by

𝑓 𝑗 (𝐶,𝑉) = 𝜌
(1 − 𝛾 𝑗 )𝑉
1 − 𝜓−1


©­« 𝐶(
(1 − 𝛾 𝑗 )𝑉

) 1
1−𝛾𝑗

ª®¬
1−𝜓−1

− 1

 , (13)

where the discount factor 𝜌 ≡ 𝜌̂ + 𝜅 incorporates not only the investors’ impatience 𝜌̂, but also the

death probability 𝜅.

3.1.3 Market clearing and equilibrium

We provide the definition of equilibrium below.

Definition 1. A competitive equilibrium is a set of stochastic processes adapted to the filtration

created by 𝑍𝑡: the aggregate endowment 𝑌 , the price of the claim on the aggregate endowment 𝑃,

and the risk-free rate 𝑟; and a set of stochastic processes for each investor 𝑗 ∈ {0, . . . , 𝐽}: wealth

𝑊 𝑗 , consumption 𝐶 𝑗 , and stock holdings 𝛼 𝑗 , such that

(i) Aggregate endowment evolves according to (6), given 𝑌0 > 0.

(ii) Given the stochastic processes (𝑃𝑡 , 𝑟𝑡), choices
(
𝐶 𝑗 , 𝛼 𝑗

)
solve agent 𝑗’s problem in (11).

(iii) Markets for consumption goods, risky asset, and risk-free bonds clear

𝐽∑︁
𝑗=0

𝜔 𝑗𝐶 𝑗 ,𝑡 = 𝑌𝑡 ,

𝐽∑︁
𝑗=0

𝜔 𝑗𝑄 𝑗 ,𝑡 = 1,
𝐽∑︁
𝑗=0

𝜔 𝑗𝐵 𝑗 ,𝑡 = 0, (14)

where 𝑄 𝑗 ,𝑡 = 𝛼 𝑗 ,𝑡𝑊 𝑗 ,𝑡/𝑃𝑡 and 𝐵 𝑗 ,𝑡 = (1 − 𝛼 𝑗 ,𝑡)𝑊 𝑗 ,𝑡 .
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3.2 Equilibrium characterization

In this section, we provide a characterization of the equilibrium conditions and define a Markov

equilibrium in terms of the wealth distribution and the portfolio share of passive investors.

Investors’ problem. Given the homotheticity of preferences, the value function for investor 𝑗

can be written as

𝑉 𝑗 ,𝑡 =

(
𝑐 𝑗 ,𝑡

𝜌𝜓

) 1−𝛾𝑗
1−𝜓 𝑊

1−𝛾 𝑗

𝑗 ,𝑡

1 − 𝛾 𝑗

,

where 𝑐 𝑗 ,𝑡 is a function of the aggregate state variable 𝑋𝑡 , that is, 𝑐 𝑗 ,𝑡 = 𝑐 𝑗 (𝑋𝑡). The function 𝑐 𝑗 ,𝑡

evolves according to
𝑑𝑐 𝑗 ,𝑡

𝑐 𝑗 ,𝑡
= 𝜇𝑐 𝑗 ,𝑡𝑑𝑡 + 𝜎𝑐 𝑗 ,𝑡𝑑𝑍𝑡 ,

where 𝜇𝑐 𝑗 ,𝑡 and𝜎𝑐 𝑗 ,𝑡 are given by Ito’s lemma. Given the process for 𝑐 𝑗 ,𝑡 , one can solve for investors’

policy functions. In particular, the function 𝑐 𝑗 ,𝑡 corresponds to agent 𝑗’s consumption-wealth ratio:

𝐶 𝑗 ,𝑡

𝑊 𝑗 ,𝑡

= 𝑐 𝑗 ,𝑡 .

We can express the portfolio weight 𝛼 𝑗 ,𝑡 in terms of 𝑐 𝑗 ,𝑡 and asset prices:

𝛼 𝑗 ,𝑡 = min
{

𝜋𝑡

𝛾 𝑗 ∥𝜎𝑅,𝑡 ∥2 + 𝜍 𝑗 ,𝑡 ,
𝜎

∥𝜎𝑅,𝑡 ∥

}
, (15)

where 𝜍 𝑗 ,𝑡 ≡
1−𝛾−1

𝑗

𝜓−1
𝜎𝑐 𝑗 ,𝑡

𝜎′
𝑅,𝑡

∥𝜎𝑅,𝑡 ∥2 is the hedging demand component. The risk exposure of unconstrained

investors is given by the usual myopic and hedging components. The myopic component depends

on the investor’s risk tolerance 1/𝛾 𝑗 , the risk premium 𝜋𝑡 , and return variance ∥𝜎𝑅,𝑡 ∥2. The hedging

demand depends on the correlation of 𝑐 𝑗 ,𝑡 , which affects the investor’s marginal utility of wealth,

and the risky asset. The leverage constraint limits the maximum risk exposure an investor can

achieve at any point in time.
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From the Hamilton-Jacobi-Bellman (HJB) equation, we obtain an expression for 𝑐 𝑗 ,𝑡 :

𝑐 𝑗 ,𝑡 = 𝜓𝜌 + (1 − 𝜓)
[
𝑟𝑡 + 𝜋𝑡𝛼 𝑗 ,𝑡 −

𝛾 𝑗

2
∥𝜎𝑅,𝑡 ∥2𝛼2

𝑗 ,𝑡

]
+ 𝜉 𝑗 ,𝑡 , (16)

where 𝜉 𝑗 ,𝑡 ≡ 𝜇𝑐 𝑗 ,𝑡 + (1 − 𝛾 𝑗 )𝜎𝑐 𝑗 ,𝑡𝜎
′
𝑅,𝑡
𝛼 𝑗 ,𝑡 +

𝜓−𝛾 𝑗

1−𝜓
∥𝜎𝑐 𝑗 ,𝑡

∥2

2 corresponds to a forward-looking shifter of

the consumption-wealth ratio, which depends on the drift and diffusion of 𝑐 𝑗 .

The consumption-wealth ratio depends on current investment opportunities, captured by the

risk-adjusted return 𝑟𝑡 + 𝜋𝑡𝛼 𝑗 ,𝑡 −
𝛾 𝑗

2 𝛼
2
𝑗 ,𝑡
∥𝜎𝑅,𝑡 ∥2, as well as future investment opportunities, captured

by 𝜉 𝑗 ,𝑡 . Note that, as usual, movements in returns have income and substitution effects and the net

response of the consumption-wealth ratio depends on the EIS.

Pricing condition. Let 𝑝𝑡 ≡ 𝑃𝑡/𝑦𝑡 denote the price-dividend ratio for the risky asset. Since the

expected return is given by 𝑟𝑡 + 𝜋𝑡 =
1
𝑝𝑡
+ 𝜇𝑃,𝑡 , the price-dividend ratio satisfies the condition

1
𝑝𝑡

= 𝑟𝑡 + 𝜋𝑡 − (𝜇 + 𝜇𝑝,𝑡 + 𝜎𝜎′
𝑝,𝑡), (17)

where 𝜎𝑅,𝑡 = 𝜎 + 𝜎𝑝,𝑡 , (𝜇𝑝,𝑡 , 𝜎𝑝,𝑡) is given by Ito’s lemma, and we used 𝜇𝑃,𝑡 = 𝜇 + 𝜇𝑝,𝑡 + 𝜎𝜎′
𝑝,𝑡 .

Aggregate state variable. Let 𝑥 𝑗 be the wealth share of type- 𝑗 investors:

𝑥 𝑗 ,𝑡 ≡
𝜔 𝑗𝑊 𝑗 ,𝑡

𝑃𝑡

.

We define the aggregate state variable as 𝑋𝑡 = (𝑥𝑡 , 𝛼𝑝,𝑡), where 𝑥𝑡 ≡
(
𝑥1,𝑡 , 𝑥2,𝑡 , . . . , 𝑥𝐽,𝑡

)
. The law

of motion of 𝛼𝑝,𝑡 is given by (9). From Ito’s lemma, the law of motion of 𝑥 𝑗 ,𝑡 is given by

𝑑𝑥 𝑗 ,𝑡

𝑥 𝑗 ,𝑡

=

(
𝑟𝑡 + 𝜋𝑡𝛼 𝑗 ,𝑡 − 𝑐 𝑗 ,𝑡 − 𝜇 − 𝜇𝑝,𝑡 − 𝜎𝜎′

𝑝,𝑡 + (1 − 𝛼 𝑗 ,𝑡 )∥𝜎𝑅,𝑡 ∥2 + 𝜅
𝜔 𝑗 − 𝑥 𝑗 ,𝑡

𝑥 𝑗 ,𝑡

)
𝑑𝑡 +

(
𝛼 𝑗 ,𝑡 − 1

)
𝜎𝑅,𝑡𝑑𝑍𝑡 .

Risk premium and interest rate. Let J 𝑢
𝑡 ⊆ {1, 2, . . . , 𝐽} and J 𝑐

𝑡 ⊆ {1, 2, . . . , 𝐽} denote the set

of unconstrained and constrained active investors at time 𝑡, respectively. Define the wealth share
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of unconstrained investors as 𝑥𝑢,𝑡 ≡
∑

𝑗∈J𝑢
𝑡
𝑥 𝑗 ,𝑡 , and the wealth share of constrained investors as

𝑥𝑐,𝑡 ≡
∑

𝑗∈J 𝑐
𝑡
𝑥 𝑗 ,𝑡 From the market clearing for the risky asset, we obtain

∑︁
𝑗∈J𝑢

𝑡

𝑥 𝑗 ,𝑡𝛼 𝑗 ,𝑡︸        ︷︷        ︸
active unconstrained

demand

= 1 − 𝑥0,𝑡𝛼𝑝,𝑡 − 𝑥𝑐,𝑡𝛼𝑐,𝑡︸                    ︷︷                    ︸
net supply

, (18)

where 𝛼𝑐,𝑡 ≡ 𝜎
∥𝜎𝑅,𝑡 ∥ is the portfolio share of constrained agents. The expression above is the

analogous in our dynamic setting of Equation (2), as 𝜔 𝑗𝑄 𝑗 ,𝑡 = 𝑥 𝑗 ,𝑡𝛼 𝑗 ,𝑡 . The net supply of risky

assets to unconstrained (or marginal) investors is given by 1 − 𝑥0,𝑡𝛼𝑝,𝑡 − 𝑥𝑐,𝑡𝛼𝑐,𝑡 , that is, the total

supply minus the demand from constrained (or infra-marginal) investors. When all active investors

are unconstrained, we recover the condition from Section 2, Equation (2), where the demand from

active investors must equal the total supply minus the amount held by passive investors.

Combining the expression above with the optimal portfolio of active investors, we obtain an

expression for the risk premium:

𝜋𝑡 =
𝛾𝑢,𝑡 ∥𝜎𝑅,𝑡 ∥2

𝑥𝑢,𝑡

[
1 − 𝑥0,𝑡𝛼𝑝,𝑡 − 𝑥𝑐,𝑡𝛼𝑐,𝑡 − 𝑥𝑢,𝑡𝜍𝑡

]
, (19)

where 𝛾𝑢,𝑡 ≡
[∑

𝑗∈J𝑢
𝑡

𝑥 𝑗 ,𝑡
𝑥𝑢,𝑡

1
𝛾 𝑗

]−1
denotes the average risk aversion and 𝜍𝑡 ≡

∑
𝑗∈J𝑢

𝑡

𝑥 𝑗 ,𝑡
𝑥𝑢,𝑡

𝜍 𝑗 ,𝑡 the average

hedging demand of unconstrained investors.

Equation (19) captures the effect of heterogeneity, passive investment, and leverage constraints

on the risk premium. Keeping everything else constant, an increase in the average risk aversion of

unconstrained agents (higher 𝛾𝑢,𝑡), a reduction in passive investors’ demand (lower 𝛼𝑝,𝑡), a reduction

in the risk bearing capacity of constrained investor (lower 𝛼𝑐,𝑡), or a reduction in hedging demands

(lower 𝜍𝑡) all tend to increase the risk premium.

We can write the market-clearing condition for goods as follows:

𝐽∑︁
𝑗=0

𝑥 𝑗𝑐 𝑗 ,𝑡 =
1
𝑝𝑡
, (20)
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From the equation above and Equation (16), we obtain

𝑟𝑡 = 𝜌 + 𝜓−1𝜇𝑃,𝑡 +
(
1 − 𝜓−1

) 𝐽∑︁
𝑗=0

𝑥 𝑗 ,𝑡
𝛾 𝑗𝛼

2
𝑗 ,𝑡

2
| |𝜎𝑅,𝑡 | |2 − 𝜋𝑡 + 𝜓−1𝜉𝑡 , (21)

where 𝜉𝑡 ≡
∑𝐽

𝑗=0 𝑥 𝑗 ,𝑡𝜉 𝑗 ,𝑡 .

The first two terms of the right-hand side capture the effect of impatience and intertemporal

substitution, the next term capture the effect of uncertainty, while the last term captures the effect

of time-varying investment opportunities. Note that the risk-free interest rate depends on the

risk premium 𝜋𝑡 and the distribution of risk across investors {𝛼 𝑗 }, which will be important when

considering the equilibrium impact of portfolio flows in Section 4.

Endogenous volatility. The exposure of returns to shocks has both an exogenous component and

an endogenous component, 𝜎𝑅,𝑡 = 𝜎+𝜎𝑝,𝑡 . The exogenous component corresponds to the volatility

of cash flows. The endogenous component corresponds to changes in the valuation ratio 𝑝𝑡 . As

dividend growth is iid, movements in the price-dividend ratio are entirely driven by movements in

expected returns. The term 𝜎𝑝,𝑡 is given by Ito’s lemma:

𝜎𝑝,𝑡 =
𝑝𝑥 (𝑋𝑡)
𝑝(𝑋𝑡)

𝜎𝑥,𝑡 +
𝑝𝛼𝑝

(𝑋𝑡)
𝑝(𝑋𝑡)

𝜎𝑝

√︃
𝛼𝑝,𝑡 . (22)

The endogenous volatility then depends on two terms. First, the product of the sensitivity

of the price-dividend ratio to changes in the wealth distribution (given by 𝑥 𝑗 ,𝑡 for 𝑗 = 1, . . . , 𝐽)

and the response of the wealth distribution to shocks, 𝜎𝑥,𝑡 . Second, the product of the sensitivity

of the price-dividend ratio to changes in the passive portfolio and the response of the passive

portfolio to shocks. The first term is standard in heterogeneous-agent models (see e.g., Panageas

2020). The second term is only present in economies with exogenous portfolio-flow shocks, and

it is only quantitatively relevant in economies where the market is sufficiently inelastic, or
𝑝𝛼𝑝 (𝑋𝑡 )
𝑝(𝑋𝑡 )

is sufficiently large. Therefore, Equation (22) provides the link between the aggregate market

elasticity and return volatility ∥𝜎 + 𝜎𝑝,𝑡 ∥.
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Markov equilibrium. Equations (19) and (21) allow us to express 𝜋𝑡 and 𝑟𝑡 as functions of 𝑐 𝑗 ,𝑡 and

𝑝𝑡 and their derivatives, after expressing (𝜇𝑐 𝑗 ,𝑡 , 𝜇𝑝,𝑡) and (𝜎𝑐 𝑗 ,𝑡 , 𝜎𝑝,𝑡) as a function of (𝜇𝑋,𝑡 , 𝜎𝑋,𝑡)

and the derivatives of 𝑐 𝑗 ,𝑡 and 𝑝𝑡 using Ito’s lemma. Plugging the values of 𝜋𝑡 and 𝑟𝑡 into (16)

and (17), and using the expression for the law of motion of the state variables, we obtain a system

of 𝐽 + 2 PDEs involving 𝑐 𝑗 (𝑋𝑡), for 𝑗 = 0, 1, . . . , 𝐽, and 𝑝(𝑋𝑡). These functions depend on 𝐽 + 1

state variables, corresponding to 𝐽 wealth shares, 𝑥 𝑗 ,𝑡 for 𝑗 = 1, 2, . . . , 𝐽, and the portfolio share of

passive investors 𝛼𝑝,𝑡 . We define the Markov equilibrium in state variable 𝑋𝑡 below.

Definition 2. A Markov equilibrium in state variable 𝑋𝑡 =
(
𝑥𝑡 , 𝛼𝑝,𝑡

)
, where 𝑥𝑡 ≡

(
𝑥1,𝑡 , 𝑥2,𝑡 , . . . , 𝑥𝐽,𝑡

)
and law of motion for 𝛼𝑝 is given in (9), is the set of functions: price-dividend ratio 𝑝(𝑋), interest

rate 𝑟 (𝑋), consumption-wealth ratio 𝑐 𝑗 (𝑋), policy functions {𝐶 𝑗 (𝑋), 𝛼 𝑗 (𝑋)}, for 𝑗 ∈ {0, . . . , 𝐽},

and laws of motion for the endogenous state variable 𝜇𝑋 (𝑋) and 𝜎𝑋 (𝑋), such that:

(i) The consumption-wealth ratio 𝑐 𝑗 solves agent 𝑗’s HJB equation (16), and 𝐶 𝑗 and 𝛼 𝑗 are the

corresponding policy functions, taking 𝑝, 𝑟 and laws of motion for 𝑋 as given.

(ii) Markets for the consumption good, the risky asset, and the risk-free bond clear:

𝐽∑︁
𝑗=0

𝑥 𝑗 ,𝑡𝑐 𝑗 ,𝑡 =
1
𝑝𝑡
,

𝐽∑︁
𝑗=0

𝑥 𝑗 ,𝑡𝛼 𝑗 ,𝑡 = 1,
𝐽∑︁
𝑗=0

𝑥 𝑗 ,𝑡 (1 − 𝛼 𝑗 ,𝑡) = 0. (23)

4 The Determinants of the Aggregate Market Elasticity

In this section, we consider the effects of portfolio flows on asset prices. The response of the

price of the risky asset to passive portfolio flows is determined by the (inverse) aggregate market

elasticity. Computing this elasticity requires solving the system of PDEs given by (16) and (17),

which is not available in closed-form. To isolate the economic mechanisms by which different

frictions affect the aggregate market elasticity, we extend the perturbation method used in Silva

(2020) to obtain asymptotic closed-form expression for this elasticity.
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4.1 Perturbation method

We consider a family of economies indexed by the parameter 𝜖 > 0. This parameter simultane-

ously controls the degree of preference heterogeneity, risky asset demand by passive investors, and

the tightness of the leverage constraint that active investors face. The coefficient of relative risk

aversion of investor 𝑗 = 0, . . . , 𝐽 is given by

𝛾 𝑗 = 𝛾(1 + 𝛾̂ 𝑗𝜖), (24)

where
𝐽∑︁
𝑗=0

𝜔 𝑗 𝛾̂ 𝑗 = 0.

Parameter 𝛾 captures the average risk aversion in the economy weighted by population shares, and

𝛾̂ 𝑗 controls the proportional deviation of investor 𝑗’s risk aversion from this weighted average.

When 𝜖 = 0, we have an economy with homogeneous preferences, and when 𝜖 = 1, we have our

economy of interest with heterogeneous investors.

Parameter 𝜖 also affects the portfolio share of passive investors. For simplicity, we abstract

from time-variation in the portfolio of passive investors, that is, we assume throughout this section

that 𝜃𝑝 = 0 and 𝜎𝑝 = 0 in Equation (9). We then assume that 𝑍𝑡 is uni-dimensional and write 𝜎

instead of | |𝜎 | |. The portfolio share of passive investors is given by

𝛼𝑝 = 1 + 𝛼̂𝑝𝜖 . (25)

Note that when 𝜖 = 0, passive investors are fully invested in the risky asset. Parameter 𝛼̂𝑝 controls

the deviations from this benchmark.

To allow for a first-order role of the leverage constraints, we also assume that 𝜎 in Equation (10)

is given by

𝜎 = 𝜎 + 𝜎̂𝜖 . (26)
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This assumption guarantees that the tightness of the leverage constraint will be of the order O(𝜖), the

same order as the demand for leverage in this economy. Finally, to focus on the role of heterogeneity,

passive demand, and leverage constraints, we abstract from the overlapping generations feature,

that is, we set 𝜅 = 0.

By considering a family of economies, the values of endogenous variables depend not only on

the aggregate state variable 𝑋𝑡 but also on the parameter indexing the specific economy, i.e., 𝜖 .

For instance, the price-dividend and the consumption-wealth ratios for investor 𝑗 are now given by

𝑝(𝑋, 𝜖) and 𝑐 𝑗 (𝑋, 𝜖), respectively.

We are interested in a second-order expansion of the equilibrium objects on the parameter 𝜖 :

𝑝(𝑋, 𝜖) = 𝑝0(𝑋) + 𝑝1(𝑋)𝜖 + 𝑝2(𝑋)𝜖2 + O(𝜖3), (27)

𝑐 𝑗 (𝑋, 𝜖) = 𝑐 𝑗 ,0(𝑋) + 𝑐 𝑗 ,1(𝑋)𝜖 + 𝑐 𝑗 ,2(𝑋)𝜖2 + O(𝜖3), (28)

where the 𝑘-th order corrections 𝑝𝑘 (𝑋) and 𝑐 𝑗 ,𝑘 (𝑋), for 𝑘 ∈ {0, 1, 2}, are functions of the state

variable 𝑋 that we need to determine.

Notice that our method is different from the standard perturbation of dynamic stochastic general

equilibrium (DSGE) models in which the function 𝑝(𝑋, 𝜖) is typically linearized in both 𝑋 and 𝜖 .

This standard approach makes the analysis local in both 𝜖 and the distance of 𝑋 to the non-stochastic

steady state. In contrast, we do not assume that the aggregate state is close to the steady state,

which requires us to solve for arbitrary functions of 𝑋 instead of coefficients on a linear or quadratic

approximations in DSGE models.15 Given that our approach provides a global method with respect

to the states, we refer to this procedure as state-global perturbations.16

We proceed by computing the functions
(
𝑝𝑘 (𝑋), 𝑐 𝑗 ,𝑘 (𝑋)

)
, 𝑘 = 0, 1, 2, in three steps. First, we

consider the behavior in the benchmark economy, that is, 𝜖 = 0. We then solve for the first-order

15The linearization of 𝑝 gives 𝑝(𝑋, 𝜖) = 𝑝0 + 𝑝1,𝑋

(
𝑋 − 𝑋

)
+ 𝑝1, 𝜖 𝜖 + O

(
∥𝑋 − 𝑋 ∥2, 𝜖2

)
, where 𝑋 is the non-

stochastic steady state, and the coefficients are independent of 𝑋 . Parameter 𝜖 typically controls the variance of
aggregate shocks in these applications. See Schmitt-Grohé and Uribe (2004) for a discussion of these methods.

16See Kargar, Passadore, and Silva (2020) for an application of the state-global perturbation method to an environ-
ment with endogenous transaction costs.
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and second-order corrections, 𝑝1(𝑋) and 𝑝2(𝑋), respectively.

4.1.1 The benchmark economy

In the absence of preference heterogeneity, and with passive investors fully invested in the risky

asset, the economy effectively behaves as the frictionless Lucas economy with a representative

agent.

Lemma 1 (Benchmark economy). Suppose 𝜌 >
(
1 − 𝜓−1) (

𝜇 − 𝛾𝜎2

2

)
.17 Then, for the 𝜖 = 0

economy,

(i) Investors’ consumption-wealth ratio and risk exposure are given by:

𝑐 𝑗 ,0(𝑋) = 𝜌 −
(
1 − 𝜓−1

) (
𝜇 − 𝛾𝜎2

2

)
, 𝛼 𝑗 ,0(𝑋) = 1, for 𝑗 = 0, 1, . . . , 𝐽.

(ii) Risk premium, risk-free rate, and price-dividend ratio are given by:

𝜋0(𝑋) = 𝛾𝜎2, 𝑟0(𝑋) = 𝜌 + 𝜓−1𝜇 −
(
1 + 𝜓−1

) 𝛾𝜎2

2
, 𝑝0(𝑋) =

1
𝑐 𝑗 ,0(𝑋)

.

Proof. See Appendix C.1.

Lemma 1 shows that there is no time variation in the expected returns in the benchmark economy

in the absence of frictions. In particular, the price-dividend ratio 𝑝0(𝑋) is constant in the benchmark

economy, so the risk premium and interest rate are given by the standard Lucas economy formulae.

4.2 The first-order demand system

We consider next the first-order approximation of the demand system. Investor 𝑗’s demand

for the risky asset is given by 𝑄 𝑗 (𝑋; 𝜖) = 𝛼 𝑗 (𝑋; 𝜖) 𝑥 𝑗
𝜔 𝑗
. Let 𝑞 𝑗 ,𝑡 = log𝑄 𝑗 ,𝑡/𝑄 𝑗 ,0(𝑋𝑡) denote the log

17The condition 𝜌 >
(
1 − 𝜓−1) (

𝜇 − 𝛾𝜎2

2

)
is standard in economies with growth and risk, guaranteeing that investors

achieve finite utility.
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deviation of investor 𝑗’s demand from her demand in the benchmark economy. Up to first order,

we can write 𝑞 𝑗 ,𝑡 as follows:

𝑞 𝑗 ,𝑡 = 𝛼 𝑗 ,1(𝑋𝑡)𝜖 + O(𝜖2), (29)

where 𝛼 𝑗 ,1(𝑋𝑡) is the first-order correction for portfolio weight 𝛼 𝑗 (𝑋; 𝜖). Three observations are

important in computing 𝛼 𝑗 ,1. First, the endogenous volatility is equal to zero up to first order, as

𝜎𝑝,𝑡 is given by

𝜎𝑝,𝑡 =
𝑝𝑥 (𝑋𝑡)
𝑝(𝑋𝑡)

𝜎𝑥 (𝑋𝑡) =
[
𝑝𝑥,1(𝑋𝑡)
𝑝0(𝑋𝑡)

𝜎𝑥,0(𝑋𝑡) +
𝑝𝑥,0(𝑋𝑡)
𝑝0(𝑋𝑡)

𝜎𝑥,1(𝑋𝑡)
]
𝜖 + O(𝜖2) = O(𝜖2), (30)

where 𝑝𝑥,0(𝑋𝑡) = 𝜎𝑥,0(𝑋𝑡) = 0, as shown in Lemma 1. Second, the hedging demand is also second-

order in 𝜖 , 𝜍 𝑗 ,𝑡 = O(𝜖2), as a similar argument shows that 𝜎𝑐 𝑗 (𝑋𝑡) = O(𝜖2). Third, expanding the

pricing condition (17), we obtain the analogous of Equation (1):

𝜋̂𝑡 = −𝑟𝑡 −
1
𝑝∗

𝑝𝑡 + O(𝜖2), (31)

where 𝜋̂𝑡 ≡ 𝜋𝑡 − 𝜋0(𝑋𝑡), 𝑟𝑡 ≡ 𝑟𝑡 − 𝑟0(𝑋𝑡), and 𝑝𝑡 =
𝑝𝑡−𝑝∗
𝑝∗ , using the fact that 𝜇𝑝,𝑡 = O(𝜖2) and

𝑝∗ ≡ 𝑝0(𝑋). As in Section 2, we can use the pricing condition to write the risk premium in terms

of the price-dividend ratio and the interest rate.

Using the three observations above, we can compute the first-order expansion of the portfolio

share in Equation (15) to obtain investor 𝑗’s demand for an unconstrained investor :

𝑞 𝑗 ,𝑡 = −𝜁𝑞
𝑗,𝑝

𝑝𝑡 − 𝜁
𝑞

𝑗,𝑟
𝑟𝑡 + 𝑓 𝑗 ,𝑡 + O(𝜖2), (32)

where

𝜁
𝑞

𝑗,𝑝
≡ 1

𝑝∗
1

𝛾𝜎2 , 𝜁
𝑞

𝑗,𝑟
≡ 1

𝛾𝜎2 , 𝑓 𝑗 ,𝑡 ≡ −𝛾̂ 𝑗𝜖 .

A similar equation holds for a constrained investor, but in this case 𝜁
𝑞

𝑗,𝑝
= 𝜁

𝑞

𝑗,𝑟
= 0 and 𝑓 𝑗 ,𝑡 =

𝜎̂
∥𝜎∥ 𝜖 .

The demand from passive investors also takes the form above, with 𝜁
𝑞

0,𝑝 = 𝜁
𝑞

0,𝑟 = 0, and 𝑓0,𝑡 = 𝛼̂𝑝𝜖 .
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The demand for the risky asset for unconstrained agents is analogous to the active demand

in Section 2. However, we can now relate the elasticities to the underlying parameters. The

price elasticity 𝜁
𝑞

𝑗,𝑝
is given by 1/𝑝∗

𝛾𝜎2 , the ratio of the dividend yield and the risk premium in the

benchmark economy, while the cross price-elasticity 𝜁
𝑞

𝑗,𝑟
is given by the inverse of the risk premium.

Importantly, the cross price-elasticity is non-zero for unconstrained investors. As shown above,

the direct and cross price elasticities are equal to zero for a constrained investor. Finally, even

if 𝑟𝑡 = 𝜋̂𝑡 = 0, investors’ demand would deviate from the one in the benchmark economy due to

differences in risk aversion, the leverage limit, or the passive portfolio. These effects are captured

by the demand shifters 𝑓 𝑗 ,𝑡 .

We can proceed in an analogous way to compute the first-order expansion of the consumption-

wealth ratio in Equation (16):

𝑐 𝑗 ,𝑡 = 𝜓𝜌 + (1 − 𝜓)
[
𝑟𝑡 + 𝜋𝑡 −

𝛾 𝑗𝜎
2

2

]
+ O(𝜖2), (33)

where we used the fact that 𝜉𝑡 = O(𝜖2). In line with Assumption 1, both the risk-free rate and

risk premium have a similar first-order impact on the consumption-wealth ratio. Using the pricing

condition, we can write 𝑐 𝑗 ,𝑡 ≡ 𝑐 𝑗 ,𝑡 − 𝑐 𝑗 ,0(𝑋𝑡) in terms of 𝑝𝑡 and a shifter:

𝑐 𝑗 ,𝑡 = 𝜁 𝑐𝑗 ,𝑝𝑝𝑡 + 𝜁 𝑐𝑗 ,0, (34)

where 𝜁 𝑐
𝑗 ,𝑝

≡ (𝜓 − 1) 1
𝑝∗ and 𝜁 𝑐

𝑗 ,0 ≡ (𝜓 − 1) 𝛾𝜎
2

2 𝛾̂ 𝑗𝜖 . Notice that the consumption-wealth ratio does

not depend on 𝑟𝑡 given 𝑝𝑡 , as in Section 2. The consumption-wealth ratio can be either increasing or

decreasing in 𝑝𝑡 . The case depicted in Figure 2, where the consumption-wealth ratio is increasing

in 𝑝𝑡 , corresponds to 𝜓 > 1, a common assumption in macro-finance models (see e.g. Bansal and

Yaron 2004). Another important property is that the consumption-wealth ratio is independent of

𝛼𝑝,𝑡 , which has implications for the determination of the market elasticity.
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4.2.1 Aggregate market elasticity in frictionless economies

Given the demand system, we can solve for the equilibrium prices. The market clearing

conditions for the risky asset and for goods can be written as

𝐽∑︁
𝑗=0

𝑥 𝑗𝑞 𝑗 ,𝑡 = 0,
𝐽∑︁
𝑗=0

𝑥 𝑗𝑐 𝑗 ,𝑡 = − 1
𝑝∗

𝑝𝑡 ,

Aggregating the demand for the risky asset and the consumption-wealth ratio, we obtain


𝜁
𝑞
𝑝 𝜁

𝑞
𝑟

𝜁 𝑐𝑝 + 1
𝑝∗ 0



𝑝𝑡

𝑟𝑡

 =


𝑓𝑡

−𝜁 𝑐0

 ,
where 𝜁

𝑞

𝑘
≡ ∑𝐽

𝑗=0 𝑥 𝑗 𝜁
𝑞

𝑗,𝑘
, for 𝑘 ∈ {𝑝, 𝑟}, 𝜁 𝑐

𝑘
≡ ∑𝐽

𝑗=0 𝑥 𝑗 𝜁
𝑐
𝑗 ,𝑘

, for 𝑘 ∈ {𝑝, 0}, and 𝑓𝑡 ≡
∑𝐽

𝑗=0 𝑥 𝑗 𝑓 𝑗 ,𝑡 .

Solving the system above, we obtain asset prices in this economy:

𝑝𝑡 = −
𝜁 𝑐0

𝜁 𝑐𝑝 + 1
𝑝∗
, 𝑟𝑡 =

𝑓𝑡

𝜁
𝑞
𝑟

+
𝜁
𝑞
𝑝

𝜁
𝑞
𝑟

(
𝜁 𝑐𝑝 + 1

𝑝∗

) 𝜁 𝑐0 .
The aggregate market elasticity, 𝜖𝑀,𝑡 , is defined as the inverse of the proportional change in the

price of the risky asset in response to a portfolio flow shock 𝑓𝑡 :

𝜖−1
𝑀,𝑡 =

(
𝜕𝑝𝑡

𝜕 𝑓𝑡

)−1
.

As 𝑝𝑡 is independent of the portfolio flow shock 𝑓𝑡 , the inverse elasticity is equal to zero up to

first order:

𝜖−1
𝑀,𝑡 = 0. (35)

This result echoes the findings in Section 2 which showed how the aggregate elasticity could be

infinite in the context of a two-period economy. We obtain the same result now in the context of

our dynamic economy using a first-order approximation.

27



Interpretation: market elasticity in a frictionless economy. Why is the market infinitely elastic?

The fact that we are considering a first-order approximation is relevant. The elasticity we obtain

coincides with the one in an economy without preference heterogeneity or leverage constraints,

and passive investors are initially fully invested in the risky asset. Therefore, we can interpret 𝜖𝑀,𝑡

as capturing the effect of a small deviation from a Lucas economy. In this effectively frictionless

environment, portfolio flows have opposing effects on interest rates and risk premium, leaving the

price of the risky asset unchanged, as shown in the next proposition.

Proposition 2 (First-order impact of portfolio flows). Suppose 𝜌 >
(
1 − 𝜓−1) (

𝜇 − 𝛾𝜎2

2

)
. Then,

(i) The price-dividend ratio is given by

𝑝(𝑋) = −(1 − 𝜓−1)𝑝∗ 𝛾𝜎
2

2

𝐽∑︁
𝑗=0

𝑥 𝑗 𝛾̂ 𝑗𝜖 + O(𝜖2).

(ii) The interest rate and the risk premium are given by

𝜋̂(𝑋) = 𝛾𝜎2

∑︁
𝑗∈J𝑢

𝑥 𝑗

𝑥𝑢
𝛾̂ 𝑗 −

𝛼̂𝑝𝑥0 + 𝜎̂
𝜎
𝑥𝑐

1 − 𝑥0 − 𝑥𝑐

 𝜖 + O(𝜖2),

𝑟 (𝑋) = 𝛾𝜎2
−

∑︁
𝑗∈J𝑢

𝑥 𝑗

𝑥𝑢
𝛾̂ 𝑗 +

𝛼̂𝑝𝑥0 + 𝜎̂
𝜎
𝑥𝑐

1 − 𝑥0 − 𝑥𝑐
+

(
1 − 𝜓−1

) 𝐽∑︁
𝑗=0

𝑥 𝑗 ,𝑡
𝛾̂ 𝑗

2

 𝜖 + O(𝜖2),

where 𝑥𝑢,𝑡 ≡
∑

𝑗∈J𝑢
𝑡
𝑥 𝑗 ,𝑡 and 𝑥𝑐,𝑡 ≡

∑
𝑗∈J 𝑐

𝑡
𝑥 𝑗 ,𝑡 are the wealth shares of unconstrained and

constrained active investors, respectively, and J 𝑢 and J 𝑐 denote, respectively, the set of

unconstrained and constrained active investors, defined in Section 3.2.

Proposition 2 shows that if passive investors reduce their position in the risky asset, this raises

the risk premium and reduces the interest rate by the same amount. The intuition is analogous to

the case shown in Figure 2. The risk premium increases to induce active investors to hold more of

the risky asset, while the interest rate adjusts to ensure the price-dividend ratio is consistent with

equilibrium in the goods market.
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4.3 The second-order demand system

Proposition 2 shows that the market is infinitely elastic up to first order. However, a first-order

approximation is unable to capture how different frictions interact. For this reason, we consider

next a second-order approximation of the demand system. To isolate the role of each friction,

we consider first the case without preference heterogeneity or leverage constraints, we then add

preference heterogeneity, and finally consider the case with heterogeneity and leverage constraints.

4.3.1 Inefficient passive demand

Suppose the risk aversion is the same for all investors and they are not subject to a leverage

constraint. We focus on how the initial portfolio of passive investors, 𝛼𝑝, affects the aggregate

market elasticity. In particular, whether the portfolio of passive investors deviates from its optimal

level plays an important role.

The role of risk misallocation. In the absence of heterogeneity and leverage constraints, the

demand for the risky asset under a second-order approximation takes the form in Equation (32), as

shown in the appendix. In contrast, the consumption-wealth ratio is now given by

𝑐 𝑗 ,𝑡 = 𝜓𝜌 + (1 − 𝜓)
[
𝑟𝑡 + 𝜋𝑡𝛼 𝑗 ,𝑡 −

𝛾𝜎2

2
𝛼2
𝑗 ,𝑡

]
+ O(𝜖3), (36)

where 𝛼0,𝑡 = 𝛼𝑝 and 𝛼 𝑗 ,𝑡 =
1−𝑥0,𝑡𝛼𝑝

1−𝑥0,𝑡
for 𝑗 = 1, . . . , 𝐽. Aggregating across investors, and using the

market clearing condition
∑𝐽

𝑗=0 𝑥 𝑗𝛼 𝑗 ,𝑡 = 1, we obtain

𝑐𝑡 = 𝜓𝜌 + (1 − 𝜓)
𝑟𝑡 + 𝜋𝑡 −

𝛾𝜎2

2

𝐽∑︁
𝑗=0

𝑥 𝑗𝛼
2
𝑗 ,𝑡

 + O(𝜖3). (37)

The average consumption-wealth ratio now depends on the distribution of the risky asset in the

economy. Under the optimal allocation, the portfolio share is equal to one, 𝛼 𝑗 ,𝑡 = 1, for all investors,

so
∑𝐽

𝑗=0 𝑥 𝑗𝛼
2
𝑗 ,𝑡

= 1. Any deviation of the optimal allocation creates dispersion in portfolios, so
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Figure 3. Consumption-wealth ratio when risk is nearly perfectly allocated

∑𝐽
𝑗=0 𝑥 𝑗𝛼

2
𝑗 ,𝑡

> 1, which reduces the risk-adjusted expected return 𝑟𝑡 +𝜋𝑡 − 𝛾𝜎2

2
∑𝐽

𝑗=0 𝑥 𝑗𝛼
2
𝑗 ,𝑡

. If 𝜓 > 1,

the reduction in risk-adjusted returns weakens investors incentive to save, for any given level of

𝑟𝑡 + 𝜋𝑡 . Therefore, the consumption-wealth ratio depends on how risk is allocated in the economy.

Figure 3 illustrates how an increase in risk misallocation affects the equilibrium in the goods

market. The left panel represents the risk-adjusted excess return, 𝜋𝑡𝛼 𝑗 ,𝑡 − 𝛾𝜎2

2 𝛼2
𝑗 ,𝑡

, as a function

of the portfolio share 𝛼 𝑗 ,𝑡 . Suppose that the passive investor has initially a portfolio share that is

less than one and then decides to further reduce its holding of the risky asset, as represented by the

yellow dot in the figure. Even if the risk premium is constant, the risk-adjusted return is reduced,

as the investor moves away from the optimal holding of the risky asset. The portfolio share of the

active investors also moves away from the optimal, as represented by the brown dot in the figure, so

the risk-adjusted return is reduced for them as well. Therefore, both agents have a weaker incentive

to save, which leads to a shift in the average consumption-wealth ratio, as shown in the right panel.

The magnitude of the shift in the average consumption-wealth ratio depends on the initial

distribution of risk. This point can be seen more clearly by writing the average consumption-wealth

in terms of deviations from its value in the benchmark economy:

𝑐𝑡 = 𝜁 𝑐𝑝𝑝𝑡 + 𝜁 𝑐0 , (38)

where 𝜁 𝑐0 = (𝜓 − 1) 𝛾𝜎
2

2
∑𝐽

𝑗=0 𝑥 𝑗 (𝛼 𝑗 ,𝑡 − 1)2. Notice that 𝜁 𝑐0 is a function of 𝛼𝑝 and the derivative of
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Figure 4. Consumption-wealth ratio when risk is highly misallocated

𝜁 𝑐0 with respect to 𝛼𝑝 is given by

𝜕𝜁 𝑐0
𝜕𝛼𝑝

����
𝛼𝑝=1

= (𝜓 − 1)𝛾𝜎2
𝐽∑︁
𝑗=0

𝑥 𝑗 (𝛼 𝑗 ,𝑡 − 1)
𝜕𝛼 𝑗 ,𝑡

𝜕𝛼𝑝

������
𝛼𝑝=1

= 0. (39)

If the passive investor initially holds the optimal portfolio, then a small change in 𝛼𝑝 has no

impact in the consumption-wealth ratio. This corresponds to the frictionless benchmark, which is

analogous to the result under the first-order approximation. However, if the initial allocation of risk

is not optimal, changes in 𝛼𝑝 affect the consumption-wealth ratio. Moreover, the effect is stronger

the further the initial allocation is from the optimal. This point is illustrated in Figure 4. The initial

allocation is now further away from the optimal relative to the case in Figure 3, which leads to a

larger decline in the risk-adjusted returns, as shown in the left panel. In this case, we see a larger

shift in the average consumption-wealth curve in the right panel.

The market elasticity with inefficient passive demand. The equilibrium value for asset prices

takes the same shape as in the case of the first-order approximation:

𝑝𝑡 = −
𝜁 𝑐0

𝜁 𝑐𝑝 + 1
𝑝∗
, 𝑟𝑡 =

𝑓𝑡

𝜁
𝑞
𝑟

+
𝜁
𝑞
𝑝

𝜁
𝑞
𝑟

(
𝜁 𝑐𝑝 + 1

𝑝∗

) 𝜁 𝑐0 .
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Figure 5. Price impact: inefficient passive demand.

As before, the price of the risky asset is independent of the (micro) price elasticity 𝜁
𝑞
𝑝 . However,

while the shifter 𝜁 𝑐0 was independent of 𝛼𝑝 under a first-order approximation, this is not the case

now, as 𝜁 𝑐0 is a function of 𝛼𝑝. The next proposition derives the aggregate market elasticity in this

case.

Proposition 3 (Aggregate elasticity: inefficient passive demand). Suppose 𝜌 >(
1 − 𝜓−1) (

𝜇 − 𝛾𝜎2

2

)
. If there is no preference heterogeneity and active investors do not face

leverage constraints, the inverse aggregate market elasticity, 1/𝜀𝑀 , is given by:

𝜀−1
𝑀 =

(
1 − 𝜓−1

) 𝛾𝜎2

𝑦0(𝑋)
1 − 𝛼𝑝

𝑥𝑎
+ O

(
𝜖2

)
, (40)

where 𝑥𝑎 ≡ 1 − 𝑥0 denotes the wealth share of active investors and 𝑦0(𝑥) = 1/𝑝0(𝑋).

Proof. See Appendix D.1.

We highlight several points from Proposition 3. First, the price impact is equal to zero if 𝛼𝑝,

that is, the market is infinitely elastic when risk is initially optimally allocated. Second, the price

impact is also zero if the EIS is equal to one. In this case, the consumption-wealth ratio is constant

and 𝜁 𝑐0 = 0, so 𝛼𝑝 does not affect investors’ incentive to save. Third, the market elasticity is positive
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if 𝜓 > 1 and 𝛼𝑝 < 1, so passive investors hold an inefficiently low share of the risky asset. This

result is consistent with the discussion in Section 2, which shows that we obtain a finite elasticity

when movements in the passive portfolio share shifts not only the net supply of risk to active

investors, but also the consumption-wealth ratio. As discussed above, risk misallocation provides a

mechanism linking changes in 𝛼𝑝 to shifts in the consumption-wealth ratio. Moreover, everything

else constant, the price impact is largest in the case of no market participation by passive investors

(𝛼𝑝,𝑡 = 0), as in e.g. Basak and Cuoco (1998), given that this corresponds to the maximum level of

misallocation (given 𝛼𝑝 ≥ 0). Fourth, the elasticity is state-dependent and the price impact is larger

when active investors are under-capitalized, that is, they hold a relatively small share of wealth.

Figure 5 illustrate these points. We can see that the price impact is equal to zero when 𝛼𝑝 = 1, it is

positive when 𝛼𝑝 < 1, it is decreasing in wealth share of active investors 𝑥𝑎, and it is largest when

𝛼𝑝 = 0 for any given level of 𝑥𝑎.

4.4 Preference heterogeneity

We consider next the case where investors have heterogeneous preferences, but they are no

subject to leverage constraints. Proposition 4 derives the aggregate market elasticity for this case.

Proposition 4 (Aggregate elasticity: preference heterogeneity). Suppose 𝜌 >
(
1 − 𝜓−1) (

𝜇 − 𝛾𝜎2

2

)
.

If active investors have heterogeneous risk aversions but face no leverage constraints, the inverse

aggregate market elasticity, 1/𝜀𝑀 , is given by:

𝜀−1
𝑀 =

(
1 − 𝜓−1

) 𝛾𝜎2

𝑦0(𝑋)

[1 − 𝛼𝑝

𝑥𝑎
−
𝛾0 − E𝑢 [𝛾 𝑗 ]

𝛾

]
+ O

(
𝜖2

)
, (41)

where E𝑢 [𝛾 𝑗 ] ≡
∑

𝑗∈J𝑢
𝑥 𝑗
𝑥𝑢
𝛾 𝑗 .

Proof. See Appendix D.2.

Several points are worth emphasizing. First, note that with heterogeneous active investors even

in the case in which 𝛼𝑝 = 1, the aggregate elasticity is finite. As we show later in the next section,

this effect is due to impact of flows on the risk-free rate.
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Second, assuming that the passive agents are more risk-averse than active investors, that is 𝛾0 ≥

E𝑢 [𝛾 𝑗 ], with 𝜓 > 1, introducing preference heterogeneity attenuates the price response to flows,

leading to more elastic markets relative to the economy without heterogeneity in Proposition 3.

This result is due to risk misallocation, as passive investors are effectively closer to their optimal

portfolio when 𝛾0 > E𝑢 [𝛾 𝑗 ], for a given initial value 𝛼𝑝 < 1. To see this point, let’s compute the

optimal portfolio share that investor 𝑗 = 0 would choose if she was an active investor:

𝛼
𝑜𝑝𝑡𝑖𝑚𝑎𝑙
𝑝 = 1 − 𝑥𝑎

[
𝛾0 − E𝑎 [𝛾 𝑗 ]

𝛾

]
, (42)

If type 𝑗 = 0 investors have high risk aversion, then it is optimal for them to invest less than 100%

in the risky asset. In this case, 𝛼𝑝 < 1 is not an indication of risk misallocation, but it reflects the

optimal risk sharing among investors. It turns out that the elasticity will be positive if 𝛼𝑝 < 𝛼
𝑜𝑝𝑡𝑖𝑚𝑎𝑙
𝑝 :

𝜀−1
𝑀 =

(
1 − 𝜓−1

) 𝛾𝜎2

𝑦0(𝑋)
𝛼
𝑜𝑝𝑡𝑖𝑚𝑎𝑙
𝑝,𝑡 − 𝛼𝑝

𝑥𝑎
+ O

(
𝜖2

)
. (43)

This shows that risk misallocation is again the key ingredient necessary to obtain a finite elasticity.

Notice that a reduction in the wealth share of active investors raises the price impact by more in the

presence of heterogeneous preferences, everything else constant. The reason is that a reduction in

𝑥𝑎 now raises the optimal portfolio share of passive investors. Optimal risk sharing implies they

should hold more of the risky asset when 𝑥𝑎 is low, which is typically after a negative aggregate

shock. For a given level of 𝛼𝑝, this implies that there is more risk misallocation when 𝑥𝑎 is low,

that is, 𝛼𝑝 is further away from the optimal.

Finally, from Equation (41), we see that the price impact of flows depends not only on the

wealth share of active investors 𝑥𝑎 as before, but also on the wealth distribution among active

investors through E𝑢 [𝛾 𝑗 ]. This results reiterates the importance of heterogeneity among financial

intermediaries that active investors in our model represent (e.g., Veronesi, 2019; Kargar, 2021).

In Figure 6, we plot inverse aggregate elasticity for the case with one passive and two active

investors (𝐽 = 3) with 𝛾0 ≥ 𝛾1 > 𝛾2. In this economy, the two key state variables are the wealth
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Figure 6. Price impact: passive demand and preference heterogeneity.

share of active investors, 𝑥𝑎, and the wealth share the most risk-tolerant active investor (agent 2)

among active investors, 𝑤:

𝑥𝑎 = 1 − 𝑥0, 𝑤 =
𝑥2
𝑥𝑎

. (44)

From Figure 6, we see that as the active investors become less capitalized and 𝑥𝑎 declines, market

become more inelastic. Moreover, as less risk averse active investors become less capitalized and

𝑤 goes down, we see a larger price impact from passive flows.

4.5 Leverage constraints

We consider next the case where investors have heterogeneous preferences and they are subject to

leverage constraints. In Proposition 5, we derive the aggregate market elasticity when heterogeneous

active investors also face leverage constraints.

Proposition 5 (Aggregate elasticity: leverage constraints). Suppose 𝜌 >
(
1 − 𝜓−1) (

𝜇 − 𝛾𝜎2

2

)
.

When active investors have heterogeneous preferences and also face leverage constraints in (10),

the inverse aggregate market elasticity, 1/𝜀𝑀 , is given by:

𝜀−1
𝑀 =

(
1 − 𝜓−1

) 𝛾𝜎2

𝑦0(𝑋)

[
(1 − 𝑥𝑐) (1 − 𝛼𝑝)

𝑥𝑢
−
𝛾0 − E𝑢 [𝛾 𝑗 ]

𝛾
−
𝑥𝑐 ( 𝜎𝜎 − 1)

𝑥𝑢

]
+ O

(
𝜖2

)
. (45)
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Figure 7. Price impact: leverage constraints.

Proof. See Appendix D.3.

We highlight several points from Proposition 5. First, note than when all active agents are

unconstrained, i.e., 𝑥𝑐 = 0, we get the price impact from Proposition 4. Similar to the case with

heterogeneous investors, the aggregate elasticity is finite when 𝛼𝑝 = 1.

As in the previous two cases, risk misallocation plays an important role. The optimal portfolio

share of type 𝑗 = 0 investors, i.e. the portfolio they would choose if they were active, is given by

𝛼
𝑜𝑝𝑡𝑖𝑚𝑎𝑙
𝑝,𝑡 = 1 − 𝑥𝑢

1 − 𝑥𝑐

𝛾0 − E𝑢 [𝛾 𝑗 ]
𝛾

−
𝑥𝑐 ( 𝜎

∥𝜎∥ − 1)
1 − 𝑥𝑐

. (46)

Plugging the formula for the optimal portfolio share in the expression for the aggregate market

elasticity, we obtain

𝜀−1
𝑀 =

(
1 − 𝜓−1

) 𝛾𝜎2

𝑦0(𝑋)
𝛼
𝑜𝑝𝑡𝑖𝑚𝑎𝑙
𝑝,𝑡 − 𝛼𝑝

𝑥𝑎
(1 − 𝑥𝑐) + O

(
𝜖2

)
. (47)

As before, the market elasticity is finite and positive when 𝛼𝑝 is below its optimal level. The

optimal portfolio now depends on the average risk aversion of unconstrained agents, the leverage

constraint, and the entire distribution among active investors. Figure 8 illustrates the behavior of

the market elasticity in the presence of leverage constraints. The left panel shows the price impact

36



0.0 0.1 0.2 0.3 0.4 0.5

1.2

1.4

1.6

1.8

2.0

w = x2/xa

ε−
1

M
Price Impact

passive demand
pref. heterog.
leverage const.

0.0 0.1 0.2 0.3 0.4 0.5
0.0

2.5

5.0

7.5

10.0

12.5

xa

ε−
1

M

Price Impact

passive demand
pref. heterog.
leverage const.

Figure 8. Decomposition of the inverse aggregate market elasticity.

for different values of 𝑤 = 𝑥2/𝑥𝑎, that is, the share of wealth of the low risk aversion investor among

active investors. The right panel shows the inverse elasticity as a function of the wealth share of

active investors.

5 Quantitative Implications

In this section, we consider the quantitative implications of the model described in Section 3.

5.1 Calibration strategy

Sectors. We process raw flow of funds (FOF) data to arrive at 𝐽 = 6 major sectors: household

mutual fund holdings, households non-mutual fund holdings, hedge funds, broker-dealers (L130),

rest of the world (L133), and hedge funds.

To visualize the size of these ultimate sectors, Figure 9 plots the fraction of the U.S. stock

market held by each sector from 2012 when hedge fund holdings became available. Figure 9’s

legend reports the average fraction held by each sector. The largest holder is the household sector

which holds 17.3% via mutual funds and 43.3% through other means. The net largest sectors

are foreign investors (“rest of the world”) and pension/insurance sectors which hold 17.5% and

17.3%, respectively. Hedge funds and broker-dealers are relatively small and hold 5.8% and 0.5%,
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Figure 9. Fraction of stock market holding by sectors from 2012 to 2022. The average fraction held is
reported in the legend. Source: Flow of Funds.

respectively, consistent with Figure 1 in Koĳen, Richmond, and Yogo (2024).

We first drop sectors that have no or minimal investments in the stock market. This includes

nonfinancial business (L102), general government (L105), monetary authority (L109), Private

depository institutions (L110), money market funds (L121), Government-sponsored enterprises

(L125), Agency-and GSE-backed mortgage pools (L126), and Issuers of asset-backed securities

(L127), Finance companies (L128), Real estate investment trusts (L129), Holding companies

(L131), and Other financial business (L132). We then aggregate sectors that invest in the stock

market but are pass-throughs onto the end users’ balance sheets.

Mutual funds (L122), Closed-end funds (L123), and Exchange-traded funds (L124): we aggre-

gate L123 and L124 onto the household (L101) balance sheet. For mutual fund holdings (L122),

FOF provides a detailed breakdown of end investors. We aggregate the non-household holdings

onto the respective end investor balance sheets but separately consider the household holdings as a

separate sector. We aggregate all defined contribution pensions (Tables L118c, L119c, and L120c)

onto household balance sheet.

We then separate out the hedge fund sector. Both the household (L101) and foreign (L133)

sectors contain hedge funds. Because hedge funds likely behave differently from other sectors, we
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separate them out. We use Table B.101.f to capture domestic hedge funds and use the hedge fund

table in enhanced financial accounts to also capture foreign hedge funds. We consider all hedge

funds a single sector, and we subtract their holdings from the household and foreign sectors. Finally,

we aggregate together all remaining insurance and pension sectors. This includes property-casualty

insurance (L115), life insurance (L116), and defined benefit pension and retirement plans (L118b,

L119b, L120b).

Mass of investors and risk aversion coefficients. We choose 𝜔 𝑗 and 𝛾 𝑗 for each sector 𝑗 to

match the following moments:

• 1
𝑇

∑
𝑡

𝐴𝑠𝑠𝑒𝑡𝑠 𝑗 ,𝑡∑
𝑖 𝐴𝑠𝑠𝑒𝑡𝑠𝑖,𝑡

, which corresponds to 1
𝑇

∑
𝑡 𝜔 𝑗𝑊 𝑗 ,𝑡∑

𝑡

∑
𝑖 𝜔𝑖𝑊𝑖,𝑡

in the model

• {𝑏 𝑗 } 𝑗 from time-series regressions of

Risky Asset 𝑗 ,𝑡 = 𝑎 𝑗 + 𝑏 𝑗

(∑︁
𝑗

Risky Asset𝑖,𝑡

)
,

which corresponds in the model to the regression coefficient in the following regression in

the model:

𝜔 𝑗𝑊 𝑗 ,𝑡𝛼 𝑗 ,𝑡 = 𝑎 𝑗 + 𝑏 𝑗

∑︁
𝑖

𝜔𝑖𝑊𝑖,𝑡𝛼𝑖,𝑡

• Only for active sectors ( 𝑗 = 1, 2, . . . , 𝐽)

Average passive Share 𝜶. There seems to be a big range in the literature from a third to over two

thirds:

• Chinco and Sammon (2024) find passive share of 33%: Each time that a stock gets added to

or dropped from an index they ask: “How much money would have to be tracking that index

to explain the enormous burst in closing volume on reconstitution day that we observe in the

data?”
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• Koĳen et al. (2024) find a much larger passive share of 67.2% in 2016Q4. They use the

active share, modified for their application, as a measure of active investment management

(Cremers and Petajisto, 2009).

We need to find the total passive wealth and divide to get portfolio share.

Calibrating the Passive Demand Process. Type 𝑗 = 0 investors are passive, and their portfolio

weight follows and exogenous CIR process in Equation (9), reproduced below:

𝑑𝛼𝑝,𝑡 = 𝜃𝑝 (𝛼 − 𝛼𝑝,𝑡)𝑑𝑡 + 𝜎𝑝

√︃
𝛼𝑝,𝑡 𝑑𝑍𝑡 ,

1. Average passive demand (𝛼):

• Calibrating the average risky asset share of the passive sector is discussed above.

2. Volatility of the passive demand (𝜎𝑝)

• Following Appendix D3 of Gabaix and Koĳen (2020), to measure equity flows, we

scale the dollar equity flows for each sector 𝑗 , Δ𝐹𝜀
𝑗,𝑡

, by the size of the aggregate market

in the previous quarter, 𝜀𝑡−1 i.e., Δ𝐹𝜀
𝑗,𝑡
/𝜀𝑡−1.

• We use indirect inference by matching total flows (the blue line in the left panel of

Figure 1). This is our attempt to replicate the red dashed line in Figure D.7 in Gabaix

and Koĳen (2020).

3. Persistence of passive demand (𝜃𝑝)

• We follow the literature on household portfolio inertia. Brunnermeier and Nagel (2008),

using PSID data, document substantial inertia in households’ portfolios, with very

limited or slow rebalancing. This implies that portfolio shares would move with shocks

to returns, consistent with the exposure of 𝛼𝑝 to aggregate shocks.

40



• Brunnermeier and Nagel (2008) “use the information on net purchases or sales of risky

assets to construct a variable Δ𝑘 Inert𝑡 , representing the (counterfactual) change in the

liquid risky asset share that the household would have experienced between 𝑡 − 𝑘 and

𝑡 under perfect inertia—that is, if it had not undertaken any purchases or sales of

risky assets between 𝑡 − 𝑘 and 𝑡.” They regress household portfolio weight on inertia

(Δ𝑘 Inert𝑡), and 𝑘-period difference in post consumption wealth and major changes in

family composition or asset ownership. They find the coefficient on the inertia variable

is large, around 0.75, with small standard errors. Taken at face value, it suggests that

there is huge inertia. Households’ asset allocations seem to fluctuate strongly as a

function of in- and outflows, and capital gains and losses, without much rebalancing

taking place.

• Similarly, Parker et al. (2023) show that the introduction of target-date funds has led

to a relatively stable portfolio share, consistent with the evidence in Brunnermeier and

Nagel (2008).

4. Correlation between flow shocks, i.e., innovations in 𝛼𝑝, and the aggregate shock

• We regress quarterly flows, the blue line in the left panel of Figure 1, on the market.

The beta coefficient can be used to indirectly get the correlation between flow shocks

and aggregate socks.

Table 1 lists the parameter values used in calibrating the model.

5.2 Quantitative results

Numerical solution. To assess the model’s quantitative implications, we rely on a global solution

method instead of the perturbation approach described in Section 4. A method able to handle

dimensional state spaces is necessary, as we have a total of 𝐽 + 1 state variables, and a total of 𝐽 = 6

active sectors. We adopt the neural-networks based method of Duarte, Duarte, and Silva (2024).

We discuss the solution method in more detail in the appendix.
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Table 1. Parameter values
This table reports the parameter values used in calibrating the model.

Parameter Choice

Preferences & distribution

𝜓 EIS 1.5
𝛾0 Risk aversion of passive investors 10
𝛾 𝑗 Risk aversion of active investors (9.368, 4.925, 3.212, 1.552)
𝜌 Rate of time preference 0.01

Technology

𝜇 Endowment growth rate 0.022
𝜎 Endowment volatility 0.035

Passive demand

𝛼 Mean 0.25
𝜃𝑝 Mean reversion parameter 0.9

Leverage constraints

𝜎 Tightness of the leverage constraint 0.05

Figure 10 plots the consumption-wealth ratio, dividend yield, interest rate, and price of risk as

a function of the wealth share of active agents.

Figure 11 displays the price impact in the left panel and the aggregate elasticity (i.e., its inverse)

in the right panel. We see that the price impact is comparable with the solution obtained using the

global perturbation method in Section 4.

6 Conclusion

This paper provides an analysis of the determinants of aggregate market elasticity in a gen-

eral equilibrium framework with rich investor heterogeneity, passive investment, and financial

constraints. Our analysis yields several important insights about market inelasticity and its impli-

cations for asset prices and market volatility.

A central finding of our work is the crucial role of cross-price elasticity–the sensitivity of

demand for risky assets to changes in interest rates. When cross-elasticity is zero, aggregate market

elasticity is simply an average of individual investors’ price elasticities, consistent with partial

equilibrium intuition. However, with non-zero cross-elasticity, the market can be infinitely elastic
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Figure 10. Model results. This figure plots the consumption-wealth ratio, dividend yield, interest rate, and
price of risk as a function of the wealth share of active agents.

even when individual investors are highly inelastic, as changes in interest rates offset movements in

risk premia. This highlights how general equilibrium effects fundamentally alter the relationship

between individual and aggregate elasticities.

We show that beyond cross-elasticity effects, the key determinant of market elasticity is how

risk is allocated in the economy. When passive investors hold an efficient share of risky assets, the

market remains infinitely elastic regardless of individual investor preferences. However, when risk

is misallocated, portfolio flows have meaningful price impacts.

Our model demonstrates that market elasticity is both state-dependent and time-varying, influ-

enced by the distribution of wealth between active and passive investors as well as the allocation

of wealth among active investors themselves. While passive investment and leverage constraints

amplify the price impact of flows, preference heterogeneity can make markets more elastic by

improving risk allocation. These findings highlight that market inelasticity serves as an indicator

of underlying inefficiencies in risk allocation rather than a fundamental feature of markets.
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Figure 11. Price impact and aggregate elasticity.
The left panel plots the price impact and the right panel plots the aggregate elasticity.

The framework developed here helps explain several empirical patterns, including the counter-

cyclical nature of the volatility multiplier and the relationship between passive investment growth

and market dynamics. It also provides a foundation for analyzing how different market frictions

interact to influence aggregate elasticity and market stability. Our results suggest that policies

aimed at improving risk allocation may be more effective at reducing excess volatility than those

focused on individual investor behavior.

Future research could extend this framework to study the implications of market inelasticity for

asset pricing anomalies, monetary policy transmission, and financial stability. The role of market

structure and trading mechanisms in determining aggregate elasticity also remains an important

area for investigation.
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Appendix

A Derivations for Section 2

A.1 The bond demand view

The bond demand of investor 𝑗 is given by

𝐵 𝑗 = 𝑅 𝑓 (1 − 𝛼 𝑗 ) (1 − 𝑐 𝑗 (𝑟 + 𝜋))𝑊 𝑗 . (A.1)

Let 𝑏 𝑗 ≡
𝐵 𝑗

𝑊 𝑗
denote the bond-to-wealth ratio. The market clearing condition for bonds can be

expressed as follows
𝑥𝑎𝑏𝑎︸︷︷︸

active bond demand

= −𝑥𝑝𝑏𝑝︸ ︷︷ ︸
net bond supply

(A.2)

The linearized bond demand for a passive investor is given by

𝑏 𝑗 − 𝑏∗𝑗 =

[
𝑟 − 𝑟∗ +

𝑐′
𝑗
(𝜇 − 𝑝∗)

1 − 𝑐 𝑗 (𝜇 − 𝑝∗) (𝑝 − 𝑝∗)
]
𝑏∗𝑗 − 𝛼∗

𝑗𝑒
𝑟∗ (1 − 𝑐 𝑗 (𝜇 − 𝑝∗))𝛼̂ 𝑗 (A.3)

For simplicity, focus on the case 𝛼𝑝 = 1, so 𝑏∗𝑝 = 𝑏∗𝑎 = 0. The passive bond demand is then
given by

𝑥𝑝𝑏𝑝 = 𝑓 𝑏, (A.4)

where 𝑓 𝑏 ≡ −𝑥𝑝 [1 − 𝑐𝑝 (𝜇 − 𝑝∗)]𝛼̂𝑝. The active bond demand is given by

𝑥𝑎𝑏𝑎 = −𝜁 𝑏𝑝 (𝑝 − 𝑝∗) − 𝜁 𝑏𝑟 (𝑟 − 𝑟∗), (A.5)

where 𝜁 𝑏𝑝 = 𝜁 𝑏𝑟 = −𝑥𝑎𝑔′𝑎 (𝜇 − 𝑝∗ − 𝑟∗) [1 − 𝑐𝑎 (𝜇 − 𝑝∗)].
The demand system can be written as follows:[

𝜁
𝑞
𝑝 𝜁

𝑞
𝑟

𝜁 𝑏𝑝 𝜁 𝑏𝑟

] [
𝑝 − 𝑝∗

𝑟 − 𝑟∗

]
=

[
𝑓 𝑞

𝑓 𝑏

]
, (A.6)

where we denote here 𝑓 𝑞 ≡ 𝑓 for symmetry.
Inverting the system above, we obtain[

𝑝 − 𝑝∗

𝑟 − 𝑟∗

]
=

1
𝜁
𝑞
𝑝 𝜁

𝑏
𝑟 − 𝜁

𝑞
𝑟 𝜁

𝑏
𝑝

[
𝜁 𝑏𝑟 −𝜁𝑞𝑟
−𝜁 𝑏𝑝 𝜁

𝑞
𝑝

] [
𝑓 𝑞

𝑓 𝑏

]
. (A.7)
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The price is given by

𝑝 − 𝑝∗ =
𝜁 𝑏𝑟 𝑓 𝑞 − 𝜁

𝑞
𝑟 𝑓

𝑏

𝜁
𝑞
𝑝 𝜁

𝑏
𝑟 − 𝜁

𝑞
𝑟 𝜁

𝑏
𝑝

= 𝑥𝑝𝛼̂𝑝

𝜁 𝑏𝑟 + 𝜁
𝑞
𝑟 (1 − 𝑐𝑝 (𝜇 − 𝑝∗))
𝜁
𝑞
𝑝 𝜁

𝑏
𝑟 − 𝜁

𝑞
𝑟 𝜁

𝑏
𝑝

= 0, (A.8)

using the fact that 𝜁𝑞𝑟 = 𝑥𝑎𝑔
′
𝑎 (𝜇 − 𝑝∗ − 𝑟∗) and 𝑐𝑎 (𝜇 − 𝑝∗) = 𝑐𝑝 (𝜇 − 𝑝∗).

B Derivations for Section 3

B.1 Investors’ problem

The Hamilton-Jacobi-Bellman (HJB) equation for investor 𝑗 can be written as

0 = max
𝐶 𝑗 ,𝛼 𝑗

𝑓 𝑗 (𝐶 𝑗 , 𝑉 𝑗 ) +𝑉 𝑗 ,𝑊

[
𝑟𝑊 𝑗 + (𝜇𝑅 − 𝑟)𝛼 𝑗𝑊 𝑗 − 𝐶 𝑗

]
+𝑉 𝑗 ,𝑋𝜇𝑋

+ 1
2
𝑉 𝑗 ,𝑊𝑊𝑊

2
𝑗 𝛼

2
𝑗 ∥𝜎𝑅∥2 +𝑉 𝑗 ,𝑊𝑋𝑊 𝑗𝜎𝑋𝜎

′
𝑅𝛼 𝑗 +

1
2

𝑑∑︁
𝑘=1

𝜎′
𝑋,𝑘𝑉 𝑗 ,𝑋𝑋𝜎𝑋,𝑘 , (B.1)

subject to 𝛼 𝑗 ∈ Ω 𝑗 . For ease of notation, we dropped time subscripts. Note that 𝑉 𝑗 ,𝑋 and 𝑉 𝑗 ,𝑊𝑋

are 1 × 𝑁 vectors, 𝑉 𝑗 ,𝑋𝑋 is a 𝑁 × 𝑁 matrix, and both 𝑉 𝑗 ,𝑊 and 𝑉 𝑗 ,𝑊𝑊 are scalars. The drift 𝜇𝑋 is
a 𝑁 × 1 vector, the diffusion 𝜎𝑋 is a 𝑁 × 𝑑 matrix, while 𝜎𝑅 is a 1 × 𝑑 vector. The notation 𝜎𝑋,𝑘

denotes the 𝑘−th column of 𝜎𝑋 , that is, the exposure to the 𝑘−th Brownian motion.
The optimal consumption is given by

𝐶 𝑗 = 𝜌𝜓 ((1 − 𝛾 𝑗 )𝑉 𝑗 )
1−𝛾𝑗 𝜓
1−𝛾𝑗 𝑉

−𝜓
𝑗,𝑊

. (B.2)

The optimal portfolio share for an active investor is given by

𝛼 𝑗 = min
{
−

𝑉 𝑗 ,𝑊 (𝜇𝑅 − 𝑟)
𝑉 𝑗 ,𝑊𝑊𝑊 ∥𝜎𝑅∥2 − 𝑉𝑊𝑋

𝑉𝑊𝑊𝑊

𝜎𝑋𝜎
′
𝑅

∥𝜎𝑅∥2 ,
𝜎

∥𝜎𝑅,𝑡 ∥

}
. (B.3)

Given the homotheticity of preferences, the value function for investor 𝑗 can be written as

𝑉 𝑗 ,𝑡 =

(
𝜉 𝑗 ,𝑡

𝜌𝜓

) 1−𝛾𝑗
1−𝜓 𝑊

1−𝛾 𝑗

𝑗 ,𝑡

1 − 𝛾 𝑗

. (B.4)

This particular parametrization of the value function implies that the consumption-wealth ratio
is given by

𝐶 𝑗 ,𝑡

𝑊 𝑗 ,𝑡

= 𝜉 𝑗 ,𝑡 . (B.5)
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The optimal portfolio share for active investors is given by

𝛼 𝑗 ,𝑡 = min

{
𝜇𝑅,𝑡 − 𝑟𝑡

𝛾 𝑗 ∥𝜎𝑅,𝑡 ∥2 −
1 − 𝛾−1

𝑗

1 − 𝜓

𝜎𝜉 𝑗 ,𝑡𝜎
′
𝑅,𝑡

∥𝜎𝑅,𝑡 ∥2 ,
𝜎

∥𝜎𝑅,𝑡 ∥

}
. (B.6)

It is convenient to consider the investor’s risk exposure 𝜎𝑗 ≡ 𝛼 𝑗 ∥𝜎𝑅∥, which is then given by

𝜎𝑗 ,𝑡 = min

{
𝜂𝑡

𝛾 𝑗

−
1 − 𝛾−1

𝑗

1 − 𝜓

𝜎𝜉 𝑗 ,𝑡𝜎
′
𝑅,𝑡

∥𝜎𝑅,𝑡 ∥
, 𝜎

}
, (B.7)

where 𝜂𝑡 ≡ 𝜇𝑅,𝑡−𝑟𝑡
∥𝜎𝑅,𝑡 ∥ denotes the Sharpe ratio of the risky asset.

Plugging the consumption-wealth ratio into the HJB equation and using Equation (B.4), we
obtain

0 =
𝜌

1 − 𝜓−1

[
𝜌−1𝜉 𝑗 − 1

]
+ 𝑟 + 𝜂𝜎𝑗 − 𝜉 𝑗 +

1
1 − 𝜓

[
𝜉 𝑗 ,𝑋

𝜉 𝑗
𝜇𝑋 + 1

2

𝑑∑︁
𝑘=1

𝜎′
𝑋,𝑘

𝜉 𝑗 ,𝑋𝑋

𝜉 𝑗
𝜎𝑋,𝑘

]
−
𝛾 𝑗

2
𝜎2
𝑗 +

1 − 𝛾 𝑗

1 − 𝜓

𝜉 𝑗 ,𝑋

𝜉 𝑗
𝜎𝑋

𝜎′
𝑅

∥𝜎𝑅∥
𝜎𝑗 +

1
2

𝜓 − 𝛾 𝑗

(1 − 𝜓)2

𝑑∑︁
𝑘=1

𝜎′
𝑋,𝑘

𝜉′
𝑗 ,𝑋

𝜉 𝑗

𝜉 𝑗 ,𝑋

𝜉 𝑗
𝜎𝑋,𝑘 . (B.8)

Rearranging the expression above, we obtain

𝜉 𝑗 ,𝑡 = 𝜓𝜌 + (1 − 𝜓)
[
𝑟𝑡 + 𝜂𝑡𝜎𝑗 ,𝑡 −

𝛾 𝑗

2
𝜎2
𝑗 ,𝑡

]
+ 𝜇𝜉 𝑗 ,𝑡 + (1 − 𝛾 𝑗)𝜎𝜉 𝑗 ,𝑡

𝜎′
𝑅,𝑡

∥𝜎𝑅,𝑡 ∥
𝜎𝑗 ,𝑡 +

𝜓 − 𝛾 𝑗

1 − 𝜓

∥𝜎𝜉 𝑗 ,𝑡 ∥2

2
, (B.9)

where the law of motion of 𝜉 𝑗 ,𝑡 is given by

𝑑𝜉 𝑗 ,𝑡

𝜉 𝑗 ,𝑡
= 𝜇𝜉 𝑗 ,𝑡𝑑𝑡 + 𝜎𝜉 𝑗 ,𝑡𝑑𝑍𝑡 , (B.10)

and the drift and diffusion of 𝜉 𝑗 ,𝑡 are given by Ito’s lemma:

𝜇𝜉 𝑗 ,𝑡 =
𝜉 𝑗 ,𝑋

𝜉 𝑗
𝜇𝑋,𝑡 +

1
2

𝑑∑︁
𝑘=1

𝜎′
𝑋,𝑘,𝑡

𝜉 𝑗 ,𝑋𝑋,𝑡

𝜉 𝑗 ,𝑡
𝜎𝑋,𝑘,𝑡 , 𝜎𝜉 𝑗 ,𝑡 =

𝜉 𝑗 ,𝑋

𝜉 𝑗
𝜎𝑋,𝑡 . (B.11)

B.2 Pricing condition

Let 𝑦𝑡 ≡ 𝑌𝑡/𝑃𝑡 denote the dividend yield on the risky asset. From Equation (7), we can write
the expected return on the risky asset as:

𝑟𝑡 + 𝜂𝑡 ∥𝜎𝑅,𝑡 ∥ = 𝑦𝑡 +
1
𝑑𝑡

𝑑 (𝑌𝑡/𝑦𝑡)
(𝑌𝑡/𝑦𝑡)

= 𝑦𝑡 + 𝜇 − 𝜇𝑦,𝑡 + ∥𝜎𝑦,𝑡 ∥2 − 𝜎𝜎′
𝑦,𝑡 . (B.12)
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Rearranging the expression above, we obtain

𝑦𝑡 = 𝑟𝑡 + 𝜂𝑡 ∥𝜎𝑅,𝑡 ∥ − 𝜇 + 𝜇𝑦,𝑡 − ∥𝜎𝑅,𝑡 ∥2 + 𝜎𝜎′
𝑅,𝑡 , (B.13)

where 𝜎𝑅,𝑡 = 𝜎 − 𝜎𝑦,𝑡 and (𝜇𝑦,𝑡 , 𝜎𝑦,𝑡) are given by Ito’s lemma:

𝜇𝑦,𝑡 = 𝑦𝑋,𝑡𝜇𝑋,𝑡 +
1
2

𝑑∑︁
𝑘=1

𝜎′
𝑋,𝑘,𝑡 𝑦𝑋𝑋,𝑡 𝜎𝑋,𝑘,𝑡 , 𝜎𝑦,𝑡 = 𝑦𝑋,𝑡𝜎𝑋,𝑡 . (B.14)

B.3 Aggregate state variable

Define the share of wealth of type- 𝑗 investors as follows

𝑥 𝑗 ,𝑡 ≡
𝜔 𝑗𝑊 𝑗 ,𝑡

𝑃𝑡

. (B.15)

We define the aggregate state variable as 𝑋𝑡 = (𝑥𝑡 , 𝛼𝑝,𝑡), where 𝑥𝑡 ≡ (𝑥1,𝑡 , 𝑥2,𝑡 , . . . , 𝑥𝐽,𝑡). The
law of motion of 𝛼𝑝,𝑡 is given by (9). To compute the law of motion of 𝑥 𝑗 ,𝑡 , first, note that the law
of motion of wealth for a type- 𝑗 investor can be written as

𝑑𝑊 𝑗 ,𝑡

𝑊 𝑗 ,𝑡

=
[
𝑟𝑡 + 𝜂𝑡𝜎𝑗 ,𝑡 − 𝜉 𝑗 ,𝑡

]
𝑑𝑡 + 𝜎𝑗 ,𝑡

𝜎𝑅,𝑡

∥𝜎𝑅,𝑡 ∥
𝑑𝑍𝑡 (B.16)

From Ito’s lemma, the law of motion of 𝑥 𝑗 ,𝑡 is given by

𝑑𝑥 𝑗 ,𝑡

𝑥 𝑗 ,𝑡
=

(
𝑟𝑡 + 𝜂𝑡𝜎𝑗 ,𝑡 − 𝜉 𝑗 ,𝑡 − 𝜇 + 𝜇𝑦,𝑡 + 𝜎𝜎′

𝑅,𝑡 − 𝜎𝑗 ,𝑡 ∥𝜎𝑅,𝑡 ∥ + 𝜅
𝜔 𝑗 − 𝑥 𝑗 ,𝑡

𝑥 𝑗 ,𝑡

)
𝑑𝑡

+ (𝜎𝑗 ,𝑡 − ∥𝜎𝑅,𝑡 ∥)
𝜎𝑅,𝑡

∥𝜎𝑅,𝑡 ∥
𝑑𝑍𝑡 , (B.17)

using 𝜇𝑃,𝑡 = 𝜇 − 𝜇𝑦,𝑡 + ∥𝜎𝑅,𝑡 ∥2 − 𝜎𝜎′
𝑅,𝑡

.

B.4 Asset prices

Let J 𝑢
𝑡 ⊂ {1, 2, . . . , 𝐽} denote the set of unconstrained active investors at period 𝑡, that is, the

set of investors such that 𝜎𝑗 ,𝑡 < 𝜎. Let J 𝑐
𝑡 ⊂ {1, 2, . . . , 𝐽} denote the set of constrained active

investors, that is, the set of investors such that 𝜎𝑗 ,𝑡 = 𝜎. From the market clearing condition for the
risky asset, the second term in Equation (23), we obtain

𝜂𝑡 =
𝛾𝑢,𝑡

𝑥𝑢,𝑡

(1 − 𝛼𝑝,𝑡𝑥0,𝑡)∥𝜎𝑅𝑡
∥ − 𝜎𝑥𝑐,𝑡 +

∑︁
𝑗∈J𝑢

𝑡

𝑥 𝑗 ,𝑡
1 − 𝛾−1

𝑗

1 − 𝜓

𝜎𝜉 𝑗 ,𝑡𝜎
′
𝑅,𝑡

∥𝜎𝑅,𝑡 ∥

 , (B.18)

51



where 𝑥𝑢,𝑡 ≡ ∑
𝑗∈J𝑢

𝑡
𝑥 𝑗 ,𝑡 , 𝑥𝑐,𝑡 ≡ ∑

𝑗∈J 𝑐
𝑡
𝑥 𝑗 ,𝑡 , and 𝛾𝑢,𝑡 ≡

[
1

𝑥𝑢,𝑡

∑
𝑗∈J𝑢

𝑡

𝑥 𝑗 ,𝑡
𝛾 𝑗

]−1
is the aggregate risk

aversion of the unconstrained investors.
From the market clearing condition for goods, the first term in Equation (23), we obtain

𝑦𝑡 = 𝜓𝜌 + (1 − 𝜓)
𝑟𝑡 + 𝜂𝑡 ∥𝜎𝑅,𝑡 ∥ −

𝐽∑︁
𝑗=0

𝑥 𝑗 ,𝑡
𝛾 𝑗

2
𝜎2
𝑗 ,𝑡


+

𝐽∑︁
𝑗=0

𝑥 𝑗 ,𝑡

[
𝜇𝜉 𝑗 ,𝑡 + (1 − 𝛾 𝑗 )𝜎𝜉 𝑗 ,𝑡

𝜎′
𝑅,𝑡

∥𝜎𝑅,𝑡 ∥
𝜎𝑗 ,𝑡 +

𝜓 − 𝛾 𝑗

1 − 𝜓

∥𝜎𝜉 𝑗 ,𝑡 ∥2

2

]
. (B.19)

Using the pricing condition (B.13), we obtain the expression for the risk-free rate

𝑟𝑡 = 𝜌 − 𝜂𝑡 ∥𝜎𝑅,𝑡 ∥ + 𝜓−1(𝜇 − 𝜇𝑦,𝑡 + ∥𝜎𝑅,𝑡 ∥2 − 𝜎𝜎′
𝑅,𝑡) +

(
1 − 𝜓−1

) 𝐽∑︁
𝑗=0

𝑥 𝑗 ,𝑡
𝛾 𝑗

2
𝜎2
𝑗 ,𝑡

+ 𝜓−1
𝐽∑︁
𝑗=0

𝑥 𝑗 ,𝑡

[
𝜇𝜉 𝑗 ,𝑡 + (1 − 𝛾 𝑗 )𝜎𝜉 𝑗 ,𝑡

𝜎′
𝑅,𝑡

∥𝜎𝑅,𝑡 ∥
𝜎𝑗 ,𝑡 +

𝜓 − 𝛾 𝑗

1 − 𝜓

∥𝜎𝜉 𝑗 ,𝑡 ∥2

2

]
. (B.20)

B.5 The system of PDEs

To compute the equilibrium, one needs to solve a system of 𝐽 + 2 partial differential equations
(PDEs), involving the consumption-wealth ratio 𝜉 𝑗 (𝑋) for the 𝐽 + 1 type of investors and the
dividend yield 𝑦(𝑋). These functions depend on 𝐽 + 1 state variables, the 𝐽−dimensional vector 𝑥𝑡
and the portfolio share of passive investors 𝛼𝑝,𝑡 .

The differential equation for the consumption-wealth ratio is given by

𝜉 𝑗 ,𝑡 = 𝜓𝜌 + (1 − 𝜓)
[
𝑟𝑡 + 𝜂𝑡𝜎𝑗 ,𝑡 −

𝛾 𝑗

2
𝜎2
𝑗 ,𝑡

]
+
𝜉 𝑗 ,𝑋

𝜉 𝑗
𝜇𝑋,𝑡 +

1
2

𝑑∑︁
𝑘=1

𝜎′
𝑋,𝑘,𝑡

𝜉 𝑗 ,𝑋𝑋,𝑡

𝜉 𝑗 ,𝑡
𝜎𝑋,𝑘,𝑡

+ (1 − 𝛾 𝑗 )
𝜉 𝑗 ,𝑋

𝜉 𝑗
𝜎𝑋,𝑡

𝜎′
𝑅,𝑡

∥𝜎𝑅,𝑡 ∥
𝜎𝑗 ,𝑡 +

𝜓 − 𝛾 𝑗

1 − 𝜓

1
2

��������𝜉 𝑗 ,𝑋𝜉 𝑗 𝜎𝑋,𝑡

��������2 . (B.21)

Plugging the expressions for interest rate and the Sharpe ratio (𝑟𝑡 , 𝜂𝑡), the risk exposure 𝜎𝑗 ,𝑡 , the
drift and diffusion of the aggregate state variables (𝜇𝑋,𝑡 , 𝜎𝑋,𝑡), and the aggregate volatility ∥𝜎𝑅,𝑡 ∥,
we can express the condition above in terms of 𝜉 𝑗 ,𝑡 and 𝑦𝑡 and their derivatives.
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Similarly, we can write the condition for the dividend yield:

𝑦𝑡 = 𝑟𝑡 + 𝜂𝑡

��������𝜎 − 𝑦𝑋,𝑡

𝑦𝑡
𝜎𝑋,𝑡

�������� − 𝜇 + 𝑦𝑋,𝑡

𝑦𝑡
𝜇𝑋,𝑡 +

1
2

𝑑∑︁
𝑘=1

𝜎′
𝑋,𝑘,𝑡

𝑦𝑋𝑋,𝑡

𝑦𝑡
𝜎𝑋,𝑘,𝑡

−
��������𝜎 − 𝑦𝑋,𝑡

𝑦𝑡
𝜎𝑋,𝑡

��������2 + 𝜎

(
𝜎 − 𝑦𝑋,𝑡

𝑦𝑡
𝜎𝑋,𝑡

)′
, (B.22)

which again can be expressed only in terms of 𝜉 𝑗 ,𝑡 and 𝑦𝑡 and their derivatives.

C Derivations for Section 4

C.1 Proof of Lemma 1

Proof. The assumption 𝜖 = 0 implies that there is no preference heterogeneity and passive investors
are fully invested in the risky asset. We guess and verify that in this benchmark economy, there are
no variation in expected returns. In particular, the wealth distribution plays no role in the economy.
This implies that 𝜇𝑐 𝑗 ,0(𝑋) = 𝜎𝑐 𝑗 ,0(𝑋) = 𝜇𝑝,0(𝑋) = 𝜎𝑝,0(𝑋) = 0. In this case, the risk premium is
given by

𝜋0(𝑋) =
𝛾

𝑥𝑢,𝑡

[
1 − 𝑥0,𝑡 − 𝑥𝑐,𝑡𝛼𝑐,𝑡

]
∥𝜎𝑅𝑡

∥2, (C.1)

using the fact that 𝜍𝑡 = 0, as 𝜎𝑐 𝑗 ,𝑡 = 0, and 𝛼𝑝,𝑡 = 1.
Given that 𝜎𝑦,𝑡 = 0, we have that 𝜎𝑅,0(𝑋) = 𝜎. Using the fact that 𝜎 = ∥𝜎∥ and 𝑥𝑢,𝑡 =

1 − 𝑥0,𝑡 − 𝑥𝑐,𝑡 , we obtain the risk premium

𝜋0(𝑋) = 𝛾∥𝜎∥2,

using 𝛼𝑐,𝑡 = 1. Using 𝜎𝑐 𝑗 ,𝑡 = 0 and the expression for 𝜋0(𝑋), we obtain that 𝛼 𝑗 ,0(𝑋) = 1, for
𝑗 = 1, . . . , 𝐽, from Equation (19).

The interest rate is given by

𝑟0(𝑋) = 𝜌 + 𝜓−1𝜇 − 𝛾(1 + 𝜓−1) ∥𝜎∥2

2
. (C.2)

The consumption-wealth ratio 𝑐 𝑗 ,0(𝑋) is given by

𝑐 𝑗 ,0(𝑋) = 𝜓𝜌 + (1 − 𝜓)
[
𝑟0(𝑋) + 𝜋0(𝑋)𝛼 𝑗 ,0(𝑋) −

𝛾

2
𝛼 𝑗 ,0(𝑋)2 | |𝜎 | |2

]
. (C.3)
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Plugging in the expression for 𝑟0(𝑋), 𝜂0(𝑋) and 𝜎𝑗 ,0, we obtain

𝑐 𝑗 ,0(𝑋) = 𝜌 −
(
1 − 𝜓−1

) (
𝜇 − 𝛾∥𝜎∥2

2

)
, (C.4)

where we assume 𝜌 >
(
1 − 𝜓−1) (

𝜇 − 𝛾∥𝜎∥2

2

)
.

From the market clearing condition for goods, we obtain:

1
𝑝0(𝑋)

= 𝜌 −
(
1 − 𝜓−1

) (
𝜇 − 𝛾∥𝜎∥2

2

)
. (C.5)

The drift and diffusion of the wealth shares are given

𝜇𝑋, 𝑗 ,0(𝑋) = 𝑥 𝑗
[
𝑟0(𝑋) + 𝜋0(𝑋)𝛼 𝑗 ,0(𝑋) − 𝑐 𝑗 ,0(𝑋) − 𝜇

]
(C.6)

𝜎𝑋, 𝑗 ,0(𝑋) = 𝑥 𝑗 (𝛼 𝑗 ,0(𝑋) − 1)𝜎𝑅,0(𝑋), (C.7)

where 𝜇𝑋, 𝑗 ,0 = 𝜎𝑋, 𝑗 ,0 = 0, using the expression for returns, portfolio share, and consumption-wealth
ratio. The result 𝜇𝑋, 𝑗 ,0 = 0 uses the fact that 𝜅 = 0.

C.2 Proof of Proposition 2

Proof. We consider next the first-order correction terms. Note that the diffusion terms for 𝜉 𝑗 and
𝑦 are both equal to zero up to the first order, since 𝜎𝜉 𝑗 ,𝑡 = O(𝜖2) and 𝜎𝑦,𝑡 = O(𝜖2). From Ito’s
lemma:

𝜎𝜉 𝑗 ,𝑡 =
𝜉 𝑗 ,𝑋

𝜉 𝑗︸︷︷︸
O(𝜖)

𝜎𝑋,𝑡︸︷︷︸
O(𝜖)

= O(𝜖2). (C.8)

We have 𝜉 𝑗 ,𝑋 = O(𝜖), because 𝜉 𝑗 ,𝑋,0 = 0, as 𝜉 𝑗 ,0(𝑋) does not depend on 𝑋 . Also, 𝜎𝑋,𝑡 = O(𝜖)
because 𝜎𝑋,0(𝑋) = 0. This implies that 𝜎𝜉 𝑗 ,1(𝑋) = 0. An analogous argument applies to 𝑦𝑡 , so
that we have 𝜎𝑦,1(𝑋) = 0 and ∥𝜎𝑅,1(𝑋)∥ = 0.

Risk exposure of active investors. The risk exposure for active investors can be written as

𝜎𝑗 (𝑋, 𝜖) = min

{
𝜂(𝑋, 𝜖)

𝛾 𝑗

+
1 − 𝛾−1

𝑗

𝜓 − 1
𝜎𝜉 𝑗 (𝑋, 𝜖)𝜎′

𝑅
(𝑋, 𝜖)

∥𝜎𝑅 (𝑋, 𝜖)∥
, ∥𝜎∥ + 𝜎̂𝜖

}
, (C.9)

Expanding the first term inside brackets in 𝜖 , we obtain

𝜎𝑗 (𝑋, 𝜖) = min
{
𝜂0(𝑋)
𝛾

+
(
𝜂1(𝑋)
𝛾

− 𝜂0(𝑋)
𝛾

𝛾̂ 𝑗

)
𝜖 + 1 − 𝛾−1

𝜓 − 1
𝜎𝜉 𝑗 ,2(𝑋)𝜎′

∥𝜎∥ 𝜖2 +𝑂 (𝜖3), ∥𝜎∥ + 𝜎̂𝜖

}
, (C.10)
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Adding and subtracting ∥𝜎∥ + 𝜎̂𝜖 , and using 𝜂0 (𝑋)
𝛾

= ∥𝜎∥, we obtain

𝜎𝑗 (𝑋, 𝜖) = min
{(

𝜂1(𝑋)
𝛾

− 𝜂0(𝑋)
𝛾

𝛾̂ 𝑗 − 𝜎̂

)
𝜖 + 1 − 𝛾−1

𝜓 − 1
𝜎𝜉 𝑗 ,2(𝑋)𝜎′

∥𝜎∥ 𝜖2 +𝑂 (𝜖3), 0
}
+ ∥𝜎∥ + 𝜎̂𝜖 . (C.11)

Consider first the case where the following condition is satisfied:

𝜂1(𝑋)
𝛾

− 𝜂0(𝑋)
𝛾

𝛾̂ 𝑗 − 𝜎̂ = O(1), (C.12)

If this is the case, then(
𝜂1(𝑋)
𝛾

− 𝜂0(𝑋)
𝛾

𝛾̂ 𝑗 − 𝜎̂

)
𝜖 ≫

����1 − 𝛾−1

𝜓 − 1
𝜎𝜉 𝑗 ,2(𝑋)𝜎′

∥𝜎∥

���� 𝜖2, (C.13)

for small 𝜖 . So, the sign of the term inside the min operator in (C.11) is determined by the first
term.

We can then write 𝜎𝑗 (𝑋, 𝜖) as follows:

𝜎𝑗 (𝑋, 𝜖) = ∥𝜎∥ + min
{
𝜂1(𝑋)
𝛾

− 𝜂0(𝑋)
𝛾

𝛾̂, 𝜎̂

}
𝜖 + O(𝜖2). (C.14)

In the region of the state space where condition (C.12) holds, one can determine whether an
investor is constrained or unconstrained only based on the first-order terms. Suppose now that the
following condition holds

𝜂1(𝑋)
𝛾

− 𝜂0(𝑋)
𝛾

𝛾̂ 𝑗 − 𝜎̂ = O(𝜖). (C.15)

This condition states that, up to the first order, the leverage constraint is either always binding or
slack by just a tiny amount parameterized by 𝜖 and 𝜖2 terms inside the min operator in (C.11). In
this case, we can write 𝜎𝑗 (𝑋, 𝜖) as follows:

𝜎𝑗 (𝑋, 𝜖) = ∥𝜎∥ + 𝜎̂𝜖 + min
{(

𝜂1(𝑋)
𝛾

− 𝜂0(𝑋)
𝛾

𝛾̂ 𝑗 − 𝜎̂

)
𝜖 + 1 − 𝛾−1

𝜓 − 1
𝜎𝜉 𝑗 ,2(𝑋)𝜎′

∥𝜎∥ 𝜖2, 0
}
+ O(𝜖3). (C.16)

In this region of the state space where condition (C.15) is satisfied, we need the second-order term
to determine whether an investor is constrained. This distinction will be relevant when computing
the second-order correction.

For the first-order correction terms here, we focus on the case where condition (C.12) holds.
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Aggregate risk aversion. The aggregate risk aversion of unconstrained investors, defined above,
is given by

𝛾𝑢 (𝑋, 𝜖) =
𝑥𝑢∑

𝑗∈J𝑢
𝑥 𝑗

𝛾(1+𝛾̂𝜖)
= 𝛾 + 𝛾

∑︁
𝑗∈J𝑢

𝑥 𝑗

𝑥𝑢
𝛾̂ 𝑗 𝜖 + O(𝜖2) (C.17)

Market price of risk. The market price of risk can be written as

𝜂(𝑋, 𝜖) = 𝛾𝑢 (𝑋, 𝜖)
1 − 𝑥0 − 𝑥𝑐

[
(1 − (1 + 𝛼̂𝑝𝜖)𝑥0)∥𝜎∥ − (∥𝜎∥ + 𝜎̂𝜖)𝑥𝑐

]
+ O(𝜖2),

= 𝜂0(𝑋) + 𝛾∥𝜎∥

∑︁
𝑗∈J𝑢

𝑥 𝑗

𝑥𝑢
𝛾̂ 𝑗 −

(
𝛼̂𝑝𝑥0 + 𝜎̂

∥𝜎∥ 𝑥𝑐

1 − 𝑥0 − 𝑥𝑐

) 𝜖 + O(𝜖2). (C.18)

In the region of the state space where all active investors are unconstrained, we have

𝜂(𝑋, 𝜖) = 𝜂0(𝑋) + 𝛾∥𝜎∥ ©­«
∑︁
𝑗∈J𝑢

𝑥 𝑗

𝑥𝑢
𝛾̂ 𝑗 −

𝛼̂𝑝 𝑥0

1 − 𝑥0

ª®¬ 𝜖 + O(𝜖2). (C.19)

The expression above shows the impact of fluctuations in the aggregate risk aversion and the effect
of portfolio inflows in the market price of risk. If the average risk aversion in state 𝑋 is lower than
its level at 𝜖 = 0, then the market price of risk will be lower than its level at 𝜖 = 0, everything else
constant.

Interest rate. The interest rate is given by

𝑟 (𝑋, 𝜖) = 𝑟0(𝑋) +
−𝜂1(𝑋)∥𝜎∥ +

(
1 − 𝜓−1

) ©­«
𝐽∑︁
𝑗=0

𝑥 𝑗 ,𝑡

𝛾

2
2∥𝜎∥𝜎𝑗 ,1(𝑋) +

𝐽∑︁
𝑗=0

𝑥 𝑗 ,𝑡

𝛾

2
∥𝜎∥2𝛾̂ 𝑗

ª®¬
 𝜖 + O(𝜖2)

= 𝑟0(𝑋) + 𝛾∥𝜎∥2
−

𝜂1(𝑋)
𝛾∥𝜎∥ +

(
1 − 𝜓−1

) 𝐽∑︁
𝑗=0

𝑥 𝑗 ,𝑡

𝛾̂ 𝑗

2

 𝜖 + O(𝜖2)

= 𝑟0(𝑋) − 𝛾∥𝜎∥2
©­«

∑︁
𝑗∈J𝑢

𝑥 𝑗

𝑥𝑢
𝛾̂ 𝑗 −

𝐽∑︁
𝑗=0

𝑥 𝑗 ,𝑡

𝛾̂ 𝑗

2
ª®¬ −

𝛼̂𝑝𝑥0 + 𝜎̂
∥𝜎 ∥ 𝑥𝑐

1 − 𝑥0 − 𝑥𝑐
+ 𝜓−1

𝐽∑︁
𝑗=0

𝑥 𝑗 ,𝑡

𝛾̂ 𝑗

2

 𝜖 + O(𝜖2),

(C.20)

where we use the fact that
∑𝐽

𝑗=0 𝑥 𝑗 ,𝑡𝜎𝑗 ,1(𝑋) = 0 from the first-order correction of the risky asset
market clearing condition.

The term in the square brackets in Equation (C.20) captures the first-order effect of frictions on
the interest rate, 𝑟1(𝑋). First, we see that the interest rate is decreasing in the difference between
the average risk aversion of unconstrained investors and the average risk aversion of all investors
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in the economy. These two averages can differ for two reasons. First, passive investors may have
a risk aversion different from the average unconstrained investor, the first term in parentheses in
𝑟1(𝑋). Second, constrained investors are exactly the ones with low risk aversion, so unconstrained
investors are on average more risk averse than all investors in the economy, which include the low
risk aversion ones.

Consumption-wealth ratio. The consumption-wealth ratio for investor 𝑗 is given by

𝜉 𝑗 (𝑋, 𝜖) = 𝜉 𝑗 ,0(𝑋) + (1 − 𝜓)
[
𝑟1(𝑋) + 𝜂0(𝑋)𝜎𝑗 ,1(𝑋) + 𝜂1(𝑋)𝜎𝑗 ,0(𝑋)

−𝛾∥𝜎∥𝜎𝑗 ,1(𝑋) −
𝛾

2
𝛾̂ 𝑗 ∥𝜎∥2

]
𝜖 + O(𝜖2)

= 𝜉 𝑗 ,0(𝑋) + (1 − 𝜓)𝛾∥𝜎∥2
[
𝑟1(𝑋)
𝛾∥𝜎∥2 + 𝜂1(𝑋)

𝛾∥𝜎∥ −
𝛾̂ 𝑗

2

]
𝜖 + O(𝜖2)

= 𝜉 𝑗 ,0(𝑋) + (1 − 𝜓)𝛾∥𝜎∥2

(
1 − 𝜓−1

) 𝐽∑︁
𝑗=0

𝑥 𝑗 ,𝑡
𝛾̂ 𝑗

2
−
𝛾̂ 𝑗

2

 𝜖 + O(𝜖2). (C.21)

Dividend yield. The dividend yield is given by

𝑦(𝑋, 𝜖) = 𝑦0(𝑋) +
(
1 − 𝜓−1

)
𝛾∥𝜎∥2

𝐽∑︁
𝑗=0

𝑥 𝑗 ,𝑡
𝛾̂ 𝑗

2
𝜖 + O(𝜖2). (C.22)

Notice that portfolio flows do not affect the dividend yield up to first order. The reason is that
the interest rate and risk premium effects exactly cancel each other out. To derive the effect of
portfolio flows on asset prices, we need to consider the second-order correction.

Wealth dynamics. The diffusion of the wealth share of investor 𝑗 , 𝑗 = 1, . . . , 𝐽, is given by

𝜎𝑋, 𝑗 (𝑋) = 𝑥 𝑗𝜎𝑗 ,1(𝑋)
𝜎

∥𝜎∥ 𝜖 + O(𝜖2)

= 𝑥 𝑗 min

{ ∑︁
𝑘∈J𝑢

𝑥𝑘

𝑥𝑢
𝛾̂ 𝑗 −

(
𝛼̂𝑝𝑥0 + 𝜎̂

∥𝜎∥ 𝑥𝑐

1 − 𝑥0 − 𝑥𝑐

)
− 𝛾̂ 𝑗 ,

𝜎̂

∥𝜎∥

}
𝜎𝜖 + O(𝜖2). (C.23)

The drift of the wealth share of investor 𝑗 , 𝑗 = 1, . . . , 𝐽, is given by

𝜇𝑋, 𝑗 (𝑋, 𝜖) = 𝑥 𝑗

[
𝑟1(𝑋) + 𝜂1(𝑋)𝜎𝑗 ,0(𝑋) + 𝜂0(𝑋)𝜎𝑗 ,1(𝑋) − 𝜉 𝑗 ,1(𝑋) − 𝜎𝑗 ,1(𝑋)∥𝜎∥

]
𝜖 + 𝜅(𝜔 𝑗 − 𝑥 𝑗) + O(𝜖2)

= 𝑥 𝑗

[
(𝜓 − 1)𝛾∥𝜎∥2

(
𝐽∑︁

𝑘=0
𝑥𝑘,𝑡

𝛾̂𝑘

2
−
𝛾̂ 𝑗

2

)
+ (𝛾 − 1)∥𝜎∥𝜎𝑗 ,1(𝑋)

]
𝜖 + 𝜅(𝜔 𝑗 − 𝑥 𝑗) + O(𝜖2)

(C.24)
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C.3 Second-order correction

In Proposition 6, we compute the second-order correction for our economy.

Proposition 6 (Second-order correction). Suppose 𝜌 >
(
1 − 𝜓−1) (

𝜇 − 𝛾𝜎2

2

)
. Then,

(i) The second-order correction for the consumption-wealth ratio and risk exposure are given by:

𝜉 𝑗 ,2(𝑋) = (1 − 𝜓) 𝛾𝜎
2

2

[(
1 − 𝜓−1

) 𝐽∑︁
𝑘=0

𝑥𝑘,𝑡 𝛾̂𝑘 − 𝛾̂ 𝑗

]
(C.25)

𝜎𝑗 ,2(𝑋) =
𝜂2(𝑋)
𝛾

− 𝜂1(𝑋)
𝛾

𝛾̂ 𝑗 +
𝜂0(𝑋)
𝛾

𝛾̂2
𝑗 − (1 − 𝛾−1)𝜎𝑦,2(𝑋), (C.26)

where

𝜎𝑦,2(𝑋) =
(
1 − 𝜓−1

) 𝛾𝜎2

2𝑦0(𝑋)

𝐽∑︁
𝑘=1

(𝛾̂𝑘 − 𝛾̂0) 𝑥𝑘𝜎𝑘,1(𝑋). (C.27)

(ii) The second-order correction for the Sharpe ratio, interest rate, and dividend yield are given
by:

𝜂2(𝑋) = − (𝛾 − 1)𝑥𝑐 + 1 − 𝑥0
1 − 𝑥0 − 𝑥𝑐

𝜎𝑦,2(𝑋) − 𝛾𝜎E𝑢 [𝛾̂ 𝑗 ]
𝛼̂𝑝𝑥0 + 𝜎̂

𝜎
𝑥𝑐

1 − 𝑥0 − 𝑥𝑐
− 𝛾𝜎Var𝑢 [𝛾̂ 𝑗 ] (C.28)

𝑟2(𝑋) = −𝜂2(𝑋)𝜎 + 𝜂0(𝑋)𝜎𝑦,2(𝑋) − 𝜓−1(𝜇𝑦,2(𝑋) + 𝜎𝜎𝑦,2(𝑋))

+
(
1 − 𝜓−1

) 𝐽∑︁
𝑗=0

𝑥 𝑗𝛾𝜎

[
𝜎𝑗 ,2(𝑋) +

𝜎2
𝑗 ,1(𝑋)
2𝜎

+ 𝛾̂ 𝑗𝜎𝑗 ,1

]
+ 𝜓−1

𝐽∑︁
𝑗=0

𝑥 𝑗
[
𝜇𝜉 𝑗 ,2(𝑋) + (1 − 𝛾)𝜎𝜉 𝑗 ,2(𝑋)𝜎

]
(C.29)

𝑦2(𝑋) =
(
1 − 𝜓−1

) 𝐽∑︁
𝑗=0

𝑥 𝑗𝛾𝜎

(
𝜎2
𝑗 ,1(𝑋)
2𝜎

+ 𝛾̂ 𝑗𝜎𝑗 ,1(𝑋)
)
, (C.30)

where

E𝑢 [𝛾̂ 𝑗 ] ≡
∑︁
𝑗∈J𝑢

𝑥 𝑗

𝑥𝑢
𝛾̂ 𝑗 , and Var𝑢 [𝛾̂ 𝑗 ] ≡

∑︁
𝑗∈J𝑢

𝑥 𝑗

𝑥𝑢
𝛾̂2
𝑗 −

©­«
∑︁
𝑗∈J𝑢

𝑥 𝑗

𝑥𝑢
𝛾̂ 𝑗

ª®¬
2

.

Proof. Step1: Laws of motion for 𝜉 𝑗 and 𝑦.
We start by considering the diffusion terms for 𝜉 𝑗 and 𝑦. Given that we are abstracting from portfolio
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shocks, we assume that 𝑑 = 1 without further loss of generality, so that we can treat diffusion terms
as scalars. The expansion of 𝜎𝜉 𝑗 ,𝑡 in 𝜖 is given by

𝜎𝜉 𝑗 (𝑋, 𝜖) =
𝜉 𝑗 ,𝑋 (𝑋, 𝜖)
𝜉 𝑗 (𝑋, 𝜖)

𝜎𝑋 (𝑋, 𝜖)

=
𝜉 𝑗 ,𝑋,1(𝑋)
𝜉 𝑗 ,0(𝑋)

𝜎𝑋,1(𝑋)𝜖2 + O(𝜖3)

= −(𝜓 − 1)
(
1 − 𝜓−1

) 𝛾𝜎2

2𝜉 𝑗 ,0(𝑋)

𝐽∑︁
𝑘=1

(𝛾̂𝑘 − 𝛾̂0) 𝑥𝑘𝜎𝑘,1(𝑋)𝜖2 + O(𝜖3). (C.31)

Notice that 𝜎𝜉 𝑗 ,2(𝑋) does not depend on 𝑗 , that is, it is the same for all investors. Moreover,
𝜎𝜉 𝑗 ,2(𝑋) > 0, as 𝜎𝑘,1(𝑋) is inversely related to 𝛾̂𝑘 .

Similarly, the diffusion for dividend yield 𝑦 can be written as

𝜎𝑦 (𝑋, 𝜖) =
𝑦𝑋,1(𝑋)
𝑦0(𝑋)

𝜎𝑋,1(𝑋)𝜖2 + O(𝜖2)

=

(
1 − 𝜓−1

) 𝛾𝜎2

2𝑦0(𝑋)

𝐽∑︁
𝑘=1

(𝛾̂𝑘 − 𝛾̂0) 𝑥𝑘𝜎𝑘,1(𝑋)𝜖2 + O(𝜖3). (C.32)

The expression above is negative if 𝜓 > 1, which implies that 𝜎𝑅,2(𝑋) = −𝜎𝑦,2(𝑋) is positive. In
this case, a negative aggregate shock redistribute wealth to more risk averse investors, leading to
a rise in the risk premium and a decline in the risk-free rate. If 𝜓 > 1, the risk premium effect
dominates, so the price-dividend ratio, 1/𝑦, falls in response to the shock. The movement in the
price-dividend ratio amplifies the initial effect of the drop in dividends.

The drift of 𝜉 𝑗 ,𝑡 is given by

𝜇𝜉 𝑗 (𝑋, 𝜖) =
𝜉 𝑗 ,𝑋 (𝑋, 𝜖)
𝜉 𝑗 (𝑋, 𝜖)

𝜇𝑋 (𝑋, 𝜖) +
1
2
𝜎′
𝑋 (𝑍, 𝜖)

𝜉 𝑗 ,𝑋𝑋 (𝑋, 𝜖)
𝜉 𝑗 (𝑋, 𝜖)

𝜎𝑋 (𝑋, 𝜖)

=
𝜉 𝑗 ,𝑋,1(𝑋)
𝜉 𝑗 ,0(𝑋)

𝜇𝑋,1(𝑋)𝜖2 + O(𝜖3)

= −(𝜓 − 1)
(
1 − 𝜓−1

) 𝛾𝜎2

2𝜉 𝑗 ,0(𝑋)

𝐽∑︁
𝑘=1

(𝛾̂𝑘 − 𝛾̂0) 𝜇𝑋𝑘 ,1(𝑋)𝜖2 + O(𝜖3). (C.33)
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The drift for 𝑦𝑡 is given by

𝜇𝑦 (𝑋, 𝜖) =
𝑦𝑋 (𝑋, 𝜖)
𝑦(𝑋, 𝜖) 𝜇𝑋 (𝑋, 𝜖) +

1
2
𝜎′
𝑋 (𝑍, 𝜖)

𝑦𝑋𝑋 (𝑋, 𝜖)
𝑦(𝑋, 𝜖) 𝜎𝑋 (𝑋, 𝜖)

=
𝑦𝑋,1(𝑋)
𝑦0(𝑋)

𝜇𝑋,1(𝑋)𝜖2 + O(𝜖3)

=

(
1 − 𝜓−1

) 𝛾𝜎2

2𝑦0(𝑋)

𝐽∑︁
𝑘=1

(𝛾̂𝑘 − 𝛾̂0) 𝜇𝑋𝑘 ,1(𝑋)𝜖2 + O(𝜖3). (C.34)

Step 2: Risk exposures of investors.
We focus on the inner region, that is, the case where all investors are sufficiently far from the
constraint boundary (on either side). For a constrained investor, the second-order term is zero. For
an unconstrained investor, the second-order term is given by

𝜎𝑗 ,2(𝑋) =
𝜂2(𝑋)
𝛾

− 𝜂1(𝑋)
𝛾

𝛾̂ 𝑗 +
𝜂0(𝑋)
𝛾

𝛾̂2
𝑗 +

1 − 𝛾−1

𝜓 − 1
𝜎𝜉 𝑗 ,2(𝑋), (C.35)

where investor 𝑗 is unconstrained if the following condition holds:

∑︁
𝑘∈J𝑢

𝑥𝑘

𝑥𝑢
𝛾̂𝑘 −

(
𝛼̂𝑝𝑥0 + 𝜎̂

∥𝜎∥ 𝑥𝑐

1 − 𝑥0 − 𝑥𝑐

)
− 𝛾̂ 𝑗 <

𝜎̂

∥𝜎∥ . (C.36)

Step 3: Aggregate risk aversion.
The aggregate risk aversion can be written as

𝛾𝑢 (𝑋, 𝜖) = 𝛾
[
1 + E𝑢

[
𝛾̂ 𝑗

]
𝜖 − Var𝑢

[
𝛾̂ 𝑗

]
𝜖2] + O(𝜖3), (C.37)

where

E𝑢
[
𝛾̂ 𝑗

]
≡

∑︁
𝑗∈J𝑢

𝑥 𝑗

𝑥𝑢
𝛾̂ 𝑗 , and Var𝑢 [𝛾̂ 𝑗 ] ≡

∑︁
𝑗∈J𝑢

𝑥 𝑗

𝑥𝑢
𝛾̂2
𝑗 −

©­«
∑︁
𝑗∈J𝑢

𝑥 𝑗

𝑥𝑢
𝛾̂ 𝑗

ª®¬
2

.

Step 4: Market price of risk.
The market price of risk is given by

𝜂(𝑋, 𝜖) = 𝛾𝑢 (𝑋, 𝜖)
𝑥𝑢

(1 − (1 + 𝛼̂𝑝𝜖)𝑥0,𝑡 ) (𝜎 − 𝜎𝑦 (𝑋, 𝜖)) − (𝜎 + 𝜎̂𝜖)𝑥𝑐,𝑡 +
∑︁
𝑗∈J𝑢

𝑡

𝑥 𝑗 ,𝑡

1 − 𝛾−1
𝑗

1 − 𝜓
𝜎𝜉 𝑗

(𝑋, 𝜖)
 ,

(C.38)
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The second-order term is then given by

𝜂2(𝑋) =
𝛾𝑢,0(𝑋)

𝑥𝑢

−(1 − 𝑥0,𝑡)𝜎𝑦,2(𝑋) +
∑︁
𝑗∈J𝑢

𝑡

𝑥 𝑗 ,𝑡
1 − 𝛾−1

𝑗

1 − 𝜓
𝜎𝜉 𝑗 ,2(𝑋)

 +
+ 𝛾𝑢,1(𝑋)

𝑥𝑢

[
−𝛼̂𝑝𝑥0𝜎 − 𝜎̂𝑥𝑐

]
+ 𝛾𝑢,2(𝑋)

𝑥𝑢
[(1 − 𝑥0)𝜎 − 𝜎𝑥𝑐] . (C.39)

The expression above can be written as

𝜂2(𝑋) = − (𝛾 − 1)𝑥𝑐 + 1 − 𝑥0
1 − 𝑥0 − 𝑥𝑐

𝜎𝑦,2(𝑋) − 𝛾𝜎E𝑢 [𝛾̂ 𝑗 ]
𝛼̂𝑝𝑥0 + 𝜎̂

𝜎
𝑥𝑐

1 − 𝑥0 − 𝑥𝑐
− 𝛾𝜎Var𝑢 [𝛾̂ 𝑗 ] . (C.40)

Step 5: Interest rate.
The interest rate is given by

𝑟 (𝑋, 𝜖) = 𝜌 − 𝜂(𝑋, 𝜖)𝜎𝑅 (𝑋, 𝜖) + 𝜓−1(𝜇 − 𝜇𝑦 (𝑋, 𝜖) + 𝜎2
𝑅,𝑡 (𝑋, 𝜖) − 𝜎𝜎𝑅 (𝑋, 𝜖))

+
(
1 − 𝜓−1

) 𝐽∑︁
𝑗=0

𝑥 𝑗
𝛾 𝑗

2
𝜎2
𝑗 (𝑋, 𝜖)

+ 𝜓−1
𝐽∑︁
𝑗=0

𝑥 𝑗 ,𝑡

[
𝜇𝜉 𝑗 (𝑋, 𝜖) + (1 − 𝛾 𝑗 )𝜎𝜉 𝑗 (𝑋, 𝜖)𝜎𝑗 (𝑋, 𝜖) +

𝜓 − 𝛾 𝑗

1 − 𝜓

𝜎2
𝜉 𝑗 ,𝑡

(𝑋, 𝜖)
2

]
. (C.41)

The second-order term is given by

𝑟2(𝑋) = −𝜂2(𝑋)𝜎 + 𝜂0(𝑋)𝜎𝑦,2(𝑋) − 𝜓−1(𝜇𝑦,2(𝑋) + 𝜎𝜎𝑦,2(𝑋))

+
(
1 − 𝜓−1

) 𝐽∑︁
𝑗=0

𝑥 𝑗𝛾𝜎

[
𝜎𝑗 ,2(𝑋) +

𝜎2
𝑗 ,1(𝑋)
2𝜎

+ 𝛾̂ 𝑗𝜎𝑗 ,1

]
+ 𝜓−1

𝐽∑︁
𝑗=0

𝑥 𝑗
[
𝜇𝜉 𝑗 ,2(𝑋) + (1 − 𝛾)𝜎𝜉 𝑗 ,2(𝑋)𝜎

]
. (C.42)

Step 6: Dividend yield.
The dividend yield, 𝑦, is given by

𝑦(𝑋, 𝜖) = 𝜓𝜌 + (1 − 𝜓)
𝑟 (𝑋, 𝜖) + 𝜂(𝑋, 𝜖)𝜎𝑅 (𝑋, 𝜖) −

𝐽∑︁
𝑗=0

𝑥 𝑗
𝛾 𝑗

2
𝜎2
𝑗 (𝑋, 𝜖)


+

𝐽∑︁
𝑗=0

𝑥 𝑗

[
𝜇𝜉 𝑗 (𝑋, 𝜖) + (1 − 𝛾 𝑗 )𝜎𝜉 𝑗 (𝑋, 𝜖)𝜎𝑗 (𝑋, 𝜖) +

𝜓 − 𝛾 𝑗

1 − 𝜓

𝜎2
𝜉 𝑗
(𝑋, 𝜖)
2

]
. (C.43)
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The second-order term in the expansion of 𝑦(𝑋, 𝜖) is given by

𝑦2(𝑋) = (1 − 𝜓)
𝑟2(𝑋) + 𝜂2(𝑋)𝜎 + 𝜂0(𝑋)𝜎𝑅,2(𝑋) −

𝐽∑︁
𝑗=0

𝑥 𝑗

𝛾

2

(
𝜎2
𝑗 ,1(𝑋) + 2𝜎𝜎𝑗 ,2(𝑋) + 2𝛾̂ 𝑗𝜎𝜎𝑗 ,1(𝑋)

)
+

𝐽∑︁
𝑗=0

𝑥 𝑗

[
𝜇𝜉 𝑗 ,2(𝑋) + (1 − 𝛾)𝜎𝜉 𝑗 ,2(𝑋)𝜎

]
. (C.44)

Using the expression for the interest rate, we obtain

𝑦2(𝑋) =
(
1 − 𝜓−1

) 𝜇𝑦,2(𝑋) + 𝜎𝜎𝑦,2(𝑋) +
𝐽∑︁
𝑗=0

𝑥 𝑗𝛾𝜎

(
𝜎2
𝑗 ,1(𝑋)
2𝜎

+ 𝜎𝑗 ,2(𝑋) + 𝛾̂ 𝑗𝜎𝑗 ,1(𝑋)
)

+ 𝜓−1
𝐽∑︁
𝑗=0

𝑥 𝑗
[
𝜇𝜉 𝑗 ,2(𝑋) + (1 − 𝛾)𝜎𝜉 𝑗 ,2(𝑋)𝜎

]
. (C.45)

Given that 𝜇𝜉 𝑗 ,2 = (1 − 𝜓)𝜇𝑦,2 and 𝜎𝜉 𝑗 ,2 = (1 − 𝜓)𝜎𝑦,2, we obtain

𝑦2(𝑋) =
(
1 − 𝜓−1

) 𝛾𝜎𝑦,2(𝑋)𝜎 +
𝐽∑︁
𝑗=0

𝑥 𝑗𝛾𝜎

(
𝜎2
𝑗 ,1(𝑋)
2𝜎

+ 𝜎𝑗 ,2(𝑋) + 𝛾̂ 𝑗𝜎𝑗 ,1(𝑋)
)

=

(
1 − 𝜓−1

) 𝐽∑︁
𝑗=0

𝑥 𝑗𝛾𝜎

(
𝜎2
𝑗 ,1(𝑋)
2𝜎

+ 𝛾̂ 𝑗𝜎𝑗 ,1(𝑋)
)
, (C.46)

where in the second equality, we use the fact that, from the market clearing condition for the risky
asset, we have

∑𝐽
𝑗=0 𝑥 𝑗𝜎𝑗 ,2(𝑋) = 𝜎𝑅,2(𝑋) = −𝜎𝑦,2(𝑋).

Step 7: Risk premium.
Since the risk premium is given by 𝜋𝑡 = 𝜂𝑡𝜎𝑅,𝑡 , we can write

𝜋(𝑋, 𝜖) = 𝜂0(𝑋)𝜎𝑅,0(𝑋) + 𝜂1(𝑋)𝜎𝑅,0(𝑋)𝜖 +
(
𝜂0(𝑋)𝜎𝑅,2(𝑋) + 𝜂2(𝑋)𝜎𝑅,0(𝑋)

)
𝜖2 + O

(
𝜖3

)
.

Given that 𝜎𝑅,0 = 𝜎 and 𝜎𝑅,2(𝑋) = −𝜎𝑦,2(𝑋), we get

𝜋2(𝑋) = −𝜂0(𝑋)𝜎𝑦,2(𝑋) + 𝜂2(𝑋)𝜎. (C.47)
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D Derivation of the Market Elasticity

Let 𝑝(𝑋, 𝜖) ≡ 1/𝑦(𝑋, 𝜖) denote the price-dividend ratio. The second-order expansion of
𝑝(𝑋, 𝜖) is given by

𝑝(𝑋, 𝜖) = 1
𝑦0(𝑋)

− 𝑦1(𝑋)
𝑦2

0(𝑋)
𝜖 +

[
𝑦2

1(𝑋)
𝑦3

0(𝑋)
− 𝑦2(𝑋)
𝑦2

0(𝑋)

]
𝜖2 + O(𝜖3). (D.1)

Let 𝐹 (𝑋) ≡ 𝑊0 (1+𝛼̂𝑝𝜖)−𝑊0
𝑃

= 𝛼̂𝑝𝜖𝑥0 denote the flow into the risky asset relative to the benchmark
economy.

Proof. From Equation (D.1), the first-order impact of flows on the price-dividend ratio can be
written as

𝜕𝑝(𝑋, 𝜖)
𝜕𝐹 (𝑋, 𝜖) = − 1

𝑦2
0(𝑋)

𝜕𝑦1(𝑋)
𝜕𝛼̂𝑝

1
𝑥0

+ O(𝜖). (D.2)

Since from Proposition 2, 𝑦1(𝑋) does not depend on 𝛼̂𝑝, the right hand side of Equation (D.2) is
zero, leading to an infinite aggregate elasticity to the first-order:

𝜀−1
𝑀 =

1
𝑝(𝑋, 𝜖)

𝜕𝑝(𝑋, 𝜖)
𝜕𝐹 (𝑋, 𝜖) = 0 + O(𝜖).

Given that from Equation (17), we have 𝑦𝑡 = 𝑟𝑡 + 𝜋𝑡 − 𝜇𝑃,𝑡 , we can write the first-order term for
the dividend yield as

𝑦1(𝑋) = 𝑟1(𝑋) + 𝜋1(𝑋) − 𝜇𝑃,1(𝑋),

where 𝜇𝑃,𝑡 = 𝜇 − 𝜇𝑦,𝑡 − 𝜎𝑦,𝑡𝜎𝑅,𝑡 is the drift of the risky asset price 𝑃𝑡 , and 𝜋𝑡 is the risk premium.
As shown in Proposition 2, the first-order term for the dividend yield is constant. This means
𝜇𝑦,1(𝑋) = 𝜎𝑦,1(𝑋) = 0, leading to 𝜎𝑅,1(𝑋) = 0. Therefore, we have 𝜇𝑃,1(𝑋) = 0, and

𝜕𝑦1(𝑋)
𝜕𝛼̂𝑝

=
𝜕𝑟1(𝑋)
𝜕𝛼̂𝑝

+ 𝜕𝜋1(𝑋)
𝜕𝛼̂𝑝

.

From Proposition 2, we have

𝜕𝑟1(𝑋)
𝜕𝛼̂𝑝

= −𝜎𝜕𝜂1(𝑋)
𝜕𝛼̂𝑝

=
𝛾𝜎2

𝑥𝑢
𝑥0,

𝜕𝜋1(𝑋)
𝜕𝛼̂𝑝

= 𝜎
𝜕𝜂1(𝑋)
𝜕𝛼̂𝑝

= −𝛾𝜎
2

𝑥𝑢
𝑥0.

Thus, up to the first order, the effect of portfolio flows on the risk-free rate is the exact opposite
of its impact on the risk premium and portfolio flows do not affect the price-dividend ratio up to
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first order. Therefore, up to the first-order, the aggregate market elasticity is infinite.

Using Equation (D.1), the derivative of the price-dividend ratio with respect to flows 𝐹 is given
by

𝜕𝑝(𝑋, 𝜖)
𝜕𝐹 (𝑋, 𝜖) = − 1

𝑦2
0(𝑋)

𝜕𝑦2(𝑋)
𝜕𝛼̂𝑝

𝜖

𝑥0
+ O(𝜖2), (D.3)

where 𝑦1(𝑋) does not depend on 𝛼̂𝑝, leading to no price impact (infinite elasticity) up to the
first-order.

D.1 Proof of Proposition 3

Proof. Consider the case where there is no preference heterogeneity and active investors do not
face leverage constraints. In this case, 𝑦2(𝑋) simplifies to

𝑦2(𝑋) =
(
1 − 𝜓−1

)
𝛾𝜎2

𝐽∑︁
𝑗=0

𝑥 𝑗

𝜎2
𝑗 ,1(𝑋)
2𝜎2 , (D.4)

using the fact that 𝜎𝑦,2 = 𝜎𝑗 ,2 = 0 when 𝛾̂ 𝑗 = 0 for 𝑗 = 0, 1, . . . , 𝐽 when investors have the same
preferences.

Using the expression for 𝜎𝑗 ,1 in Proposition 2, the (inverse) aggregate market elasticity is given
by

1
𝑝(𝑋, 𝜖)

𝜕𝑝(𝑋, 𝜖)
𝜕𝐹 (𝑋, 𝜖) = −1 − 𝜓−1

2𝑦0(𝑋)
𝛾𝜎2

(
2𝑥0𝛼̂𝑝 + 𝑥𝑎

2𝛼̂𝑝𝑥
2
0

𝑥2
𝑎

)
𝜖

𝑥0
+ O(𝜖2), (D.5)

where 𝑥𝑎 ≡ 1 − 𝑥0 denotes the wealth share of active investors. This can be written as

1
𝑝(𝑋, 𝜖)

𝜕𝑝(𝑋, 𝜖)
𝜕𝐹 (𝑋, 𝜖) =

(
1 − 𝜓−1

) 𝛾𝜎2

𝑦0(𝑋)
1 − 𝛼𝑝

𝑥𝑎
+ O(𝜖2), (D.6)

where we use 𝛼𝑝 = 1 + 𝛼̂𝑝𝜖 from Equation (25).

From Equation (C.47), the impact of flows of the risk premium can be written as

𝜕𝜋(𝑋, 𝜖)
𝜕𝐹 (𝑋, 𝜖) = 𝜎

𝜕𝜂1(𝑋)
𝜕𝛼̂𝑝

𝜖

𝑥0
+ 𝜕𝜋2(𝑋)

𝜕𝛼̂𝑝

𝜖

𝑥0
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D.2 Proof of Proposition 4

Proof. Consider the case in which active investors have heterogeneous risk aversions, but face no
leverage constraints. In this case, the expression for 𝑦2(𝑋) in Equation (C.30) can be written as

𝑦2(𝑋) =
(
1 − 𝜓−1

)
𝛾𝜎2


𝐽∑︁
𝑗=1

𝑥 𝑗

(
𝜎2
𝑗 ,1(𝑋)
2𝜎2 𝛾̂ 𝑗

𝜎𝑗 ,1(𝑋)
𝜎

) +
(
1 − 𝜓−1

)
𝛾𝜎2𝑥0

(
𝛼̂2
𝑝

2
+ 𝛾̂0𝛼̂𝑝

)
(D.7)

Note that with unconstrained active investors, the effect of endogenous volatility and hedging
demand exactly cancel out. We first compute the derivative of the term involving 𝜎2

𝑗 ,1:

𝐽∑︁
𝑗=0

𝑥 𝑗

𝜕𝜎2
𝑗 ,1

𝜕𝛼̂𝑝

=

𝐽∑︁
𝑗=0

2𝑥 𝑗𝜎𝑗 ,1
𝜕𝜎𝑗 ,1

𝜕𝛼̂𝑝

= 2𝑥0𝜎
2𝛼̂𝑝 + 2𝜎2

𝐽∑︁
𝑗=1

𝑥 𝑗

( ∑︁
𝑘∈J𝑢

𝑥𝑘

𝑥𝑢
𝛾̂𝑘 −

(
𝛼̂𝑝𝑥0

1 − 𝑥0

)
− 𝛾̂ 𝑗

) (
− 𝑥0

1 − 𝑥0

)
= 2𝜎2

𝑥0𝛼̂𝑝 +
𝛼̂𝑝𝑥

2
0

1 − 𝑥0
+ ©­«(1 − 𝑥0)

𝐽∑︁
𝑘=1

𝑥𝑘

𝑥𝑢
𝛾̂𝑘 −

𝐽∑︁
𝑗=1

𝑥 𝑗 𝛾̂ 𝑗
ª®¬
(
− 𝑥0

1 − 𝑥0

)
= 2𝜎2 𝛼̂𝑝𝑥0

1 − 𝑥0
. (D.8)

The derivatives of the term involving 𝜎𝑗 ,1(𝑋) with respect to 𝛼̂𝑝 are given by:

1
𝜎

𝐽∑︁
𝑗=0

𝑥 𝑗 𝛾̂ 𝑗

𝜕𝜎𝑗 ,1(𝑋)
𝜕𝛼̂𝑝

=

𝐽∑︁
𝑗=1

𝑥 𝑗 𝛾̂ 𝑗

(
− 𝑥0

1 − 𝑥0

)
+ 𝑥0𝛾̂0 = 𝑥0 (𝛾̂0 − E𝑢 [𝛾̂𝑘 ]) (D.9)

Thus, the (inverse) aggregate elasticity is then given by:

1
𝑝(𝑋, 𝜖)

𝜕𝑝(𝑋, 𝜖)
𝜕𝐹 (𝑋, 𝜖) =

(
1 − 𝜓−1

) 𝛾𝜎2

𝑦0(𝑋)

[
1 − 𝛼𝑝

𝑥𝑎
−
𝛾0 − E𝑢

[
𝛾 𝑗

]
𝛾

]
+ O(𝜖2), (D.10)

where 𝑥𝑎 ≡ 1 − 𝑥0 is the wealth share of active investors, and we use 𝛾 𝑗 = 𝛾
(
1 + 𝛾̂ 𝑗𝜖

)
from

Equation (24).
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D.3 Proof of Proposition 5

Proof. Consider the case in which active investors have heterogeneous risk aversions and also face
leverage constraints. We can then write 𝑦2(𝑋) as follows

𝑦2(𝑋) =
(
1 − 𝜓−1

)
𝛾𝜎2

𝐽∑︁
𝑗=0

𝑥 𝑗

[
𝜎2
𝑗 ,1(𝑋)
2𝜎2 + 𝛾̂ 𝑗

𝜎𝑗 ,1(𝑋)
𝜎

]
=

(
1 − 𝜓−1

)
𝛾𝜎2

𝐽∑︁
𝑗=1

𝑥 𝑗

[
𝜎2
𝑗 ,1(𝑋)
2𝜎2 + 𝛾̂ 𝑗 min

{ ∑︁
𝑘∈J𝑢

𝑥𝑘

𝑥𝑢
𝛾̂𝑘 −

𝛼̂𝑝𝑥0 + 𝜎̂
𝜎
𝑥𝑐

1 − 𝑥0 − 𝑥𝑐
− 𝛾̂ 𝑗 ,

𝜎̂

𝜎

}]
+

(
1 − 𝜓−1

)
𝛾𝜎2𝑥0

[
𝛼̂2
𝑝

2
+ 𝛾̂0𝛼̂𝑝

]
, (D.11)

The derivative of 𝑦2(𝑋) with respect to 𝛼̂𝑝 is given by

𝜕𝑦2(𝑋)
𝜕𝛼̂𝑝

=

(
1 − 𝜓−1

)
𝛾𝜎2 ©­«

𝐽∑︁
𝑗=1

𝑥 𝑗
𝜎𝑗 ,1(𝑋)

𝜎2
𝜕𝜎𝑗 ,1

𝜕𝛼̂𝑝

− E𝑢 [𝛾̂𝑘 ]𝑥0 + 𝑥0(𝛼̂𝑝 + 𝛾̂0)ª®¬ ,
where

1
𝜎2

𝐽∑︁
𝑗=0

𝑥 𝑗

𝜕𝜎2
𝑗 ,1

𝜕𝛼̂𝑝

=
1
𝜎2

𝐽∑︁
𝑗=0

𝑥 𝑗2𝜎𝑗 ,1
𝜕𝜎𝑗 ,1

𝜕𝛼̂𝑝

= 2𝑥0𝛼̂𝑝 + 2
∑︁
𝑗∈J𝑢

𝑥 𝑗

( ∑︁
𝑘∈J𝑢

𝑥𝑘

𝑥𝑢
𝛾̂𝑘 −

(
𝛼̂𝑝𝑥0 + 𝜎̂

𝜎
𝑥𝑐

1 − 𝑥0 − 𝑥𝑐

)
− 𝛾̂ 𝑗

) (
− 𝑥0

1 − 𝑥0 − 𝑥𝑐

)
= 2

𝑥0𝛼̂𝑝 +
𝛼̂𝑝𝑥0 + 𝜎̂

𝜎
𝑥𝑐

1 − 𝑥0 − 𝑥𝑐
𝑥0 + ©­«𝑥𝑢

∑︁
𝑘∈J𝑢

𝑥𝑘

𝑥𝑢
𝛾̂𝑘 −

∑︁
𝑗∈J𝑢

𝑥 𝑗 𝛾̂ 𝑗
ª®¬
(
− 𝑥0

1 − 𝑥0 − 𝑥𝑐

)
= 2𝑥0

[
𝛼̂𝑝

𝑥𝑢
+

(
𝜎̂

𝜎
− 𝛼̂𝑝

)
𝑥𝑐

𝑥𝑢

]
. (D.12)

The second derivative of 𝑦(𝑋, 𝜖) can then be written as

𝜕𝑦2(𝑋)
𝜕𝛼̂𝑝

=

(
1 − 𝜓−1

)
𝛾𝜎2

[
𝛼̂𝑝

𝑥𝑢
+

(
𝜎̂

𝜎
− 𝛼̂𝑝

)
𝑥𝑐

𝑥𝑢
− (E𝑢 [𝛾̂𝑘 ] − 𝛾̂0)

]
𝑥0.
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Thus, the (inverse) aggregate market elasticity is then given by

1
𝑝(𝑋, 𝜖)

𝜕𝑝(𝑋, 𝜖)
𝜕𝐹 (𝑋, 𝜖) =

(
1 − 𝜓−1

) 𝛾𝜎2

𝑦0(𝑋)


(1 − 𝛼𝑝) (1 − 𝑥𝑐) −

(
𝜎
𝜎
− 1

)
𝑥𝑐

𝑥𝑢
−
𝛾0 − E𝑢

[
𝛾 𝑗

]
𝛾

 + O(𝜖2),

(D.13)

where we use 𝜎 = 𝜎 + 𝜎̂𝜖 from Equation (26).

E Useful Formula

The following are useful for computing the derivatives above:

𝛾𝜎
𝜕𝜎𝑦,2(𝑋)

𝜕𝛼̂𝑝

=

(
1 − 𝜓−1

) 𝛾𝜎2

2𝑦0(𝑋)

𝐽∑︁
𝑘=1

(𝛾̂𝑘 − 𝛾̂0) 𝑥𝑘
(
−𝛾𝜎2𝑥0

1 − 𝑥0

)
. (E.1)

Note that we can write 𝜎𝑗 ,2(𝑋) as follows

𝜎𝑗 ,2(𝑋)
𝜎

=
𝜂2(𝑋)
𝛾𝜎

− 𝜂1(𝑋)
𝛾𝜎

𝛾̂ 𝑗 +
𝜂0(𝑋)
𝛾𝜎

𝛾̂2
𝑗 − (1 − 𝛾−1)

𝜎𝑦,2(𝑋)
𝜎

= −
(
1 + 𝑥𝑐

𝑥𝑢

)
𝜎𝑦,2(𝑋)

𝜎
− E𝑢 [𝛾̂𝑘 ]

𝛼̂𝑝𝑥0 + 𝜎̂
𝜎
𝑥𝑐

1 − 𝑥0 − 𝑥𝑐
− Var𝑢 [𝛾̂𝑘 ]+

− 𝛾̂ 𝑗

[ ∑︁
𝑘∈J𝑢

𝑥𝑘

𝑥𝑢
𝛾̂ 𝑗 −

𝛼̂𝑝𝑥0

1 − 𝑥0

]
+ 𝛾̂2

𝑗 . (E.2)

𝜎𝑗 ,1(𝑋) = 𝜎 min

{ ∑︁
𝑘∈J𝑢

𝑥𝑘

𝑥𝑢
𝛾̂𝑘 −

(
𝛼̂𝑝𝑥0 + 𝜎̂

∥𝜎∥ 𝑥𝑐

1 − 𝑥0 − 𝑥𝑐

)
− 𝛾̂ 𝑗 ,

𝜎̂

𝜎

}
(E.3)

𝜎𝑗 ,2(𝑋) =
𝜂2(𝑋)
𝛾

− 𝜂1(𝑋)
𝛾

𝛾̂ 𝑗 +
𝜂0(𝑋)
𝛾

𝛾̂2
𝑗 − (1 − 𝛾−1)𝜎𝑦,2(𝑋) (E.4)

𝜎𝑦,2(𝑋) =
(
1 − 𝜓−1

) 𝛾𝜎2

2𝑦0(𝑋)

𝐽∑︁
𝑘=1

(𝛾̂𝑘 − 𝛾̂0) 𝑥𝑘𝜎𝑘,1(𝑋) (E.5)

𝜂1(𝑋) = 𝛾𝜎


∑︁
𝑗∈J𝑢

𝑥 𝑗

𝑥𝑢
𝛾̂ 𝑗 −

𝛼̂𝑝𝑥0

1 − 𝑥0

 (E.6)

𝜂2(𝑋) = − (𝛾 − 1)𝑥𝑐 + 1 − 𝑥0
1 − 𝑥0 − 𝑥𝑐

𝜎𝑦,2(𝑋) − 𝛾𝜎E𝑢 [𝛾̂ 𝑗 ]
𝛼̂𝑝𝑥0 + 𝜎̂

𝜎
𝑥𝑐

1 − 𝑥0 − 𝑥𝑐
− 𝛾𝜎Var𝑢 [𝛾̂ 𝑗 ], (E.7)
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where

𝜕𝜎𝑦,2

𝜕𝛼̂𝑝

=

(
1 − 𝜓−1

) 𝛾𝜎2

2𝑦0(𝑋)

𝐽∑︁
𝑘=1

(𝛾̂𝑘 − 𝛾̂0) 𝑥𝑘
(
− 𝜎𝑥0

1 − 𝑥0

)
=

(
1 − 𝜓−1

) 𝛾𝜎2

2𝑦0(𝑋)
𝜎

(
𝛾̂0 − E𝑢 [𝛾̂ 𝑗 ]

)
𝑥0 (E.8)

𝐽∑︁
𝑗=0

𝑥 𝑗𝛾𝜎𝛾̂ 𝑗

𝜕𝜎𝑗 ,1(𝑋)
𝜕𝛼̂𝑝

= 𝛾𝜎2
𝐽∑︁
𝑗=0

𝑥 𝑗 𝛾̂ 𝑗

(
− 𝑥0

1 − 𝑥0

)
(E.9)

F Derivation of the perturbed solution

In this section, we compute the first-order and second-order correction of the equilibrium
objects. It turns out that the system of equations determining the perturbed solution is block-
recursive, so we are able to solve for the equilibrium objects one by one, provided we proceed in
the appropriate order.

In contrast to the case considered in the text, we allow for portfolio-flow shocks. In particular,
we assume that the portfolio share of the passive investor is given by 𝛼0,𝑡 = 1 + 𝜖 (𝛼𝑝,𝑡 − 1), where
𝛼𝑝,𝑡 follows the process

𝑑𝛼𝑝,𝑡 = 𝜃𝑝 (𝛼 − 𝛼𝑝,𝑡)𝜖𝑑𝑡 + 𝜎𝑝

√︃
𝛼𝑝,𝑡𝜖𝑑𝑍𝑡 . (F.1)

Notice that 𝛼0,𝑡 = 1 and 𝛼𝑝,𝑡 is constant when 𝜖 = 0. Finally, we assume that the mortality parameter
is given by 𝜅 = 𝜅𝜖 .

F.1 First-order correction

Diffusion and drift terms. The diffusion term for the price-dividend ratio is given by

𝜎𝑝,𝑡 =
𝑝𝑥

𝑝
𝜎𝑥 +

𝑝𝛼𝑝

𝑝
𝜎𝑝

√︃
𝛼𝑝,𝑡𝜖 = O(𝜖2). (F.2)

Notice that 𝑝𝑥 𝑗 = O(𝜖) and 𝜎𝑥 𝑗 = O(𝜖), as 𝑝 and 𝑥 𝑗 are constant when 𝜖 = 0, so the zeroth-order
terms for 𝑝𝑥 𝑗 , 𝑝𝛼𝑝

, and 𝜎𝑥 𝑗 are equal to zero. This implies that the first-order correction for 𝜎𝑝,𝑡 is
equal to zero. A similar argument shows that 𝜎𝑐 𝑗 ,𝑡 = O(𝜖2).

The drift of 𝑝 is given by

𝜇𝑝,𝑡 =
𝑝𝑥

𝑝
𝜇𝑥+

𝑝𝛼𝑝

𝑝
𝜃𝑝 (𝛼−𝛼𝑝,𝑡)𝜖+

1
2

𝑑∑︁
𝑘=1

[
𝜎′
𝑥,𝑘

𝑝𝑥𝑥

𝑝
𝜎𝑥,𝑘 + 2𝜎𝑝,𝑘

√︃
𝛼𝑝,𝑡𝜖

𝑝𝑥𝛼𝑝

𝑝
𝜎𝑥,𝑘 +

𝑝𝛼𝑝𝛼𝑝

𝑝
𝜎2
𝑝,𝑘𝛼𝑝,𝑡𝜖

2
]
,

(F.3)
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where 𝜎𝑥,𝑘 is the 𝑘-th column of the 𝐽 × 𝑑 matrix 𝜎𝑥 . As 𝑝𝑥 and 𝑝𝛼𝑝
are first-order in 𝜖 , and the

same goes for 𝜇𝑥 and 𝜎𝑥 , then 𝜇𝑝,𝑡 = O(𝜖2). A similar argument shows that 𝜇𝑐 𝑗 ,𝑡 = O(𝜖2). Notice
these facts imply that 𝜍 𝑗 = O(𝜖2) and 𝜉 𝑗 ,𝑡 = O(𝜖2).

Risk premium. The risk premium is given by

𝜋1(𝑋) = 𝛾 | |𝜎 | |2

∑︁
𝑗∈J𝑢

𝑥 𝑗

𝑥𝑢
𝛾̂ 𝑗 −

𝑥0𝛼̂𝑝 + 𝑥𝑐
𝜎̂

| |𝜎 | |
1 − 𝑥0 − 𝑥𝑐

 , (F.4)

using the fact that | |𝜎𝑅,𝑡 | | = | |𝜎 | | + O(𝜖2), and 𝛼̂𝑝,𝑡 ≡ 𝛼𝑝,𝑡 − 1.

Portfolio share. The portfolio share of an unconstrained investor is given by

𝛼 𝑗 (𝑋, 𝜖) = 1 +
[
𝜋1(𝑋)
𝛾 | |𝜎 | |2

− 𝛾̂ 𝑗

]
𝜖 + O(𝜖2), (F.5)

the portfolio share of a constrained investor is given by

𝛼 𝑗 (𝑋, 𝜖) = 1 + 𝜎̂

| |𝜎 | | 𝜖 + O(𝜖2), (F.6)

and the portfolio share of the passive investor is given by 𝛼0(𝑋, 𝜖) = 1 + 𝛼̂𝑝,𝑡𝜖 . Notice that∑𝐽
𝑗=0 𝑥 𝑗𝛼 𝑗 ,1(𝑋) = 0, consistent with market clearing.

Interest rate. The first-order correction for the interest rate is given by

𝑟1(𝑋) =
(
1 − 𝜓−1

)
𝛾 | |𝜎 | |2

𝐽∑︁
𝑗=0

𝑥 𝑗

[
𝛾̂ 𝑗

2
+ 𝛼 𝑗 ,1(𝑋)

]
− 𝜋1(𝑋), (F.7)

using the fact that 𝜉𝑡 = O(𝜖2), 𝜇𝑝,𝑡 = O(𝜖2), and 𝜎𝑝,𝑡 = O(𝜖2). Given the market clearing for the
risky asset, we can write:

𝑟1(𝑋) =
(
1 − 𝜓−1

)
𝛾 | |𝜎 | |2

𝐽∑︁
𝑗=0

𝑥 𝑗
𝛾̂ 𝑗

2
− 𝜋1(𝑋), (F.8)

so 𝑟1(𝑋) + 𝜋1(𝑋) is independent of 𝛼𝑝.
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Price-dividend ratio. From the pricing condition, we obtain

− 1
𝑝0(𝑋)2 𝑝1(𝑋) = 𝑟1(𝑋) + 𝜋1(𝑋). (F.9)

Rearranging the expression above, and using the expression for the interest rate, we obtain

𝑝1(𝑋) = −𝑝0(𝑋)2
(
1 − 𝜓−1

)
𝛾 | |𝜎 | |2

𝐽∑︁
𝑗=0

𝑥 𝑗
𝛾̂ 𝑗

2
, (F.10)

which is independent of 𝛼𝑝,𝑡 .

Consumption-wealth ratio. The consumption-wealth ratio is given by

𝑐 𝑗 ,1(𝑋) = (1 − 𝜓)
[
𝑟1(𝑋) + 𝜋1(𝑋) + 𝜋0(𝑋)𝛼 𝑗 ,1(𝑋) −

1
2
𝛾∥|𝜎∥|2(𝛾̂ 𝑗 + 2𝛼 𝑗 ,1(𝑋))

]
. (F.11)

Using the expression for 𝑟1(𝑋), we can write the expression above as follows:

𝑐 𝑗 ,1(𝑋) = (1 − 𝜓)
[
(1 − 𝜓−1)

𝐽∑︁
𝑖=0

𝑥𝑖
𝛾̂𝑖

2
−
𝛾̂ 𝑗

2

]
𝛾∥|𝜎∥|2. (F.12)

Wealth dynamics. The diffusion term of 𝑥 𝑗 is given by

𝜎𝑥 𝑗 (𝑋) = 𝑥 𝑗𝛼 𝑗 ,1(𝑋)𝜖𝜎 + O(𝜖2). (F.13)

The drift of 𝑥 𝑗 is given by

𝜇𝑥 𝑗 (𝑋) = 𝑥 𝑗

[
𝑟1(𝑋) + 𝜋1(𝑋) + 𝜋0(𝑋)𝛼 𝑗 ,1(𝑋) − 𝑐 𝑗 ,1(𝑋) − 𝛼 𝑗 ,1(𝑋) | |𝜎 | |2 + 𝜅

𝜔 𝑗 − 𝑥 𝑗

𝑥 𝑗

]
𝜖 + O(𝜖2).

(F.14)
We can write the first-order correction of 𝜇𝑥 𝑗 as follows:

𝜇𝑥 𝑗 ,1(𝑋) = 𝑥 𝑗

[
(𝜓 − 1) 𝛾∥|𝜎∥|2

2

(
𝐽∑︁
𝑖=0

𝑥𝑖 𝛾̂𝑖 − 𝛾̂ 𝑗

)
+ (𝛾 − 1)∥ |𝜎∥|2𝛼 𝑗 ,1(𝑋)

]
+ 𝜅(𝜔 𝑗 − 𝑥 𝑗 ). (F.15)

F.2 Second-order correction

Diffusion and drift terms. The diffusion term for the price-dividend ratio is given by

𝜎𝑝,2(𝑋) =
𝑝𝑥,1(𝑋)
𝑝0(𝑋)

𝜎𝑥,1(𝑋) +
𝑝𝛼𝑝 ,1(𝑋)
𝑝0(𝑋)

𝜎𝑝

√︃
𝛼𝑝 . (F.16)
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We can write the expression above as follows:

𝜎𝑝,2(𝑋) = −𝑝0(𝑋) (1 − 𝜓−1) 𝛾∥𝜎∥|2
2

𝐽∑︁
𝑗=1

(
𝛾̂ 𝑗 − 𝛾̂0

)
𝑥 𝑗𝛼 𝑗 ,1(𝑋)𝜎, (F.17)

where we used the fact that 𝑝𝛼𝑝 ,1(𝑋) = 0.
Similarly, the diffusion for 𝑐 𝑗 is given by

𝜎𝑐 𝑗 ,2(𝑋) = −(𝜓 − 1) 𝛾∥|𝜎∥|2
2𝑐 𝑗 ,0(𝑋)

(1 − 𝜓−1)
𝐽∑︁
𝑖=1

(𝛾̂𝑖 − 𝛾̂0) 𝑥𝑖𝛼𝑖,1(𝑋)𝜎. (F.18)

The second-order correction for the hedging demand is then given by 𝜍 𝑗 ,2(𝑋) = 1−𝛾−1

𝜓−1
𝜎𝑐 𝑗 ,2𝜎

′

∥|𝜎∥|2 .
The second-order correction of the drift of 𝑝 and 𝑐 𝑗 are given by

𝜇𝑝,2(𝑋) =
𝑝𝑥,1(𝑋)
𝑝0(𝑋)

𝜇𝑥,1(𝑋), 𝜇𝑐 𝑗 ,2(𝑋) =
𝑐 𝑗 ,𝑥,1(𝑋)
𝑐 𝑗 ,0(𝑋)

𝜇𝑥,1(𝑋), (F.19)

which can be written as

𝜇𝑝,2(𝑋) = −𝑝0(𝑋) (1 − 𝜓−1) 𝛾∥𝜎∥|2
2

𝐽∑︁
𝑗=1

(𝛾̂ 𝑗 − 𝛾̂0)𝜇𝑥 𝑗 ,1(𝑋) (F.20)

𝜇𝑐𝑖 ,2(𝑋) = (1 − 𝜓) (1 − 𝜓−1) 𝛾∥𝜎∥|2
2𝑐𝑖,0(𝑋)

𝐽∑︁
𝑗=1

(𝛾̂ 𝑗 − 𝛾̂0)𝜇𝑥 𝑗 ,1(𝑋). (F.21)

The second-order correction for 𝜉 𝑗 ,𝑡 is then given by 𝜉 𝑗 ,2(𝑋) = 𝜇𝑐 𝑗 ,2(𝑋) + (1 − 𝛾)𝜎𝑐 𝑗 ,2𝜎
′.

Risk premium. The risk premium is given by

𝜋2(𝑋) = 𝛾∥𝜎∥|2
[
𝛾𝑢,2(𝑋)

𝛾
− 𝛾𝑢,1(𝑋)

𝛾

𝑥0𝛼̂𝑝 + 𝑥𝑐
𝜎̂

∥𝜎∥|
1 − 𝑥0 − 𝑥𝑐

+ 2
𝑑∑︁

𝑘=1

𝜎𝑘𝜎𝑝,2,𝑘

| |𝜎 | |2
− 𝑥𝑐

1 − 𝑥0 − 𝑥𝑐
𝛼𝑐,2(𝑋) − 𝜍2(𝑋)

]
.

(F.22)
Notice that we can write the aggregate risk aversion as follows:

𝛾𝑢 (𝑋) = 𝛾
[
1 + E𝑢 [𝛾̂ 𝑗 ]𝜖 − 𝛿𝑢 [𝛾̂ 𝑗 ]𝜖2] + O(𝜖3), (F.23)

where E𝑢 [𝛾̂ 𝑗 ] ≡
∑

𝑗∈J𝑢
𝑥 𝑗
𝑥𝑢
𝛾̂ 𝑗 and 𝛿𝑢 [𝛾̂ 𝑗 ] ≡

∑
𝑗∈J𝑢

𝑥 𝑗
𝑥𝑢
𝛾̂2
𝑗
−

(∑
𝑗∈J𝑢

𝑥 𝑗
𝑥𝑢
𝛾̂ 𝑗

)2
, so 𝛾𝑢,2(𝑋)/𝛾 = −𝛿𝑢 [𝛾̂ 𝑗 ].
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Combining the previous two expressions, we obtain

𝜋2(𝑋)
𝛾∥𝜎∥|2

= −𝛿𝑢 [𝛾̂ 𝑗 ] − E𝑢 [𝛾̂ 𝑗 ]
𝑥0𝛼̂𝑝 + 𝑥𝑐

𝜎̂
∥𝜎∥|

1 − 𝑥0 − 𝑥𝑐
+ 2

𝑑∑︁
𝑘=1

𝜎𝑘𝜎𝑝,2,𝑘

| |𝜎 | |2
+ 𝑥𝑐

1 − 𝑥0 − 𝑥𝑐

𝑑∑︁
𝑘=1

𝜎𝑘𝜎𝑝,2,𝑘

∥𝜎∥|2
− 𝜍2(𝑋)

= −𝛿𝑢 [𝛾̂ 𝑗 ] − E𝑢 [𝛾̂ 𝑗 ]
𝑥0𝛼̂𝑝 + 𝑥𝑐

𝜎̂
∥𝜎∥|

1 − 𝑥0 − 𝑥𝑐
+

(
1 + 𝛾−1 + 𝑥𝑐

1 − 𝑥0 − 𝑥𝑐

) 𝑑∑︁
𝑘=1

𝜎𝑘𝜎𝑝,2,𝑘

∥𝜎∥|2
, (F.24)

where we used the fact that 𝜍2(𝑋) = 1−𝛾−1

𝜓−1
𝜎𝑐 𝑗 ,2𝜎

′

∥𝜎∥|2 , 𝜎𝑝,2 =
𝜎𝑐 𝑗 ,2

𝜓−1 , and 𝛼𝑐,2(𝑋) = −∑𝑑
𝑘=1

𝜎𝑘𝜎𝑝,2,𝑘
∥𝜎∥|2 .

Portfolio share. The portfolio share of an unconstrained investor is given by

𝛼 𝑗 ,2(𝑋) =
𝜋2(𝑋)
𝛾∥|𝜎∥|2

− 𝜋1(𝑋)
𝛾∥|𝜎∥|2

𝛾̂ 𝑗 + 𝛾̂2
𝑗 − 2

𝑑∑︁
𝑘=1

𝜎𝑘𝜎𝑝,2,𝑘 (𝑋)
∥𝜎∥2 + 𝜍 𝑗 ,2(𝑋), (F.25)

the portfolio share of a constrained investor is 𝛼 𝑗 ,2(𝑋) = −∑𝑑
𝑘=1

𝜎𝑘𝜎𝑝,2,𝑘
∥𝜎∥|2 , and the portfolio share of

the passive investor satisfies 𝛼0,2 = 0.
We can write the expression above as follows:

𝛼 𝑗 ,2(𝑋) =
𝜋2(𝑋)
𝛾∥|𝜎∥|2

− 𝜋1(𝑋)
𝛾∥|𝜎∥|2

𝛾̂ 𝑗 + 𝛾̂2
𝑗 − (1 + 𝛾−1)

𝑑∑︁
𝑘=1

𝜎𝑘𝜎𝑝,2,𝑘 (𝑋)
∥𝜎∥2 . (F.26)

Notice that
∑𝐽

𝑗=0 𝑥 𝑗𝛼 𝑗 ,2(𝑋) = 0, consistent with market clearing.

Interest rate. The interest rate is given by

𝑟2(𝑋) = 𝜓−1(𝜇𝑝,2(𝑋) + 𝜎𝜎𝑝,2(𝑋)′) + (1 − 𝜓−1). 𝛾∥𝜎∥|2
2

𝐽∑︁
𝑗=0

𝑥 𝑗

[
2𝛾̂ 𝑗𝛼 𝑗 ,1(𝑋) + 𝛼2

𝑗 ,1(𝑋) + 2𝛼 𝑗 ,2(𝑋)
]

+ (1 − 𝜓−1)𝛾∥𝜎∥2
𝑑∑︁

𝑘=1

𝜎𝑘𝜎𝑝,2,𝑘 (𝑋)
∥𝜎∥2 − 𝜋2(𝑋) + 𝜓−1𝜉2(𝑋), (F.27)

where 𝜉2(𝑋) = (𝜓 − 1)
[
𝜇𝑝,2(𝑋) + (1 − 𝛾)𝜎𝑝,2𝜎

′]
We can write the expression for the portfolio of the unconstrained investor as follows:

𝑟2(𝑋) = 𝜇𝑝,2(𝑋) + 𝜎𝜎𝑝,2(𝑋)′ + (1 − 𝜓−1)𝛾∥𝜎∥|2
𝐽∑︁
𝑗=0

𝑥 𝑗

[
𝛾̂ 𝑗𝛼 𝑗 ,1(𝑋) +

𝛼2
𝑗 ,1(𝑋)

2

]
− 𝜋2(𝑋),

(F.28)
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Price-dividend ratio. The price-dividend ratio is given by

𝑝2
1(𝑋)

𝑝3
0(𝑋)

− 𝑝2(𝑋)
𝑝2

0(𝑋)
= 𝑟2(𝑋) + 𝜋2(𝑋) − 𝜇𝑝,2(𝑋) − 𝜎𝜎′

𝑝,2. (F.29)

Rearranging the expression above, and using the expression for 𝑟2(𝑋), we obtain

𝑝2(𝑋)
𝑝0(𝑋)

= −𝑝0(𝑋) (1 − 𝜓−1)𝛾∥𝜎∥|2
𝐽∑︁
𝑗=0

𝑥 𝑗

[
𝛾̂ 𝑗𝛼 𝑗 ,1(𝑋) +

𝛼2
𝑗 ,1(𝑋)

2

]
+

(
𝑝1(𝑋)
𝑝0(𝑋)

)2
. (F.30)

Consumption-wealth ratio. The second-order correction for the consumption-wealth ratio is
given by

𝑐 𝑗 ,2(𝑋) = (1 − 𝜓)
[
𝑟2(𝑋) + 𝜋2(𝑋) + 𝜋1(𝑋)𝛼 𝑗 ,1(𝑋) + 𝜋0(𝑋)𝛼 𝑗 ,2(𝑋)

]
+ 𝜉 𝑗 ,2(𝑋) (F.31)

− (1 − 𝜓)𝛾∥𝜎∥|2
[
𝛼 𝑗 ,1(𝑋)𝛾̂ 𝑗 + 𝛼 𝑗 ,2(𝑋) +

𝛼2
𝑗 ,1(𝑋)

2
+

𝑑∑︁
𝑘=1

𝜎𝑘𝜎𝑝,𝑘,2(𝑋)
∥𝜎∥|2

]
. (F.32)

Wealth dynamics. The diffusion term of 𝑥 𝑗 is given by

𝜎𝑥 𝑗 ,2(𝑋) = 𝑥 𝑗𝛼 𝑗 ,2𝜎. (F.33)

The drift of 𝑥 𝑗 is given by

𝜇𝑥 𝑗 ,2 = 𝑥 𝑗
[
𝑟2(𝑋) + 𝜋2(𝑋) + 𝜋1(𝑋)𝛼 𝑗 ,1(𝑋) + 𝜋0(𝑋)𝛼 𝑗 ,2(𝑋) − 𝑐 𝑗 ,2(𝑋) − 𝜇𝑝,2(𝑋) − 𝜎𝜎𝑝,2(𝑋)′ − 𝛼 𝑗 ,2(𝑋)∥𝜎∥2] .

(F.34)

Aggregate market elasticity. The derivative of 𝑝 with respect to 𝛼𝑝 is given by

1
𝑝(𝑋, 𝜖)

𝜕𝑝(𝑋, 𝜖)
𝜕𝛼𝑝

=
1

𝑝0(𝑋)
𝜕𝑝2(𝑋)
𝜕𝛼𝑝

𝜖2 + O(𝜖3). (F.35)

The market elasticity satisfies the condition

1
𝑝0(𝑋)

𝜕𝑝2(𝑋)
𝜕𝛼𝑝

= −𝑝0(𝑋) (1 − 𝜓−1)𝛾∥𝜎∥|2
𝑥0(𝛾̂0 + 𝛼̂𝑝) +

∑︁
𝑗∈J𝑢

𝑥 𝑗
(
𝛾̂ 𝑗 + 𝛼 𝑗 ,1(𝑋)

) (
−𝑥0
𝑥𝑢

) 𝜖2.

(F.36)
From the market clearing for the risky asset, we have 𝑥0𝛼̂𝑝 +

∑
𝑗∈J𝑢 𝑥 𝑗𝛼 𝑗 ,1(𝑋) + 𝑥𝑐

𝜎̂
∥𝜎∥ = 0, so we
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can write the expression above as follows:

1
𝑝0(𝑋)

𝜕𝑝2(𝑋)
𝜕𝛼𝑝

= 𝑝0(𝑋) (1−𝜓−1)𝛾∥𝜎∥|2
[
𝛾̂𝑢 (𝑋) − 𝛾̂0 +

1 − 𝑥𝑐

1 − 𝑥0 − 𝑥𝑐
(1 − 𝛼𝑝) −

𝑥𝑐
𝜎̂

∥𝜎∥|
1 − 𝑥0 − 𝑥𝑐

]
𝑥0𝜖

2.

(F.37)

F.3 Third-order approximation

F.3.1 Passive demand

Suppose there is no preference heterogeneity and no leverage constraint. Without loss of
generality, set 𝐽 = 1. In this case, the price-dividend ratio is given by

𝑝(𝑋, 𝜖) = 𝑝∗ − (𝑝∗)2(1 − 𝜓−1) 𝛾∥𝜎∥2

2
𝑥0𝛼̂

2
𝑝

𝑥1
𝜖2 + O(𝜖3) (F.38)

𝜋(𝑋, 𝜖) = 𝜋0(𝑋) − 𝛾∥𝜎∥2 𝑥0𝛼̂𝑝

𝑥1
𝜖 + O(𝜖3) (F.39)

𝑟 (𝑋, 𝜖) = 𝑟0(𝑋) + 𝛾∥𝜎∥2 𝑥0𝛼̂𝑝

𝑥1
𝜖 + (1 − 𝜓−1) 𝛾∥𝜎∥2

2
𝑥0𝛼̂

2
𝑝

𝑥1
𝜖2 + O(𝜖3) (F.40)

𝛼0(𝑋, 𝜖) = 1 + 𝛼̂𝑝𝜖 + O(𝜖3) (F.41)

𝛼1(𝑋, 𝜖) = 1 − 𝑥0
𝑥1
𝛼̂𝑝𝜖 + O(𝜖3) (F.42)

𝑐 𝑗 (𝑋, 𝜖) = 𝑐 𝑗 ,0(𝑋) + (1 − 𝜓−1) 𝛾∥𝜎∥2

2
𝑥0𝛼̂

2
𝑝

𝑥1
𝜖2 + O(𝜖3) (F.43)

𝜎𝑥1 (𝑋, 𝜖) = −𝑥0
𝑥1
𝛼̂𝑝𝜎𝜖 + O(𝜖3) (F.44)

𝜇𝑥1 (𝑋, 𝜖) =
[
(1 − 𝛾)∥𝜎∥2(1 − 𝑥1)𝛼̂𝑝 + 𝜅(𝜔 𝑗 − 𝑥1)

]
𝜖 + O(𝜖3), (F.45)

where 𝜇𝑝, 𝜎𝑝, 𝜇𝑐 𝑗 , and 𝜎𝑐 𝑗 are all equal to zero up to second order, and 𝑥0 = 1 − 𝑥1.
The law of motion of 𝑥1,𝑡 can be written as

𝑑𝑥1,𝑡

𝑥1,𝑡
=

[
𝑥0,𝑡 (𝑐0,𝑡 − 𝑐1,𝑡) + 𝑥0,𝑡 (𝛼0,𝑡 − 𝛼1,𝑡)

(
∥𝜎𝑅,𝑡 ∥2 − 𝜋𝑡

)
+ 𝜅

𝜔1 − 𝑥1,𝑡

𝑥1,𝑡

]
𝑑𝑡 + (𝛼1,𝑡 − 1)𝜎𝑅,𝑡𝑑𝑍𝑡 .

(F.46)

Diffusion and drift terms. The derivatives of 𝑝(𝑋, 𝜖) with respect to 𝑥1 and 𝛼𝑝 are given by

𝑝𝑥1 (𝑋, 𝜖)
𝑝∗

= (1−𝜓−1) 𝛾∥𝜎∥2

2𝑦∗
1
𝑥2

1
𝛼̂2
𝑝𝜖

2+O(𝜖3),
𝑝𝛼𝑝

(𝑋, 𝜖)
𝑝∗

= −(1−𝜓−1) 𝛾∥𝜎∥2

𝑦∗
𝑥0
𝑥1
𝛼̂𝑝𝜖

2+O(𝜖3)

(F.47)
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The diffusion term for 𝑝(𝑋, 𝜖) is then given by

𝜎𝑝,3(𝑋) = −(1 − 𝜓−1) 𝛾∥𝜎∥2

𝑦∗
𝑥0
𝑥1

[
𝛼̂3
𝑝

2𝑥2
1
𝜎 + 𝛼̂𝑝𝜎𝑝

√︃
𝛼𝑝

]
. (F.48)

and 𝜎𝑐 𝑗 ,3(𝑋) = 𝜎𝑝,3(𝑋). Notice that excess volatility depends on the market elasticity times the
volatility of portfolio flows.

The drift of 𝑝 is given by

𝜇𝑝,3(𝑋) = (1 − 𝜓−1) 𝛾∥𝜎∥2

2𝑦∗
1
𝑥2

1
𝛼̂2
𝑝𝜇𝑥1,1 − (1 − 𝜓−1) 𝛾∥𝜎∥2

𝑦∗
𝑥0
𝑥1
𝛼̂𝑝𝜃𝑝 (𝛼 − 𝛼𝑝,𝑡), (F.49)

and 𝜇𝑐 𝑗 ,3(𝑋) = 𝜇𝑝,3(𝑋).

Risk premium. The risk premium is given by

𝜋(𝑋) = 𝛾∥𝜎∥2

[
1 −

𝑥0(𝛼𝑝 − 1)
𝑥1

− 1 − 𝛾−1

𝜓 − 1
𝛾∥𝜎∥2

𝑦∗
𝑥0
𝑥1

[
(1 − 𝛼𝑝)3

2𝑥2
1

𝜎 + 𝛼̂𝑝𝜎𝑝

√︃
𝛼𝑝

] ]
(F.50)

G Higher-order perturbations

Suppose we have the (𝑛 − 1)-th order perturbation of 𝑐 𝑗 (𝑋, 𝜖) =
∑𝑛−1

𝑘=0 𝑐 𝑗 ,𝑘 (𝑋)𝜖 𝑘 and the law
of motion of 𝑋 . Let 𝑙𝑐 𝑗 (𝑋, 𝜖) =

∑𝑛−1
𝑘=0 𝑙𝑐 𝑗 ,𝑘 (𝑋)𝜖 𝑘 denote the expansion of log 𝑐 𝑗 (𝑋, 𝜖). Then we

can compute 𝜎𝑗 (𝑋) up to order 𝑛:

𝜎𝑐 𝑗 ,𝑛 (𝑋) =
𝑛−1∑︁
𝑘=1

𝑙𝑐 𝑗 ,𝑘,𝑋 (𝑋)𝜎𝑋,𝑛−𝑘 (𝑋), (G.1)

which is independent of the 𝑛-th order term in 𝑐 𝑗 (𝑋, 𝜖) and 𝜎𝑋 (𝑋, 𝜖), as 𝑙𝑐 𝑗 ,0,𝑋 (𝑋) = 0. Similarly,
we can compute 𝜎𝑦,𝑛 (𝑋). A similar argument gives 𝜇𝑝,𝑛 (𝑋) and 𝜇𝑐 𝑗 ,𝑛 (𝑋). We can then compute
𝜋𝑛 (𝑋) and 𝛼 𝑗 ,𝑛 (𝑋). The 𝑛-th term of the consumption-wealth ratio satisfies the condition

𝑐 𝑗 ,𝑡 = 𝜓𝜌 + (1 − 𝜓)
𝜋𝑡 (𝛼 𝑗 ,𝑡 − 1) + 𝜇 + 𝜇𝑝,𝑡 + 𝜎𝜎′

𝑝,𝑡 −
𝛾 𝑗

2
∥𝜎𝑅,𝑡 ∥2𝛼2

𝑗 ,𝑡 +
𝐽∑︁
𝑗=0

𝑥 𝑗𝑐 𝑗 ,𝑡

 + 𝜉 𝑗 ,𝑡 (G.2)

We can rewrite the system above in matrix form as follows:

[𝐼 − (1 − 𝜓)1𝐽+1𝑥
′
𝑡]𝑐𝑡 = 𝜁𝑡 , (G.3)
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where 𝑐𝑡 = [𝑐0,𝑡 , . . . , 𝑐𝐽,𝑡]′, 𝑥𝑡 = [𝑥0,𝑡 , . . . , 𝑥𝐽,𝑡]′, 1𝐽+1 is a (𝐽 + 1)-th dimensional vector of ones,
and 𝜁 𝑗 ,𝑡 ≡ 𝜓𝜌 + (1 − 𝜓)

[
𝜋𝑡 (𝛼 𝑗 ,𝑡 − 1) + 𝜇 + 𝜇𝑝,𝑡 + 𝜎𝜎′

𝑝,𝑡 −
𝛾 𝑗

2 ∥𝜎𝑅,𝑡 ∥2𝛼2
𝑗 ,𝑡

]
+ 𝜉 𝑗 ,𝑡 . Applying the

Sherman-Morrison formula, we obtain

𝑐𝑡 = [𝐼 − (1 − 𝜓−1)1𝐽+1𝑥
′
𝑡]𝜁𝑡 , (G.4)

or 𝑐 𝑗 ,𝑡 = 𝜁 𝑗 ,𝑡 − (1 − 𝜓−1)𝑥′𝑡𝜁𝑡 . Notice that 𝜁𝑡 can be computed at order 𝑛 based on the coefficients
of order 𝑛 − 1 and their derivatives.

Computing the derivatives. The derivation above shows that, given the order 𝑛− 1 expansion of
𝜁 𝑗 (𝑋, 𝜖) and its derivatives, we can compute the expansion of order 𝑛. Suppose the expansion of
𝜁 𝑗 (𝑋, 𝜖) is given by

𝜁 𝑗 (𝑋, 𝜖) =
𝑛−1∑︁
𝑘=0

𝜁 𝑗 ,𝑘 (𝑋)𝜖 𝑘 , (G.5)

where 𝜁 𝑗 ,𝑘 (𝑋) takes the form:

𝜁 𝑗 ,𝑘 (𝑋) = 𝐴 𝑗 ,𝑘 + 𝐵′
𝑗 ,𝑘 (𝑋 − 𝑋) + 1

2
(𝑋 − 𝑋)′𝐶 𝑗 ,𝑘 (𝑋 − 𝑋), (G.6)

where 𝑋 is a reference point, 𝐴 𝑗 ,𝑘 is a scalar, 𝐵 𝑗 ,𝑘 is a vector, and 𝐶 𝑗 ,𝑘 is a matrix. Notice that
. 𝜁 𝑗 ,𝑘 (𝑋) = 𝐴 𝑗 ,𝑘 , 𝜁 𝑗 ,𝑘,𝑋 (𝑋) = 𝐵 𝑗 ,𝑘 and 𝜁 𝑗 ,𝑘,𝑋𝑋 = 𝐶 𝑗 ,𝑘 . Given this expansion, we can compute
𝑐 𝑗 (𝑋, 𝜖) =

∑𝑛−1
𝑘=0 𝑐 𝑗 ,𝑘 (𝑋)𝜖 𝑘 .

G.1 Inner region

Consider the case of no preference heterogeneity and no leverage constraints. Consider the
following change of variables: 𝑥1 = 𝜖𝑥1. Define 𝑐 𝑗 (𝑥1, 𝛼𝑝) = 𝑐 𝑗

(
𝑥1, 𝛼𝑝

)
, so 𝑐 𝑗 ,𝑥1 = 1

𝜖
𝑐 𝑗 ,𝑥1 and

𝑐 𝑗 ,𝑥1𝑥1 =
1
𝜖2 𝑐 𝑗 ,𝑥1𝑥1 . This implies the following is true:

𝜎𝑐 𝑗 =
1
𝜖

𝑐 𝑗 ,𝑥1

𝑐 𝑗
𝜎𝑥1 , (G.7)

where 𝜎𝑥1 = −1−𝜖𝑥1
𝑥1

𝛼̂𝑝𝜎𝑅 . Similarly, we can write 𝜎𝑦

𝜎𝑦 =
1
𝜖

𝑦̃𝑥1

𝑦
𝜎𝑥1 . (G.8)

The drift of 𝑦 is given by
𝜇𝑦 =

1
𝜖

𝑦̃𝑥1

𝑦
𝜇𝑥1 +

1
2𝜖2

𝑦̃𝑥1𝑥1

𝑦
𝜎2
𝑥1
. (G.9)
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The term of order 0 is the same as before.
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