Causal Inference for Asset Pricing*

Valentin Haddad Zhiguo He Paul Huebner
Péter Kondor Erik Loualiche

February 2025

Download the latest version here.

Abstract

This paper provides a guide for using causal inference with asset prices and quantities.
Our framework revolves around two simple assumptions: homogenous substitution con-
ditional on observables and constant relative elasticity. Under these assumptions, stan-
dard cross-sectional instrumental variable or difference-in-difference regressions iden-
tify the relative demand elasticity between assets, the difference between own-price
and cross-price elasticity. In contrast, identifying aggregate elasticities and substi-
tution along specific characteristics necessarily relies jointly on exogenous sources of
time-series variation alone. The same principles apply to the estimation of multipliers
measuring the price impact of supply or demand shocks. The two assumptions map
to familiar restrictions on covariance matrices in classical asset pricing models, encom-
pass models from the industrial organization literature such as logit, and accommodate
rich substitution patterns even outside of these models. We discuss how to design
experiments satisfying these conditions and offer diagnostics to validate them.
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Introduction

Causal inference methods that leverage plausibly exogenous sources of variation have become
essential tools in empirical economics (Angrist and Pischke, 2009). Recently, these methods
have gained traction in asset pricing to better understand the demand for financial assets,
through both specific experiments like index inclusions (Shleifer, 1986; Chang et al., 2014)
and as building blocks for estimating demand systems (Koijen and Yogo, 2019; Haddad et
al., 2024). However, these approaches differ sharply from traditional empirical asset pricing
methods, which instead prioritize tests of equilibrium relationships such as Euler equations
and factor models (see, e.g., Cochrane, 2005; Campbell, 2017).

We provide a framework for using causal inference in the asset pricing context. Portfolio
theory (Markowitz, 1952) teaches us that the demand for various assets is interconnected: the
price of all assets affects the demand for all assets. These spillovers are a departure from the
canonical causal inference framework, hence additional assumptions are necessary. We offer
two broad conditions that allow the use of the standard toolbox of causal inference. Under
these conditions, we fully characterize what sources of variation and estimation procedures
identify portfolio demand and its equilibrium impact.

Our goal is to empower researchers in using and interpreting evidence from natural ex-
periments in asset markets as well as understanding their limits. Because our conditions are
flexible, they can be used to guide empirical design and simple diagnostics can assess their
plausibility in the data, all without having to take a strong stance on a specific model. We
also show that the two assumptions map to familiar restrictions on covariance matrices in
classical asset pricing models, encompass models from the industrial organization literature
such as logit, and accommodate rich substitution patterns even beyond these settings. As
such our results also help understand the generality of identification results obtained within
structural models (e.g., Koijen and Yogo, 2019; Gabaix and Koijen, 2021) and assess which
empirical features matter for addressing specific counterfactual questions.

To understand our framework, start from how a naive causal inference approach would
estimate how an investor’s portfolio decisions respond to prices. An experiment creates an
“exogenous” shift in the price of two groups of assets, treated and controls. The treated
assets receive a shock that decreases their prices more so than for the control group which
does not receive such shock. Here, the shock might have arbitrary spillovers on the price of
all assets; exogenous only means that treatment status is unrelated to shifts in the investor’s
demand curve such as changes in their preferences or their views about the assets. Then, how
much does the investor increase their position in a treated asset? To quantify this relation,

denote a change in the demand for asset ¢ by AD; which responds to a change in its price



AP;; an elasticity of demand & is estimated with the following instrumental variable (IV)

regression specification:

AD; = EAP, +0X; + ¢, (1)
AR = )\Zl + T]IXZ + u;. (2)

Here, the instrument Z; measures the shock to prices and is orthogonal to the residual ¢;,
conditional on the observables Xj.

From Markowitz (1952), we know that portfolio decisions are not made asset by asset.
Financial assets are alternative means of transferring money across states of the world, and

thus often close substitutes. Therefore, the prices of all assets affect the demand for all assets
AD = EAP + ¢, (3)

with £ denoting the entire matrix of own-price and cross-price elasticities. For example, in the
mean-variance setting the elasticity matrix is determined by risk aversion and the covariance
matrix of asset returns. In particular, the price of the treated affects the demand for the
control, the price of the control affects the demand for the treated, and the prices of every
other asset affect both demands. This is the well-known challenge of demand estimation with
multiple goods (see Deaton and Muellbauer (1980) and Berry and Haile (2021), or Fuchs et
al. (2024) in the context of asset pricing).

Our framework characterizes conditions under which the IV coefficient estimate € in (1)
and (2) reveals a useful component of the elasticity matrix £ and what this component
represents if these conditions are met. When the regression is well specified, it identifies the
relative elasticity between pairs of assets, the difference between the own-price and cross-
price elasticity. For example, in an idealized experiment with perfect randomization — a
more stringent condition than standard exogeneity — the coefficient Eisa weighted-average
of relative elasticity for all pairs of assets irrespective of the structure of £. The relative
elasticity measures how the demand for one asset compared to another one responds to a
change in the relative price of these assets. This quantity is particularly valuable for answering
micro-level questions hinging on comparison between assets.

We provide two simple conditions to make this insight applicable in practice, that is,
when the instrument Z; only satisfies the standard exogeneity condition of canonical causal
inference. Said otherwise, should the researcher find these assumptions appropriate, the
discussion of an instrument’s validity does not require additional care due to spillovers or
equilibrium. The first condition is constant relative elasticity: the difference between own and

cross-price elasticity for two assets with the same observable characteristics is constant in the



estimation sample. This condition ensures that there is a single number to estimate.! The
second condition is homogeneous substitution: the demand for all assets in the estimation with
the same characteristics must react similarly to the price of all other assets in the investor’s
investment set. For example, your demand for Ford and General Motors respond in the same
way to the price of Netflix. Importantly, this condition must apply both to substitution with
respect to other assets inside the estimation and outside of the sample.? Without such an
assumption, variations in the price of these other assets can create heterogenous spillovers
which act as omitted variables in the regression. If those two conditions are verified, jointly
with the usual exogeneity and relevance conditions, the IV coefficient £ of equation (1)
estimates the relative elasticity in the sample.

Despite their simple statement, these conditions accommodate a large variety of portfolio
demands, that is, shapes of the elasticity matrix £. This versatility allows the framework to
fit different types of natural experiments.

In the mean-variance framework, applying these two conditions without observable char-
acteristics has straightforward implications on asset return covariance matrix. Constant
relative elasticity and homogenous substitution correspond to the assumption that treated
and controls have similar variances and covariances. Moreover, homogenous substitution im-
plies that all assets in the sample share the same covariance with each of the excluded assets.
While these conditions do not hold for arbitrary sets of assets, they can guide the researcher
to design an appropriate estimation sample. For example, the researcher could consider a
small group of assets with similar characteristics: in the same industry, with the same size,
etc. Then, they could check if these assets indeed have similar volatility and covariance with
each other. While it is not possible to assess the covariance with every possible excluded
asset, they could present evidence of similar covariances with various portfolios of assets,
that is evidence of balance in betas.

This basic approach is particularly suitable for settings with local natural experiments.
Controlling for observables open up the possibility of larger samples with more heterogeneity.
One could have multiple groups of assets, where elasticities between assets in each group are
symmetric, but elasticities across groups differ. In this case, one can still estimate the relative
elasticity within group by including group fixed effects. Heterogeneity in substitution can
also be dealt with if its determinants are known. For example, in the mean-variance setting,

variation in betas on common factors leads to heterogeneous substitution, and these betas

'We favor this simple setting as opposed to tracking an average effect because standard regression methods
do not lead to average treatment effect estimation in presence of controls. Goldsmith-Pinkham et al. (2024)
explain this challenge and propose some alternative estimation approaches.

2Excluded assets outside of the sample can arise because of the common issue that the econometrician
does not observe all of the investor’s holdings, or by design so as to make the two conditions more plausible
in the sample.



must be controlled for. Heterogeneous substitution can also be driven by other motives than
risk. An investor might balance their portfolio’s carbon emissions or target some regulatory
constraint, and hence substitute across assets based on the corresponding characteristic for
each asset.

The identification result also helps understand the generality of properties previously
derived under specific models. In a seminal contribution, Koijen and Yogo (2019) show
that a similar estimation equation arises if one either assumes that investors have mean-
variance investors with beliefs on factor loadings and expected returns that are functions of
characteristic, or that they have logit demand. This occurs because both models satisfy the
two conditions of this paper. Moreover, our framework shows that the interpretation of the
IV coefficient as a relative elasticity remains valid for many models outside of these two.

Another natural application of causal inference is the measurement of multipliers or price
impacts, i.e., the effect of an exogenous supply or demand shock for an asset on its price. This
type of question flips prices and quantities compared to demand estimation. For example,
how do Fed asset purchases affect Treasury prices? A similar issue as for demand elasticities
arises naturally: There is no such thing as the multiplier but instead a multiplier matrix
whereby the demand for all assets affects the price of all assets. The two conditions we put
forward for demand estimation also apply to this context. Under these conditions, causal
inference estimates a relative multiplier M. This number measures the effect of changing the
supply of one asset relative to another on the equilibrium price of this asset relative to that
of the other. We further show that under our assumptions relative elasticity and multiplier
are inverse of each other with M = & ~1 implying that both estimation approaches convey
the same information.?

Cross-sectional regressions alone are not enough to answer questions beyond local com-
parisons between assets. Mathematically, the relative elasticity £ is only one coefficient as
opposed to the full elasticity matrix £. This limitation implies that the cross-section is not
enough to separate own- and cross-price elasticity even if they are constant. The cross-
section also fails to reveal substitution across broad categories: how do you rebalance when
the price of small stocks changes relative to big stocks, or when the price of long-duration
bonds changes relative to short-duration bonds. Finally, the cross-section is not sufficient to
characterize the price impact of a demand shock for all assets at the same time, the classic
problem of “missing intercept” in going from micro to macro estimates.

A natural starting point to answer this type of meso- or macro-level questions is to use

data aggregated across assets. For example, instead of keeping track of demand and price

3This result is not trivial and relies on our assumptions. In general, the multiplier matrix M is the inverse
of the aggregate demand elasticity matrix £. Neither individual own-price nor cross-price elasticities and
multiplier are the inverse of each other under matrix inversion.



stock by stock, researchers focus on a relation between the overall demand for stocks and a
price index for stocks. Gabaix and Koijen (2021) present such a framework and estimate the
macro multiplier, that is, the price impact of a demand shock for all stocks. Because there
is only one asset (the market index), one must rely on exogenous source of variation in the
time series.

Starting from an asset-level elasticity matrix that satisfies our two conditions, we ask
when it is justified to focus on the aggregated data. First, we show that when substitution
is homogenous unconditionally, that is, when cross-elasticities are constant, demand can be
decomposed into an aggregate component and an asset-level component. In the aggregate
component, the overall demand for assets responds to a price index for all assets. In the asset-
level component, the demand for each asset relative to the index only depends on its price
relative to the index. This decomposition leads to a separation in identification: the relative
elasticity is estimated from the cross-section alone, while the macro elasticity is estimated
from the time series alone. Interestingly, this result also highlights that separating own and
cross-price elasticity must also rely on the time series.

When substitution is richer and depends on observables, one must track aggregates of
price and demand along multiple dimensions. These other aggregates are a counterpart to
factors in standard asset pricing, with the demand for factors responding to their price of risk.
For example, if substitution across bonds depends on their duration, the duration-weighted
portfolio matters beyond the market portfolio. Demand can then be separated between
an asset-level component, to be estimated from the cross-section, and a few components
depending on all of the aggregates, to be estimated from the time series. However, how the
demand for the various aggregates respond to their price cannot be separated from each other
in general.*

To understand this interconnection, go back to the example of bonds. Consider a “twist”
demand shock that buys long-term bonds and sells short-term bond with zero net purchase;
a standard quantitative easing operation. When duration matters for substitution, such a
shock can affect the price of the market index for bonds despite creating no shift in the
overall demand for bonds. If such twist shocks are correlated with shocks in the aggregate
demand for bonds, they would act as an omitted variable in a regression of the market
index on aggregate shifts in demands, which would lead to biased estimates of the macro
multiplier. To alleviate this concern, the econometrician could inspect the composition of
their instrument for aggregate demand shocks at the bond level and check that it occurs

in a parallel way across maturities. Alternatively, they could include another instrument to

4Huber (2023) highlights a related point in the context of general equilibrium spillovers of large-scale
shocks.



separate the impact of aggregate demand shock and twist shocks.

Another important implication of these aggregation results is that it is not enough to
estimate a relative (or micro) and a macro elasticity to answer relative questions across broad
groups that affect substitutions. Instead, one must directly tackle the elasticity or multiplier
along this exact dimension. For instance, to measure the price impact of a shift in the demand
for brown stocks relative to green stocks, one must understand how investors substitute across
these categories, which can only be revealed using exogenous time series variation in demand
for a green-weighted index. Similarly, this concern highlights that empirical demand models
should not only include how demand responds to characteristics, but also how elastic it is to
the market price of the characteristic.

Taken together, our results offer a user guide for causal inference in asset pricing. We
spell out: a) which assumptions one needs to defend to use these estimation techniques, b)
diagnostics to assess the plausibility of these assumptions, ¢) which technique and source of

variation is appropriate for different economic questions, d) how to interpret causal estimates.

Related Literature. A long tradition in finance uses plausibly exogenous sources of vari-
ation to understand portfolio decisions and the price impact of shifts in demand. Prominent
examples include the effect of index inclusion (Shleifer, 1986; Harris and Gurel, 1986; Chang
et al., 2014; Pavlova and Sikorskaya, 2022; Greenwood and Sammon, 2024), institutional
ownership and fund flows (Gompers and Metrick, 2001; Coval and Stafford, 2007; Lou, 2012;
Ben-David et al., 2022; Hartzmark and Solomon, 2022), central bank asset purchases (Krish-
namurthy and Vissing-Jorgensen, 2011; Selgrad, 2023; Haddad et al., 2021, 2025), or financial
constraints (Du et al., 2018; Greenwood et al., 2018a; Haddad and Muir, 2021; Chen et al.,
2023). This work often incorporates thorough analysis of exogeneity, in particular in the wake
of the “credibility revolution” (e.g., Angrist and Pischke, 2009). However, this literature is
often more scant in considering a central feature of asset pricing theory, substitution across
assets, and whether it affects the validity of inference and the interpretation of estimates.
Our framework provides a simple bridge between classical discussions of causal inference and
the role of substitution.

Another approach takes structural models of prices and quantities to the data, like in
the structural industrial organization literature (Berry et al., 1995). An influential article
by Koijen and Yogo (2019) spells out this approach, starting from an equilibrium model
with mean-variance investors and a factor model of returns, and deriving an estimation
framework relating portfolio positions and prices in individual stocks. A variation of this
line of thinking, which is pursued by Haddad et al. (2024), is a semi-structural approach,

incorporating additional mechanisms motivated by micro-founded theories but giving up on



some of their restrictions and functional forms in favor of empirical realism and tractability.
Work following either of these styles studies the impact of the rise of passive investing,
of preferences for sustainable assets (Koijen et al., 2023; Van der Beck, 2021), momentum
(Huebner, 2024), or the transmission of monetary policy (Lu and Wu, 2023), and has found
echo in other settings: the stock market overall Gabaix and Koijen (2021), corporate bonds
(Bretscher et al., 2022), treasuries (Jansen et al., 2024; Fang, 2023; Fang and Xiao, 2024), or
exchange rates (Koijen and Yogo, 2024; Jiang et al., 2024).

As we discuss in the text, we build on some of the insights from estimation inside of these
models. Some important ideas are controlling for common exposures (Koijen and Yogo,
2019), the distinction between micro and macro elasticity (Gabaix and Koijen, 2021; Li and
Lin, 2022), heterogeneous substitution (Chaudhary et al., 2022; Aghaee, 2024), substitution
along factors (An and Huber, 2025; Peng and Wang, 2023), and more broadly accounting for
spillovers (Fuchs et al., 2024). Naturally our simple conditions cannot cover every model; we
leave aside considerations of strategic responses (Haddad et al., 2024), dynamics (Greenwood
et al., 2018b; Gabaix and Koijen, 2021; He et al., 2025), or state-contingent demand shocks
(Haddad et al., 2025). In this context, the contribution of our framework is twofold: it not
only provides a unifying formalism to discuss identification across models, but also allows to
discuss what can be learned from the data before espousing a specific model.

Finally the role of spillovers is not limited to asset pricing and has been recognized in other
contexts. Berg et al. (2021) discusses spillovers in corporate finance. In macroeconomics, a
key concern is the missing intercept problem due to general equilibrium effects, with some
recent contributions such as Chodorow-Reich et al. (2021), Guren et al. (2021), Huber (2023),
and Wolf (2023).

1 The Challenge of Causal Inference in Asset Pricing

We set up the basic regression framework for estimating the demand for assets using canonical
causal inference. We contrast this setting with how standard asset pricing theory works. The

key distinction is the emphasis on strong patterns of substitution across assets.

1.1 The causal inference framework

We focus on a generic setting for identifying the demand for financial assets. Section 3
considers the related problem of price impact from demand shocks. Intuitively, we want to
understand how an investor’s demand for an asset responds to the price of this asset. We

consider the following experiment: a shock exogenous to demand happens and affects the



price P; of various assets indexed by ¢, with intensity Z;.

Inspired by standard causal inference, running an instrumental variable estimation on a
sample S of assets is natural in this setting. In this model, one regresses the change in demand
for each asset AD; on the change in the price of this asset AP;, using Z; as an instrument

for the change in price. This corresponds to the two-stage least square specification:

AD; = EAP, +0'X; + €, (4)
AP, = XZ; + ' X; + w;, (5)

where X is a set of observables for each asset to be specified. For example, X; could include
the maturity of a bond or the industry of a firm. These observables allow to narrow the
identification to comparable assets. For simplicity of notation, we always assume that X
contains a constant and is of small enough dimension that there is enough variation to run
the regression.

The two standard conditions for this regression model to be identified are the relevance
and exclusion restrictions. Exclusion is the idea that the instrument does not affect demand
through other channels than the price: Z; 1 ¢]X;. In other words, the instrument is not
correlated with unobservable shifts in the demand curve in the cross-section of assets. For
example, even if the experiment leads to general equilibrium effects such as changing the
risk-free rate, the exclusion restriction can still be satisfied if the impact of these effects
across assets does not correlate with which asset is treated. Relevance is the idea that the
instrument Z; creates variation in prices: A # 0. In practice, it is not enough for the first
stage to be significant at standard confidence levels, it must be strong to avoid issues related
to the weak-instrument problem (Stock and Yogo, 2005; Olea and Pflueger, 2013).

One can imagine running this specification in levels or in logs depending on the model of
demand. For example, models like CARA preferences are better behaved in levels, while logit
demand matches with logs. We abuse the language of demand estimation slightly and call
coefficients in such regressions demand elasticities irrespective of log or levels. Section 2.4.1
reviews the appropriate units for standard models. Also while we focus on writing specifica-
tion in changes to match the standard difference-in-difference framework, similar arguments

apply without changes.

A simpler benchmark To better understand the behavior of this regression, it is useful
to study a simplified version. There is no shift in demand curve, but simply a shock that
triggered movements in prices, with the movement in the price of asset 1 larger than in the

price of asset 2. There are still many other assets (3,...,N) that might also experience



changes in price. For example, the shock could be a surprise increase in the supply of asset
1 but not asset 2. In this case the counterpart to the IV estimator is the relative change in

demand for assets 1 and 2 divided by the relative change in price:

~ AD;— AD
E=-—_—= (6)
AP, — AP,
To see this result, note that the sample is just the two assets S = {1,2}, the instrument
representing the experiment is Z; = 1 and Z; = 0 and that there are no controls or error

terms.”

1.2 Standard asset pricing structure

The setting of equation (4) differs sharply from how standard asset pricing theory specifies
the demand for assets. A key insight going back to Markowitz (1952) is that assets are
not distinct goods, but instead alternative means of saving with different risk and reward.
Investors choose portfolios optimally combining these assets. This substitutability implies
that the demand for one asset depends not only on its own price but also the price of other
assets. How many shares of Apple you purchase depends on the price of Apple and also on
the price of Nvidia.

The most standard example of this approach is mean-variance optimization: an investor
chooses their portfolio to maximize E(W) — 2 var(W) where W is their future wealth, and -y
measures their absolute risk aversion. If assets have mean payoffs M and covariance matrix

2/, the vector of demand is:

(I
D:;Z (M — P). (7)

Absent demand shocks, this implies that changes in demand can be written as

AD = EAP < AD; = ) &;AP, (8)
J

with the matrix of elasticity £ being determined by risk aversion and the covariance between
assets: & = —y71X~!. When assets are correlated with each other, they become close
substitutes and their demand respond to each other’s price. In addition to these elasticities,
there can also be shifts in demand, for example due to changing beliefs about expected

payoffs. Hereafter, we represent these movements by a component ;.

5The first stage regresses AP; on the dummy, so A = AP, — AP,. The second stage regresses the change
in demand on the predicted value from the first stage, (APy — AP,)1;_y;, leading to equation (6).



More generally, any model of asset demand will imply its matrix of elasticities £. The
diagonal elements of £ measure the own-price elasticities, while the off-diagonal capture
cross-price elasticities. If the model is not linear (or log-linear) in prices, we focus on a local
approximation of demand. Such a completely flexible elasticity matrix is reminiscent of the

almost-ideal demand system of Deaton and Muellbauer (1980).

1.3 The challenge

The distinction between the two approaches is clearly visible: causal inference focuses on a
univariate relation between price and demand — the coefficient £ — while standard asset
pricing emphasizes a multivariate relation — the matrix £. This univariate focus is a key
element of standard causal inference: under the stable unit treatment value assumption
(SUTVA), treatment on one unit (for us, an asset) does not affect other units.

This feature implies that, in general, the estimation equation (4) is misspecified. Con-
cretely, the presence of cross-elasticities implies that the prices of all other assets are omitted
variables in equation (4). When we have non-zero elasticity of substitutions between assets,
the change in the price of the other assets affect the demand for the original asset. In changes,

the demand system of equation (8) gives:

AD; = E; AP, + Y E;AP; + ¢;. 9)
i
A standard natural experiment focuses on a situation where the instrument is orthogonal to
shifts in demand, so Z; 1 ¢;. However, other prices naturally respond to the treatment so
the other terms in the sum create an omitted variable bias. Fuchs et al. (2024) discuss at
length the theoretical foundations of this challenge.

As an example, go back to the deterministic case comparing two assets 1 and 2, and
consider the effect of the change in the price of a third asset, say asset 3. This change results
in a contribution (€13 — E23)APs to the numerator of (6). If the two cross-elasticities differ
from each other, this leads to a bias away from the own elasticity. This is the standard
problem of demand estimation with multiple goods.

In the face of this challenge one can deem causal inference hopeless for asset pricing and
throw their hands in the air. However there is a more constructive approach: acknowledge
that additional assumptions about the nature of spillovers are necessary, and that the coeffi-
cient € will only reveal a specific dimension of the matrix £. After all, this is the second part
of Markowitz” argument: basic economics can inform us about the structure of substitution

across assets. In the rest of the paper, we follow this path and put forward simple flexible

10



conditions guided by these economic principles.

An alternative, more along the lines of modern empirical industrial organization literature,
would be to fully specify a structural model. We show later on how our results intersect with
this approach. Another alternative would be to include all prices in the demand estimation
regression. This is often not possible in practice because it would require exogenous sources

of variation for each one of the individual prices.

2 Making Causal Inference Work with Asset Pricing

We provide a framework for using cross-sectional causal inference regressions in asset pricing.
We give two natural conditions on the structure of substitution that are sufficient for these
regressions to identify a meaningful quantity. In the context of risk-based models, the two
conditions have a simple interpretation in terms of the statistical structure of asset returns.
However, applying these conditions does not require espousing the view that risk is the only
driver of investment decisions. We show how they lend themselves to settings with other

considerations, such as regulatory constraints or even non-pecuniary objectives.

2.1 Conditions for valid estimation

We state the two conditions leading to valid estimation. First, we put some structure on

substitution between assets.

Assumption A1 (Homogeneous substitution conditional on observables) Any pair
of assets in the estimation sample S with the same observables shares the same cross-price

elasticity with respect to each third asset, within or outside of the estimation sample:
Ei =&y, foralli, jeS such that X; = X, and [ # 4, 7, (10)

where X; is the K x1 vector of observables for asseti. These cross-elasticities are parametrized
by a bilinear form Eeross: it = Ecross(Xiy Xi) = X[Ex X, where Ex is a K x K matrix.

Assumption Al states that for two assets that are comparable along observables, if the
price of any third asset, either within or outside the estimation sample, moves, then substi-
tution between the third asset and the two comparable assets is the same. That is, for the
pair of comparable companies Ford and General Motors, if the price of Netflix moves, the
response of the demand for Ford will be the same as the response of the demand for Gen-
eral Motors. This assumption is crucial to deal with the omitted variable problem coming

from the substitution effect when prices of other assets change. When the condition holds
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without observables, substitution effects are constant in the sample, so they are absorbed in
the constant of the cross-sectional regression. With observables, substitution responses are
equal across assets conditional on X;, and then are absorbed into regression coefficients on
the observables.

Analytically, homogeneous substitution implies that cross-price elasticities are a function
of the observables, which we write as E..ss(X;, X;). To make the model tractable, we further-
more parametrize this function as a bilinear form in observables, Eq.0s5(X;, X;) = X/ Ex X].
The substitution matrix £x may not necessarily be symmetric. This simple specification en-
compasses a large space of potential substitution patterns because observables could already
include nonlinear transformations of more primitive variables or dummies for their levels. We
demonstrate this versatility and practicality in Section 2.3.

The second assumption ensures that there is a single number to estimate. In the language

of causal inference methods, this corresponds to assuming a homogeneous treatment effect.

Assumption A2 (Constant relative elasticity) Assets in the estimation sample have
the same value of relative elasticity Ecjative With respect to other assets with the same char-

acteristics:
Eii — Eji = Erelative,  for all i, j € S such that X; = Xj. (11)

Assumption A2 ensures a form of symmetry in how the investor responds to the price
of assets with the same observables in the sample. It focuses on a specific dimension: the
difference between the own-price and cross-price elasticity. We call this difference the relative
elasticity. It represents how the demand for one asset relative to another shifts when the price
of the asset changes relative to the other. In the next section, we explain why this quantity
is the natural target of cross-sectional regressions. Section 2.3.5 extends the framework
to consider situations where the relative elasticity is not constant, and either depends on
observable or unobservable sources of variations.

In some cases, an asset ¢ does not have a “twin” j with exactly the same observables. This
often occurs when the observables are continuous variables, such as sales of a firm. In this
situation, we replace Assumption A2 by its natural extension: £; — Eeross(Xiy Xi) = Eretative-

For the mathematically oriented reader, in Appendix A.2 we show that assumptions Al
and A2 are equivalent to the matrix representation £ = &, qativel + XExX’'. Furthermore,
if the elasticity satisfies the assumptions for a set of observables X, it also does so for a
linear transformation of these observables. For example, one can demean or standardize the
observables without loss of generality.

Assumptions Al and A2 can be viewed as guidance for the econometrician to choose

12



their sample and their observables appropriately. For example, one might choose to focus
on a narrow set of highly comparable assets, which will make the assumptions plausible. If
they want to consider a much larger asset space, the econometrician has to confront more
substantial heterogeneity, for example, in risk and how the assets comove with one another.
They will have to judiciously choose observables such that the assumptions are credible
conditional on those observables. Similarly, the choice of units to define elasticities — demand
vs. portfolio shares, change in price vs. return — also affects whether the assumptions hold;
Section 2.4.1 shows how in the context of standard models. In practice, the econometrician
should focus on units that make assets more comparable. We discuss empirical design in

light of the two assumptions in Section 2.3.

2.2 What does it estimate?

We are now ready to state our main proposition.

Proposition 1 Under assumptions A1 and A2, as well as the standard relevance and exclu-
sion restrictions, the two-stage least square estimation of equations (4) and (5) identifies the

relative elasticity:
é\ = grelative- (12)

When the IV estimation is well specified, it identifies the relative elasticity: the difference
between the own-price elasticity and the cross-price elasticity for two assets in the sample
with the same observables. While this result stands in contrast to the intuition of measuring
“how demand for each asset responds to its own price,” it is natural. A cross-sectional
regression is a comparison across assets in the sample. Even if only the price of the treated
asset is shocked, the regression coefficient will still be driven by the response of demand
for this asset relative to that for the comparable control asset—hence the relative intensity
of the own- and cross-elasticity conditional on observables. In other words, & answers the
question: how does the demand for one asset relative to another comparable asset respond

to the relative price of these assets?

Proof for the simple case. Appendix A.1 proves Proposition 1. To understand the

mechanics of this result, let us go back to the deterministic case comparing 2 assets (say
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Ford and General Motors) with the same observables. The changes in demands are:

ADl = gllApl + ngAPQ + Z glkAPk; (13)
k>2

ADy = Ex AP + 521AP1 + Z ggkAPk (14)
k>2

Assumption Al implies that the cross-elasticities with respect to other assets (k > 2) are

identical:

D EWAP = Y Ex AP, (15)

k>2 k>2

When computing the difference AD; — AD,, this response to other prices disappears, effec-

tively removing the omitted variable problem due to other assets:
ADy — ADy = (E11 — E31) AP, — (99 — E12) AP, (16)
Assumption A2 implies that the coefficients on each of the prices are the relative elasticity:
En — & = & — E12 = Eretative (17)

Both the response of demand to the own price (measured by £;1) and the response to the
price of the other asset asset (measured by ;) shape this comparison. Hence, the regression
coefficient is the relative elasticity:
~ AD;— AD
&= 1—2 = grelative' (18)
AP, — AP,
The role of observables. In the richer case with observables, it is important to control for
the asset’s own observables X; if they vary in the sample. When the assets in the sample differ,
they potentially respond differently to the price of other assets. However, assumption Al
ensures that these responses only depend on observables X;. For example, the substitution

to outside assets from equation (13), thanks to Assumption A1, becomes

D EwAP = X| Y Ex X AP . (19)
k>2 k>2
| S S —

constant across
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This implies that controlling for X; absorbs the effects from substituting with other assets.%
Furthermore, once we control for X;, the regression is equivalent to making pairwise com-
parisons of assets that have the same observables. Hence, following the same reasoning as in
the simple case, the estimate £ recovers the relative elasticity.

At this stage, it might be tempting to conclude that the demand curve of equation (9) in
which all prices matter for all demands is equivalent to a demand curve that only depends on
the own price and characteristics, as in the regression equation (4). This would be incorrect:
the equivalent representation only holds when fixing a specific vector of prices. In other
words, while equilibrium quantities demanded satisfy equation (4), the demand curve does
not. This distinction is transparent when examining what determines the coefficients 6 on
the observables X; in the cross-sectional regression. Equation (19) highlights that these
coefficients depend on realized changes in prices APy, and would therefore differ for another

realization of prices, such as in a counterfactual exercise.

Robustness to deviations in the assumptions. In practice, assumptions Al and A2
are approximations of reality. In Appendix B.1, we assess whether the result of Proposition 1
is robust to small deviations. We show that, as long as the first stage is strong, the two-stage
least square estimator recovers the relative elasticity up to a bias that is proportional to
the distance to the assumptions; small deviations, small bias. An economically meaningful
situation that leads to weak instruments is when assets are perfect substitutes, for example
if they satisfy a no-arbitrage relation.” In this case, there is no change in relative prices that
can lead to identification. Fuchs et al. (2024) highlight how this case creates challenges for
demand estimation.

The potential for this weak-instrument issue in the first stage highlights a key considera-
tion when selecting an appropriate control group for a given treated asset. While a control
asset should be similar enough to the treated to satisfy Assumptions Al and A2, it should
not be identical, ensuring that the law of one price does not hold between these two groups.
As discussed later in Sections 2.3.3 and 2.3.4, this difference may arise due to idiosyncratic
risk or other non-risk considerations (e.g., regulatory constraints), preventing the market as

a whole from pricing them identically in equilibrium.

8This reasoning shows that a weaker form of assumption Al is necessary for Proposition 1 to hold:
Eil = Ecross,1(Xi) = X]Y] for arbitrary vectors Y. In other words, the dependence to other assets for a given
X; can be arbitrary and does not need to be parametrized by observable characteristics X;.

"Here, what is the important is that these assets are perfect substitutes at the aggregate level (so that
their equilibrium prices are tied together), not so much that the investor whose demand is estimated treats
them as such.
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2.3 Using the identification result

Assumptions A1 and A2 provide general conditions for the causal cross-sectional regression
to identify the relative elasticity. To use this result, the econometrician must take a stand
on what is the appropriate estimation sample and which are the relevant observables. We
discuss a few different approaches to do so, with choices that are intuitive, close to common

empirical practice, and line up with standard finance theory.

2.3.1 Homogeneous estimation sample

A common scenario: you want to assess the effects of a local experiment on a few highly
comparable assets. In this case, it is not necessary to introduce observables to differentiate
the assets. The only control needed in the regression is a cross-sectional constant. For
example, firms in a narrowly defined industry might have similar risk and similar relation
with stocks in other industries. Another example could be multiple corporate bonds from
the same issuer with similar maturity (see Coppola (2025)). The simplest manifestation
of this example is the case of two assets: a treated and a control. There, the regression is
equivalent to examining the spread in return between treated and control, a common practice
of empirical asset pricing.

In this case, assumption Al implies that the cross-price elasticity is the same for all
assets in the estimation sample, while assumption A2 additionally implies that the own-price

elasticity is the same for all assets in the estimation sample:
Eii = Eoun, forallieS, and &, =E.oss, foralli,jes. (20)

Moving on to outside assets, which could be a vast set, the substitution between them and
the assets in the estimation sample is generally not constant. Still, assumption Al implies
that, for each outside asset, all assets in the estimation sample have the same cross-elasticity.
In other words, the demand for any asset in the sample responds in the same way to a change
in the prices of each outside assets. Figure 1 illustrates such an elasticity matrix. This setting
corresponds to a situation in which observables are constant within the estimation sample,
while they can vary arbitrarily across assets outside the estimation sample.

In risk-based models, in which elasticities are proportional to the inverse of the covariance
matrix, this means that all assets in the sample have the same variance and covariance with
each other. It also corresponds to assuming that for any outside asset k, the covariance of
its return with that of any asset in the sample is constant: cov(R;, R;) = cov(R;, Ry). In
practice, outside assets are plentiful and this condition cannot be fully assessed. Still, one

should present some corroborating evidence. For example, one can compute the covariances,
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Figure 1: Elasticity matrix satisfying assumptions A1 and A2 for a local experiment.

or betas, with a set of broad portfolios for assets in the sample. This can take the form of a

Y

table of “balance on covariances,” reporting these average covariances for treated and control

assets, or high and low values of the instrument 7.

2.3.2 Groups of assets

Sometimes homogeneous substitution is not plausible across the whole sample, for example
when the treatment affects an heterogeneous set of assets. Yet one might be able to delineate
groups of assets such that homogeneous substitution is plausible within each group. For
example, homogeneity might hold for a set of firms in a narrow industry but not across
these industries. In this case, it is possible to get estimates by pooling all groups while
including group fixed effects to focus on within-group variation. Within the general setting
of Assumption A1, this is the special case where the observables X; are group dummies. The

two-stage least squares regressions takes the form:

AP; = M + ngey + Uy (22)

Here, g(i) denotes the group of assets (industries in our example) which contains asset i; 6,
and 7, are group fixed effects. Since this fits our framework, this regression with group fixed

effects correctly identifies the relative elasticity.
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Chaudhary et al. (2022) explain how omitting group fixed effects in such a situation leads
to biased inference. They document the relevance of this bias when measuring the effect of

fund flows on corporate bond prices.

2.3.3 Heterogeneous risk exposures

When the investor cares about risk, the exposures of assets to different risks affects how
they substitute. For example, in a downturn, when many asset prices fall, the demand for
a more cyclical asset might change differently from that of a less cyclical asset. Empirical
asset pricing often highlights many such sources of heterogeneity with risk factors. Even if
we focus on a specific industry, different assets might have a different response to inflation
or duration. These factors naturally affect patterns of substitutability, because they affect
the covariance matrix of returns. In this case, an important continuous observable is the
exposure or beta of the asset return to the factor.

To understand the mapping between factor models and our assumptions, assume there is

a set of common factors F; with loadings 3, and constant idiosyncratic risk:
Riy = BIF; + viy, vi Ly, var(v) = oy (23)

The corresponding covariance matrix is X' = o2, I+ 38X 3", In the mean-variance framework,

the elasticity matrix will have the same structure:
E=~1Y 1 = €L+ YR, (24)

where € = 1/(yo2,.), B = [1,6(f1),ﬂ(f2), o ,ﬁ(fK—l)] is the set of factor loadings, and ¥ a
K x K symmetric matrix. This type of elasticity matrix satisfies assumptions Al and A2.
Intuitively, the relative elasticity for two assets with the same factor exposure depends only
the amount of idiosyncratic risk and the investor’s risk aversion. This is because the idiosyn-
cratic component is the only risk taken when “arbitraging” between two assets that have
the same risk profile. The factor structure matters for how investors respond to prices, but
substitution is homogeneous for comparable assets. In practice, one might be reluctant to as-
sume constant idiosyncratic volatility to ensure that assumption A2 is satisfied; Section 2.3.5
shows how to relax this condition.

Proposition 1 applies here, in that a regression controlling for £’s, which are the factor
loadings, recovers the relative elasticity. Alternatively, under the assumption that the betas
are a function of characteristics, it is enough to control for the characteristics. This class of

result was first introduced in Koijen and Yogo (2019), who show that this portfolio choice
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model leads to a demand structure amenable to linear regressions on price and characteristics.
The framework laid out by assumptions A1 and A2 not only provides an interpretation of
the coefficient on the price as the relative elasticity, but also explains that the key property
for such a result is that the investor substitutes homogeneously across assets with the same

factor loadings.

Synthetic controls. A variation of this approach particularly well-suited for event-study
settings is to construct synthetic controls in the style of hedging portfolios. If one has a
set of treated assets, one can construct portfolios of other assets as the control group for a
difference-in-difference study. There are two requirements for this approach to be valid. First,
the factor exposures of the control portfolio must be the same as that of the treated asset.
Second, each asset in the control portfolio (as opposed to the combined portfolio returns)

must have the same residual volatility as the treated asset.

2.3.4 Non-risk drivers of substitution

In practice, portfolio decisions respond to many other drivers than risk and return. Some
investors care about non-pecuniary aspects of the stocks they hold, such as their carbon
emissions or ESG characteristics. Mutual funds, pension funds, and endowments often oper-
ate under mandates that require a specific mix of assets, while others are guided by broader
objectives outlined in their prospectus. When hedge funds take on leveraged positions, hair-
cuts apply and they have to post margins. Banks and insurance companies must ensure that
their portfolios satisfy various regulatory targets such as capital adequacy ratios, leverage
requirements, or liquidity requirements.

All these dimensions affect which assets these investors choose in the first place, but
also how they rebalance their portfolio when prices move. For example, if one of your more
environmentally friendly stocks appears overpriced, you might shed this position and replace
it with another similarly green position. Hence, these motives can play an important role in
the elasticity matrix and must be taken into account when evaluating our assumptions.

To understand how, consider a generic representation of such a motive, by adding a
quadratic cost and a linear constraint to the mean-variance optimization problem:

max  D/(M — P) - %D’ED . g (D'x M) (25)
such that D'X® < 6. (26)

The quadratic cost /2 (D’ X (1))2 captures smooth investment priorities: the more carbon-

emitting stocks an investor holds, the less willing she is to hold additional carbon-emitting
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stocks. The variable X ") measures the relative contribution of each asset to this total cost —
e.g. its carbon emissions — while k measures the overall willingness to hold carbon emitting
stocks. The linear constraint represents hard targets, such as the liquidity ratio that a bank
must hold. There, X measures the contribution of each position to the constraint—e.g. its
liquidity weight—and © is the maximum value capturing the regulatory requirement.

When prices move, such an investor will balance risk-return with reaching these other
non-risk objectives. Hence, all these dimensions will shape substitution patterns. Clearly,
to be able to use our results, the covariance matrix X' has to satisfy the assumptions with
respect to a set of observables X8 We show in Appendix C that the elasticity matrix for
this investor satisfies assumptions A1 and A2 with respect to the stacked set of observables
X =[x X X6,

Concretely, this result implies that the econometrician should first take a stand on the
motives behind the investor’s demand. Then, they should find the relevant observables that
capture how each asset contributes to these motives; for example, the carbon emissions of
a firm for a fund that has an ESG mandate. Finally, they should include these variables
as controls in the instrumental variable regressions in order to recover the relative elasticity.
The substitution driven by these motives is also interesting for its own sake, and Section 4

shows how to estimate it.

2.3.5 Entertaining more heterogeneity in elasticities

For some situations, the assumptions of constant relative elasticity or of homogeneous sub-
stitution might appear too restrictive. We provide two variations of the basic framework to

accommodate these situations.

Observed heterogeneity in relative elasticity. First, we tackle the case of hetero-
geneity in relative elasticity. Just like Assumption A1l allows cross-elasticities to depend on
observables, one can relax Assumption A2 to let the relative elasticity depend on observables.

This corresponds to replacing the condition (11) by:
gz'i - gcross(Xia Xz) = grelative(Xi) = g',/'Xl7 (27)

with &, a vector of dimension K. For example, if the observable captures the size of a
company, this relation allows big stocks to have a different relative elasticity than small stocks,

an approach taken, for example, in Haddad et al. (2024). Another useful application is in the

8Specifically, X has to be such that the elasticity matrix of the mean-variance problem without constraint
and cost function satisfies assumptions A1l and A2.
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context of the factor models of Section 2.3.3. There, we have seen that idiosyncratic volatility
controls the relative elasticity. Therefore, one could include the idiosyncratic volatility of each
asset as an observable, or variables that proxy for this idiosyncratic volatility.

Intuitively, the setting with heterogeneous relative elasticity implies that relative demand
responds not only to price changes but also to price changes interacted with the observables,
all encoded in &,. As such, one must include in the regression and identify coefficients on
all these components and provide instruments for each of them. Starting from an instru-
ment Z; for the change in price AP;, one can construct instruments Z; X; for its interaction
with the observables AP, X;. Then, under the exclusion restriction Z; X; L ¢]X; and the rele-
vance conditions, the corresponding two-stage least square regression estimates &,.. Appendix

Section A.3 proves this result and provides all details on implementation.

Unobserved heterogeneity. A more complicated situation arises when there is unob-
served variation in own- and cross-price elasticities across assets. Handling this case requires
taking a stronger stance on variation in the instruments to maintain meaningful identifica-
tion. Nothing comes for free: accommodating a more flexible elasticity matrix £ is at the cost
of stronger assumptions on the sources of variations needed for estimation. Specifically, one
needs to assume independence of the instrument with respect to all unobserved sources of
heterogeneity — a stronger condition than orthogonality with respect to the demand residual.

Unobserved heterogeneity in elasticities becomes relevant if one believes there is an
amount of noise around Assumptions Al and A2. It is possible that, even in a narrowly
defined group like in Section 2.3.1, all assets are slightly different, with small variations in
elasticities that have no apparent connection to the experiment at hand. Another case where
unobserved heterogeneity is relevant is when the experiment uses pairs of assets that are
different on many dimensions, but in a plausibly random way. An example of this case is
index inclusions: the included and excluded assets from the index are closely related in size
but might be in different industries or have different characteristics.

By formalizing the conditions necessary to handle unobserved heterogeneity, the next
proposition pinpoints what the causal inference regression identifies in this case. For a formal

proof, see Appendix A.5.

Proposition 2 Assume that the data-generating process of the first stage follows:
AP, = \Z; + u;,  with Z; independent of (u;, \;), (28)

and that the instrument is independent of own- and cross-price elasticities as well as the
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demand residual
(&iir Eij €)| Zi ~ (Eiiy Eij, €5). (29)

Then, the two-stage least square estimation of equations (4) and (5) without observables

identifies the local average of the relative elasticity:

E; {\i(&i — Ej(gj‘))}‘

€= E:(\)

(30)

The two conditions state that the realization of the instrument is not only independent of
variation in how the instrument transmits to prices ();) but also how elasticities vary across
assets. The proposition highlights that these assumptions lead to estimating an average value
of relative elasticity, a form of local average treatment effect. With an added monotonicity
condition that the instrument always affects prices in the same direction — all \; sharing
the same sign — the estimate £ will fall within the range of estimates in the sample. If one
expects little variation in elasticity, this result indicates that heterogeneity will not create
a large deviation from a situation with exactly constant elasticity. With a wider range of
variation in relative elasticity, it becomes interesting to inspect the weights in the average
formula. For assets in which the instrument has a greater impact on prices (large J;), their
relative elasticities are given greater weights. For example, if more illiquid assets have both
a higher impact of the instrument \; and investors trade them more inelastically (lower &;),
estimates of relative elasticity will be lower than the unweighted average relative elasticity,

and overstate how inelastic the typical asset is.

2.4 Estimating elasticity in theoretical models.

We take a brief detour through theoretical models. We first show how commonly used
models, once considered in appropriate units, relate to our identification assumptions. Then,
we provide an example explaining why simple equilibrium considerations do not affect our

identification results.

2.4.1 Standard models of asset demand

We discuss how standard models of asset demand relate with the identification assumptions.
For each model, we derive the appropriate units and parameter restrictions under which the

demand regression is well specified.” Table 1 summarizes the results.

YPetajisto (2009), Davis et al. (2024), and Davis (2024) quantify elasticities in these models.
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CARA CRRA Logit
Regression units “demand” LHS demand portfolio shares log portfolio shares
D; P,Di/W log(P;D; /W)
Regression units “price” RHS price log price log price
P, log P; log P;
Own Price Elasticity &; %[E‘l]“ %[E‘l]ii a(l —w;)
: .. Ry _
Cross price Elasticity &;; [y S[2 —aw;
. B Ry _ _ _ _
Relative Elasticity & = & — & =L ([ 7a — [27 ') 5 ([P a — [27 ') a

Table 1: Three standard models of asset demands.

Constant absolute risk aversion. In the mean-variance model (CARA) described above,
we have seen the direct mapping between covariance matrix and the elasticity matrix when
considering a relation between the level of demand the level of prices: £ = 0D/0P = v 1 X1,
Section 2.3.3 show that Assumptions Al and A2 are satisfied if the covariance matrix has a

factor structure with factor loadings which depend on the observables.

Constant relative risk aversion. Preferences with constant relative risk aversion (CRRA)
are the workhorse model of macro-finance. Utility in this case is given by u(C) = C177/(1—7),
with now v being the constant relative risk-aversion. Assume that the risk-free rate is ry
and that there are NV assets with payoffs X = {X,}; at time 1, with prices {P;}. Hence, asset
returns are R; = X;/P,;.

To solve for the optimal demands, we assume that the payoffs follow a lognormal distribu-
tion: log X ~ N(M, X)), and log-linearize portfolio returns following Campbell and Viceira
(2002).'° For an investor with wealth W, the optimal demand is:

_ 1w

D;
v P

[21 (u —log P —r; + %diag(E))] (32)

%

This implies that when considering the relation between portfolio weights, w; = P,D;/W,

and log prices, the elasticity matrix is (this relation is exact in continuous time; see Dulffie,

10We log-linearize the return of portfolio w, r, = log R,, as:

1 1
rp —rp =log (wexp(r—ryp)) ~w(r—rp) + Ew’ diag(X) — §w’2w. (31)

23



2010; He et al., 2025):

ow 1
£ = FlogP —;E . (33)

This is the same elasticity as the CARA case, albeit with different units: portfolio weights
on log prices. Therefore, our earlier discussion relating properties of the covariance matrix

(here of log returns) and the identification assumptions apply to this case as well.

Logit. The logit model is commonly used in the industrial organization literature. There,
it is most often motivated by aggregation of a consumer discrete choice model, but can also

t.11 While this model does not derive from

apply to an individual choice of consumption baske
standard optimal portfolio choice among risky assets, its simplicity and tractability make it
appealing for constructing empirical models (Koijen and Yogo, 2019).

For an investor with initial wealth W, the expenditure shares or portfolio weights are:!?

_ PBD; exp (—ap; + 0'X; + €;)
%% L+, exp(—ap +0'X; + ¢)’

where p; is the log of the price of asset 7, X; observable demand shifters, and ¢; the unobserved
component of demand.
When considering the relation between log portfolio weights and log prices, the elasticity

matrix is:

0log w ,
_&logP__a<I_1w>7 (36)

where w is the vector of portfolio weights given in (35). Note that £ in general is not
symmetric in this case. The coefficient « is the only demand parameter that determines the
matrix of demand elasticity, as opposed to the whole covariance matrix in the CARA and
CRRA cases. Further, this matrix always satisfies assumptions Al (€, = & = awy) and

A2 (&; — &j; = ), with a being the relative elasticity of demand.

1 Anderson et al. (1988) derives the utility that leads to logit shares as optimal demand.
I21f there is no outside asset, the model of expenditure shares becomes:
_ P, D, . exp (—ap; + 0'X; + ¢;)

%% duexp(—ap +0'X; +¢)

(34)

Wi
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Figure 2: Different elasticity matrices with the same relative elasticity 5

Same relative elasticity vs. same elasticity matrix. Note that the fact that the risk-
based models and the logit model can both satisfy the two assumptions only implies that
they lead to the same estimation of the relative elasticity. Even when these models have the
same value of relative elasticity, they exhibit different elasticity matrices. Figure 2 illustrates

this nuance, with three distinct elasticity matrices that share the same relative elasticity.

2.4.2 What about equilibrium spillovers?

The reader might be surprised that, so far, we have not discussed the concept of equilibrium,
which is usually central in asset pricing. This is not because we assume that the world is not in
equilibrium: equation (9) is a change in demand in equilibrium. Instead, we can do so because
identifying specific sources of variation in prices — the instrument Z; — and assuming that
an investor’s demand satisfies Assumptions A1l and A2 is enough to estimate this investor’s
demand elasticity without understanding the entire structure of the equilibrium.

In this section, we work out a simple equilibrium model to illustrate this insight. The
setting is inspired by Fuchs et al. (2024) who point out that endogenous cross-asset spillovers
can imply a low measured own-price elasticity even if the true own price elasticity is near
infinite. This result considers a different regression from the causal inference framework of

this paper. We show that the issue arises because the omitted variable bias that we have
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pointed out in Section 1.3 is present. We also explain that, because the example satisfies our
assumptions Al and A2, a standard difference-in-difference regression is unbiased, once we

recognize that it recovers the relative elasticity.

Setting. The economy is populated by a representative agent with log utility. There are

three assets with different payoffs in three possible states of the world, with payoffs as follows:

1+e€ 1—e¢ 0 w.p. 1/4
Green P, 1—¢ Red P, 1+e€ Other P, =1 0 w.p. 1/4

0 0 1 w.p. 1/2

The “other” asset acts as a numéraire, whose price is normalized to 1. Denote the prices
of the green and red assets P, and P,. These two assets become closer substitutes as e goes
towards 0. Indeed, in the limit, any price difference between P, and P, represents an arbitrage
opportunity. The representative agent has endowments E,, E,, and E,, which implies that
their wealth is W = PE, + P.E, + E,.

Demand and equilibrium. We can first derive the demand function, that is, the optimal

portfolio share as a function of prices:

P, €(P.+ P)) +(P.— P,)

P. é(P,+P,)+ (P,— P,)
19 (P, P,) = r r g g r
> (B, + Py — (P By el

2 (P, + P2 — (P, — P,)?
(37)

w9<Pg7PT) =

Market-clearing for the two assets, w,W = P,E, and w,W = P, E, lead to equilibrium prices

as functions of the endowments:

2(E, - E,)—(E,+ E,
Pg<Eo,Eg,Er):E E(g ) (9+ )

(B, —E,) — (B, + E,
’ 2 27 PT(EmEgaEr):E 6( g) ( 9+ )
e(E,—E.) —(E,+ E))

“e2 (Eg - Er)2 - (Eg + ET)T
(38)

As an initial equilibrium, we assume that the endowments are £, = E, = 1/2 and E, = 1.
It is then immediate that P, = P, = 1.

Demand elasticities. We can compute the demand elasticities: how individual demand

would respond to a change in prices. Because utility is CRRA, we measure the sensitivity of

portfolio shares to log prices (in line with Section 2.4.1) around the initial equilibrium values
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of prices:

Owg 1 1

fon = Flog P, "8 5 (39)
0 1 1

gcross = o = -5+ 5. (40)

dlog P, 8 8¢

The expressions for w, are identical. The relative elasticity is Epuwn — Eeross = 1/4 — 1/(4€?).
These measures show that when the two assets are near-identical, ¢ — 0, any deviation

from parity would lead to a near-infinite increase in demand for the cheaper asset, and

near-infinite decrease in demand for the more expensive one. This is the standard arbitrage

argument.

Running regressions. We are interested in whether various regressions around a supply
shock for one of the assets can identify these elasticities. A shift in supply of the green asset
leads to the price changes

dlogP. .
B, (1-¢), (41)

dlog Py

B 2
o, (1+¢€?),

around the equilibrium.

Fuchs et al. (2024) correctly point out that regressing the demand for the green asset on
the change in its price using such a supply shock does not recover the own price elasticity.
This regression corresponds to taking the ratio of the change in portfolio to the change in

price across equilibria:

dwg/dE, 11 —¢g?
dlog P,/dE, 41+ &2

£ Eum. (42)

In particular, when ¢ — 0, the regression coefficient on the left-hand-side converges to —1/4,
while the own-price elasticity goes to infinity. Unpacking the total derivative explains the

source of the bias:

Owg Olog Py 0wy Jlog Py
dwy/dE,  FlogP, ok, dlog Py 0F,

dlog P,/dE, dlog 7y

_ olog P, /0E,
- EO’UJn + 5CT'OSS a log Pg/aEg

(43)

The change in demand for the green asset is not driven only by the change in its own
price but also by the change in price of its substitute the red asset, because &..,ss # 0. In the
language of regressions, the price of the red asset is acting as a correlated omitted variable.

Intuitively, the induced price drop of the green asset would lead to a large increase of its
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demand if the price of the red asset remained high. However, in equilibrium the price of the
red asset drops too, resulting in only a moderate change in the demand for the green asset.

However, the canonical causal inference framework corresponds to a standard difference-
in-difference regression in this setting with two assets. The regression coefficient is the ratio
of the difference of change in portfolio weight to the difference of change in price, as in

equation (6):

E — 5 1 1
dwg/d g dwr/d 9 = — — — = gown - gcross- (44>
dlog P,/dE, — dlog P,/dE, 4 4¢?

The difference-in-difference coefficient correctly identifies the relative elasticity. Indeed, this
setting satisfies Assumptions A1 and A2: because the elasticity matrix is symmetric, substi-
tution is homogeneous and the relative elasticity is constant. Also, because the endowment
shock does not have a direct effect on log investors’ choice of portfolio shares, the standard
exogeneity condition is satisfied. Note that the identified relative elasticity is unbounded
when € converges to 0, in line with the economic intuition that the relative demand for near
arbitrage assets should react strongly to a change in their relative price. The estimator leads
to this limit because the relative change in portfolio remains finite, while the relative change
in price goes to zero in this limit due to arbitrage.

This example highlights an important conceptual point: Demand elasticities are well
defined regardless of the source of the change in prices. Precisely, the demand curve maps
the price vector to the quantity vector through any source of change in price that are not
accompanied by changes in other drivers of demand. As a result, it is not surprising that
equilibrium spillovers are not a problem for the identification of demand elasticities per se.
Instead, the econometrician has to be careful that prices of other assets might introduce
omitted variable bias. Assumption A1l and A2 ensure that this is not the case for a standard

difference-in-difference estimator, which is then an unbiased estimator of relative elasticity.

3 Price Impact

The other natural application for causal inference in asset pricing is the estimation of price
impact or multipliers. After setting up the corresponding regression framework, we show how
our identification results apply to this situation. We then relate demand elasticity estimates

and price impact estimates.
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Figure 3: Equilibrium Effect of an Upward Shift in Demand Curve

3.1 Price impact regression

Simple causal inference of price impact. Price impact measures how much prices
change in response to an exogenous shift in demand. Because in equilibrium, aggregate
demand does not change if assets are in fixed supply, the empirical setup differs from that
of demand estimation. To understand the basic intuition, start with one asset to put aside
issues of substitution. While equilibrium demand is fixed, it is possible for demand curves to
shift; and we are interested in measuring the impact of such a shift. An idealized example
would be an investor waking up in the morning and deciding to buy one share of Apple for
no specific reason. Then, the aggregate demand curve for the asset shifts to the right by
one unit. In equilibrium, the price must adjust upwards to satisfy market clearing. Figure 3
illustrates this process. Similarly supply shocks can be viewed as the negative of a demand
shock and be treated likewise.

In practice, the econometrician starts from a demand shock Z;; examples of such shocks
from the literature include asset purchases by central banks or rebalancing due to flows in

and out of mutual funds (Lou, 2012). Armed with this shift in demand, we run the regression:

AR = .//\/l\ZZ + €, (45>

Of course, the shock Z; is not the only source of variations in prices. Hence, there is still a
stringent exclusion restriction in (46). In words, the change in demand under consideration
must be orthogonal to any other demand shifts in the economy. For example, if a group of

investors systematically mimicks the Fed’s asset purchases, exogeneity is violated and the
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regression will be biased; the measured shock undercounts the actual change in demand, and
overestimates the price impact.

There is no first stage because Z; directly measures the magnitude of the shift in the
demand curve. This shift does not materialize in equilibrium quantity demanded: prices
adjust so that the total quantity demanded stays equal to the fixed supply. Equivalently,
this identification condition corresponds to assuming that, if one could measure quantities
before prices adjust — the out-of-equilbrium square in Figure 3 — the first-stage coefficient

would be one.

Handling substitution. The same issue as for the estimation of demand elasticity arises:
all prices are determined together in equilibrium. All of the considerations discussed in
Section 1 also apply. There is no such thing as the multiplier but instead a matrix M of
own-demand and cross-demand multipliers such that AP = MAD. This implies that in

response to a vector of shocks Z, price changes will be:
AP = MZ + ¢, (47)

where € captures the impact of all other demand shocks. The following proposition highlights

how assumptions A1l and A2 applied to the matrix M allow us to reach a valid estimation.

Proposition 3 If the matrix M satisfies assumptions A1 and A2, and the demand shocks

Z satisfy the exclusion restriction Z; L €;|X;, the regression
AP, = MZ; + 0X; +u, (48)

identifies the relative multiplier:

—_

M = Mrelative . (49>

The relative multiplier measures how the price of one asset relative to another comparable
one changes if the relative demand for these assets shifts. How much does the price of Ford
change relative to the price of General Motors if the demand for Ford changes relative to the
demand for General Motors? To apply Proposition 3, the econometrician should argue that
assumptions Al and A2 are plausible for their experiment. In the next section we show that
much of the intuition on the validity of the assumptions for elasticities translates directly to

multipliers.
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3.2 Link with elasticity estimation

Beyond the symmetry between the price impact regression and the demand elasticity regres-
sion, the two problems are intimately connected economically. Let us write the aggregate
demand curve D(P), the sum of the demand curves of all agents in the economy. The cor-
responding elasticity matrix is &€ = dD/JP. In equilibrium, prices have to be such that
aggregate demand equals the aggregate supply S, such that D(P) = S. If demand curves
shift by an amount AD, the new equilibrium price P + AP satisfies D(P + AP)+ AD = S.

Using the implicit function theorem we obtain

oD\ "' _
M= - (a—P) =& (50)

that is, the multiplier matrix is the inverse of the elasticity matrix.?
The next proposition connects estimation in the world of elasticities to the world of

multipliers.

Proposition 4 If the elasticity matriz € satisfies assumptions A1 and A2, then the multiplier
matriv M = —E71 satisfies them as well. Further more, the relative elasticity and relative

multiplier (both being scalars) are the inverse of each other:
M=—-E" (54)

The proposition has two parts, each proved in Appendix A.1. First, it states equivalence
of assumptions Al and A2 for M and for £. This implies that the arguments of Section 2.3
for their validity also apply to the estimation of multipliers.'*

Second, under these conditions the relative multiplier coincides with the inverse of the
relative elasticity. The two types of regression reveal the same information about demand.

This conjunction occurs despite neither own-price and the cross-price elasticities being sta-

13 As we describe in Section 2.4.1, it is sometimes more suitable to estimate demand elasticities in different
units (logarithms, portfolio shares instead of quantities, ...). The inversion result of Proposition 4 applies to
these different cases but with slightly adjusted formulas:

Milog Plog @} = *5{_101gQ,1ogP}’ (51)
-1
Miiog Plog @) = — [Efogwog py — (I—1')] (52)
. _ —1
Mg Plog@y = — [diag(w) g py — (T—1)] . (53)

For example in the case of logit where demand elasticity is measured by regressing the log portfolio share on
log price, equation (52) gives us the multiplier in log units: by how many percents do prices move in response
to a one percent change in aggregate demand. Similarly, equation (53) is useful for the case of CRRA.

4 Appendix A.2.4 shows that if the assumptions apply to each individual demand curve, it applies to the
aggregate demand curve as well.
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ble by inversion (M;; # —1/&;;); inverting a matrix is different from inverting each of its

elements.

3.3 Example: Relative multipliers in corporate bonds

To make things concrete, we consider a practical application. The goal is not to convince the
reader that the assumptions hold perfectly. Instead, we sketch out the discussions one must

go through at each step when conducting causal inference:

1. choose a source of variation,
2. assess exogeneity,
3. assess assumptions Al and A2 and select observables,

4. implement the regression analysis.

Consider the market for investment-grade corporate bonds, broadly following Chaudhary
et al. (2022). We obtain data on returns from the WRDS Bond Returns database between
2010 and 2022. To estimate the price impact of demand shocks, we need an exogenous source
of variation in demand. One such source of variation is flow-induced trading from mutual
funds as in Lou (2012). Flow-induced trading is the predicted demand shock from mutual

funds’ mechanical scaling of positions in response to flows:

At 1Wi g 11
i = — " Jt, 55
! . Pz',t—lsi,t—l fkt ( )

where Ay ;_qw; ;41 are the holdings fund k has of bond ¢ at time ¢—1 (in dollars), the product
of the fund’s assets under management Ay, and portfolio weight w; 1 ;—1, fx: denotes relative
flows into fund k at time ¢, and P;;_1.5;,-1 is the total bond supply for corporate bond 7 at
t—1, the product of the bond’s price and quantity outstanding. The instrument is constructed
from mutual fund bond holdings and flows from the CRSP Survivor-Bias-Free US Mutual
Fund Database following Huebner (2024).

The basic idea behind this instrument is that flows in and out of mutual funds are not
related to the underlying details of the holdings of the fund. Aggregating these flows across
all funds for a specific bond creates variation in demand for this bond. Weighting the flows
by past portfolio shares removes the potential endogeneity due to selective trading by mutual
funds. Furthermore, for the exclusion restriction to be respected, the flows into mutual funds
should not be coming from investors who were already buying similar assets. If households are
replacing portfolios held directly by similar portfolios inside mutual funds, there is actually
no net shift in demand. Finally, the measured demand shocks should not be related to

unobserved demand shocks. For example, the exclusion restriction would be violated if
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another type of institution, say insurance companies, would direct their investments to similar
strategies as mutual fund investors. To support the exogeneity condition of Proposition 3,
the empiricist should present empirical evidence and argue that these concerns are not in
their data.

The next step is to gauge assumptions Al and A2. Of course, these assumptions must
be made jointly with a choice of observables.'> Consider Assumption Al first. It is clear
that homogeneous substitution across bonds is unlikely to hold unconditionally; if demand for
many long-term bonds rises, this will likely affect the price of other long-term bonds differently
from the price of short-term bonds. As discussed in Section 2.3.1, a simple diagnostic for
the plausibility of assumption Al is a test of balance on covariances. One can ask: do the
treated bonds comove in the same way with broad portfolios as control bonds?

Figure 4 suggests that this is not the case. For a given date, we form a long-short portfolio
based on whether Z;; is above or below median on that date and compute the beta of this
portfolio on a series of broad indices in a 2-year range around the date of the sort — the blue
dot for that date. Each panel corresponds to a different index: a broad bond index, long-short
portfolios based on credit ratings and maturity, and a broad stock index. Bonds with a high
instrumented inflow appear to differ systematically from their low-inflow counterparts: they
comove more strongly with the credit-rating-sorted portfolio and more weakly with the broad
bond index and the duration-sorted portfolio. Such behavior is not surprising if investors
choose their fund flows based on these dimensions. However, there is no meaningful difference
in terms of exposure to the stock index.

Once we control for duration and credit rating as observables, covariances are much better
balanced. Specifically, we construct a conditional instrument Z;4;,, by residualizing Z;; with
respect to duration and credit rating for each time period before sorting portfolios. This
corresponds to the orange dots in Figure 4, which are much closer to 0. While this evidence
bolsters Assumption Al, the empiricist should ask themselves whether other variables are
likely to drive substitution across bonds before moving on. Relatedly, they should also ensure
that treated and control bonds have similar properties, such as their idiosyncratic variance,

to support Assumption A2. 7

Provided the empiricist is convinced that the exclusion restriction and assumptions Al

and A2 hold, they can move on to the estimation of the relative multiplier. When facing

5Note that while we have not emphasized it in the discussion above, the exclusion restriction is also
conditional on observables.

33



A. Corporate Bond Index B. High—Low Credit Rating

@ Z; @ Z;
0.50 - @ Zidio,it 0.50 - PN @ Zidioit
@
@ ® :
0.25 F 0.25 F ¢ P P &.
o V&K
! Ay
(@]
0.00 0.00 w‘ ****** ’- *********** ~ 2
-0.25 —0.25}
050} -0.50 |
| 1 1 I. 1 1 1
2011-01-01 2014-01-01 2017-01-01  2020-01-01 2011-01-01 2014-01-01 2017-01-01  2020-01-01
C. Long—Short Term Bonds D. Stock Index
Z. @ Z;
0.50 - ® 7 0.50 ® 7
0.25F 0.25F
0.00 0.00 F - Ry o -
-0.25 —0.25}
e
—0.50 F —-0.50
| 1 1 1 1 1 1
2011-01-01  2014-01-01 _ 2017-01-01 _ 2020-01-01 2011-01-01 2014-01-01 2017-01-01  2020-01-01

Figure 4: Balance on covariances: exposure of long-short portfolios sorted on
demand shocks to various factors. Figure 4 reports regression coefficients from balance-on-
covariance regressions based on both the raw demand shock Z;; (blue) and the demand shock Z;4;, i1 (orange)
that is cross-sectionally orthogonalized to duration and S&P credit ratings at each point in time. At each
date, we form long-short equal-weighted portfolios based on whether Z;; (or Z;gio,it) is above or below the
median. We compute the returns of these portfolios over two years centered around ¢, excluding ¢, and regress
these returns on four aggregate factors. Panel A shows the time-series of coefficients for regressions on an
aggregate investment-grade corporate bond factor, the ICE BofA US Corporate Index Total Return. Panel B
uses the difference between aggregate high-yield and investment-grade corporate bond factors, the ICE BofA
US High Yield Index Total Return and the ICE BofA US Corporate Index Total Return. Panel C uses the
difference between the ICE BofA 154 Year US Corporate Index Total Return and the ICE BofA 1-3 Year US
Corporate Index Total Return. Panel D uses the Fama and French (1993) excess stock market return. The
data for factors in panels A to C is from FRED, while the data for the excess market return in Panel D is
from the Kenneth French data library. We exclude the bottom-quintile smallest bonds based on outstanding
bond supply. The time series is from 2011:04 to 2021:09.

repeated cross-sections, as in this setting, it is important to include time fixed effects in order

to focus on cross-sectional variation. As such, column 2 of Table 2 estimates the relative
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Table 2: Relative multiplier M in corporate bonds

Return AP /P,
(1) (2) (3) (4) (5)

Demand shock:

Z; 1.541* -0.254 0.019
(0.637)  (0.229) (0.065)
ZLidio,it 0.019 0.019
(0.065)  (0.065)
Date Fixed Effects Yes Yes Yes Yes
Duration x Date Fixed Effects Yes Yes
Credit Rating x Date Fixed Effects Yes Yes
N 646,335 646,335 646,335 646,335 646,335
R? 0.010 0.415 0.632 0.632 0.415

Table 2 reports the results of relative multiplier regressions of bond returns AP;;/P; ;1 on demand shocks Z;
and Z,q;0,;1 for U.S. investment-grade corporate bonds. Specifications (1)—(3) use the flow-induced trading
demand shock Z;; defined in Equation (55). Specification (1) includes a common intercept, specification
(2) uses date fixed effects, and specification (3) adds controls for a continuous duration variable and S&P
credit rating dummies for each date. Specifications (4)—(5) use the demand shock Z;4;,: orthogonalized to
duration and credit rating each period, with and without controlling for duration and credit rating in the
regression. We exclude the bottom-quintile smallest bonds based on outstanding bond supply. The sample
period is 2010:04 to 2022:09. Standard errors are clustered by date and bond.

multiplier under the (implausible) assumptions of homogeneous substitution and constant
relative elasticity without any observables. In column 3, we include controls for duration
and credit-risk interacted with a time dummy; here again the idea is to control for these
variables within each cross-section. In this specific case, the inclusion of these controls lead
to a positive but insignificant price impact, unlike in the previous specifications. Concretely,
the point estimate of 0.019 suggests that if the demand for one bond relative to another
one with same credit rating and duration increases by 1%, this bond’s price increases by
1.9bps relative to the other one. Columns 4 and 5 regress directly the change in price on the
residualized instrument Z,4;, 4, with and without controls for the characteristics. This leads
to the exact same estimate of relative elasticity, a mathematical property independent of the
specific dataset. This observation highlights that the source of variation for the estimates is
variation in the residual component of the instrument Z;g;, .

Again, the point of this section is not that these values constitute the best possible

estimates in this setting, but merely to illustrate the process of using causal inference.
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4 Beyond the Relative Elasticity

Standard cross-sectional causal inference can estimate the relative elasticity, a useful moment
for answering micro questions comparing individual assets. There are many other interesting
questions concerning more aggregated levels; here, aggregation is across assets. For instance,
how do investors rebalance when the price of all small stocks changes relative to all big stocks,
or when the price of long-duration bonds changes relative to short-duration ones? At the
most aggregated level, what is the price impact of a demand shock for all assets at the same
time?

This section aims to address these questions. Doing so hinges on estimating cross multi-
plier separately of the own multipliers. Estimating these dimensions of the multiplier matrix
must rely on sources of variation in the time series, one for each characteristic driving sub-
stitution plus one for the overall aggregate. We focus on price impact estimation in the text;

similar ideas apply to elasticity estimation.

4.1 A simple case of micro vs. macro

Consider the simple case of a symmetric multiplier matrix (as in Section 2.3.1): a constant
own-price elasticity M, and cross-price elasticity M,..ss. This simple configuration illus-
trates the basic principles behind answering aggregate questions.

We first show that in this situation, the response of prices to demand can be decomposed
into two distinct components: a composition effect and an aggregate effect. The composi-
tion effect corresponds to the relative comparisons obtained with standard cross-sectional

inference. In contrast the aggregate effect is a component we have not explored yet.

Proposition 5 (Multiplier decomposition in symmetric case) Take a multiplier ma-
trix M with constant own-multiplier M, and cross-multiplier M ,qss. Consider a generic
change in demand and price connected by this matriz, so that AP = MAD. Define the

aggregate and idiosyncratic components of the changes in price and demand:
1 1
APugy = Z AP, ADqugy = Z AD;, (56)
Apidio,i = Apz - Apagga ADidio,i = ADz - ADagg- (57)
The response of prices to a change in demand can be decomposed into univariate components:

Micro: APidio,i = //\A\ADidio,h (58)
Macro: APy = M AD,,, (59)
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where M = Moun — Meross is the relative multiplier and M = Mgy + (N — 1) Meposs is the

aggregate multiplier.

Aggregate and composition effects. Equation (58) captures the relative comparison
between assets. If an asset experiences a higher demand shock relative to the average, its
price increases relative to the average. The magnitude of this response is determined by the
relative multiplier M. In contrast, equation (59) captures the change in aggregate price,
which only depends on the change in aggregate demand. There, the strength of the response
is captured by the aggregate multiplier M. Interestingly, those two components are separate.
The composition of the demand shock has no bearing on the aggregate price. Conversely,
the aggregate shift in demand affects the price of all assets equally.

This setting is consistent with the common approach used in macroeconomics to focus
only on relations between aggregates. For example, Gabaix and Koijen (2021) present a
model of the aggregate multiplier where the only asset is “the stock market” without track-
ing individual stocks. Proposition 5 shows that such a model generalizes to an arbitrary
composition of demand shocks to individual stocks under the symmetry assumption of this

section.

Separating different multipliers. The second takeaway from Proposition 5 is that the
aggregate multiplier M cannot be calculated from the relative multiplier M. Tt is not only
that the two multipliers have different magnitudes, but also that one cannot be recovered
from the other one. It is immediate to see this result in such a simple setting: the two
multipliers represent different linear combinations of own- and cross-multipliers M,,,, and

M ross- We will show this distinction remains in richer settings.

Estimating the aggregate multiplier. This distinction also has important implications
for estimation. We have already showed that the cross-section allows to recover M. Equa-
tions (58) and (59) show that is impossible to recover anything else than M from the cross-
section alone. The aggregate component M is only contained in the intercept of the regression,
which cannot be guaranteed to be exogenous. This is the classic missing intercept problem.
Because relative and aggregate multiplier are transformations of own- and cross-multipliers,
this observation also implies that one cannot separate own- and cross-multipliers from the
cross-section alone.

Then, how can we estimate M? The only way is to have a series of observations over
time, and then use exogenous variation in demand in the time series. Concretely, one needs a

variable Z; such that other demand shifters are orthogonal to this instrument: Z; L (Dggy¢ —
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Z;).%6 Then a time series regression of P, on Z; correctly recovers M:

A-Pagg,t = ./\7215 + Uy (60)
with Z; such that ADgg,: = Z; + €, with ¢, L Z,. (61)

Equation (59) highlights that not only is a single time-series necessary for this regression but
also that no additional information comes from observing the entire panel. Arguments about

exogeneity of the source of variation must be about time-series variation.

4.2 Decomposition into micro, meso, and macro levels

In practice, substitution across assets is unlikely to be symmetric. For example when in-
vestors substitute across bonds, they care about the maturity profile of their portfolio. The
observables in our framework (the variables X in assumptions Al and A2) capture this
dimension of heterogeneity beyond the relative elasticity. In this case, there is still a decom-
position between micro and aggregated multipliers, with one important distinction: there are
multiple aggregated multipliers corresponding to each source of substitution and the overall
aggregate.

To make this point concrete, consider a single observable X which is standardized. The
following proposition gives the decomposition at micro, meso, and macro levels; we discuss

the general case later in Section 4.4.

Proposition 6 (Multiplier decomposition with observables) Take a multiplier matrix
M satisfying Assumptions A1 and A2 with an observable X which has mean zero and unit
variance in the cross-section. Consider a generic change in demand and price connected by
this matriz: AP = MAD. Define the aggregate, idiosyncratic, and X -based components of

the changes in price and demand:

1 1
APagy = Z AP, ADugy = + Z AD;, (62)
1 1
APy = N ;XZAPZ', ADx = N ; X, AD;, (63)
APgio; = AP, — AP,y — X;APx, ADjgjo; = AD; — ADygg — X;ADx. (64)

The response of prices to a change in demand can be decomposed into three univariate com-

16For example Gabaix and Koijen (2021) construct such shifters using granular instruments (Gabaix and
Koijen, 2024) across investors.
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ponents:

Micro: AP gio; = -//\/l\ADidio,i (65)
Meso: APy = MyyyADyy, + My ADyx, (66)
Macro: AP, = JWaggADagg + My ADx. (67)

Proposition 6 shows that the presence of the observable X breaks down the dichotomy
between a micro- and macro-multiplier explaining all the impact of the price. It adds an
intermediate “meso” layer, with a distinct role for fluctuations along this variable. This is
captured by the aggregates APy and ADx. These quantities measure how the price and the
demand for assets with larger values of X change relative to those with lower values. Indeed,
because we assume the observable has mean zero in the cross-section, APx is the change in
price of a long-short portfolio sorted on this characteristic.

However, this is in general not just a third, intermediate, layer. Idiosyncratic asset-level
changes in prices and demand remain autonomous — equation (65). In contrast, meso and
macro price impacts — equations (66) and (67) — are linked together. The shift in demand
along X, ADx, affects the aggregate price AF,,,. Conversely, the aggregate shift in demand
AD,4, affects the relative price of assets along X, APx. This connection yields additional
challenges for estimation and interpretation of multipliers. We first discuss the implications

for estimation of the macro multiplier, then turn to the meso multiplier.

4.3 Estimating the macro multiplier

Defining the macro multiplier. The first observation is that a more precise definition of
the macro multiplier is required in this setting. Equation (67) highlights that the aggregate
change in demand AD,,, is not the only determinant of changes in the aggregate price.
The composition of this shift matters as well. This is the second term, proportional to ADy.
Going back to the example of bonds of different maturity, a shift in the supply of all Treasuries
might have a different effect on the total value of government debt than a disproportionate
shift in the supply of long-term treasuries.

There is still a natural definition of the macro multiplier, the coefficient ./\7agg. This
number represents the price impact of a parallel shift in demand for all bonds. More generally,
it represents the price impact of a shift in demand with composition orthogonal to the
observable X. Another version of this result is that one can focus only on aggregate price

and demand if they assume that all shocks are proportional across assets.
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Conditions for identification of the macro multiplier. The impact of composition
effects creates a potential additional omitted variable in the estimation of the macro multiplier
relative to the simple case of Section 4.1. Therefore, an additional condition is required for
identification. A candidate shock Z; must be orthogonal to both other aggregate demand

shocks and all composition-based shocks. This corresponds to the regression specification:

Apagg,t = -A7agth + Uy, (68)
ADgygr = Zy + €, with ¢ L Zy;
with Z, such that gat ST e (69)
Zy L ADx .

Verifying the identification conditions. In practice, how can we ensure this additional
condition is satisfied? Instruments for aggregate demand often come from specific investors
or groups of investors, for which we know the reason behind their trading. This feature
makes it plausible that any shift in the demand curve of other investors is orthogonal to the
instrument. Without composition effects, this property is only needed for the demand of
other investors for the aggregate portfolio. In our current setting with composition effects,
it also needs to apply to their demand for the long-short portfolio based on X.

However, this is not enough. It is also necessary that the shock to the initial investors’
aggregate demand is orthogonal to their own shock of demand for the long-short portfolio.
Concretely, the econometrician should look at their shock and evaluate whether it only creates
a parallel shift in portfolios. For example, a central bank can suddenly decide to intervene
and purchase corporate bonds, like the Federal Reserve in 2020 (Haddad et al. (2021)). If
the purchase policy is tilted towards a certain category of bonds, such as investment grade,
the shock also creates variation in the demand along that characteristic, ADx # 0. More
broadly, one should always ask whether the composition of aggregate shocks is related to
important observables.

If the econometrician cannot confirm the condition that Z; is orthogonal to ADx,, the
alternative way to make progress is to find two separate sources of variations with known

impact on aggregate demand and on the demand along X:

ADoggr = Z + AZP + €agqus (70)
ADy, = nZ + 2% + ex,, (71)
with (Zt(l), Zt(z)) J— (eagg,h EX,t)a (72)

where the cross-impact of the shocks, A\ and p, are known and A # p~! so that there is

independent variation between AD,,, and ADx.
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It is tempting to follow the traditional asset pricing approach and simply control for the
factor return based on the characteristic X. For example, when estimating the aggregate
multiplier for the stock market, one could control for the returns on the factors of Fama and
French (1993) say HML and SMB. Unfortunately this path is flawed because factor returns

might also respond to aggregate demand shocks, as shown in equation (66).

4.4 Estimating meso multipliers

The direct meso multiplier. Variation along the observables is also interesting for its
own sake. How does a change in demand for green stocks relative to brown stocks affects the
relative price of these two groups of assets? Answering this question corresponds to estimating
M x for X being a variable measuring the greenness of a firm. How does a quantitative
easing operation purchasing long-term bonds by issuing short-term reserves lowers the term
premium? Again, this is the coefficient M. x, this time for X measuring duration.
Proposition 6 demonstrates clearly that the answer to these meso questions are not pro-
vided by the micro multiplier M or macro multiplier j\7agg, nor by combining them. Instead,
it reflects how investors substitute across assets precisely along the characteristic of interest.
The symmetry between the meso and aggregate multipliers— equations (66) and (67)—
implies that all the discussion above for the macro multiplier applies to the estimation of
M x- One must first find a shock in the time series that shifts the demand for high-X assets
relative to low-X assets. This shock must be orthogonal to other demand shifts along this

characteristic and the shift in aggregate demand:

APx, = HXZX,t + Ux (73)

ADx,; = Zx;+€xy, withexy L Z
with Zx; such that ot e e . (74)
Zxt L ADggg .

For example a shock that increases the demand for long-term bonds and reduces the demand
for short-term bond by the same amount could be a valid Zx, because it results in no shift
in aggregate demand. In contrast, a shock to the demand for long-term bonds only would
both create a shift along the observable and a shift in overall demand, violating the exclusion
restriction.

By measuring the impact of changes in prices along the observables, the meso multi-
plier M, x captures the substitution that was missing in the cross-sectional regression, as
we discussed in Section 2.2. The limitation of the cross-sectional regression is immediate

in the context of the identification conditions we just developed: within one period in the
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cross-section, there is no variation in the demand ADx,;. Analogous to the fact that the
constant in the regression does not reveal the macro multiplier (Gabaix and Koijen, 2021),
this issue is an incarnation of the well-known missing intercept problem for cross-sectional

identification.!”

Cross-multipliers. The connection between the meso and macro level also implies the
existence of interesting cross-multipliers. The coefficient Mgg captures how an aggregate
shock to demand affects the relative price of assets with different values of the observable
X. Conversely, the coefficient My measures the aggregate effect of relative demand shock
along the characteristic X. For example, it measures how an “operation twist” affects the
total valuation of all debt.

The estimation of these cross-terms requires having two separate demand shocks that hit
the two dimensions, as in equations (70)—(72). By including both shocks in the macro and
meso price impact regressions, one can separate the direct effect of each type of shocks from

their cross-effects.

With multiple observables. In Appendix A.4, we generalize Proposition 6 to the case of
an arbitrary set of observables. In this case, one must track a greater set of aggregate price
and demand indices: an overall aggregate price, and an index along each dimension of the
observables. These indices appear as the coefficient of a regression of prices and demands on

the observables. For the demand indices, this corresponds to defining

K
AD,; = ADagg + Z Xl(k)ADX,k + AD;gio, (75)
k=2
with  ADy = (X'X)"'X"AD, (76)

and the first component of ADx is AD,g,.

Then, the decomposition result is that each of the price indices responds to all of the
demand indices: APx = J\\/I/ADX, where ./\\/l/ is a K x K matrix. All of the discussion above
regarding identification for the single observable case generalize immediately. For example,
to completely identify the matrix ./\\/l/, one needs a set of K demand shocks in the time series.

Using demeaned observables leads to easier interpretation. In this case, the aggregate in-
dex is the average change in demand AD,,, = N1 Y AD;.*® The coefficient /\\/1/11 represents

a well-defined notion of macro multiplier: the response of the overall level of prices to a par-

17See for example Wolf (2023) in the context of macroeconomics.
18This occurs because the constant in a regression on mean zero variables (equation (76)) is simply the
average of the dependent variable.
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allel shift in demand. For the observables, the other components APx j represent the change
in price of a long-short portfolio formed along the k-th characteristic with no tilt along the
other characteristics. This is analogous to the coefficient in a Fama and MacBeth (1973) re-
gression. The diagonal term /\\/l/kk measures the direct meso multiplier: how this relative price
responds to a shift in demand along this characteristic only. The off-diagonal components

measure spillovers between the various meso components and the aggregate component.

An alternative approach: assuming symmetric groups. A simple way to make assets
comparable at the individual level is to classify them in disjoint groups, as in Section 2.3.2.
This approach corresponds to the observables X being dummy variables for each group —
in this case, the superfluous constant should be removed. The price and demand aggregates
of equation (76) are the averages for each group. This is equivalent to working directly with
data that is aggregated at the group-level, and estimating a multiplier matrix M of size
K x K, with K the number of groups.

To fully estimate M requires an instrument for each group. Instead of estimating the
matrix of multipliers with one source of time-series variation for each group, one can go
back to causal inference as in Section 2, by making assumptions Al and A2 about M.
Specifically, one can assume homogeneous substitution and constant relative elasticity across
groups. Then, a single source of exogenous variation in the cross-section of groups allows to
estimate the relative multiplier across groups /\\/Trezame- A special case of such structure is
the nested logit model, used for example in Fang (2023) and Koijen and Yogo (2024).

Importantly, making assumptions Al and A2 in the context of more aggregated data
is more restrictive than at the micro level. Consider for instance a setting where investors
manage the duration of their portfolio, hence duration affects substitution across bonds. In
this context, if one groups bonds by duration, assumptions A1 and A2 hold at the asset level

(with the group dummies as observables) but not at the group level.

4.5 Example: Duration-based multipliers in corporate bonds

To illustrate concretely the process for estimating the aggregated multipliers, we return to the
setting of Section 3.3 where we have focused on price impact in investment-grade corporate
bonds, using flow-induced trading from mutual funds as the instrument Z; ;.

We start by considering the macro multiplier. In the simple approach of Section 4.1,
Proposition 5 decomposes the multiplier matrix into only two distinct components: a micro
and macro multiplier. The macro multiplier M measures the response of aggregate prices
to a change in aggregate demand. Thus, to estimate M one needs a source of variation in

aggregate demand which can only come from the time series. If one would like to parallel the
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Table 3: Macro- and meso multipliers in corporate bonds

Return AP,y ¢/Paggt—1 Return APx;/Px;—1 Return AP,/P,; 4
(1) (2) (3) (4) (5)

Zagg t 14.231°%** 12.347** 7.204%%  12.347FF  12.347F*
(3.643) (3.985) (2.423) (3.959) (3.958)

Zxt -6.170 0.817 -6.170 -6.170
(7.810) (4.591) (7.757) (7.757)

Zaggr < Xit 7.294%*
(2.407)

Zxp X Xy 0.817
(4.558)

ZLidioit 0.090 0.090
(0.055) (0.054)

Duration X;; 0.001 -0.001
(0.001) (0.001)

N 150 150 150 646,335 646,335
R? 0.242 0.250 0.135 0.101 0.125

Table 3 reports the results of macro- and meso multiplier regressions of bond returns on demand shocks
for U.S. investment-grade corporate bonds. Specification (1) follows equation (60) in estimating the macro
multiplier by regressing aggregate bond returns AP, 44 ;/Pag9.+—1 on the aggregated instrument Z,4, ; in the
time series. Specification (2) jointly estimates the macro multiplier ]\7@99 and a cross-multiplier Mx from
equation (67) by adding the aggregated duration-tilted shock Zx ;. Conversely, specification (3) jointly

estimates the meso multiplier My and cross-multiplier Magg from equation (66). Specifications (4) and (5)
estimate the mechanically identical macro- and meso-level multipliers as in specifications (2) and (3) using

disaggregated, repeated cross-sectional regressions, while adding the relative multiplier M. We exclude the
bottom-quintile smallest bonds based on outstanding bond supply. The sample period is 2010:04 to 2022:09.
Robust standard errors are used for specifications (1) to (3). For specifications (4) and (5), standard errors
are clustered by date and bond, and regressions are weighted such that each date receives equal weight.

micro estimation, they would use aggregate flows from mutual funds. This corresponds to
aggregating the micro-level instrument: Z,,5, = N1, Z;;. While this aggregate instrument
is based off the micro-level one, the exclusion restriction is different. To satisfy this condition,
the aggregate mutual fund flow must not be driven by a response to prices, and cannot be
related to shifts in the demand curves of other investors such as banks. Supporting the
exclusion restriction would be a tall order for this shock. Column 1 of Table 3 estimates the
macro multiplier by regressing changes in aggregate price on this shock to aggregate demand.
The estimate suggests that a 1% increase in demand leads to a 14% increase in bond prices.

A potential concern for this estimation of the macro multiplier is that meso-level demand

shocks also affect aggregate prices, and that these shocks are correlated with the aggregate
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instrument. For the sake of simplicity we narrow the analysis down to shocks along one
observable, duration, and abstract from variation in credit risk. The concern is that the
instrument for aggregate demand, Z,44+, is correlated with shocks to the demand for long-
term bonds relative to short-term bonds. If you have already argued that the instrument
is independent of changes in the aggregate demand of other investors, then it is natural
to assume that the instrument is also uncorrelated with their demand for long-term bonds
relative to short-term bonds. But aggregate flows from mutual funds themselves are in general
not uniform across bonds; instead they tilt towards either short- or long-term bonds. In fact,
constructing the demand shock along duration, Zx; = N1 ZZ XitD;,, with X, being each
bond’s duration demeaned and standardized for each time period, we find a correlation of
—0.59 between Z,,,; and Zx; in the data.

In light of this substantial relation, it is necessary for researchers to account for the role
of the meso-level shock as in equations (70) to (72). Of course, doing so raises the bar on
exogeneity because Zx; must also be unrelated to other demand shocks, and a defense of
this assumption along the same lines as for Z,,,,; must be provided. Column (2) presents
the result of the estimation accounting for both meso and macro demand shocks. In this
case, the estimate of the macro multiplier does not change much, because meso-level shocks
appear to not have a strong effect on aggregate prices.

The response of the price of long-term bonds relative to short-term bonds, APy, to shifts
in aggregate demand ADgy,; and demand along durations ADx; is interesting in its own
right. We regress APx; on the two demand shocks Z,,,; and Zx; in column (3) of Table 3.
The identification condition is the same as for the previous regression. Across bonds of
different durations, a 1% increase in the aggregate demand for bonds leads to a 7.3% higher
return for each standard deviation. A shift in demand away from short-term bonds towards
long-term bonds of 1% leads to a positive but insignificant increase in the relative price of
long-term bonds.

Columns (4) and (5) illustrate that the panel does not provide additional information
about the macro and meso-multipliers relative to the time-series regression. These specifica-
tions correspond to panel regressions of individual bond returns on the idiosyncratic shock,
Zidio,it, the macro and meso demand shocks, Z,4,; and Zx,, as well as their interaction with
duration X;; (for column (5)), and a control for X;;. Mechanically, the coefficient on Z,,,,
and Zx; coincide with the estimates of column (2); the coefficients on their interaction with
Xt coincide with those of column (4).1

Stepping outside of our framework, one can support the linear specification for the role

19The number of corporate bonds present in the data varies across dates, creating an unbalanced panel. In
such a situation, the coefficients in columns (4)-(5) mechanically coincide with those in columns (2)-(3) only
if the repeated cross-sectional regressions in (4)-(5) are weighted so that each date receives equal weight.
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A. Response to Aggregate Shock AD,4, B. Response to Duration-Based Shock ADx

—@— constant —@— constant
25 - |=@—linear —o—linear
—o— flexible 5 |- |—e— flexible

15

10 -

1 1 1 1 1 1 1 1 1 1 1
-1.0 -05 0.0 0.5 1.0 1.5 -1.0 -05 0.0 0.5 1.0 15
Standardized Duration Standardized Duration

Figure 5: Macro- and meso multipliers across durations. Figure 5 reports the response
of portfolios of corporate bonds to aggregate demand shocks ADgg, (Panel A) and shocks along duration
ADx (Panel B). Bonds are grouped in seven buckets based on duration: <1 year, 1-3 years, 3-5 years, 5-7
years, 7-10 years, 10-15 years, and 15+ years. The blue lines correspond to the estimates from column (4)
of Table 3, which assume identical responses. The red lines are based on column (5), which includes linear
interaction terms with duration X;;. The green line estimates these multipliers separately each duration-

based portfolio in a pooled panel regression. The sample period is 2010:04 to 2022:09.

of duration by examining the impact of the meso and macro shocks on portfolios sorted on
duration. Each time period, we form bond portfolios based on seven buckets of duration.?”
The blue lines in Figure 5 correspond to the response of each portfolio to macro (Panel A) and
meso (Panel B) shocks predicted by the estimates of column (4) of Table 3 which assume that
all bonds have the same response. The red lines entertain responses that depend on duration
in a linear way as in column (5). Instead, the green lines estimate the coefficients on meso
and macro shocks for each bucket separately. In this case, the estimate based on portfolio
sorts suggest that heterogeneity is necessary. While this heterogeneity is well captured by a
linear specification for the response to aggregate demand shocks (Panel A), it appears that

the response to meso shocks (Panel B) is more subtle.?!

5 Concluding Remarks

This paper provides a framework for using causal inference with asset prices and quantities.

Specifically, we provide conditions for valid estimation in presence of the natural spillovers

20We follow the classification of the ICE BofA US Corporate indices: <1 year, 1-3 years, 3-5 years, 57
years, 7-10 years, 10-15 years, and 15+ years.

2l Appendix D revisits the estimation focusing on changes in yields instead of returns, and finds more
regularity in the estimates.
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that exist between assets when making portfolio choices. The two conditions are constant rel-
ative elasticity and homogeneous substitution conditional on observables. The latter implies
that two assets with the same observables are comparable if the demand for them responds
in the same way to the price of every other asset. We show that the two conditions map
naturally to restrictions often imposed in standard asset pricing models, and also provide
guidelines to design experiments satisfying these conditions and assess their plausibility in
the data.

When these conditions hold, the standard cross-sectional difference-in-difference or instru-
mental variable approach identifies the relative elasticity between comparable assets—that
is, the difference between their own-price and cross-price elasticity. Other dimensions of
substitutions such as separating own-price and cross-price elasticity, the macro elasticity, or
responses to shocks across broad categories of assets, must be jointly estimated by a set of
time series regressions. These simple tools and principles offer a straightforward package for
researchers wanting to use natural experiments to better understand investment decisions

and their equilibrium impact.
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A Proofs and Derivations

A.1 Identifying the relative elasticity — Proposition 1
Start from the general demand equation with demand shocks:
AD; = E;AP; + ) E;AP; + AD;. (77)
J#i
We recall the two assumptions necessary for identification:

e Assumption Al. X; = X; = & = & = Euoss(Xi, Xi) = X[Ex X, Vi, jeS,l#14,7,
where X is a K x 1 vector of observables, and £x is a K x K matrix.

o Assumption A2. &; — Euross(Xi, Xi) = &jj — Eaross (X, Xj) = 5, Vi,jeS

Proposition 1 shows that under assumptions Al and A2 and the exogeneity condition,
the IV estimator, conditioning on X, identifies coefficient £.
Proof. Starting from equation (77), we can rewrite the demand equation as a cross-sectional
regression:

AD; = E;AP; + Y E;AP; + AD,; (78)
o
= AP + jZ Eeross(Xiy, Xj)AP; + AD; (79)
o
= (& — ECT:ss(Xi, Xi) AP; + ) Eoross(Xi, Xj) AP, + AD; (80)
= EAP + ) Euross (X, Xj)APj + AD; (81)
— EAP, + ix;SXXjAPj + AD; (82)
J
— EAP, + X! (Z 5XXjAJJj> +AD,; (83)
X —
=EAP, +0' X, + AD; (84)

Equation (80) adds and subtracts E.oss(X;, X;) AP;. Equations (81) and (82) use assump-
tions 2 and 1, respectively. Equation (83) pulls out X from the sum. The remaining part
of the sum gets absorbed into #, a K x 1 vector of cross-sectional constants. These 6 are K
regression coefficients on the K observables, Xj;.

Given the exclusion restriction that Z; L ADZ-]XZ- and the relevance condition that
cov(AP;, Z;|X;) # 0, this is the standard IV setting, and the regression estimates £. m
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A.2 Properties of elasticity under assumptions A1 and A2
A.2.1 A matrix representation.

First, we derive a simple matrix representation for an elasticity matrix under our two as-
sumptions.

Lemma 7 Let € be an elasticity matrix that satisfies assumptions A1 and A2. Then it can
be written as:

£=El+ XExX', (85)

where & is a scalar equal to the relative elasticity and Ex 1s a K x K matriz.

Proof. Write out the elasticity matrix &:

En En ... Ein E+XIExX:T  X|ExXo ...  X|ExXn
521 522 c.. gQN Xéngl E+ Xéngg . XéngN

=\ T T T = . . . . (86)
gNl gNQ SNN X;\[gXXl vangQ é\_’_X]/VgXXN

The (7, 7) element of matrix £ is [£];; = X[Ex X, = Ecross (Xi, Xj), as defined by Assump-
tion 1, for i # j. The diagonal elements are [E]; = £+ X/ExX; = £+ Eeross (Xi, Xi), as in
Assumption 2. Since each element in & directly corresponds to the respective &;; defined by
assumptions Al and A2, the assumptions are equivalent to the elasticity matrix in (85). m

A.2.2 Transforming the observables.

The following lemma shows that observables can be recombined in a linear way. In particular
they could be demeaned, standardized, or orthogonalized.

Lemma 8 Let £ be an elasticity matriz that satisfies assumptions A1 and A2 with respect
to a set of observables X. If A is a K x K invertible matriz, € satisfies assumptions Al and
A2 with respect to the recombined observables X = X A.

Proof. Insert AA~! judiciously into the decomposition of Lemma, 7.

M = MI+ XAA" My (A)TAX = MI + XM X', (87)
with Mz = A" My (A) (88)
[ ]
For example, if the first observable is a constant and the other ones have mean X1, ..., Xx_1,

the following matrix demeans them:

0 X; X1
0 0 - 0

Ademean = IK - . . . . . (89)
0 O 0
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Importantly, note that there is no reason that orthogonalizing the characteristics makes
the substitution matrix M ¢ diagonal.

A.2.3 Stability by inversion — Proposition 4.

Proposition 4 shows that under assumptions 1 and 2, the multiplier matrix M = —€ ~1 also
satisfies assumptions 1 and 2, with M = —1/€.
Proof. Start from equation (85), and apply the Woodbury matrix identity:

~ -1
et (51 + XgXX’) (90)
~ N ~ —1
e (525;{1 + SX’X> X' (91)
= MI+ XMxX', (92)

This corresponds exactly to assumptions Al and A2 applied to M with M= —1/5 .

A.2.4 Stability by aggregation

We show that that assumptions A1 and A2 are stable by aggregation across investors.

Lemma 9 Let & and & be two elasticity matrices that satisfy assumptions A1 and A2, and
(A1, Ag) two scalars. Then the matriz \E; + \o&s satisfies assumptions Al and A2.

Proof. From lemma 7 we decompose both elasticities which leads to:
ME+ X8 = (ME + X&) T+ X (MExs + Maixa) X' (93)

The decomposition and the equivalence from lemma 7 concludes the proof. m

25



A.3 Heterogeneous relative elasticities based on observables

We maintain assumption A1l. We relax assumption A2 by allowing the relative elasticity to
depend linearly on observables:

gi' - gcross(Xia Xz) = g’relative(Xi) = 87/~Xz (94>

From section A.1 and the proof of Proposition 1 we obtain:

ADz = (C/’“APZ + Z EUAP] + € (95)
J#i
= EiAP, + ) Eoross(Xi, Xj) AP, + €; (96)
J#i
= (gz - gCTOSS(Xi7 Xz)) AR + Z gcross(Xia XJ>AP)J + € (97>
J
= Telative(Xi)APi + ZXZIE:XX]AP)] + €; (98>
J
= Telative(Xi) Apz + Xz/ (Z gXX]APj> +€; (99>
—_— F
&L X; - — _
0
=& X AP, +0'X; + ¢ (100)

In this case we want to identify the vector &£, which characterizes the relative elasticity
with respect to observables. Identification must rely on a vector of instruments. It is natural
to construct those instruments from a single instrument Z; for the price interacted with the
observables. The set of identification conditions is:

Under these conditions the two-stage least squares regression proceeds as follows. First,
regress each component of X; AP, on the vector of instruments X;Z; and the observables X;.
The relevance condition is that the matrix of coefficients on the instruments is full-rank. This
leads to predicted values of the change in price interacted with observables X;AP;. Second,
regress the change in demand on these predicted values and the observables. The coefficients

on the predicted values recovers &,. Finally, the relative elasticity for each asset is simply
grelative(Xi) = gf,{Xz
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A.4 Identification beyond the relative elasticity.

We consider aggregation for the generic case of a multiplier matrix M that satisfies assump-
tions A1l and A2 for an arbitrary set of observables X. Remember that the first observable
is the constant in most cases.

Using Lemma 7, we can represent M as

M = ML+ X MxX'. (102)

To define price and quantity aggregates along the various dimensions of the observables, we
regress these vectors on X. We will see that this the natural generalization of the aggregation
presented in Proposition 6.

Proposition 10 (Multiplier decomposition with observables in the general case)
Take a multiplier matrix M satisfying assumptions A1 and A2. Consider generic changes
in demand and price connected by this matriz: AP = MAD. Define the change in demand
and price aggregated along observables and the idiosyncratic component:

APy = (X'X) ' X'AP ADx = (X'X)"'X'AD. (103)
AP,gio; = AP, — X! APy AD,gio; = AD; — X! ADx. (104)

The response of prices to a change in demand can be decomposed into two sets of components:
Micro: APgio; = M\ADidio,i (105)
Meso-Macro: APy = MADy, (106)
where M = J/\/l\IK + MxX'X.

Proof. Using the relation AP = MAD and the decomposition of M under the two as-
sumptions, we obtain

—

(X'X) ' X' AP = (M( )" X'y + (X' X) 1X’XMXX’> AD (107)
<M( Ly MX) X'AD (108)

<MIK + Mx(X'X)) (X'X) 7 X'AD (109)

APy = (MIK + MX(X’X)> ADx (110)

This implies that APx can be expressed as a linear combination of the K elements of ADy,
as opposed to the whole N components of the changes in demand AD.
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From the definition of the idiosyncratic change in demand:

APy = AP — X APy
— MAD + XMxX'AD — (X/\//l\ + XMXX’X> (X'X)"LX'AD

111
112

(111)
(112)
= M (AD — XADx) + XMxX'AD — XMx(X'X)(X'X)"'X'AD  (113)
= MADig0. (114)

Because M is scalar, the idiosyncratic component is determined asset by asset, which con-
cludes the proof. m

Simple case with no characteristic. We can recover the simpler cases studied in the
paper. Proposition 5 corresponds to a single variable X which is constant_equal to one. In
this case APy has only one component equal to AP,z = N~' > AP, and M = M+ NMy
is a scalar equal to the macro multiplier.

With one normalized characteristic. Proposition 6 corresponds to observables that
include a constant and a single standardized characteristic that we call X in a slight abuse
of notation. There, the regression gives two aggregate prices and quantities: the aggregate
component AP,,, defined as before (the constant of the regression); the meso component

APy = N7' 3. X;AP;. Then the matrix Mis 2 x 2 and equal to

N M+ N(Mx)u /\N(MX>12 (Magg M,X) (115)
N(Mx)gl M + N(MX>22 Magg MX

When observables are group dummies. Consider the case when the observables are
dummy variables expressing the belonging to disjoint groups. In this situation, there is no
need for a constant. The aggregate price and demand indices have a simple interpretation:
they measure the average change in price and demand for each group k:

ADx, = —ZAD (116)

zek

This implies that price impact has a nested structure. First, there is a relative multiplier
within each group M capturing the impact of changes in relative demand within a group.
Then individual assets can be replaced by the aggregate portfolio of each group, and there
is a multiplier matrix across these aggregate portfolios, M.
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A.5 Estimating a LATE — Proposition 2

The data-generating process under heterogeneous treatment effects is:
J#i

The instrument Z;, with constant variance var(Z;) = var(Z), Vi, is randomly assigned
and independent of everything else:

Z, L Z; Vi (119)
Z; L&y Vi k,l (120)
Zi LA, Vi j (121)
Z; Lu; Vij (122)
Zi Le Vij (123)

After substituting (118) into (117), we derive the estimate from the demand equation

ADZ = (c/'w/\ZZZ + Zgij)\ij + &,uz + Zgijuj + €; (124)

J#i J#i

Definitions and preliminaries. Without loss of generality, define a centered instrument
Z; as

N 1
ZZ-EZZ-—NZZj, (125)

J

such that we have the following properties:

Y Zj=-Z, (126)

Jj#i
- . 1
cov(Z;, Z;) = cov(Z;, Z;) cov(Zy, Z;) ——= > cov(Z;, Zy) +—cov Zy, > 7)
(Zi, 2;) Z Z ( Z Z
-0 \ _ \_ ) ~

=var(Z) =var(Z) =N var(Z)

(127)
1

=% var(Z) (128)

Next, define A and ); such that:
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A=A+ N (129)

DA =NA (130)
J
DIA=-X (131)
j#i

Finally, define &; cr0ss as the \; weighted average of &;;:

Zj;éi Ajg@'j

gi,cross = (132)
Zj;&i )‘j
Proof. Based on the definitions above, rewrite £\ Z; from equation (124) as
ZSU)\ Z = (C:Z CTOSSZ )\ Z + 2 iy zcross ]Zj (133)
J#i NE J#
1 CT‘OSS)\ Z Z +5’L ,CT 0SS Z >\ Z + Z ’l,] 7, CT‘OSS ]Z_] (134)
J#i J#t J#i
~——
=—2Z;
= gz crass)‘Z + gz cross Z /\ Z + Z iy ¢ cross))‘]Zj (]‘35>
J# VES

Plugging into equation (124):

AD; = (Ei)i — Eicross\) Zi + Eicross Z NZ;+ Z(gij — Eieross) N 2 + Eiqu; + Z Eijuj + €
ji j#i j#i

(136)

We are interested in cov(AD;, Z;) and cov(AP;, Z;). Since Z; is mean-zero, by the law of
iterated expectations we have:

coo(AD;, Z;) = E [AD,-Z] —E [E [ADZZAQH , (137)

where © is a set that contains all &;; and A;.
We have:
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E [(57,7)\1 - gi,crossj\) ZZQ‘@] = (Su)\z - gi,crossj\) UQT(Z) (138>

Elei,mszszz ]: seross 2 NE | 2, 5] (139)
J#i

j#i
= var Z z ,CT0SS Z (140)
j#i
var(Z) N
_ , , 141
N f/‘z,cross)\z ( )
Nvar(Z) N
_ A A 142
(N — 1)2 gz,cross)\z ( )
E [Z(&j — Si,cross))‘jZiZj’@] = D (& = Eicrass) ME [Zz» ZJ] (143)
J#i J#i
var(Z
S ]\(f )Z(gij — & eross)\j (144)
j#i
var(Z) Z#Z Aj 5@] )
= — )\ i,cross Aj (145>
= - Ua;éZ) (gi,cross Z )\j - (c:i,cross Z A]) (146)
J#i J#i
=0 (147)
Jj#i
E [ARZ|@] — \wvar(Z) (149)
Then:
cov (APi, ~Z) =E [E [APZ-Z-\@H =E [)\ivar(Z)] — var(Z)E [\] (150)
cov (ADi, z) ~E [E [ADZ-Z\@H (151)

— var(Z) (E[EiN] — E [N E [Eicross] + ﬁl@ [SAD (152)

The instrumental variable regression with heterogenous treatment effects identifies:
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£ = § (153)
cov (AE, ZZ>
- _E[¢ SR AR 154
e L (G RO LS 1
We can rewrite the middle term of equation (154) as:
Ei [\Es]]
Ei Sicross :]Ez kB de SRl 155
o] l Ejzi [M] ] (155)
E; [N;Eij] ]
=K., | = 156
o [E#i [A5] ] (156)
A [ E; [\] ”
—F. IR, | L 157
(et (e R o

_E, [Eﬁg} (158)

The term & ; resembles an equal-weighted average over rows of &;; excluding the diagonal
element.
The right term of equation (154) is a small-sample term that goes to zero when N — +o0:

plim € = E[w; (& — &,)], (159)

N—+00

ith w; = —2 (160)
wi w; = E [)\Z]

The limit is an average of the own- and cross elasticities weighted by A;. =

B Robustness

B.1 Robustness to the assumptions

We assess the robustness of the identification result of Proposition 1 with respect to deviations
from the assumptions. For simplicity, we focus on a case with two assets and deviations from
Assumption A2. The argument generalizes to other types of deviations.

We first show that the conclusions are robust when the first stage is strong. Then we
illustrate potential issues in presence of weak instruments in the context of a model.
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B.1.1 Robustness to deviations from Assumption A2

Consider a setting with two assets and an arbitrary elasticity matrix. In response to an
exogenous shock, the relative change in demand is:

ADl - A.DQ - gllA.Pl + ngAPQ - gQQAPQ - gglApl (161)
= (511 — 521)AP1 + (822 - glg)APQ (162)

We denote the relative elasticities by &1 = E11 — &1 and &2 = a2 — E12. Rearranging
the terms leads to

5rel,l + 87'6[,2 5 el,1 — 8’!’6[,2

AD; — ADy = ; (AP, — APRy) + — 5 (AP, + AR,/ (163)

Dividing by the relative change in price in response to the shock, we obtain the estimator:

A-Dl - AD2 . grel,l + grel,2 + 8rel,1 - 51"31,2 API + AP2

- 164
AP — AR 2 2 AP, — AP, (164)

The first term is the average relative elasticity. The second term is the potential bias: the
heterogeneity of relative elasticities times the ratio of sum of changes in prices to their
difference. The denominator AP, — AP, is the first stage of the regression, and the relevance
condition is AP, — AP, # 0.

It is straightforward to see that if the relevance condition is satisfied, the identification
result of relative elasticity is robust to small deviations from assumption A2. Formally,
consider a family of experiments (or models) indexed by a variable x, such that the experiment
for x = 0 satisfies assumption A2 but it does not otherwise. If elasticities and changes in prices
are continuous in x, then the IV estimator is also continous in = as long as AP, — AP, # 0.

In presence of a weak instrument, when the relevance condition is not satisfied, the last
term of equation (164) becomes infinite. The bias becomes large relative to the actual
coefficient. We show so in a model example next. Of course, in practice, one can simply assess
the first stage empirically and should not proceed anyways without a strong instrument.

B.1.2 An example with discontinuous estimates and a weak first stage

Setting. We consider a variation from the model of Section 2.4.2, where the probability
of the different states is asymmetric. Furthermore, we measure elasticities in the “wrong”
units, portfolio share on price rather than portfolio share on log price. These two features
create deviations from the Assumption A2. The experiment is a shock to the endowment of
the green asset E,.

The setting is the same as before except for a change in the probability of the states:

1+e 1—e¢ 0 w.p. p/2
Green P, 1—e¢ Red P, 1+e Other P, =1 0 w.p. (1—p)/2

0 0 1 wp 1/2
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The optimal portfolio shares are:

Py (€8 —1) Py + P (4pe + (¢ — 1)%))
Wg(Pgapr) - 4(62—|—1)PgPr+2(€2_1)PgQ+2(€2_1)Pr2
oo (P, Py = — DB le+ 12— 4p) + (¢~ 1) )

L@+ )PP +2(@—1)P2+2(—1) P2

(165)

(166)

Equilibrium and elasticities. Assume that the endowments are £, = E, = 1/2 and

E, = 1. Then equilibrium prices are

P, =1—¢(1-2p), P, =1+ ¢€(1—2p).

(167)

At this equilibrium, the elasticity matrix of the portfolio shares with respect to the level

of prices for the green and red asset is:

dw,  (-1)((2p—1)e—1)

Eas = oP, 32(p— pe2

c Ow, (-1 ((2p—1e+1)
0P, 32(p — 1) pe? ’

c Owg (€ —1)((2p—1)e+1)
0P, 32(p — 1) pe? ’

e s (@-D(-De-1)
" 0P, 32(p — 1)pe?

This leads to the two relative elasticities:

2 - — JR—
Eroty = &gy — &,y = LD (Cp= Ve 1)

16(p — 1)pe? ’
e e _(E@=D(=(@2p—1e-1)
grel,r - grr ggr - 16(p — 1)062

Then the terms from the difference-in-difference estimator are:

grel,g + 5rel,r . 1- 62
2 ~ 16(p — 1)pe?
grel,g - grel,r _ (62 - 1)(20 - 1)
2 16(p — 1)pe?

(168)
(169)
(170)

(171)

(172)

(173)

(174)

(175)

Note that constant relative elasticity, assumption A2, holds only if p = % We work in a
neighborhood of assumption A2, where p ~ % To weaken the first stage and make the assets
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perfect substitute, we take € to zero. These expressions become approximately

grel,g + grel,r N -1

A — 1
2 4e2 (176)
Erel g grel T 2,0 -1
d X 1
2 4e? (177)
Equilibrium prices as a function of the endowments are
E,((e¢—1)E, — E, (4pe + (¢ — 1)?))
P, (E, F, E,) = g 178
s (Eo, Eg, Ey) —2(2 + 1) EgE, + (2 — 1) E2 + (&2 — 1) E? (178)
E,((2—1)E, — E, ((e + 1)® — 4pe))
PT‘ anEaET = . ’ 179
( 0 Er) —2(2+ 1) EyE, + (2 = 1) E2 + (e* — 1) E? (179)
Around the initial equilibrium, the changes in prices are:
0P,
AP, = (9_EZ = —4ep — (e — 1) (180)
0P,
AP, = 2 =¢ -1 181
B (181)
The term controlling the bias is:
AP+ AP, 2ep—e+1 (182)

AP, — AP, e(2p+e—1)

Putting it all together. We will study what happens around p = 1/2, so, echoing our
general setup, we call z = 2p—1. When x = 0, assumption A2 is satisfied, and the estimator
is unbiased.

We plug all the expressions above in equation (164):

A-Dl - AD2 . grel,l + grel,2 + grel,l - 5rel,2 API + AP2
AP, — AP, 2 2 AP, — AP,
-1 T 1
X —— + ——=
4e?  4e? e(x + €)

(183)

(184)

Both the average relative elasticity and the difference in relative elasticity go to infinity at
the same pace (1/€?). However, the weak first stage amplifies the bias by another order of
magnitude. To visualize this issue, it is more natural to compute the relative bias of the
estimator:

ADl 7AD2 _ 5rel,1 +grel,2 x
AP, —AP: 2
1—APy ~ (185)

grel,l""grel,Q ~ _6(1' _|_ 6)
2

The bias term present when x # 0 is an order of magnitude large than the correct estimate
in the limit of a weak instrument.
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C Demand beyond risk-based motives for substitution

Consider the following simple mean variance optimization problem

N2
max o (u— P)— %O/Z]oz — % (a’X)
st. X'a<¥

Here, Xy« and X v« i are characteristics of stocks. 0,1 gives the constraint.
Proposition. Suppose that Y ~! satisfies A1 and A2. Then the resulting de-
mand curve in the above problem satisfies A1 and A2as well.
Proof. Denote by Apx1 the Lagrange multiplier. FOC

~ ~ 1 ~ A 11
,u—P—XAzy(E—HfXX')a:>a:—[2+nXX’] (i— P — XN\
Y

The key is to solve for \. We have
1 -1
Sy [2 + KXX’] (t— P — X)) )
Y

~ ~ 11 N~ .71
X [2 + /@-XX’] (t—P)— X' [2 + HXX’] X\ — 0
+

-1 17! -1
= [X’ [2 + K;XX/] X] [X’ [2 + HXX/] (14— P)— 79]

We need to take the positive parts because the constraint might not bind. And, for A to be
positive we require # to be small which is intuitive.
Therefore

1 -1

1 o 1 o
a:—[EJrnXX’] (u—P)——[ZJr/@XX’]
7

~ ~ 11 11
Xnax [X’ [2 + /{XX’] X] {X’ [2 + /@XX’]
’y NN

KK

The substitution matrix therefore is??

do 1 1 -1

~ ~ 11 1 A
=——[Z+/€XX’] +—[E+/<:XX’]

A —1
F- - X’ [E-I—KXX’] 1ho

— A —1
Xk [X’ [2 " /iXX/] X]
NN KK

(186)

From now on I will ignore 1,-¢. (if not binding, then just the first term).
Question: Suppose that ) o
Yl =8I+ XEX

where X is N = k characteristics. Does (186) still can be written as the above form but with
different characteristics?

22Consider derivative of 3/P x X with respect to P, where 8is N x 1, Pis N x 1 and X is N x 1. It

o/ -1 .
should be X3 which is N x N. In the above example, 3/ = — L2t XX] < and X is [+ kX X)X

T OX[Z+rXxX]E
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In general we have
(Z4+RYY) = 2 kY (T4 Y’ S7Y) Y R

There are several steps.
First,

g

M

S

~A A N Nt - - A N R 1 . . ~
—ké€X (I n HX’E_1X> X'XEX — kXEX'X <I + KX’Z_1X> X'XexX

J "

M M
so it works if we introduce
X=[X Xy isr)
and .
(5 +rXX ’) = E1+ Xy, (e iYM(is 7) (Re )X (1K) v
Second, we investigate

A —1 A —1
[2 + HXX/] Xnake [X’ [2 + HXX/] X]

[\ J

NN

v

M

Xnax MXe,n [2 + nf(f(’]
N

~ ~ 11 _
_ [2 + RXX/]

N NN

Then

[é[ + XMX] XyarM X, n [é[ + XMX]
—EX kM X,y + E [XMXXMX + X MX'XMX] + XMXX s e M XY, v XMX

Further introduce

~

X = [X, Xy

K+K+f<)
then this term can be written as
XMX

as well. So it does work!
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Convex cost version. We impose an additional non risk constraint in the form of a convex
cost ¢(+) that depend on characteristics X

max o (M — P) — %a/Ea — Ae(d' X) (187)

«

First order condition

M—P=~Ya+ X (X)X (189)
—Y = Aa+ f(o/ X)X (190)
ofe
= — 191
& P% (191)
a= (X -AXX)' (M- P) (192)
Inverting to get the elasticity:
0—-Y v 1o 0@/ X)
=yXE+ N (/X)X X'E (194)
E=—( X+ M'(X)XX)! (195)

D Appendix Tables and Figures
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Figure 6: Balance on covariances: exposure of portfolios sorted on demand shocks
to various factors. Figure 6 follows the exact definitions from Figure 4, but instead of showing the
exposure of long-short portfolios to various factors, it shows the exposure for the long (orange) and short

(blue) legs separately, sorted based on Z;; in the left panels and Z;4;0,; in the right panels.



A. Idiosyncratic Volatility (Z;) B. Idiosyncratic Volatility (Z;gio.it)
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Figure 7: Balance on variances: average idiosyncratic volatility sorted on demand
shocks. Figure 7 reports average idiosyncratic volatilities per group sorted on both the raw demand shock
Z;; (blue) and the demand shock Z;4;, ;¢ (orange) that is cross-sectionally orthogonalized to duration and S&P
credit ratings at each point in time. At each date, we compute idiosyncratic volatilities for each corporate
bond over a two-year window centered around ¢, excluding ¢, with respect to four factors: the ICE BofA
US Corporate Index Total Return, the difference between the ICE BofA US High Yield Index Total Return
and the ICE BofA US Corporate Index Total Return, the difference between the ICE BofA 15+ Year US
Corporate Index Total Return and the ICE BofA 1-3 Year US Corporate Index Total Return, and the Fama
and French (1993) excess stock market return. We present the equal-weighted average idiosyncratic volatility
among bonds with above or below median demand shock Z;; (or Z;g;0.4¢). The data for factors is from FRED
and the Kenneth French data library. We exclude the bottom-quintile smallest bonds based on outstanding
bond supply. The time series is from 2011:04 to 2021:09.
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A. Corporate Bond Index B. High—Low Credit Rating
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Figure 8: Balance on covariances: exposure of long-short portfolios sorted on
demand shocks to various factors. Figure 8 reports regression coefficients from balance-on-
covariance regressions based on both the raw demand shock Z;; (blue) and the demand shock Z;4;, i1 (orange)
that is cross-sectionally orthogonalized to duration and S&P credit ratings at each point in time. At each date,
we form long—short equal-weighted portfolios based on whether Z;; (or Z;gio,it) is above or below the median.
We compute the yield changes of these portfolios over two years centered around ¢, excluding ¢, and regress
these yield changes on four aggregate factors. Panel A shows the time-series of coefficients for regressions
on an aggregate investment-grade corporate bond factor, the ICE BofA US Corporate Index Total Return.
Panel B uses the difference between aggregate high-yield and investment-grade corporate bond factors, the
ICE BofA US High Yield Index Total Return and the ICE BofA US Corporate Index Total Return. Panel
C uses the difference between the ICE BofA 15+ Year US Corporate Index Total Return and the ICE BofA
1-3 Year US Corporate Index Total Return. Panel D uses the Fama and French (1993) excess stock market
return. The data for factors in panels A to C is from FRED, while the data for the excess market return in
Panel D is from the Kenneth French data library. We exclude the bottom-quintile smallest bonds based on
outstanding bond supply. The time series is from 2011:04 to 2021:09.
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Table 4: Relative multiplier M in corporate bonds

Yield change AY,

(1)

(2)

(3) (4) ()

Demand shock:

Zit -0.384*  -0.104* -0.072**
(0.166)  (0.047) (0.027)
ZLidio,it -0.072%*%  -0.072**
(0.027) (0.027)
Date Fixed Effects Yes Yes Yes Yes
Duration x Date Fixed Effects Yes Yes
Credit Rating x Date Fixed Effects Yes Yes
N 630,255 630,255 630,255 630,255 630,255
R? 0.004 0.071 0.089 0.089 0.070

Table 4 reports the results of relative multiplier regressions of yield changes AY;; on demand shocks Z;;
and Z,q;0,;1 for U.S. investment-grade corporate bonds. Specifications (1)—(3) use the flow-induced trading
demand shock Z;; defined in Equation (55). Specification (1) includes a common intercept, specification
(2) uses date fixed effects, and specification (3) adds controls for a continuous duration variable and S&P
credit rating dummies for each date. Specifications (4)—(5) use the demand shock Z;4;,,:: orthogonalized to
duration and credit rating each period, with and without controlling for duration and credit rating in the
regression. We exclude the bottom-quintile smallest bonds based on outstanding bond supply. The sample
period is 2010:04 to 2022:09. Standard errors are clustered by date and bond.
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Table 5: Macro- and meso multipliers in corporate bonds

Yield Change AY,,,; Yield Change AYx,  Yield Change AY;,
(1) (2) (3) (4) (5)

Zagait -2.343%Kkk 1 8og%* 0.137 -1.828%*F  _1.828%**
(0.627) (0.621) (0.105) (0.616) (0.616)

x4 1.683 -0.966** 1.683 1.683
(1.295) (0.364) (1.286) (1.286)

Zagad % Xit 0.137
(0.105)

Zxs x Xy -0.966**
(0.362)

Zidiosit -0.069* -0.069*
(0.030) (0.030)

Duration X -0.000%**  -0.000***
(0.000) (0.000)

N 149 149 149 630,255 630,255
R? 0.278 0.304 0.202 0.021 0.022

Table 3 reports the results of macro- and meso multiplier regressions of yield changes on demand shocks
for U.S. investment-grade corporate bonds. Specification (1) follows equation (60) in estimating the macro
multiplier by regressing aggregate yield changes AY,4,: on the aggregated instrument Z, g4 in the time
series. Specification (2) jointly estimates the macro multiplier Magg and a cross-multiplier Mx from equation
(67) by adding the aggregated duration-tilted shock Zx ;. Conversely, specification (3) jointly estimates the
meso multiplier My and cross-multiplier Magg from equation (66). Specifications (4) and (5) estimate the
mechanically identical macro- and meso-level multipliers as in specifications (2) and (3) using disaggregated,
repeated cross-sectional regressions, while adding the relative multiplier M. We exclude the bottom-quintile
smallest bonds based on outstanding bond supply. The sample period is 2010:04 to 2022:09. Robust standard
errors are used for specifications (1) to (3). For specifications (4) and (5), standard errors are clustered by
date and bond, and regressions are weighted such that each date receives equal weight.
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A. Response to Aggregate Shock AD,4, B. Response to Duration-Based Shock ADx
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Figure 9: Macro- and meso multipliers across durations. Figure 9 reports the response
of portfolios of corporate bonds to aggregate demand shocks ADgg, (Panel A) and shocks along duration
ADx (Panel B). Bonds are grouped in seven buckets based on duration: <1 year, 1-3 years, 3-5 years, 5-7
years, 7-10 years, 10-15 years, and 15+ years. The blue lines correspond to the estimates from column (4)
of Table 5, which assume identical responses. The red lines are based on column (5), which includes linear
interaction terms with duration X;;. The green line estimates these multipliers separately each duration-

based portfolio in a pooled panel regression. The sample period is 2010:04 to 2022:09.
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