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Abstract

We quantify the U.S. corporate sector’s future carbon damages by comput-
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burdens exceeding their market capitalizations. The 30 largest emitters account
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1. Introduction

How valuable are firms to society? Firms create value not only for shareholders but also

for consumers, employees, and other stakeholders. Importantly, a firm’s value to society

includes any externalities produced by the firm. These can be positive, such as technological

spillovers from R&D investment, or negative, such as environmental damage.

How big are corporate externalities? The magnitude of an externality can be helpful

information to many. Policymakers can use it to design more effective regulations, taxes, or

subsidies. Companies can use it in their sustainability efforts and risk management practices.

Knowing the scale of corporate externalities can also influence consumer behavior and help

investors make more informed investment decisions. From the academic perspective, the size

of corporate externalities speaks to the debate about the famous doctrine of Friedman (1970).

Friedman’s position that companies should essentially just maximize market value becomes

controversial in the presence of externalities (e.g., Hart and Zingales, 2017). Maximizing

market value can then conflict with maximizing the welfare of shareholders who also have

social and ethical concerns. This conflict is particularly strong when the externalities’ social

costs or benefits are large relative to a firm’s market value.

In this paper, we explore the size of one externality: damages from corporate emissions

of greenhouse gases. This “carbon externality” is clearly important given the severity of

the climate crisis. Key to measuring this externality is recognizing its future dimensions.

First, emissions in any given period have climate consequences for many years. Second,

emissions are expected to remain high for many years, and the future path of emissions will

be crucial in determining climate change. Our contribution is to quantify the economic value

of damages produced by future emissions.

To value these damages, we propose a metric that we call “carbon burden.” We define

a firm’s carbon burden as the present value of the social costs associated with its future

greenhouse gas (GHG) emissions, which we refer to simply as “carbon emissions” or just

“emissions.” Key to the carbon burden is the social cost of carbon (SCC), the dollar cost

of societal damages resulting from the emission of one additional ton of carbon into the

atmosphere. For a ton emitted τ years from now, let SCCτ denote the net present value, as

of that emission year, of the resulting damages in that year and all subsequent years. Let

Cτ denote a firm’s expected carbon emissions τ years from now. We define the firm’s carbon

burden as

Carbon burden =
T∑
τ=1

(1 + ρτ )
−τ × Cτ × SCCτ , (1)
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where ρτ is a discount rate that potentially includes a risk premium. We set ρτ = ρ and

consider a range of values for ρ. For SCCτ , we use estimates recently released by the U.S.

Environmental Protection Agency (EPA). We use emission forecasts, Cτ , at both the aggre-

gate level and the firm level. Our forecasts of aggregate U.S. carbon emissions come from

U.S. government agencies. Our firm-level emission forecasts come from MSCI, a leading data

provider. All of these forecasts are undoubtedly imprecise, but they come without confidence

intervals, precluding us from quantifying the precision of the carbon burden estimates. The

estimates must therefore be interpreted with caution.

We focus primary attention on the carbon burden imposed by emissions in all future

years (i.e., T = ∞), but we consider finite horizons as well. With an infinite horizon, the

concept of carbon burden is similar in spirit to that of market value, in that both are present

values of infinite streams of estimated future dollar values. For example, the market value

of a firm’s equity is the present value of its future dividends, whereas a firm’s carbon burden

is the present value of the social costs from the firm’s future emissions. The two concepts

measure different dimensions of a firm’s value to society, with market value belonging to

shareholders and carbon burden representing a negative value borne by all. Both market

value and carbon burden are measured in dollars, and we compare them in our analysis.

We equate aggregate corporate emissions with total U.S. emissions, because virtually all

emissions are related to the emissions of some company, directly or indirectly.1 Of course,

responsibility for corporate emissions does not rest solely with corporations. Households,

for example, surely share this responsibility, but quantifying the corporate externality in a

manner that accounts for responsibility seems infeasible.

At the aggregate level, we analyze the total U.S. carbon burden as of year-end 2023.

Applying our baseline discount rate of ρ = 2% to emission forecasts for all future years,

we estimate the U.S. carbon burden to be $87 trillion, which is 131% of the total value

of U.S. corporate equity. The burden is large also when computed using other discount

rates and when compared to the total value of U.S. corporate equity and debt (93%) and to

U.S. national wealth (61%). While carbon damages are clearly large, their negative value is

more than offset by the positive value of the corporate sector’s consumer surplus, estimated

by Pellegrino (2025). Both of these components of firms’ value to society are large when

compared to firms’ value just to shareholders.

After quantifying the aggregate U.S. carbon burden, we analyze its potential reductions

under the 2015 Paris Agreement, in which U.S. participation has been sporadic. If the U.S.

1For simplicity, we use “corporate emissions” to refer to the emissions of any company or business, not
just companies that are incorporated.
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were to participate and fully comply, U.S. emissions would fall at least 50% by 2030, relative

to the 2005 level. Again applying the 2% discount rate to all future years, we find that

meeting those goals would reduce the U.S. carbon burden substantially, by either 21% or

32%, depending on the projected emission path beyond 2030. We also show that achieving

the Paris goals would require major emission reductions by the largest emitters. However,

the largest emitters’ targeted emission reductions fall well below the Paris goals, even if we

take those targets at face value. When we replace firms’ targets by emission forecasts from

MSCI, the shortfall relative to Paris widens further.

We find high dispersion across firms in the ratios of carbon burden to market value.

These ratios are smaller than 0.05 for the majority (55%) of firms. However, for 13% of

firms, which represent 10% of total market capitalization, these ratios are greater than one,

meaning those firms’ carbon burdens exceed their market capitalization. These estimates

are based on direct (scope 1) emissions, which are emissions from sources owned by the firm.

We also consider indirect emissions from the consumption of purchased energy (scope 2)

and indirect emissions incurred in the firm’s entire value chain (scope 3).2 Based on total

(scope 1+2+3) emissions, 77% of firms, representing 50% of total market capitalization, have

carbon burdens exceeding their market capitalization.

The ratios of carbon burden to market value also differ greatly across sectors. Based

on direct emissions, these ratios are as high as 7 and 3 for typical firms in the utilities and

energy sectors, respectively, and as low as 0.01 for a typical financial firm. When we add

all indirect emissions, the ratio of carbon burden to market value grows to 66 for a typical

energy firm, and there are four other sectors in which this ratio exceeds 10. One of these is

financials—a typical financial firm’s ratio of 17 for total emissions stands in stark contrast

to its aforementioned 0.01 ratio for direct emissions.

We also examine the ratio of a firm’s carbon burden from all future years’ emissions to its

burden from a single year’s emissions in 2023. This ratio varies substantially across firms, as

a result of a large dispersion in MSCI’s forecasts of future emission growth rates, which range

from −100% to +33% when cumulated between 2023 and 2050. Given this large dispersion,

it is not sufficient to look at firms’ recent emissions when judging carbon damages. For

example, suppose two firms had the same emissions recently, but the first firm has a credible

decarbonization plan whereas the second firm does not. The first firm’s carbon damages are

then lower. If firms’ carbon burdens were widely reported, they could incentivize firms to

develop credible emission reduction strategies.

2These scope definitions come from the Greenhouse Gas Protocol, https://ghgprotocol.org. Among the
three measures, scope 3 emissions are generally the hardest to quantify and least likely to be reported.
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Expected future emission growth rates differ significantly across sectors. For example,

the cumulative direct emission growth from 2023 to 2050 is −37% for a typical utility but

−6% for a typical financial firm, based on MSCI’s forecasts. The corresponding growth rates

based on firms’ own reported emission targets are much more negative, ranging from −47%

for a typical nondurables firm to −92% for a typical utility. The former growth rates are

less negative because MSCI views firms’ own emission reduction targets as too optimistic.

We find a negative cross-sectional relation between firms’ recent emissions and forecasted

future emission growth rates. For example, for the top 5% of emitters, their forecasted

cumulative growth rate of direct emissions from 2023 to 2050 is −14%, but for the bottom

5% of emitters, it is +25%. This negative relation is so strong that the 30 largest emitters

are expected to account for the entire drop in aggregate direct U.S. corporate emissions

by year 2050. Between 2023 and 2050, the aggregate emissions are expected to decline

from 2.0 billion to 1.5 billion metric tons. Over the same period, the emissions of the 30

largest emitters are also expected to decline by 0.5 billion tons, whereas the emissions of

the remaining 2,411 firms in our sample are expected to change little. Strikingly, all of the

decarbonization of the U.S. corporate sector, as measured by direct emissions, is expected

to come from only 30 firms.

Besides recent emissions, a few other firm characteristics, namely investment, climate

score, and the book-to-market ratio, help explain the cross section of forecasted emission

growth rates. Emissions are expected to grow faster for firms that invest more, firms with

lower climate scores, and value firms, though these relations are not always significant.

Future emissions could be priced in firms’ current market values. For example, expected

cash flows could be reduced by potential carbon taxes or tort awards for the emissions’

damages, and discount rates could be affected by carbon-related systematic risk. As of this

writing, there is no nationwide carbon tax in the U.S., but some states and municipalities

have levied taxes, and some have filed tort suits against energy companies. Future emissions

that are already priced in market values cannot be termed an externality. Carbon burden

measures the externality gross of those pricing effects. While recognizing this distinction, we

sometimes refer to carbon burden as an externality, for simplicity.

We find that firms with higher carbon burdens do have higher discount rates. Specifically,

firms with higher ratios of carbon burden to market capitalization have higher expected

stock returns, as proxied by the implied cost of capital (ICC). Moreover, while the ICC is

also higher for firms with higher past emissions relative to market cap, we find this relation

becomes insignificant, and even flips sign, in the presence of carbon burden. That is, expected
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return relates positively to future carbon rather than past carbon. This evidence supports

the notion that credible decarbonization plans are associated with lower costs of capital. A

potential explanation is that firms with higher carbon burdens are more exposed to the risk

of future carbon taxes or related policies, and this risk carries a positive premium.

We are not the first to relate the cross section of stock returns to carbon emissions (e.g.,

Bolton and Kacperczyk, 2021, 2023, Aswani, Raghunandan, and Rajgopal, 2024, Zhang,

2024, Eskildsen et al., 2025), but we are the first, to our knowledge, to relate it to forecasts of

future emissions. The literature also examines the carbon exposures of institutional investors’

equity portfolios (e.g., Bolton and Kacperczyk, 2021, Atta-Darkua et al., 2023, and Bolton,

Eskildsen, and Kacperczyk, 2024). Institutional investors perceive regulatory climate-related

risks as financially material and already affecting portfolios (Krueger, Sautner, and Starks,

2020), consistent with a risk-based interpretation of our ICC results. Also supporting the

pricing of climate-regulation risk, Ilhan, Sautner, and Vilkov (2021) and Sautner et al. (2023)

find that firms exposure to climate-policy risk is related to options-market risks and risk

premiums. Given their forward-looking nature, our carbon burden measures could also be

helpful to investors interested in constructing net-zero portfolios (e.g., Cenedese, Han, and

Kacperczyk, 2023). A forward-looking perspective is also present in the hypothetical emission

futures contracts that van Binsbergen and Brogger (2022) propose as a way of assessing the

impact of firms’ environmental initiatives.

Greenstone, Leuz, and Breuer (2023) introduce the concept of corporate carbon damages.

For a given firm, they compute these damages as the product of the firm’s direct emissions

in 2019 and the SCC (also obtained from the EPA), divided by the firm’s profit or sales

in 2019. For the average U.S. firm, these damages represent 18.5% of profit and 2% of

revenue. The main difference between our studies is that they study past emissions, whereas

we study future emissions. As noted earlier, future emissions are crucial to gauging the

carbon externality. To give an extreme example, if emissions were widely expected to drop

to zero next year and remain zero forever, any past ratio of emission damages to profits would

presumably be of significantly less interest. Unlike Greenstone et al., we describe patterns

in forecasted future emissions, compute their present values, compare them to firms’ market

values, and relate them to the cross section of expected returns. In addition to the historical

emissions data they use, we also use emission forecasts, compare them to firms’ emission

reduction targets, and look at not only direct but also indirect emissions, which account for

over half of aggregate emissions. Finally, whereas our focus is on measurement and pricing,

theirs is on disclosure and the desirability of mandatory emissions reporting.

Our emission forecast data, which come from MSCI, are informed by firms’ emission
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reduction targets. The usefulness of those targets is supported by the evidence of Bolton

and Kacperczyk (2023) and Ramadorai and Zeni (2024), who find that the firms that commit

to reducing their carbon emissions indeed tend to do so subsequently. These studies use data

from CDP, and the former study also uses data from the Science Based Targets initiative

(SBTi). Our data are richer, because when constructing its emission forecasts, MSCI uses

data not only from CDP and SBTi but also from firms’ annual reports, sustainability reports,

investor presentations, and regulatory filings.

A few large emitters account for the bulk of U.S. corporate emissions, consistent with

right skewness in the distribution of emissions across firms (e.g., Hartzmark and Shue, 2023).

Our finding of a big role for large emitters in decarbonization is consistent with the evidence

of Cohen, Gurun, and Nguyen (2024) that energy producers, which tend to be large emitters,

are key green innovators. The result also complements that of Berg, Ma, and Streitz (2024),

who find that large emitters have reduced their emissions faster than other public firms,

especially since 2015, and especially due to divestment of pollutive assets. We contribute by

studying the future, showing, for example, that just the top 30 emitters fully account for the

predicted decarbonization of U.S. corporations.

This paper contributes not only to the climate finance literature, but also to the broader

literature on corporate externalities, which is too large to summarize here.3 A related strand

of this literature focuses on environmental damages, such as the consequences of pollution

(e.g., Graff Zivin and Neidell, 2012, and Hanna and Oliva, 2015). The literature also analyzes

the effects of environmental policies on technological innovation (e.g., Acemoglu et al., 2016,

and Aghion et al., 2016) as well as on the behavior of firms (e.g., Greenstone, 2002, Fowlie et

al., 2016, and Bartram, Hou, and Kim, 2022), consumers (Busse, Knittel, and Zettelmeyer,

2013), and the workforce (Walker, 2013).

This paper is organized as follows. Section 2 explains how we compute the carbon

burden. Sections 3, 4, and 5 compute carbon burdens at the aggregate, industry, and firm

levels, respectively. Section 6 analyzes the relation between carbon burden and expected

return. Section 7 concludes.

3For example, the literature examines effects of externalities resulting from corporate activities such as
R&D (e.g., Jaffe, 1986, Jaffe, Trajtenberg, and Henderson, 1993, Audretsch and Feldman, 1996, and Bloom,
Schankerman, and Van Reenen, 2013), foreign direct investment (e.g., Aitken and Harrison, 1999, Javorcik,
2004, and Blalock and Gertler, 2008), and bankruptcy (Bernstein et al., 2019).
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2. Computing the carbon burden

This section explains our methodology for computing the carbon burden. Section 2.1 de-

scribes the SCC values we use. Section 2.2 discusses how we discount to the present. In

subsequent sections we combine these components with forecasts of carbon emissions to

compute corporate carbon burdens at the aggregate, industry, and firm levels.

2.1. Social costs of GHG emissions

As noted earlier, key inputs to the carbon burden in equation (1) are the values of SCCτ , the

dollar cost of societal damages per additional CO2-equivalent ton of GHG emitted in τ years.

Various SCC estimates exist, and their collection is evolving.4 Many such estimates pertain

just to emissions at the present time. We use the U.S. government’s latest SCC estimates as

of this writing (U.S. Environmental Protection Agency, 2023). The EPA provides estimates

of the social cost per ton of CO2 emitted in each future year through 2080.

The EPA explains that the values of SCCτ are estimates of certainty-equivalent costs

produced by combining four modules, each with uncertainty considered, including the com-

pounding of uncertainty across modules. The modules rely on prominent and widely used

approaches, including recommendations made by the National Academies of Science, Engi-

neering, and Medicine. The first module, addressing socioeconomics and emissions, projects

future population, income, and GHG emissions. The projections take into account the like-

lihood of future emissions mitigation policies and technological developments. The second

module, on climate, captures the relationships among GHG emissions, atmospheric GHG

concentrations, and global mean surface temperature. The outputs of the first two modules

are inputs to the third one, on damages, which estimates monetized future damages from

climate change by combining three damage functions (subnational, country-level, and meta-

analytical). The fourth module addresses discounting. The EPA provides a series of SCCτ

for three discount rates: 1.5%, 2.0%, and 2.5% per year. We briefly postpone a discussion

of discounting until the next subsection.

The values of SCCτ are increasing in τ and decreasing in the discount rate. For example,

when the discount rate is 2.5%, SCCτ increases from $128 in 2024 to $284 in 2080. When the

discount rate is 1.5%, the SCCτ values are much higher, equal to $356 in 2024 and increasing

to $601 in 2080. Figure 1 plots the SCCτ values through 2080, when the EPA series end. To

obtain values for subsequent years, we extend each series along a linear projection through

4For a recent meta-analysis of the SCC estimates across 207 studies, see Tol (2023).
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the values for 2060 and 2080. In the plots, the SCCτ values between those years grow

virtually linearly, so we simply extend those linear trends.

The EPA estimates SCCτ as the marginal social cost of an incremental unit of GHG

emitted τ years from now, relative to the simulated baseline path of global emissions. When

computing an entity’s carbon burden in equation (1), we multiply SCCτ by Cτ , the forecast

of the entity’s emissions τ years ahead. The smaller is Cτ , the more appropriate it is to apply

the marginal cost, SCCτ .
5 Even when Cτ represents emissions of the entire U.S. corporate

sector, however, applying SCCτ seems reasonable because U.S. emissions in any given year

are small relative to the stock of carbon in the Earth’s atmosphere. For example, in 2022,

U.S. CO2 emissions were just 0.16% of the CO2 then present in the atmosphere.6 This

fraction is small because the amount of carbon emitted globally in any given year is small

relative to the atmospheric stock, and also because U.S. emissions account for only 17% of

global carbon emissions, based on CO2 equivalents in 2022.7

An entity whose carbon burden is computed using SCCτ is implicitly treated as the

marginal emitter relative to all others. For example, our estimated U.S. carbon burden views

the U.S. as the marginal emitting country with respect to the rest of the world. From a U.S.

standpoint, this perspective seems sensible: it takes the rest of the world’s emissions as given

and asks how much additional damage U.S. emissions will inflict. Computing an individual

firm’s carbon burden using SCCτ asks an analogous question from the firm’s standpoint.

This marginal perspective on an entity’s externality is standard in public economics, where

taxing an externality at its marginal social cost traces back to Pigou (1920). Summing

direct-emission carbon burdens, each computed using SCCτ , across all entities in the world

would overstate global damages, but such an exercise lies well outside our analysis.8 We

focus on just the U.S. corporate sector. Some studies apply the marginal perspective at an

5Technically, with damages convex in global emissions, SCCτ applies best to the last ton of emissions
in Cτ , because every entity’s Cτ is (in theory) part of the future global emission paths the EPA simulates
before injecting an emission “pulse” in τ years to estimate SCCτ . If Cτ is a small fraction of global GHGs,
the marginal social cost of the first ton of emissions in Cτ is only slightly lower than the marginal cost of
the last ton, a difference we approximate by zero.

6The National Oceanic and Atmospheric Administration (noaa.gov) reports that the deseasonalized De-
cember 2022 average CO2 in the atmosphere reached 419.74 parts per million (PPM). Using conversion
factors provided by NOAA, multiplying PPM by 2.12 converts to billions of tons of carbon, and then further
multiplying by 3.67 converts to tons of CO2, yielding a total of 3.288 trillion tons of atmospheric CO2. The
U.S. CO2 emissions of 5.1 billion tons (see Section 3.1) represent 0.16% of this total.

7According to the Global Carbon Budget (globalcarbonbudget.org), global carbon emissions in 2022
totaled 10.14 billion tons, which is 37.15 billion equivalent tons of CO2 (the conversion factor is 3.664). The
U.S. GHG emissions of 6.40 billion tons (see Section 3.1) represent 17% of this global total.

8That summation is equivalent to computing equation (1) with Cτ set to predicted global emissions.
Computing global damages using that equation would additionally require replacing each marginal cost,
SCCτ , by a corresponding average cost that is lower than SCCτ , because, as widely agreed, damages are
convex in aggregate emissions.
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even broader level. For example, although they do not analyze future years, Greenstone,

Leuz, and Breuer (2023) multiply an EPA-estimated SCC by the sum of scope 1 emissions

in 2019 for nearly 15,000 firms across many countries.

2.2. Discounting

Two discounting operations underlie the carbon burden in equation (1). First, when com-

puting SCCτ , the EPA discounts all future damages arising from a ton of carbon emitted τ

periods from now back to that period. Second, we discount Cτ ×SCCτ , a quantity applying

τ periods ahead, back to the present.9

As noted earlier, the EPA computes its SCC estimates for each of three annual discount

rates: 1.5%, 2.0%, and 2.5%. The EPA treats these as initial discount rates that could

prevail in τ periods. It then allows discount rates for subsequent periods to comove with

aggregate consumption growth, effectively using a consumption-based stochastic discount

factor that implicitly recognizes emissions are likely to be high when consumption is high.

We discount Cτ×SCCτ to the present using a discount rate ρτ , as shown in equation (1).

What value for ρτ is appropriate? To consider this question, recall that Cτ denotes expected

emissions in τ periods. Define C̃τ as actual emissions, with Cτ = E(C̃τ ). If C̃τ is treated

as known, i.e., C̃τ = Cτ , then the EPA advises setting ρτ to the τ -period real riskless rate.

Doing so essentially treats SCCτ as known also, or at least having estimation risk that does

not command a risk premium. We follow the EPA’s treatment of SCCτ in this respect.

In general, C̃τ differs from the forecast, Cτ . How should we account for the risk in

C̃τ−Cτ when discounting Cτ×SCCτ? Discounting at the corporate cost of capital would be

inappropriate because the risk profiles of corporate profits and emissions are quite different.

For example, consider the capital asset pricing model (CAPM) and three annual U.S. time

series: the excess stock market return (from Ken French’s website), log changes in total after-

tax corporate profits (from FRED), and log changes in total emissions (from Section 3.1),

over the period of 1990 (the first year that emissions data are available) through 2022 (the

last year that profit data are available). While log changes in profits exhibit a significant

34% correlation with the market return, log changes in emissions exhibit an insignificant

9Others, of course, have addressed the problems of monetizing environmental costs and discounting them
to the present. Public economists have long advocated for computing similar present values in the context of
natural capital accounting, a systematic way of measuring the economic value of natural resources to society.
The international standard for natural capital accounting is the United Nations’ System of Environmental-
Economic Accounting. This framework does not mandate a specific valuation method or discount rate. For
a recent corporate-finance textbook exposition, see Schoenmaker and Schramade (2023).
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correlation very close to zero (−4.9%). So, the CAPM implies a lower discount rate for

emissions damages than for corporate profits. Also, log changes in emissions and profits are

barely correlated—when we regress one on the other, the slope is insignificant and the R-

squared only 0.07. Given their low correlation, emissions and profits can have very different

covariances with the stochastic discount factor, regardless of which factor one picks.

Given the current state of the climate finance literature, it is not clear what the best

approach to discounting future emissions damages is. States of the world with unexpectedly

high emissions could be good or bad, depending on what agents care about. On one hand,

emissions tend to be high in periods of strong economic growth, which are generally good

states of the world. (This is the mechanism behind the EPA’s discounting approach in

constructing SCCτ .) On the other hand, emissions can also be high in bad states of the

world, such as when technological innovation fails to make progress toward renewables, or

when unexpectedly high emissions cause climate-related economic disruptions. In Stroebel

and Wurgler (2021)’s survey of 861 finance academics and professionals, most respondents

believe that realizations of climate risk are uncorrelated with economic conditions. More

research is needed to figure out the appropriate way of discounting future emissions.10

Meanwhile, to make progress on the question at hand, we take a simple approach to

specifying ρτ . At the end of 2023, the date at which we compute carbon burdens, Treasury

par real yields range from 1.72% at 5 years to 1.90% at 30 years.11 Given this rather flat

yield curve at levels just below 2%, one specification we choose, especially since we extend τ

well beyond 30, is ρτ = 2% for all τ . At that baseline value, ρτ includes virtually no premium

for the risk associated with C̃τ −Cτ . As discussed above, the sign of any risk premium seems

ambiguous, so we also entertain both positive and negative values for the premium: 0.5%

and −0.5% on top of the 2% baseline. We thus entertain three values for ρτ : 1.5%, 2.0%,

and 2.5%.

Only a partial coincidence is that our three ρτ values coincide with the EPA’s initial

discount rates used in constructing their three SCCτ series. We could of course specify

other risk premia as deviations from a 2% riskless rate, but we avoid doing so to simplify the

analysis and give readers just three rates to digest. Still, with three SCCτ series and three

ρτ values, there are nine possible pairings of an SCCτ series with a ρτ value. To simplify

the presentation further, we report carbon burdens for just three of the pairings: (1.5%,

1.5%), (2.0%, 2.0%), and (2.5%, 2.5%). The middle combination is reasonably viewed as the

10Joint modeling of economic dynamics and the dynamics of climate change is beyond the scope of this
paper. See Giglio, Kelly, and Stroebel (2021) for a discussion of some of the challenges in figuring out the
risk premium associated with climate damages, including whether its sign is positive or negative.

11See the “Data” menu at https://home.treasury.gov/.
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baseline case, while the first and third produce the highest and lowest values of the carbon

burden. Recall from Figure 1 that SCCτ is decreasing in the corresponding discount rate,

and of course the discount factor in equation (1) is decreasing in ρτ .

The issues of uncertainty about ρτ and C̃τ would be simultaneously solved by the existence

of emissions futures contracts similar to those proposed by van Binsbergen and Brogger

(2022). Imagine a contract paying SCCτ dollars for each ton of emissions that a firm emits

τ years from now, where SCCτ is an SCC forecast agreed upon today. If we had such

contracts’ market prices for each future τ , we could sum those prices across τ = 1, ...,∞ to

obtain the market’s assessment of the firm’s carbon burden, conditional on the SCC forecasts.

In such an imaginary world, carbon burden estimates would be more precise.

The range of values for ρτ , 1.5% to 2.5%, is supported by expert views. Drupp et al.

(2018) survey economists who are experts on social discounting, having published at least one

paper on this topic in a leading economics journal between 2000 and 2014. The distribution

of the risk-free social discount rates across over 200 survey responses has a median of 2%

and a mean of 2.3%. There is “a surprising degree of consensus among experts,” with

77% of experts finding the median discount rate of 2% acceptable, and 92% of them being

comfortable with the discount rate somewhere between 1% and 3%. The same median and

mean, 2% and 2.3%, emerge also from an independent survey of Howard and Sylvan (2020),

who poll all authors who had published at least one article related to climate change in a

top-25 economics journal or top-six environmental economics journal since 1994, obtaining

216 valid responses. The EPA’s discount rates lie between the 1.4% used by Stern (2006)

and the 2.6% found by Giglio, Maggiori, and Stroebel (2015) as the long-run discount rate

for real estate cash flows. Giglio et al. (2021) argue that the 2.6% value provides an upper

bound on the discount rates for long-term cash flows from investments in climate change

abatement.

3. The aggregate U.S. carbon burden

We use data on forecasts of U.S. GHG emissions (Section 3.1) to assess the carbon burden for

the U.S. corporate sector as a whole (Section 3.2). Recall that we equate corporate emissions

with total U.S. emissions, given that virtually all emissions are either direct (scope 1) or indi-

rect (scopes 2 and 3) emissions of some company. We also interpret the burden’s magnitude

(Section 3.3) and consider its potential reductions from the country’s past commitment to

the Paris Agreement (Section 3.4).
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3.1. Forecasts of U.S. GHG emissions

To estimate carbon burdens as of year-end 2023, we first obtain forecasts of emissions in the

U.S. for 2024 and beyond. We construct aggregate GHG emissions by adding up three types

of emissions: energy-related CO2, non-energy-related CO2, and non-CO2 GHGs.

The first type, energy-related CO2, accounts for the largest fraction of GHG emissions,

by far. The U.S. Energy Information Administration (EIA) provides annual forecasts of U.S.

energy-related CO2 emissions through 2050. The forecasts come from the EIA’s National

Energy Modeling System, which takes a general equilibrium approach to modeling U.S.

energy markets and projecting production, imports, exports, conversion, consumption, and

energy prices (U.S. Energy Information Administration, 2023b). The system has 14 modules

devoted to separate sources of supply and demand, conversion, and various economic and

policy channels. We use the EIA’s reference-level forecasts for 2024 through 2050.12

The second type, non-energy-related CO2, is the smallest part of GHG emissions. Non-

energy-related emissions come from sources such as agriculture, industrial processes, and

waste. Lacking forecasts for this emission type, we approximate them based on historical CO2

emission breakdown data.13 Averaging across 1990 through 2022, non-energy-related CO2

emissions account for 3.6% of total CO2 emissions. Assuming this share remains unchanged

going forward, we apply it to the EIA’s forecasts of energy-related CO2 emissions to obtain

annual non-energy-related CO2 emission forecasts through 2050.

The third type of emissions includes non-CO2 gases such as methane and nitrous oxide.

The EPA provides forecasts of U.S. non-CO2 GHG emissions from all sources, both related

and unrelated to energy, through 2050. To construct its forecasts, the EPA combines histor-

ical emissions data and trends based on projected activity.14 We use linear interpolation to

convert the forecasts from their five-year frequency to an annual series.

We sum up the forecasts across the three emission types to compute aggregate U.S. GHG

emission forecasts through 2050. Beyond 2050, we project the same annual growth rate as

in the aggregate emission forecasts from 2023 to 2050, which is −0.458%. The solid line in

Figure 2 plots our resulting reference forecasts of U.S. aggregate GHG emissions.

12The data can be obtained via the EIA website (eia.gov), searching first for “Annual Energy Outlook
2023” and then selecting Table 18. The total CO2 values provided there are plotted and identified as the
“reference” case in the publication, U.S. Energy Information Administration (2023a).

13See U.S. Environmental Protection Agency (2024). These data, which track U.S. emissions by source
back to 1990, can be obtained via the EPA’s Greenhouse Gas Inventory Data Explorer website.

14See U.S. Environmental Protection Agency (2019) for more detail on the EPA’s methodology. The data
can be obtained via the EPA’s Non-CO2 Greenhouse Gas Data Tool website.
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3.2. The U.S. carbon burden

We compute the aggregate U.S. carbon burden by setting the values of Cτ in equation (1)

equal to the forecasted GHG emissions plotted in Figure 2. We report the carbon burdens

associated with three future periods, all beginning in 2024. The first period ends in 2050, the

second in 2080, and the third covers all future years. Recall that 2050 is when our emission

forecasts end, and 2080 is when our social cost estimates end, so the periods with those

ending dates avoid one or both of the approaches we take to extend the two series.

Panel A of Table 1 displays the U.S. carbon burden in dollar terms. The values cover a

wide range, from $17.4 trillion, for the shortest period and highest discount rate, to $178.8

trillion, for the entire future and the lowest discount rate. When pairing all future years

with the 2% discount rate, our baseline value, the U.S. carbon burden is $87.1 trillion.

To begin putting these dollar amounts into perspective, we divide them by the total value

of U.S. corporate equity as of year-end 2023, which is equal to $66.4 trillion.15 Panel B of

Table 1 shows that these ratios range from 26% to 269%. For the 2% discount rate, the

U.S. carbon burden for all future years is 131% of total U.S. corporate equity value. Even

the burden for just the shortest future period ending in 2050, which relies on neither of our

series-extension procedures, is 44% of equity value. In brief, the U.S. carbon burden is large.

In addition to comparing the carbon burden to the value of corporate equity, we also

compare it to the combined value of equity and debt. The value of U.S. corporate debt at

year-end 2023 is about $27.3 trillion, which includes $12.1 trillion of bonds and $15.2 trillion

of loans.16 Adding this value to the $66.4 trillion value of equity, total value of equity and

debt is about $93.7 trillion. Our baseline estimate of the U.S. carbon burden, $87.1 trillion,

thus represents 93% of total value of corporate equity and debt.

The corporate sector’s carbon burden is substantial compared not just to corporate wealth

but also to total wealth. The Federal Reserve computes total U.S. net wealth as the value

of tangible assets controlled by the household, nonprofit, business, and government sectors

of the U.S. economy, net of U.S. financial obligations to the rest of the world. At year-end

2023, total U.S. wealth is about $143.6 trillion (see Table B.1 of Board of Governors of the

Federal Reserve System, 2024). The carbon burden of $87.1 trillion thus constitutes 61% of

15This amount equals the value of total issues net of holdings of foreign equities by U.S. residents. It
includes both publicly traded equity and closely held equity, where the latter includes both S and C corpo-
rations. See Table L.224 of Board of Governors of the Federal Reserve System (2024).

16These amounts come from Tables L.213 and L.214 of Board of Governors of the Federal Reserve System
(2024). The bond value equals total liabilities net of holdings of foreign bonds by U.S. residents. The loan
value equals total liabilities minus those of households, governments, and foreign entities.
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U.S. national wealth—a very substantial fraction.

How does the corporate carbon burden compare to the consumer surplus produced by

companies, which is a positive component of their value to society? We do not have a

present value of consumer surpluses in future years, but we can compare emission damages

to consumer surplus in a single year. Pellegrino (2025) estimates a U.S. consumer surplus

of $11.1 trillion in 2021. In that year, the U.S. emitted 6.35 billion tons of carbon (GHG

in CO2-equivalent tons), and the EPA’s baseline SCC estimate was $197 per ton. Those

values imply a social cost of $1.25 trillion for 2021 emissions, which is 11% as large as the

consumer surplus. The U.S. corporate sector thus produces a consumer surplus far larger

than its emissions damages. This conclusion accords with Allcott et al. (2025), who find

that consumer surplus well exceeds emission damages in a sample of 74 large companies.

Another single-year comparison reveals that emission damages are also modest relative

to U.S. output. For example, in 2023, when its GDP was $27.4 trillion, the U.S. emitted 6.28

billion tons of carbon. Multiplying the latter by that year’s SCC estimate of $204 per ton

gives a social cost of $1.28 trillion, which is 4.7% of the 2023 U.S. GDP. One might be struck

by how modest this fraction is when compared, for example, to the large ratio of carbon

burden to equity market value noted earlier, equal to 131% at the baseline 2% discount rate.

The gap between the latter discount rate and the cost of equity, along with the corporate

profit margin, can account for the difference (as explained in the Appendix).

3.3. Interpreting the burden’s magnitude

Dollar values of damages from carbon emissions are easier to interpret when compared to

meaningful benchmarks. There are various choices for the latter, as illustrated above, but

the remainder of the study will focus on the benchmark used in Panel B of Table 1, dividing

an entity’s carbon burden by its market value of equity. Our analysis at the firm level helps

guide this choice, given that a firm’s equity holders are more directly connected than other

stakeholders to management decisions affecting emissions. Moreover, the firm-level analysis

includes asset pricing implications, with future carbon taxes entertained as a priced risk to

which firms with high carbon burdens are more exposed. Dividing carbon burden by equity

value translates such exposure to rates of return earned by shareholders.

While the U.S. carbon burden is large when compared to the value of corporate equity,

readers should bear several points in mind when interpreting the numbers. First, the car-

bon burdens we compute are most reasonably viewed as status-quo estimates that exclude
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future changes in policy. Recall from Section 3.1 that our calculations are based on emission

forecasts from the EIA and EPA. The EPA’s “projections include the impact of existing

GHG reduction policies to the extent they are reflected in historical data but exclude addi-

tional GHG reductions” (U.S. Environmental Protection Agency, 2019). Similarly, the EIA’s

forecasts incorporate “only current laws and regulations” as opposed to “targets associated

with yet-to-be-developed policy” (U.S. Energy Information Administration, 2023a). One

potential future policy is a carbon tax. As noted earlier, the carbon burden measures the

corporate sector’s externality in the absence of such a tax. If a carbon tax is imposed, future

emissions could well be reduced below the reference forecasts.

Absent such reductions, our results show that if carbon is taxed at a rate equal to the

SCC, the present value of the future taxes (i.e., the carbon burden) would be a substantial

fraction of corporate equity. The tax would not reduce corporate equity value by the full

carbon burden, however, because some of the tax’s incidence would fall on consumers rather

than equityholders. In particular, consumers would likely bear much of the incidence of a

tax on GHGs emitted in producing goods having inelastic demand.

Measuring the U.S. carbon burden as a fraction of total corporate equity should not be

construed as assigning responsibility for the burden to the corporate sector. Responsibility

for the carbon burden is shared more broadly. Consider a country’s choice between generating

electricity using nuclear plants versus burning fossil fuels, which has first-order implications

for carbon emissions. Countries differ in this choice; for example, nuclear power plants

generated 68% of France’s electricity in 2021, whereas the U.S. fraction is only 19%, and

Germany no longer operates any nuclear reactors.17 It seems difficult to say how much of

the choice can be attributed to a country’s corporate sector, let alone its electric utilities,

as opposed to the country’s body politic. Similarly, it seems difficult to say how much

responsibility for the combustion of gasoline lies with the corporate sector, let alone its

automobile and oil companies, as opposed to the household sector.18 At the same time, within

the corporate sector, identifying large sources of emissions is potentially useful information

for a country seeking to reduce its carbon burden. Therefore, in subsequent sections, we

analyze carbon burdens at the industry and firm levels as well.

17See https://www.eia.gov/todayinenergy/detail.php?id=55259.
18With less nuance, Callahan and Mankin (2025) assign complete responsibility to major fossil fuel com-

panies for damages associated with the companies’ past emissions, direct and indirect.
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3.4. Potential reductions under the Paris Agreement

The Paris Agreement is an international treaty adopted in 2015 that calls for substantial

reductions in global GHG emissions. U.S. participation in the agreement was withdrawn in

2017, reinstated in 2021, and withdrawn again in 2025. Further reversals seem difficult to

rule out, given the politics. We analyze the potential reductions in the U.S. carbon burden

that would be achieved by participating and fully meeting the agreement’s U.S. emission

targets versus not doing so. For the targets, we take the country’s most recent pre-withdrawal

commitments under the agreement (known as “nationally determined contributions”). When

it rejoined the agreement in 2021, the U.S. targeted reductions in its emissions, relative to

the 2005 level, of at least 26% by 2025 and 50% by 2030. As noted earlier, our emission

forecasts, which we plot in Figure 2 and use as our reference levels, do not include changes

in emission targets yet to be implemented. In particular, those forecasts appear not to

incorporate the cuts targeted under Paris: the forecast for 2030 is only 25% below the 2005

level, compared to a reduction of at least 50% targeted by Paris. We therefore interpret the

difference between our forecasts and the levels targeted by Paris as the potential reductions

implied by the agreement.

We consider two Paris scenarios for emission levels beyond 2030. Both scenarios have

emissions relative to the 2005 level be 26% lower in 2025 and 50% lower in 2030.19 The

2005 level is 7.4 billion CO2-equivalent tons, so a 50% reduction implies a 2030 level of 3.7

billion tons, which is 2/3 (67%) of the reference-level forecast of 5.5 billion tons in that year.

In the first scenario, this 2/3 ratio is maintained in all subsequent years, and the resulting

emission levels are plotted as “Paris scenario 1” in Figure 2. Our second Paris scenario, more

conservative, merely accelerates reductions that are forecast to occur later otherwise. That

is, emissions remain at 3.7 billion tons in the years following 2030 until that level exceeds

the reference level, at which point the scenario follows the same path as the reference level.

The resulting forecasts are plotted as “Paris scenario 2” in Figure 2.

Table 2 reports the estimated reductions in the U.S. carbon burden, measured at year-end

2023, under the first Paris scenario. Panel A reports the dollar amounts, Panel B divides

those amounts by the value of U.S. corporate equity, and Panel C divides the dollar amounts

by the corresponding U.S. carbon burdens reported in Panel A of Table 1. We see from

Panel C that adherence to the Paris Agreement would reduce the U.S. carbon burden by

between 29% and 32% across the three discount rates and three future periods.

19We linearly interpolate from the current level to those points, consistent with the plot in the U.S.
submission to the United Nations registry of national contributions (unfccc.int/NDCREG).
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Table 3 reports reductions under the second scenario. Panel B shows that the bulk of

reductions occur by year 2080, not surprisingly given that this scenario simply front-loads

reductions otherwise occurring later. Even in this more conservative scenario, Panel C shows

that the Paris Agreement reduces carbon burdens by 28% through both 2050 and 2080, for

all three discount rates. Using the 2% discount rate and all future years, the reduction is

21%. All of these reductions are substantial.

4. Carbon burdens across industries

This section analyzes carbon burdens across industry sectors. We use firm-level emission

forecasts from MSCI, which we describe in Section 4.1, to compute the carbon burden of a

typical firm in each sector. We analyze those burdens in Section 4.2. For firms that have

targets for future emissions, we compare those targets to MSCI’s forecasts in Section 4.3.

4.1. MSCI firm-level emission forecast data

We downloaded the MSCI Climate Change Metrics data from the MSCI ESG Manager

in 2024, as soon as they were made available to the academic community by the newly

established MSCI Sustainability Institute through its Climate Data Knowledge Program.

Our primary interest is in MSCI’s forecasts of individual firms’ future emissions, which we

use not only in this section but also in Section 5. These forecasts are unique and valuable

for the computation of firm-level carbon burdens, which are inherently forward-looking. We

obtain MSCI’s historical emissions data from the same source.

MSCI provides firm-level forecasts of scope 1, 2, and 3 emissions for each year from

2023 through 2050. To construct its forecasts, MSCI collects firms’ decarbonization plans

and evaluates them, including their credibility. To collect data on firms’ future emission

targets, MSCI studies firms’ publicly available documents, such as annual reports, sustain-

ability reports, CDP reports, the Science Based Targets initiative, Forms 10-K and 20-F,

and investor presentations. MSCI allows firms to verify or amend their targets, and even

input new ones, through a dedicated platform. MSCI also uses natural language processing

software to identify new target announcements for its biweekly data updates.

Among the 2,851 U.S. firms in its sample, MSCI identifies 798 firms, including most

large emitters, as having emission targets. For the firms with targets, MSCI offers two

types of emission projections: target-based and credibility-adjusted. The former projections
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take firms’ emission reduction targets at their face value. The latter projections make adjust-

ments after assessing the targets’ credibility. These credibility-adjusted projections represent

MSCI’s forecasts. If a firm has no future emissions target, MSCI assumes that its emissions

will grow at the business-as-usual rate of 1% per year.20

To compute the target-based projections, MSCI assumes that firms will meet their future

targets exactly and uses interpolation. First, MSCI interpolates emissions linearly between

the firm’s most recent emissions and the first target emission value. If the firm has multiple

future targets, MSCI interpolates linearly between each pair of subsequent targets. After

the last target year, MSCI assumes zero growth in emissions until 2050.

To compute the credibility-adjusted projections, MSCI adjusts the target-based projec-

tions after performing a target credibility assessment. The purpose of this assessment is to

penalize stated decarbonization trajectories that lack credibility. For example, MSCI as-

signs low credibility to plans setting scope 3 net-zero targets in the distant future with no

interim targets. Faced with a target that it does not view as fully credible, MSCI projects

higher future emissions compared to target-based values. Specifically, MSCI computes its

credibility-adjusted emissions forecast for firm n in future year T as follows:

Forecastn,T = wn × Targetn,T + (1− wn) × Basen,T , (2)

where Targetn,T is the target-based forecast of firm n’s emissions in year T and Basen,T is

the forecast of the firm’s emissions assuming 1% annual emissions growth between today

and year T . MSCI chooses the firm’s “credibility weight” wn after evaluating the firm’s

decarbonization plan in terms of its ambition, comprehensiveness, and feasibility. Larger

wn’s are more likely to go to firms that have, for example, at least one short-term target, at

least one externally validated target, a track record of achieving past targets, and a current

trajectory to meet their targets.

MSCI’s emissions forecasts go out to year 2050, as do the aggregate forecasts used in

Section 3. To extend the firm-level forecasts beyond 2050, we follow the same procedure as

in Section 3, extrapolating the (negative) growth trend in the aggregate forecasts from 2023

to 2050 and then applying that trend to each firm.

20To explain this choice, MSCI notes that 1% is the annual global emissions growth rate from 2009 to 2019,
adjusted for GDP, according to the 2020 United Nations Environment Programme Emissions Gap Report.
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4.2. Carbon burdens by industry

We compute firm-level carbon burdens as of the end of 2023 by substituting MSCI’s fore-

casts of firms’ future emissions into equation (1). As before, we use the EPA’s SCC esti-

mates and three discount rates. We analyze U.S. firms in the intersection of the MSCI and

CRSP/Compustat databases. We scale each firm’s carbon burden by the firm’s market cap,

denoting the resulting ratio by CB/M. For firms with multiple common share classes, we

aggregate them to compute firm-level market cap. We assign firms to 12 industries following

the SIC-code classifications of Fama and French, which we obtain from Ken French’s website.

For each industry, we define a typical firm’s CB/M as the weighted average of the CB/M

ratios across all firms in this industry, using market capitalization weights.

Table 4 reports properties of carbon burdens for the 12 industries. In Panel A, we

compute carbon burdens for future years through 2050, while Panel B includes all future

years. We use our baseline discount rate of 2%. The first three columns report the CB/M

ratios for a typical firm in each sector. The first column considers just scope 1 emissions,

the second column adds scope 2, and the third column sums all three scopes. The values

reported in the second and third columns must be interpreted with caution. They correctly

represent CB/M for a typical firm in the sector, but they overstate CB/M for the sector as

a whole, due to double-counting. For example, most scope 2 emissions are scope 1 emissions

for utilities, and the same ton of carbon can be included in scope 3 emissions of multiple

firms.21 In contrast, the values reported in column 1 can also be interpreted as CB/M for

each sector as a whole because there is no double-counting of scope 1 emissions.

Table 4 shows that carbon burdens differ greatly across industries. For scope 1, a typical

utility has a carbon burden through 2050 that is 2.70 times its market cap, and a typical

energy firm has the second-largest ratio at 1.06. In contrast, for six industries, the typical

firm’s ratio is 0.05 or less. Adding the later years more than doubles the largest values, with

utilities and energy increasing to 6.94 and 2.95, but there are still five industries at 0.05 or

less. Adding scope 2 changes the picture very little, unlike adding scope 3.22 The energy

21The double-counting of emissions occurs only across firms, because for any given firm, scopes 1, 2, and 3
are mutually exclusive. Also, there is no double-counting of emissions in our aggregate analysis in Section 3
because we do not add up firm-level forecasts; instead, we use U.S. agencies’ forecasts of aggregate emissions.

22Although scope 3 greatly double-counts emissions, it captures more than half of aggregate emissions
not captured by firms’ scopes 1 and 2. We can estimate those aggregate emissions captured by scope 3 by
subtracting the corporate sector’s scope 1 emissions from total U.S. GHG emissions, because virtually all of
the latter are part of at least one firm’s scope 3 emissions. For 2023, that calculation gives 6, 277− 2, 814 =
3, 463 million tons, or 55% of total U.S. emissions. Our calculation does not subtract scope 2 (in addition to
scope 1) from total U.S. emissions, because total scope 2 is already counted in total scope 1, as noted earlier.
The value of 2,814 is the sum of all 2023 scope 1 emissions across all firms in the MSCI database. Summing
firm-by-firm scope 3 emissions, even if they were accurately measured, would not produce a meaningful
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industry’s scope 3 emissions subsume much of aggregate emissions, so a typical energy firm’s

carbon burden is the largest by far, 66 times its market cap when including all future years.

The carbon burdens in other industries also become much larger when including scope 3.

For example, typical firms in four other industries have ratios of 10 or higher in Panel B.

One of them is the financial industry, whose ratio for scope 1 is just 0.01.

Financial firms’ direct emissions are small, given the sector’s service-based nature. Their

scope 3 emissions are large, however, because they include the emissions of companies and

projects financed by financial institutions. For example, scope 3 emissions are high for

banks lending to fossil fuel companies and investment funds holding shares in high-emitting

industries. The GHG Protocol includes these “financed emissions” as part of scope 3. While

financial firms have little control over their current financed emissions, they have more control

over future emissions, because they provide financing to replace emitting real assets when

those assets depreciate. An emitter’s inability to externally finance investments in emitting

assets could potentially restrict the emitter’s future emissions.

The last three columns of Table 4 report the “future/present” ratio—the ratio of the

carbon burden from emissions in all future years to the burden from a single year’s emissions

in 2023—for a typical firm in each sector. We define a typical firm’s ratio as the weighted

average of the corresponding ratios across all firms in the given sector, using the burdens

from 2023 emissions as weights.23 The future/present ratio generally ranges in the mid-20s

when including emissions through 2050, and it is roughly three times larger when including

all future years. In the latter case, the future/present ratio is akin to a price/dividend ratio,

which divides total discounted expected future dividends (price) by last year’s dividend.

Instead of dividends, here we have social costs, discounted at a rate conceptually distinct

from the cost of capital used to discount dividends. The discount rate and the social costs

per ton of future carbon are common across firms, so differences across industries in the

future/present ratios in Table 4 arise just from differences in forecasts of emissions growth.

The future/present ratio exhibits notable variation across industries. For example, in

Panel B, the ratio for scope 1 ranges from 49 for telecom to 80 for retail (shops), a value 63%

higher. When including scopes 2 and 3, the ratio ranges from 61 for business equipment to

aggregate quantity, because scope 3 inherently double-counts emissions across firms, unlike scope 1.
23This definition differs slightly from the typical firm’s definition in the first three columns of Table 4, on

purpose. Both definitions allow us to interpret the values for scope 1 as pertaining to a typical firm in the
sector as well as to the sector as a whole. Generically, an X-weighted average of firms’ Y/X is equal to the
sum of Y across firms divided by the sum of X across firms. Given that there is no double-counting of scope
1 emissions across firms, the latter ratio represents the sector’s Y/X ratio. In all columns, Y is the carbon
burden from emissions in all future years. In the first three columns, X is market capitalization; in the last
three columns, X is carbon burden from 2023 emissions.
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92 for energy, 51% higher. In short, computing carbon burdens of just last year’s emissions

tells an incomplete story. Not only are such carbon burdens much lower than when including

the future, but they also omit differences in forecasts of emissions growth.

Differences in emission-growth forecasts are apparent from the “forecast” columns in Ta-

ble 5, which report MSCI’s forecasts of cumulative growth rates in each industry’s emissions

through 2050. We compute these industry-level growth rates from MSCI’s firm-level fore-

casts. For scope 1, the two industries with especially large carbon burdens, utilities and

energy, have forecasted growth rates that differ substantially: −37% versus −24%. When

all three scopes are included, MSCI predicts that six of the industries will increase their

emissions through 2050, whereas the other six will reduce their emissions.

In the Appendix, we report each industry’s carbon burden as a fraction of the total

burden across industries. For example, based on direct emissions, utilities account for 37%

of the total, and energy accounts for 20%. Five industries have shares below 1%: business

equipment, durables, health, money, and telecom.

4.3. Emission targets versus forecasts

The “target” columns in Table 5 report the targeted emission growth rates for firms that

have emission targets according to MSCI, industry by industry. For the same firms within

each industry, we compute their total 2050 targeted emissions and divide them by the 2050

emissions implied by MSCI forecasts. The resulting value appears in the “ratio” columns of

Table 5. In essence, the closer the ratio is to 1, the more realistic the target, because a small

gap between the target and the forecast implies the target is unlikely to be missed by much.

For scope 1, all of the ratios are well below 1, indicating targets that are too optimistic. All

industries target substantial emission reductions, but the 92% and 89% reductions targeted

by utilities and chemicals seem the least realistic, with target-to-forecast ratios of just 0.11

and 0.12, respectively. The non-durable sector’s targeted reduction of 47% is the most

modest, but it also seems the most realistic, with a ratio of 0.5. As in Table 4, adding

scope 2 makes little difference, but things change when adding scope 3. First, the targeted

reductions become less ambitious. Second, the targets become more realistic, in that the

target-to-forecast ratio increases for every industry. The most realistic industry, energy, has

a ratio of 0.70, far above its scope 1 ratio of 0.16. One interpretation is that firms set more

realistic targets for emissions that they are less able to control.
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5. Carbon burdens across firms

In this section, we analyze the cross section of carbon burdens for U.S. firms. We compute

firms’ carbon burdens as of the end of 2023, as described in Section 4.2. Moving beyond the

industry-level analysis in Section 4 seems useful because firm-level carbon burdens exhibit

substantial intra-industry variation. To demonstrate this fact, we show that the cross-

sectional variation in firms’ carbon burdens is far from explained by industry fixed effects.

Specifically, we run cross-sectional regressions of firm-level log carbon burdens on industry

fixed effects, both with and without controlling for the firm’s log market capitalization. We

consider three dependent variables, all in logs: unscaled carbon burden, CB/M, and carbon

burden divided by the burden from the firm’s emissions in year 2023 only. Carbon burdens

are based on the 2% discount rate and emission forecasts for all future years.

Table 6 shows adjusted R-squareds from these regressions. Panel A (B) reports the

R-squareds for specifications in which industry fixed effects are computed based on the

Fama-French industry classification covering 49 (12) industries. All R-squareds in the table

are far below 1, peaking at 0.655. Most R-squareds are well below 0.5, especially when

carbon burdens are scaled. The relatively low R-squareds indicate substantial intra-industry

variation in firms’ carbon burdens. In addition, the R-squared values in Panel A are only

modestly larger than those in Panel B, indicating that 12 industries do a decent job in

capturing the industry-level variation in carbon burdens. This fact provides support for our

results in Section 4, in which we use only 12 industries, for ease of exposition.

5.1. Magnitudes of firms’ carbon burdens

Figure 3 plots the distribution of CB/M across firms. There are four panels, as we consider

two emissions categories (scope 1 and scope 1+2+3) and two ways of computing the carbon

burden (based on all future years and only through 2050). Each panel plots the cumulative

distribution function of CB/M, weighting each firm equally. That is, for any given value of

CB/M, we plot the fraction of firms whose CB/M is smaller than that value.

Panel A of Figure 3 shows that the CB/M ratios vary greatly across firms. For most firms,

the carbon burden associated with their direct (scope 1) emissions represents only a small

fraction of the firm’s market capitalization. For example, 55% of firms have CB/M ratios

smaller than 0.05 under the baseline 2% discount rate. However, the distribution of CB/M

is heavily right-skewed, and some firms’ CB/M ratios are very large. For example, 13% of

firms have CB/M ratios greater than 1. These firms’ carbon burdens exceeds their market
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capitalizations; that is, the present value of their future carbon costs to society exceeds the

present value of their future dividends to shareholders. Of course, firms with large carbon

burdens are not necessarily undesirable from a social planner’s perspective, as such firms can

also provide society with large benefits such as consumer surplus.

Not surprisingly, carbon burdens are larger when the discount rate is smaller, and vice

versa. For example, when the discount rate is 2.5%, only 10% of firms have CB/M > 1, but

when the rate is 1.5%, we observe CB/M > 1 for 18% of firms. For all three discount rates,

there are many firms whose carbon burden exceeds their market capitalization.

Firms’ carbon burdens are clearly larger when we consider not only direct but also indirect

emissions. Panel C of Figure 3 plots the distribution of CB/M based on total (scope 1+2+3)

emissions. For the 2% discount rate, 77% of firms have CB/M ratios greater than 1. The

proportion is 66% for ρ = 2.5% and 87% for ρ = 1.5%. We thus see that, based on total

emissions, most firms’ carbon burdens exceed the firms’ market capitalizations. Of course,

these percentages must be interpreted with the understanding that a given ton of carbon

can appear in multiple firms’ total emissions, due to double counting across firms.

Figure 4 is a value-weighted counterpart of Figure 3. Whereas Figure 3 plots the fraction

of firms whose CB/M is below each x-axis value, Figure 4 plots the fraction of total market

capitalization belonging to firms whose CB/M is below each x-axis value. The fractions in

Figure 4 are larger than in Figure 3. This is not surprising, because the largest firms at the

end of 2023 are mostly technology firms, which are relatively light emitters. For example,

for scope 1 and the 2% discount rate, 75% of total market capitalization belongs to firms

with CB/M < 0.07. Nonetheless, the cross-sectional dispersion in CB/M is large, and 10%

of total market capitalization belongs to firms with CB/M > 1.

When we consider not only direct but also indirect emissions, the proportion of total

market capitalization belonging to firms with CB/M > 1 is quite a bit larger. For example,

based on total emissions and the 2% discount rate, half of total market capitalization belongs

to firms whose carbon burdens exceed their market capitalizations.

5.2. Future versus present emissions

Carbon emissions are persistent: high emitters today are likely to be high emitters tomorrow.

As a result, high emitters today tend to have high carbon burdens. When assessing a firm’s

carbon externality, is it necessary to consider the firm’s future emissions, or could we simply

look at its recent emissions? Put differently, do MSCI’s emission forecasts contain much
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information that is not already contained in firms’ recent emissions?

To answer these questions, we compute each firm’s future/present ratio, as analyzed

previously at the industry level. The numerator of this ratio is the carbon burden computed

from future emission forecasts through 2050, and the denominator is the burden from the

firm’s emissions in year 2023 only. If the ratio turns out to be equal across firms, then

MSCI’s emission forecasts do not add information beyond recent emissions.

Figure 5 plots the distribution of the future/present ratio across firms. To avoid spikes in

the histograms, we exclude firms that either do not have an emission target or have a target

that MSCI deems uninformative; recall that for such firms, MSCI forecasts a 1% emissions

growth per year. In Panel A, which focuses on direct emissions, the sample includes 696

firms; in Panel B, which focuses on total emissions, it includes 353 firms. In both panels,

the future/present ratio is quite dispersed across firms, taking on values as low as 0.5 and as

high as 30. Therefore, while recent emissions contain significant information about a firm’s

carbon externality, they do not paint the full picture.

The future/present ratios are dispersed across firms because MSCI’s forecasts of future

emission growth are quite dispersed. Figure 6 plots the cross-sectional distribution of firms’

cumulative forecasted emissions growth rates, computed as the forecast of the firm’s emissions

in 2050 divided by the firm’s emissions in 2023, minus 1. As in Figure 5, we exclude firms for

which MSCI forecasts 1% emissions growth. The figure shows a wide distribution of growth

rates, ranging from -100% to +33%. For most firms, emissions are predicted to fall by 2050,

in some cases to zero. For some firms, they are predicted to rise. The wide distribution in

Figure 6 helps us understand the wide distribution in Figure 5.

5.3. Determinants of future emission growth

Do the forecasted emission growth rates differ between high and low emitters? To answer

this question, Figure 7 shows a binscatter plot of firms’ cumulative future emissions growth,

computed as in Figure 6, against the firms’ “current” emissions in 2023, measured in logs.

For both direct and total emissions, we observe a strong, negative relation between current

emissions and future emission growth rates. Higher emitters have lower forecasted emissions

growth rates. For direct emissions, this growth rate is −14% for the top 5% of emitters but

+25% for the bottom 5% of emitters. The latter growth rate is positive because Figure 7

includes all firms, including those for which MSCI forecasts 1% annual growth. If we exclude

those firms, the relation remains negative. In that smaller set of firms, the future growth
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rate of direct emissions is −47% for the top 5% of emitters but −17% for the bottom 5% of

emitters (see the Appendix). The negative cross-sectional relation between current emissions

and future emission growth rates is clearly economically significant.

The relation is also statistically significant. This is clear from Table 7, which reports

results from cross-sectional regressions of future emission growth rates on current emissions

and other firm characteristics. The dependent variable is the annualized growth rate of

a firm’s emissions from 2023 to 2050, computed from MSCI forecasts. The independent

variables include the log of current emissions, the book-to-market ratio, investment, climate

score, and revenue growth, whose definitions are in the caption of Table 7. We measure all

regressors at the end of 2023. Because the indirect emissions that constitute scope 3 are

especially difficult to quantify, including those emissions as an independent variable risks an

error-in-variable problem.24 Therefore, we run these regressions only for scopes 1 and 1+2,

with and without industry fixed effects. In all four specifications, current emissions enter

with a significantly negative slope, with t-statistics ranging from −8.87 to −12.53.

The other four regressors exhibit weaker relations to forecasted emission growth rates.

Book-to-market enters with a positive slope, indicating larger emission increases for value

firms, but the relation is only marginally significant. Investment also enters with a positive

slope, significant in the last specification, pointing to larger emission increases for firms

that invest more. Only the climate score enters with consistent significance across the four

specifications. Its slope estimate is always negative, with t-statistics ranging from −3.26 to

−3.40, indicating larger emission declines for “greener” firms. This association could well

be reverse-causal, in that firms with more ambitious emission targets could be rewarded

by MSCI with higher climate scores. We do not analyze causality; we are simply trying

to explain the variation in MSCI’s forecasted emission growth rates. We explain relatively

little of it: adjusted R-squareds range from 10% to 12.2%.25 Clearly, MSCI’s approach to

forecasting emissions is more sophisticated than a linear regression with five regressors.

Both Figure 7 and Table 7 show that future emissions are expected to decline markedly

for high-emitting firms. This result is so strong that a handful of the largest emitters are

responsible for the entire drop in emissions expected in the U.S. corporate sector, as we

show in Figure 8. This figure plots the time series of direct emissions aggregated within two

subsets of firms: the 30 largest emitters as of 2022 and the 2,411 remaining firms. We also

24MSCI estimates a firm’s scope 3, rather than simply taking the firm’s reported value, but the inherent
nature of scope 3 surely makes the estimate substantially noisier than scopes 1 and 2.

25The sample behind Table 7 includes also firms for which MSCI forecasts 1% annual growth. If we exclude
those firms, the results look similar—both current emissions and the climate score retain significantly negative
slopes in all four specifications, and the other regressors are almost never significant. See the Appendix.
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plot the total emissions of all 2,441 firms. In years through 2022, emissions are historical

values from MSCI; after 2022, emissions are from MSCI’s forecasts.

Figure 8 shows that aggregate corporate emissions have declined from 2.7 to 2.1 billion

metric tons between 2008 and 2022, and that they are expected to decline further to 1.5 billion

metric tons by 2050. This steady decline is not surprising, given the ongoing decarbonization

of the U.S. economy. What is more surprising is the outsized role of the top 30 emitters.

First, these emitters account for a substantially larger share of aggregate emissions than the

remaining 2,411 firms. Second, the top 30 emitters account for just about all of the expected

aggregate decline in emissions by 2050. Essentially no decline is expected for the other 2,411

firms. The disproportionate influence of the top 30 emitters is apparent also from pre-2022

historical emissions. In short, all of the decarbonization of the U.S. corporate sector by 2050

is expected to come from the 30 largest emitters.26

As an alternative to firm-level emission forecasts from MSCI, we also consider forecasts

from a simple vector autoregression (VAR) model that uses historical emissions data from

MSCI and Trucost to forecast individual firms’ future emissions. The resulting estimates

of carbon burdens are similar to their MSCI-forecast-based counterparts for large emitters,

and they tend to be even larger for low emitters. Similar to the results in Table 7, emissions

are predicted to grow faster for firms that invest more and firms with lower climate scores.

VAR-based results also support our conclusion from Figure 8 that all of U.S. decarbonization

is expected to come from the 30 largest emitters. See Section A.3 for details.

The above analysis also reveals substantial discrepancies between the emissions data from

MSCI and Trucost. These discrepancies are larger for smaller emitters and firms that do not

disclose their emissions. See Section A.4 for details.

5.4. Paris redux

As noted in Section 3.4, U.S. participation in the Paris Agreement has been on and off.

Suppose nevertheless that the U.S. were to meet its goals as of 2021 under that agreement.

Carbon emissions in 2030 would then have to be 41% lower than in 2023, declining from 6.3

to 3.7 billion tons. How does this 41% reduction compare to targets for 2030 emissions that

U.S. firms have set, or to MSCI’s forecasts of firms’ emissions?

Panel A of Table 8 summarizes the targeted and forecasted emission reductions for the

26The top 10 emitters as of 2022, based on scope 1 emissions, are Exxon Mobil, Vistra, Southern, Duke
Energy, Berkshire Hathaway, Chevron, American Electric Power, Nextera Energy, AES, and Entergy.
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798 U.S. firms that have emission targets, as identified by MSCI. Results are shown for each

of four emission categories: scope 1, scope 2, scope 3, and their sum. The median targeted

reductions for scopes 1 and 2, at 33% and 32% respectively, are moderately below the 41%

Paris reduction. For scope 3, however, the median targeted reduction is actually negative,

at −7%, implying an increase rather than a reduction. The equal-weighted and emission-

weighted average scope 3 reductions are positive but still quite low, at 12% and 8%. Recall

that scope 3 captures over half of U.S. aggregate emissions not captured by firms’ scopes 1

and 2. If scope 3 falls only modestly, let alone increases, the U.S. would fall well short of the

2021 Paris goal.

MSCI’s forecasts of firms’ emissions tell yet a worse story than firms’ targets. Even for

scopes 1 and 2, the medians of the forecasted reductions are just 17% and 15%, and the

averages are similarly low. For scope 3, the forecasts darken the already bleak picture from

the targets. In all emission categories, MSCI is rather pessimistic about firms’ meeting their

targeted reductions, predicting reductions often two or three times smaller than targeted.

The highest corporate emitters are pivotal in the nation’s decarbonization efforts, because

they account for a large fraction of aggregate emissions, as earlier noted. For example, in

2023, the top 10% of scope 1 emitters account for 96% of U.S. firms’ scope 1 emissions. Most

firms in the top 10% have emission targets.27 Panel B of Table 8 repeats the analysis in

Panel A for the firms in the top 10% of U.S. emitters in each category. Panel B delivers

the same messages as Panel A. The emission-weighted averages are essentially identical,

given the dominance of large emitters, but the medians and equal-weighted averages are also

similar to Panel A, for both targets and forecasts. The overall message, reinforced by the

high emitters, is that the U.S. corporate sector is far from the Paris-level trajectory that

would produce the potential reductions in carbon burden estimated in Tables 2 and 3.

6. Carbon burden and expected stock returns

In this section, we relate carbon burden to the cross section of expected stock returns. Prior

studies, cited in the introduction, link expected returns to firms’ past carbon emissions. We

instead focus on forecasts of future emissions. We find that expected returns are signifi-

cantly related to forecasted emissions, even controlling for past emissions and other firm

characteristics.

27Emission targets are much more prevalent among large emitters. Among the top 10% of emitters, 65%
to 74% have targets, depending on the emission category, whereas among the other 90% of emitters in any
category, fewer than 24% have targets.
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We estimate each firm’s expected stock return by its implied cost of capital (ICC)—the

discount rate that equates the firm’s market value of equity to the present value of its ex-

pected future cash flows. We compute the ICC for each stock at year-end 2023 using the

method of Hou, van Dijk, and Zhang (2012), which builds on Gebhardt, Lee, and Swami-

nathan (2001) but replaces analysts’ earnings forecasts with regression-based forecasts. This

approach delivers the most precise expected return estimates in the cross section among all

ICC methods evaluated by Lee, So, and Wang (2021).28 Prior studies relate the cross section

of ICCs to various measures of greenness (e.g., Chava, 2014; Pastor, Stambaugh, and Taylor,

2022), including past carbon emissions (Eskildsen et al., 2025), but, to our knowledge, we

are the first to relate it to future emissions.

We compute each firm’s carbon burden using a 2% discount rate and scope 1 emissions

from all future years. We compute these burdens as of 2023 year-end, capitalizing emissions

from 2024 forward. We divide each firm’s carbon burden by its 2023 year-end market value

of equity, M , and denote the ratio by CB/M, as before. We also compute C/M, the firm’s

ratio of year-2023 scope 1 emissions to M . In addition to CB/M and C/M, we include three

2023 year-end control variables: market beta and the logs of M and the book-to-market

ratio. We estimate market betas following Fama and French (1992): each June, we sort

stocks into ten portfolios by M , estimate each portfolio’s beta from a time-series regression

over the prior 120 months, and assign that beta to the stocks in the corresponding portfolio.

Table 9 reports results from cross-sectional regressions of firm-level ICC on CB/M, C/M,

and the three controls. Our main finding is a positive and significant relation between

ICC and CB/M: firms with higher carbon burdens tend to have higher costs of capital.

This relation holds both with and without controls, with t-statistics ranging from 3.23 to

7.65 across specifications. Importantly, future carbon (CB/M) remains positively related

to expected returns even after controlling for past carbon (C/M). This result suggests that

market participants look beyond past emissions and consider firms’ decarbonization plans

when pricing stocks. These findings are consistent with the view that firms can lower their

costs of capital by committing to credible decarbonization plans.

6.1. Economic significance

The positive relation between ICC and future carbon is also economically significant. Con-

sider two hypothetical firms: a heavy emitter and a light one. The heavy emitter’s CB/M

equals the average among the top 10% of firms sorted by CB/M, and the light emitter’s

28For details on our ICC computations, see Pastor, Stambaugh, and Taylor (2022).
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CB/M is the average among the bottom 10%. Estimates in column 1 of Table 9 imply that

the heavy emitter’s ICC exceeds the light emitter’s by 1.7% per year—a large difference.

The implied difference remains substantial, 0.9% per year, even when we use the smallest

estimate of the CB/M slope (from column 4 of Table 9).29 The relation between ICC and

CB/M is therefore clearly economically significant.

Another example illustrating the economic significance involves two utilities: Vistra En-

ergy and American Electric Power (AEP). Both are among the largest emitters: in 2023,

Vistra has the highest scope 1 emissions in the utility sector and the second highest in our

entire sample, whereas AEP ranks fourth among utilities and sixth overall. Vistra’s ratio

of carbon burden to recent emissions (CB/C) is close to the median among the top-10 util-

ity emitters, indicating a typical forecasted rate of decarbonization. Among those top-10

emitters, AEP has the lowest CB/C, implying the fastest decarbonization. If Vistra were

expected to decarbonize as fast as AEP, holding constant Vistra’s market cap, what would

be the estimated effect on Vistra’s ICC? Adjusting Vistra’s carbon burden to match AEP’s

decarbonization rate, we estimate that Vistra’s ICC would be lower by 1.7% to 4.4% per

year, depending on the set of controls.30 This is a large effect.

Repeating this calculation for each utility firm, we estimate how much ICCs would change

if all utilities decarbonized at the same rate as AEP—that is, if they shared AEP’s CB/C

ratio. We find a value-weighted average decrease in ICC between 0.2% and 0.6% per year,

depending on the controls. For utilities in the top quartile of CB/M, the average decrease

in ICC is even larger, between 0.7% and 2.0%.

29The heavy emitter’s CB/M is 14.42 and the light emitter’s is 0.0005, a difference of 14.419. Multiplying
14.419 by 1.15, the slope estimate in column 1 of Table 9, and undoing the division of CB/M by 1000 before
running the regression, gives 14.419 × 1.15/1000 = 1.66%. Multiplying 14.419 by 0.617, the estimate in
column 4, gives 14.419 × 0.617/1000 = 0.89%. Also note that 14.419 is close to twice the cross-sectional
standard deviation of CB/M (which is 7.15), so the heavy-light comparison can also be interpreted as a
two-standard-deviation change in CB/M.

30Vistra’s actual CB/M is 65.2. Its counterfactual CB/M is 38.2, the product of its C/M (0.0067682)
and AEP’s CB/C ratio (5642). Matching AEP’s decarbonization rate thus reduces Vistra’s CB/M by
27 = 65.2 − 38.2. To compute the implied change in ICC, we multiply 27 by the estimated coefficient on
CB/M in Table 9 and divide by 1000 (to undo the scaling of CB/M before running the regressions). Across
the columns of Table 9, the estimated coefficients range from 0.617 to 1.648. Using the smallest estimate,
Vistra’s ICC would be lower by 1.7 percentage points per year (0.017 = 0.617× 27/1000). Using the largest
estimate, the reduction would be 4.4 percentage points (0.044 = 1.648× 27/1000). Note that C in the above
CB/C and C/M ratios denotes emissions in tons of carbon.
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6.2. Future versus past carbon

We relate the ICC not only to future carbon but also to past carbon. In the cross-sectional

regression of ICC on C/M, we find a positive and significant relation, whether or not we

include the three controls (columns 2 and 5 of Table 9). This finding supports the evidence

of Eskildsen et al. (2025), who also document a positive and significant cross-sectional relation

between ICC and scaled recent carbon emissions. However, the ICC-C/M relation disappears

once we control for CB/M (columns 3 and 6). In fact, including CB/M flips the sign of the

estimated slope on C/M from significantly positive to insignificantly negative. In other

words, past carbon enters positively when included alone but is driven out by the inclusion

of future carbon. In contrast, future carbon retains its positive and significant coefficient

even after controlling for past carbon, as discussed earlier. In the horserace between past

and future carbon, future carbon wins.

Why are expected returns more closely related to future carbon than to past carbon? A

potential answer is that investors require compensation for carbon-tax risk—the risk that

a carbon tax, or a similar policy, will be imposed in the future. This risk is systematic,

and firms with greater future emissions are more exposed to it. The risk premium could

be positive or negative. On one hand, as often argued, a carbon tax can benefit investors

and their descendants by mitigating climate change. On the other hand, the tax reduces

corporate profits, because part of its burden falls on firms, and investors are harmed unless

the redistributed tax proceeds fully compensate them for the accompanying loss of equity

value. In addition, a carbon tax shifts investors’ consumption toward greener alternatives

that they would otherwise less desire. Our results accord with the negative effects on investors

dominating, generating a positive carbon-tax risk premium. Recall that firms with lower

carbon burdens have lower ICCs, even holding recent carbon constant. This finding suggests

that firms with more credible decarbonization plans are less exposed to carbon-tax risk and

are rewarded with lower costs of capital.

Our results are less supportive of investors requiring compensation for “tort risk”—the

risk of having to pay damages awarded by courts. In recent years, several heavy U.S. emitters

have been sued for damages by certain states and municipalities. While tort risk is similar

in spirit to carbon-tax risk, the latter is about future carbon whereas the former is more

about past carbon (as it would seem frivolous to sue a company for future emissions that

may or may not materialize). In that sense, our evidence is consistent with investors being

more concerned about carbon-tax risk than about tort risk.

The carbon-tax perspective also helps motivate our use of CB/M, rather than another
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scaling of carbon burden. Consider an example in which a permanent carbon tax is unex-

pectedly imposed at a rate equal to the corresponding year’s SCC, the tax is fully borne

by the firm, emission forecasts remain unchanged, and the firm’s cost of capital is ρτ from

equation (1). Under these assumptions, the firm’s carbon burden equals the present value of

its tax liabilities. The tax therefore reduces the firm’s market value by the amount of its car-

bon burden, generating a stock return of −CB/M. The CB/M ratio thus perfectly captures

shareholders’ return exposure to carbon-tax risk in this example. Even if some assumptions

are relaxed, the example illustrates how carbon burden captures the tax-related cash-flow

risk. Dividing carbon burden by market equity, as in CB/M, translates this cash-flow risk

into return risk faced by shareholders.

Carbon-tax risk is not the only possible interpretation of our evidence. Another plausible

mechanism involves investor preferences (e.g., Pastor, Stambaugh, and Taylor, 2021, Ped-

ersen, Fitzgibbons, and Pomorski, 2021). Investors may have tastes for low-carbon firms,

particularly those with credible decarbonization plans and thus lower carbon burdens. Dis-

tinguishing among competing explanations is challenging, especially given that we observe

only a single cross section of carbon burdens, but it is a task worthy of future research.

6.3. Robustness

Our calculation of the carbon burden relies on the EPA’s forecasts of the SCC, which are

subject to considerable uncertainty. The SCC forecasts, however, have no material impact

on our regression results. To demonstrate this, we recompute each carbon burden by setting

SCCτ = 1 for all τ in equation (1), thereby removing the SCC from the calculation. We

then rerun the regressions from Table 9 using this adjusted version of CB/M.

Table 10 reports the results. As before, we find a positive and significant relation between

ICC and CB/M, regardless of which controls are included. We also find a positive and

significant relation between ICC and C/M, but that relation vanishes once we control for

CB/M. These results are very similar to those in Table 9.

As in Table 9, the results in Table 10 are again quite economically significant. Consider

the example of Vistra vs. AEP from Section 6.1. If Vistra were expected to decarbonize as

quickly as AEP, its ICC would be lower by 1.6% to 4.6%, depending on the specification.

Across all utilities, the value-weighted average decrease in ICC ranges from 0.2% to 0.6%,

and among utilities in the top quartile by CB/M, the average decrease ranges from 0.7%

to 2.0%. These magnitudes closely mirror those obtained from Table 9. Hence, the SCC
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plays no role in our conclusions about the pricing of future versus past carbon. Instead, the

conclusions are driven by firms’ differing paths of future emissions.

Our results hold even at the level of the industry. We conduct two analyses to assess the

role of industry grouping. First, we repeat the analysis at the industry level, using the Fama-

French 49 classification. After aggregating firm-level variables to the industry level using

value-weighted averages, we rerun the regressions from Table 9 across the 49 industries. The

results closely resemble those in Table 9: the coefficient on CB/M is positive and significant

with or without controls, and the coefficient on C/M flips from positive to negative once

CB/M is included. Second, we repeat the firm-level regressions with industry fixed effects

to isolate within-industry variation. The results are similar but weaker: after controlling for

C/M, the coefficient on CB/M remains positive but loses statistical significance. See Table

A.8. We conclude that across-industry variation plays a larger role than within-industry

variation in explaining our results.

Finally, we examine the robustness of our results to three design modifications. First,

we recompute CB/M and C/M using scope 1+2 instead of scope 1 emissions. Second, we

winsorize CB/M and C/M at the 99th percentiles to remove outliers. Third, we rescale both

variables by firm revenue, using CB/R and C/R instead of CB/M and C/M. In all three

cases, the results look very similar to those in Table 9. See Tables A.9 through A.11.

We conclude that our asset pricing results are strong and robust. Future carbon is priced

in the cross section of expected stock returns, even after controlling for past carbon.

7. Conclusion

We estimate carbon burdens, novel measures of future carbon damages, for U.S. corpora-

tions. We find these burdens to be large. Based on our year-end 2023 baseline estimates,

the aggregate U.S. carbon burden is $87 trillion, which equals 131% of the total value of

corporate equity. Carbon burdens vary greatly across industries, from 1% of market value

for a typical financial firm to 694% for a typical utility, based on direct emissions. When

indirect emissions are added, the utility’s carbon burden more than doubles, but the financial

firm’s burden grows a thousandfold. For 13% of firms, which represent 10% of total market

capitalization, their direct carbon burdens exceed their market values. For these firms, the

present value of their carbon costs to society exceeds the present value of their dividends to

shareholders. Firms’ large carbon externalities suggest that a continued debate regarding

the Friedman (1970) doctrine, according to which firms should focus solely on maximizing

32



profits, is warranted.

We estimate that if the U.S. stuck to its 2021 goals under the Paris Agreement, its carbon

burden would fall by 21% to 32%. Key to achieving those goals are the emission reductions

of the largest emitters. Promisingly, the largest emitters have the most negative expected

future emission growth rates, as the cross-sectional relation between current emissions and

future emission growth rates is strongly negative. The relation is so strong that all of

the decarbonization of the U.S. corporate sector by 2050 is expected to come from the 30

largest emitters. However, the largest emitters’ emission reduction targets fall well below

the country’s 2021 Paris goals, even if we take those targets at face value.

Our carbon burden estimates come with a fair amount of imprecision that is hard to

quantify. All three building blocks of the carbon burden—emission forecasts, forecasts of

the SCC, and the discount rate—are imprecise, to an uncertain degree.31 We consider three

discount rates, but we are unable to compute standard errors because the forecasts we obtain

from the MSCI, EIA, and EPA come without confidence bands. Nevertheless, in all scenarios

we consider, the corporate sector’s carbon burden is large.

As argued earlier, it would be naive to assign full responsibility for the aggregate carbon

burden to the corporate sector, because how much carbon a country emits depends to a

large extent on household demand and politics. Similarly, it is unclear how to allocate

responsibility across firms, given their symbiotic relationships. For example, it would be

simplistic to hold utilities fully accountable for their direct emissions, since the demand for

their power comes from other sectors. Carbon burden is inherently shared, and assigning

responsibility for it to individual firms is somewhat arbitrary. Determining the extent to

which firms are responsible for emissions is beyond the scope of this study.

The capital market evidently cares about firms’ emissions. We find that firms with larger

carbon burdens are priced lower, in that their equities have higher expected returns. For

example, a firm whose carbon burden divided by market cap is in the top decile has an annual

expected return roughly 1% to 2% higher than a firm in the bottom decile. Moreover, we

find that future rather than past emissions are more relevant for equity pricing.

Designing policies that reduce the aggregate carbon burden fairly, efficiently, and sig-

nificantly is an important task for scholars and policymakers alike. To improve the way

we discount future carbon emissions, we need more research into their risk profile. Finally,

moving beyond carbon, future research should try to quantify other externalities, positive

and negative, that corporations impose on society.

31For example, Barnett et al. (2025) emphasize the central role of uncertainty in climate policy.
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Figure 1. Social costs of GHG emissions. The figure plots EPA estimates of the social
cost per CO2-equivalent ton of GHGs emitted in a given future year. The EPA provides the
costs through 2080 that are associated with each of three discount rates: 1.5% (long dashes),
2.0% (solid line), and 2.5% (short dashes).
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Figure 2. Forecasts of U.S. GHG emissions. The figure plots the reference forecasts
(solid line) as well as forecasts under two scenarios for the Paris agreement. In the first Paris
scenario (short dashes), the ratio of emissions to reference-level forecasts is maintained at the
agreement’s 2030 level in all later years. In the second Paris scenario (long dashes), no additional
reductions relative to the reference level occur after 2030. The plot truncates the forecast time
horizon, which technically extends to infinity.
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Figure 3. Distribution of firms’ carbon burden as a fraction of market cap. This
figure shows cumulative distribution functions (CDFs) of the ratio of carbon burden to market
cap, computed in the cross section of firms in 2023. Carbon burdens are computed using MSCI’s
forecasts. The CDFs weight each firm equally.
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Figure 4. Value-weighted version of previous figure. Whereas the previous figure plots
the fraction of firms below each x-axis value, this figure plots the fraction of aggregate market
cap belonging to firms below each x-axis value.
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Figure 5. Firms’ carbon burdens: Future years vs. current year. We compute each
firm’s ratio of carbon burden through 2050 to carbon burden from 2023. The figure plots
this ratio’s distribution across firms. Carbon burdens are computed using MSCI’s emissions
forecasts, with ρ = 2%. Panel A (B) excludes firms with scope 1 (1, 2, or 3) growth rate equal
to 1%; these excluded firms either do not have a target or have a target that MSCI deems
uninformative. Panel A (B) includes 696 (353) firms in total.
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Figure 6. Firms’ forecasted emissions growth. This figure plots the distribution of firms’
cumulative forecasted emissions growth rates, computed as the fraction change in emissions
from 2023 to 2050. Emissions forecasts are from MSCI. Panel A (B) excludes firms with scope
1 (1, 2, or 3) annual growth rate equal to 1%; these excluded firms either do not have a target
or have a target that MSCI deems uninformative. Panel A (B) includes 696 (353) firms in total.
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Figure 7. Current emissions and forecasted emissions growth. This figure shows the
binscatter plots of firms’ cumulative forecasted emissions growth rates, computed as the firm’s
fraction change in emissions from 2023 to 2050, against the log emissions in 2023. Emissions
forecasts are from MSCI. Panel A (B) includes 2,543 (2,574) firms in total.
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Figure 8. Past and future emissions. This figure shows past and future scope 1 emissions,
using MSCI data on historical emissions and forecasts. The sample includes firms that have
non-missing emission scope 1 forecasts for 2023 and historical emissions for 2022. We rank
firms based on their emissions in 2022. The figure shows the sum of emissions, in billions of
metric tons, each year within groups of firms ranked by their emissions in 2022. For example,
“Top 30 Firms” includes the 30 firms with the highest scope 1 emissions in 2022. In years after
2022, emissions are from MSCI forecasts. In years ≤ 2022, emissions are the actual historical
emissions. In years t < 2022, historical emissions are divided by an annual factor equal to (1)
the year-2022 emissions aggregated across subsample firms with non-missing year-t emissions
divided by (2) the year-2022 emissions aggregated across all subsample firms. For example,
suppose 25 of the top 30 firms were operating in 2020, and these 25 firms accounted for 90% of
the 30 top firms’ emissions in 2022. To adjust the 2020 emissions, we divide the total emissions
of these 25 firms by a factor of 0.9, which increases their year-2020 emissions by 1.111. The
purpose of this adjustment is to correct for an upward trend in data coverage before 2022.
Without this adjustment, we would impute zeros for missing firms’ emissions, which would bias
the historical emissions downward.
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Table 1

Total U.S. carbon burden

Panel A shows the estimated total social costs of U.S. GHG emissions over various future periods
beginning in 2024. Results are based on the reference forecasts of U.S. GHG emissions and are
shown for three values of the discount rate. Panel B shows each amount in Panel A as a fraction
of the total value of U.S. corporate equity at year-end 2023.

Discount rate
Future period 2.5% 2.0% 1.5%

Panel A. Trillions of dollars

Through 2050 17.35 28.98 50.64
Through 2080 30.87 53.21 95.81
All future years 45.61 87.09 178.84

Panel B. Fraction of U.S. corporate equity value

Through 2050 0.261 0.436 0.763
Through 2080 0.465 0.801 1.443
All future years 0.687 1.312 2.693
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Table 2

U.S. carbon burden reductions under the Paris Agreement

(Scenario 1)

Panel A shows the estimated reductions in social costs of U.S. GHG emissions under the first
scenario for the Paris Agreement. In this scenario, the fraction of reference-level emissions in later
years is maintained at the agreement’s 2030 level. Reductions are relative to the reference forecasts
of U.S. GHG emissions and are shown for three values of the discount rate and over various future
periods beginning in 2024. Panel B shows each amount in Panel A as a fraction of the total value
of U.S. corporate equity at year-end 2023. Panel C shows each amount in Panel A as a fraction of
the corresponding U.S. carbon burden reported in Panel A of Table 1.

Discount rate
Future period 2.5% 2.0% 1.5%

Panel A. Trillions of dollars

Through 2050 4.95 8.29 14.52
Through 2080 9.40 16.27 29.39
All future years 14.25 27.42 56.72

Panel B. Fraction of U.S. corporate equity value

Through 2050 0.075 0.125 0.219
Through 2080 0.142 0.245 0.443
All future years 0.215 0.413 0.854

Panel C. Fraction of U.S. carbon burden

Through 2050 0.285 0.286 0.287
Through 2080 0.305 0.306 0.307
All future years 0.312 0.315 0.317
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Table 3

U.S. carbon burden reductions under the Paris Agreement

(Scenario 2)

Panel A shows the estimated reductions in social costs of U.S. GHG emissions under the second
scenario for the Paris Agreement. In this scenario, no additional reductions relative to the reference
level occur after achieving the agreement’s 2030 level. Reductions are relative to the reference
forecasts of U.S. GHG emissions and are shown for three values of the discount rate and over
various future periods beginning in 2024. Panel B shows each amount in Panel A as a fraction of
the total value of U.S. corporate equity at year-end 2023. Panel C shows each amount in Panel A
as a fraction of the corresponding U.S. carbon burden reported in Panel A of Table 1.

Discount rate
Future period 2.5% 2.0% 1.5%

Panel A. Trillions of dollars

Through 2050 4.87 8.15 14.27
Through 2080 8.75 15.10 27.19
All future years 10.34 18.31 33.88

Panel B. Fraction of U.S. corporate equity value

Through 2050 0.073 0.123 0.215
Through 2080 0.132 0.227 0.410
All future years 0.156 0.276 0.510

Panel C. Fraction of U.S. carbon burden

Through 2050 0.280 0.281 0.282
Through 2080 0.284 0.284 0.284
All future years 0.227 0.210 0.189
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Table 4

Carbon burden across industries

This table shows the ratios of carbon burden to market cap and of future to present carbon burden
for a typical firm in each industry. Carbon burden is computed using MSCI forecasts through 2050 in
Panel A and in all future years in Panel B, with ρ = 2%. “Carbon Burden: Future / Present” equals
the ratio of the industry’s carbon burden from future years to its burden from 2023 emissions only.
We use the Fama-French 12 industry classification. Industry “Other” includes Mines, Construction,
Building Materials, Transportation, Hotels, Business Services, and Entertainment.

Carbon Burden / Market Cap Carbon Burden: Future / Present

Industry Scope 1 Scope 1+2 Scope 1+2+3 Scope 1 Scope 1+2 Scope 1+2+3

Panel A: Through 2050

NoDur 0.12 0.18 2.09 22.74 22.28 22.87
Durbl 0.02 0.05 3.52 19.84 19.32 24.68
Manuf 0.26 0.37 5.56 22.33 22.41 26.22
Enrgy 1.06 1.19 20.47 22.05 22.12 28.47
Chems 0.45 0.60 3.00 22.41 22.08 25.52
BusEq 0.00 0.01 0.24 19.19 18.76 20.16
Telcm 0.01 0.07 0.66 16.54 16.26 21.40
Utils 2.70 2.80 5.53 20.35 20.46 23.61
Shops 0.04 0.08 1.88 25.27 24.29 27.79
Hlth 0.01 0.02 0.46 21.88 22.46 23.43
Money 0.00 0.01 5.28 23.51 20.51 26.63
Other 0.37 0.41 1.69 22.24 22.33 24.00

Panel B: All future years
NoDur 0.36 0.53 6.20 68.48 66.47 67.81
Durbl 0.05 0.15 10.98 57.83 55.75 77.31
Manuf 0.73 1.08 17.42 64.09 64.89 82.33
Enrgy 2.95 3.33 65.89 61.34 61.84 92.19
Chems 1.23 1.63 9.17 60.96 59.91 78.25
BusEq 0.01 0.03 0.71 52.50 53.91 60.80
Telcm 0.04 0.20 2.04 48.96 47.56 66.46
Utils 6.94 7.24 15.89 52.95 53.59 68.66
Shops 0.14 0.26 6.03 80.01 76.12 89.53
Hlth 0.03 0.07 1.41 66.66 68.79 71.15
Money 0.01 0.04 16.60 72.01 61.97 83.82
Other 1.09 1.21 5.02 65.21 65.57 71.69
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Table 5

Targets vs. forecasts

This table shows the cumulative growth rate in each industry’s aggregate emissions. Cumulative
growth rate is the fraction change between the industry’s aggregate 2023 and 2050 emissions.
Column “Forecast” uses MSCI forecasts. Column “Target” uses firms’ targets. Targets are available
for fewer firms than forecasts are. “Ratio” is the industry’s sum of 2050 emissions targets divided
by the industry’s sum of 2050 emissions forecasts, using only firms for which both targets and
forecasts are available.

Scope 1 Scope 1+2 Scope 1+2+3

Industry Forecast Target Ratio Forecast Target Ratio Forecast Target Ratio

NoDur -0.11 -0.47 0.50 -0.14 -0.51 0.47 -0.12 -0.45 0.54
Durbl -0.26 -0.64 0.35 -0.29 -0.63 0.40 0.02 -0.19 0.66
Manuf -0.19 -0.55 0.47 -0.17 -0.52 0.49 0.09 -0.17 0.60
Enrgy -0.24 -0.83 0.16 -0.23 -0.82 0.17 0.24 0.15 0.70
Chems -0.25 -0.89 0.12 -0.26 -0.87 0.14 0.03 -0.35 0.53
BusEq -0.35 -0.80 0.28 -0.32 -0.78 0.28 -0.21 -0.51 0.55
Telcm -0.37 -0.80 0.29 -0.39 -0.74 0.38 -0.12 -0.37 0.61
Utils -0.37 -0.92 0.11 -0.36 -0.91 0.11 -0.13 -0.58 0.38
Shops 0.07 -0.76 0.12 0.01 -0.73 0.15 0.20 -0.15 0.39
Hlth -0.13 -0.61 0.28 -0.10 -0.68 0.20 -0.07 -0.31 0.57
Money -0.06 -0.60 0.24 -0.19 -0.74 0.22 0.11 -0.21 0.51
Other -0.17 -0.80 0.16 -0.16 -0.79 0.16 -0.07 -0.66 0.25
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Table 6

Explaining variation in firms’ carbon metrics

This table reports adjusted R-squared values from cross-sectional regressions of carbon-burden
metrics (denoted in column headers) on industry fixed effects and/or log of market cap. “CB”
represents the carbon burden from all future years. “M” denotes market capitalization. “Future /
Present” refers to carbon burden from all future years divided by the burden from 2023 emissions
only. Carbon burdens are computed from MSCI emissions forecasts as of the end of 2023, with
ρ = 2%. Firms are classified into Fama-French 49 (12) industries in Panel A (B).

Dependent Variable (log)

Scope CB CB/M Future/Present

Panel A: Using the Fama-French 49 industries
Scope 1 0.521 0.643 0.522 0.579 0.063 0.243
Scope 1+2 0.432 0.591 0.415 0.504 0.061 0.242
Scope 1+2+3 0.367 0.655 0.393 0.458 0.051 0.155

Panel B: Using the Fama-French 12 industries
Scope 1 0.412 0.550 0.419 0.467 0.035 0.216
Scope 1+2 0.330 0.507 0.320 0.399 0.035 0.217
Scope 1+2+3 0.272 0.589 0.294 0.350 0.028 0.131

Industry FEs Y Y Y Y Y Y
Log(M) Y Y Y
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Table 7

Firm characteristics and forecasted emissions growth

This table shows estimates from cross-sectional regressions with dependent variable equal to
the annualized emission growth rate of a firm’s emissions from 2023 to 2050, based on MSCI
forecast data. We set the growth rate to zero for firms with 2023 and 2050 emissions equal
to zero. For other firms with 2050 emissions equal to zero, we set 2050 emissions to 1% of
the 2023 emissions level so that we can compute an annualized growth rate. All regressors are
measured at the end of 2023. B/M is the book-to-market ratio. Investment is the one-year fraction
change in book assets. Climate Score is computed from MSCI’s ESG ratings and is defined
as −(10 − Climate scorei,t−1) × Climate weighti,t−1/100, similar to Pástor, Stambaugh, and
Taylor (2022). Climate score is “Climate Change Theme Score,” a number between zero and 10
measuring a company’s resilience to long-term risks related to climate change. Climate weight is
“Climate Change Theme Weight,” a number between zero and 100 measuring the importance of
climate change relative to other ESG issues in the company’s industry. Revenue Growth is the
one-year fraction change in revenue. B/M, Investment, and Revenue Growth are winsorized at the
1st and 99th percentiles. The bottom rows specify the emissions scope considered and whether we
include fixed effects for Fama-French 12 industries. In parentheses, we report t-statistics clustered
by industry. We multiply slope coefficients by 1,000.

(1) (2) (3) (4)
Log(Emissions) -2.343 -2.959 -2.688 -3.211

(-9.52) (-12.33) (-8.87) (-12.53)

B/M 1.246 1.320 1.229 1.240
(1.73) (1.84) (1.70) (1.82)

Investment 2.077 2.768 2.302 2.921
(1.27) (1.79) (1.59) (2.09)

Climate Score -7.327 -7.050 -9.193 -8.850
(-3.39) (-3.30) (-3.40) (-3.26)

Revenue Growth -0.547 -1.007 -1.009 -1.372
(-1.29) (-1.86) (-2.33) (-2.49)

Constant 0.020 0.029 0.017 0.025
(7.35) (11.08) (4.88) (8.33)

Observations 2191 2213 2191 2213
Adjusted R2 0.100 0.107 0.118 0.122
Scopes 1 1+2 1 1+2
Industry FE Y Y

48



Table 8

Firms’ targeted and forecasted emission reductions

The table reports firms’ targeted and forecasted percentage emission reductions through 2030, the
horizon aligned with the Paris agreement. The reductions are stated relative to 2023 as the base
year. For each emission category, Panel A includes all firms identified by MSCI as reporting an
emission target, while Panel B includes only those firms that are also among the category’s top
10% of emitters in 2023. The forecasted reductions reflect MSCI’s emission forecasts for each
firm, computed as in equation (2). The emission-weighted averages weight each firm’s percentage
reduction by the firm’s 2023 emissions.

Emission categories
Scope 1 Scope 2 Scope 3 All

Panel A: All firms with emission targets

Number of firms 798 798 798 798
Median targeted reduction 33 32 -7 4
Equal-weighted average targeted reduction 38 36 12 16
Emission-weighted average targeted reduction 28 33 8 11
Median forecasted reduction 17 15 -7 -1
Equal-weighted average forecasted reduction 21 19 5 7
Emission-weighted average forecasted reduction 14 20 2 4

Panel B: Above firms in each category’s top 10% of 2023 emitters

Number of firms 184 211 190 200
Median targeted reduction 26 31 3 11
Equal-weighted average targeted reduction 31 36 16 18
Emission-weighted average targeted reduction 28 33 8 10
Median forecasted reduction 11 19 -1 3
Equal-weighted average forecasted reduction 16 21 8 9
Emission-weighted average forecasted reduction 14 20 2 3
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Table 9

ICCs and carbon measures

This table shows estimates from cross-sectional regressions with dependent variable equal
to the firm’s implied cost of capital. All variables are measured at the end of 2023. CB/M
denotes Carbon Burden divided by M, the market value of equity. Carbon Burden is calcu-
lated using a 2% discount rate and includes scope 1 emissions from all future years. C/M
is scope 1 emissions divided by M. We estimate stocks’ market betas following Fama and
French (1992): at the end of every June, we assign stocks to ten portfolios based on market
equity, estimate the portfolios’ betas from time-series regressions using a 120-month win-
dow, then set each stock’s market beta to that of its corresponding portfolio. B/M is the
book-to-market ratio. In the regressions, CB/M is divided by 1000. t-statistics are reported
in parentheses.

(1) (2) (3) (4) (5) (6)
CB/M 1.150 1.648 0.617 1.346

(7.65) (3.31) (4.94) (3.23)

C/M 17.188 -8.573 8.555 -12.571
(6.96) (-1.05) (4.15) (-1.83)

Market Beta 0.059 0.060 0.059
(4.95) (5.00) (4.88)

log(B/M) 0.027 0.027 0.027
(25.79) (25.78) (25.87)

log(M) 0.004 0.004 0.004
(4.23) (4.18) (4.32)

Constant 0.074 0.074 0.074 -0.008 -0.009 -0.008
(67.20) (66.95) (67.12) (-0.38) (-0.39) (-0.36)

Observations 1990 1990 1990 1925 1925 1925
Adjusted R2 0.028 0.023 0.028 0.314 0.312 0.315
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Table 10

Version of previous table with SCC = 1

In this table, we repeat the analysis from Table 9, except we compute firms’ carbon burdens
while setting SCC = 1, and we do not divide CB/M by 1000.

(1) (2) (3) (4) (5) (6)
CB/M 0.408 0.626 0.218 0.518

(7.60) (3.23) (4.87) (3.19)

C/M 17.188 -10.418 8.555 -14.370
(6.96) (-1.17) (4.15) (-1.92)

Market Beta 0.060 0.060 0.059
(4.95) (5.00) (4.89)

log(B/M) 0.027 0.027 0.027
(25.79) (25.78) (25.87)

log(M) 0.004 0.004 0.004
(4.23) (4.18) (4.32)

Constant 0.074 0.074 0.074 -0.008 -0.009 -0.008
(67.17) (66.95) (67.11) (-0.38) (-0.39) (-0.36)

Observations 1990 1990 1990 1925 1925 1925
Adjusted R2 0.028 0.023 0.028 0.314 0.312 0.315
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Appendix

A.1. Reconciling ratios

Here we explain why the modest ratio of annual emission damages to GDP is consistent

with the large ratio of carbon burden to equity market value. We first provide the basic

intuition in a simple no-growth framework. We then present a somewhat richer framework

that models production in a traditional way and endogenizes the profit margin.

A.1.1. Simple framework

Suppose the corporate sector produces output whose value in period t is given by

Yt = Y + εt , (A.1)

where Y is expected output and εt is a zero-mean random component, which makes corporate

ownership risky. Producing output generates, as a by-product, a negative externality whose

value is the fraction f of expected output in each period:

Et = fY . (A.2)

Since there is no growth, the present value of all future externalities in perpetuity—the

carbon burden—is simply equal to

CB =
fY

r
, (A.3)

where r is the riskless rate. The corporate sector’s dividends, equal to net profit (consistent

with no growth), are given by a constant fraction of output:

Dt = hYt , (A.4)

where h denotes the profit margin. The market value of the corporate sector is the present

value of all expected future dividends, discounted at the cost of capital rS, which is equal to

r plus a risk premium that reflects the risk in εt:

M =
D

rS
, (A.5)

where D = hY is the expected dividend in each period. Combining equations (A.3) and

(A.5), the ratio of the carbon burden to market value is

CB

M
= f

1

h

rS
r
. (A.6)

This equation helps us understand how CB/M can be large even when f is small. There are

two reasons. First, the profit margin, h, is much smaller than one, making 1/h large. For
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example, in 2023, the net profit margin of the U.S. corporate sector was about 10%, resulting

in 1/h = 10.32 Second, the corporate cost of capital exceeds the riskless rate due to a risk

premium, so that rS/r > 1. For example, suppose r = 2%, which is the baseline value in

our empirical analysis, and rS = 6%, whose reciprocal, 16.7, is close to the historical average

price-earnings ratio. We then obtain rS/r = 3. Plugging these values into equation (A.6)

along with f = 4.7%, the ratio of annual emission damage to GDP calculated in Section 3.2,

we obtain CB/M = 1.41. That is, the carbon burden in this example is equal to 141% of

equity value, which is not far off our baseline estimate of 131% in Table 1.

A.1.2. Endogenizing the profit margin

In the above framework, production is not modeled explicitly and the corporate profit margin

is specified exogenously. In this section, we present a somewhat richer framework that models

production in a traditional way and endogenizes the profit margin. The model remains very

simple, with no growth, no frictions, and a single consumption good. As above, total output

is given by

Yt = Y + εt , (A.7)

but here we model expected output Y explicitly as

Y = KαL1−α , (A.8)

where K is capital, L is labor, and 0 < α < 1. Denoting the marginal products of capital and

labor by rK and w, respectively, we have Y = rKK+wL. The share of capital is rKK/Y = α

and the labor share is wL/Y = 1 − α. A by-product of production is an externality that

reduces the utility value of consumption by fraction f of expected output in each period:

Et = fY . (A.9)

Denoting the real riskless rate by r and recognizing that there is no growth, the present

value of all future externalities in perpetuity—the carbon burden—is simply equal to

CB =
fY

r
. (A.10)

Capital evolves as Kt+1 = (1 − δ)Kt + It, where δ is a positive depreciation rate and It
is investment. We assume It = δKt, so that Kt = K and It = I for all t (no growth).

The investment is made by the corporate sector from its gross capital revenue, rKK + εt.

Therefore, the owners of capital receive dividends Dt equal to rKK − I + εt, so that

Dt = (rK − δ)K + εt . (A.11)

32Aggregate U.S. after-tax corporate profits in 2023 are $2.673 trillion, according to Table 9 in the March
28, 2024 news release from the Bureau of Economic Analysis. Dividing this figure by U.S. GDP of $27.4
trillion yields 0.098, or approximately 10%.
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The expected dividend in each period is D = (rK − δ)K. The market value of the corporate

sector is the present value of all expected future dividends:

M =
D

rS
=
rK − δ
rS

K , (A.12)

where rS is the cost of capital, which differs from r by a risk premium reflecting the risk

embeded in εt. In a frictionless economy, a unit of capital can be costlessly transformed into

a unit of the consumption good. Capital stock adjusts so that Tobin’s Q is equal to 1 and

M = K. This condition and equation (A.12) pin down the marginal product of capital:

rK = δ + rS . (A.13)

Given equations (A.10), (A.12), and (A.13), the ratio of the carbon burden to market value

is
CB

M
=
fY

rK
=

Y

rKK

rK
r
f =

1

α

δ + rS
r

f . (A.14)

This equation helps us understand how CB/M can be large even when f is small. The first

term on the right-hand side of equation (A.14) is the inverse of the capital share of GDP, so

its value is close to 3. The second term, (δ + rS)/r, is also always greater than 1, because

δ > 0 (positive depreciation) and rS > r (positive risk premium). Using the same values

of rS = 6% and r = 2% as above and choosing a round value of δ = 10%, the value of the

second term is 8, and equation (A.14) then implies CB/M = 24f . When again f = 4.7%,

we have CB/M = 113%. If we increase δ slightly to 12%, we obtain CB/M = 127%, which

is close to our baseline estimated value of 131%.

Even though this model is richer than the simpler framework, it remains too simple for

full calibration. A proper calibration would require adding realistic features such as economic

growth, gradual decarbonization, debt financing, and frictions. In a model with all these

features, the intuition would be far less transparent. In contrast, our equation (A.14) makes

it clear that CB/M is much larger than f , for three reasons.

First, the capital share of GDP, α, is smaller than 1 (historically about one third). M is

the market value of capital, whereas the externality underlying the CB is proportional to all

of GDP, including the labor component. The lower the capital share, the larger the CB/M

ratio, holding f constant.

Second, δ > 0. Maintaining the level of output requires investment to offset the depreci-

ation of capital. Investment is financed by capital owners from gross capital revenue, which

reduces dividends (see equation (A.11)), which in turn reduces the dividends’ present value,

M . In other words, keeping the expected level of output (and externality) constant requires

ongoing dividend reductions, which reduce M relative to CB. The larger the depreciation

rate, the larger the CB/M ratio, holding f constant.

Third, the corporate cost of capital exceeds the riskless rate due to a risk premium, so

that rS/r > 1. The larger this ratio, the larger the CB/M value, holding f constant.
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Overall, the insights we obtain here are similar to those presented in the simpler frame-

work. The first two reasons presented above are related to the corporate profit margin,

whose expected value we endogenize here as D/Y = rSK/Y = αrS/(δ + rS).

A.2. Carbon emissions data

We analyze emissions at three levels: scope 1, 2, and 3. In some cases, we also sum across

scopes, computing scope 1+2 and scope 1+2+3. We recognize that emissions are double-

counted when we sum scope 1+2 or 1+2+3 emissions across firms.

Our emissions data come primarily from MSCI. The forecast data are described in Section

4.1. The historical emissions data start in 2008. MSCI reports emissions by fiscal year. We

assign fiscal years ending between January 1 and May 31 to the previous calendar year. For

example, when a firm’s fiscal year ends in February 2020, we take the calendar year to be

2019, but when the fiscal year ends in November 2020, we take the year to be 2020.

We also use historical emissions data from Trucost, which we obtain from WRDS. We

use Trucost data from years 2016 to 2022 because data coverage before 2016 is low. Like

MSCI, Trucost reports emissions by fiscal year. We assign them to calendar years in the

same way. We also obtain several firm-level variables from CRSP and Compustat. We begin

with the set of U.S. firms in the intersection of the MSCI and CRSP/Compustat databases,

which we merge by CUSIP, and then merge in Trucost by GVKEY.

There are some extreme outliers in firms’ fraction changes in emissions. Some of these

appear to be data mistakes. To deal with these outliers, we apply a few filters to both the

historical MSCI and Trucost data, for all three emission scopes (scope 1, 1+2, 1+2+3):

1. If the level of emissions and emissions/revenue both increase (decrease) by more than

9x over the previous year and then both decrease (increase) by more than 9x over the

following year, then set the year’s emissions (and all variables depending on it) to miss-

ing. This filter catches large spikes or troughs in emissions that are not accompanied

by a spike or trough in revenues. We suspect these are data mistakes. The number 9

is chosen to catch decimal-place mistakes, which would change emissions by a factor

of 10. In the MSCI data, this filter sets 15 (6) [24] observations to missing for scope

1 (1+2) [1+2+3]. In the Trucost data, this filter sets 7 (7) [7] observations to missing

for scope 1 (1+2) [1+2+3].

2. If the level of emissions is more than 100x larger (smaller) than in the previous year, and

if revenues are less than 10x larger (smaller) than the previous year, then set emissions

in this year (and all variables depending on it) to missing. This filter catches large,

non-reverting changes in emissions that are not accompanied by a similar change in

revenues. In the MSCI data, this filter sets 53 (13) [25] observations to missing for scope
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1 (1+2) [1+2+3]. In the Trucost data, this filter sets 41 (6) [26] observations to missing

for scope 1 (1+2) [1+2+3]. One reason why the numbers of missing observations are

higher for MSCI than Trucost is that we use more years of data from MSCI than

Trucost.33

33We correct one other data mistake in Trucost. We replace the Trucost 2016 Scope 1 emissions for Exxon
with the corresponding value from MSCI. In Trucost, scope 1 emissions of Exxon spike roughly threefold in
2016. When asked about this spike, S&P Global, the owners of Trucost data, said they plan to rectify it
future versions of their data.
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A.3. VAR-based emission forecasts

Our primary source of firm-level emission forecasts, used in Sections 4 to 6, is MSCI. In this

section, we construct an alternative secondary source that does not use data on future emis-

sions. Instead, we build a simple econometric model that uses data on historical emissions

to forecast each firm’s future emissions into perpetuity.

A.3.1. VAR methodology

We use a vector autoregression (VAR) to forecast firms’ shares of aggregate emissions. Our

forecast of each firm’s future emissions is the product of the aggregate emissions forecast

(from Section 3.1) and the firm’s forecasted share (from our VAR model). We model firms’

shares of aggregate emissions to ensure that our forecasts of firm-level emissions add up to

a constant fraction of the aggregate forecasts, for consistency.

Let θn,t denote firm n’s emissions in year t as a fraction of aggregate emissions. Let Yn,t
denote the 1 ×K vector containing emission-relevant firm-level variables observable at the

end of year t, with K = 5. The first element of Yn,t is log(θn,t), the main variable of interest.

The remaining elements of Yn,t are the same four variables that we related to emission growth

forecasts in Table 7: book-to-market, investment, climate score, and revenue growth. We

estimate the following first-order VAR, pooled across firms and years:

Yn,t = c+ Yn,t−1A+ un,t , (A.15)

where A is a K × K matrix of coefficients and c is a 1 × K vector of constants. After

estimating A and c, we obtain the forecast of Yn,t+τ as of time t as

E[Yn,t+τ |Yn,t; c, A] = c

(
τ−1∑
s=0

As

)
+ Yn,tA

τ . (A.16)

We then isolate the element of E[Yn,t+τ |Yn,t; c, A] corresponding to E[log(θn,t+τ )|Yn,t; c, A],

which is the firm’s forecasted log share in year t+τ . Let C̄t+τ denote the aggregate emissions

forecasted for year t+ τ . Then, the emissions forecast for firm n in year t+ τ is

E[Cn,t+τ |Yn,t; c, A] = C̄t+τ E[θn,t+τ |Yn,t; c, A] . (A.17)

We substitute these forecasts into equation (1), along with the EPA’s SCC forecasts, to

compute firms’ carbon burdens as of year-end 2022.34

One slight complication is that the VAR delivers a forecast of log(θn,t+τ ), not a forecast

of θn,t+τ , which we need in equation (A.17). To go from the former to the latter, we need

34In previous sections, we compute carbon burdens as of year-end 2023. We switch to year-end 2022 when
using the VAR approach because our historical emissions data end in 2022. Carbon burdens from the VAR
approach include emissions forecasted from year 2023 into perpetuity.
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to make an adjustment for Jensen’s inequality. If the VAR’s error terms un,t from equation

(A.15) are normally distributed, then the properties of the lognormal distribution imply

E[θn,t+τ |Yn,t] = exp

(
E[log(θn,t+τ )|Yn,t] +

1

2
Var(log(θn,t+τ )|Yn,t)

)
. (A.18)

The term E[log(θn,t+τ )|Yn,t] is easily extracted from the VAR, as explained above. If the

error terms are i.i.d., then Var(log(θn,t+τ )|Yn,t) is a constant for each τ . Therefore, applying

the Jensen’s inequality adjustment amounts to adding a τ -specific constant to log shares, or,

equivalently, multiplying forecasted non-log shares by a τ -specific constant.

A simple solution to this complication emerges as a byproduct of another fix. We find it

desirable for firms’ forecasted aggregate emissions shares to be in line with their historical

values, but that feature need not obtain empirically without further adjustments. To deliver

this feature, we scale the sum of forecasted shares across firms so that it equals the sum

of historical shares. Specifically, let S(τ) denote the sum of E[θn,t+τ |Yn,t] across firms n.

For each τ , we replace E[θn,t+τ |Yn,t] with E[θn,t+τ |Yn,t]× S(0)/S(τ), which forces the sum of

forecasted shares to match its value in t = 2022, namely, S(0).35 This adjustment requires

multiplying shares by a τ -specific constant, similar to the adjustment for Jensen’s inequality.

Therefore, after rescaling shares in this way, we find the same forecasted shares whether or

not we apply the Jensen’s inequality adjustment in the previous step.

When estimating the VAR, we exclude observations in each year’s lowest quartile of

emissions, because those observations are the most likely to exhibit extreme, and likely

erroneous, year-to-year changes in emissions. However, we apply the estimated VAR model

to estimate carbon burdens for all firms, including those in the lowest quartile. We conduct

the VAR estimation for scope 1 emissions only, for simplicity.

A.3.2. VAR-based carbon burden estimates

Table A.1 reports the slope estimates for the VAR equation in which the dependent variable

is log(θn,t). All five independent variables are measured at the end of year t − 1. The four

columns correspond to four different samples: two using historical emissions data from MSCI

(columns 1 and 3) and two using data from Trucost (columns 2 and 4). Columns 1 and 2

use as much data as possible from each database (starting in 2008 for MSCI and 2016 for

Trucost). Columns 3 and 4 use observations present in both databases.

35This value is about 0.4. As noted earlier, direct (scope 1) corporate emissions account for less than half
of total emissions.
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Table A.1

Forecasting firms’ emissions in historical data

This table shows estimates from panel regressions with dependent variable equal to the firm’s log
scope 1 emissions share in year t. All regressors are measured at the end of year t − 1. The first
two columns use as much data as possible from each database (starting in 2008 for MSCI and
2016 for Trucost). Columns 3 and 4 use observations present in both databases. All regressions
exclude observations in the first quartile of emissions. Specifically, column 1 excludes observations
in the first quartile of MSCI emissions; column 2 excludes observations in the first quartile of
Trucost emissions; and columns 3 and 4 exclude observations in the first quartile of either MSCI
or Trucost. In parentheses we show t-statistics double-clustered by firm and year.

All Observations Overlapping Observations

MSCI Trucost MSCI Trucost
Log(Emissions Share) 0.990 0.987 0.988 0.983

(342.58) (852.61) (293.48) (427.40)

B/M -0.030 -0.021 -0.037 -0.025
(-4.10) (-1.49) (-3.65) (-1.68)

Investment 0.154 0.144 0.132 0.153
(4.58) (5.46) (3.76) (3.80)

Climate Score -0.027 -0.077 -0.043 -0.083
(-2.10) (-5.14) (-2.63) (-4.84)

Revenue Growth -0.049 -0.102 -0.072 -0.138
(-1.11) (-2.55) (-1.10) (-2.03)

Constant -0.099 -0.165 -0.119 -0.195
(-2.82) (-7.47) (-3.68) (-5.45)

Observations 12150 9820 7291 7291
Adjusted R2 0.970 0.944 0.971 0.950
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Table A.1 shows that the strongest predictor of log(θn,t) is its own lag, log(θn,t−1), with

the slope of almost 1, indicating strong persistence in emissions. Investment also enters

consistently with a positive slope, perhaps because firms that invest more subsequently grow

more, thereby generating larger future emissions. This finding is present also in Table 7, to

a weaker degree. Also similar to Table 7 is the consistently negative slope on the climate

score. The estimated slopes on book-to-market and revenue growth are also negative but

not always significant. The R-squareds are close to one, especially due to the inclusion of

lagged emissions. The results are fairly similar across the four columns.

VAR-based carbon burden estimates differ greatly across firms, even more so than their

counterparts based on MSCI’s emission forecasts. This fact is apparent from the cross-

sectional distributions of carbon burdens scaled by market cap, which we plot in Figures

A.1 and A.2, analogous to Figures 3 and 4. Moreover, the VAR-based estimates tend to be

larger. For example, using the 2% discount rate and MSCI data, 48% of firms have carbon

burdens exceeding their market caps. The fraction is even larger, 62%, when we estimate the

VAR based on Trucost data. In both datasets, the firms whose carbon burdens exceed their

market caps represent more than 14% of total market cap—somewhat higher than the 10%

observed earlier in Figure 4 based on MSCI forecasts. Even under the higher 2.5% discount

rate, VAR-based carbon burdens exceed the market cap for 28% of firms based on MSCI

historical emissions and for 39% of firms based on Trucost emissions, representing more than

7% of total market cap in both cases.
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Figure A.1. Distribution of carbon burden / market cap from the VAR
approach with MSCI data. This figure shows CDFs of carbon burden / market
cap, computed from the VAR approach with historical scope 1 emissions data from
MSCI. Carbon burden and market cap are both measured as of the end of 2022. The
CDFs weight each firm equally.

The table below shows the fraction of companies with a Carbon Burden to Market Cap

ratio greater than 1.

All years Through 2050
Discount Rate (Panel A) (Panel B)

2.5% 0.282 0.070
2.0% 0.482 0.097
1.5% 0.736 0.129
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Figure A.2. Distribution of carbon burden / market cap from the VAR
approach with Trucost data. This figure is the same as Figure A.1 but shows
results based on historical Trucost emissions data.

The table below shows the fraction of companies with a Carbon Burden to Market Cap

ratio greater than 1.

All years Through 2050
Discount Rate (Panel A) (Panel B)

2.5% 0.391 0.080
2.0% 0.623 0.115
1.5% 0.813 0.155
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Figure A.3. Value-weighted distribution of carbon burden / market cap
from the VAR approach. This figure shows cumulative distribution functions
(CDFs) of carbon burden / market cap, computed in the cross section of firms in
2022. We use carbon burden computed using the VAR approach. The VAR model is
estimated using all years’ historical emissions from each database. The CDFs weight
each dollar of market cap equally by plotting the fraction of aggregate market cap
belonging to firms with carbon burden / market cap below the x-axis value.

The table below shows the fraction of market cap belonging to companies with a Carbon

Burden to Market Cap ratio greater than 1.

All future years Through 2050
MSCI Trucost MSCI Trucost

Discount Rate (Panel A) (Panel B) (Panel C) (Panel D)
2.5% 0.073 0.074 0.032 0.035
2.0% 0.142 0.144 0.055 0.050
1.5% 0.215 0.237 0.087 0.079
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The previous paragraph suggests that the VAR-based carbon burdens estimated based

on Trucost data tend to be larger than those estimated based on MSCI data. In Panel A

of Figure A.4, we conduct this comparison more closely by showing a scatterplot of firms’

Trucost-based VAR estimates of carbon burdens against MSCI-based VAR estimates. All

of these estimates are computed from emissions in all future years and scaled by the firm’s

market cap. The scatterplot confirms that for most firms, Trucost-based VAR estimates

are larger, but there are also many firms for which the opposite is true. The scatterplot is

concentrated near the 45-degree line, indicating a fair amount of resemblance between the

carbon burdens computed based on the two different data sources.
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Figure A.4. Comparing carbon-burden estimates. This figure shows scatter plots of
firms’ ratios of carbon burden to market cap, comparing estimates from one method to another.
In Panel A, both dimensions use VAR-based forecasts, but the y-axis is based on historical
Trucost data and the x-axis is based on historical MSCI data. Panel A uses the overlapping
sample of MSCI and Trucost data. In Panel B, the y-axis uses MSCI forecasts, and the x-axis
uses VAR-based forecasts based on historical MSCI data. We use carbon burdens from all
future years, with ρ = 2%. All variables are in logs.

Motivated by the deviations from the 45-degree line, we analyze the discrepancies between

MSCI’s and Trucost’s historical emissions data for the same firm in the same year. We

conduct the analysis in Appendix A.4.

How do VAR-based carbon burdens compare to those computed based on MSCI forecasts

in Section 5? In Panel B of Figure A.4, we produce a scatterplot analogous to that in Panel

A, except that on the y-axis, we replace Trucost-based VAR estimates with estimates based
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on MSCI forecasts. The plot shows a high degree of similarity between the two estimates for

the highest emitters, but a low degree of similarity for the lowest emitters. For most firms,

especially for low emitters, carbon burden estimates based on MSCI forecasts are lower than

VAR-based estimates. There are at least two reasons. First, MSCI’s forecasts reflect firms’

forward-looking decarbonization targets (see Section 4.1), which are often more ambitious

than the emission reductions that can be inferred from historical data. Second, our VAR

approach implies that in an infinitely distant future, all firms’ shares of aggregate carbon

emissions will be the same. This implication is not unreasonable, given the large amount

of long-run creative destruction in the economy. One corollary is that smaller emitters’

emission shares are forecasted to grow faster, boosting such emitters’ VAR-based carbon

burden estimates. As noted earlier, we prioritize emission forecasts from MSCI and use

VAR-based forecasts only for comparison.

Recall from Figure 8 that based on MSCI emission forecasts, the top 30 emitters account

for essentially all of the expected aggregate decline in emissions by 2050. Figure A.5 shows

that this result holds up, and is even stronger, based on VAR forecasts. According to our

VAR estimates based on MSCI data, aggregate corporate emissions are expected to decline

by 0.3 billion metric tons between 2022 and 2050. The emissions of the top 30 emitters are

expected to decline by 0.4 billion tons over the same period, whereas those of the remaining

firms are expected to increase by 0.1 billion tons. These results support the conclusion from

Figure 8 that all of the decarbonization of the U.S. corporate sector in the coming decades

is expected to come from the 30 largest emitters.
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Figure A.5. Past and future emissions from VAR forecasts. This figure is the same as
Figure 8, except future emissions are from VAR-based forecasts. The VAR is estimated using
historical MSCI scope 1 data. The sample includes firms for which we can forecast emissions
after 2022 using the VAR model.
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A.4. Emission data discrepancies: MSCI vs. Trucost

In this section, we compare the historical emissions data from the two sources that we use in

our firm-level analysis, MSCI and Trucost. If firms’ emissions were directly observable, the

data from the two sources would presumably be identical. However, emissions are not easy

to measure. Some firms disclose their emissions, and both MSCI and Trucost collect such

data from publicly available sources such as firms’ annual reports, sustainability reports, and

regulatory filings. However, many firms do not disclose their emissions, in part because such

disclosure is not mandatory as of this writing.36 Scope 3 emissions are particularly rarely

disclosed. Moreover, even emissions that are disclosed are not always credible. Both MSCI

and Trucost engage with firms to clarify disclosure-related information. Both also use their

own proprietary models to estimate the emissions that are not disclosed as well as emissions

that they do not view as credible. The various differences in the data collection processes

translate into differences in the emissions data from the two sources.

Panel A of Figure A.4, discussed in Section A.3.2, reveals some differences between MSCI-

based and Trucost-based VAR estimates of carbon burdens. Nontrivial differences emerge

also between the MSCI- and Trucost-based VAR estimates in columns 3 and 4 of Table A.1,

which use the same firm-year samples. In this section, we go deeper, focusing more directly

on the differences between the emissions data from MSCI and Trucost, which we refer to as

“discrepancies.” We summarize the basic properties of these discrepancies, relate them to

the levels of emissions and disclosure, and quantify their economic significance. Our bottom

line is that these discrepancies are substantial.

We first compute simple correlations between the emission levels from MSCI and Trucost,

using firm-by-year panel data from 2016 to 2022. Panel A of Table A.2 shows that these

correlations are high, ranging from 81% for scope 3 emissions to 98.2% for scope 1 emissions.

While these high correlations might seem reassuring, they obscure some large discrepancies

given the enormous variation in emissions across firms. In a cross section in which emissions

differ by several orders of magnitude, the correlation between MSCI’s and Trucost’s numbers

can be high even if these numbers differ by a factor of, say, three.

36Currently, emission disclosure is mandatory only at the facility level through the EPA’s Greenhouse Gas
Reporting Program, and only for sufficiently large emitters.
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Table A.2: Measurement discrepancies in levels and growth rates

Panel A shows the correlation between MSCI and Trucost emissions levels, using panel data from
2016 to 2022. Panel B shows the cross-sectional percentiles of firms’ ratios of (i) the absolute
difference between MSCI and Trucost emissions to (ii) the average of MSCI and Trucost emissions,
using 2022 data only. Panel C shows the cross-sectional percentiles of the absolute difference
between MSCI and Trucost emissions growth rates. Growth rates are computed as the fraction
change in emissions from 2021 to 2022. We compute Trucost scope 3 emissions as the sum of scope
3 upstream and scope 3 downstream.

Scope 1 Scope 2 Scope 3

Panel A: Correlations
0.982 0.916 0.809

Panel B: Percentiles of discrepancies in levels
10th 0.000 0.000 0.070
25th 0.004 0.001 0.235
50th 0.317 0.337 0.710
75th 1.019 0.890 1.611
90th 1.544 1.488 1.963

Panel C: Percentiles of discrepancies in growth rates
10th 0.000 0.000 0.038
25th 0.013 0.022 0.136
50th 0.110 0.206 0.369
75th 0.379 0.496 1.127
90th 0.858 0.998 6.749
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Let Cn,t,s,MSCI and Cn,t,s,T rucost denote scope s carbon emissions of firm n in year t from

the two data sources. We measure the MSCI-Trucost discrepancy in levels by computing

Ln,t,s =
| Cn,t,s,MSCI − Cn,t,s,T rucost |

(Cn,t,s,MSCI + Cn,t,s,T rucost) /2
(A.19)

for each firm, year, and scope. Panel B of Table A.2 shows the cross-sectional percentiles of

Ln,t,s, for t = 2022 and s ∈ {1, 2, 3}. These percentiles show large heterogeneity across firms.

First, consider scope 1 and 2 emissions. The 25th percentiles of Ln,2022,1 and Ln,2022,2 are

both smaller than 0.005, indicating that for more than a quarter of firms, the discrepancies

are negligible. These are mostly firms that disclose their emissions and whose disclosures

are accepted at face value by both MSCI and Trucost. The medians of Ln,2022,1 and Ln,2022,2
indicate that, for a typical firm, the difference between MSCI’s and Trucost’s assessments

of the firm’s emissions is about one third as large as the firm’s average emission level. The

90th percentiles of Ln,2022,1 and Ln,2022,2 are both about 1.5, indicating that for about 10%

of firms, the discrepancy is 1.5 times larger than the emission level itself. The discrepancies

thus range from tiny to huge.

For scope 3 emissions, the discrepancies are larger. For example, the 90th percentile

of Ln,2022,3, 1.963, implies that for 10% of firms, the MSCI-Trucost discrepancy is almost

twice as large as the emission level itself. This is not surprising, as scope 3 emissions are

notoriously difficult to measure. They are rarely disclosed, so both MSCI and Trucost rely

on their own internal models to estimate firms’ scope 3 emissions. Our results show that

those models produce meaningfully different estimates.

A natural question is whether the MSCI-Trucost discrepancies have shrunk over time as

a result of the growing amount of emission disclosure and its rising quality. Figure A.6 plots

the time series of the cross-sectional distributions of Ln,t,s for all three emission scopes. The

plots reveal clear but modest reductions in the level of the discrepancies over time. Even at

the end of our sample, the discrepancies remain substantial.
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Figure A.6. MSCI-Trucost discrepancies: The time series. This figure plots
cross-sectional percentiles each year of the fraction discrepancy between Trucost and
MSCI for each scope. From bottom to top, the lines represent the 10th, 25th, 50th,
75th, and 90th percentiles of the fraction discrepancy. For a given firm-year obser-
vation, the fraction discrepancy equals the absolute difference between Trucost emis-
sions and MSCI emissions, divided by the average of Trucost and MSCI emissions.
Mechanically, the fraction discrepancy cannot exceed 2.
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Having examined discrepancies in the levels of emissions, we turn to discrepancies in the

growth rates. We measure the MSCI-Trucost discrepancy in growth rates by computing

Gn,t,s =

∣∣∣∣ Cn,t,s,MSCI − Cn,t−1,s,MSCI

Cn,t−1,s,MSCI

− Cn,t,s,T rucost − Cn,t−1,s,T rucost

Cn,t−1,s,T rucost

∣∣∣∣ (A.20)

for each firm, year, and scope. Panel C of Table A.2 shows the cross-sectional percentiles of

Gn,t,s, for t = 2022 and s ∈ {1, 2, 3}. The patterns are similar to those in Panel B, but the

magnitudes are mostly smaller, due to persistence in the levels of the discrepancies.

The 10th percentiles of Gn,2022,1 and Gn,2022,2 both round to 0.000, indicating no dis-

crepancies in scope 1 or 2 emission growth rates for at least 10% of firms. The medians of

Gn,2022,1 and Gn,2022,2 are 0.11 and 0.21, respectively, pointing to nontrivial discrepancies for

a typical firm. The 90th percentiles are almost 1, indicating discrepancies exceeding 100%

for almost 10% of firms. These are large discrepancies; for example, MSCI might be saying

that a given firm’s emissions grew by 50% between 2021 and 2022, whereas Trucost is saying

that the same firm’s emissions fell by 50%. Just as in the levels, discrepancies in the growth

rates range from tiny to huge, and they are even larger for scope 3 emissions.

Which firms exhibit the largest MSCI-Trucost discrepancies? We consider two firm char-

acteristics on a priori grounds. First, we hypothesize that the discrepancies could be larger

for firms with smaller emissions. Small emitters are less likely to disclose their emissions as

well as less likely to be scrutinized by activists or data providers, because whether a firm

emits little or very little does not make much difference to society. Second, it would make

sense for the discrepancies to be larger for firms that do not disclose emissions, regardless of

the emission level. For such firms, MSCI and Trucost estimate emissions based on their own

in-house models, which could differ in meaningful ways.

Figure A.7 examines the cross-sectional relations between both characteristics and Ln,t,s,

our discrepancy measure from equation (A.19). Each panel shows a binscatter plot of Ln,t,s
against the log of firm n’s emissions, which we take to be (Cn,t,s,MSCI + Cn,t,s,T rucost)/2, at

the end of our sample (t = 2022). There are six panels; the three rows correspond to three

different scopes, s ∈ {1, 2, 3}, and the two columns represent different sets of firms, either

all firms or the subset that disclose their own emissions. To classify a firm as disclosing or

not, we follow Aswani, Raghunandan, and Rajgopal (2024). If the Trucost variable “Scope s

disclosure” contains the string “estimate” (not case sensitive), then we assume the emissions

are estimated by Trucost; otherwise we view them as disclosed by the firm.37

Figure A.7 shows clear relations between Ln,t,s and both characteristics. First, the es-

timated slope is negative in all six panels, indicating that the discrepancies are larger for

smaller emitters. This effect is strong; for example, in Panel A, the average value of Ln,t,s
for the largest 5% of emitters is less than 0.1, but for more than two-thirds of emitters,

37We are able to replicate summary statistics from Aswani et al. (2024) for this variable fairly closely. Our
scope 1 (3) data represent Trucost estimates in 71% (93%) of firm-year observations.
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the average Ln,t,s exceeds 0.5. Second, for scope 1 and 2 emissions, the levels of Ln,t,s are

substantially larger in the first column of panels, indicating that the discrepancies are larger

for firms that do not disclose their emissions. We do not observe the latter result for scope

3 emissions, perhaps because those emissions are disclosed by very few firms (only 68, com-

pared to more than 1,000 for scope 1 and 2). For all scopes, these are still surprisingly

large discrepancies even among firms that do disclose. Overall, Figure A.7 shows that the

discrepancies are larger for firms that emit little and firms that do not disclose emissions.
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Figure A.7. Discrepancies between Trucost and MSCI. In these binscatter plots,
the x-axis denotes the log of the firm’s emissions (equal to the average of MSCI and Trucost
emissions), and the y-axis denotes the firm’s ratio of (i) the absolute difference between MSCI
and Trucost emissions to (ii) the average of MSCI and Trucost emissions. Mechanically, that
ratio cannot exceed 2. Data are from 2022. A firm is considered to be disclosing if the Trucost
variable “Scope X disclosure,” for X = 1, 2, or 3, does not contain the string “estimate.” Each
panel shows the number of firms with non-missing data in both MSCI and Trucost.
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Finally, we analyze the economic significance of the emissions-reporting discrepancies

between MSCI and Trucost. We consider a hypothetical carbon tax and translate the dis-

crepancies into differences in carbon taxes. We use data from year 2022. We assume a carbon

tax rate of $200 per ton, which equals the EPA’s SCC in 2022 with a 2% discount rate.38

First, we calculate how much each firm would pay in carbon tax if its emissions were assessed

by MSCI; we denote this dollar figure by CTMSCI . Note that CTMSCI is simply equal to

$200 times the firm’s 2022 MSCI emissions in tons. We then calculate an analogous figure

based on Trucost emissions, CTTrucost, and report the absolute difference scaled by the firm’s

2022 operating profit: |CTMSCI −CTTrucost|/Profit. Table A.3 reports selected properties of

the cross-sectional distribution of this ratio within four different groups of firms, which we

form by ranking firms on their MSCI emission levels.

Panel A of Table A.3 reports the ratios for scope 1 emissions. The MSCI-Trucost discrep-

ancy is negligible for the median firm, but it is substantial for some firms. For example, for

the top 5% of emitters, the 95th percentile of the ratio is 56.75%. This value indicates that

5% of the largest emitters have discrepancies larger than 56.75% of profits. The discrepancies

therefore matter a lot for firms that would be paying the most in carbon tax.

Panels B and C of Table A.3 report the ratios for scope 1+2 and scope 1+2+3 emissions,

respectively. The differences between Panels A and B are relatively small because scope 2

emissions are small relative to scope 1 emissions for most firms. However, Panel C reports

much larger values compared to Panels A and B. For example, based on the means, the ratio

of the MSCI-Trucost discrepancies to profits ranges from 52.87% to 165.68% across the four

groups of firms. The ratio’s 95th percentiles are all in excess of 174% of profits.

38To see the results under a different carbon tax rate, the reader can simply scale our results linearly. For
example, for a tax rate of $100 per ton, all numbers in Table A.3 should be multiplied by half (= 100/200).
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Table A.3: Implications of measurement discrepancies for carbon taxes

This table considers a hypothetical carbon tax and shows how emissions-reporting discrepancies
between MSCI and Trucost would translate to discrepancies in firms’ carbon taxes. We use data
from 2022 only. We consider a carbon tax rate of $200 per ton, which equals the EPA’s social
cost of carbon in 2022 with a 2% discount rate. We compute the tax discrepancy as the assumed
$200 carbon tax rate (in dollars per ton) times the absolute value of the difference in emissions
(in tons) between MSCI and Trucost. We then compute each firm’s ratio of the tax discrepancy
to operating profit (i.e., revenues minus the sum of COGS, SG&A, and interest expense). The
table shows means and percentiles of this ratio, expressed as a percent, across firms within four
different groups. The groups, noted in the column headers, are formed by ranking firms based on
their MSCI emissions levels. The analysis uses data on 1836 firms for scope 1 and scope 1+2 and
635 firms for scope 1+2+3.

Emissions Level

Bottom Next Next Top
50% 25% 20% 5%

Panel A: Scope 1
Mean 1.00 2.81 9.35 7.26
50th pctile 0.06 0.18 0.04 0.06
75th pctile 0.93 1.40 1.40 0.56
95th pctile 4.20 13.77 28.59 56.75

Panel B: Scope 1+2
Mean 2.26 4.68 9.60 12.18
50th pctile 0.30 0.37 0.15 0.07
75th pctile 1.97 3.00 2.19 0.80
95th pctile 8.77 16.61 31.76 36.24

Panel C: Scope 1+2+3
Mean 165.68 52.87 78.18 54.90
50th pctile 11.06 17.52 25.34 34.15
75th pctile 39.57 44.41 85.90 92.60
95th pctile 463.90 233.20 314.48 174.30
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To summarize, we find high correlations between the data from the two providers, es-

pecially for direct emissions, similar to Busch, Johnson, and Pioch (2022). However, we

show that these correlations mask large discrepancies between the data providers. The cor-

relations are high in spite of these discrepancies because emission levels range widely across

firms. The discrepancies are economically significant, as they translate into meaningful dif-

ferences in hypothetical carbon taxes. We also find that the discrepancies tend to be larger

for smaller emitters and for firms that do not disclose their emissions. Firms’ emissions are

clearly difficult to measure. The substantial divergence between the emissions data from

these two leading providers is reminiscent of the divergence of ESG ratings documented by

Berg, Koelbel, and Rigobon (2022). Given the growing interest in firm-level emissions data,

it seems important to understand the data’s limitations.

Finally, note that the measurement problem is even bigger than our results suggest. Even

if MSCI and Trucost completely agree on the magnitude of a given firm’s emissions, that

magnitude need not perfectly match reality. Agreement between MSCI and Trucost often

occurs when the firm discloses emissions and those disclosed values are simply accepted by

both data providers. However, this acceptance masks the difficulties that the firm itself faces

in estimating its own emissions. The fact that neither MSCI nor Trucost challenge the firm’s

own emission estimates does not necessarily mean that those estimates are precise.
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A.5. Additional tables and figures

Table A.4: Share of current emissions and carbon burden by industry

We work with firms at the end of 2023 for which we can measure carbon burden from MSCI

forecast data, and which can be assigned to a Fama-French-12 industry. In the “Present”

column, we sum year-2023 emissions (measured in tons, taken from MSCI forecasts) within

each Fama-French-12 industry and express that industry’s sum as a fraction of the sum

across all industries. In the “Future” column, we report analogous fractions after replacing

current emissions with carbon burdens, computed using MSCI forecasts for all future years.

The shares reported in the Scope 1+2 and Scope 1+2+3 columns (but not Scope 1) may to

some extent be affected by the double-counting of emissions across firms.

Scope 1 Scope 1+2 Scope 1+2+3
Industry Present Future Present Future Present Future
1 Nondurables 0.019 0.022 0.024 0.027 0.029 0.024
2 Durables 0.002 0.002 0.006 0.006 0.033 0.031
3 Manufacturing 0.066 0.072 0.082 0.088 0.106 0.107
4 Energy 0.196 0.202 0.185 0.190 0.254 0.285
5 Chemicals 0.054 0.055 0.061 0.061 0.027 0.026
6 Business Equipment 0.006 0.005 0.019 0.017 0.038 0.028
7 Telecom 0.002 0.001 0.008 0.007 0.006 0.005
8 Utilities 0.414 0.369 0.362 0.323 0.067 0.056
9 Shops 0.032 0.043 0.045 0.057 0.073 0.079
10 Health 0.004 0.004 0.009 0.010 0.017 0.015
11 Money 0.002 0.003 0.010 0.010 0.277 0.282
12 Other 0.202 0.222 0.188 0.204 0.073 0.063
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Table A.5: Fraction of firms whose carbon burden exceeds their market cap

Corresponding to Figure 3, this table shows the fraction of companies whose ratio of carbon

burden to market cap is greater than 1.

Scope 1 Scope 1+2+3

All future years Through 2050 All future years Through 2050
Discount Rate (Panel A) (Panel B) (Panel C) (Panel D)

2.5% 0.102 0.060 0.655 0.443
2.0% 0.132 0.078 0.769 0.557
1.5% 0.183 0.105 0.873 0.664
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Table A.6: Fraction of aggregate market cap belonging to firms whose

carbon burden exceeds their market cap

Corresponding to Figure 4, this table shows the fraction of aggregate market cap that belongs

to companies whose ratio of carbon burden to market cap is greater than 1.

Scope 1 Scope 1+2+3

All future years Through 2050 All future years Through 2050
Discount Rate (Panel A) (Panel B) (Panel C) (Panel D)

2.5% 0.056 0.028 0.366 0.236
2.0% 0.095 0.036 0.496 0.313
1.5% 0.109 0.065 0.624 0.390
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Table A.7: Version of Table 7 dropping observations with 1% growth rate

The sample for scope 1 (1+2) includes firms for which the MSCI scope 1 (1 or 2) forecasted

growth rate is not equal to 0.0100, after rounding.

(1) (2) (3) (4)
Log(Emissions) -1.368 -1.812 -1.524 -2.072

(-3.95) (-4.75) (-2.74) (-4.11)

B/M 1.717 1.780 1.997 1.767
(0.73) (0.93) (0.76) (0.78)

Investment 11.167 10.518 11.241 10.360
(1.47) (1.47) (1.55) (1.54)

Climate Score -16.762 -16.864 -18.258 -18.119
(-5.08) (-5.14) (-5.37) (-5.06)

Revenue Growth 5.390 8.029 4.168 6.677
(2.37) (1.05) (1.62) (0.80)

Constant -0.010 -0.004 -0.019 -0.011
(-2.07) (-0.72) (-2.82) (-1.70)

Observations 612 597 612 597
Adjusted R2 0.024 0.022 0.029 0.028
Scopes 1 1+2 1 1+2
Industry FE Y Y
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Figure A.8. Version of Figure 7 dropping observations with 1% growth
rate. The sample for scope 1 (1+2+3) includes firms for which the MSCI scope 1 (1,
2, or 3) forecasted growth rate is not equal to 0.0100, after rounding. Panel A (B)
includes 696 (353) firms in total.
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Table A.8

Industry effects in ICCs

This table repeats the regressions from Table 9 while isolating either cross-industry variation
(Panel A) or within-industry variation (Panel B). We use the Fama-French 49 industry
classification. In Panel A, all variables are collapsed to the industry level using market-cap-
weighted averages. Panel B adds industry fixed effects to the firm-level regressions from
Table 9. All other details are the same as in Table 9.

(1) (2) (3) (4) (5) (6)
Panel A: Variation across industries
CB/M 5.572 20.726 3.220 13.348

(3.98) (3.04) (2.48) (2.02)

C/M 67.498 -214.556 37.580 -139.981
(3.34) (-2.27) (2.10) (-1.57)

Market beta 0.152 0.180 0.085
(1.40) (1.66) (0.74)

log(B/M) 0.007 0.008 0.008
(1.17) (1.23) (1.28)

log(M) -0.001 0.000 -0.005
(-0.14) (0.04) (-0.56)

Constant 0.059 0.060 0.060 -0.079 -0.123 0.030
(12.39) (11.97) (13.11) (-0.41) (-0.63) (0.15)

Observations 49 49 49 49 49 49
Adjusted R2 0.236 0.174 0.298 0.467 0.448 0.484

Panel B: Variation within industries
CB/M 0.789 0.987 0.451 0.637

(4.18) (1.71) (2.55) (1.56)

C/M 12.102 -3.503 6.802 -3.306
(3.22) (-0.35) (2.32) (-0.58)

Market beta 0.036 0.037 0.036
(2.27) (2.30) (2.25)

log(B/M) 0.022 0.022 0.022
(10.40) (10.40) (10.40)

log(M) 0.002 0.002 0.002
(1.11) (1.08) (1.11)

Constant 0.075 0.075 0.075 0.036 0.035 0.036
(78.90) (77.27) (78.26) (1.11) (1.11) (1.12)

Observations 1983 1983 1983 1918 1918 1918
Adjusted R2 0.265 0.263 0.265 0.440 0.439 0.440
Industry FEs Yes Yes Yes Yes Yes Yes

A-31



Table A.9

Version of Table 9 with Scope 1+2 carbon measures

This table is the same as Table 9, except carbon burden (CB) and recent emissions (C) are
computed using scope 1+2 instead of scope 1 emissions.

(1) (2) (3) (4) (5) (6)
CB/M 0.995 0.862 0.546 0.934

(8.07) (1.98) (5.23) (2.45)

C/M 16.216 2.336 8.388 -6.852
(7.82) (0.32) (4.73) (-1.06)

Market beta 0.061 0.061 0.060
(5.06) (5.09) (5.02)

log(B/M) 0.027 0.027 0.027
(25.74) (25.67) (25.75)

log(M) 0.004 0.004 0.004
(4.40) (4.30) (4.45)

Constant 0.074 0.074 0.074 -0.011 -0.011 -0.011
(66.66) (66.36) (66.42) (-0.52) (-0.51) (-0.51)

Observations 1990 1990 1990 1925 1925 1925
Adjusted R2 0.031 0.029 0.031 0.315 0.313 0.315
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Table A.10

Version of Table 9 with carbon measures winsorized at 99th percentile

This table is like Table 9, except we winsorize the two carbon measures at the 99th percentile.

(1) (2) (3) (4) (5) (6)
CB/M 1.708 2.053 0.898 1.867

(8.41) (2.78) (5.27) (2.96)

C/M 25.440 -5.653 12.538 -15.956
(7.94) (-0.49) (4.63) (-1.60)

Market beta 0.059 0.060 0.057
(4.87) (4.96) (4.77)

log(B/M) 0.026 0.027 0.027
(25.57) (25.51) (25.63)

log(M) 0.004 0.004 0.004
(4.11) (4.08) (4.17)

Constant 0.073 0.073 0.073 -0.006 -0.008 -0.005
(66.25) (66.10) (66.16) (-0.30) (-0.35) (-0.25)

Observations 1990 1990 1990 1925 1925 1925
Adjusted R2 0.034 0.030 0.033 0.315 0.313 0.316
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Table A.11

Version of Table 9 dividing by revenue instead of market cap

This table is like Table 9, except we divide the carbon measures by revenue instead of market
cap.

(1) (2) (3) (4) (5) (6)
CB/R 0.688 1.704 0.202 1.135

(4.06) (3.70) (1.44) (2.99)

C/R 7.186 -15.975 0.764 -14.720
(2.90) (-2.37) (0.37) (-2.64)

Market beta 0.060 0.060 0.057
(4.91) (4.96) (4.70)

log(B/M) 0.027 0.027 0.027
(25.89) (25.98) (26.04)

log(M) 0.004 0.004 0.004
(4.07) (4.14) (4.15)

Constant 0.075 0.075 0.075 -0.007 -0.008 -0.004
(66.86) (67.06) (66.98) (-0.31) (-0.35) (-0.18)

Observations 1977 1977 1977 1913 1913 1913
Adjusted R2 0.008 0.004 0.010 0.306 0.306 0.309
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