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Abstract

Are there risk factors that are pervasive across major classes of corporate secu-

rities: stocks, bonds, and options? We employ a novel econometric procedure that

relies on asset characteristics to estimate a conditional latent factor model. A com-

mon risk factor structure prominently emerges across asset classes. Several common

factors explain a substantial amount of time-series variation of individual asset returns

across all three asset classes, and have sizable Sharpe ratios. Several of our factors

are highly correlated with some of asset-class-specific factors as well as macroeconomic

and financial variables. While a small set of common factors does not fully capture

the cross-section of average returns, imposing the factor structure is useful in practice,

especially in out-of-sample analysis. A mean-variance efficient portfolio that utilizes

asset characteristics achieves a high Sharpe ratio as different asset classes hedge each

other’s exposures to the common factors.
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1 Introduction

Finance theory predicts a tight connection between the main types of corporate securities,

such as stocks, corporate bonds, and options (Black and Scholes, 1973; Merton, 1974). A

related pillar of asset pricing is that expected returns should reflect assets’ loadings on

pervasive common factors (Ross, 1976). Yet researchers have struggled to identify risk factors

that are both common to all major asset classes and able to explain substantial variation

in expected returns. Consequently, much of the asset pricing literature has pursued factors

that are specific to a particular asset class.1

Empirical challenges have impeded efforts to extract common factors from individual

assets across different markets. Many securities, such as options, have short time series.

Additionally, asset classes such as corporate bonds and options contain far more securities

than time observations, making traditional factor estimation unstable. The dimensionality

and limited time spans have prevented the joint extraction of factors.

In this paper, we introduce a new econometric approach, the regressed-PCA method from

Chen, Roussanov, and Wang (2023), to extract latent factors directly from individual secu-

rities. The key advantage of this new approach is that it works effectively with short time

series and large cross-sections. The regressed-PCA method combines the familiar structure of

Fama–MacBeth cross-sectional regressions (Fama and MacBeth, 1973) with principal compo-

nent analysis (PCA) in a semi-parametric framework. More precisely, we model time-varying

factor loadings and pricing errors as functions of observable characteristics, transforming a

high-dimensional, unbalanced panel of assets into a smaller set of characteristic-managed

portfolios. We then apply standard PCA to these portfolios to uncover the latent factors.

Chen, Roussanov, and Wang (2023) show that the regressed-PCA estimators have desirable

1Fama and French (1993) explore common variation in stock and bond returns and find that stock returns
are linked to bond returns through shared variation in the bond-market factors, but conclude that the key
factors responsible for the risk premia are largely asset class-specific, which is the approach pursued by Coval
and Shumway (2001) for option returns and Lustig, Roussanov, and Verdelhan (2011) for currency returns.
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large-N asymptotic properties even when the time dimension is limited, making it well suited

for studying joint factor structures across multiple asset classes.

Turning to the empirical implementation, we focus on the period during which com-

prehensive data for all three asset classes are available. Our sample consists of monthly

observations from June 2004 to December 2021. The analysis incorporates 35 character-

istics for stocks, 26 for corporate bonds, and 19 for options, spanning both firm-level and

security-specific attributes.

Our key finding is the strong and systematic commonality across corporate asset classes.

First, the extracted latent factors connect tightly to well-established observable pricing fac-

tors in stocks, corporate bonds, and options. Several latent factors load significantly on

observable factors from all three markets. The leading latent factor, which explains the

largest share of joint return variation, is significantly correlated with fifteen of the eighteen

observable factors that we examine and closely aligns with their first principal component.

Second, the characteristic loadings reveal that the latent factors draw meaningful informa-

tion from all asset classes, rather than being dominated by any single market. Third, the

latent factors have clear macro-financial interpretations. Many factors exhibit strong corre-

lations with economic and financial uncertainties, intermediary capital factor, monetary and

credit conditions, and real activities.

The latent common factor model delivers substantial explanatory and predictive power.

In sample, ten regressed-PCA factors explain over 65 percent of the variation in characteristic-

managed portfolios; out of sample, these factors capture over 28 percent of next-period

returns. Notably, joint estimation outperforms asset-class-specific models, especially in op-

tions, where separate estimation often often yields negative out-of-sample fit. The factors

also exhibit economically significant risk premia, with the leading factor achieving an annu-

alized in-sample Sharpe ratio of 0.83.

Although corporate asset classes exhibit a common factor structure, the factors alone
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do not fully capture the cross-sectional returns. Using the regressed-PCA approach, we

can explicitly separate the latent factors from the pricing errors orthogonal to them. The

estimation of pricing errors allows us to construct a “pure-alpha” arbitrage portfolio that

exploits the predictive power of characteristics while maintaining zero exposure to the latent

common factors. The pure-alpha strategy generates a substantial out-of-sample Sharpe ratio

over 2, significantly exceeding that of the factors. The out-of-sample Sharpe ratio does not

decline when more factors are included, suggesting that the high average return on the

pure-alpha strategy is not simply attributed to omitted factors. Moreover, we decompose

the pure-alpha portfolio to examine the sources of pricing errors among asset classes. The

results reveal that the strategy loads heavily on option-based characteristics, such as implied

volatility and option gamma.

We further investigate the portfolio implications of the latent factors and pricing errors.

Using the conditional covariance implied by the regressed-PCA model, we construct both

in-sample and out-of-sample mean-variance efficient (MVE) portfolios jointly across stocks,

corporate bonds, and options. The joint MVE portfolios deliver substantially higher Sharpe

ratios than their asset-class-specific counterparts. In particular, we find that the MVE

portfolios implicitly eliminate latent common factor exposures by exploiting heterogeneity

in factor loadings across asset classes. The resulting optimal portfolio is effectively a “pure-

alpha” strategy driven by mispricing rather than compensated factor exposure. Our findings

suggest two key conclusions. First, the latent factors are important, as they successfully

capture substantial common variation across markets. Second, however, the risk premiums

associated with these factors are not comparable to the magnitude of the pricing errors.

Thus, it is meaningful to hedge out latent factor exposures to exploit pure alphas.

Our paper contributes to a voluminous empirical asset pricing literature that studies the

joint cross-section of multiple asset classes. Extensive research has documented predictive

linkages between stocks and bonds (Gebhardt, Hvidkjaer, and Swaminathan, 2005b; Bali,
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Goyal, Huang, Jiang, and Wen, 2022; Dickerson, Julliard, and Mueller, 2024), stocks and

options (Cao and Han, 2013; Bali, Beckmeyer, Moerke, and Weigert, 2021; Christoffersen,

Goyenko, Jacobs, and Karoui, 2018; Bali and Hovakimian, 2009; Johnson and So, 2012; Xing,

Zhang, and Zhao, 2010; Goyenko and Zhang, 2021), and bonds and options (Cao, Goyal,

Xiao, and Zhan, 2022). Beyond these bilateral linkages, studies such as Asness, Moskowitz,

and Pedersen (2013), He, Kelly, and Manela (2017), and Lettau, Maggiori, and Weber

(2014) propose unified macro-finance factors that price assets jointly across various asset

classes. However, robust evidence for common factor pricing remains elusive (Gospodinov

and Robotti, 2021). Our study adds to this literature by estimating the latent factors that

drive common variation while explicitly accounting for the pricing errors that arise from

asset-specific dynamics.

Our paper also adds to the growing asset pricing literature in corporate bonds and op-

tions. These two asset classes are relatively under-studied compared to the equity class,

though recent work has begun to map their specific factor structures. In corporate bonds,

Kelly, Palhares, and Pruitt (2022) apply Instrumented Principal Component Analysis (IPCA)

to identify five latent factors driving returns, while others emphasize specific risks like liquid-

ity (Lin, Wang, and Wu, 2011), long-run consumption risk (Elkamhi, Jo, and Nozawa, 2022),

or institutional constraints (Bali, Subrahmanyam, and Wen, 2021). In the options market,

research has moved from parametric models (Duffie, Pan, and Singleton, 2000) to factor-

based explanations. Büchner and Kelly (2022) use IPCA to explore the latent structure of

index options, while Horenstein, Vasquez, and Xiao (2020) exploit asymptotic principal com-

ponent analysis on option portfolios. Similarly, Christoffersen, Fournier, and Jacobs (2018)

extract principal components from the implied volatility surface to explain the cross-section

of option prices, and Karakaya (2013) suggests a three-factor model (level, slope, value) for

delta-hedged returns. Others focus on specific characteristics such as embedded leverage

(Frazzini and Pedersen, 2021; Goyal and Saretto, 2009; Zhan, Han, Cao, and Tong, 2022).
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Our work is closely related to Bali, Beckmeyer, and Goyal (2023), who extend the IPCA

approach to construct a joint factor model for corporate asset classes. They find that six

latent factors are sufficient to explain a large proportion of total variations across these asset

classes. While we agree that latent factors capture significant return variation, we find the

factor structure fails to fully explain the cross-section of returns. Consistent with Daniel,

Mota, Rottke, and Santos (2020), who show that characteristics often outperform factor

loadings because the factors themselves contain unpriced risk, we demonstrate that substan-

tial premia remain in the pricing errors, particularly in stocks and options. Consequently, we

show that imposing the factor structure and hedging out the common factor exposures, while

exploiting the characteristic-based pricing errors for expected returns, maximizes portfolio

mean-variance efficiency.

The rest of the paper is organized as follows. Section 2 outlines the conditional factor

model, introduces the regressed-PCA estimation procedure, and describes the evaluation

metrics used in our empirical analysis. Section 3 introduces the data. Section 4 presents the

main empirical results on the extracted common latent factors. Section 5 examines how the

common risk factors relate to the cross-section of asset returns. Section 6 discusses the role

of the common risk factors in the MVE portfolio allocation. Section 7 concludes.

2 Methodology

In this section, we introduce a general conditional factor model for individual assets’ excess

returns, which can identify factors within each asset class separately. We then extend the

model to extract common factors jointly from returns on stocks, corporate bonds, and op-

tions. To estimate this conditional factor model, we apply the regressed-PCA methodology

developed by Chen, Roussanov, and Wang (2023). Finally, we present several evaluation
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metrics to assess the in-sample fit and out-of-sample predictability of the estimated factor

models.

2.1 Model

Following Chen, Roussanov, and Wang (2023) and Kelly, Pruitt, and Su (2019), we consider

the following factor model, for i “ 1, ..., N and t “ 1, ..., T ,

ri,t “ αpzi,t´1q ` βpzi,t´1q
1ft ` ϵi,t, (2.1)

where ri,t is the monthly excess return of asset i at time t, and ft is a K ˆ 1 vector of latent

factors. Both the dynamic factor loadings βp¨q and the mispricing errors αp¨q depend on

zi,t´1, which is a pJ ` 1q ˆ 1 vector of observable time-varying characteristics for asset i at

time t ´ 1, and ϵi,t is the idiosyncratic error term.

Next, we specify the mispricing errors αp¨q and the dynamic factor loadings βp¨q. This

paper focuses on linear approximations of the unknown functions αpzi,t´1q and βpzi,t´1q in

(2.1). Specifically, we assume they are approximated by

αi,t “ a1zi,t ` ηα,i,t, βi,t “ B1zi,t ` ηβ,i,t, (2.2)

where zi,t “ p1, zi,t,1, . . . , zi,t,Jq1, a is a pJ ` 1q ˆ 1 vector, and B is a pJ ` 1q ˆ K matrix of

loading coefficients. ηαpzi,tq and ηβpzi,tq are the approximation errors.

Define Rt ” pr1,t, ..., rN,tq
1, Zt´1 ” pz1,t´1, ..., zN,t´1q1, εt ” pϵ1,t, ..., ϵN,tq

1, Hα,t´1 ”

pηα,1,t´1, . . . , ηα,N,t´1q
1 and Hβ,t´1 ” pηβ,1,t´1, . . . , ηβ,N,t´1q

1. Then rewriting (2.1) in matrix

form gives

Rt “ Zt´1a ` Zt´1Bft ` Hα,t´1 ` Hβ,t´1ft ` εt. (2.3)

Letting ξt “ Hα,t´1 ` Hβ,t´1ft ` εt, we rewrite (2.3) into the following matrix form

Rt “ Zt´1a ` Zt´1Bft ` ξt. (2.4)
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Next, to capture the common factor structure across all three asset classes, we model that

their returns load on a shared set of latent common factors (fC
t ). Then the returns on stocks

(s), corporate bonds (b), and options (c) follow the factor models

Rs
t “ Zs

t´1aC,s ` Zs
t´1BC,sf

C
t ` ξst ,

Rb
t “ Zb

t´1aC,b ` Zb
t´1BC,bf

C
t ` ξbt ,

Ro
t “ Zo

t´1aC,o ` Zo
t´1BC,of

C
t ` ξot . (2.5)

Stacking these yields the compact matrix form:
»

—

—

—

–

Rs
t

Rb
t

Ro
t

fi

ffi

ffi

ffi

fl

loomoon

Rt

“

»

—

—

—

–

Zs
t´1 0 0

0 Zb
t´1 0

0 0 Zo
t´1

fi

ffi

ffi

ffi

fl

loooooooooooomoooooooooooon

Zt´1

»

—

—

—

–

aC,s

aC,b

aC,o

fi

ffi

ffi

ffi

fl

loomoon

a

`

»

—

—

—

–

Zs
t´1 0 0

0 Zb
t´1 0

0 0 Zo
t´1

fi

ffi

ffi

ffi

fl

loooooooooooomoooooooooooon

Zt´1

»

—

—

—

–

BC,s

BC,b

BC,o

fi

ffi

ffi

ffi

fl

looomooon

B

fC
t `

»

—

—

—

–

ξst

ξbt

ξot

fi

ffi

ffi

ffi

fl

loomoon

ξt

. (2.6)

This allows us to rewrite the common factor model compactly as:

Rt “ Zt´1a ` Zt´1BfC
t ` ξt. (2.7)

In addition, we can apply the model in (2.4) to study the returns of each asset class

separately. This allows us to analyze asset-class factors independently.

2.2 Regressed-PCA

We estimate the model in (2.4) and (2.7) following Chen, Roussanov, and Wang (2023) and

apply the regressed-PCA approach. We use the model in (2.4) to illustrate the estimation

procedure. The regressed–PCA approach proceeds in two steps.

Step 1: For each period t, run the cross-sectional regression of Rt on Zt´1 to obtain

R̃t “ a ` Bft ` pZ 1
t´1Zt´1q

´1Z 1
t´1ξt, (2.8)

where R̃t “ pZ 1
t´1Zt´1q

´1Z 1
t´1Rt. This step is equivalent to a period-by-period Fama–MacBeth

regression (Fama and MacBeth, 1973). The vector R̃t can be interpreted as the returns on
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J ` 1 characteristic-managed portfolios, or as a set of cross-sectional factors in the sense of

Fama and French (2020). See Chen, Roussanov, and Wang (2023) for further asset pricing

interpretations.

Step 2: Apply standard PCA to the managed portfolios, tR̃tu1:T . LetMT ” IT ´1T1
1
T {T

where 1T denotes a T ˆ1 vector of ones, R̃ ” pR̃1, . . . , R̃T q, and F ” pf1, . . . , fT q1. We follow

Chen, Roussanov, and Wang (2023) and impose the following identification restrictions:

a1B “ 0, B1B “ IK and F 1MTF {T being diagonal with descending entries. Then from PCA,

we can get B̂, the estimator of B, as the eigenvectors corresponding to the first K largest

eigenvalues of the pJ `1q ˆ pJ `1q matrix R̃MT R̃
1{T and â “ pIJ`1 ´ B̂B̂1q

řT
t“1 R̃t{T . Note

that B and f can be identified up to a rotation matrix. The corresponding estimators of

αp¨q, βp¨q and f are

α̂pzq “ â1z, β̂pzq “ B̂1z and f̂ “ pf̂1, . . . , f̂T q
1

“ R̃1B̂.

The model in (2.7) with common factors is estimated analogously. The first step consists

of regressing Rt`1 on Zt, which is equivalent to running separate cross-sectional regressions

within each asset class. This yields characteristic-managed portfolios across asset classes.

The second step is identical, we apply PCA to the pooled set of managed portfolios from all

three asset classes.2

The advantage of applying regressed-PCA in our empirical setting is twofold. First, as

shown in Section 3, we observe only 210 monthly periods but more than 1,000 individual as-

sets for each asset class at every point in time, so the cross-sectional size is much larger than

the time-series length (N " T ). Regressed-PCA has large-N asymptotic properties that do

not require T to be large (Chen, Roussanov, and Wang, 2023). Second, it accommodates

unbalanced panels by transforming the unbalanced returns of individual assets into a bal-

2This procedure assumes a known number of factors K. In our empirical analysis, we examine a range of
K values. Consistent estimates of K can also be obtained by maximizing the ratio of adjacent eigenvalues;
see Ahn and Horenstein (2013) and Chen, Roussanov, and Wang (2023).
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anced set of J ` 1 characteristic-managed portfolios through cross-sectional Fama–MacBeth

regressions in each period. This property is crucial for options, where time-to-maturity is

short, long-maturity contracts are illiquid, and thus balanced panels with many options over

long horizons are infeasible.

For the out-of-sample estimation, we use an expanding window starting with 60 months of

data. For each t ě 60, we estimate the model using data through t ´ 1 to obtain ât´1, B̂t´1,

f̂ pt´1q ” pf̂
pt´1q

1 , . . . , f̂
pt´1q

t´1 q, and the corresponding α̂t´1pzi,t´1q “ â1
t´1zi,t´1, β̂t´1pzi,t´1q “

B̂1
t´1zi,t´1. We introduce the out-of-sample estimates of factors in Section 2.3.

2.3 Evaluation Metrics

In this section, we introduce several evaluation metrics to assess the in-sample and out-of-

sample pricing performance of the factor models. We first consider three R2s for in-sample

fit. The first, R2
K , is from the Fama–MacBeth cross-sectional regression in the second step

(PCA) and measures how well the factors explain the characteristic-managed portfolios.

The second, R2
R̃
, is from the first-step regression and measures how well the characteristic-

managed portfolios explain individual assets. Finally, the total R2 evaluates the model’s

ability to explain individual asset returns directly:

R2
“ 1 ´

ř

i,trri,t ´ α̂pzi,t´1q ´ β̂pzi,t´1q1f̂ts
2

ř

i,t r
2
i,t

. (2.9)

Second, we compute three predictive R2s: (i) the total out-of-sample R2
O, (ii) R

2
T,N,O, the

cross-sectional average of each asset’s time-series predictability, and (iii) R2
N,T,O, the time-

series average of cross-sectional predictability, which reflects the model’s ability to explain

the cross-section of average returns (related to the Fama–MacBeth R2). We approximate

the time-t factor ft by the average of all past factor estimates: λ̂t “
ř

sďt´1 f̂
pt´1q
s {pt ´ 1q.
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The formulas are:

R2
O “ 1 ´

ř

i,tě60rri,t ´ α̂t´1pzi,t´1q ´ β̂t´1pzi,t´1q
1λ̂ts

2

ř

i,tě60 r
2
i,t

, (2.10)

R2
T,N,O “ 1 ´

1

N

ÿ

i

ř

tě60rri,t ´ α̂t´1pzi,t´1q ´ β̂t´1pzi,t´1q1λ̂ts
2

ř

tě60 r
2
i,t

, (2.11)

R2
N,T,O “ 1 ´

1

T ´ 60

ÿ

tě60

ř

irri,t ´ α̂t´1pzi,t´1q ´ β̂t´1pzi,t´1q1λ̂ts
2

ř

i r
2
i,t

. (2.12)

Third, we assess out-of-sample fit. We define the out-of-sample realized factor returns at

t as:

f̂t´1,t “

”

pZt´1B̂t´1q
1
pZt´1B̂t´1q

ı´1

pZt´1B̂t´1q
1
pRt ´ Zt´1ât´1q (2.13)

Then we plug them into the following three R2’s to evaluate how much the cross-sectional

variation of individual assets can be explained by the factors,

R2
f,O “ 1 ´

ř

i,tě60rri,t ´ β̂t´1pzi,t´1q
1f̂t´1,ts

2

ř

i,tě60 r
2
i,t

, (2.14)

R2
f,T,N,O “ 1 ´

1

N

ÿ

i

ř

tě60rri,t ´ β̂t´1pzi,t´1q1f̂t´1,ts
2

ř

tě60 r
2
i,t

, (2.15)

R2
f,N,T,O “ 1 ´

1

T ´ 60

ÿ

tě60

ř

irri,t ´ β̂t´1pzi,t´1q1f̂t´1,ts
2

ř

i r
2
i,t

. (2.16)

Fourth, we evaluate the out-of-sample performance using an arbitrage portfolio from a

pure-alpha trading strategy based on the estimated anomaly terms α̂p¨q. In the unrestricted

model, characteristics may capture mispricing reflected in the anomaly intercepts, indepen-

dent of risk-based compensation. If the model accurately captures the risk-return relation,

this strategy should yield a high Sharpe ratio. The portfolio weights are

wα
t “ Zt´1

`

Z 1
t´1Zt´1

˘´1
ât´1. (2.17)

Chen, Roussanov, and Wang (2023) show that the return on this portfolio converge to }a}2.

Finally, we employ the weighted bootstrap procedure from Chen, Roussanov, and Wang

(2023) to test the hypotheses a “ 0 and B “ 0.
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3 Data

This section introduces the data for stocks, corporate bonds, and options. We present key

filters for corporate bonds and options, along with summary statistics for returns. We also

briefly describe the characteristics that compose the latent factor loadings and mispricing

errors in our return model across the three asset classes. Appendix A1 provides detailed

descriptions of the characteristics and filters used in our analyses.

To extract joint factors, we focus on the sample period during which data for all three

asset classes are available. Thus, our in-sample analysis covers July 2004 to December 2021

for monthly stock, bond, and option returns. For out-of-sample analysis, the sample runs

from July 2004 to December 2019, with the first 60 months as the initial training period.

We exclude the subsequent two years, which include extraordinary events such as COVID-19

and the GameStop episode, as these events substantially affect out-of-sample predictability,

especially for equity options. As a robustness check, we extend the sample to December 2021

for out-of-sample analyses, and report the results in Appendix A5.

For all asset classes, we study excess returns, using risk-free rates from Kenneth French’s

data library.3 We rescale all characteristics cross-sectionally to the range r´0.5,`0.5s to

limit the influence of outliers, following Kelly, Pruitt, and Su (2019).

3.1 Stocks

The stock returns and characteristics data are originally from Freyberger, Neuhierl, and

Weber (2020) and Kim, Korajczyk, and Neuhierl (2021). To model stock returns, we pick

35 characteristics that are available from Freyberger, Höppner, Neuhierl, and Weber (2022),

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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out of 36 characteristics which are used in Kelly, Pruitt, and Su (2019) and Chen, Rous-

sanov, and Wang (2023).4 The 35 characteristics are market beta (beta), market capitaliza-

tion (mktcap), book-to-market ratio (bm), gross profitability (prof), investment (invest),

idiosyncratic volatility (idiovol), book leverage (lev), operating leverage (ol), momentum

(mom), intermediate momentum (intmom), short-term reversal (strev), long-term reversal

(ltrev), average daily bid-ask spread (bidask), standard unexplained volume (suv), price to

52-week high price (w52h), total assets (asset), total-assets-to-size (a2me), sales-to-lagged-

net-operating-assets (ato), sales-to-price (s2p), cash-to-short-term-investment (c), capital

turnover (cto), ratio of change in property, plants and equipment to the change in total

assets (dpi2a), earnings-to-price (e2p), return on net operating assets (rna), return on assets

(roa), return on equity (roe), price-to-cost margin (pcm), profit margin (pm), Tobin’s Q (q),

cash flow-to-book (freecf), last month’s volume to shares outstanding (turn), capital in-

tensity (d2a), operating accruals (oa), ratio of sales and general administrative costs to sales

(sga2s), and net operating assets (noa). For detailed definitions and summary statistics of

these characteristics, see Freyberger, Neuhierl, and Weber (2020) and Freyberger, Höppner,

Neuhierl, and Weber (2022).

3.2 Corporate Bonds

For corporate bonds, we use the dataset constructed by Dickerson, Robotti, and Rossetti

(2023).5 This corporate dataset sources from the WRDS bond database and Mergent’s

FISD. A highlight in this dataset is that the corporate bond prices are properly adjusted

for market microstructure noises (MMN) in the trades by following the procedure proposed

4Kelly, Pruitt, and Su (2019) and Chen, Roussanov, and Wang (2023) choose 36 stock characteristics from
Freyberger, Neuhierl, and Weber (2020), but the sample ends in May 2014. Freyberger, Höppner, Neuhierl,
and Weber (2022) extend the characteristics data in Freyberger, Neuhierl, and Weber (2020) to December
2021 and impute the missing values in a GMM framework. The extended dataset is generously provided by
the authors. The only characteristic that is absent from this new dataset is fixed costs-to-sales (fc2y).

5We are sincerely grateful that the authors kindly provide the dataset to us.
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by Andreani, Palhares, and Richardson (2023), so that the asset pricing implications can be

closely aligned with the industry-grade quote data such as ICE.

The dataset from Dickerson, Robotti, and Rossetti (2023) include monthly variables of

corporate bond returns, as well as bond-level characteristics. We complement their dataset

with Mergent’s FISD to construct additional bond characteristics. The Mergent’s FISD

dataset has basic issue information such as bond interest rates, convertible terms, bondholder

protections, and unit offerings. It also provides issuer information as well as corresponding

agencies. We merge the dataset from Dickerson, Robotti, and Rossetti (2023) with Mergent’s

FISD based on bond security’s CUSIP. The bond returns and characteristics are then merged

with firm-level characteristics using the WRDS Bond CRSP Link table.

The monthly corporate bond returns are computed using representative price (P ) for

each end-of-month date and each bond, accrued interests (AI), and coupons (cpn). First,

since corporate bond markets are illiquid, and trades may or may not occur frequently within

the month, the end-of-month prices should balance the trade-offs between keeping a large

enough sample size and extrapolating from the last available prices. Specifically, for each

corporate bond on each month-end date, we select the price if it is available within 5 calendar

days before the month-end; otherwise, we mark the price as missing.6 Second, we compute

the accrued interest over the fractional period between the last coupon payment date and

the month-end date. We can compute the monthly return as:

Rcorpbond
t`1 “

Pt`1 ` AIt`1 ` cpnt`1

Pt ` AIt
´ 1.

We employ 26 characteristics that are widely studied by the literature on corporate bond

returns (e.g., Kelly, Palhares, and Pruitt, 2022; Bao, Pan, and Wang, 2011) in our model.

There are 12 bond contract level characteristics, including bond age (age), coupon (cpn),

6In the WRDS bond database, the variable name is RET L5M .
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rating (rating), issue amount (issue size) duration (duration), spread (CS), bond mo-

mentum (bond mom), spread momentum (spread mom), value-at-risk (V aR), bond short-

term reversal (bond rev), bond long-term reversal (bond ltrev), and illiquidity (illiq). We

also include 14 stock-level variables, which are idiosyncratic volatility (idiovol), momen-

tum (mom), book leverage (lev), Fama-French five-factor related characteristics (beta, prof ,

mktcap, invest, bm), operating leverage (ol), earnings-to-price ratio (e2p), tangibility (tan),

total debt (debt), debt-to-EBITDA (d2ebitda), and distance-to-default (DD). Appendix A1

presents the sources and detailed description of these characteristics.

3.3 Options

We obtain individual equity options data is from OptionMetrics, and underlying stock in-

formation such as stock returns, prices, share code, and trading volume from CRSP.

To avoid recording errors and exclude extremely illiquid options, we apply standard filters

used in the literature.7 All filters rely only on information available at the portfolio formation

date t to avoid look-ahead bias. Appendix A1 provides full details.

Outliers in the options data can significantly distort the estimation of factors, especially

during periods of extreme market activity (e.g., the GME episode). To mitigate this, we trim

the options data by excluding returns below the 1st percentile and above the 99th percentile

in each period. The trimmed sample is used only for in-sample estimation. Because this

trimming introduces potential look-ahead bias, we do not use trimmed data in out-of-sample

analysis.8

We focus on call options as calls are more actively traded (Zhan, Han, Cao, and Tong,

2022; Christoffersen, Goyenko, Jacobs, and Karoui, 2018). Then we compute delta-hedged

7See Büchner and Kelly (2022), Frazzini and Pedersen (2021), Zhan, Han, Cao, and Tong (2022), Bali,
Beckmeyer, Moerke, and Weigert (2021), Goyenko and Zhang (2021), Goyal and Saretto (2009), and Boyer
and Vorkink (2014).

8We report out-of-sample results using trimmed data in Appendix A5.
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holding returns. At the portfolio formation date, we buy one call option contract and sell

∆ shares of the underlying stock, where ∆ is from OptionMetrics and calculated under the

Black–Scholes model. We hold the position for one month without daily rebalancing to

reduce transaction costs and improve practicality. Then the delta-hedged return is defined

as

Roption
t`1 “ 1 ´

∆tSt`1 ´ Ct`1

∆tSt ´ Ct

.

Our return model includes 19 characteristics documented in the literature as useful for

describing and predicting option returns (e.g., Büchner and Kelly, 2022; Zhan, Han, Cao,

and Tong, 2022; Bali, Beckmeyer, Moerke, and Weigert, 2021). Seven are contract-level:

implied volatility (impl vol), the option’s Greeks (delta, gamma, theta, volga), embedded

leverage (embed lev), and an option illiquidity measure (optspread). Twelve are stock-level:

stock illiquidity (bidask), idiosyncratic volatility (idiovol), volatility deviation (vol dev),

momentum measures (strev, intmom, mom), book leverage (lev), and Fama–French five-

factor–related characteristics (beta, prof , mktcap, invest, bm). Appendix A1 provides de-

tailed definitions and references for each characteristic.

3.4 Summary Statistics and Standardization

Table 1 reports descriptive statistics for returns on the three asset classes; for options, we

use the trimmed returns described above. After filtering, we retain 738,518 stock–month

observations, 208,652 corporate bond–month observations, and 760,836 option–month ob-

servations. Each period contains at least 386 observations for each asset class, enabling a

comprehensive analysis of the common factor structure across individual assets.

Table 1 shows large differences in return standard deviations across asset classes. As

is standard in PCA, we scale returns to account for these volatility differences by dividing

all returns in each asset class by the standard deviation of all returns in that class. This
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step prevents high-volatility assets from dominating the principal components due to scale

rather than stronger common factors. To avoid look-ahead bias, we compute these standard

deviations using the first 60 periods, consistent with the initial window in the out-of-sample

analysis.

4 Common Factors

Estimating the conditional factor model in (2.7) using the regressed-PCA approach yields a

set of factors that capture common variation across stocks, corporate bonds, and options.9

Figure 1 plots the cumulative returns of the first five regressed-PCA factors. Several factors

exhibit strong systematic variation with major market episodes, indicating that these factors

capture common sources of risk. In this section, we investigate the economic nature of the

latent common factors along two dimensions: (i) their relation to different asset classes, and

(ii) their relation to macroeconomic and financial variables.

4.1 Relation to Asset Classes

We begin by examining how the latent common factors are linked to different asset classes.

First, we analyze their relation to observable factors from the literature that are specific to

each asset class, and to the principal components of these observable factors. Second, we

investigate how the common factors relate to regressed-PCA factors estimated separately

within each asset class. Third, we study the contribution of asset characteristics to the beta

loadings of the common factors. Finally, we decompose the common factors into asset-class

constituents and evaluate their relative contributions.

9Unless otherwise noted, we focus on the unrestricted model (αp¨q ‰ 0). As shown in the next section,
specification tests indicate that αp¨q is significantly non-zero.
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4.1.1 Common Factors and Observable Factors

First, we examine the connection between the latent common factors and observable fac-

tors from the literature, each designed to explain return variation within a specific asset

class. For stocks, we follow Fama and French (2015) and Carhart (1997) and include the

market factor (MKTstock), size (SMB), value (HML), profitability (RMW ), investment

(CMA), and momentum (MOM). For corporate bonds, we follow Bai, Bali, and Wen (2019)

and Dickerson, Mueller, and Robotti (2023), selecting the bond market factor (MKTbond),

credit risk (CRF ), liquidity risk (LRF ), bond momentum (MOMB), bond return rever-

sal (REV ˚), and long-term reversal (LTR). For options, we use factors from Goyal and

Saretto (2009), Zhan, Han, Cao, and Tong (2022), and Büchner and Kelly (2022): volatility

level (LEV EL), moneyness skewness (SKEW ), idiosyncratic volatility (IV OL), illiquid-

ity (ILQ), the option-market factor (MKToption), and volatility deviation (V OLDEV ).

Additional details on these observable factors are provided in Appendix A2.

Table 2 reports the correlations between the latent common factors and the observable

factors. The latent common factors display strong correlations with a broad set of observable

factors. Several of these factors are significantly related to multiple observable factors across

asset classes. For example, the first common factor is highly correlated with fifteen out of

eighteen observable factors, showing positive correlations with the stock, corporate bond, and

option market factors. These findings suggest that the latent factors capture the common

variation across asset classes.

Table 3 presents the time-series regression results of each latent common factor on observ-

able factors. Several of the latent common factors are significantly explained by observable

factors across asset classes. For example, the first common factor loads positively on SMB

and RMW, and negatively on the stock MOM factor, consistent with the findings of Asness,

Moskowitz, and Pedersen (2013) and Fama and French (2015);10 it also loads significantly

10Asness, Moskowitz, and Pedersen (2013) document that value and momentum are pervasive across
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on the credit risk and liquidity risk factors of Dickerson, Mueller, and Robotti (2023). Over-

all, observable pricing factors from the three asset classes account for a substantial share of

the variation in the latent common factors, with adjusted R2 values ranging from 19% to

57%. Nonetheless, almost all of the common factors continue to earn positive and significant

returns beyond the observable factors, as reflected in positive intercepts in the regressions.

The result suggests that these latent factors embed additional premiums that are not fully

spanned by existing observable factors in the literature.

4.1.2 Common Factors and Principal Components of Observable Factors

We also examine how the latent common factors relate to the principal components of the

observable factors. We first apply the standard PCA to the eighteen observable pricing

factors. If asset classes exhibit common sources of variation, the corresponding observable

factors are expected to load on a shared component structure.

As reported in Appendix A2, the first ten principal components collectively explain 88%

of the variation, highlighting a strong common structure for observable pricing factors. In

particular, the first principal component loads consistently across all three asset classes,

explaining 20.5% of the variation in stock factors, 31.7% in corporate bond factors, and

44.9% in option factors.

Next, we assess how the latent common factors align with the component structure of

the observable factors. The top panel of Figure 2 reports the correlations between the two

sets of factors. The first regressed-PCA factor (Common 1) is strongly correlated (above 0.6)

with the first principal component of the observable factors (PC 1), suggesting that the two

approaches converge to identify a similar source of common variation across asset classes.

financial markets and asset classes, including stocks, commodities, currencies, and government bonds. They
also find that value and momentum are negatively correlated both within and across asset classes. Fama and
French (2015) show that the role of the value factor is largely absorbed once profitability and investment
factors are included.
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The bottom panel plots the time series of Common 1 against PC 1. Both series track each

other closely, particularly during major market episodes such as the global financial crisis

of 2008–09 and the COVID-19 shock in 2020, when both drop sharply. The overall pattern

suggests that the latent common factors and the principal components of observable factors

capture a systematic dynamic shared across asset classes.

4.1.3 Common Factors and Asset-Class-Specific Latent Factors

We compare the latent common factors with the latent factors estimated separately from

each asset class using the reduced model in (2.4). Table 4 reports the correlations between

the two sets of factors. The leading latent common factor (Common 1) loads strongly on all

three asset markets: it is highly correlated with the first stock latent factor (0.85), and also

shows significant correlations with the first three corporate bond factors (0.62, 0.32, 0.24)

and the first two option factors (0.44 and 0.14).

Other latent common factors also show relations across asset classes. For example, the

second common factor is strongly related to the first option factor (0.80) and negatively

associated with the first corporate bond factor (–0.53), while showing little connection to

stock-specific factors. This pattern suggests that it reflects risks jointly priced in options

and corporate bonds. The third common factor likewise exhibits significant correlations with

various class-specific factors from all three asset markets.

Overall, these findings indicate that the latent common factors are not tied to a single

asset market, but instead capture common sources of variation across asset classes.

4.1.4 Characteristics Loadings and Asset-Class Constituents

The regressed-PCA approach provides a direct way to examine how asset-level characteristics

contribute to the construction of the common factors, specifically through the beta loadings.
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Analyzing this anatomy sheds light on the systematic risk sources underlying the factors.

For illustration, Figure 3 plots the estimated coefficients B on the first latent common

factor across all characteristics. The figure shows that the first factor has significant beta

loadings from characteristics across stocks, corporate bonds, and options. The cross-asset-

class loadings provide evidence that the regressed-PCA factors capture common components

of variation across markets. Further discussion of the characteristic loadings is provided in

Appendix A3.

While characteristics highlight the micro-level anatomy of factor construction, it is also

important to examine how entire asset classes contribute to these common factors. An

appealing feature of the regressed-PCA approach is that each factor can be expressed as the

sum of its asset-class constituents:

f̂C
“ R̃1B̂ “ R̃1

SB̂S ` R̃1
BB̂B ` R̃1

OB̂O,

where R̃ denotes the vector of characteristic-managed portfolio returns associated with all

three asset classes, and B̂ is the estimated vector of beta loadings. The subscripts index the

asset-class-specific elements of these vectors (A P tStock,CorpBond,Optionu). We therefore

define each asset-class constituent as

f̂A “ R̃1
AB̂A, (4.1)

so that the common factors decompose as f̂C “ f̂Stock ` f̂CorpBond ` f̂Option.

Table 5 summarizes how each asset class contributes to the latent common factors by

reporting their correlations and variance decompositions.11 These results highlight that

the latent factors effectively capture cross-asset commonality. All correlations are positive

and significant, indicating that each asset-class constituent contributes meaningfully to the

common factors. The first common factor (Common1) has high correlations of 0.89 for stocks,

11The variance decomposition is defined as the share of the common factor’s total variance that can be

attributed to each constituent, i.e., Covpf̂A,f̂C
q

Varpf̂Cq
.



21

0.74 for corporate bonds, and 0.51 for options. Its variance decomposition shows that stocks

explain 57% of the factor’s variation, followed by corporate bonds (29%) and options (14%).

This pattern suggests that while stock constituent is the dominant contributor, corporate

bond and option markets also play substantial roles in shaping the factor’s behavior. Overall,

all latent common factors load on multiple asset classes, reflecting the presence of common

sources of variations.

4.2 Relation to Macroeconomic and Financial Variables

To better interpret the economic meaning of the latent common factors, we explore their

relationships with a broad set of macroeconomic and financial variables. We group these

variables into three categories: (i) indicators of economic activities, including core infla-

tion, consumption growth, and growth in industrial production, (ii) uncertainty measures,

including economic policy uncertainty (EPU) from Baker, Bloom, and Davis (2016), finan-

cial uncertainty (FINU) and macro uncertainty (MACU) from Jurado, Ludvigson, and Ng

(2015), (iii) financial conditions, including federal funds rate, term spread, credit spread, VIX

index, intermediary capital factor (HKM) from He, Kelly, and Manela (2017), and the liq-

uidity factor from Pástor and Stambaugh (2003). Several of these series are first-differenced,

denoted ∆p¨q, to ensure stationarity.

We explore the macro linkage from two perspectives. First, we examine the contempo-

raneous relations between the common factors and macro-financial variables, and analyze

how asset-class constituents of the common factors contribute to these relations. Second,

we evaluate the ability of the common factors to forecast and nowcast key macro-financial

variables.
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4.2.1 Common Factors and Macro-Financial Variables

Table 6 reports the pairwise correlations between the latent common factors and macro-

financial variables. Several factors exhibit significant correlations with macroeconomic and

financial series, indicating their relevance to underlying economic conditions. The first com-

mon factor is strongly linked to economic uncertainty and intermediary conditions: it is

negatively correlated with uncertainty indexes and the VIX, and positively correlated with

the intermediary capital factor (HKM). The second factor is negatively related to the fed-

eral funds rate and the credit spread, highlighting its connection to monetary and credit

conditions. The third common factor shows strong positive associations with core inflation,

consumption growth, and industrial production growth, suggesting that the factor reflects

macroeconomic fundamentals.

Table 7 summarizes the regression results of the latent common factors on macro-financial

variables. For the first factor, HKM provides the largest explanatory share, accounting for

29% of the Shapley–Owen R2 decomposition,12 followed by financial uncertainty (17%) and

the term spread (10%). For the third factor, consumption and industrial production growth

each explain more than 20% of the variance. More broadly, factors that capture larger cross-

asset variation also exhibit stronger links to macro-financial variables: 38.6% and 32.4% of

the variance in the first and third common factors can be explained, compared with less than

10% for factors seven through ten.13

The common factor decomposition in 4.1 allows us to identify which asset classes drive

the links between common factors and macro-financial variables. For illustration, we regress

12The Shapley–Owen R2 decomposition attributes explained variance to regressors by averaging their
marginal contributions across all possible orderings of variables; see Huettner and Sunder (2012); Fournier,
Jacobs, and Or lowski (2023).

13We also relate the latent common factors to the set of macroeconomic factors from Ludvigson and Ng
(2009). The first common factor is correlated with their real economic activity, interest rate, and inflation
factors, while the second common factor is significantly related to their stock market factor. The findings
further support the interpretation that the latent common factors capture broad macroeconomic forces.
Further details are provided in Appendix A4.
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asset-class constituents of the first common factor on the macro-financial variables. The

results are reported in Table 8. The stock constituent is most strongly related to financial

uncertainty and industrial production growth, and HKM. The corporate bond constituent

loads on a broader set of variables, including term premia, credit spreads, macro uncertainty,

and HKM. The option constituent is primarily driven by consumption growth, the federal

funds rate, the VIX, and financial uncertainty. The results suggest that each asset class

contributes distinct macro-financial exposures, with bonds most tightly connected to macro

and credit risks, options linked to volatility and uncertainty, and stocks reflecting both real

activity and intermediary constraints.

4.2.2 Forecasting and Nowcasting Macro-Financial Variables

To further examine the economic relevance of the latent common factors, we evaluate their

ability to forecast and nowcast key macro-financial variables.

We begin by testing the forecasting ability. At each period t, we estimate the time-series

regression of the following form:

Yt “ aY `

10
ÿ

k“1

γY,k
t´1f

k,C
t´1 ` εYt , (4.2)

where Yt is the macro-financial variable of interest, and fk
t´1 is the k-th latent common

factor at t ´ 1. From this regression we estimate tâY , γ̂Y,k
t´1u.

14 Using these coefficients and

the realized factors f̂k
t´1,t at t,

15 we construct the one-step-ahead forecast of Y :

Ỹt ” EtrYt`1|fk
t s “ âY `

10
ÿ

k“1

γ̂Y,k
t´1f̂

k
t´1,t. (4.3)

We then test the predictive power of the common factors with the following regression:

Yt`1 “ m ` ξỸt ` et`1. (4.4)

14In estimating the coefficients at each period, we winsorize Yt at the 1% and 99% levels to ensure stability,
particularly during episodes such as COVID-19 when macro series display extreme values. In the prediction
stage, Yt`1 is not winsorized. For nowcasting, Yt´1 is winsorized while Yt is not.

15We use the out-of-sample realized factor returns f̂t´1,t from (2.13).
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For nowcasting, the procedure is similar but the timing differs. We estimate the weights

using data up to t ´ 1, and then use contemporaneous factor realizations to predict Yt:

Yt´1 “ aY,now `

10
ÿ

k“1

γY,k,now
t´1 fk,C

t´1 ` εY,nowt´1 , (4.5)

Ỹ now
t ” âY,now `

10
ÿ

k“1

γ̂Y,k,now
t´1 f̂k

t´1,t, (4.6)

Yt “ mnow
` ξnowỸ now

t ` enowt . (4.7)

Table 9 reports the regression results. Panel A shows that the common factors have signif-

icant forecasting power for macroeconomic variables, especially core inflation, consumption

growth, and industrial production growth. Panel B shows that the factors are most effec-

tive in nowcasting financial variables such as HKM, ∆pV IXq, and ∆pFINUq. Overall, the

results suggest that the common factors contain both forward-looking information about

macroeconomic activity and contemporaneous information about financial conditions.

5 Pricing the Joint Cross-Section of Returns

In this section, we evaluate the performance of the regressed-PCA common factors in pricing

the joint cross-section of returns. Specifically, we examine the factor model’s in-sample fit

and out-of-sample predictability, assess the Sharpe ratios of the factors, and analyze the

significance of pure-alpha strategies, i.e., portfolios with zero loadings on the common factors.

5.1 Performance of the Common Factor Model

We evaluate the in-sample and out-of-sample performance of the common factor model in

(2.7), using the metrics introduced in Section 2.3.
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Table 10 summarizes the results, showing that the common factor model provides strong

explanatory and predictive power for the joint cross-section of returns. First, the common

factors explain a large share of the in-sample variation in characteristic-managed portfolios

across asset classes: with ten factors, the R2
K values exceed 65%. Second, the ten-factor

model delivers an in-sample fit of 16.35% for the joint cross-section of individual asset returns,

11.51% for stocks, 33.99% for corporate bonds, and 19.53% for options. Third, the model also

exhibits strong out-of-sample predictability: the realized common factors explain 27.95% of

the variation in the joint cross-section of next-period returns, as measured by R2
f,O. Notably,

the first common factor alone accounts for most of the explained variation, with an out-of-

sample fit of 25.96%.

Moreover, the common factor model often delivers stronger out-of-sample predictive

power than the asset-class-specific latent factor model in (2.4), even though the latter is

estimated separately for each market. For instance, Table A7 shows that the out-of-sample

R2
f,O values for options under the option-specific model are frequently negative, largely due

to outliers in option returns. By contrast, the common factor model has positive predictive

power, as reported in Table 10. The comparison highlights that joint estimation uncovers

common variation overlooked by asset-class-specific models, improving return predictability.

We also consider an alternative definition of out-of-sample realized factor returns,

f̂A
t´1,t “ B̂1

t´1pZ
1
t´1Zt´1q

´1Z 1
t´1Rt “ B̂1

t´1R̃t. (5.1)

Different from f̂t´1,t in (2.13), f̂A
t´1,t does not abstract from the pricing error term α̂. Table

A6 reports the out-of-sample fit of f̂A. Compared with Table 10, the alternative factors

show weaker out-of-sample fit for the joint cross section, suggesting that removing pricing

errors from the factors improves their ability to capture the common variation in returns.
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5.2 Risk Premia and Pricing Errors of the Common Factors

Do the regressed-PCA common factors carry significant risk premia? To address this ques-

tion, we compute in-sample and out-of-sample Sharpe ratios of the regressed-PCA factors.

Table 11 reports the results. The regressed-PCA factors exhibit economically large in-

sample premia. For example, the first regressed-PCA common factor achieves an annualized

in-sample Sharpe ratio of 0.83. Out of sample, the Sharpe ratio of the first factor is 0.18

when realizations are defined using f̂t´1,t in (2.13), which removes the pricing error term

α̂. In comparison, when we use the alternative definition f̂A
t´1,t in (5.1), the out-of-sample

Sharpe ratio rises to 0.49. The comparison suggests that the out-of-sample premium for the

first factor is largely attributable to the pricing error component.

Despite the sizable premia and strong fit, the regressed-PCA common factors do not

fully span the cross-section of asset returns. To investigate the pricing error components, we

evaluate the performance of the pure-alpha strategies, i.e., portfolios with zero loadings on

the common factors that isolate residual pricing errors.

Table 12 reports the annualized means, standard deviations, and Sharpe ratios of the

pure-alpha strategies. A portfolio constructed to have zero loading on the first regressed-

PCA common factor delivers a high out-of-sample Sharpe ratio of 2.14. Expanding the set

of factors does not eliminate this effect: even after controlling for all ten common factors,

the pure-alpha portfolio continues to achieve a Sharpe ratio close to 2. The table further

shows that average returns on pure-alpha portfolios decline as more factors are included,

but portfolio volatility falls by an even greater margin, which drives a U-shaped pattern in

Sharpe ratios. The decline in volatility indicates that the common factors effectively capture

substantial shared variation across stocks, corporate bonds, and options. Nevertheless, the

consistently high Sharpe ratios of the pure-alpha strategies reveal that a sizeable portion of

the cross-sectional returns remains unexplained by the common factors.
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We next turn to a formal model specification test of pricing errors. We test the null

hypothesis αp¨q “ 0 using the weighted bootstrap procedure of Chen, Roussanov, and Wang

(2023). Figure 4 reports the coefficient estimates and their 95% confidence intervals with ten

factors included. Despite controlling for many common factors, several characteristics still

load significantly in αp¨q, generating nontrivial pricing errors. The test also helps identify the

sources of the pure-alpha strategy’s performance. Stock characteristics contribute modestly

to the pure-alpha portfolio returns, consistent with the mature and liquid nature of equity

markets where anomalies are quickly arbitraged away. Corporate bond characteristics also

play a limited role, in line with recent evidence (e.g., Dickerson, Robotti, and Rossetti, 2023)

showing that many bond return anomalies diminish once microstructure noises are addressed.

In contrast, most of the option characteristics make significant contributions. The findings

suggest that persistent anomalies in the option market help explain the strong performance

of the pure-alpha strategy.

6 MVE Portfolios Across Asset Classes

In this section, we construct both in-sample and out-of-sample conditional mean-variance

efficient (MVE) portfolios from individual securities jointly across asset classes. To address

dimensionality and estimation noise, we employ characteristic-managed portfolios and im-

pose a common factor structure that makes the MVE problem tractable. We evaluate the

performance of the resulting portfolios, and discuss their hedging properties. In particular,

we examine the extent to which the MVE portfolios hedge against common factors, and

analyze the sources of hedging.
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6.1 MVE Portfolio Construction

The conditional MVE portfolio choice problem at time t is defined as

max
wt

"

w1
tEt rRt`1s ´

1

2
w1

t Vart rRt`1swt

*

, (6.1)

where wt denotes the portfolio weights, and Rt`1 the individual excess returns. The solution

for the optimal weights is wt “ Vart rRt`1s
´1Et rRt`1s.

However, applying the MVE portfolio choice directly to individual assets is challenging,

because it requires estimating a high-dimensional sample covariance matrix. With thousands

of assets but relatively limited time series, the estimation of covariance becomes unstable. In

addition, many securities suffer from unbalanced panels and limited trading histories, with

the problem most pronounced for options due to their short maturities.16

We address this challenge by employing characteristic-managed portfolios. Assuming that

the idiosyncratic variance unexplained by characteristics is homoskedastic and uncorrelated

across individual assets, the portfolio choice problem in (6.1) can be expressed as

max
wt

"

w1
tZtEtrR̃t`1s ´

1

2
w1

tZt VartrR̃t`1sZ
1
twt ´

σ2
t

2
w1

twt

*

, (6.2)

with R̃t`1 “ pZ1
tZtq

´1Z1
tRt`1. The solution for the optimal weights is

wt “ ZtpZ
1
tZtq

´1
”

VartrR̃t`1s ` σ2
t pZ1

tZtq
´1

ı´1

EtrR̃t`1s, (6.3)

This reformulation translates the optimal portfolio choice problem over individual assets

into a much simpler problem over a small set of characteristic-managed portfolios. Instead

of estimating the mean and covariance of individual asset returns, we estimate the moments

from managed portfolio returns R̃t`1.

To further mitigate estimation noise, we impose a common factor structure when esti-

16Alternative approaches based on large-dimensional covariance estimators (e.g., Ledoit and Wolf, 2017)
are less suited to settings with unbalanced panels across asset classes. Our method complements this line of
work by directly incorporating firm characteristics into portfolio construction, thereby providing conditional
information that improves the approximation of MVE portfolios.
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mating the covariance of returns. Under the common factor model in (2.7), the covariance

matrix of characteristic-managed portfolios can be approximated as

VartrR̃t`1s “ BVart rft`1sB
1, (6.4)

where ft`1 denotes the common factors, and B the associated loadings. By doing so, we

are able to consistently estimate the MVE portfolios both in-sample and out-of-sample.

The conditional idiosyncratic variance is estimated in-sample as σ̂2
t “ 1

Nt´1

řNt

i“1pRi,t`1 ´

Z 1
i,tR̃t`1q

2, while the out-of-sample estimator uses the previous period’s estimate.17

For comparison, we also construct MVE portfolios separately for each asset class. The

relevant covariance matrices are approximated using asset-class-specific latent factors esti-

mated from (2.4).

To examine the underlying sources of performance and properties of the MVE portfolios,

we decompose the conditional MVE portfolio in (6.3) into their asset-class constituents

w1
tRt`1 “ b̃

1

tR̃t`1 “ b̃
1

Js,tR̃
s

t`1 ` b̃
1

Jb,tR̃
b

t`1 ` b̃
1

Jo,tR̃
o

t`1, (6.5)

where b̃t “ rb̃
1

Js,t, b̃
1

Jb,t, b̃
1

Jo,ts
1 and R̃t`1 “ rR̃

s1

t`1, R̃
b1

t`1, R̃
o1

t`1s
1.

6.2 Performance and Properties of the MVE Portfolio

Panel (i) of Table 13 reports the annualized Sharpe ratios of MVE portfolios constructed

using the first ten regressed-PCA factors to estimate VartrR̃t`1s. The joint MVE portfolio

across the three asset classes achieves a Sharpe ratio of 4.22, which is significantly higher

than the Sharpe ratios of the asset-class-specific MVE portfolios. Within the MVE portfolio,

stock and option constituents have relatively higher Sharpe ratios compared to the corporate

bond’s.

17Imposing the common factor structure reduces the dimensionality problem, but may cause the infor-
mation loss in the estimation. As a robustness check, we also estimate the covariance matrix directly with
characteristic-managed portfolio returns. The in-sample results are reported in Table 14.
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Next, we turn to the out-of-sample performance of the joint MVE portfolios. Figure 5

presents the Sharpe ratios of out-of-sample MVE portfolios with the number of latent factors

K ranges from 1 to 20. The values are summarized in Table A12. The Sharpe ratios of joint

MVE portfolios are generally higher than those of asset-class-specific portfolios, and increase

with the number of factors. When K ą 12, the joint MVE portfolios outperform other asset-

class-specific portfolios, with Sharpe ratio of 2.73.

Why does the joint MVE portfolio outperform? We argue that its superior performance

stems from the ability to exploit cross-asset interactions that are not available in asset-

class-specific optimizations. To examine the sources of these gains, we decompose the joint

portfolio into its stock, corporate bond, and option constituents as in , and analyze their

mutual correlations as well as their exposures to common factors.

Panel (ii) of Table 13 shows that the joint MVE portfolio is strongly correlated with its

stock and option constituents, but not with its bond component. At the same time, the

bond constituent is significantly and negatively correlated with both the stock (-0.16) and

option (-0.32) constituents. This pattern indicates that bonds serve primarily as a hedge

against equity and option risk within the joint portfolio. By combining assets across classes,

the MVE portfolio reduces variance through internal hedging, thereby improving efficiency

relative to asset-class-specific portfolios.

Panel (iii) of Table 13 further shows that the asset-class constituents have offsetting

exposures to the latent common factors. For instance, the stock constituent is negatively

correlated with the first factor (-0.30), while the bond constituent is positively correlated

(0.36). Similarly, stock and option constituents load with opposite signs on the second

factor. As a result, the joint MVE portfolio as a whole has negligible correlations with the

common factors. The optimizer effectively chooses loadings that cancel out factor exposures,

producing a portfolio whose returns are orthogonal to the sources of systematic variation.

The results highlight the logic behind the mean–variance efficiency. Hedging a factor is
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attractive when the variance reduction from eliminating its exposure outweighs the loss in

expected return from giving up its risk premium. The result that the joint MVE portfolio

endogenously eliminates exposures to all common factors indicates that their contribution

to systematic variation dominates their associated premia. In this sense, the joint MVE

portfolio resembles a “pure-alpha” strategy: its returns are not driven by compensated

systematic factor exposures, but by cross-asset reallocations that hedge out such exposures

while exploiting idiosyncratic return anomalies.

We also observe the hedging properties in alternative construction methods using the co-

variance matrix measured directly from characteristic-managed portfolios (Table 14) and in

the out-of-sample MVE portfolios (Table A15). Across these specifications, the joint portfo-

lios consistently exhibit low correlations with common factors while maintaining high Sharpe

ratios, confirming that the elimination of systematic risk is a structural feature of the opti-

mal portfolio rather than an artifact of the in-sample covariance estimation. The persistence

of this pattern in the out-of-sample analysis is particularly notable, as it suggests that the

cross-asset pricing errors exploited by the strategy are stable and tradable. Together, the

conclusion is robust that the joint MVE portfolio acts as a ”pure-alpha” strategy, effectively

isolating mispricing by neutralizing under-priced factor risk.

7 Conclusion

In this paper, we find strong evidence of commonality across major asset classes. Using

the regressed-PCA approach, we extract joint latent factors directly from the universe of

individual securities spanning equities, corporate bonds, and options. Several of the latent

factors exhibit systematic features across markets, consistent with the presence of a common

factor structure. However, the common factor structure alone does not fully explain the

cross-sectional variation in returns. Portfolios with zero beta loadings on the latent factors
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deliver substantially higher Sharpe ratios, both in-sample and out-of-sample, indicating the

presence of return component orthogonal to common sources of variations.

To assess the portfolio implications of these findings, we construct mean–variance efficient

(MVE) portfolios jointly across asset classes using the regressed-PCA-implied conditional co-

variance. The joint MVE portfolios achieve high Sharpe ratios compared to those optimized

within a single market, owing to their ability to exploit cross-asset hedging that offset com-

mon factor exposures. The cross-market optimization also highlights the economic value of

the latent factors in improving portfolio efficiency and uncovering sources of mispricing.

These findings point to several promising directions for future research. A key ques-

tion concerns the origin of the “pure-alpha” returns. Determining whether this premium

reflects behavioral biases, intermediary constraints, or structural segmentation will help

clarify the broader mechanisms behind asset pricing and also market integration. More

broadly, the results challenge the conventional view that systematic risk alone governs the

risk–return tradeoff. Future work could explore alternative sources of priced risk, and extend

the regressed-PCA framework to high-frequency or international settings to better under-

stand how systematic and idiosyncratic risks jointly shape global return dynamics.
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Figures and Tables

Figure 1: Cumulative returns of the first five regressed-PCA common factors

This figure shows the cumulative returns of the first five regressed-PCA common factors, fC

(as defined in (2.7)).
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Figure 2: Regressed-PCA common factors vs. principal components of observable factors

This figure shows the correlations between the regressed-PCA common factors (Common),
fC (as defined in (2.7)), and the principal components (PCs) of the 18 observable factors: six
stock factors (MKTstock, SMB, HML, RMW , CMA, MOM), six corporate bond factors
(MKTbond, CRF , LRF , MOMB, REV ˚, LTR), and six option factors (MKToption, LEV EL,
SKEW , IV OL, ILQ, V OLDEV ). See Appendix A2 for details on these observable factors. The
top panel reports pairwise correlations, with darker squares indicating higher absolute correlation
values. The bottom panel plots the cumulative sums of the first regressed-PCA common factor
(red) and the first PC of the observable factors (blue), with both series standardized to have mean
zero and variance one.
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Figure 3: Estimates of the B coefficients for the first regressed-PCA common factor

This figure shows the estimated B coefficients (and 95% confidence intervals) for the first regressed-PCA
common factor, fC (as defined in (2.7)). The coefficients are obtained using the regressed-PCA method
described in Section 2.2, and the confidence intervals are computed using the weighted bootstrap procedure
of Chen, Roussanov, and Wang (2023).
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Figure 4: Estimates of the a coefficients in the common factor model with ten factors

This figure shows the estimated a coefficients (and 95% confidence intervals) in the common factor
model (as defined in (2.7)) with ten factors. The coefficients are obtained using the regressed-PCA method
described in Section 2.2, and the confidence intervals are computed using the weighted bootstrap procedure
of Chen, Roussanov, and Wang (2023).
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Figure 5: Out-of-sample Sharpe ratios of joint and asset-class MVE portfolios

The figure reports out-of-sample Sharpe ratios for the joint MVE portfolios (solid line), estimated using
the common factor model in (2.7), and for the asset-class MVE portfolios (dashed lines), estimated using
factor model in equation (2.4) for each asset class separately. The number of factors K ranges from 1 to 20.
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Table 1: Summary statistics of monthly returns on stocks, corporate bonds, and options

No. Obs. Unique firms Min No. Obs. Mean Std P10 P25 P50 P75 P90

Stock 738,518 8,082 2,987 1.02% 17.42% -14.29% -5.98% 0.43% 6.75% 15.32%

CorpBond 208,652 927 386 0.50% 3.56% -1.66% -0.34% 0.34% 1.30% 2.94%

Option 760,836 5,052 1,723 -0.61% 6.96% -6.41% -3.39% -1.20% 1.32% 5.83%

This tables reports the summary statistics of monthly returns on stocks, corporate bonds, and options used throughout the
paper. The sample period is from July 2004 to December 2021. The columns represent the number of monthly observation of
individual assets, number of unique firms covered through the sample period, the minimum number of observations in each
period, the mean of the return, the standard deviation, and 10th percentile, lower quartile, median, upper quartile and 90th
percentile of the return distribution, respectively.
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Table 2: Correlations between regressed-PCA common factors and observable factors

Common 1 2 3 4 5 6 7 8 9 10

MKTstock 0.48*** 0.00 0.22*** 0.17** -0.45*** -0.19*** -0.11 0.20*** 0.04 -0.10

SMB 0.35*** -0.04 0.21*** 0.02 -0.20*** 0.01 -0.12* 0.25*** 0.05 -0.19***

HML 0.32*** -0.19*** 0.21*** 0.02 0.10 -0.09 -0.11* 0.04 0.08 -0.20***

RMW -0.07 0.02 -0.18*** 0.01 0.10 0.03 0.05 -0.20*** 0.09 0.13*

CMA 0.02 -0.06 -0.13* -0.09 0.24*** 0.15** -0.05 0.02 -0.06 -0.13*

MOM -0.64*** 0.08 -0.16** 0.00 0.17** -0.14** -0.16** 0.09 0.05 0.14**

MKTbond 0.41*** 0.13* -0.01 0.58*** -0.39*** -0.09 0.20*** 0.13* -0.11 0.05

CRF 0.60*** -0.25*** 0.26*** 0.14** -0.35*** -0.21*** -0.09 0.14** 0.02 -0.10

LRF 0.42*** 0.08 0.13* 0.37*** -0.04 0.06 0.20*** -0.10 -0.18*** 0.07

LTR 0.46*** -0.06 0.33*** 0.24*** -0.09 0.31*** 0.16** -0.00 0.04 -0.13*

MOMB -0.49*** -0.05 -0.27*** -0.36*** 0.06 -0.32*** 0.02 0.01 -0.01 0.04

REV ˚ 0.21*** 0.19*** -0.16** 0.17** -0.13* 0.22*** -0.02 0.19*** 0.15** -0.06

MKToption 0.35*** 0.23*** 0.34*** 0.28*** -0.27*** -0.23*** -0.11 0.15** 0.26*** 0.07

LEV EL 0.36*** 0.25*** 0.27*** 0.48*** -0.35*** -0.18*** -0.08 0.14** 0.17** 0.17**

SKEW 0.33*** 0.16** 0.21*** 0.39*** -0.29*** -0.06 -0.01 -0.03 0.18** 0.16**

IV OL 0.19*** 0.17** 0.21*** 0.07 -0.18*** -0.17** -0.16** -0.02 0.17** -0.02

ILQ 0.21*** -0.01 0.15** 0.02 -0.18*** -0.18** -0.21*** 0.19*** 0.05 -0.14**

V OLDEV 0.09 0.24*** 0.07 0.10 -0.21*** -0.08 -0.08 -0.26*** 0.28*** -0.19***

This table reports the correlations between the regressed-PCA common factors, fC (as defined in (2.7)), and
18 observable factors: six stock factors (MKTstock, SMB, HML, RMW , CMA, MOM), six corporate bond
factors (MKTbond, CRF , LRF , BONDMOM , REV ˚, LTR), and six option factors (MKToption, LEV EL,
SKEW , IV OL, ILQ, V OLDEV ). See Appendix A2 for details on these observable factors. ***: p-valueă 1%;
**: p-valueă 5%; *: p-valueă 10%.
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Table 3: Regression of regressed-PCA common factors on observable factors

Common 1 2 3 4 5 6 7 8 9 10

(Intercept) 0.03*** 0.04*** 0.02** -0.01 0.02** 0.05*** 0.03*** 0.02*** 0.03*** 0.04***

(2.83) (3.30) (2.24) (-0.67) (2.51) (8.24) (3.23) (3.55) (5.59) (6.68)

MKTstock 0.02 0.28 0.36 -0.57** -0.85*** -0.04 -0.62* -0.03 -0.13 -0.18

(0.07) (0.77) (0.76) (-2.09) (-2.66) (-0.19) (-1.95) (-0.17) (-0.58) (-1.13)

SMB 0.95** 0.76 0.54 -0.35 -0.30 0.32 -0.12 0.65** 0.17 -0.18

(2.01) (1.38) (1.57) (-0.93) (-0.74) (1.01) (-0.39) (2.12) (0.57) (-0.76)

HML -0.03 -0.83* 0.87*** 0.98*** 1.04*** -0.87*** -0.69* 0.19 0.35 -0.51

(-0.08) (-1.87) (2.98) (2.74) (2.59) (-2.77) (-1.73) (0.81) (1.37) (-1.60)

RMW 1.12** -0.54 -0.49 0.04 -0.20 0.41 0.22 -0.93** 0.48 0.37

(2.12) (-0.90) (-0.96) (0.11) (-0.42) (1.10) (0.44) (-2.28) (1.35) (1.31)

CMA 0.30 0.82 -2.01*** -0.07 0.48 0.75** -0.40 -0.14 -0.46 -0.56

(0.43) (1.21) (-3.92) (-0.11) (1.08) (1.99) (-0.80) (-0.34) (-1.00) (-1.12)

MOM -1.50*** -0.27 -0.06 1.28*** 0.35 -0.57*** -0.74 0.19 0.13 -0.06

(-5.65) (-0.86) (-0.20) (4.87) (1.31) (-2.99) (-1.59) (0.97) (0.77) (-0.38)

MKTbond -0.59 -0.15 -3.53*** 3.90*** -2.65*** -1.92*** 1.81*** 1.31*** -0.67 -0.84

(-0.63) (-0.13) (-4.03) (5.58) (-3.94) (-3.15) (3.45) (2.84) (-0.96) (-1.43)

CRF 1.87*** -2.85*** -0.56 0.02 -0.71 -1.91*** -0.01 -0.02 -0.21 -0.06

(4.18) (-4.33) (-0.92) (0.06) (-1.15) (-3.62) (-0.02) (-0.08) (-0.55) (-0.24)

LRF 3.47*** 0.40 1.85* 1.29 3.58*** -0.55 -0.13 -1.79** -1.79 1.26*

(3.00) (0.28) (1.65) (1.10) (2.92) (-0.47) (-0.13) (-2.34) (-1.58) (1.70)

LTR 1.27 -2.00 1.75** -0.02 -0.54 4.64*** 2.12** -0.21 1.09 -1.41*

(0.94) (-1.54) (2.07) (-0.02) (-0.63) (5.83) (2.26) (-0.29) (1.32) (-1.82)

MOMB -0.86 -0.68 -1.67*** -1.64** -1.39** -1.88** 1.46** 0.42 0.06 0.12

(-1.36) (-0.79) (-2.60) (-2.42) (-2.38) (-2.47) (2.16) (0.80) (0.13) (0.41)

REV ˚ 0.84 1.26 -1.74 0.46 -0.11 1.33* -0.03 1.26*** 1.00** -0.22

(0.88) (1.38) (-1.23) (0.81) (-0.16) (1.75) (-0.07) (2.88) (2.16) (-0.73)

MKToption 3.07* 3.21 3.88** -2.53 2.97* -2.86* 2.24 2.49 3.60** -0.52

(1.72) (1.22) (2.36) (-1.25) (1.74) (-1.68) (1.28) (1.44) (2.47) (-0.50)

LEV EL -0.73 2.98* 0.70 2.75*** -0.97 -0.41 -0.92 1.90*** -0.76 1.93***

(-0.65) (1.84) (0.81) (3.35) (-1.47) (-0.53) (-1.02) (3.02) (-1.10) (4.06)

SKEW 0.42 -3.83 -0.16 0.06 0.20 4.47*** 0.34 -7.66*** 1.79 1.60

(0.17) (-1.24) (-0.07) (0.03) (0.14) (2.59) (0.15) (-4.34) (1.21) (1.60)

IV OL -0.17 0.35 0.04 -0.32 -0.42** -0.20 -0.37 -0.42* 0.09 0.26

(-0.63) (0.95) (0.13) (-1.48) (-1.99) (-0.66) (-1.57) (-1.79) (0.45) (1.06)

ILQ 0.20 -0.83* -0.17 0.13 0.27 0.41 -0.24 0.17 -0.27 -0.43**

(0.71) (-1.89) (-0.49) (0.67) (1.42) (1.60) (-0.84) (0.87) (-1.51) (-2.54)

V OLDEV -0.26 0.60 -0.48* 0.30 -0.38 -0.16 -0.19 -1.03*** 0.60** -1.12***

(-1.01) (1.58) (-1.80) (0.89) (-0.92) (-0.55) (-0.55) (-3.15) (2.55) (-4.22)

R2
adj 57.40% 29.26% 31.20% 51.55% 35.89% 45.21% 18.55% 33.28% 19.18% 24.13%

No. Obs. 210 210 210 210 210 210 210 210 210 210

This table reports the regressions of the regressed-PCA common factors, fC (as defined in (2.7)), on 18 observ-
able factors: six stock factors (MKTstock, SMB, HML, RMW , CMA, MOM), six corporate bond factors
(MKTbond, CRF , LRF , BONDMOM , REV ˚, LTR), and six option factors (MKToption, LEV EL, SKEW ,
IV OL, ILQ, V OLDEV ). See Appendix A2 for details on these observable factors. We report the t-statistics using
Newey-West standard errors with four lags in parentheses. ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%.
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Table 4: Correlations between common and asset-class-specific regressed-PCA factors

Factors Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 Stock 6 Stock 7 Stock 8 Stock 9 Stock 10

Common 1 0.85*** 0.08 0.12* -0.14** 0.21*** 0.19*** 0.01 0.03 0.01 0.03

Common 2 -0.09 0.04 -0.02 -0.07 0.11 -0.13* -0.10 -0.07 -0.04 -0.04

Common 3 -0.46*** 0.37*** 0.38*** -0.14** 0.24*** 0.27*** -0.01 0.05 -0.00 0.03

Common 4 -0.02 0.42*** -0.43*** -0.21*** 0.15** 0.18*** 0.09 0.05 -0.00 0.13*

Common 5 0.20*** 0.69*** 0.13* 0.27*** -0.32*** -0.34*** -0.07 0.01 -0.10 -0.04

Common 6 0.05 -0.35*** 0.24*** 0.04 -0.27*** 0.05 0.22*** 0.04 -0.08 0.09

Common 7 -0.01 0.22*** 0.15** -0.14** -0.36*** 0.15** 0.28*** -0.08 0.11 0.02

Common 8 0.03 -0.06 0.63*** 0.01 0.24*** -0.17** -0.04 0.04 -0.05 0.08

Common 9 0.00 0.00 -0.17** 0.78*** 0.16** 0.30*** 0.05 0.05 -0.01 -0.04

Common 10 0.01 -0.11 -0.26*** -0.28*** -0.16** -0.17** -0.09 0.23*** -0.13* 0.01

Factors CorpBond 1 CorpBond 2 CorpBond 3 CorpBond 4 CorpBond 5 CorpBond 6 CorpBond 7 CorpBond 8 CorpBond 9 CorpBond 10

Common 1 0.62*** 0.32*** 0.24*** 0.00 0.06 0.14** 0.04 -0.11 0.07 0.10

Common 2 -0.53*** 0.30*** 0.02 -0.04 0.11 -0.00 0.12* -0.11* 0.01 0.09

Common 3 0.51*** 0.09 -0.28*** 0.01 0.09 -0.19*** 0.14** 0.05 -0.18*** -0.00

Common 4 -0.15** 0.61*** 0.31*** 0.20*** -0.01 0.05 0.06 0.01 -0.11 -0.09

Common 5 -0.11* -0.07 -0.47*** -0.00 -0.06 0.02 0.24*** 0.14* 0.07 -0.10

Common 6 -0.05 0.39*** -0.38*** -0.25*** 0.07 -0.26*** 0.02 -0.07 0.26*** 0.26***

Common 7 -0.04 -0.37*** 0.55*** -0.22*** 0.12* -0.28*** 0.28*** 0.03 0.15** 0.15**

Common 8 -0.09 -0.03 0.13* 0.24*** 0.03 -0.05 -0.20*** -0.02 -0.10 0.12*

Common 9 0.01 -0.16** -0.03 0.11 -0.16** -0.09 -0.26*** -0.19*** 0.01 0.02

Common 10 0.06 -0.27*** -0.14** 0.51*** 0.14** 0.06 0.13* -0.20*** 0.20*** 0.13*

Factors Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 Option 8 Option 9 Option 10

Common 1 0.44*** 0.14** 0.07 -0.23*** 0.05 0.19*** -0.08 -0.14** -0.09 0.06

Common 2 0.80*** 0.05 0.05 0.16** 0.01 -0.06 0.02 0.02 0.03 -0.05

Common 3 0.24*** 0.25*** 0.08 -0.12* -0.19*** -0.07 -0.06 0.13* -0.01 0.10

Common 4 -0.27*** 0.49*** 0.46*** -0.22*** -0.07 0.05 -0.04 -0.06 0.04 0.04

Common 5 -0.06 -0.03 -0.08 0.49*** -0.17** 0.05 0.12* -0.03 -0.03 0.02

Common 6 -0.10 0.61*** -0.48*** 0.14** -0.02 0.05 -0.05 0.10 -0.05 -0.09

Common 7 0.04 0.31*** -0.33*** -0.02 0.10 -0.01 0.05 -0.09 0.10 -0.05

Common 8 -0.08 0.12* 0.42*** 0.35*** 0.39*** 0.03 -0.11* -0.03 -0.08 0.00

Common 9 0.06 0.25*** 0.08 -0.08 0.27*** -0.20*** 0.06 -0.00 0.05 -0.04

Common 10 0.06 0.29*** 0.17** 0.25*** -0.12* 0.05 0.15** 0.02 0.12* -0.08

This table reports the correlations between regressed-PCA common factors and regressed-PCA asset-class-specific factors for stocks, corporate bonds, and
options. We use the regressed-PCA method introduced in Section 2.2 to extract the common factors as defined in (2.7) and the asset-class-specific factors
by applying (2.4) separately to each asset class. ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%.
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Table 5: Contribution of asset-class constituents to the regressed-PCA common factors

Stock CorpBond Option

Common1 0.89 0.74 0.51

[0.57] [0.29] [0.14]

Common2 0.25 0.61 0.81

[0.03] [0.33] [0.64]

Common3 0.71 0.60 0.40

[0.52] [0.36] [0.13]

Common4 0.67 0.72 0.70

[0.29] [0.37] [0.35]

Common5 0.84 0.53 0.53

[0.67] [0.21] [0.12]

Common6 0.54 0.66 0.78

[0.23] [0.32] [0.45]

Common7 0.56 0.76 0.47

[0.24] [0.57] [0.20]

Common8 0.72 0.33 0.66

[0.54] [0.11] [0.36]

Common9 0.88 0.35 0.41

[0.70] [0.11] [0.19]

Common10 0.52 0.62 0.44

[0.30] [0.45] [0.25]

This table reports the correlation and variance decomposition of the asset-class constituents of the first
ten regressed-PCA common factors. The asset-class constituents are denoted by f̂A, defined in (4.1), where
A P tStock,CorpBond,Optionu. For each common factor, the first row shows the correlations between the

common factor and its asset-class constituents, ρpf̂A, f̂
Cq. The second row shows the variance decomposition

of the asset-class constituents in square brackets, defined as Covpf̂A,f̂C
q

Varpf̂Cq
.



43

Table 6: Correlations between regressed-PCA common factors and macroeconomic and
financial variables

Common 1 2 3 4 5 6 7 8 9 10

Core inflation -0.05 -0.13* 0.16** -0.05 -0.00 -0.14** -0.08 -0.00 0.03 0.01

∆c -0.06 -0.10 0.48*** 0.06 -0.03 -0.08 -0.23*** 0.11 -0.16** -0.02

∆INDPRO -0.22*** -0.17** 0.40*** 0.03 0.05 -0.03 -0.21*** 0.05 -0.15** -0.01

∆pEPUq -0.16** 0.08 -0.36*** -0.17** 0.13* 0.05 0.17** -0.14** 0.03 0.12*

∆pFFRq 0.01 -0.25*** 0.14** 0.09 -0.22*** -0.38*** -0.11 0.03 -0.14** -0.04

∆pTERMq 0.22*** -0.07 0.22*** -0.19*** 0.23*** 0.10 -0.13* -0.10 0.10 -0.15**

∆pDEF q -0.08 -0.17** 0.00 -0.21*** -0.05 -0.19*** 0.12* -0.05 0.11 0.17**

∆pV IXq -0.40*** -0.17** -0.07 -0.29*** 0.46*** 0.09 0.06 -0.00 -0.03 -0.05

∆pFINUq -0.41*** -0.17** -0.18** -0.30*** 0.15** 0.17** 0.04 -0.21*** 0.07 -0.15**

∆pMACUq -0.28*** 0.04 -0.14** -0.21*** 0.17** 0.25*** 0.12* -0.11 0.13* 0.02

HKM 0.48*** -0.15** 0.29*** 0.04 -0.33*** -0.17** -0.10 0.12* 0.00 -0.16**

LIQ -0.00 0.00 0.04 0.13* -0.02 -0.06 -0.25*** 0.07 -0.09 -0.09

This table reports the correlations between the regressed-PCA common factors, fC (as defined in (2.7)),
and a set of macroeconomic and financial variables. The macroeconomic and financial variables include:
core inflation; consumption growth (∆c); growth in industrial production (∆INDPRO); change in eco-
nomic policy uncertainty, ∆pEPUq; change in the federal funds rate, ∆pFFRq; change in the term
spread, ∆pTERMq; change in the credit spread, ∆pDEF q; change in the VIX index, ∆pV IXq; change
in financial uncertainty, ∆pFINUq; change in macroeconomic uncertainty, ∆pMACUq; the intermediary
capital factor (HKM); and the liquidity factor (LIQ). See Section 4.2 for details on these variables. ***:
p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%.
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Table 7: Regression of regressed-PCA common factors on macroeconomic and financial vari-
ables

Common 1 2 3 4 5 6 7 8 9 10

Core inflation 0.02 -0.00 0.05 -0.06 0.06 -0.09* -0.03 0.01 0.10 0.07

(0.56) (-0.01) (1.0) (-0.92) (1.19) (-1.8) (-0.45) (0.15) (1.21) (1.06)

[0.00] [0.02] [0.02] [0.02] [0.00] [0.05] [0.01] [0.00] [0.08] [0.02]

∆c 0.07 0.21* 0.23** -0.01 -0.05 -0.03 -0.22 0.14 -0.21 -0.03

(0.93) (1.76) (2.3) (-0.06) (-0.45) (-0.2) (-1.44) (1.22) (-1.0) (-0.24)

[0.02] [0.03] [0.28] [0.01] [0.01] [0.01] [0.17] [0.06] [0.19] [0.01]

∆INDPRO -0.33*** -0.21 0.24* 0.00 0.05 0.17 0.03 -0.10 0.02 0.11

(-3.99) (-1.63) (1.68) (0.0) (0.49) (1.11) (0.23) (-0.71) (0.1) (0.89)

[0.12] [0.08] [0.20] [0.01] [0.02] [0.03] [0.11] [0.02] [0.10] [0.01]

∆pEPUq -0.03 0.15 -0.16** -0.05 0.04 -0.03 0.00 -0.01 -0.18 0.11

(-0.5) (1.64) (-2.21) (-0.66) (0.52) (-0.38) (0.03) (-0.1) (-1.51) (1.12)

[0.03] [0.04] [0.14] [0.05] [0.02] [0.01] [0.05] [0.06] [0.09] [0.09]

∆pFFRq -0.10 -0.21* -0.09 0.06 -0.11 -0.33** -0.05 -0.15* -0.06 -0.03

(-1.33) (-1.7) (-1.1) (0.65) (-1.32) (-2.28) (-0.5) (-1.95) (-1.07) (-0.44)

[0.02] [0.22] [0.02] [0.01] [0.07] [0.44] [0.03] [0.05] [0.11] [0.01]

∆pTERMq 0.18*** -0.07 0.18** -0.10 0.23*** -0.01 -0.20*** -0.18** 0.10 -0.11

(2.69) (-0.9) (2.45) (-1.32) (3.68) (-0.08) (-3.28) (-1.98) (1.3) (-1.29)

[0.10] [0.03] [0.12] [0.12] [0.15] [0.02] [0.17] [0.13] [0.09] [0.13]

∆pDEF q 0.01 -0.21 0.13* -0.15** -0.11 -0.21* 0.05 -0.02 0.13 0.14

(0.13) (-1.29) (1.65) (-2.03) (-1.42) (-1.87) (0.57) (-0.31) (1.56) (1.35)

[0.00] [0.16] [0.02] [0.15] [0.02] [0.18] [0.04] [0.01] [0.13] [0.16]

∆pV IXq -0.04 -0.17* 0.01 -0.25* 0.43*** -0.02 0.11 0.27* -0.08 -0.07

(-0.42) (-1.84) (0.13) (-1.72) (5.05) (-0.18) (1.12) (1.81) (-0.6) (-0.8)

[0.13] [0.13] [0.01] [0.27] [0.45] [0.01] [0.02] [0.15] [0.03] [0.04]

∆pFINUq -0.20*** -0.19* -0.13 -0.15 -0.22** 0.06 -0.09 -0.25** 0.02 -0.29***

(-2.68) (-1.8) (-1.61) (-1.09) (-2.35) (1.0) (-1.11) (-2.33) (0.2) (-2.95)

[0.17] [0.14] [0.04] [0.21] [0.05] [0.05] [0.01] [0.32] [0.02] [0.28]

∆pMACUq -0.22** 0.04 0.13 -0.03 0.08 0.18* 0.04 0.01 0.09 0.09

(-2.34) (0.36) (1.24) (-0.18) (0.9) (1.66) (0.33) (0.06) (1.05) (1.12)

[0.11] [0.02] [0.02] [0.07] [0.03] [0.15] [0.02] [0.04] [0.10] [0.02]

HKM 0.32** -0.20** 0.21 -0.18 -0.18** -0.02 0.07 0.24*** -0.02 -0.18*

(2.22) (-2.24) (1.59) (-1.44) (-2.36) (-0.11) (0.39) (2.79) (-0.22) (-1.69)

[0.29] [0.14] [0.12] [0.06] [0.18] [0.05] [0.02] [0.15] [0.01] [0.17]

LIQ -0.02 0.05 -0.03 0.04 0.08 -0.02 -0.26*** 0.03 -0.05 -0.09

(-0.2) (0.95) (-0.44) (0.3) (1.15) (-0.24) (-3.63) (0.45) (-0.62) (-1.18)

[0.01] [0.01] [0.00] [0.03] [0.01] [0.00] [0.35] [0.02] [0.05] [0.05]

R2
adj 38.60% 16.26% 32.41% 13.84% 28.48% 18.41% 9.62% 5.39% 2.60% 8.96%

No.Obs 210 210 210 210 210 210 210 210 210 210

This table reports the regressions of regressed-PCA common factors, fC (as defined in (2.7)), on a set of
macroeconomic and financial variables. The macroeconomic and financial variables include: core inflation;
consumption growth (∆c); growth in industrial production (∆INDPRO); change in economic policy uncer-
tainty, ∆pEPUq; change in the federal funds rate, ∆pFFRq; change in the term spread, ∆pTERMq; change in
the credit spread, ∆pDEF q; change in the VIX index, ∆pV IXq; change in financial uncertainty, ∆pFINUq;
change in macroeconomic uncertainty, ∆pMACUq; the intermediary capital factor (HKM); and the liquid-
ity factor (LIQ). See Section 4.2 for details on these variables. We report the t-statistics using Newey-West
standard errors with four lags in parentheses. The Shapley-Owen R2’s are in square brackets. The regressed
PCA factors and the macroeconomic variables are standardized using the time-series standard deviation. ***:
p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%.
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Table 8: Regression of the asset-class components of the first regressed-PCA common factor on macroe-
conomic and financial variables

Common1 - Stock Common1 - CorpBond Common1 - Option

Core inflation -0.01 0.02 0.07

(-0.11) (0.46) (0.58)

∆c -0.09 0.15* 0.27**

(-1.08) (1.72) (1.97)

∆INDPRO -0.30*** -0.15* -0.29**

(-2.74) (-1.86) (-2.48)

∆pEPUq 0.03 -0.16** 0.04

(0.44) (-2.35) (0.45)

∆pFFRq -0.07 0.01 -0.21**

(-1.02) (0.17) (-2.06)

∆pTERMq 0.12* 0.19*** 0.09

(1.86) (2.79) (1.08)

∆pDEF q -0.07 0.15*** -0.03

(-1.17) (2.99) (-0.23)

∆pV IXq 0.04 -0.03 -0.22**

(0.38) (-0.40) (-2.23)

∆pFINUq -0.16** -0.08 -0.23**

(-2.47) (-0.96) (-2.30)

∆pMACUq -0.19* -0.19** -0.07

(-1.82) (-2.19) (-0.56)

HKM 0.24** 0.38** 0.05

(2.19) (2.28) (0.58)

LIQ 0.02 -0.06 -0.03

(0.29) (-0.95) (-0.45)

R2
adj 24.42% 41.16% 22.89%

No.Obs 210 210 210

This table reports the regressions of the asset-class constituents of the first regressed-PCA common factors (as defined
in (4.1)) on a set of macroeconomic and financial variables. The macroeconomic and financial variables include: core
inflation; consumption growth (∆c); growth in industrial production (∆INDPRO); change in economic policy uncer-
tainty, ∆pEPUq; change in the federal funds rate, ∆pFFRq; change in the term spread, ∆pTERMq; change in the credit
spread, ∆pDEF q; change in the VIX index, ∆pV IXq; change in financial uncertainty, ∆pFINUq; change in macroeco-
nomic uncertainty, ∆pMACUq; the intermediary capital factor (HKM); and the liquidity factor (LIQ). See Section 4.2
for details on these variables. The regressed PCA factors and the macroeconomic variables are standardized using the
time-series standard deviation. t-statistics are reported in parentheses. The split regressed PCA factors and the macroe-
conomic variables are standardised using the time series standard deviation. We report the t-statistics using Newey-West
standard errors with four lags. For each variable, we highlight in bold the coefficient with the highest absolute value
that is statistically significant across the three regressions. ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%.
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Table 9: Forecasting and nowcasting of macro-financial variables with regressed-PCA factors

Panel A: Forecasting Panel B: Nowcasting

ξ (t) R2
adj ξnow (t) R2

adj

Core inflation 1.91 (6.35) 0.21 0.54 (1.88) 0.02

∆pFFRq 0.23 (2.48) 0.03 0.38 (4.03) 0.09

∆c 0.88 (2.11) 0.02 -0.09 (-0.28) -0.01

∆INDPRO 0.40 (1.89) 0.02 -0.00 (-0.01) -0.01

∆pMACUq 0.05 (1.06) 0.00 0.07 (1.15) 0.00

∆pDEF q 0.09 (0.98) -0.00 -0.12 (-1.59) 0.01

∆pTERMq 0.12 (0.89) -0.00 0.50 (4.42) 0.11

∆pFINUq 0.02 (0.42) -0.01 0.52 (5.66) 0.17

LIQ -0.02 (-0.16) -0.01 -0.01 (-0.19) -0.01

∆pV IXq -0.12 (-0.65) -0.00 0.17 (4.38) 0.11

∆pEPUq -0.08 (-1.24) 0.00 -0.03 (-0.30) -0.01

HKM -0.25 (-1.84) 0.02 0.84 (11.05) 0.45

This table reports the forecasting and nowcasting regressions of macro-financial variables using the regressed-PCA
common factors. Panel A tabulates the forecasting regression coefficients ξ in (4.4), and Panel B the nowcasting
regression coefficients ξnow in (4.7).
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Table 10: In-sample and out-of-sample performance (R2’s) of the common factor model

(i) All the returns on three asset classes
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 15.21 6.11 25.96 5.18 12.56
2 25.15 7.27 26.55 8.95 13.65
3 32.91 8.88 26.85 12.46 14.29
4 40.16 11.46 26.98 11.80 14.50
5 46.02 13.34 27.19 11.45 14.79
6 52.12 14.26 27.42 11.15 15.14
7 56.59 14.76 27.52 10.01 15.31
8 60.40 15.51 27.69 12.45 15.63
9 63.87 16.31 27.84 13.25 15.91
10 67.01 16.76 27.95 13.11 16.09
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 23.97 8.90 8.86 24.83

(ii) Stock Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 21.85 6.27 9.49 12.06 8.13
2 22.57 6.29 10.06 12.52 8.59
3 32.97 7.04 10.95 14.09 9.48
4 38.11 7.41 11.18 14.30 9.65
5 48.35 9.27 11.25 13.93 9.70
6 52.09 9.56 11.55 14.39 10.00
7 54.47 9.77 11.78 14.50 10.26
8 59.07 10.74 11.79 14.33 10.25
9 65.15 11.12 11.96 14.30 10.43
10 67.73 11.51 12.00 14.25 10.45
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 0.22 0.71 0.04 18.64

(iii) Corporate Bond Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1 13.45 11.21 2.40 ´27.78 ´6.20
2 23.70 11.58 0.52 ´31.78 ´12.08
3 32.58 13.74 2.14 ´27.16 ´11.54
4 40.98 23.30 2.85 ´27.23 ´11.93
5 45.08 27.79 4.46 ´27.98 ´9.35
6 49.94 29.35 11.29 ´19.45 ´1.63
7˚ 58.40 32.20 13.07 ´17.79 0.46
8 59.73 32.99 14.03 ´18.28 1.09
9 60.92 33.74 16.60 ´15.09 4.65
10 65.12 33.99 17.43 ´14.70 5.37
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 2.22 5.48 1.67 47.68

(iv) Option Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1 8.82 5.40 29.30 5.47 12.97
2˚ 29.73 7.66 29.93 9.38 14.59
3 33.15 9.97 30.10 12.94 15.12
4 41.88 13.76 30.20 12.26 15.30
5 44.07 15.35 30.41 11.92 15.48
6 54.30 16.76 30.50 11.49 15.54
7 57.40 17.26 30.56 10.28 15.56
8 62.69 17.81 30.74 12.82 15.99
9 65.20 19.00 30.83 13.61 16.20
10 67.97 19.53 30.94 13.46 16.41
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 28.55 9.12 11.24 27.80

This table reports the in-sample and out-of-sample performance of the common factor model in (2.7).
Panels report R2’s for (i) all returns, (ii) stocks, (iii) corporate bonds, and (iv) options. K is the number of
factors; ˚ marks the estimator of K that maximizes the ratio of adjacent eigenvalues. R2

K captures the vari-
ation explained in characteristic-managed portfolios by PCA factors. R2

R̃
is the R2 from the Fama–MacBeth

cross-sectional regression. R2 is the total in-sample R2 defined in (2.9). R2
O, R2

T,N,O, and R2
N,T,O measure

out-of-sample predictability, see (2.10) - (2.12). R2
f,O, R2

f,T,N,O, and R2
f,N,T,O assess out-of-sample fit based

on factors approximated by (2.13), see (2.14)–(2.16). All R2’s are reported in percentage terms.
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Table 11: Sharpe ratios of the regressed-PCA factors

(i) Common

1 2 3 4 5 6 7 8 9 10

In Sample 0.83 1.23 0.41 0.43 0.10 1.03 0.78 0.95 1.21 1.28

Out of Sample w/o α 0.18 1.46 0.06 0.92 -0.75 0.60 -0.11 -0.27 -0.05 0.04

Out of Sample w/ α 0.49 2.50 0.01 0.58 -0.25 0.09 -0.48 0.16 -0.08 -0.31

(ii) Stock

1 2 3 4 5 6 7 8 9 10

In Sample 0.47 0.09 0.24 0.30 0.16 0.11 0.12 0.54 0.26 0.39

Out of Sample w/o α -0.11 -0.11 0.48 -0.50 -0.02 0.39 -0.01 -0.02 -0.38 -0.05

Out of Sample w/ α 0.11 -0.32 -0.13 -0.14 0.22 0.29 0.12 -0.23 -0.06 -0.28

(iii) Corporate Bond

1 2 3 4 5 6 7 8 9 10

In Sample 0.01 0.51 0.25 0.24 0.47 0.23 0.63 0.05 0.01 0.75

Out of Sample w/o α -0.64 0.97 -0.38 -0.11 0.98 0.32 -0.11 0.60 -0.89 0.53

Out of Sample w/ α -0.73 0.76 -0.48 -0.07 1.03 0.14 -0.54 0.37 -0.80 0.76

(iv) Option

1 2 3 4 5 6 7 8 9 10

In Sample 1.37 2.30 0.20 1.29 1.35 0.41 0.35 1.55 0.74 1.73

Out of Sample w/o α 2.50 -0.48 -0.32 0.63 0.41 0.14 0.62 0.43 -0.29 1.03

Out of Sample w/ α 2.78 -0.42 -0.32 0.90 0.40 0.35 0.94 0.74 -0.20 1.13

This table reports the in-sample and out-of-sample Sharpe ratios of the regressed-PCA common factors (2.7)
in Panel (i), and regressed-PCA asset-class-specific factors (2.4) for stocks, corporate bonds, and options in
Panel (ii)-(iv), respectively. We show Sharpe ratios of two types of out-of-sample factors, the one excludes α
as in (2.13) , and the one does not as in (5.1). The reported Sharpe ratios are annualized, and those with
t-statistics greater than 2.0 are highlighted in bold print.
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Table 12: Out-of-sample performance of the pure-alpha strategy for the common factor
model

(i) All the returns on three asset classes
K µα σα SRα

1 7.50 3.50 2.14

2 3.33 3.25 1.02

3 3.29 3.18 1.03

4 3.05 3.20 0.95

5 3.07 3.20 0.96

6 3.06 3.03 1.01

7 3.61 2.94 1.23

8 3.27 2.36 1.39

9 3.26 2.16 1.51

10 3.52 1.79 1.96

(ii) Stock Returns
K µα σα SRα

1 0.27 0.72 0.37

2 0.18 0.66 0.28

3 0.24 0.60 0.39

4 0.29 0.63 0.45

5 0.32 0.60 0.52

6 0.25 0.62 0.41

7 0.26 0.53 0.49

8 0.36 0.62 0.58

9 0.54 0.64 0.85

10 0.51 0.62 0.82

(iii) Corporate Bond Returns
K µα σα SRα

1 0.71 0.67 1.06

2 ´0.51 0.97 ´0.52

3 ´0.50 0.99 ´0.51

4 ´0.42 1.01 ´0.42

5 ´0.39 1.00 ´0.39

6 ´0.49 1.06 ´0.46

7 ´0.31 1.13 ´0.28

8 ´0.24 0.94 ´0.26

9 ´0.21 0.75 ´0.28

10 ´0.12 0.70 ´0.17

(iv) Option Returns
K µα σα SRα

1 6.52 3.42 1.91

2 3.65 2.97 1.23

3 3.55 2.92 1.22

4 3.18 2.94 1.08

5 3.14 2.93 1.07

6 3.29 2.71 1.21

7 3.66 2.62 1.40

8 3.15 2.05 1.53

9 2.94 1.89 1.55

10 3.14 1.61 1.95

This table reports the out-of-sample performance of pure-alpha strategy in (2.17) for the common factor
model in (2.7). K denotes the number of factors specified. µα, σα and SRα are the annualized means (%),
standard deviations (%), and Sharpe ratios of the pure-alpha strategy.
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Table 13: In-sample Sharpe ratios and correlations of MVE portfolios with the
covariance matrix approximated by factors

(i) Sharpe ratios

Joint Stock CorpBond Option

Joint MVE and its constituents 4.22 2.08 1.05 2.81

Asset-class MVE - 2.98 1.58 2.64

(ii) Correlations between constituents in joint MVE

Joint Stock CorpBond Option

Joint - 0.50*** 0.03 0.76***

Stock - - -0.16** -0.03

CorpBond - - - -0.32***

(iii) Correlations between constituents in joint MVE and common factors

Joint Stock CorpBond Option

Common 1 -0.09 -0.30*** 0.36*** -0.08

Common 2 0.07 -0.18*** 0.00 0.19***

Common 3 -0.04 -0.09 0.07 -0.02

Common 4 -0.04 0.07 0.38*** -0.26***

Common 5 -0.02 -0.01 -0.23*** 0.09

Common 6 -0.02 0.03 -0.11 0.00

Common 7 -0.07 -0.05 -0.07 -0.01

Common 8 -0.08 -0.09 0.11 -0.08

Common 9 0.15** 0.13* -0.04 0.10

Common 10 0.10 0.12* 0.04 0.01

This table reports the in-sample performance of MVE portfolios constructed from the first ten
estimated regressed-PCA common factors (2.7) and the factor model in (2.4) for each asset class
separately. Panel (i) shows the Sharpe ratios of the joint MVE portfolio, its constituents, and the
asset-class MVE portfolios. Panel (ii) reports correlations among the constituents of the joint MVE
portfolio. Panel (iii) reports correlations between the constituents of the joint MVE portfolio and
the common factors. We approximate the covariance matrix of characteristic-managed portfolios
using (6.4).
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Table 14: In-sample Sharpe ratios and correlations of MVE portfolios with the co-
variance matrix estimated with characteristic-managed portfolios

(i) Sharpe ratios

Joint Stock CorpBond Option

Joint MVE and its constituents 8.04 3.12 1.52 4.67

Asset-class MVE - 4.24 2.37 4.90

(ii) Correlations between constituents in joint MVE

Joint Stock CorpBond Option

Joint - 0.40*** 0.07 0.63***

Stock - - -0.07 -0.33***

CorpBond - - - -0.33***

(iii) Correlations between constituents in joint MVE and common factors

Joint Stock CorpBond Option

Common 1 -0.00 -0.07 0.22*** -0.06

Common 2 0.21*** -0.10 -0.03 0.28***

Common 3 0.10 -0.10 -0.01 0.17**

Common 4 0.08 0.06 0.39*** -0.14**

Common 5 -0.02 -0.05 -0.30*** 0.16**

Common 6 0.07 -0.06 -0.38*** 0.28***

Common 7 0.06 -0.24*** 0.29*** 0.10

Common 8 0.09 -0.11* 0.15** 0.10

Common 9 0.27*** 0.22*** -0.15** 0.16**

Common 10 0.20*** 0.05 0.01 0.15**

This table reports the in-sample performance of MVE portfolios constructed from the first ten
estimated regressed-PCA common factors (2.7) and the factor model in (2.4) for each asset class
separately. Panel (i) shows the Sharpe ratios of the joint MVE portfolio, its constituents, and
the asset-class MVE portfolios. Panel (ii) reports correlations among the constituents of the joint
MVE portfolio. Panel (iii) reports correlations between the constituents of the joint MVE portfolio
and the common factors. We estimate the covariance matrix directly with characteristic-managed
portfolio returns.
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Appendix A1 Filters and Characteristics

This section describes the data filters and characteristics used to model returns on corporate

bonds and options. We also reference studies that apply these characteristics in empirical

work or detail their construction.

For corporate bonds, we use the dataset constructed by Dickerson, Robotti, and Rossetti

(2023) and apply the same set of filters. In particular, the authors impose two promi-

nent filtering criteria with respect to the issue size: (1) remove investment grade bonds of

less than $150 ($250) million outstanding prior to (after) November 2004, and (2) remove

high-yield bonds that have less than $100 ($250) million outstanding prior to (after) Septem-

ber 2016. Also, different from the WRDS bond database which the returns are truncated

at 100%, the authors adjust the returns that are over 100% with returns computed from

ICE quote database. Besides, the authors follow the standard data preparation procedure

to clean the corporate bond data.18 They collapse the transaction-level prices into daily

prices by taking the par volume-weighted average of intraday prices (Bessembinder, Kahle,

Maxwell, and Xu, 2008). They remove transaction records in TRACE Enhanced that are

canceled and adjust records that are subsequently corrected or reversed. They eliminate

bonds with non-standard transactions which are labeled as when-issued (WIS FL), locked-

in (LCKD IN IND), have special sales conditions (SPCL TRD FL), or have trading-

volume of less than $100,000.19 They also exclude bonds with non-standard issuance, i.e.,

bonds that are issued through private placement (private placement) or under the 144A rule

(rule 144a) and bonds that do not trade in US dollars. They further drop bonds that are

structured notes, mortgage backed or asset backed, agency backed, or equity linked, as well

as convertible bonds, bonds that trade under $5 or above $1000, bonds that have a floating

18See Dick-Nielsen (2009), Dick-Nielsen (2014), Nozawa (2017), and van Binsbergen and Schwert (2021)
19Dickerson, Robotti, and Rossetti (2023) mention that the volume filter of $100,000 can significantly

reduce the noises from potential retail trades.
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or zero coupon rate, and bonds that have less than one year to maturity. They restrict the

bond’s interest payment frequency between monthly and annual.

We use 26 characteristics for corporate bonds. The first 12 characteristics are on the

contract level, and the next 14 characteristics are on the stock level.

1. Bond age (age): Following Israel, Palhares, and Richardson (2017). Years since the

date the bond was issued.

2. Coupon (cpn): Following Chung, Wang, and Wu (2019). Coupon payment adjusted

for payment frequency.

3. Rating (rating): Numerical credit rating from 1 to 22, based on S&P rating and

Moody’s rating.

4. Issue size (issue size): The offering amount outstanding of the bond at issuance.

5. Duration (duration): Following Israel, Palhares, and Richardson (2017) and van

Binsbergen and Schwert (2021). The sensitivity of bond value to credit spread.

6. Spread (spread): The yield spread, defined as the yield-to-maturity in excess of the

one-month treasury yield.

7. Mom 6m (bond mom): Following Gebhardt, Hvidkjaer, and Swaminathan (2005a).

The most recent 6-2 cumulative bond returns, with a minimum period of 3 months.

8. Mom 6m Spread (spread mom): Following Kelly, Palhares, and Pruitt (2022). The

credit spread 6 months earlier minus current log spread.

9. Value-at-risk (V aR): Following Bai, Bali, and Wen (2019). The 2nd lowest credit

excess return (in excess of one-mo Treasury bill rate) over the past 24 months, with a

minimum of 12 months.
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10. Short-term reversal (bond strev): bond return reversal from Dickerson, Robotti,

Rossetti (2023)

11. Long-term reversal (bond ltrev): 48-minus-12-month reversal from Dickerson, Robotti,

Rossetti (2023)

12. Bond illiquidity (illiq): MMN-adjusted bond illiquidity as per Bao, Pan, and Wang

(2011) and Dickerson, Robotti, Rossetti (2023)

13. Tangibility (tan): Following Hahn and Lee (2009), defined as (0.715 × total receiv-

ables (RECT) + 0.547 × inventories (INVT) + 0.535 × property, plant and equipment

(PPENT) + cash and short-term investments (CHE)) / total assets (AT).

14. Total debt (debt): Defined as the sum of long-term debt and debt in current liabilities.

15. Debt-to-EBITDA (d2ebitda): Total debt divided by EBITDA.

16. Distance-to-default (DD): Merton model implied firm-specific distance to default,

following Gilchrist and Zakraǰsek (2012).

17-26. Book leverage (lev), Market beta (beta), Market capitalization (mktcap),

Book-to-market ratio (bm), Gross profitability (prof), Investment (invest),

Idiosyncratic volatility (idiovol), Stock momentum (mom), Operating lever-

age (ol), and Earnings-to-price ratio (e2p): The data on these stock-level char-

acteristics are from Freyberger, Höppner, Neuhierl, and Weber (2022). The above

stock-level characteristics are also included in a number of studies such as Gebhardt,

Hvidkjaer, and Swaminathan (2005b), Choi and Kim (2018), and Kelly, Palhares, and

Pruitt (2022) to examine the effect of stock on corporate bond pricing.

For options, we apply the following filters. The option price is defined as the midpoint

of the bid and ask quotes. First, to match the stock sample, we include only options on
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common stocks. Second, to reduce microstructure noise, we keep options where the bid price

is positive, the bid is below the ask, the midpoint is at least $0.125, and the bid–ask spread is

between the minimum tick size ($0.05 for options priced below $3 and $0.10 otherwise) and

$5. Third, we retain only at-the-money options that expire in 1–12 months, have absolute

delta between 0.375 and 0.625 and with positive trading volume at time t, focusing on the

most liquid contracts. Fourth, we keep standard options that expire on the third Friday of

the month, have non-missing and positive implied volatility, and have non-missing deltas

between –1 and 1. Fifth, because equity options are American style, we control for early

exercise by dropping options with a low time value share— F´V
F

ă 5%—where F is the

option price and V is intrinsic value: maxpS ´ K, 0q for calls and maxpK ´ S, 0q for puts

(Frazzini and Pedersen, 2021). Finally, we impose standard no-arbitrage conditions (Zhan,

Han, Cao, and Tong, 2022).

To make the portfolio implementation as realistic as possible and further avoid look-

ahead bias, we use prevailing market quotes to unwind positions at the end of the holding

period (the last trading day of the following month), t ` 1, unless clear recording errors are

present (e.g., bid prices of 998 or 999).20

We use 19 characteristics to model option returns: seven at the contract level and twelve

at the stock level.

1. Implied volatility (impl vol): Following Büchner and Kelly (2022), the American

option implied volatility is computed by the Ivy DB database of OptionMetrics using

the binomial tree model (Cox, Ross, and Rubinstein, 1979).

2. Delta (delta): Following Büchner and Kelly (2022), the delta of the option contract

computed by OptionMetrics.

20See Duarte, Jones, Mo, and Khorram (2023) and Duarte, Jones, and Wang (2023), who also highlight
the impact of look-ahead bias in out-of-sample option-based strategies.
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3. Gamma (gamma): Following Büchner and Kelly (2022), the gamma of the option

contract computed by OptionMetrics.

4. Theta (theta): Following Büchner and Kelly (2022), the theta of the option contract

computed by OptionMetrics.

5. Volga (volga): Following Büchner and Kelly (2022), the volga of the option contract,

the sensitivity of vega to changes in volatility, i.e.,

volga “
BV ega

Bσ
.

This is not provided by OptionMetrics, and hence we compute it by using standard

Black-Scholes pricing formula with zero dividend rate.

6. Embedded leverage (embed lev): Following Büchner and Kelly (2022) and Frazzini

and Pedersen (2021), the embedded leverage of the option contract is the amount of

market exposure per unit of committed capital, defined as

Ω “

ˇ

ˇ

ˇ

ˇ

∆ ¨ S

F

ˇ

ˇ

ˇ

ˇ

,

where ∆ is the option delta, S is the underlying price and F is the option price.

7. Option illiquidity (optspread): Following Christoffersen, Goyenko, Jacobs, and

Karoui (2018), Bali, Beckmeyer, Moerke, and Weigert (2021) and Goyenko and Zhang

(2021), the option illiquidity is the ratio of the bid-ask spread to the mid-point of bid

and ask for each option contract.

8. Volatility deviation (vol dev): Following Zhan, Han, Cao, and Tong (2022), Cao

and Han (2013), Goyenko and Zhang (2021), and Goyal and Saretto (2009). The

volatility deviation is defined as the difference between the historical realized volatility
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and the ATM option implied volatility. The historical realized volatility is the standard

deviation of daily realized returns over the past 360 days (this is extracted from the

Historical Volatility File in OptionMetrics), and the ATM option implied volatility is

the average of the implied volatility of one at-the-money call (with delta equal to 0.5)

and one at-the-money put (with delta equal to -0.5) which have 30 days to maturity

(these are extracted from the Volatility Surface File in OptionMetrics).

9-19. Market beta (beta), Market capitalization (mktcap), Book-to-market ratio

(bm), Gross profitability (prof), Investment (invest), Idiosyncratic volatility

(idiovol), Book leverage (lev), Average daily bid-ask spread (bidask), Mo-

mentum (mom), Intermediate momentum (intmom), Short-term reversal

(strev), and Book leverage (lev): The data on these stock-level characteristics

are from Freyberger, Höppner, Neuhierl, and Weber (2022). These characteristics

have been demonstrated to have a significant impact on option returns, for example,

idiosyncratic volatility (idiovol) by Cao and Han (2013) and Zhan, Han, Cao, and

Tong (2022), average daily bid-ask spread (bidask) and momentum (mom) by Bali,

Beckmeyer, Moerke, and Weigert (2021) and Goyenko and Zhang (2021).



64

Appendix A2 Common Factor Structure from Observable Factors

Is there a common factor structure among stocks, corporate bonds, and options? To explore

this, we start with a straightforward econometric approach: applying Principal Compo-

nent Analysis (PCA) to observable pricing factors. These pricing factors have been well-

established in the asset pricing literature for different asset classes. The rationale behind

this exercise is that if the various asset classes are integrated, then the observable factors

that explain their returns should exhibit a shared component structure. We opt for PCA as

it is specifically designed to extract common components from multiple time-series data.

We first construct a matrix of observable factors, standardized to zero mean and unit

variance:

P “ rPstock Pcorpbond Poptions

The PCA transforms the matrix of observable factors P into principal components F and

eigenvector weights B:

PTˆL “ FTˆKBKˆL ` ϵTˆL.

We use L “ 18 observable factors:

• Six stock factors: five factors from Fama and French (2015) (MKTstock, SMB, HML,

RMW , CMA) and the momentum factor from Carhart (1997) (MOM);

• Six corporate bond factors: bond market factor (MKTbond), credit risk factor (CRF ),

liquidity risk factor (LRF ), bond momentum (MOMB), bond return reversal (REV ˚),

and long-term reversal (LTR) from Bai, Bali, and Wen (2019) and Dickerson, Mueller,

and Robotti (2023);21

21We remove the downside risk factor (DRF ) since it is highly correlated with MKTbond after lead-lag
correction. See Dickerson, Mueller, and Robotti (2023) for more details on the lead-lag correction for factors.
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• Six option factors: volatility level (LEV EL), and moneyness skewness (SKEW )

factors from Büchner and Kelly (2022), option idiosyncratic volatility (IV OL) and

illiquidity (ILQ) factors from Zhan, Han, Cao, and Tong (2022), and option-market

(MKToption) and volatility deviation factors (V OLDEV ) from Goyal and Saretto

(2009).22

The sample period is from July 2004 to December 2021, starting when corporate bond factors

become available.

The blue line in the bottom panel of Figure 2 shows the cumulative sum of the first prin-

cipal component of the 18 observable factors. This component exhibits a systematic pattern

aligned with major market downturns, including the 2008 financial crisis, the 2015–2016

global equity selloff, the December 2018 market decline, and the 2020 COVID crisis. This

pattern suggests that the first component may reflect underlying macroeconomic or funda-

mental risks that affect multiple asset classes.

To assess the extent of commonality, we compute the explained variance ratio for the first

ten principal components in Table A1. The first component explains 30.51% of the variation

in the 18 observable factors, while the next two account for 12.52% and 9.57%, respec-

tively. Collectively, the first ten components explain 88% of the total variation, indicating a

significant common structure among pricing factors across asset classes.

22We exclude the maturity slope factor (SLOPE) from Büchner and Kelly (2022) since it is highly corre-
lated with LEV EL.
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Table A1: Explained variance ratios of principal components

PC1 2 3 4 5 6 7 8 9 10

Variance Ratio (%) 30.51 12.52 9.57 7.00 6.56 5.82 5.17 4.21 3.89 2.79

This table reports the explained variance ratios for the first ten principal components of 18

observable pricing factors: six stock factors (MKTstock, SMB, HML, RMW , CMA, MOM),

six corporate bond factors (MKTbond, CRF , LRF , MOMB, REV ˚, LTR), and six option

factors (MKToption, LEV EL, SKEW , IV OL, ILQ, V OLDEV ).

A natural next question is whether these principal components also explain the observable

factors within each of the three asset classes. A sufficient condition for a component to be

considered “common” is that it has comparable explanatory power for the factors in all

asset classes. In contrast, if most of its explanatory power comes from, say, stock factors, it

should be regarded as a stock-specific component rather than a common one. Distinguishing

common components, which capture shared variation across asset classes, from asset-specific

components, which primarily capture variation in a single class, is essential for interpretation.

To examine this, we compute, for each principal component F k, its marginal R2 for the

factors in each asset class. Specifically, we fit the observable factors P by each principal

component F k and its corresponding weight Bk:

P̂ k
t “ rP̂ k

t,stock P̂ k
t,corpbond P̂ k

t,options “ Bk1F k
t

where P̂ k denotes the fitted factors from the kth principal component. We can compute the

marginal R2’s of component k for asset class g P tstock, corpbond, optionu as:

R2
k,g “ 1 ´

ř

tpP
k
g ´ P̂ k

g q2

ř

g,tpP
k
g q2

.
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Table A2: Marginal R2 of principal components on factors across asset classes

Marginal R2 (%) PC1 2 3 4 5 6 7 8 9 10

Stock 20.47 16.99 10.18 17.26 2.78 1.62 3.22 6.66 1.63 7.54

Corporate Bond 31.72 3.82 15.15 1.18 4.71 13.32 2.85 4.65 7.97 0.76

Option 44.91 16.27 4.04 2.67 14.64 2.71 1.80 1.10 0.72 0.07

This table reports the marginal R2’s of the first ten principal components (PCs) of 18 observ-

able pricing factors in explaining the observable factors from three asset classes, stocks, corporate

bonds, and options, separately.

Table A2 reports the results. The first principal component explains factors across all

three asset classes, suggesting it captures a common factor. Specifically, it accounts for

20.47% of the variation in stock factors, 31.72% in corporate bond factors, and 44.91% in

option factors.

The PCA analysis of observable factors highlights an important insight: there exists a

common component that explains variations across the three asset classes. There is also sug-

gestive evidence that this component is systematically related to economic cycles. Nonethe-

less, these results are limited because they are based on aggregated, observable factors rather

than individual assets. To address this limitation, the main focus of the paper is to identify

common factors directly from individual asset returns, which provides a more detailed view

of the underlying factor structure across stocks, corporate bonds, and options.
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Appendix A3 Beta Loadings of the Regressed-PCA Common Fac-

tors

In this appendix, we provide a detailed discussion of the relative weights of the characteristics

in the beta loadings of the regressed-PCA common factors.

We focus on the first regressed-PCA common factor. Figure 3 reports the estimated B

coefficients with 95% confidence intervals. The coefficients are obtained using the regressed-

PCA method described in Section 2.2, and the confidence intervals are computed using the

weighted bootstrap procedure of Chen, Roussanov, and Wang (2023).

On the stock side, book assets and market capitalization dominate the beta loadings.

These two characteristics have weights of similar magnitude but opposite signs, reflecting a

“value” or “leverage” factor involved in the beta loadings. Interestingly, book-to-market ratio

has a negligible weight, suggesting that the effects of book assets and market capitalization

capture the variation typically associated with book-to-market. This finding aligns with

Kelly, Pruitt, and Su (2019), who report that the first IPCA factor’s beta is driven by high

book assets and low market equity.

On the corporate bond side, ratings, duration, bond momentum, spread momentum and

Value-at-Risk (VaR) contribute to the beta loadings of the first common factor. The ex-

posures to ratings and duration are consistent with the literature showing that credit and

duration risks significantly influence the bond risk premium. Duration carries a negative

weight, indicating that higher-duration securities earn lower average returns, consistent with

the negative term structure of risk premia documented in van Binsbergen, Brandt, and Koi-

jen (2012) and van Binsbergen and Koijen (2017). The bond momentum loading is negative

and marginally significant; in line with Jostova, Nikolova, Philipov, and Stahel (2013), this

suggests that positive bond momentum is primarily associated with return anomalies rather
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than risk exposure. The VaR loading is positive and significant, consistent with Dicker-

son, Mueller, and Robotti (2023), who show that downside risk factors correlate strongly

with bond market returns. We also find VaR highly correlated with bond return volatility

(correlation ą 0.9), indicating it may serve as a proxy for volatility.

On the option side,characteristics related to embedded leverage and option Greeks (gamma

and theta) have prominent beta loadings, along with certain underlying stock characteristics

such as book-to-market and momentum. Embedded leverage, which measures an option’s

return magnification relative to the underlying asset, carries a significant positive beta load-

ing, reflecting that options with higher leverage increase investors’ risk exposure and thus

require higher expected returns. Furthermore, consistent with Frazzini and Pedersen (2021),

Figure 4 shows that embedded leverage contributes negatively to the alpha of option returns,

consistent with the idea that higher risk exposure reduces risk-adjusted returns.

Figures A1–A3 present the beta loadings for the second through tenth regressed-PCA

common factors for completeness.
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Appendix A4 Regressed-PCA Factors and Macro Factors from

Ludvigson and Ng (2009)

In this appendix, we show how our regressed-PCA common factors are related to the macro

factors constructed by Ludvigson and Ng (2009). The sample period is from July 2004 to

December 2021. Tables A3 and A4 present the correlations and regression results, respec-

tively.

Ludvigson and Ng (2009) provide detailed interpretations of their factors. F1 is a“real”

factor, loading heavily on measures of employment, production, capacity utilization, and new

manufacturing orders, with minimal relation to prices or financial variables. F2 is associated

with several interest rate spreads and is highly correlated with the single forward-rate factor

in Cochrane and Piazzesi (2005). Both F3 and F4 are inflation factors, while F8 is a stock

market factor.

From Tables A3 and A4, we find that the first regressed-PCA common factor is related

to the real factor (F1), the interest rate factor (F2), and one of the inflation factors (F4).

The second common factor is significantly related to the stock market factor (F8).
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Appendix A5 Robustness Checks

This appendix presents alternative model specifications and robustness analyses for the main

results.

We examine factor models estimated separately for each asset class using equation (2.4).

We also consider restricted versions of the factor models obtained by imposing α “ 0 in

equation (2.1). The corresponding matrix representations are

Rt “ Zt´1Bft ` ξt, (7.1)

Rt “ Zt ´ 1BfCt ` ξt, (7.2)

which are the restricted counterparts of models (2.4) and (2.7), respectively. We estimate

(7.1) for each asset class separately and (7.2) for the common factors across asset classes.

We then assess robustness of the out-of-sample analyses by extending the sample to

include the post-2020 period, which covers the COVID-19 pandemic and the GameStop

episode. The extended sample spans July 2004 to December 2021, with the first 60 months

used for initial training.

Appendix A5.1 In-Sample and Out-of-Sample R2’s and Performance of the

Pure-Alpha Strategy

Table A6 reports the out-of-sample fit of the common factor model in (2.7), based on the out-

of-sample factors approximated by equation (5.1). Table A5 reports the in-sample and out-

of-sample R2’s of the restricted common factor model in (7.2). Tables A7 and A8 report the

in-sample and out-of-sample R2’s of the unrestricted factor model in (2.4) and the restricted

factor model in (7.1), respectively, estimated separately for each asset class. Table A9 shows
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the performance of the pure-alpha strategy based on the factor models (2.4) for each asset

class.

We next extend the out-of-sample analysis to include the post-2020 period. The results

are reported under Case (1) in Table A10. We further report results based on trimmed

options data, excluding observations below the 1st percentile or above the 99th percentile

of the return distribution in each period (Case (2)). As shown in Case (1), extreme option

returns during highly volatile episodes reduce the model’s out-of-sample fit for stocks and

corporate bonds but improve it for options, as the estimation emphasizes matching option

return outliers. The performance of the pure-alpha trading strategy remains largely stable.

In Case (2), trimming improves the out-of-sample fit across all asset classes by mitigating the

influence of extreme option returns. However, this trimming introduces look-ahead bias, as

volatile option returns are excluded ex ante, leading to inflated out-of-sample Sharpe ratios

for the options strategy (above 3).

Appendix A5.2 MVE Portfolios

Table A11 reports the in-sample performance of MVE portfolios estimated from the restricted

models. The Sharpe ratio for the joint MVE portfolio is 2.03, substantially lower than that

from the unrestricted model reported in Table 13. Table A12 presents out-of-sample Sharpe

ratios of MVE portfolios as the number of factors K varies from 1 to 20. These results

are also illustrated in Figure 5. The MVE portfolios are constructed from the unrestricted

factor models, using data from July 2004 to December 2019. Table A13 extends the analysis

through December 2021, while Table A14 reports the results for the restricted models. For

both in-sample and out-of-sample, the unrestricted model consistently delivers higher Sharpe

ratios than the restricted model, suggesting that allowing for nonzero intercepts improves

portfolio performance.
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Table A15 reports the correlations among out-of-sample MVE portfolios constructed from

the unrestricted models using data from July 2004 to December 2019. Table A16 extends

the analysis through December 2021, while Table A17 reports the results for the restricted

models.
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Figure A1: Estimates of the B coefficients for the second to fourth regressed-PCA common
factors

This figure shows the estimated B coefficients (and 95% confidence intervals) for the second to fourth
regressed-PCA common factors, fC (as defined in (2.7)). The coefficients are obtained using the regressed-
PCA method described in Section 2.2, and the confidence intervals are computed using the weighted boot-
strap procedure of Chen, Roussanov, and Wang (2023).
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Figure A2: Estimates of the B coefficients for the fifth to seventh regressed-PCA common
factors

This figure shows the estimated B coefficients (and 95% confidence intervals) for the fifth to seventh
regressed-PCA common factors, fC (as defined in (2.7)). The coefficients are obtained using the regressed-
PCA method described in Section 2.2, and the confidence intervals are computed using the weighted boot-
strap procedure of Chen, Roussanov, and Wang (2023).
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Figure A3: Estimates of the B coefficients for the eighth to tenth regressed-PCA common
factors

This figure shows the estimated B coefficients (and 95% confidence intervals) for the eighth to tenth
regressed-PCA common factors, fC (as defined in (2.7)). The coefficients are obtained using the regressed-
PCA method described in Section 2.2, and the confidence intervals are computed using the weighted boot-
strap procedure of Chen, Roussanov, and Wang (2023).



77

Table A3: Correlations between regressed-PCA common factors and macro factors from
Ludvigson and Ng (2009)

Common 1 2 3 4 5 6 7 8 9 10

F1 0.15** 0.07 -0.17** 0.01 0.14** 0.34*** 0.32*** -0.13* 0.05 0.07

F2 0.30*** -0.05 0.17** 0.28*** -0.18*** -0.11 0.02 0.06 -0.10 -0.05

F3 -0.09 0.11 0.06 -0.01 0.10 0.10 0.14** 0.05 -0.12* 0.03

F4 -0.11 -0.06 0.04 -0.00 0.15** 0.18*** 0.04 -0.21*** 0.04 -0.03

F5 0.07 0.08 0.18** 0.08 -0.02 -0.07 0.01 0.17** -0.16** 0.06

F6 0.17** 0.03 0.10 -0.06 0.17** 0.04 0.01 0.13* -0.07 0.09

F7 0.25*** -0.21*** 0.20*** 0.20*** -0.30*** -0.31*** -0.13* 0.10 0.03 -0.07

F8 0.09 -0.25*** 0.11 0.20*** -0.00 -0.07 -0.05 -0.03 -0.12* 0.09

This table reports the correlations between the regressed-PCA common factors, fC (as defined in
(2.7)), and eight macro factors from Ludvigson and Ng (2009). The sample period is from July 2004
to December 2021. ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%.
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Table A4: Regression of regressed-PCA common factors on macro factors from Ludvigson
and Ng (2009)

Common 1 2 3 4 5 6 7 8 9 10

F1 0.35*** 0.09 -0.17 0.09 -0.00 0.24*** 0.37*** 0.00 0.03 0.11*

(2.59) (0.92) (-1.34) (0.67) (-0.02) (3.11) (3.19) (0.0) (0.35) (1.67)

[0.22] [0.04] [0.17] [0.02] [0.05] [0.39] [0.61] [0.07] [0.02] [0.20]

F2 0.37*** 0.07 0.15 0.39** -0.19* -0.02 0.24* 0.12 -0.27** -0.08

(4.06) (0.94) (1.57) (2.44) (-1.78) (-0.21) (1.93) (0.87) (-2.52) (-0.92)

[0.29] [0.02] [0.16] [0.44] [0.13] [0.03] [0.06] [0.06] [0.24] [0.07]

F3 0.11 0.18 0.10 0.23* -0.06 0.06 0.32** 0.14 -0.31*** -0.06

(0.89) (1.3) (0.71) (1.67) (-0.62) (0.4) (2.33) (1.33) (-3.08) (-0.47)

[0.03] [0.09] [0.04] [0.05] [0.03] [0.03] [0.14] [0.08] [0.27] [0.03]

F4 -0.25*** -0.21** 0.15 -0.16 0.26** 0.07 -0.26*** -0.25*** 0.14 -0.02

(-2.65) (-2.2) (1.26) (-1.02) (2.27) (0.6) (-2.65) (-2.63) (1.17) (-0.24)

[0.08] [0.10] [0.07] [0.03] [0.17] [0.09] [0.08] [0.41] [0.06] [0.03]

F5 0.02 0.01 0.02 -0.11 0.02 -0.04 -0.10 0.07 0.09 0.12

(0.33) (0.1) (0.22) (-0.98) (0.24) (-0.37) (-1.09) (0.67) (1.05) (1.45)

[0.04] [0.04] [0.11] [0.04] [0.01] [0.02] [0.03] [0.18] [0.17] [0.13]

F6 0.14* -0.03 0.17** -0.06 0.23*** 0.07 -0.03 0.05 -0.05 0.06

(1.81) (-0.34) (2.3) (-0.63) (2.82) (1.03) (-0.27) (0.77) (-0.69) (0.84)

[0.09] [0.01] [0.12] [0.02] [0.21] [0.03] [0.00] [0.09] [0.04] [0.17]

F7 0.25*** -0.19* 0.18* 0.12 -0.23*** -0.25** -0.11 0.08 0.09 -0.04

(5.15) (-1.79) (1.88) (1.07) (-3.34) (-2.05) (-0.89) (0.84) (1.33) (-0.61)

[0.23] [0.27] [0.26] [0.17] [0.39] [0.39] [0.07] [0.08] [0.04] [0.11]

F8 0.05 -0.23*** 0.07 0.19*** 0.03 -0.02 -0.02 -0.06 -0.12 0.09

(0.72) (-3.71) (1.01) (3.54) (0.43) (-0.34) (-0.21) (-0.99) (-1.6) (1.22)

[0.02] [0.44] [0.06] [0.22] [0.00] [0.01] [0.01] [0.03] [0.16] [0.25]

R2
adj 24.61% 10.17% 9.76% 12.73% 14.35% 15.55% 13.79% 5.69% 3.96% -0.46%

No.Obs 210 210 210 210 210 210 210 210 210 210

This table reports the regressions of regressed-PCA common factors, fC (as defined in (2.7)), on eight macro
factors from Ludvigson and Ng (2009). We report the t-statistics using Newey-West standard errors with
four lags in parentheses. The Shapley-Owen R2’s are in square brackets. The regressed PCA factors and the
macro factors are standardized using the time-series standard deviation. ***: p-valueă 1%; **: p-valueă 5%;
*: p-valueă 10%.
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Table A5: In-sample and out-of-sample performance (R2’s) of the restricted common factor
model

(i) All the returns on three asset classes
K R2

K R2 R2
O R2

T,N,O R2
N,T,O R2

f,O R2
f,T,N,O R2

f,N,T,O

1˚ 15.80 6.20 24.05 5.34 8.96 26.08 8.85 12.81
2 26.16 7.54 24.03 8.30 8.91 26.62 10.88 13.85
3 33.90 8.86 24.00 8.59 8.84 26.88 13.92 14.42
4 41.13 10.21 24.02 7.14 8.88 27.05 14.92 14.70
5 47.25 12.75 24.00 6.92 8.87 27.29 14.84 15.01
6 53.09 14.18 23.94 6.92 8.81 27.43 15.18 15.22
7 57.62 14.41 23.92 7.30 8.77 27.60 15.64 15.57
8 61.47 15.26 23.95 8.85 8.82 27.75 15.77 15.88
9 64.78 16.01 23.93 9.12 8.79 27.87 15.89 16.10
10 67.67 16.32 23.94 9.08 8.80 27.98 16.07 16.27

(ii) Stock Returns
K R2

K R2 R2
O R2

T,N,O R2
N,T,O R2

f,O R2
f,T,N,O R2

f,N,T,O

1 18.95 5.71 0.42 1.19 ´0.35 8.62 11.57 7.11
2 23.15 6.11 0.38 1.14 ´0.30 10.28 12.89 8.86
3 32.80 6.76 0.33 1.11 ´0.38 11.12 14.44 9.71
4 36.74 6.90 0.35 1.06 ´0.31 11.32 14.59 9.85
5 41.54 7.91 0.19 0.57 ´0.31 11.35 14.30 9.85
6˚ 52.50 9.45 ´0.03 0.04 ´0.14 11.66 14.73 10.17
7 53.78 9.52 ´0.03 0.11 ´0.13 11.72 14.79 10.24
8 57.07 10.00 0.16 0.53 ´0.07 11.94 14.95 10.44
9 63.50 10.97 0.07 0.37 ´0.13 12.08 15.00 10.59
10 68.18 11.41 0.06 0.37 ´0.15 12.12 14.98 10.63

(iii) Corporate Bond Returns
K R2

K R2 R2
O R2

T,N,O R2
N,T,O R2

f,O R2
f,T,N,O R2

f,N,T,O

1 10.89 10.40 2.18 4.09 1.96 3.91 ´24.47 ´5.28
2 22.71 11.20 2.53 4.68 0.72 1.89 ´29.37 ´10.60
3 33.05 13.36 2.36 4.30 0.29 3.66 ´24.13 ´9.85
4 40.24 21.21 2.41 4.28 0.96 3.73 ´25.29 ´10.66
5 43.25 25.13 2.29 3.84 1.04 6.02 ´24.60 ´7.29
6 46.62 28.66 2.11 4.15 1.22 6.62 ´23.93 ´5.79
7˚ 57.96 31.43 2.09 4.21 1.31 13.81 ´15.62 1.93
8 60.52 32.06 2.18 4.77 1.39 17.06 ´12.51 6.70
9 62.29 33.43 2.10 4.58 1.12 19.00 ´10.90 8.87
10 64.66 33.60 2.17 5.64 1.37 18.07 ´12.71 7.81

(iv) Option Returns
K R2

K R2 R2
O R2

T,N,O R2
N,T,O R2

f,O R2
f,T,N,O R2

f,N,T,O

1 16.76 6.17 28.61 5.45 11.38 29.56 9.25 13.73
2˚ 33.23 8.40 28.59 8.50 11.35 29.95 11.35 14.80
3 36.08 10.24 28.56 8.81 11.29 30.09 14.41 15.21
4 47.37 11.92 28.58 7.31 11.32 30.25 15.46 15.51
5 58.15 15.68 28.58 7.10 11.34 30.49 15.38 15.73
6 60.15 16.78 28.55 7.11 11.26 30.59 15.72 15.81
7 61.98 16.86 28.53 7.50 11.19 30.65 16.09 15.99
8 67.76 18.07 28.53 9.09 11.21 30.73 16.17 16.14
9 68.79 18.56 28.53 9.37 11.21 30.80 16.27 16.33
10 69.98 18.77 28.53 9.31 11.23 30.95 16.49 16.56

This table reports the in-sample and out-of-sample performance of the restricted common factor model
in (7.2). Panels report R2’s for (i) all returns, (ii) stocks, (iii) corporate bonds, and (iv) options. K is
the number of factors; ˚ marks the estimator of K that maximizes the ratio of adjacent eigenvalues. R2

K

captures the variation explained in characteristic-managed portfolios by PCA factors. R2
R̃

is the R2 from the

Fama–MacBeth cross-sectional regression. R2 is the total in-sample R2 defined in (2.9). R2
O, R2

T,N,O, and

R2
N,T,O measure out-of-sample predictability, see (2.10) - (2.12). R2

f,O, R2
f,T,N,O, and R2

f,N,T,O assess out-of-

sample fit based on factors approximated by (2.13), see (2.14)–(2.16). All R2’s are reported in percentage
terms.
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Table A6: Out-of-sample fit of the unrestricted common factor model using factor approxi-
mation (5.1)

(i) All the returns on three asset classes
K R2

f,O R2
f,T,N,O R2

f,N,T,O

1 24.62 0.22 9.78
2 24.97 4.09 10.46
3 25.41 6.18 11.37
4 25.30 5.45 11.25
5 25.36 3.59 11.43
6 25.83 5.30 12.13
7 25.96 7.54 12.56
8 25.89 7.83 12.52
9 25.93 7.51 12.61
10 26.07 7.61 12.77

(ii) Stock Returns
K R2

f,O R2
f,T,N,O R2

f,N,T,O

1 3.99 4.63 3.12
2 4.17 4.84 3.23
3 5.01 6.41 3.98
4 4.85 5.76 3.88
5 5.68 6.96 4.71
6 6.49 8.04 5.55
7 5.35 5.41 4.55
8 5.28 5.36 4.41
9 5.18 5.25 3.86
10 5.91 6.10 4.54

(iii) Corporate Bond Returns
K R2

f,O R2
f,T,N,O R2

f,N,T,O

1 5.65 ´15.01 ´0.75
2 10.51 ´13.02 2.41
3 12.71 ´11.04 5.51
4 12.71 ´14.70 2.58
5 11.60 ´18.40 0.97
6 12.07 ´19.74 0.93
7 14.83 ´16.83 4.68
8 15.15 ´17.73 3.50
9 17.71 ´14.30 6.05
10 18.51 ´12.89 6.01

(iv) Option Returns
K R2

f,O R2
f,T,N,O R2

f,N,T,O

1 28.60 0.35 11.08
2 28.88 4.32 11.86
3 29.23 6.43 12.70
4 29.12 5.73 12.45
5 29.07 3.84 12.32
6 29.48 5.60 13.01
7 29.79 7.94 13.56
8 29.71 8.26 13.57
9 29.73 7.88 13.66
10 29.74 7.95 13.69

This table reports out-of-sample performance of the common factor model in (2.7), based on out-of-
sample factors approximated by (5.1). Panels report R2’s for (i) all returns, (ii) stocks, (iii) corporate bonds,
and (iv) options. K is the number of factors; R2

f,O, R2
f,T,N,O, and R2

f,N,T,O assess out-of-sample fit, see

(2.14)–(2.16). All R2’s are reported in percentage terms.
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Table A7: In-sample and out-of-sample performance of the factor models for each asset class

(i) Stock Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 28.63 3.10 8.57 7.86 7.46
2 43.55 3.27 9.32 9.11 8.16
3 53.93 4.22 12.17 15.04 10.79
4 61.52 5.85 12.54 15.60 11.10
5 67.93 11.46 13.04 16.18 11.61
6 73.19 14.38 13.48 16.58 12.03
7 77.04 14.68 13.70 16.85 12.24
8 80.63 14.95 13.84 16.83 12.38
9 83.84 15.20 14.12 17.09 12.68
10 86.29 15.49 14.22 17.00 12.78
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 0.22 0.71 0.04 18.64

(ii) Corporate Bond Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1 27.85 8.09 8.68 ´9.67 4.91
2 44.54 16.37 25.28 5.03 19.75
3˚ 59.16 30.76 29.40 11.77 23.08
4 66.93 34.84 30.50 11.05 23.95
5 73.39 37.24 33.54 17.13 27.35
6 78.23 39.47 34.26 17.70 28.15
7 81.61 40.12 35.18 18.59 29.21
8 84.54 40.90 37.40 19.36 31.92
9 87.21 42.25 37.76 20.02 32.29
10 89.29 42.97 38.16 20.69 32.79
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 2.22 5.48 1.67 47.68

(iii) Option Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 32.16 7.04 ´443.77 45.56 ´448.34
2 52.18 9.33 ´440.09 47.81 ´445.63
3 62.41 18.11 ´435.84 47.87 ´441.94
4 70.07 22.22 ´434.60 47.11 ´440.66
5 77.06 22.75 ´432.62 46.67 ´438.92
6 81.53 23.28 ´431.36 46.55 ´437.83
7 84.66 23.58 ´430.62 46.45 ´437.09
8 87.61 23.89 ´429.77 46.26 ´436.21
9 89.79 24.15 ´428.69 46.06 ´435.04
10 91.91 24.46 ´426.85 46.05 ´433.16
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 ´453.05 46.21 ´454.85 27.80

This table reports the in-sample and out-of-sample performance of the factor model in (2.4) for each
asset class separately. Panels report R2’s for (i) stocks, (ii) corporate bonds, and (iii) options. K is the
number of factors; ˚ marks the estimator of K that maximizes the ratio of adjacent eigenvalues. R2

K

captures the variation explained in characteristic-managed portfolios by PCA factors. R2
R̃

is the R2 from the

Fama–MacBeth cross-sectional regression. R2 is the total in-sample R2 defined in (2.9). R2
O, R2

T,N,O, and

R2
N,T,O measure out-of-sample predictability, see (2.10) - (2.12). R2

f,O, R2
f,T,N,O, and R2

f,N,T,O assess out-of-

sample fit based on factors approximated by (2.13), see (2.14)–(2.16). All R2’s are reported in percentage
terms.
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Table A8: In-sample and out-of-sample performance of the restricted factor models for each
asset class

(i) Stock Returns
K R2

K R2 R2
O R2

T,N,O R2
N,T,O R2

f,O R2
f,T,N,O R2

f,N,T,O

1˚ 28.65 2.91 0.35 0.71 0.04 8.68 8.41 7.56
2 43.57 3.08 0.34 0.69 0.03 9.40 9.49 8.23
3 53.95 4.02 0.29 0.73 ´0.07 12.13 15.30 10.76
4 61.54 5.52 0.27 0.77 ´0.06 12.56 15.88 11.13
5 67.96 11.32 0.11 0.22 ´0.05 13.07 16.40 11.66
6 73.21 14.22 0.18 0.66 ´0.05 13.51 16.83 12.05
7 77.07 14.52 0.18 0.59 ´0.04 13.73 17.04 12.26
8 80.67 14.74 0.18 0.53 ´0.04 13.86 17.18 12.41
9 83.88 15.04 0.15 0.43 ´0.06 14.16 17.32 12.72
10 86.33 15.34 0.10 0.30 ´0.11 14.26 17.38 12.82

(ii) Corporate Bond Returns
K R2

K R2 R2
O R2

T,N,O R2
N,T,O R2

f,O R2
f,T,N,O R2

f,N,T,O

1 27.85 6.40 0.29 1.66 0.43 9.47 ´8.20 6.29
2 44.57 17.20 2.19 6.38 2.87 26.48 8.44 21.60
3˚ 59.18 30.76 1.91 6.07 2.39 30.56 14.15 25.21
4 66.96 34.97 1.76 5.72 2.17 31.54 14.85 25.99
5 73.41 37.22 2.17 7.12 2.49 33.99 19.07 28.25
6 78.26 39.33 2.20 6.25 2.26 34.58 19.25 28.90
7 81.65 40.06 2.04 5.88 2.13 35.76 20.40 30.08
8 84.57 40.82 2.10 4.85 1.78 37.69 21.15 32.44
9 87.24 42.18 2.04 4.96 1.71 38.01 20.99 32.75
10 89.32 42.90 1.98 4.79 1.49 38.36 21.35 33.19

(iii) Option Returns
K R2

K R2 R2
O R2

T,N,O R2
N,T,O R2

f,O R2
f,T,N,O R2

f,N,T,O

1˚ 35.08 7.61 ´453.35 46.37 ´455.06 ´442.25 46.44 ´446.96
2 53.90 8.21 ´454.20 47.31 ´455.85 ´439.93 46.95 ´445.04
3 64.11 16.51 ´453.87 47.05 ´455.40 ´435.79 46.71 ´441.50
4 71.58 21.44 ´453.31 46.34 ´455.12 ´434.31 46.51 ´440.22
5 77.89 22.59 ´453.21 46.24 ´455.06 ´432.62 46.62 ´438.78
6 82.32 23.13 ´453.21 46.27 ´455.01 ´431.52 46.50 ´437.69
7 85.45 23.38 ´453.14 46.18 ´454.98 ´430.79 46.52 ´437.05
8 88.22 23.86 ´453.09 46.10 ´454.94 ´430.01 46.40 ´436.27
9 90.35 24.06 ´453.05 46.14 ´454.90 ´428.59 46.33 ´434.68
10 92.20 24.52 ´453.09 46.26 ´454.89 ´427.00 46.21 ´433.15

This table reports the in-sample and out-of-sample performance of the factor model in (7.1) for each
asset class separately. Panels report R2’s for (i) stocks, (ii) corporate bonds, and (iii) options. K is the
number of factors; ˚ marks the estimator of K that maximizes the ratio of adjacent eigenvalues. R2

K

captures the variation explained in characteristic-managed portfolios by PCA factors. R2
R̃

is the R2 from the

Fama–MacBeth cross-sectional regression. R2 is the total in-sample R2 defined in (2.9). R2
O, R2

T,N,O, and

R2
N,T,O measure out-of-sample predictability, see (2.10) - (2.12). R2

f,O, R2
f,T,N,O, and R2

f,N,T,O assess out-of-

sample fit based on factors approximated by (2.13), see (2.14)–(2.16). All R2’s are reported in percentage
terms.
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Table A9: Out-of-sample performance of the pure-alpha strategy based on the factor models
for each asset class

(i) Stock Returns

K µα σα SRα

1 0.26 0.51 0.51

2 0.33 0.44 0.73

3 0.34 0.45 0.75

4 0.39 0.45 0.87

5 0.36 0.44 0.82

6 0.29 0.32 0.91

7 0.29 0.29 0.99

8 0.29 0.27 1.07

9 0.32 0.27 1.19

10 0.34 0.26 1.34

(ii) Corporate Bond Returns

K µα σα SRα

1 0.06 0.05 1.09

2 0.02 0.04 0.56

3 0.03 0.04 0.76

4 0.03 0.03 1.06

5 0.01 0.02 0.50

6 0.01 0.02 0.39

7 0.01 0.02 0.62

8 0.01 0.02 0.60

9 0.01 0.02 0.89

10 0.01 0.01 0.75

(iii) Option Returns

K µα σα SRα

1 0.08 0.42 0.19

2 0.21 0.33 0.65

3 0.37 0.18 2.06

4 0.28 0.15 1.83

5 0.27 0.14 1.94

6 0.22 0.11 2.04

7 0.17 0.10 1.73

8 0.14 0.10 1.47

9 0.15 0.08 1.77

10 0.08 0.06 1.36

This table reports the out-of-sample performance of pure-alpha strategy in (2.17) based on the factor
models in (2.4) for each asset class. K denotes the number of factors specified. µα, σα and SRα are the
annualized means (%), standard deviations (%), and Sharpe ratios of the pure-alpha strategy.
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Table A10: Out-of-sample R2s and performance of the pure-alpha strategy for the extended
sample period ending December 2021

(i) All the returns on three asset classes
Case (1) Case (2)

K µα σα SRα R2
f,O R2

f,T,N,O R2
f,N,T,O µα σα SRα R2

f,O R2
f,T,N,O R2

f,N,T,O
1 9.99 5.35 1.87 36.12 8.33 15.18 11.96 3.26 3.66 10.57 8.92 7.21
2 4.97 4.86 1.02 36.52 11.49 16.37 7.86 2.98 2.64 13.22 12.66 9.30
3 4.67 4.23 1.10 36.87 14.95 17.08 7.41 2.62 2.82 15.27 16.70 10.61
4 3.51 3.80 0.93 37.04 14.85 17.37 6.82 2.57 2.66 16.42 16.90 11.09
5 3.41 3.76 0.91 37.19 14.73 17.64 6.75 2.53 2.67 16.95 16.84 11.52
6 4.04 3.72 1.09 37.33 14.39 18.02 6.64 2.50 2.65 17.81 16.57 12.13
7 5.01 3.74 1.34 37.37 13.36 18.19 6.96 2.45 2.84 18.12 15.64 12.37
8 4.39 3.16 1.39 38.08 15.19 18.51 5.95 2.20 2.70 18.53 17.62 12.81
9 3.85 2.89 1.33 38.16 15.81 18.77 5.46 1.93 2.82 19.04 18.41 13.25
10 3.74 3.01 1.24 38.80 15.91 18.97 4.98 1.63 3.05 19.30 18.62 13.46
K R2

O R2
T,N,O R2

N,T,O R2
O R2

T,N,O R2
N,T,O

1-10 34.95 7.70 11.52 2.14 7.95 1.95

(ii) Stock Returns
Case (1) Case (2)

K µα σα SRα R2
f,O R2

f,T,N,O R2
f,N,T,O µα σα SRα R2

f,O R2
f,T,N,O R2

f,N,T,O
1 0.26 0.70 0.37 ´0.87 0.43 5.67 0.26 0.70 0.37 7.52 9.68 6.92
2 0.25 0.73 0.34 4.35 7.72 7.32 0.25 0.73 0.34 9.48 12.10 8.05
3 0.33 0.65 0.51 8.46 11.29 8.78 0.33 0.65 0.51 11.09 13.95 9.22
4 0.32 0.69 0.47 7.57 10.38 8.78 0.32 0.69 0.47 11.19 13.96 9.41
5 0.29 0.67 0.44 6.46 9.41 8.73 0.29 0.67 0.44 11.45 14.16 9.74
6 0.28 0.69 0.40 8.26 10.67 9.04 0.28 0.69 0.40 11.78 14.39 9.93
7 0.31 0.60 0.52 8.51 10.86 9.30 0.31 0.60 0.52 12.03 14.65 10.23
8 0.26 0.74 0.35 5.06 6.39 9.03 0.26 0.74 0.35 12.21 14.62 10.37
9 0.26 0.75 0.35 5.92 7.47 9.36 0.26 0.75 0.35 12.50 14.78 10.59
10 0.30 0.65 0.46 3.41 5.13 9.17 0.30 0.65 0.46 12.73 15.18 10.72
K R2

O R2
T,N,O R2

N,T,O R2
O R2

T,N,O R2
N,T,O

1-10 0.33 0.63 0.07 0.33 0.63 0.07

(iii) Corporate Bond Returns
Case (1) Case (2)

K µα σα SRα R2
f,O R2

f,T,N,O R2
f,N,T,O µα σα SRα R2

f,O R2
f,T,N,O R2

f,N,T,O
1 0.66 0.74 0.89 ´7.12 ´30.06 ´44.87 0.66 0.74 0.89 5.98 ´28.00 ´18.26
2 ´0.31 0.91 ´0.34 ´29.77 ´43.49 ´94.54 ´0.31 0.91 ´0.34 0.04 ´34.28 ´36.03
3 ´0.36 0.97 ´0.37 ´2.16 ´33.92 ´37.86 ´0.36 0.97 ´0.37 9.64 ´25.75 ´14.77
4 ´0.26 1.00 ´0.26 2.13 ´31.06 ´30.46 ´0.26 1.00 ´0.26 11.32 ´23.27 ´12.85
5 ´0.26 0.99 ´0.26 ´0.42 ´30.87 ´36.10 ´0.26 0.99 ´0.26 12.95 ´22.77 ´10.23
6 ´0.40 1.03 ´0.39 1.93 ´23.60 ´39.81 ´0.40 1.03 ´0.39 19.90 ´15.15 ´3.08
7 ´0.17 1.06 ´0.16 2.03 ´21.61 ´41.51 ´0.17 1.06 ´0.16 22.43 ´11.47 0.03
8 ´0.09 0.88 ´0.11 ´46.29 ´24.00 ´146.59 ´0.09 0.88 ´0.11 24.12 ´10.17 2.12
9 ´0.08 0.73 ´0.10 ´57.23 ´22.13 ´171.81 ´0.08 0.73 ´0.10 26.93 ´7.35 6.32
10 ´0.04 0.66 ´0.05 ´57.79 ´23.08 ´176.25 ´0.04 0.66 ´0.05 28.89 ´5.95 7.70
K R2

O R2
T,N,O R2

N,T,O R2
O R2

T,N,O R2
N,T,O

1-10 1.60 2.10 0.44 1.60 2.10 0.44

(iv) Option Returns
Case (1) Case (2)

K µα σα SRα R2
f,O R2

f,T,N,O R2
f,N,T,O µα σα SRα R2

f,O R2
f,T,N,O R2

f,N,T,O
1 9.06 5.16 1.76 37.64 8.83 15.88 11.03 3.09 3.57 13.24 9.30 6.47
2 5.03 4.45 1.13 37.97 12.05 17.51 7.92 2.48 3.19 17.19 13.14 10.23
3 4.69 4.01 1.17 38.07 15.51 18.04 7.43 2.21 3.37 18.87 17.21 11.49
4 3.45 3.45 1.00 38.26 15.40 18.30 6.76 2.03 3.33 20.74 17.38 12.02
5 3.37 3.42 0.98 38.46 15.27 18.49 6.71 2.01 3.33 21.38 17.31 12.32
6 4.16 3.33 1.25 38.54 14.84 18.64 6.77 1.91 3.53 22.08 16.96 12.54
7 4.87 3.48 1.40 38.56 13.76 18.67 6.82 1.90 3.59 22.22 15.96 12.43
8 4.23 2.79 1.52 39.64 15.72 19.07 5.78 1.69 3.42 22.70 17.99 13.18
9 3.67 2.56 1.43 39.74 16.32 19.26 5.27 1.50 3.52 23.16 18.77 13.58
10 3.47 2.85 1.22 40.50 16.47 19.48 4.72 1.36 3.47 23.29 18.96 13.81
K R2

O R2
T,N,O R2

N,T,O R2
O R2

T,N,O R2
N,T,O

1-10 36.34 7.89 13.75 3.52 8.14 3.98

This table reports the out-of-sample performance of the factor model in (2.7), with the out-of-sample
period extended to December 2021. Panels report R2’s for (i) all returns, (ii) stocks, (iii) corporate bonds,
and (iv) options. Case (1) uses non-trimmed options data and Case (2) uses trimmed options data for
out-of-sample evaluation. K is the number of factors. R2

O, R2
T,N,O, and R2

N,T,O measure out-of-sample

predictability, see (2.10) - (2.12). R2
f,O, R2

f,T,N,O, and R2
f,N,T,O assess out-of-sample fit based on factors

approximated by (2.13), see (2.14)–(2.16). All R2’s are reported in percentage terms. µα, σα and SRα are
the annualized means (%), standard deviations (%), and Sharpe ratios of the pure-alpha strategy.
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Table A11: In-sample Sharpe ratios and correlations of MVE portfolios with the
covariance matrix approximated by factors using the restricted factor models

(i) Sharpe ratios

Joint Stock CorpBond Option

Joint MVE and its constituents 2.03 2.10 1.00 0.37

Asset-class MVE - 2.78 1.36 2.61

(ii) Correlations between constituents in joint MVE

Joint Stock CorpBond Option

Joint - 0.24*** 0.19*** 0.73***

Stock - - -0.06 -0.22***

CorpBond - - - -0.35***

(iii) Correlations between constituents in joint MVE and common factors

Joint Stock CorpBond Option

Common 1 -0.10 -0.30*** 0.34*** -0.14**

Common 2 -0.07 0.00 -0.05 -0.04

Common 3 -0.11 0.14** 0.06 -0.21***

Common 4 -0.03 0.11* 0.34*** -0.28***

Common 5 -0.09 -0.01 -0.29*** 0.07

Common 6 -0.04 0.08 0.20*** -0.19***

Common 7 0.00 0.00 -0.07 0.04

Common 8 -0.09 0.09 0.07 -0.17**

Common 9 0.00 0.13* -0.14** 0.02

Common 10 -0.01 -0.04 0.01 0.00

This table reports the in-sample performance of MVE portfolios constructed from the first ten
estimated regressed-PCA factors using the restricted common factor model in (7.2) and the
restricted factor model in (7.1) for each asset class separately. Panel (i) shows the Sharpe ratios
of the joint MVE portfolio, its constituents, and the asset-class MVE portfolios. Panel (ii) reports
correlations among the constituents of the joint MVE portfolio. Panel (iii) reports correlations
between the constituents of the joint MVE portfolio and the common factors. We approximate
the covariance matrix of characteristic-managed portfolios using (6.4).
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Table A12: Out-of-sample Sharpe ratios of MVE portfolios

Number of factors Joint Stock CorpBond Option
K “ 1 1.49 -0.10 0.94 1.21

- [1.47] [0.87] [1.04]
K “ 2 1.81 0.92 -0.94 1.50

- [1.51] [0.67] [1.43]
K “ 3 1.80 0.52 -1.06 1.83

- [2.00] [0.77] [1.59]
K “ 4 1.84 0.65 -1.19 1.88

- [2.08] [0.79] [1.62]
K “ 5 2.03 0.89 -1.25 1.97

- [2.04] [0.60] [1.77]
K “ 6 1.95 0.96 -1.37 1.94

- [2.32] [0.56] [1.82]
K “ 7 2.05 1.18 -1.36 1.99

- [2.39] [0.88] [1.65]
K “ 8 2.24 1.16 -1.15 2.02

- [2.34] [1.26] [1.68]
K “ 9 2.37 1.51 -0.86 1.95

- [2.51] [1.55] [1.59]
K “ 10 2.49 1.43 -0.70 2.02

- [2.52] [1.53] [1.50]
K “ 11 2.54 1.41 -0.48 2.00

- [2.54] [1.42] [1.67]
K “ 12 2.73 1.43 -0.01 2.06

- [2.46] [1.38] [1.60]
K “ 13 2.88 1.39 0.66 2.07

- [2.29] [1.37] [1.63]
K “ 14 2.94 1.36 1.14 2.02

- [2.38] [1.35] [1.50]
K “ 15 2.88 1.30 1.05 2.00

- [2.43] [1.31] [1.40]
K “ 16 2.78 1.18 1.03 1.99

- [2.49] [0.97] [1.51]
K “ 17 2.79 1.32 1.02 1.98

- [2.49] [0.48] [1.42]
K “ 18 2.83 1.61 0.80 1.98

- [2.56] [0.69] [1.41]
K “ 19 2.69 1.79 0.99 1.78

- [2.54] [0.73] [2.32]
K “ 20 2.81 1.95 1.10 1.86

- [2.58] [0.85] [2.36]

This table reports the out-of-sample Sharpe ratios (annualized) performance of MVE portfolios
constructed from the first twenty estimated regressed-PCA factors of the common factor model in
(2.7) and the factor model in (2.4) for each asset class separately. For each number of factors K, the
first row gives the Sharpe ratios of the joint MVE portfolio and its constituents in each asset class;
the second row reports the Sharpe ratios of the MVE portfolios within each asset class in square
brackets.
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Table A13: Out-of-sample Sharpe ratios of MVE portfolios for the extended sample
period ending December 2021

Number of factors Joint Stock CorpBond Option
K “ 1 1.15 -0.17 0.88 1.06

- [1.43] [0.56] [1.12]
K “ 2 1.26 0.58 -0.82 1.29

- [1.48] [0.44] [1.55]
K “ 3 1.82 0.48 -0.85 1.86

- [1.97] [0.60] [1.65]
K “ 4 1.98 0.47 -0.88 2.00

- [1.97] [0.64] [1.53]
K “ 5 2.14 0.59 -0.91 2.11

- [1.90] [0.46] [1.24]
K “ 6 2.15 0.70 -1.09 2.20

- [2.17] [0.47] [1.39]
K “ 7 2.18 0.92 -1.09 2.21

- [2.26] [0.73] [0.93]
K “ 8 1.89 0.86 -0.92 1.91

- [2.22] [0.95] [0.87]
K “ 9 1.99 1.05 -0.61 1.90

- [2.37] [1.29] [0.89]
K “ 10 1.36 0.96 -0.51 1.25

- [2.38] [1.22] [1.56]
K “ 11 1.98 1.14 -0.30 1.75

- [2.39] [1.05] [1.59]
K “ 12 2.14 1.24 0.15 1.73

- [2.36] [1.05] [1.64]
K “ 13 2.36 1.21 0.73 1.85

- [2.23] [1.03] [1.39]
K “ 14 2.37 1.18 1.14 1.76

- [2.26] [0.97] [0.94]
K “ 15 2.30 1.09 0.95 1.76

- [2.30] [0.87] [1.28]
K “ 16 2.35 1.02 0.93 1.82

- [2.35] [0.60] [1.36]
K “ 17 2.33 1.15 0.96 1.79

- [2.34] [0.05] [1.18]
K “ 18 2.37 1.39 0.79 1.76

- [2.39] [0.18] [0.98]
K “ 19 2.28 1.55 0.93 1.61

- [2.38] [0.17] [1.41]
K “ 20 2.15 1.83 1.09 1.42

- [2.43] [0.28] [1.48]

This table reports the out-of-sample Sharpe ratios (annualized) performance of MVE portfolios
constructed from the first twenty estimated regressed-PCA factors of the common factor model in
(2.7) and the factor model in (2.4) for each asset class separately. For each number of factors K, the
first row gives the Sharpe ratios of the joint MVE portfolio and its constituents in each asset class;
the second row reports the Sharpe ratios of the MVE portfolios within each asset class in square
brackets. The sample period extends to December 2021.
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Table A14: Out-of-sample Sharpe ratios of MVE portfolios using the restricted factor
models

Number of factors Joint Stock CorpBond Option
K “ 1 1.20 -0.22 0.64 1.26

- [1.44] [0.87] [0.81]
K “ 2 1.53 1.06 -1.21 1.49

- [1.48] [0.66] [0.82]
K “ 3 1.37 0.84 -1.36 1.58

- [1.87] [0.75] [1.32]
K “ 4 1.37 0.79 -1.25 1.57

- [1.99] [0.84] [1.26]
K “ 5 1.67 1.22 -1.25 1.61

- [1.91] [0.57] [1.33]
K “ 6 1.43 1.53 -1.43 1.38

- [2.24] [0.55] [1.48]
K “ 7 1.82 1.67 -0.45 1.43

- [2.22] [0.91] [1.33]
K “ 8 1.96 1.71 1.15 1.20

- [2.14] [1.19] [1.33]
K “ 9 1.87 1.70 1.08 1.09

- [2.32] [1.48] [1.42]
K “ 10 2.07 1.26 0.89 1.38

- [2.25] [1.39] [1.47]
K “ 11 1.86 0.93 1.47 1.31

- [2.40] [1.30] [1.63]
K “ 12 1.92 0.84 1.48 1.35

- [2.23] [1.21] [1.53]
K “ 13 1.92 0.76 1.33 1.24

- [2.12] [1.20] [1.60]
K “ 14 1.85 0.85 1.16 1.15

- [2.38] [1.04] [1.77]
K “ 15 1.94 0.93 1.10 1.25

- [2.36] [0.91] [1.75]
K “ 16 1.91 1.06 1.07 1.25

- [2.37] [0.54] [1.88]
K “ 17 2.07 1.60 0.93 1.23

- [2.21] [0.43] [1.80]
K “ 18 2.25 1.94 0.68 1.34

- [2.47] [0.66] [2.31]
K “ 19 2.31 2.10 0.99 1.31

- [2.65] [0.69] [2.37]
K “ 20 2.30 2.05 1.19 1.27

- [2.68] [0.87] [2.36]

This table reports the out-of-sample Sharpe ratios (annualized) performance of MVE portfolios
constructed from the first twenty estimated regressed-PCA factors of the restricted common factor
model in (7.2) and the restricted factor model in (7.1) for each asset class separately. For each number
of factors K, the first row gives the Sharpe ratios of the joint MVE portfolio and its constituents in
each asset class; the second row reports the Sharpe ratios of the MVE portfolios within each asset
class in square brackets.
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Table A15: Correlations of out-of-sample MVE portfolios

(i) Correlations between constituents in joint MVE

Joint Stock CorpBond Option

Joint - 0.28*** -0.00 0.91***

Stock - - -0.18** -0.12

CorpBond - - - -0.09

(ii) Correlations between constituents in joint MVE and common factors

Joint Stock CorpBond Option

Common 1 -0.05 -0.23*** 0.25*** 0.01

Common 2 0.12 -0.19** 0.19** 0.18**

Common 3 0.06 0.04 0.08 0.03

Common 4 0.36*** 0.13 -0.09 0.33***

Common 5 0.15* 0.17* -0.13 0.10

Common 6 -0.21** 0.15* -0.07 -0.27***

Common 7 -0.27*** -0.16* -0.05 -0.20**

Common 8 -0.13 0.06 0.18** -0.19**

Common 9 -0.22** 0.17* -0.17* -0.27***

Common 10 -0.20** 0.07 -0.18** -0.20**

Common 11 -0.17* 0.09 0.03 -0.22**

Common 12 -0.07 0.20** -0.17* -0.14

Common 13 0.15* 0.08 -0.18** 0.15*

Common 14 -0.28*** -0.02 -0.09 -0.26***

Common 15 0.03 -0.10 0.03 0.07

Common 16 -0.00 -0.07 -0.02 0.03

Common 17 -0.06 -0.02 0.01 -0.06

Common 18 0.24*** 0.04 -0.01 0.23**

Common 19 -0.01 0.02 0.18** -0.05

Common 20 0.01 -0.15* 0.02 0.07

This table reports the correlations among the constituents of the out-of-sample joint MVE portfolios (Panel
(i)), and correlations between the constituents of the out-of-sample joint MVE portfolio and the common
factors (Panel (ii)). The out-of-sample realized factors are defined in (5.1).
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Table A16: Correlations of out-of-sample MVE portfolios for the extended sample period
ending December 2021

(i) Correlations between constituents in joint MVE

Joint Stock CorpBond Option

Joint - 0.30*** 0.05 0.93***

Stock - - -0.10 -0.05

CorpBond - - - -0.05

(ii) Correlations between constituents in joint MVE and common factors

Joint Stock CorpBond Option

Common 1 0.15* -0.07 0.21** 0.15*

Common 2 -0.07 -0.10 0.14* -0.05

Common 3 0.33*** -0.02 0.06 0.34***

Common 4 0.04 -0.02 -0.13 0.07

Common 5 -0.04 -0.01 -0.14* -0.02

Common 6 0.24*** 0.09 0.03 0.21***

Common 7 0.18** -0.06 0.01 0.21**

Common 8 -0.53*** -0.02 0.06 -0.55***

Common 9 -0.36*** 0.08 -0.11 -0.39***

Common 10 -0.48*** -0.01 -0.09 -0.49***

Common 11 0.37*** 0.03 0.04 0.37***

Common 12 -0.51*** 0.03 -0.11 -0.53***

Common 13 -0.39*** 0.01 -0.13 -0.40***

Common 14 -0.27*** -0.02 -0.08 -0.26***

Common 15 0.52*** 0.00 0.02 0.54***

Common 16 0.55*** 0.03 0.06 0.56***

Common 17 0.33*** 0.01 0.03 0.34***

Common 18 0.58*** 0.06 0.03 0.58***

Common 19 0.48*** 0.05 0.15* 0.46***

Common 20 -0.44*** -0.07 -0.01 -0.43***

This table reports the correlations among the constituents of the out-of-sample joint MVE portfolios (Panel
(i)), and correlations between the constituents of the out-of-sample joint MVE portfolio and the common
factors (Panel (ii)). The out-of-sample realized factors are defined in (5.1). The sample period extends to
December 2021.
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Table A17: Correlations of out-of-sample MVE portfolios using the restricted factor models

(i) Correlations between constituents in joint MVE

Joint Stock CorpBond Option

Joint - 0.41*** -0.01 0.88***

Stock - - -0.02 -0.03

CorpBond - - - -0.19**

(ii) Correlations between constituents in joint MVE and common factors

Joint Stock CorpBond Option

Common 1 0.02 -0.15* 0.36*** 0.02

Common 2 -0.04 -0.04 0.06 -0.03

Common 3 -0.04 0.10 0.04 -0.10

Common 4 0.29*** 0.22** -0.18** 0.24***

Common 5 0.04 0.15* -0.19** 0.01

Common 6 -0.42*** -0.06 -0.06 -0.41***

Common 7 -0.04 -0.08 0.16* -0.03

Common 8 0.12 0.30*** 0.07 -0.03

Common 9 -0.09 0.17* -0.26*** -0.13

Common 10 -0.10 0.02 -0.16* -0.09

Common 11 -0.15* 0.02 -0.12 -0.15

Common 12 -0.02 0.08 -0.15* -0.04

Common 13 0.28*** -0.00 -0.18** 0.34***

Common 14 -0.07 -0.07 0.12 -0.07

Common 15 0.24*** -0.08 0.09 0.28***

Common 16 0.06 -0.02 -0.08 0.09

Common 17 0.14 0.06 0.08 0.11

Common 18 0.24*** 0.04 -0.02 0.25***

Common 19 -0.07 -0.04 0.15* -0.09

Common 20 -0.00 -0.17* -0.05 0.09

This table reports the correlations among the constituents of the out-of-sample joint MVE portfolios (Panel
(i)), and correlations between the constituents of the out-of-sample joint MVE portfolio and the common
factors (Panel (ii)). The MVE portfolios are constructed from the restricted factor models (7.1) and (7.2).
The out-of-sample realized factors are defined in (5.1).
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