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Abstract

Are there risk factors that are pervasive across major classes of corporate secu-

rities: stocks, bonds, and options? We employ a novel econometric procedure that

relies on asset characteristics to estimate a conditional latent factor model. A com-

mon risk factor structure prominently emerges across asset classes. Several common

factors explain a substantial amount of time-series variation of individual asset returns

across all three asset classes, and have sizable Sharpe ratios. Several of our factors

are highly correlated with some of asset-class-specific factors as well as macroeconomic

and financial variables. While a small set of common factors does not fully capture

the cross-section of average returns, imposing the factor structure is useful in practice,

especially in out-of-sample analysis. A mean-variance efficient portfolio that utilizes

asset characteristics achieves a high Sharpe ratio as different asset classes hedge each

other’s exposures to the common factors.
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1 Introduction

Finance theory predicts a tight connection between the main types of corporate securities,

such as equity, equity options, and bonds (Black and Scholes, 1973; Merton, 1974). Close

relationship of expected returns to assets’ loadings on pervasive common factors (Ross, 1976)

forms another pillar of financial economics. And yet factors common to all of these asset

classes that also explain a substantial amount of variation in expected returns have been

elusive. Consequently, much of the asset pricing literature has pursued factors that are

specific to a particular asset class.1

In this paper, we employ a novel econometric approach to extracting latent factors di-

rectly from individual asset returns by employing the predictive power of well-known asset

characteristics. The key advantage of this approach as it allows working with short time

series (especially important for securities with finite maturities, such as bonds, and, espe-

cially, options) and large cross-sections. The Regressed-PCA (RPCA) approach proposed

by Chen, Roussanov, and Wang (2023) employs frontier econometric tools yet can be im-

plemented and interpreted using familiar cross-sectional regressions of Fama and MacBeth

(1973) as well as principal component analysis. This semi-parametric method allows us to

extract latent factors directly from the large panel of individual assets from different asset

classes. The time-varying factor exposures as well as the pricing errors are modeled as a func-

tion of observable asset characteristics. The regressed-PCA translates the large-dimensional

(and unbalanced) panel individual assets into a much smaller set of characteristic-managed

portfolios constructed via period-by-period Fama-MacBeth regressions (Fama and MacBeth,

1973). It then applies standard principal component analysis to these characteristic-managed

portfolios. Chen, Roussanov, and Wang (2023) show that the regressed-PCA displays attrac-

tive large-N (cross-section) asymptotic properties even when the time series T dimension

is relatively small, making it particularly useful for studying large cross-sections of asset

returns.

We are able to extract the common factors directly from individual assets across different

classes jointly, or consider asset-class-specific factors. We focus on the time period during

which data for all three asset classes are easily available. Therefore, the sample period of

the monthly data analyzed in this paper is from June 2004 to December 2021. We include

1Fama and French (1993) explore common variation in stock and bond returns and find that stock returns
are linked to bond returns through shared variation in the bond-market factors, but conclude that the key
factors responsible for the risk premia are largely asset class-specific, which is the approach pursued by Coval
and Shumway (2001) for option returns and Lustig, Roussanov, and Verdelhan (2011) for currency returns.
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35 characteristics for stocks, 26 characteristics for corporate bonds, and 19 characteristics

for options in our empirical analysis. The characteristics are both firm- or security-specific.

We start from asset-class-specific characteristic-managed portfolios of individual assets and

then extract the joint latent factors from these portfolios.

Our key result is the strong commonality across the different asset classes. In particular,

the “first” regressed-PCA latent factor (i.e. the one corresponding to the principal compo-

nent that explains the largest share of common variability in returns across the three asset

classes jointly) behaves as as a truly “common” risk factor. First of all, we find that the first

regressed-PCA factor is highly correlated with the the first principal component of a large

set of “observable” pricing factors proposed by the extant literature, most of them specific

to a particular asset class. Moreover, the first latent factor is significantly correlated with

fifteen out of eighteen asset-class-specific observable factors we study, for example, the mar-

ket factors for the three asset classes, stock momentum factor, the corporate bond credit risk

factor, and the idiosyncratic volatility factor in options. The observable factors together can

explain more than half of the variation in the first joint factor. Second, the first joint latent

factor correlates highly with the leading latent factors that are extracted from each asset

class in isolation. Third, the first joint factor is related to several macroeconomic variables

and, most notably, has a correlation of 0.48 with the intermediary capital factor of He, Kelly,

and Manela (2017). And lastly, the first joint factor provides both a good in-sample fit and

strong out-of-sample predictability of returns in each of the asset classes. These results all

indicate an apparent existence of a common factor across different asset classes.

Although different asset classes exhibit a common factor structure, the risk factors alone

do not fully capture the cross-sectional returns across these assets. The “arbitrage portfolio”

that is based on the estimated conditional “alpha” function, i.e. exploits the ability of

characteristics to predict returns but has zero loadings on the joint common factors generates

a substantial Sharpe ratio. We also find that the out-of-sample Sharpe ratio does not decline

when more factors are included, suggesting that the high average return on the pure-alpha

strategy is not simply attributed to model misspecification. Indeed, a model specification test

shows that the pricing errors are significantly non-zero, even with ten risk factors included.

By considering the characteristics’ weights of the pure-alpha portfolio we show that the

portfolio loads heavily on the characteristics emanating from options, such as option implied

volatility and option gamma. This evidence suggests that pricing in option markets is less

“efficient” than in equity markets, where most of the “abnormal” return predictability with

characteristics has been driven out by arbitrageurs over time.
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Our paper speaks to a voluminous empirical asset pricing literature that studies the joint

cross-section of multiple asset classes. Gebhardt, Hvidkjaer, and Swaminathan (2005b) also

suggests that equity momentum spills over to the corporate bond market. Other papers such

as Chordia, Goyal, Nozawa, Subrahmanyam, and Tong (2017) and Choi and Kim (2018) find

evidence suggesting segmentation between equity and bond markets. Bali, Goyal, Huang,

Jiang, and Wen (2022) shows that the predictability of bond returns using equity char-

acteristics significantly improves when the Merton model is explicitly imposed, suggesting

that bond-equity integration is not captured by the reduced-form approach without restric-

tions. Cao and Han (2013), Bali, Beckmeyer, Moerke, and Weigert (2021) and Christoffersen,

Goyenko, Jacobs, and Karoui (2018) show that the stock-level characteristics such as idiosyn-

cratic volatility with respect to the Fama-French three-factor, momentum, stock illiquidity

among others could predict stock option returns. At the same time, Bali and Hovakimian

(2009), Johnson and So (2012) and Xing, Zhang, and Zhao (2010) present evidence that the

volatility spread, volatility smirk and option to stock volume ratio help predict future stock

returns. Furthermore, Goyenko and Zhang (2021) illustrate that the option characteristics

are dominant predictor of stock returns and indicate that the options markets lead the stock

market. Beyond their advantage in predicting the stock market, some option characteris-

tics also provide information for predicting the corporate bond returns. Cao, Goyal, Xiao,

and Zhan (2022) demonstrate that importance of the information related to the default risk

which is embedded in the option volatility in predicting corporate bond returns. Across

multiple asset classes, studies such as He, Kelly, and Manela (2017) and Lettau, Maggiori,

and Weber (2014) suggest that the intermediary and downside risk factors are significant,

although they are questioned by Gospodinov and Robotti (2021). Lin, Wang, and Wu (2011)

show that liquidity risk is priced in the corporate bonds. Bali, Subrahmanyam, and Wen

(2021) find that long-term reversal factor carries a sizable premium in corporate bond mar-

kets, which can be related to investors’ ex-ante risk assessment and institutional constraints.

Elkamhi, Jo, and Nozawa (2022) propose a one-factor model related to long-run consump-

tion risk. Kelly, Palhares, and Pruitt (2022) propose a 5-factor IPCA model to explain the

corporate bond returns. Recent studies in the option pricing literature building on the no-

arbitrage parametric option pricing models (Duffie, Pan, and Singleton, 2000, etc.) study

what characteristics or factors could explain or predict the cross-section of option returns

directly. Some focus on the specific characteristics (Goyal and Saretto, 2009; Zhan, Han,

Cao, and Tong, 2022; Frazzini and Pedersen, 2021). While some others propose the factor

structure to understand the cross-section of option returns. For example, Karakaya (2013)
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suggests a three-factor model with a level, slope and value factor to explain the cross-section

of delta-hedged individual equity option returns. Christoffersen, Fournier, and Jacobs (2018)

apply the principal components of equity volatility, skews and term structures to explain the

cross-section of the option prices (Black-Scholes implied volatility). Horenstein, Vasquez,

and Xiao (2020) exploit the asymptotic principal component analysis to study the common

factor structure of around 100 equity option portfolios. Büchner and Kelly (2022) use the

IPCA to explore the latent factor structure of index options. Our paper specifically con-

tributes to this strand of option literature by extracting the latent factors that could capture

the common variation in individual asset returns on equity options. Bali, Beckmeyer, and

Goyal (2023) extend the IPCA approach to construct a joint factor model for bonds, options,

and stocks. They find that six latent factors are sufficient to explain a large proportion of

the total variations across the three asset classes. While we also find that common factors

capture a substantial amount of variation of expected returns, we show that the exposures

to the common risk factors do not fully capture the cross section of average returns across

asset classes. Substantial predictable variation that is orthogonal to the common factors

also contributes significantly to explaining the cross section, especially in equity and options

(but not in corporate bonds). Moreover, we show that, even though the factor model is not

“perfect,” imposing the factor structure on the covariance matrix of returns is beneficial for

constructing an out-of-sample mean-variance efficeint portfolio.

The rest of the paper is organized as follows. Section 2 summarizes the factor model

and describes the model estimation procedure, the regressed-PCA, as well as the model

evaluation metrics used in our empirical analysis. Section 3 introduces the data. Section

4 presents the main results which analyze the extracted joint latent factors. Section 5.1

discusses the role of the common risk factors in assets’ returns. Section 6 concludes the

paper.

2 Methodology

In this section, we present the general factor model for individual assets’ excess returns

and adapt it to extracting latent factors from the joint cross-section of returns on stocks,

corporate bonds and options. The model can be used to identifying common factors within

any single asset class as well. In order to estimate the conditional factor model, we employ

a novel methodology proposed by Chen, Roussanov, and Wang (2023), which they refer
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to as regressed-PCA. We introduce various measures of fit and predictability to assess the

empirical performance of the factor models.

2.1 Model

Following Chen, Roussanov, and Wang (2023) and Kelly, Pruitt, and Su (2019), we consider

the following factor model, for i “ 1, ..., N and t “ 1, ..., T ,

ri,t “ αpzi,t´1q ` βpzi,t´1q
1ft ` ϵi,t, (2.1)

where ri,t is the monthly excess return of asset i at time t, and ft is the K ˆ 1 vector of

latent factors. As in Chen, Roussanov, and Wang (2023) and Kelly, Pruitt, and Su (2019),

we also specify both the factor loadings βp¨q and the mispricing errors αp¨q are the functions

of zi,t´1, which is a J ˆ 1 vector summarizing the observable time-varying characteristics of

asset i at time t ´ 1, and ϵi,t is the idiosyncratic error term. Here, we do not necessarily

require a balanced panel, that is to say, the sample size of each period is allowed to be

time-varying (the number of assets N is time-varying). This is particularly important for

options as they have varying and mostly short life spans. The model in (2.1) allows us to

disentangle the mispricing errors (alpha) and common factor exposure (beta). In contrast,

a restricted version of this model which sets αp¨q “ 0 only allows characteristics to explain

the risk exposures.

We next introduce the specifications of the mispricing errors αp¨q and the dynamic factor

loadings βp¨q. In this paper, we mainly focus on the linear approximation of unknown

functional forms of αpzi,t´1q and βpzi,t´1q in (2.1). Specifically, we assume that αpzi,tq and

βpzi,tq are approximated by

αi,t “ a1zi,t ` ηα,i,t,

βi,t “ B1zi,t ` ηβ,i,t, (2.2)

where zi,t “ p1, zi,t,1, . . . , zi,t,Jq1, and apJ`1qˆ1 and BpJ`1qˆK are the corresponding loading

coefficients on characteristics, ηαpzi,tq and ηβpzi,tq are the approximation errors.

Letting Rt ” pr1,t, ..., rN,tq
1, Zt´1 ” pz1,t´1, ..., zN,t´1q

1, εt ” pϵ1,t, ..., ϵN,tq
1, Hα,t´1 ”

pηα,1,t´1, . . . , ηα,N,t´1q
1 and Hβ,t´1 ” pηβ,1,t´1, . . . , ηβ,N,t´1q1, we rewrite (2.1) in a matrix form:

Rt “ Zt´1a ` Zt´1Bft ` Hα,t´1 ` Hβ,t´1ft ` εt. (2.3)
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We further define ξt “ Hα,t´1 `Hβ,t´1ft `εt and rewrite (2.3) into the following matrix form:

Rt “ Zt´1a ` Zt´1Bft ` ξt. (2.4)

In order to extract the joint latent factors, we model that the returns on all three asset

classes load on some joint latent factors fJ and returns on each asset class follow the factor

model (2.4), which is given by2

Rs
t “ Zs

t´1a
s

` Zs
t´1B

sfJ
t ` ξst ,

Rc
t “ Zc

t´1a
c

` Zc
t´1B

cfJ
t ` ξct ,

Ro
t “ Zo

t´1a
o

` Zo
t´1B

ofJ
t ` ξot .

Then we stack them into the following matrix form:

»

—

—

–

Rs
t

Rc
t

Ro
t

fi

ffi

ffi

fl

loomoon

Rt

“

»

—

—

–

Zs
t´1 0 0

0 Zc
t´1 0

0 0 Zo
t´1

fi

ffi

ffi

fl

loooooooooooomoooooooooooon

Zt´1

»

—

—

–

as

ac

ao

fi

ffi

ffi

fl

loomoon

a

`

»

—

—

–

Zs
t´1 0 0

0 Zc
t´1 0

0 0 Zo
t´1

fi

ffi

ffi

fl

loooooooooooomoooooooooooon

Zt´1

»

—

—

–

Bs

Bc

Bo

fi

ffi

ffi

fl

loomoon

B

fJ
t `

»

—

—

–

ξst

ξct

ξot

fi

ffi

ffi

fl

loomoon

ξt

. (2.5)

Consequently, the factor model across different asset classes can also be expressed in a

more compact way as in (2.4).

Rt “ Zt´1a ` Zt´1BfJ
t ` ξt. (2.6)

More generally, our framework allows any asset specific factors (non-joint factors) in

Model (2.5). Here, to simplify notations, we combine them with the idiosyncratic error term

together in each asset class.

2.2 Regressed-PCA

We use the model in (2.4) to demonstrate the estimation method. Our goal is to estimate

a, B and ft (B and ft can be identified up to a rotation matrix) in (2.4). Following Chen,

2We could also study the asset-class-specific factors by analyzing the returns on each asset class under
the factor model (2.4), separately. Here, “s”, “c” and “o” briefly stand for “stock”, “corporate bond” and
“option”, respectively.
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Roussanov, and Wang (2023), the regressed-PCA procedure simply takes two steps. First,

we run the cross-sectional regression of Rt on Zt´1 period-by-period and get:

R̃t “ a ` Bft ` pZ 1
t´1Zt´1q

´1Z 1
t´1ξt, (2.7)

where R̃t “ pZ 1
t´1Zt´1q

´1Z 1
t´1Rt. This first step involves the period-by-period cross-sectional

regression, which is known as Fama-MacBeth regression (Fama and MacBeth, 1973). R̃t is

interpreted as the vector of returns on J ` 1 characteristic-managed portfolios or a set of

cross-sectional factors as in Fama and French (2020). More asset pricing interpretations can

be found in Chen, Roussanov, and Wang (2023).

Then, we perform the standard PCA procedure on managed portfolios (tR̃tu1:T ) in model

(2.7). Let MT ” IT ´1T11
T {T where 1T denotes a T ˆ1 vector of ones and R̃ ” pR̃1, . . . , R̃T q.

Then in the second step, by imposing the following identification and normalization: a1B “ 0,

B1B “ IK and F 1MTF {T being diagonal with diagonal entries in descending order, we can

get B̂, the estimator of B, as the eigenvectors corresponding to the first K largest eigenvalues

of the pJ ` 1q ˆ pJ ` 1q matrix R̃MT R̃
1{T and â “ pIJ`1 ´ B̂B̂1q

řT
t“1 R̃t{T . Furthermore,

we can get the estimators of αp¨q, βp¨q and F “ pf1, . . . , fT q1 as

α̂pzq “ â1z, β̂pzq “ B̂1z and F̂ “ pf̂1, . . . , f̂T q
1

“ R̃1B̂.

The model in (2.6) with joint factors could be estimated in a similar way. The first step

is running a cross-sectional regression of Rt`1 on Zt, which is exactly equivalent to running

cross-sectional regression within each asset class separately. Then we get characteristic-

managed portfolios across different asset classes. The second step is the same as before-

performing PCA on the pooled characteristic-managed portfolios from all three asset classes.

The above estimation procedure is conditional on a known number of factors K. In our

empirical analysis we consider a range of values of K. 3

What sets regressed-PCA apart from other popular methods, in addition to the simplicity

of the two-step estimation procedure, is that its large-N -asymptotic properties do not require

a large time-series sample size T (as shown in Chen, Roussanov, and Wang (2023)). In asset

pricing, this property is particularly appealing for studying individual asset returns, since the

size of the cross-section is often substantially larger than the length of their available monthly

time series, i.e., N " T . As shown in Section 3, the data we analyze in this paper contain

only 210 monthly periods but include more than 1,000 individual assets for each asset class

3The number of factors K can be consistently estimated by maximizing the ratio of nearby eigenvalues
(see Ahn and Horenstein (2013) and Chen, Roussanov, and Wang (2023)).
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at every time period. Another desirable property of regressed-PCA is that the method can

be applied to unbalanced panels. Intuitively, the regressed-PCA translates the unbalanced

panels of individual asset returns into a balanced J ` 1 characteristic-managed portfolios

via cross-sectional Fama-MacBeth regressions in each period. Chen, Roussanov, and Wang

(2023) show that as long as the sample size in each period Nt satisfies mintďT Nt Ñ 8, all

the asymptotic properties are well established. In particular, this makes the factor analysis

on options realistic since individual option’s time-to-maturity is short and the long-maturity

options are mostly illiquid, therefore it is impractical to obtain a balanced panel dataset with

large enough number of options or long enough time period. More desirable properties and

comparisons among different methods can be found in Chen, Roussanov, and Wang (2023).

Finally, we employ the weighted bootstrap procedure as developed and detailed in Chen,

Roussanov, and Wang (2023) that accounts for the sampling uncertainty in the successive

estimation steps to conduct asset pricing tests (i.e., testing for αp¨q “ 0).

2.3 Evaluation metrics

We first consider several types of R2 statistics to check the in-sample goodness-of-fit of

our models on assets’ returns. The first one, R2
K , measures the model’s ability of explain-

ing the characteristic-managed portfolios from the Fama-MacBeth cross-sectional regression

with different number of factors K, this is directly from the second step - PCA. The sec-

ond one is R2
R̃

, which measures how much variation in individual assets is explained by the

characteristic-managed portfolios, this is the R2 of the Fama-MacBeth cross-sectional re-

gression in the first step of the estimation procedure. In addition, the total R2 evaluates the

performance of our models in explaining individual assets’ returns directly,

R2
“ 1 ´

ř

i,trri,t ´ α̂pzi,t´1q ´ β̂pzi,t´1q
1f̂ts

2

ř

i,t r
2
i,t

. (2.8)

Second, we evaluate the out-of-sample performance. In the empirical analysis, we apply

the expanding-window scheme. Specifically, we let the initial window size equal to 60 months,

then for t ě 60, we obtain the model estimates ât´1, B̂t´1, F̂
pt´1q ”

´

f̂
pt´1q

1 , ..., f̂
pt´1q

t´1

¯

and

α̂t´1pzi,t´1q “ â1
t´1ϕpzi,t´1q, β̂t´1pzi,t´1q “ B̂1

t´1ϕpzi,t´1q correspondingly, by estimating the

model using data through t´1. Next we approximate the time t factors ft by the time-series

average of all previous factor estimators λ̂t “
ř

sďt´1 f̂
pt´1q
s {pt ´ 1q. Then, we evaluate the

three out-of-sample predictive R2 statistics for both the unrestricted and restricted models,

the first one is the total out-of-sample R2
O, the second one measures the cross-sectional
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average of model’s predictability on time series of each asset R2
T,N,O, and the third one

examines the time-series average of model’s predictability on the cross-section R2
N,T,O which

shows how well the model explain the cross-section of average returns, as it relates to the

R2 of the Fama-Macbeth cross-sectional regression. The formulas are shown below.

R2
O “ 1 ´

ř

i,tě60rri,t ´ α̂t´1pzi,t´1q ´ β̂t´1pzi,t´1q
1λ̂ts

2

ř

i,tě60 r
2
i,t

, (2.9)

R2
T,N,O “ 1 ´

1

N

ÿ

i

ř

tě60rri,t ´ α̂t´1pzi,t´1q ´ β̂t´1pzi,t´1q1λ̂ts
2

ř

tě60 r
2
i,t

, (2.10)

R2
N,T,O “ 1 ´

1

T ´ 60

ÿ

tě60

ř

irri,t ´ α̂t´1pzi,t´1q ´ β̂t´1pzi,t´1q1λ̂ts
2

ř

i r
2
i,t

. (2.11)

Third, we assess the out-of-sample fitness by computing the out-of-sample realized factor

return at t:

f̂t´1,t “ B̂1
t´1pΦpZt´1q

1ΦpZt´1qq
´1Φ1

pZt´1qRt “ B̂1
t´1R̃t. (2.12)

By doing that, we are able to evaluate how much the cross-sectional variation of individual

assets can be explained by the pre-estimated β̂t´1p¨q with the associated R2s defined as:

R2
f,O “ 1 ´

ř

i,tě60rri,t ´ β̂t´1pzi,t´1q
1f̂t´1,ts

2

ř

i,tě60 r
2
i,t

, (2.13)

R2
f,T,N,O “ 1 ´

1

N

ÿ

i

ř

tě60rri,t ´ β̂t´1pzi,t´1q1f̂t´1,ts
2

ř

tě60 r
2
i,t

, (2.14)

R2
f,N,T,O “ 1 ´

1

T ´ 60

ÿ

tě60

ř

irri,t ´ β̂t´1pzi,t´1q1f̂t´1,ts
2

ř

i r
2
i,t

. (2.15)

Fourth, we further examine the out-of-sample performance by an arbitrage portfolio

from a pure-alpha trading strategy based on our model estimation of the anomaly terms

α̂p¨q. In the unrestricted model, the characteristics may help capture the mispricing as

reflected in the anomaly intercepts that should be independent of the varying risk-based

compensation, we then could expect a high Sharpe ratio on this trading strategy if the model

accurately captures the risk factor parts of the returns. We assign the portfolio weights as

wt “ Zt´1

`

Z 1
t´1Zt´1

˘´1
ât´1, where ât´1 is estimated from the data through t ´ 1. Chen,

Roussanov, and Wang (2023) show that the return on this portfolio should converge to }a}2.
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3 Data

In this section, we introduce the data for stocks, corporate bonds and options. Important

filters for corporate bonds and options, as well as summary statistics for the returns are

presented. We also briefly show the characteristics as the compositions of the latent factor

loadings and mispricing errors in our model of returns on the three asset classes. Appendix

A1 provides a detailed description of the characteristics used in our analyses of corporate

bonds and options.

In order to extract the joint factors, we focus on the sample period during which data

for all three asset classes are available. Therefore, the sample period of the monthly stocks,

corporate bonds and options data analyzed in this paper for all the in-sample analysis is

from July 2004 to December 2021.

For the out-of-sample analysis in the later sections, our sample period is from July

2004 to December 2019. We omit two years that covers unprecedented events including

the COVID and the GameStop episode, because these events dramatically affect the out-of-

sample predictability, especially for equity options.4

For all three asset classes, we study the excess returns while the risk-free rates are from

Kenneth French’s data library.5 In addition, following Kelly, Pruitt, and Su (2019), we re-

scale all characteristics cross-sectionally into the range r´0.5,`0.5s to restrict the impact of

outliers.

3.1 Stocks

The stock returns and characteristics data are originally from Freyberger, Neuhierl, and

Weber (2020) and Kim, Korajczyk, and Neuhierl (2021). To model stock returns, we pick

35 characteristics that are available from Freyberger, Höppner, Neuhierl, and Weber (2022),

out of 36 characteristics which are used in Kelly, Pruitt, and Su (2019) and Chen, Rous-

sanov, and Wang (2023).6 The 35 characteristics are market beta (beta), market capitaliza-

4As a robustness check, we also conduct the analysis until December 2021. The main results still hold,
except that out-of-sample fitness for returns of stocks and corporate bonds become worse off. This is because
the joint factor model accommodates to match some very extreme returns observed from the equity options.
We show the results for the sample period until December 2021 in Appendix A6

5http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
6Kelly, Pruitt, and Su (2019) and Chen, Roussanov, and Wang (2023) choose 36 stock characteristics from

Freyberger, Neuhierl, and Weber (2020), but the sample ends in May 2014. Freyberger, Höppner, Neuhierl,
and Weber (2022) extend the characteristics data in Freyberger, Neuhierl, and Weber (2020) to December

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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tion (mktcap), book-to-market ratio (bm), gross profitability (prof), investment (invest),

idiosyncratic volatility (idiovol), book leverage (lev), operating leverage (ol), momentum

(mom), intermediate momentum (intmom), short-term reversal (strev), long-term reversal

(ltrev), average daily bid-ask spread (bidask), standard unexplained volume (suv), price to

52-week high price (w52h), total assets (asset), total-assets-to-size (a2me), sales-to-lagged-

net-operating-assets (ato), sales-to-price (s2p), cash-to-short-term-investment (c), capital

turnover (cto), ratio of change in property, plants and equipment to the change in total

assets (dpi2a), earnings-to-price (e2p), return on net operating assets (rna), return on assets

(roa), return on equity (roe), price-to-cost margin (pcm), profit margin (pm), Tobin’s Q

(q), cash flow-to-book (freecf), last month’s volume to shares outstanding (turn), capital

intensity (d2a), operating accruals (oa), ratio of sales and general administrative costs to

sales (sga2s), and net operating assets (noa). For detailed construction and summary statis-

tics of these characteristics, one can refer to Freyberger, Neuhierl, and Weber (2020) and

Freyberger, Höppner, Neuhierl, and Weber (2022).

3.2 Corporate Bonds

For corporate bonds, we use the dataset constructed by Dickerson, Robotti, and Rossetti

(2023).7 This corporate dataset sources from the WRDS bond database and Mergent’s

FISD. A highlight in this dataset is that the corporate bond prices are properly adjusted

for market microstructure noises (MMN) in the trades by following the procedure proposed

by Andreani, Palhares, and Richardson (2023), so that the asset pricing implications can be

closely aligned with the industry-grade quote data such as ICE. In particular, the authors

impose two prominent filtering criteria with respect to the issue size: (1) remove investment

grade bonds of less than $150 ($250) million outstanding prior to (after) November 2004,

and (2) remove high-yield bonds that have less than $100 ($250) million outstanding prior

to (after) September 2016. Also, different from the WRDS bond database which the returns

are truncated at 100%, the authors adjust the returns that are over 100% with returns com-

puted from ICE quote database. Besides, the authors follow the standard data preparation

procedure to clean the corporate bond data.8 They collapse the transaction-level prices into

daily prices by taking the par volume-weighted average of intraday prices (Bessembinder,

2021 and impute the missing values in a GMM framework. The extended dataset is generously provided by
the authors. The only characteristic that is absent from this new dataset is fixed costs-to-sales (fc2y).

7We are sincerely grateful that the authors kindly provide the dataset to us.
8See Dick-Nielsen (2009), Dick-Nielsen (2014), Nozawa (2017), and van Binsbergen and Schwert (2021)
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Kahle, Maxwell, and Xu, 2008). They remove transaction records in TRACE Enhanced that

are canceled and adjust records that are subsequently corrected or reversed. They eliminate

bonds with non-standard transactions which are labeled as when-issued (WIS FL), locked-

in (LCKD IN IND), have special sales conditions (SPCL TRD FL), or have trading-

volume of less than $100,000.9 They also exclude bonds with non-standard issuance, i.e.,

bonds that are issued through private placement (private placement) or under the 144A rule

(rule 144a) and bonds that do not trade in US dollars. They further drop bonds that are

structured notes, mortgage backed or asset backed, agency backed, or equity linked, as well

as convertible bonds, bonds that trade under $5 or above $1000, bonds that have a floating

or zero coupon rate, and bonds that have less than one year to maturity. They restrict the

bond’s interest payment frequency between monthly and annual.

The dataset from Dickerson, Robotti, and Rossetti (2023) include monthly variables of

corporate bond returns, as well as bond-level characteristics. We compliment their dataset

with Mergent’s FISD to construct additional bond characteristics. The Mergent’s FISD

dataset has basic issue information such as bond interest rates, convertible terms, bondholder

protections, and unit offerings. It also provides issuer information as well as corresponding

agencies. We merge the dataset from Dickerson, Robotti, and Rossetti (2023) with Mergent’s

FISD based on bond security’s CUSIP. The bond returns and characteristics are then merged

with firm-level characteristics using the WRDS Bond CRSP Link table.

The monthly corporate bond returns are computed using representative price (P ) for

each end-of-month date and each bond, accrued interests (AI), and coupons (cpn). First,

since corporate bond markets are illiquid, and trades may or may not occur frequently within

the month, the end-of-month prices should balance the trade-offs between keeping a large

enough sample size and extrapolating from the last available prices. Specifically, for each

corporate bond on each month-end date, we select the price if it is available within 5 calendar

days before the month-end; otherwise, we mark the price as missing.10 Second, we compute

the accrued interest over the fractional period between the last coupon payment date and

the month-end date. We can compute the monthly return as:

Rcorpbond
t`1 “

Pt`1 ` AIt`1 ` cpnt`1

Pt ` AIt
´ 1.

9Dickerson, Robotti, and Rossetti (2023) mention that the volume filter of $100,000 can significantly
reduce the noises from potential retail trades.

10In the WRDS bond database, the variable name is RET L5M .
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We employ 26 characteristics that are widely studied by the literature on corporate bond

returns (e.g., Kelly, Palhares, and Pruitt, 2022; Bao, Pan, and Wang, 2011) in our model.

There are 12 bond contract level characteristics, including bond age (age), coupon (cpn),

rating (rating), issue amount (issue size) duration (duration), spread (CS), bond momen-

tum (bond mom), spread momentum (spread mom), value-at-risk (V aR), bond short-term

reversal (bondrev), bond long-term reversal (bondltrev), and illiquidity (illiq). For bond

characteristics that use bond prices of the most recent month, we use the values from Dick-

erson, Robotti, Rossetti (2023) which adjust for microstructure noises using ICE quote data.

We also include 16 stock-level variables, which are idiosyncratic volatility (idiovol), momen-

tum (mom), book leverage (lev), Fama-French five-factor related characteristics (beta, prof ,

mktcap, invest, bm), operating leverage (ol), earnings-to-price ratio (e2p), tangibility (tan),

total debt (debt), debt-to-EBITDA (d2ebitda), and distance-to-default (DD). Appendix A1

presents the sources and detailed description of these characteristics.

3.3 Options

The individual equity options data is from OptionMetrics, and underlying stock information

such as stock returns, prices, share code, and trading volume is from CRSP.11

In order to avoid recording errors, and extremely illiquid options, we follow the literature

and retain option contracts after the following filtering process.12 All the filters only utilize

the information available on the portfolio formation date t to avoid the look-ahead bias. The

option price is defined as the mid-point of the bid and ask prices. First, being consistent with

the stocks chosen, we study the options of common stocks. Second, to avoid microstructure

noise, we keep only options in which bid price is positive, the bid price is smaller than the

ask price, the mid-point of the bid and ask is at least $0.125, and the bid-ask spread is

between the minimum tick size ($0.05 for options trading below $3 and $0.1 otherwise) and

$5. Third, we retain only at-the-money options which expire in 1 to 12 months and have

positive trading volume at time t to have a focus on the most liquid options. Fourth, we keep

standard options which expire on the third Friday of certain months, have non-missing and

positive implied volatility, and have non-missing deltas with values between -1 and 1. Fifth,

11The two datasets are merged using the linking table provided by WRDS: https://wrds-www.wharton.
upenn.edu/pages/get-data/linking-suite-wrds/option-metrics-crsp-link/

12See Büchner and Kelly (2022), Frazzini and Pedersen (2021), Zhan, Han, Cao, and Tong (2022), Bali,
Beckmeyer, Moerke, and Weigert (2021), Goyenko and Zhang (2021), Goyal and Saretto (2009), and Boyer
and Vorkink (2014).

https://wrds-www.wharton.upenn.edu/pages/get-data/linking-suite-wrds/option-metrics-crsp-link/
https://wrds-www.wharton.upenn.edu/pages/get-data/linking-suite-wrds/option-metrics-crsp-link/
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since individual stock options are of the American type, we control for the early expiration

by dropping options with time value in percentage of option value F´V
F

is too small (below

5%), where F is the option price and V is the option’s intrinsic value which is defined as

maxpS ´ K, 0q for calls and maxpK ´ S, 0q for puts with K as the strike price and S as the

underlying price (Frazzini and Pedersen, 2021). We focus on the at-the-money options, thus

we remain only options with the absolute delta between 0.375 to 0.625. Lastly, we impose

the obvious no-arbitrage conditions, see for example Zhan, Han, Cao, and Tong (2022).

We also notice that the outliers in the options data dramatically affect the estimation of

the factors (e.g., during the GME episode, the options market exhibited significant volatility

and unpredictability.). Consequently, we address this issue by systematically trimming the

data, excluding data points below the 1st percentile and above the 99th percentile of the

return distribution in each period. The trimmed data is then employed exclusively for in-

sample analysis and estimation13.

It is important to acknowledge the potential look-ahead bias introduced by this trimming

process when applied to out-of-sample studies. Consequently, in our out-of-sample analysis,

we refrain from utilizing the trimmed data. To make our portfolio as realistic as possible, we

use the prevailing market quotes to unwind our positions at the end of the holding period

(the last trading day of next month) unless we notice recording errors, e.g., the bid price is

998 or 999. 14

Then we compute the delta-hedged holding returns15 on call options since calls are more

actively traded (Zhan, Han, Cao, and Tong, 2022; Christoffersen, Goyenko, Jacobs, and

Karoui, 2018). Specifically, at the portfolio formation date, we buy one contract of the call

option and sell delta shares of the underlying stock, where delta is from OptionMetrics and

calculated under the Black-Scholes model. We hold the position for one month without daily

hedging to reduce the transaction cost and make portfolio more practical (Zhan, Han, Cao,

and Tong, 2022). Since the initial investment Ct ´ ∆tSt is negative, the delta-hedged return

is defined as

Roption
t`1 “ 1 ´

∆tSt`1 ´ Ct`1

∆tSt ´ Ct

.

We apply 19 characteristics in our model of option returns. The 19 characteristics are

13We present the out-of-sample results using the trimmed options data in Appendix A6
14We follow Duarte, Jones, Mo, and Khorram (2023) and Duarte, Jones, and Wang (2023) which also

mention that look-ahead bias significantly affects the performance of the out-of-sample trading strategies
studied in the empirical options literature.

15In Appendix A7, we show the main conclusions of the paper still hold for using raw option returns.
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well-documented by the literature that are useful for describing and predicting option re-

turns (e.g., Büchner and Kelly, 2022; Zhan, Han, Cao, and Tong, 2022; Bali, Beckmeyer,

Moerke, and Weigert, 2021). We have 7 characteristics on the contract level, including im-

plied volatility (impl vol), option’s Greeks (delta, gamma, theta, volga), embedded leverage

(embed lev), and option illiquidity measure (optspread). The 12 stock level characteristics

consists of stock illiquidity measure (bidask), idiosyncratic volatility (idiovol), volatility de-

viation (vol dev), momentum (strev, intmom, mom), book leverage (lev), and Fama-French

five-factor related characteristics (beta, prof , mktcap, invest, bm). Appendix A1 provides

a thorough explanation of these characteristics and lists references to papers that examine

these characteristics in empirical studies.

Table 1 provides an overview of the descriptive statistics for the returns on the three

asset classes 16. Despite the aforementioned filtering process, our study maintains its focus

on a comprehensive panel consisting of the three asset classes. The final sample comprises

a substantial number of observations, including 738,518 stock-month observations, 208,652

corporate bond-month observations, and 760,836 option-month observations. Importantly,

each period contains a minimum of 386 observations for each asset class. The inclusion of

such a large panel enables us to conduct a thorough analysis and gain a deeper understanding

of the common factor structure among all individual assets from the three asset classes.

Table 1: Summary statistics of monthly returns on stocks, corporate bonds, and options†

No. Obs. Unique firms Min No. Obs. Mean Std P10 P25 P50 P75 P90

Stock 738,518 8,082 2,987 1.02% 17.42% -14.29% -5.98% 0.43% 6.75% 15.32%

Corp. Bond 208,652 927 386 0.50% 3.56% -1.66% -0.34% 0.34% 1.30% 2.94%

Option 760,836 5,052 1,723 -0.61% 6.96% -6.41% -3.39% -1.20% 1.32% 5.83%

† This tables reports the summary statistics of monthly returns on stocks, corporate bonds, and options used throughout the
paper. The sample period is from July 2004 to December 2021. The columns represent the number of monthly observation
of individual assets, number of unique firms covered through the sample period, the minimum number of observations in each
period, the mean of the return, the standard deviation, and 10th percentile, lower quartile, median, upper quartile and 90th
percentile of the return distribution, respectively.

From Table 1, we observe a notable discrepancy in the standard deviations of returns

among stocks, corporate bonds, and options. This discrepancy indicates a significant differ-

ence of idiosyncratic volatility and signal-to-noise ratios among different asset classes, which

would distort PCA estimation due to finite sample errors. Given that standardization is a

fundamental step in the standard protocol for conducting PCA, which is also the second

stage of our estimation procedure, the regressed PCA, we standardize the returns of each

16We report the summary statistics for trimmed options data, i.e., trimming options data below (above)
1st (99th) percentile of the return distribution.
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asset class by dividing them by their respective standard deviations and use the standard-

ized returns throughout the paper.17 In this way, we mitigate the distortion of idiosyncratic

volatility when we perform PCA on the managed portfolios across different asset classes.

4 Common Latent Factors

In this section, we extract the latent factors directly and jointly from the individual assets

from three asset classes using the joint factor model described by Equation (2.5). We evaluate

the factors along several dimensions: (1) commonality among asset classes, (2) relations

between latent factors and observable factors as well as macroeconomic variables, (3) in-

sample and out-of-sample performance of the latent factors in returns of different asset

classes, and (4) the role of characteristics in capturing the beta loadings of assets on the

latent factors - as well as the alpha relative to those factors.

For the following discussion, unless explicitly stated otherwise, our primary focus shall

be on the unrestricted model (αp¨q ‰ 0q. We also show in the next section that a model

specification test indicates that the pricing errors αp¨q are significantly non-zero.

4.1 Commonality among asset classes

We start by comparing the regressed-PCA latent factors with the principal components

derived from pricing factors as illustrated in Section Appendix A2. If the latent factor(s)

are common across asset classes, then they should be correlated with the dominant principal

component among observable factors from different classes. This is because the dominant

principal component would capture a large proportion of common variations among asset-

class-specific factors.

The top panel of Figure 1 illustrates the correlations between regressed-PCA latent fac-

tors and principal component of observable pricing factors. Notably, the first latent factor

from the regressed-PCA has a correlation of over 0.6 with the first principal component of

observable factors, the one which we recognize as common in Section Appendix A2.

The bottom panel of Figure 1 plots the time series of the first regressed-PCA factor

with the first PC of observable factors, which shows a strong co-movement between the

17To mitigate any potential look-ahead bias, we rely on the standard deviations calculated over the initial
60 periods aligning with the initial window size used in the out-of-sample analysis.
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two. Moreover, the first latent factor is also highly correlated with several other principal

components of observable pricing factors. The result suggests that the first latent factor is

a candidate of “common” factor across asset classes.

Figure 2 plots the cumulative sum of the first five regressed-PCA latent factors. The

first two factors earn significantly higher returns compared to the other factors. Most of

the premium for the first factor is earned following sharp market downturns/periods of high

uncertainty. The first factor have two spikes, one after the global financial crisis in 2009,

and the other after the first COVID-19 lockdown in the US in 2021. The pattern suggests

that the first factor is significantly associated with the systemic market movement.

Next, we compare the latent factors extracted jointly from the three asset classes with

the factors extracted from each single asset class using the same regressed-PCA method

(asset-class-specific latent factors). Table 2 shows the correlations between the joint latent

factors versus class-specific factors. The first regressed-PCA factor (Joint 1) is significantly

correlated with latent factors from all three asset classes. Specifically, it has a correlation

of 0.85 with the first stock-specific latent factor (Stock 1), 0.62, 0.33, and 0.24 respectively

with the first three corporate-bond specific factors (Corpbond 1, 2, and 3), and 0.44 and

0.13 with the first two option factors respectively (Option 1 and 2). The findings strongly

support the idea that the first regressed-PCA joint latent factor serves as a common factor

for all three asset classes.

Beyond the first regressed-PCA factor, we also discover other factors that exhibit common

variations across asset classes. The second joint latent factor (Joint 2) has a correlation of

0.80 with the first option-class latent factor (Option 1), and -0.53 with the first corporate

bond factor (Corpbond 1), while it has a low correlation with the stock-specific factors,

suggesting that it is primarily related to the joint pricing of options and corporate bonds.

The third factor (Joint 3) significantly correlates with the dominant principal components of

observable pricing factors, with a value around 0.5. The factor also significantly correlates

with a number of class-specific latent factors for stocks, corporate bonds, and options.

To summarize, we find a significant common factor from the individual assets of different

asset classes. Notably, when we combine our findings of the PCA results from Section

Appendix A2 and the correlations with asset-class-specific latent factors, it becomes evident

that the first regressed-PCA joint factor is prominently a common pricing factor. In the

next steps, we zoom into this factor and examine its relation with the fundamentals.
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4.2 Relations with observable factors and macro variables

A natural question follows: which fundamental risk is related to this common factor? We

examine the question from two perspectives: (1) its relation to observable factors established

in the literature, and (2) its relation to macroeconomic variables associated with business

cycles and financial conditions.

Table 3 presents the regression results of each regressed-PCA factor on observable pricing

factors. The first regressed-PCA factor (Joint 1) loads positively on the SMB and RMW

factors, and negatively on the equity MOM factor, which is consistent with the findings by

Asness, Moskowitz, and Pedersen (2013) and Fama and French (2015). Asness, Moskowitz,

and Pedersen (2013) find that value and momentum are ubiquitous across different financial

markets and several asset classes including equities, commodities, currencies, and government

bonds. They also find that value and momentum are negatively correlated with each other

within and across asset classes. While Fama and French (2015) show that the value factor

can be subsumed by profitability and investment factors. Relating to corporate bond, the

first latent factor loads significantly on the credit risk factor and liquidity risk factor from

Dickerson, Mueller, and Robotti (2023). The first latent factor is substantially explained

by observable pricing factors from all three asset classes, with adjusted R-squared of 57%,

reaffirming its role as a common factor. Notably, we find that almost all regressed-PCA

factors earn positive and significant returns beyond the tradable factors. The result suggests

that some additional premium is unspanned by observable pricing factors in the existing

literature for specific asset classes.

We also present the correlations between the regressed-PCA factors and observable fac-

tors in Table 4 in addressing the possible issue of collinearity of observable factors.18 The first

joint factor is highly correlated with fifteen out of eighteen observable factors. In particular,

market factors constructed from equities, corporate bonds, and options all show positive and

high correlations with the first latent factor, consistent with the idea that this factor extract

common variations across different types of assets.

Next, we examine the relation between latent factors and macroeconomic and financial

variables. We consider the following series of three categories: (1) indicators of economic

activities including core inflation and growth in industrial production, (2) indicators of uncer-

tainty including economic policy uncertainty (EPU) from Baker, Bloom, and Davis (2016),

18The observable factors are correlated, hence the regression analysis shown in Table 3 may be subject to
the multicollinearity issue.
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and financial uncertainty (FINU) and macro uncertainty (MACU) from Jurado, Ludvig-

son, and Ng (2015), (3) indicators of financial conditions including federal funds rate, term

spread, credit spread, VIX index, and He, Kelly, and Manela (2017) intermediary capital

factor (HKM). Some series are first-differenced (denoted in ∆p¨q) for stationarity. Table 5

shows the pairwise correlations of joint latent factors and macroeconomic variables of in-

terest. The first latent factor is evidently correlated with a number of macroeconomic and

financial series. It shows negative and statistically significant correlations with economic pol-

icy uncertainty (-0.16), financial uncertainty (-0.41), industrial production growth (-0.22),

and macro uncertainty (-0.28), while modestly negative correlations with inflation (-0.05)

and consumption growth (-0.06). The correlation results suggest that the common factor

is associated with the uncertainty about future economic activities. The factor is also sig-

nificantly correlated with the HKM series (0.44), changes in the term spread (0.22), and

innovations in the VIX index (-0.29), which may correspond to the funding liquidity risk

of financial intermediaries. Studies including Brunnermeier and Pedersen (2009), He and

Krishnamurthy (2013), and Brunnermeier and Sannikov (2014) show that intermediary liq-

uidity constraints significantly contribute to the risk premia as well as commonality across

securities. Adrian, Etula, and Muir (2014) and He and Krishnamurthy (2013) find that the

intermediary funding risk is significantly priced in across different asset classes. Our result

is consistent with their findings. Lastly, the positive correlation between the first factor and

the term spread indicates that duration risk also plays a role in explaining the common risk

factor.

To investigate the macro-financial determinants of the joint latent factors, we regress the

factors on the macroeconomic variables. Table 6 summarizes the results. The first latent

factor loads heavily on HKM. The Shapley-Owen R2 (Huettner and Sunder, 2012; Fournier,

Jacobs, and Or lowski, 2023), which describes the marginal importance of the individual

explanatory variable, is the highest for HKM, with a value of 28%. The financial uncertainty

index has a high R2 value of 18%, and the change in term spread has 11%. The results

from Tables 5 and 6 reconcile with the earlier evidence that the first latent factor exhibits

characteristics of a common factor19.

19We present in Appendix A5 how latent joint factors are related with the macro factor proposed by
Ludvigson and Ng (2009).
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4.3 In-sample fit and out-of-sample predictability

We analyze the in-sample and out-of-sample performance of the joint factor model (2.5)

following the evaluation metrics introduced in Section 2.3. The four sub-tables of Table 8

present the performance of the unrestricted joint factor model for returns on all three asset

classes, stocks, corporate bonds, and options, respectively.

We first document the significant explanatory and predictive power of the first latent

joint factor across all three asset classes. The in-sample total R2 is 6.11% for all three asset

classes, 6.27% for stock returns, 11.21% for corporate bond returns, and 5.40% for option

returns. In terms of the out-of-sample fitness R2
f,O, the first joint latent factor can explain

25.96% for all three asset classes. Specifically, the R-squareds are 9.49% for stocks, 2.40% for

corporate bonds, and 29.30% for option returns. These R2s explained by the first factor of

the joint model (2.5) are comparable to the those from the model (2.4) for each specific asset

class (the corresponding results are shown in Table A4) with even more than one factor.20

The results indicate that estimating common factors jointly from three asset classes are

more efficient in capturing variations in different assets, especially in the explanatory and

predictive power of the first latent joint factor.

Beyond the significant common variations among all asset classes captured by the first

joint factor, the joint factor model is also able to capture asset-class-specific variations.

For instance, the second latent factor predominately contributes to option and corporate

bond pricing. This is evident when examining the R2
K , which assesses the model’s capacity

to account for the variation in the characteristic-managed portfolios. Notably, adding the

second joint latent factor increases the R2
K value from 13.45% to 23.70% for corporate bond

returns and from 8.82% to 29.73% for option returns, but only increases by less than 1%

for stock. This observation implies that the second joint factor explain the variations in

characteristics-managed portfolios associated with options and corporate bonds.

4.4 Constituents of common factors

A convenient feature of regressed-PCA is that we can examine the contribution of each

characteristic to variation in the beta loading on a particular latent factor. This feature

potentially helps us to shed light on the nature of the factor. Figure 3 plots the B coefficients

20For example, we see from Table A4 that the out-of-sample fitness R2
f,O are overwhelmingly negative for

options, due to the several outliers in the option returns. But the joint factor model shows superiority of the
out-of-sample fitness as indicated in Table 8.
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on the first joint latent factor for all characteristics. Evidently, beta loadings on the factor

are exposed to characteristics from all three asset classes, as a number of coefficients from

each group are statistically different from zero. In Appendix A3, we discuss in details about

the relative weights of characteristics on the beta loadings of the factor for each of the three

asset-class segments.

In order to better understand the contribution of different asset classes we decompose

the joint common factors into stock, corporate bond, and option components. Because the

regressed-PCA joint factor is a linear combination of asset-class-specific characteristics, we

can dissect the factor based on each asset segment:

F̂A “ R̃1
AB̂A

where R̃A is the vector of characteristics-managed portfolio returns with respect to asset class

A “ tStock, Corpbond,Optionu, and B̂A is the corresponding vector of the beta loadings on

the joint factor. It is easy to show that the joint factor is equal to the sum of its three

asset-class components: F̂ “ F̂Stock ` F̂Corpbond ` F̂Option.

As an experiment, we split the first regressed-PCA joint factor into the three asset-class

components. We find that the factor has the highest correlation with its stock component,

with a value of 0.89, the second with its corporate bond component (0.74), and the last with

its option component (0.51).

Next, we regress the three asset-class-specific components of the first joint factor on the

macro-financial variables. The results are shown in Table 7. We find that the stock compo-

nent of the first joint factor is significantly determined by financial uncertainty; the corporate

bond component is significantly determined by the term premia, credit spreads, and economic

uncertainty measures; the option component is significantly explained by the VIX and fi-

nancial uncertainty. The HKM factor, which corresponds to the intermediary leverage, is

related to stock and corporate bond components but not significant in options, while the

reverse is true for consumption growth and monetary policy (Fed fund rate changes), which

are both strongest in the option component. Similar to the result in Table 6, it is puzzling

to observe that the growth in industrial production negatively and significantly related to

the three asset-class components of the first common factor21.

21In Appendix A9, we examine how regressed-PCA factors for each asset class are related to the macroe-
conomic and financial variables. The results indicate that corporate bonds are more linked to changes in the
term spread and the HKM, whereas stocks align more closely with industrial production growth. Options,
on the other hand, tend to correlate significantly with financial uncertainty.
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5 Pricing the Joint Cross-Section of Returns

5.1 Risk Premia and Pricing Errors

Do the regressed-PCA factors carry a sizeable risk premium? We answer this question by

computing several measures, starting from the in-sample and out-of-sample Sharpe ratios of

the regressed PCA factors. We find that the regressed-PCA factors carry economically large

in-sample risk premia. Table 9 shows the reports the in-sample and out-of-sample Sharpe

ratio for each regressed-PCA factor. The first regressed-PCA latent factor, which we deem

as the common factor for all three asset classes, has an annualized in-sample Sharpe ratio of

0.83, which is economically high. In the out-of-sample, the Sharpe ratio for the first latent

factor can also achieve a value of 0.45.

Although substantial in magnitude, the risk premia captured by the regressed-PCA fac-

tors does not fully capture the cross-sectional returns among the asset classes. In a pure-alpha

or zero-beta strategy, the portfolio has zero beta loading on the proposed risk factors. Table

10 reports the annualized means, standard deviations, and Sharpe ratios of the pure-alpha

strategy, SRα. Interestingly, we find that the portfolio that has zero-beta loading on the

first regressed-PCA factor can generate a strikingly high out-of-sample Sharpe ratio of 2.14.

However, the Sharpe ratios of zero-beta portfolio do not diminish when more factors are

included: A pure-alpha strategy with respect to the ten-regressed-PCA-factor model still

earns a high Sharpe ratio of 1.96. In the table, we observe that the mean return of the

zero-beta portfolio µα decline monotonically in the number of included factors; however, the

volatility of the portfolios σα decreases even further with the number of risk factors, leading

an increase in the Sharpe ratios. The reduction in volatility indicates that the regressed-PCA

factors capture substantial common variation among returns from three asset classes: when

the portfolio has zero-beta loading on the factors, it hedges against a sizeable proportion of

the common variation. Though the common variation is large, the high Sharpe ratio of the

pure-alpha strategy suggests that a substantial part of the cross-sectional risk premium is

not explained by the common risk factors22.

Furthermore, the formal model specification test demonstrates presence of significantly

non-zero pricing errors. To be specific, we conduct the αp¨q “ 0 test using the weighted

22In Appendix A8, we present the performance of the pure-alpha strategy using non-linear αp¨q and
βp¨q by expanding αp¨q and βp¨q with splines (for details, one can refer to Chen, Roussanov, and Wang
(2023)). Incorporating non-linearity does not significantly perform better in capturing common variations
then eliminating the pricing errors, although we observe moderate decreases in the Sharpe ratios of the
pure-alpha strategies using the joint factors.
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bootstrap method established in Chen, Roussanov, and Wang (2023), presenting estimates

and their corresponding 95% confidence intervals for coefficients in αp¨q, with 10 factors

incorporated, as illustrated in Figure 4. Our findings indicate that despite the inclusion

of a substantial number of risk factors, a number of characteristics remarkably contribute

to these pricing errors.23 The test further empowers us to examine the contributors to

the remarkably good performance of the pure-alpha portfolio. First, we find that stock

characteristics have modest contribution to the high alphas. This outcome aligns with the

mature and extensively traded nature of the equity market, in which most anomalies tend to

be rectified through arbitrage activities. Similarly, contributions from corporate bonds are

also modest, consistent with the recent literature such as Dickerson, Robotti, and Rossetti

(2023) that return anomalies in the corporate bond market are significantly reduced after

micro-structure noises are properly adjusted. However, it is not the case in option markets.

We find particularly large contributions from option gamma. It suggests that considerable

anomalies persist in these two markets, which result in a highly profitable risk-return trade-

offs in the pure-alpha strategy.

5.2 SDF and MVE portfolios

If the “true” stochastic discount factor that prices the excess returns on individual stocks,

corporate bonds, and options can be represented as a linear combination of common factors

that we extract, we should be able to achieve the maximum Sharpe ratio using this combina-

tion of factors. In this section, we construct the in-sample and out-of-sample mean-variance

efficient (MVE) portfolios based on the set of managed portfolios from Fama-Macbeth re-

gression procedure across (and within) different asset classes, and compare its properties

with the MVE portfolio based on joint common factors.

5.2.1 In-sample MVE portfolios and SDF

In this section, we derive the conditional SDF as a function of MVE portfolios by following

Kozak and Nagel (2023). We assume that all the related assumptions as in Kozak and Nagel

(2023) hold in our framework. Hence, we can span the conditional SDF with the managed

portfolios from Fama-Macbeth regression within/across different asset classes.

23Many of these characteristics are documented as return anomalies in the asset pricing literature. For
example, idiosyncratic volatility for stocks, credit spread for corporate bonds, and gamma for options all
have significant loadings in the alpha portfolio.
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In Figure 3, it is hard to draw the conclusions on the hedging relationship among different

asset classes due to the large number of managed portfolios. However, based on the results in

Kozak and Nagel (2023), we can approximate the SDF with the MVE portfolio of managed

portfolios under suitable conditions. Specifically, as in Kozak and Nagel (2023), we can

express the conditional SDF into the following form under suitable conditions:

Mt`1 “ 1 ´ b1
t

´

R̃t`1 ´ µR̃,t

¯

, (5.1)

where R̃t`1 “ pZ1
tZtq

´1Z1
tRt`1 with the related variables defined in (2.6). And, bt “ rΣR̃,t `

σ2
spZ1

tZtq
´1s´1µR̃,t with the associated population version of conditional covariance matrix

ΣR̃,t and conditional mean vector µR̃,t of R̃ at time t, which is the weight of conditional

MVE portfolio on Fama-MacBeth managed portfolios.24 The unconditional estimation of

µR̃,t and ΣR̃,t are given by

µ̂R̃,T “

řT
j“1 R̃j

T
and pΣR̃,T “

1

T ´ 1

T
ÿ

j“1

pR̃j ´ µ̂R̃,T qpR̃j ´ µ̂R̃,T q
1, (5.2)

And, the covariance matrix can be also estimated based on the extracted latent factors:

pΣR̃,T “
1

T ´ 1

T
ÿ

j“1

B̂pfj ´ f̄qpfj ´ f̄q
1B̂1. (5.3)

We further decompose the conditional SDF in (5.1) into three components as follows,

which are corresponding to three asset classes.

Mt`1 “ 1 ´ bs1
t

´

R̃
s

t`1 ´ µR̃
s
,t

¯

´ bc1
t

´

R̃
c

t`1 ´ µR̃
c
,t

¯

´ bo1
t

´

R̃
o

t`1 ´ µR̃
o
,t

¯

(5.4)

with bt “ rbs1
t , b

c1
t , b

o1
t s1, R̃t`1 “ rR̃

s1

t`1, R̃
c1

t`1, R̃
o1

t`1s
1 and µR̃,t “ rµ1

R̃
s
,t
,µ1

R̃
c
,t
,µ1

R̃
o
,t
s1.

Importantly, based on (5.4), we are able to examine the hedging relationship among

different asset classes by studying the covariation between the different components of MVE

portfolios.

24Kozak and Nagel (2023) provide a set of necessary and sufficient conditions when the MVE portfolios on
OLS factors, i.e. Fama-MacBeth managed portfolios, can expand the same conditional SDF based on MVE
portfolios on individual assets. Overall, our analysis roughly satisfies the related conditions in Kozak and
Nagel (2023). First, the restriction that the latent factors whose loadings are orthogonal to characteristics
holds trivially here, since we ignore these factors directly. This restriction can also be relaxed, and it holds
approximately in our analysis because of the large number of characteristics used in the estimation. Second,
we normalize the excess returns of individual assets with the pooled standard deviations in the respective
asset classes, and then scale the individual asset returns across all asset classes with unconditional pooled
variance of individual stocks (σ2

s). In this way, we normalize the returns to approximate the conditions
required in Kozak and Nagel (2023): the idiosyncratic errors of individual returns across all asset classes
are homoskedastic. More details on the related conditions can be found in example 3 and equation (19) in
Kozak and Nagel (2023).
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We report the annualized Sharpe ratios of MVE portfolios across/within different asset

classes in the first panel of Table 11. First of all, we find the strong hedging relationship

among different asset classes. The Sharpe ratio of MVE portfolios constructed from thress

asset classes (4.85) is larger than the Sharpe ratio of MVE portfolios from any single asset

class, where the largest Sharpe ratio of MVE portfolio based on single asset class is from

stock (4.15). Second, for the MVE portfolio based on all asset classes, the component from

stocks has the largest Sharpe ratio, then option and corporate bond.

In order to explore the degree of mutual hedging of the different asset classes, we further

report the correlations of the asset class-specific components in (5.4) in Table 11, which is

based on the covariance estimated using all managed portfolios as in (5.2). Notably, we find

the significantly negative correlation between the components of the stock component with

the corporate bond component (-0.19) as well as with the option component (-0.22), and

the relatively smaller negative correlation between the corporate bond and option compo-

nents (-0.14). This indicates that stocks hedges corporate bonds and options at the level

of common factors, while the hedging relationship between corporate bonds and options is

relatively weaker. This conclusion is further justified by the finding that stock, corporate

bond and option components have the opposite signs of loadings on some joint common

factors. Specifically, the hedging between stock and corp bond can be explained by the

opposite loadings on the first and seventh joint common factors; the hedging between stock

and option can be explained by the opposite loadings on the seventh common factor; and

the relatively week hedging effect between corp bond and option can be explained by the

offsetting effect of hedging from the sixth common factor and comovement from the seventh

common factor. This finding further supports the existence of joint common factors across

different asset classes, and demonstrates the importance of the understanding of those fac-

tors. Similar patterns are shown based on the extracted common factors with restriction

a “ 0.

We also provide the analysis of MVE portfolios in Table 12 that imposes the factors

structure on the covariance matrix as in (5.3), with K “ 10. Overall, the results are

consistent with the findings in Table 11 in addition to that the hedging relationship between

stocks and options becomes much weaker. This can be explained by the insignificantly

opposite loadings on the seventh common factors in contrast to the significantly opposite

loadings in Table 11. Meanwhile, the hedging relations among other asset classes become

even stronger. Moreover, the Sharpe ratios of in-sample MVE portfolios in Table 12 are

lower than these in Table 11, which reflects that the hedging relationship improves with the
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increasing number of factors used in the construction of the variance-covariance matrix. It is

more likely to capture stronger hedging relationship with more factors because the hedging

relationship stems from the opposite loadings on factors of different components. In addition,

in Table 12, we find that the Sharpe ratios of MVE portfolios based on the factors without

restriction a “ 0 are higher than the Sharpe ratios based on the factors with this restriction.

This finding is consistent with the model specification rejecting a “ 0.

We further report the results based on the shocks of different components in MVE port-

folio defined in (5.4) in Table 13-14 based on the covariance estimation in (5.2) and (5.3)

with K “ 10, separately. In sum, the results are consistent with the findings in Table 11-12.

5.2.2 Out-of-sample MVE portfolios

Next, we construct implementable out-of-sample MVE portfolios based on the large number

of individual assets across/within different asset classes. We consider the following condi-

tional mean-variance efficient portfolio choice problem at time t:

max
wt

"

w1
tEt rRt`1s ´

1

2
w1

t Vart rRt`1swt

*

, (5.5)

with excess return Rt`1 of individual assets across/within different asset classes and the

associated weight wt on individual assets. However, it is challenging to estimate the condi-

tional covariance matrix of individual asset returns directly due to the large cross-sectional

observations and relatively shorter time series observation. If we model the excess return

Rt`1 with the factor structure in (2.4) or (2.6), the portfolio choice problem above can be

rewritten as:

max
wt

"

w1
tZtEt

“

Řt`1

‰

´
1

2
w1

tZt Vart
“

Řt`1

‰

Z1
twt ´

1

2
w1

t Vart rξt`1swt

*

. (5.6)

with Řt`1 “ a`Bft`1 by noticing EtrRt`1s “ ZtEt

“

Řt`1

‰

and Vart
“

Řt`1

‰

“ B Vart rft`1sB
1.

Under the assumption of the homoskedastic idiosyncratic errors, following Kozak and Nagel

(2023), the solution of (5.6) is given by:

wt “ ZtpZ
1
tZtq

´1
“

B Vart rft`1sB
1
` σ2

spZ1
tZtq

´1
‰´1

pa ` BEt rft`1sq. (5.7)

The conditional mean vector and covariance matrix of Ř can be estimated by xEt

“

Řt`1

‰

“
řt

j“1 Řj

t
and yVart

“

Řt`1

‰

“ 1
t´1

řt
j“1pŘj ´ xEt

“

Řt`1

‰

qpŘj ´ xEt

“

Řt`1

‰

q1, which are based on

Fama-MacBeth regression. Alternatively, they can also be estimated based on xEt rft`1s “
řt

j“1 ft

t
and yVart rft`1s “ 1

t´1

řt
j“1pfj´xEt rft`1sqpfj´xEt rft`1sq

1 with estimates from regressed-
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PCA. If the sample size until t is large enough, the mean vector and covariance matrix are

estimated consistently.

If we further assume that investors simply ignore the idiosyncratic errors and impose the

restriction that a “ 0, then the problem in (5.6) becomes:

max
wf 1

t

"

wf 1
t Et rft`1s ´

1

2
wf 1

t Vart rft`1sw
f
t

*

. (5.8)

where wf
t “ B1Z1

twt. Then, a set of solutions is given by:

wt “ ZtpZ
1
tZtq

´1Bwf
t . (5.9)

With the consistently estimated conditional mean vector and covariance matrix for factors,

the feasible optimal solution of pwt is given by

pwt “ ZtpZ
1
tZtq

´1B̂ yVart rft`1s
´1

xEt rft`1s .

By recalling the definition of out-of-sample factor f̂t,t`1 define in (2.12), it is easy to derive

that portfolio choice problem in (5.8) is equivalent to construct the out-of-sample MVE

portfolio on f̂t,t`1.

Importantly, with the (semi)parametric factor model for individual asset excess return

specified in (2.4), we are able to translate the optimal portfolio choice problem on a large set

of individual assets within/across different asset classes into a much simpler portfolio choice

problem over the smaller set of characteristics-based managed portfolio constructed using

Fama-MacBeth cross-sectional regression within/across different asset classes, as well as the

principal components of those portoflios (the common factors). It is well-known that building

optimal portfolios using individual assets directly is challenging as it requires estimation of

a high-dimensional covariance matrix of individual asset returns, which is highly unreliable

out-of-sample. We overcome this issue via the dimension reduction, so that the complicated

conditional optimal problem is translated into a much simpler one. Moreover, we can also

examine the out-of-sample hedging properties of individual stock, corporate bond, and option

returns by focusing on the associated managed portfolios of different asset classes.

In Table 15, we report the Sharpe ratios of out-of-sample MVE portfolios constructed

based on (5.7) with different number of factors. Overall, the Sharpe ratios of out-of-sample

MVE portfolios increase with the number of factors, no matter across or within asset classes.

This is consistent with the findings of in-sample analysis: the hedging relationship among

different asset classes results from the opposite loadings on the joint common factors, there-

fore, a larger number factors are more likely to capture the hedging relationships, reducing
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variability and increasing the Sharpe ratios of MVE portfolios. Comparing different indi-

vidual asset class, Sharpe ratios of stocks are higher than other asset classes by fixing the

number of factors. Among the different components from each asset class, the Sharpe ratios

of option components are higher than those from other asset classes. Another observation

is that Sharpe ratios based on the extracted factors without the restriction a “ 0 are higher

than these with this restriction, which is also consistent with the results of our pricing error

tests that indicate a ‰ 0. Moreover, we also report the Sharpe ratios of portfolios con-

structed based on the weights defined in (5.9) in Table 16. From K “ 1 to 10, the Sharpe

ratios in Table 16 are significantly smaller than the Sharpe ratios in Table 15, which justifies

the conclusion in Kozak and Nagel (2023). Still, we can achieve Sharpe ratios above 2 when

using between 2 and 5 factors, where as with a larger number of factors the out-of-sample

Sharpe ratios deteriorate, presumably due to the relatively larger importance of estimation

error.

6 Conclusion

In this paper, we find the strong evidence of commonality across different asset classes. Using

the regressed-PCA approach, we extract the joint latent factors directly from individual

assets from different asset classes. In particular, some latent factors exhibit strong features

that resemble a common systematic risk factor. Although a common factor structure exists

across different asset classes, it does not capture the entirety of cross-sectional returns.

Indeed, a portfolio based on zero beta loadings on the joint factors has a much higher

Sharpe ratio, for both in- and out-of-sample.

This leaves the question for future research: what contributes to the risk-return tradeoff

in the asset market? On one hand, the CAPM will suggest that assets that carry a high

loading of systematic risk should earn a higher risk premium. On the other hand, anomalies

that has zero loading on the systematic risk seem to receive a much larger premium than the

compensation for risk, as our findings suggest. This opens the door for further examination

on the risk-return relation, in which the systematic risk may not be the only risk that requires

a positive reward from the market participants.
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Figures and Tables

Figure 1: Regressed-PCA latent factors vs. principal components of observable factors

Note: Joint refers to the regressed-PCA latent factor. PC is the principal component of observable pricing
factors as illustrated in Section Appendix A2. The top panel shows the pair wise correlations. A darker
square represents a higher correlation coefficient in absolute value. The bottom panel plots the cumulative
sum of the 1st regressed-PCA joint factor (in red) and 1st PC of observable factors (in blue). Both time
series are standardized to mean zero and variance one.
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Figure 2: Cumulative return of the first five Regressed-PCA joint latent factors

Figure 3: Estimation of B coefficients in the first regressed-PCA joint factor
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Figure 4: Estimates and 95% confidence intervals of a coefficients in αp¨q with number of
common factors K “ 10 for three asset classes



32

Table 2: Correlations between the extracted regressed-PCA joint factors and factors from each asset class †

Factors Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 Stock 6 Stock 7 Stock 8 Stock 9 Stock 10

Joint 1 0.85*** 0.08 0.12* -0.14** 0.21*** 0.19*** 0.01 0.03 0.01 0.03

Joint 2 -0.09 0.04 -0.02 -0.07 0.11 -0.13* -0.10 -0.07 -0.04 -0.04

Joint 3 -0.46*** 0.37*** 0.38*** -0.14** 0.24*** 0.27*** -0.01 0.05 -0.00 0.03

Joint 4 -0.02 0.42*** -0.43*** -0.21*** 0.15** 0.18*** 0.09 0.05 -0.00 0.13*

Joint 5 0.20*** 0.69*** 0.13* 0.27*** -0.32*** -0.34*** -0.07 0.01 -0.10 -0.04

Joint 6 0.05 -0.35*** 0.24*** 0.04 -0.27*** 0.05 0.22*** 0.04 -0.08 0.09

Joint 7 -0.01 0.22*** 0.15** -0.14** -0.36*** 0.15** 0.28*** -0.08 0.11 0.02

Joint 8 0.03 -0.06 0.63*** 0.01 0.24*** -0.17** -0.04 0.04 -0.05 0.08

Joint 9 0.00 0.00 -0.17** 0.78*** 0.16** 0.30*** 0.05 0.05 -0.01 -0.04

Joint 10 0.01 -0.11 -0.26*** -0.28*** -0.16** -0.17** -0.09 0.23*** -0.13* 0.01

Factors Cpbond 1 Cpbond 2 Cpbond 3 Cpbond 4 Cpbond 5 Cpbond 6 Cpbond 7 Cpbond 8 Cpbond 9 Cpbond 10

Joint 1 0.62*** 0.32*** 0.24*** 0.00 0.06 0.14** 0.04 -0.11 0.07 0.10

Joint 2 -0.53*** 0.30*** 0.02 -0.04 0.11 -0.00 0.12* -0.11* 0.01 0.09

Joint 3 0.51*** 0.09 -0.28*** 0.01 0.09 -0.19*** 0.14** 0.05 -0.18*** -0.00

Joint 4 -0.15** 0.61*** 0.31*** 0.20*** -0.01 0.05 0.06 0.01 -0.11 -0.09

Joint 5 -0.11* -0.07 -0.47*** -0.00 -0.06 0.02 0.24*** 0.14* 0.07 -0.10

Joint 6 -0.05 0.39*** -0.38*** -0.25*** 0.07 -0.26*** 0.02 -0.07 0.26*** 0.26***

Joint 7 -0.04 -0.37*** 0.55*** -0.22*** 0.12* -0.28*** 0.28*** 0.03 0.15** 0.15**

Joint 8 -0.09 -0.03 0.13* 0.24*** 0.03 -0.05 -0.20*** -0.02 -0.10 0.12*

Joint 9 0.01 -0.16** -0.03 0.11 -0.16** -0.09 -0.26*** -0.19*** 0.01 0.02

Joint 10 0.06 -0.27*** -0.14** 0.51*** 0.14** 0.06 0.13* -0.20*** 0.20*** 0.13*

Factors Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 Option 8 Option 9 Option 10

Joint 1 0.44*** 0.14** 0.07 -0.23*** 0.05 0.19*** -0.08 -0.14** -0.09 0.06

Joint 2 0.80*** 0.05 0.05 0.16** 0.01 -0.06 0.02 0.02 0.03 -0.05

Joint 3 0.24*** 0.25*** 0.08 -0.12* -0.19*** -0.07 -0.06 0.13* -0.01 0.10

Joint 4 -0.27*** 0.49*** 0.46*** -0.22*** -0.07 0.05 -0.04 -0.06 0.04 0.04

Joint 5 -0.06 -0.03 -0.08 0.49*** -0.17** 0.05 0.12* -0.03 -0.03 0.02

Joint 6 -0.10 0.61*** -0.48*** 0.14** -0.02 0.05 -0.05 0.10 -0.05 -0.09

Joint 7 0.04 0.31*** -0.33*** -0.02 0.10 -0.01 0.05 -0.09 0.10 -0.05

Joint 8 -0.08 0.12* 0.42*** 0.35*** 0.39*** 0.03 -0.11* -0.03 -0.08 0.00

Joint 9 0.06 0.25*** 0.08 -0.08 0.27*** -0.20*** 0.06 -0.00 0.05 -0.04

Joint 10 0.06 0.29*** 0.17** 0.25*** -0.12* 0.05 0.15** 0.02 0.12* -0.08

† ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%.
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Table 3: Observable factors and the extracted regressed-PCA joint factors †

Factors Joint1 Joint2 Joint3 Joint4 Joint5 Joint6 Joint7 Joint8 Joint9 Joint10

(Intercept) 0.03*** 0.04*** 0.02** -0.01 0.02** 0.05*** 0.03*** 0.02*** 0.03*** 0.04***

(2.83) (3.30) (2.24) (-0.67) (2.51) (8.24) (3.23) (3.55) (5.59) (6.68)

MKTstock 0.02 0.28 0.36 -0.57** -0.85*** -0.04 -0.62* -0.03 -0.13 -0.18

(0.07) (0.77) (0.76) (-2.09) (-2.66) (-0.19) (-1.95) (-0.17) (-0.58) (-1.13)

SMB 0.95** 0.76 0.54 -0.35 -0.30 0.32 -0.12 0.65** 0.17 -0.18

(2.01) (1.38) (1.57) (-0.93) (-0.74) (1.01) (-0.39) (2.12) (0.57) (-0.76)

HML -0.03 -0.83* 0.87*** 0.98*** 1.04*** -0.87*** -0.69* 0.19 0.35 -0.51

(-0.08) (-1.87) (2.98) (2.74) (2.59) (-2.77) (-1.73) (0.81) (1.37) (-1.60)

RMW 1.12** -0.54 -0.49 0.04 -0.20 0.41 0.22 -0.93** 0.48 0.37

(2.12) (-0.90) (-0.96) (0.11) (-0.42) (1.10) (0.44) (-2.28) (1.35) (1.31)

CMA 0.30 0.82 -2.01*** -0.07 0.48 0.75** -0.40 -0.14 -0.46 -0.56

(0.43) (1.21) (-3.92) (-0.11) (1.08) (1.99) (-0.80) (-0.34) (-1.00) (-1.12)

MOM -1.50*** -0.27 -0.06 1.28*** 0.35 -0.57*** -0.74 0.19 0.13 -0.06

(-5.65) (-0.86) (-0.20) (4.87) (1.31) (-2.99) (-1.59) (0.97) (0.77) (-0.38)

MKTB -0.59 -0.15 -3.53*** 3.90*** -2.65*** -1.92*** 1.81*** 1.31*** -0.67 -0.84

(-0.63) (-0.13) (-4.03) (5.58) (-3.94) (-3.15) (3.45) (2.84) (-0.96) (-1.43)

CRF 1.87*** -2.85*** -0.56 0.02 -0.71 -1.91*** -0.01 -0.02 -0.21 -0.06

(4.18) (-4.33) (-0.92) (0.06) (-1.15) (-3.62) (-0.02) (-0.08) (-0.55) (-0.24)

LRF 3.47*** 0.40 1.85* 1.29 3.58*** -0.55 -0.13 -1.79** -1.79 1.26*

(3.00) (0.28) (1.65) (1.10) (2.92) (-0.47) (-0.13) (-2.34) (-1.58) (1.70)

LTR 1.27 -2.00 1.75** -0.02 -0.54 4.64*** 2.12** -0.21 1.09 -1.41*

(0.94) (-1.54) (2.07) (-0.02) (-0.63) (5.83) (2.26) (-0.29) (1.32) (-1.82)

MOMB -0.86 -0.68 -1.67*** -1.64** -1.39** -1.88** 1.46** 0.42 0.06 0.12

(-1.36) (-0.79) (-2.60) (-2.42) (-2.38) (-2.47) (2.16) (0.80) (0.13) (0.41)

REVstar 0.84 1.26 -1.74 0.46 -0.11 1.33* -0.03 1.26*** 1.00** -0.22

(0.88) (1.38) (-1.23) (0.81) (-0.16) (1.75) (-0.07) (2.88) (2.16) (-0.73)

MKToption 3.07* 3.21 3.88** -2.53 2.97* -2.86* 2.24 2.49 3.60** -0.52

(1.72) (1.22) (2.36) (-1.25) (1.74) (-1.68) (1.28) (1.44) (2.47) (-0.50)

LEVEL -0.73 2.98* 0.70 2.75*** -0.97 -0.41 -0.92 1.90*** -0.76 1.93***

(-0.65) (1.84) (0.81) (3.35) (-1.47) (-0.53) (-1.02) (3.02) (-1.10) (4.06)

SKEW 0.42 -3.83 -0.16 0.06 0.20 4.47*** 0.34 -7.66*** 1.79 1.60

(0.17) (-1.24) (-0.07) (0.03) (0.14) (2.59) (0.15) (-4.34) (1.21) (1.60)

IVOL -0.17 0.35 0.04 -0.32 -0.42** -0.20 -0.37 -0.42* 0.09 0.26

(-0.63) (0.95) (0.13) (-1.48) (-1.99) (-0.66) (-1.57) (-1.79) (0.45) (1.06)

ILQ 0.20 -0.83* -0.17 0.13 0.27 0.41 -0.24 0.17 -0.27 -0.43**

(0.71) (-1.89) (-0.49) (0.67) (1.42) (1.60) (-0.84) (0.87) (-1.51) (-2.54)

VOLDEV -0.26 0.60 -0.48* 0.30 -0.38 -0.16 -0.19 -1.03*** 0.60** -1.12***

(-1.01) (1.58) (-1.80) (0.89) (-0.92) (-0.55) (-0.55) (-3.15) (2.55) (-4.22)

R2
adj 57.40% 29.26% 31.20% 51.55% 35.89% 45.21% 18.55% 33.28% 19.18% 24.13%

No. Obs. 210 210 210 210 210 210 210 210 210 210

† ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%. t-statistics are reported in parentheses. We report the
t-statistics using Newey-West standard errors with four lags.
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Table 4: Correlations between the regressed-PCA joint latent factors and observable factors †

Joint1 Joint2 Joint3 Joint4 Joint5 Joint6 Joint7 Joint8 Joint9 Joint10

MKTstock 0.48*** 0.00 0.22*** 0.17** -0.45*** -0.19*** -0.11 0.20*** 0.04 -0.10

SMB 0.35*** -0.04 0.21*** 0.02 -0.20*** 0.01 -0.12* 0.25*** 0.05 -0.19***

HML 0.32*** -0.19*** 0.21*** 0.02 0.10 -0.09 -0.11* 0.04 0.08 -0.20***

RMW -0.07 0.02 -0.18*** 0.01 0.10 0.03 0.05 -0.20*** 0.09 0.13*

CMA 0.02 -0.06 -0.13* -0.09 0.24*** 0.15** -0.05 0.02 -0.06 -0.13*

MOM -0.64*** 0.08 -0.16** 0.00 0.17** -0.14** -0.16** 0.09 0.05 0.14**

MKTB 0.41*** 0.13* -0.01 0.58*** -0.39*** -0.09 0.20*** 0.13* -0.11 0.05

CRF 0.60*** -0.25*** 0.26*** 0.14** -0.35*** -0.21*** -0.09 0.14** 0.02 -0.10

LRF 0.42*** 0.08 0.13* 0.37*** -0.04 0.06 0.20*** -0.10 -0.18*** 0.07

LTR 0.46*** -0.06 0.33*** 0.24*** -0.09 0.31*** 0.16** -0.00 0.04 -0.13*

MOMB -0.49*** -0.05 -0.27*** -0.36*** 0.06 -0.32*** 0.02 0.01 -0.01 0.04

REVstar 0.21*** 0.19*** -0.16** 0.17** -0.13* 0.22*** -0.02 0.19*** 0.15** -0.06

MKToption 0.35*** 0.23*** 0.34*** 0.28*** -0.27*** -0.23*** -0.11 0.15** 0.26*** 0.07

LEVEL 0.36*** 0.25*** 0.27*** 0.48*** -0.35*** -0.18*** -0.08 0.14** 0.17** 0.17**

SKEW 0.33*** 0.16** 0.21*** 0.39*** -0.29*** -0.06 -0.01 -0.03 0.18** 0.16**

IVOL 0.19*** 0.17** 0.21*** 0.07 -0.18*** -0.17** -0.16** -0.02 0.17** -0.02

ILQ 0.21*** -0.01 0.15** 0.02 -0.18*** -0.18** -0.21*** 0.19*** 0.05 -0.14**

VOLDEV 0.09 0.24*** 0.07 0.10 -0.21*** -0.08 -0.08 -0.26*** 0.28*** -0.19***

† ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%.
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Table 5: Correlations between the regressed-PCA joint latent factors and macroeconomic
variables †

Joint1 Joint2 Joint3 Joint4 Joint5 Joint6 Joint7 Joint8 Joint9 Joint10

Core inflation -0.05 -0.05 -0.06 -0.04 0.03 0.02 -0.03 -0.10 0.14** 0.05

∆c -0.06 -0.10 0.48*** 0.06 -0.03 -0.08 -0.23*** 0.10 -0.16** -0.02

∆INDPRO -0.22*** -0.17** 0.40*** 0.03 0.06 -0.03 -0.21*** 0.05 -0.15** -0.01

∆pEPUq -0.16** 0.08 -0.36*** -0.17** 0.13* 0.05 0.17** -0.14** 0.03 0.12*

∆pFFRq 0.01 -0.25*** 0.14** 0.09 -0.22*** -0.38*** -0.11 0.03 -0.14** -0.04

∆pTERMq 0.22*** -0.07 0.22*** -0.19*** 0.23*** 0.10 -0.13* -0.10 0.10 -0.15**

∆pDEF q -0.08 -0.17** 0.00 -0.21*** -0.05 -0.19*** 0.12* -0.05 0.11 0.17**

∆pV IXq -0.40*** -0.17** -0.07 -0.29*** 0.46*** 0.09 0.06 -0.00 -0.03 -0.05

∆pFINUq -0.41*** -0.17** -0.18** -0.30*** 0.15** 0.17** 0.04 -0.21*** 0.07 -0.15**

∆pMACUq -0.28*** 0.04 -0.14** -0.21*** 0.17** 0.25*** 0.12* -0.11 0.13* 0.02

HKM 0.48*** -0.15** 0.29*** 0.04 -0.33*** -0.17** -0.10 0.12* 0.00 -0.16**

LIQ -0.00 0.00 0.04 0.13* -0.02 -0.06 -0.25*** 0.07 -0.09 -0.09

† ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%.
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Table 6: Regression of regressed-PCA joint latent factors on macroeconomic variables †

Joint1 Joint2 Joint3 Joint4 Joint5 Joint6 Joint7 Joint8 Joint9 Joint10

Core inflation 0.06 -0.02 -0.00 -0.00 0.06 -0.01 -0.06 -0.06 0.14*** 0.06

(1.39) (-0.24) (-0.17) (-0.05) (1.29) (-0.13) (-1.49) (-1.36) (2.96) (1.24)

[0.00] [0.01] [0.00] [0.00] [0.00] [0.00] [0.02] [0.05] [0.21] [0.02]

∆c 0.07 0.22* 0.22** 0.01 -0.06 -0.03 -0.23 0.12 -0.21 -0.03

(0.88) (1.91) (2.21) (0.04) (-0.54) (-0.19) (-1.52) (1.11) (-0.98) (-0.27)

[0.02] [0.04] [0.28] [0.01] [0.01] [0.01] [0.17] [0.05] [0.16] [0.01]

∆INDPRO -0.32*** -0.22* 0.26* -0.03 0.08 0.15 0.04 -0.08 0.03 0.13

(-3.95) (-1.94) (1.72) (-0.21) (0.71) (0.94) (0.26) (-0.56) (0.23) (1.14)

[0.12] [0.09] [0.22] [0.01] [0.02] [0.02] [0.10] [0.02] [0.09] [0.02]

∆pEPUq -0.03 0.15* -0.17** -0.05 0.03 -0.03 0.00 -0.01 -0.18 0.11

(-0.5) (1.66) (-2.22) (-0.63) (0.47) (-0.37) (0.02) (-0.14) (-1.56) (1.09)

[0.03] [0.04] [0.14] [0.05] [0.02] [0.01] [0.05] [0.06] [0.08] [0.09]

∆pFFRq -0.10 -0.21* -0.09 0.06 -0.10 -0.33** -0.05 -0.15** -0.05 -0.03

(-1.31) (-1.73) (-1.09) (0.62) (-1.28) (-2.29) (-0.54) (-1.98) (-0.94) (-0.39)

[0.02] [0.22] [0.02] [0.01] [0.07] [0.46] [0.03] [0.05] [0.09] [0.01]

∆pTERMq 0.18*** -0.07 0.18** -0.10 0.23*** -0.00 -0.21*** -0.19** 0.11 -0.11

(2.74) (-0.97) (2.43) (-1.29) (3.76) (-0.01) (-3.32) (-2.02) (1.44) (-1.24)

[0.11] [0.03] [0.11] [0.12] [0.15] [0.02] [0.17] [0.14] [0.09] [0.12]

∆pDEF q 0.01 -0.21 0.13* -0.16** -0.10 -0.21* 0.05 -0.02 0.13 0.14

(0.11) (-1.28) (1.67) (-2.03) (-1.44) (-1.87) (0.6) (-0.26) (1.55) (1.36)

[0.00] [0.15] [0.02] [0.15] [0.02] [0.19] [0.04] [0.01] [0.12] [0.16]

∆pV IXq -0.04 -0.17* 0.01 -0.24* 0.43*** -0.02 0.10 0.27* -0.07 -0.07

(-0.39) (-1.82) (0.1) (-1.7) (5.07) (-0.17) (1.08) (1.78) (-0.56) (-0.79)

[0.13] [0.13] [0.01] [0.27] [0.45] [0.01] [0.02] [0.14] [0.03] [0.04]

∆pFINUq -0.20*** -0.18* -0.12 -0.16 -0.22** 0.04 -0.08 -0.24** 0.02 -0.29***

(-2.74) (-1.88) (-1.35) (-1.17) (-2.33) (0.65) (-1.07) (-2.12) (0.18) (-2.95)

[0.18] [0.14] [0.03] [0.22] [0.05] [0.05] [0.01] [0.30] [0.02] [0.28]

∆pMACUq -0.22** 0.04 0.12 -0.01 0.07 0.21* 0.05 0.01 0.07 0.07

(-2.37) (0.36) (1.14) (-0.1) (0.75) (1.83) (0.43) (0.08) (0.77) (0.93)

[0.11] [0.02] [0.02] [0.07] [0.03] [0.17] [0.03] [0.03] [0.07] [0.02]

HKM 0.32** -0.21** 0.22 -0.18 -0.18** -0.02 0.07 0.24*** -0.02 -0.17*

(2.21) (-2.25) (1.64) (-1.46) (-2.33) (-0.15) (0.39) (2.82) (-0.17) (-1.66)

[0.29] [0.14] [0.13] [0.06] [0.18] [0.05] [0.02] [0.14] [0.01] [0.17]

LIQ -0.02 0.05 -0.03 0.04 0.08 -0.02 -0.26*** 0.03 -0.06 -0.10

(-0.24) (0.97) (-0.52) (0.37) (1.06) (-0.16) (-3.61) (0.42) (-0.73) (-1.27)

[0.01] [0.01] [0.00] [0.03] [0.01] [0.00] [0.34] [0.02] [0.05] [0.05]

R2
adj 38.79% 16.42% 32.23% 13.58% 28.56% 17.80% 9.95% 5.68% 3.69% 8.98%

No.Obs 210 210 210 210 210 210 210 210 210 210

† ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%. t-statistics are reported in parentheses. The Shapley-
Owen R2’s are in square brackets. The regressed PCA factors and the macroeconomic variables are standardised
using the time series standard deviation. We report the t-statistics using Newey-West standard errors with four
lags.
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Table 7: Regression of the asset class components components of the first regressed-PCA joint
latent factor on macroeconomic variables †

Joint-Stock1 Joint-Coprbond1 Joint-Option1

Core inflation 0.04 0.05 0.04

(1.10) (1.40) (0.41)

∆c -0.10 0.15* 0.27**

(-1.12) (1.69) (2.08)

∆INDPRO -0.30*** -0.14* -0.27***

(-2.65) (-1.83) (-2.85)

∆pEPUq 0.03 -0.16** 0.04

(0.44) (-2.34) (0.45)

∆pFFRq -0.07 0.01 -0.20**

(-1.03) (0.18) (-2.04)

∆pTERMq 0.13* 0.19*** 0.09

(1.91) (2.84) (1.13)

∆pDEF q -0.07 0.15*** -0.03

(-1.2) (2.91) (-0.23)

∆pV IXq 0.05 -0.03 -0.22**

(0.4) (-0.37) (-2.2)

∆pFINUq -0.17*** -0.08 -0.22**

(-2.58) (-1.02) (-2.47)

∆pMACUq -0.19* -0.20** -0.09

(-1.79) (-2.26) (-0.73)

HKM 0.24** 0.38** 0.06

(2.16) (2.29) (0.62)

LIQ 0.02 -0.06 -0.03

(0.27) (-0.98) (-0.53)

R2
adj 24.50% 41.31% 22.75%

No.Obs 210 210 210

† ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%. t-statistics are reported in parentheses. The split
regressed PCA factors and the macroeconomic variables are standardised using the time series standard deviation.
We report the t-statistics using Newey-West standard errors with four lags.
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Table 8: In-sample and out-of-sample performance of the joint factor model when αp¨q ‰ 0

(i) All the returns on three asset classes
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 15.21 6.11 25.96 5.18 12.56
2 25.15 7.27 26.55 8.95 13.65
3 32.91 8.88 26.85 12.46 14.29
4 40.16 11.46 26.98 11.80 14.50
5 46.02 13.34 27.19 11.45 14.79
6 52.12 14.26 27.42 11.15 15.14
7 56.59 14.76 27.52 10.01 15.31
8 60.40 15.51 27.69 12.45 15.63
9 63.87 16.31 27.84 13.25 15.91
10 67.01 16.76 27.95 13.11 16.09
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 23.97 8.90 8.86 24.83

(ii) Stock Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 21.85 6.27 9.49 12.06 8.13
2 22.57 6.29 10.06 12.52 8.59
3 32.97 7.04 10.95 14.09 9.48
4 38.11 7.41 11.18 14.30 9.65
5 48.35 9.27 11.25 13.93 9.70
6 52.09 9.56 11.55 14.39 10.00
7 54.47 9.77 11.78 14.50 10.26
8 59.07 10.74 11.79 14.33 10.25
9 65.15 11.12 11.96 14.30 10.43
10 67.73 11.51 12.00 14.25 10.45
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 0.22 0.71 0.04 18.64

(iii) Corporate Bond Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1 13.45 11.21 2.40 ´27.78 ´6.20
2 23.70 11.58 0.52 ´31.78 ´12.08
3 32.58 13.74 2.14 ´27.16 ´11.54
4 40.98 23.30 2.85 ´27.23 ´11.93
5 45.08 27.79 4.46 ´27.98 ´9.35
6 49.94 29.35 11.29 ´19.45 ´1.63
7˚ 58.40 32.20 13.07 ´17.79 0.46
8 59.73 32.99 14.03 ´18.28 1.09
9 60.92 33.74 16.60 ´15.09 4.65
10 65.12 33.99 17.43 ´14.70 5.37
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 2.22 5.48 1.67 47.68

(iv) Option Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1 8.82 5.40 29.30 5.47 12.97
2˚ 29.73 7.66 29.93 9.38 14.59
3 33.15 9.97 30.10 12.94 15.12
4 41.88 13.76 30.20 12.26 15.30
5 44.07 15.35 30.41 11.92 15.48
6 54.30 16.76 30.50 11.49 15.54
7 57.40 17.26 30.56 10.28 15.56
8 62.69 17.81 30.74 12.82 15.99
9 65.20 19.00 30.83 13.61 16.20
10 67.97 19.53 30.94 13.46 16.41
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 28.55 9.12 11.24 27.80

Note: K: the number of factors specified, ˚ denotes the estimator of K which maximizes the ratio of two
adjacent eigenvalues; R2

R̃
: Fama-MacBeth cross-sectional regression R2; R2

K measures the variations in the

characteristic-managed portfolios captured by different numbers of factors from PCA; R2: total in-sample
R2 (%), see (2.8); R2

O, R
2
T,N,O, R

2
N,T,O, R

2
f,O, R

2
f,T,N,O, R

2
f,N,T,O: out-of-sample fits R2’s (%), see

(2.9)-(2.15);
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Table 9: Sharpe ratios of the regressed-PCA factors †

Factors 1 2 3 4 5 6 7 8 9 10

Joint 0.83 1.23 0.41 0.43 0.10 1.03 0.78 0.95 1.21 1.28

0.45 2.47 0.10 0.81 0.00 -0.02 -0.59 0.19 -0.03 -0.33

Stock 0.47 0.09 0.24 0.30 0.16 0.11 0.12 0.54 0.26 0.39

0.07 -0.32 -0.15 -0.31 0.24 0.26 -0.01 -0.06 -0.18 -0.21

Corpbond 0.01 0.51 0.25 0.24 0.47 0.23 0.63 0.05 0.01 0.75

-0.58 0.70 -0.46 -0.15 0.83 0.62 -0.79 0.30 -0.28 0.66

Option 1.37 2.30 0.20 1.29 1.35 0.41 0.35 1.55 0.74 1.73

2.63 -0.65 -0.62 0.83 0.12 0.51 0.93 1.01 -0.05 1.26

† The reported Sharpe ratios are annualized. The first row for each category is the in-sample Sharpe ratios, the
second row is the out-of-sample Sharpe ratios. Sharpe ratios with t-statistics greater than 2.0 are highlighted in
bold print.
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Table 10: Out-of-sample pure-alpha strategy and tangency portfolio performance of the joint
factor model

(i) All the returns on three asset classes
K µα σα SRα

1 7.50 3.50 2.14

2 3.33 3.25 1.02

3 3.29 3.18 1.03

4 3.05 3.20 0.95

5 3.07 3.20 0.96

6 3.06 3.03 1.01

7 3.61 2.94 1.23

8 3.27 2.36 1.39

9 3.26 2.16 1.51

10 3.52 1.79 1.96

(ii) Stock Returns
K µα σα SRα

1 0.27 0.72 0.37

2 0.18 0.66 0.28

3 0.24 0.60 0.39

4 0.29 0.63 0.45

5 0.32 0.60 0.52

6 0.25 0.62 0.41

7 0.26 0.53 0.49

8 0.36 0.62 0.58

9 0.54 0.64 0.85

10 0.51 0.62 0.82

(iii) Corporate Bond Returns
K µα σα SRα

1 0.71 0.67 1.06

2 ´0.51 0.97 ´0.52

3 ´0.50 0.99 ´0.51

4 ´0.42 1.01 ´0.42

5 ´0.39 1.00 ´0.39

6 ´0.49 1.06 ´0.46

7 ´0.31 1.13 ´0.28

8 ´0.24 0.94 ´0.26

9 ´0.21 0.75 ´0.28

10 ´0.12 0.70 ´0.17

(iv) Option Returns
K µα σα SRα

1 6.52 3.42 1.91

2 3.65 2.97 1.23

3 3.55 2.92 1.22

4 3.18 2.94 1.08

5 3.14 2.93 1.07

6 3.29 2.71 1.21

7 3.66 2.62 1.40

8 3.15 2.05 1.53

9 2.94 1.89 1.55

10 3.14 1.61 1.95

Note: K: the number of factors specified; µα, σα and SRα: out-of-sample annualized means, standard
deviations, and Sharpe ratios of the pure-alpha arbitrage strategy (%).
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Table 11: MVE portfolios constructed from managed portfolios and correlations with
joint factors†

Sharpe ratios Common Stock Corpbond Option

MVE 4.85 3.55 1.34 2.68

- 4.15 1.99 3.01

ρ Common Stock Corpbond Option

Common - 0.18** 0.12 0.86***

Stock - - -0.19*** -0.22***

Corpbond - - - -0.14*

Joint factor 1 (a ‰ 0) 0.08 -0.20*** 0.30*** 0.07

Joint factor 2 (a ‰ 0) -0.04 0.01 -0.20*** 0.03

Joint factor 3 (a ‰ 0) -0.01 -0.15** 0.04 0.05

Joint factor 4 (a ‰ 0) 0.16** -0.06 0.28*** 0.09

Joint factor 5 (a ‰ 0) 0.01 0.00 -0.34*** 0.13*

Joint factor 6 (a ‰ 0) 0.24*** -0.03 -0.33*** 0.37***

Joint factor 7 (a ‰ 0) 0.18** -0.27*** 0.43*** 0.16**

Joint factor 8 (a ‰ 0) 0.13* 0.03 0.10 0.08

Joint factor 9 (a ‰ 0) 0.17** 0.24*** -0.14* 0.10

Joint factor 10 (a ‰ 0) 0.12* 0.05 0.06 0.08

Joint factor 1 (a “ 0) 0.13* -0.22*** 0.28*** 0.13*

Joint factor 2 (a “ 0) 0.06 0.05 -0.26*** 0.13*

Joint factor 3 (a “ 0) 0.06 -0.15** 0.10 0.10

Joint factor 4 (a “ 0) 0.21*** -0.03 0.27*** 0.13*

Joint factor 5 (a “ 0) 0.30*** 0.01 -0.37*** 0.42***

Joint factor 6 (a “ 0) 0.03 0.00 0.28*** -0.07

Joint factor 7 (a “ 0) 0.16** -0.15** 0.47*** 0.06

Joint factor 8 (a “ 0) 0.05 0.25*** -0.12* -0.02

Joint factor 9 (a “ 0) 0.05 0.21*** -0.18** 0.02

Joint factor 10 (a “ 0) 0.02 -0.08 0.09 0.02

† In this table, the optimal weights of MVE portfolios are based on (5.2). In the first panel (Sharpe
ratios), the first row reports the Sharpe ratios of MVE from the joint estimation across different assets
classes; the second rows reports the Sharpe ratios for the estimation within each asset class. The second
panel reports the correlation (ρ) of MVE portfolios across all asset classes with each component of each
individual asset class. The third and fourth panels report the correlations of MVE with the joint factors
without and with the restriction a “ 0.
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Table 12: MVE portfolios constructed from common factors and correlations with joint
factors†

Sharpe ratios (a ‰ 0) Common Stock Corpbond Option

MVE 2.75 1.70 0.99 1.62

- 2.80 1.97 1.72

ρ (a ‰ 0) Common Stock Corpbond Option

Common - 0.25*** 0.17** 0.86***

Stock - - -0.35*** -0.03

Corpbond - - - -0.15**

Joint factor 1 (a ‰ 0) 0.01 -0.49*** 0.67*** -0.09

Joint factor 2 (a ‰ 0) -0.12* 0.00 -0.19** -0.04

Joint factor 3 (a ‰ 0) -0.09 -0.26*** 0.28*** -0.11

Joint factor 4 (a ‰ 0) 0.13* -0.01 0.39*** -0.05

Joint factor 5 (a ‰ 0) 0.11 -0.09 -0.25*** 0.29***

Joint factor 6 (a ‰ 0) 0.15** -0.06 0.07 0.16**

Joint factor 7 (a ‰ 0) 0.06 -0.14* 0.16** 0.05

Joint factor 8 (a ‰ 0) -0.07 -0.01 -0.08 -0.03

Joint factor 9 (a ‰ 0) 0.05 0.10 -0.05 0.03

Joint factor 10 (a ‰ 0) 0.00 0.16** 0.01 -0.08

Sharpe ratios (a “ 0) Common Stock Corpbond Option

MVE 1.86 1.64 0.97 0.44

- 2.64 1.97 2.03

ρ (a “ 0) Common Stock Corpbond Option

Common - 0.14* 0.10 0.79***

Stock - - -0.31*** -0.09

Corpbond - - - -0.40***

Joint factor 1 (a “ 0) -0.10 -0.54*** 0.65*** -0.27***

Joint factor 2 (a “ 0) -0.08 0.21*** -0.19** -0.04

Joint factor 3 (a “ 0) -0.09 -0.03 0.31*** -0.25***

Joint factor 4 (a “ 0) 0.00 0.02 0.45*** -0.28***

Joint factor 5 (a “ 0) 0.00 -0.14* -0.18** 0.17**

Joint factor 6 (a “ 0) -0.16** 0.16** 0.24*** -0.36***

Joint factor 7 (a “ 0) 0.00 -0.02 -0.04 0.03

Joint factor 8 (a “ 0) -0.16** 0.27*** -0.23*** -0.12

Joint factor 9 (a “ 0) 0.13* 0.13* -0.11 0.13*

Joint factor 10 (a “ 0) -0.05 -0.02 0.00 -0.04

† In this table, the optimal weights of MVE portfolios are based on (5.3) without and with the restriction
a “ 0. In the first panel (Sharpe ratios), the first row reports the Sharpe ratios of MVE from the joint
estimation across different assets classes; the second rows reports the Sharpe ratios for the estimation
within each asset class. The second panel reports the correlation (ρ) of MVE portfolios across all asset
classes with each component of each individual asset class. The third panel reports the correlations of
MVE with the ten joint factors.
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Table 13: MVE portfolios shocks constructed from managed portfolios and correlations
with joint factors†

ρ (a ‰ 0) Common Stock Corpbond Option

Common - 0.18** 0.14* 0.86***

Stock - - -0.19*** -0.23***

Corpbond - - - -0.12

Joint factor 1 (a ‰ 0) 0.08 -0.21*** 0.31*** 0.08

Joint factor 2 (a ‰ 0) -0.04 0.02 -0.21*** 0.02

Joint factor 3 (a ‰ 0) -0.01 -0.16** 0.05 0.05

Joint factor 4 (a ‰ 0) 0.17** -0.07 0.29*** 0.10

Joint factor 5 (a ‰ 0) 0.01 -0.01 -0.34*** 0.13*

Joint factor 6 (a ‰ 0) 0.23*** -0.04 -0.33*** 0.36***

Joint factor 7 (a ‰ 0) 0.19** -0.27*** 0.43*** 0.17**

Joint factor 8 (a ‰ 0) 0.14* 0.02 0.10 0.09

Joint factor 9 (a ‰ 0) 0.17** 0.23*** -0.14* 0.10

Joint factor 10 (a ‰ 0) 0.12 0.05 0.06 0.08

Joint factor 1 (a “ 0) -0.14* -0.22*** 0.28*** 0.14*

Joint factor 2 (a “ 0) -0.06 0.05 -0.26*** 0.12*

Joint factor 3 (a “ 0) -0.06 -0.16** 0.11 0.10

Joint factor 4 (a “ 0) -0.22*** -0.04 0.27*** 0.14*

Joint factor 5 (a “ 0) -0.29*** 0.00 -0.37*** 0.42***

Joint factor 6 (a “ 0) -0.03 0.00 0.28*** -0.07

Joint factor 7 (a “ 0) -0.17** -0.15** 0.48*** 0.07

Joint factor 8 (a “ 0) -0.05 0.24*** -0.12* -0.02

Joint factor 9 (a “ 0) -0.05 0.20*** -0.18** 0.02

Joint factor 10 (a “ 0) -0.01 -0.09 0.09 0.02

† In this table, the optimal weights of MVE portfolios are based on (5.2). The first panel reports the
correlation (ρ) of MVE portfolios shocks across all asset classes with the components from individual
asset classes, and the second and third panels report the correlation (ρ) of MVE portfolios shocks the
ten joint factors with and without restriction a “ 0.
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Table 14: MVE portfolio shocks and correlations with joint factors†

ρ (a ‰ 0) Common Stock Corpbond Option

Common - 0.24*** 0.18** 0.85***

Stock - - -0.36*** -0.05

Corpbond - - - -0.14**

Correlation (ρ) Common Stock Corpbond Option

Joint factor 1 (a ‰ 0) 0.02 -0.50*** 0.67*** -0.08

Joint factor 2 (a ‰ 0) -0.14** 0.00 -0.20*** -0.05

Joint factor 3 (a ‰ 0) -0.11 -0.28*** 0.28*** -0.12*

Joint factor 4 (a ‰ 0) 0.14** -0.02 0.40*** -0.04

Joint factor 5 (a ‰ 0) 0.10 -0.10 -0.24*** 0.28***

Joint factor 6 (a ‰ 0) 0.15** -0.07 0.07 0.15**

Joint factor 7 (a ‰ 0) 0.08 -0.15** 0.17** 0.07

Joint factor 8 (a ‰ 0) -0.06 -0.01 -0.07 -0.02

Joint factor 9 (a ‰ 0) 0.05 0.10 -0.05 0.03

Joint factor 10 (a ‰ 0) 0.01 0.15** 0.02 -0.07

ρ (a “ 0) Common Stock Corpbond Option

Common - 0.15** 0.09 0.79***

Stock - - -0.32*** -0.07

Corpbond - - - -0.40***

Joint factor 1 (a “ 0) -0.11 -0.55*** 0.65*** -0.27***

Joint factor 2 (a “ 0) -0.08 0.22*** -0.19*** -0.05

Joint factor 3 (a “ 0) -0.09 -0.05 0.31*** -0.26***

Joint factor 4 (a “ 0) 0.00 0.01 0.46*** -0.28***

Joint factor 5 (a “ 0) 0.00 -0.14* -0.18** 0.17**

Joint factor 6 (a “ 0) -0.16** 0.16** 0.23*** -0.36***

Joint factor 7 (a “ 0) 0.00 -0.02 -0.03 0.03

Joint factor 8 (a “ 0) -0.16** 0.27*** -0.22*** -0.12

Joint factor 9 (a “ 0) 0.13* 0.13* -0.11 0.13*

Joint factor 10 (a “ 0) -0.05 -0.03 0.00 -0.04

† In this table, the optimal weights of MVE portfolios are based on (5.3) with and without restriction
a “ 0. The first and third panels report the correlation (ρ) of shocks of MVE portfolios across all asset
classes with the components from each individual asset class, and the second and forth panels report the
correlation of shocks with ten joint factors.
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Table 15: Out-of-sample Sharpe ratios of MVE portfolios with different number
of factors†

Sharpe ratio (a ‰ 0) Common Stock Corpbond Option

K “ 1 1.57 -0.24 0.94 1.38

- 1.49 1.11 1.22

K “ 2 1.94 0.86 -0.91 1.65

- 1.53 0.78 1.59

K “ 3 1.97 0.54 -1.03 2.01

- 1.86 0.85 1.79

K “ 4 2.00 0.68 -1.13 2.05

- 2.10 0.89 1.77

K “ 5 2.22 1.00 -1.19 2.16

- 2.05 0.60 2.05

K “ 6 2.17 1.08 -1.26 2.12

- 2.47 0.59 2.06

K “ 7 2.25 1.28 -1.32 2.17

- 2.56 0.87 1.93

K “ 8 2.47 1.28 -1.12 2.24

- 2.51 1.17 1.92

K “ 9 2.59 1.56 -0.88 2.12

- 2.75 1.41 1.95

K “ 10 2.69 1.46 -0.81 2.19

- 2.73 1.46 1.74

Sharpe ratio (a “ 0) Common Stock Corpbond Option

K “ 1 1.22 -0.37 0.51 1.43

- 1.39 1.10 1.06

K “ 2 1.60 0.98 -1.12 1.59

- 1.45 0.73 0.95

K “ 3 1.45 0.82 -1.25 1.70

- 1.63 0.80 1.47

K “ 4 1.45 0.77 -1.19 1.69

- 1.95 0.92 1.49

K “ 5 1.83 1.33 -1.19 1.75

- 1.93 0.55 1.68

K “ 6 1.56 1.71 -1.28 1.48

- 2.38 0.56 1.75

K “ 7 1.90 1.86 -0.81 1.55

- 2.42 0.85 1.63

K “ 8 2.03 1.79 1.14 1.24

- 2.34 1.21 1.66

K “ 9 1.95 1.77 1.09 1.12

- 2.52 1.48 1.83

K “ 10 2.18 1.33 0.79 1.48

- 2.47 1.47 1.92

† The reported Sharpe ratios are annualized. The optimal weight of MVE portfolio is based
on (5.7) without and with restriction a “ 0. The calculation is based on expanding window
estimation starting with the sample of the first 60 months.
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Table 16: Out-of-sample Sharpe ratios of MVE portfolios with different number
of factors†

Sharpe ratio (a ‰ 0) Common Stock Corpbond Option

K “ 1 0.46 0.08 -0.28 2.40

- 0.05 -0.60 2.64

K “ 2 2.11 -0.20 0.65 2.60

- -0.03 0.62 1.48

K “ 3 2.09 -0.27 0.76 2.65

- -0.05 0.38 0.50

K “ 4 2.16 -0.12 0.57 2.45

- -0.14 0.12 0.74

K “ 5 2.13 -0.26 0.28 2.42

- -0.04 0.69 0.75

K “ 6 1.88 0.18 0.62 2.01

- 0.16 0.89 0.92

K “ 7 0.89 0.02 0.38 1.34

- 0.15 0.56 1.14

K “ 8 0.66 -0.12 0.76 0.60

- 0.11 0.79 1.28

K “ 9 0.60 -0.36 0.29 0.99

- 0.01 0.46 1.27

K “ 10 0.33 -0.19 0.49 0.84

- -0.01 0.72 1.67

Sharpe ratio (a “ 0) Common Stock Corpbond Option

K “ 1 0.94 0.07 -0.12 2.85

- 0.07 -0.58 2.45

K “ 2 2.39 -0.20 0.70 2.37

- -0.02 0.64 1.10

K “ 3 2.27 -0.20 0.86 2.75

- -0.04 0.40 0.68

K “ 4 2.32 -0.09 0.70 2.74

- -0.14 0.19 1.05

K “ 5 2.13 0.06 0.36 2.44

- 10.08 0.75 1.01

K “ 6 0.73 0.31 0.94 0.98

- 0.24 0.94 1.46

K “ 7 0.72 0.55 0.93 1.11

- 0.18 0.62 1.67

K “ 8 0.93 0.51 1.06 1.69

- 0.14 0.77 1.69

K “ 9 0.89 0.35 0.62 1.96

- 0.08 0.49 1.91

K “ 10 0.70 0.47 0.77 1.93

- 0.07 0.79 2.02

† The reported Sharpe ratios are annualized. The optimal weight of OOS MVE portfolio
is based on (5.9) with or without imposing the restriction that a “ 0. The calculation is
based on expanding window estimation starting with the sample of the first 60 months. For
each number of factors K the first row gives the Sharpe ratio of the MVE portfolio and its
components that uses only assets from each asset class, while the second row displays the
Sharpe ratio of the MVE portfolio constructed only using that asset class.
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Appendix A1 Characteristics

In this section, we describes the characteristics that are applied to model returns on corporate

bonds and options in detail. We also cite several papers that study these characteristics in

empirical applications or show how to construct the characteristics.

We first provide detailed information on the 30 characteristics for corporate bonds. The

first 12 characteristics are on the contract level, and the next 18 characteristics are on the

stock level.

1. Bond age (age): Following Israel, Palhares, and Richardson (2017). Years since the

date the bond was issued.

2. Coupon (cpn): Following Chung, Wang, and Wu (2019). Coupon payment adjusted

for payment frequency.

3. Rating (rating): Numerical credit rating from 1 to 22, based on S&P rating and

Moody’s rating.

4. Issue size (issue size): The offering amount outstanding of the bond at issuance.

5. Duration (duration): Following Israel, Palhares, and Richardson (2017) and van

Binsbergen and Schwert (2021). The sensitivity of bond value to credit spread.

6. Spread (spread): The yield spread, defined as the yield-to-maturity in excess of the

one-month treasury yield.

7. Mom 6m (bond mom): Following Gebhardt, Hvidkjaer, and Swaminathan (2005a).

The most recent 6-2 cumulative bond returns, with a minimum period of 3 months.

8. Mom 6m Spread (spread mom): Following Kelly, Palhares, and Pruitt (2022). The

credit spread 6 months earlier minus current log spread.

9. Value-at-risk (V aR): Following Bai, Bali, and Wen (2019). The 2nd lowest credit

excess return (in excess of one-mo Treasury bill rate) over the past 24 months, with a

minimum of 12 months.

10. Short-term reversal (bond strev): bond return reversal from Dickerson, Robotti,

Rossetti (2023)
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11. Long-term reversal (bond ltrev): 48-minus-12-month reversal from Dickerson, Robotti,

Rossetti (2023)

12. Bond illiquidity (illiq): MMN-adjusted bond illiquidity as per Bao, Pan, and Wang

(2011) and Dickerson, Robotti, Rossetti (2023)

13. Tangibility (tan): Following Hahn and Lee (2009), defined as (0.715 × total receiv-

ables (RECT) + 0.547 × inventories (INVT) + 0.535 × property, plant and equipment

(PPENT) + cash and short-term investments (CHE)) / total assets (AT).

14. Total debt (debt): Defined as the sum of long-term debt and debt in current liabilities.

15. Debt-to-EBITDA (d2ebitda): Total debt divided by EBITDA.

16. Distance-to-default (DD): Merton model implied firm-specific distance to default,

following Gilchrist and Zakraǰsek (2012).

17-26. Book leverage (lev), Market beta (beta), Market capitalization (mktcap),

Book-to-market ratio (bm), Gross profitability (prof), Investment (invest),

Idiosyncratic volatility (idiovol), Stock momentum (mom), Operating lever-

age (ol), and Earnings-to-price ratio (e2p): The data on these stock-level char-

acteristics are from Freyberger, Höppner, Neuhierl, and Weber (2022). The above

stock-level characteristics are also included in a number of studies such as Gebhardt,

Hvidkjaer, and Swaminathan (2005b), Choi and Kim (2018), and Kelly, Palhares, and

Pruitt (2022) to examine the effect of stock on corporate bond pricing.

For options, we present details on the 19 characteristics, the first 7 of them are on the

contract level and the remaining 12 are on the stock level.

1. Implied volatility (impl vol): Following Büchner and Kelly (2022), the American

option implied volatility is computed by the Ivy DB database of OptionMetrics using

the binomal tree model (Cox, Ross, and Rubinstein (1979)).

2. Delta (delta): Following Büchner and Kelly (2022), the delta of the option contract

computed by OptionMetrics.

3. Gamma (gamma): Following Büchner and Kelly (2022), the gamma of the option

contract computed by OptionMetrics.
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4. Theta (theta): Following Büchner and Kelly (2022), the theta of the option contract

computed by OptionMetrics.

5. Volga (volga): Following Büchner and Kelly (2022), the volga of the option contract,

the sensitivity of vega to changes in volatility, i.e.

volga “
BV ega

Bσ
.

This is not provided by OptionMetrics, and hence we compute it by using standard

Black-Scholes pricing formula with zero dividend rate.

6. Embedded leverage (embed lev): Following Büchner and Kelly (2022) and Frazzini

and Pedersen (2021), the embedded leverage of the option contract is the amount of

market exposure per unit of committed capital, defined as

Ω “

ˇ

ˇ

ˇ

ˇ

∆ ¨ S

F

ˇ

ˇ

ˇ

ˇ

,

where ∆ is the option delta, S is the underlying price and F is the option price.

7. Option illiquidity (optspread): Following Christoffersen, Goyenko, Jacobs, and

Karoui (2018), Bali, Beckmeyer, Moerke, and Weigert (2021) and Goyenko and Zhang

(2021), the option illiquidity is the ratio of the bid-ask spread to the mid-point of bid

and ask for each option contract.

8. Volatility deviation (vol dev): Following Zhan, Han, Cao, and Tong (2022), Cao and

Han (2013) and Goyenko and Zhang (2021), we use the definition in Goyal and Saretto

(2009). The volatility deviation is defined as the difference between historical realized

volatility and the ATM option implied volatility. The historical realized volatility is the

standard deviation of of daily realized returns over the past 360 days (this is extracted

from the Historical Volatility File in OptionMetrics), and the ATM option implied

volatility is the average of the implied volatility of one at-the-money call (with delta

equal to 0.5) and one at-the-money put (with delta equal to -0.5) which have 30 days

to maturity (these are extracted from the Volatility Surface File in OptionMetrics).

9-19. Market beta (beta), Market capitalization (mktcap), Book-to-market ratio

(bm), Gross profitability (prof), Investment (invest), Idiosyncratic volatility

(idiovol), Book leverage (lev), Average daily bid-ask spread (bidask), Mo-

mentum (mom), Intermediate momentum (intmom), Short-term reversal

(strev), and Book leverage (lev): The data on these stock-level characteristics
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are from Freyberger, Höppner, Neuhierl, and Weber (2022). These characteristics

have been demonstrated to have a significant impact on option returns, for example,

idiosyncratic volatility (idiovol) by Cao and Han (2013) and Zhan, Han, Cao, and

Tong (2022), average daily bid-ask spread (bidask) and momentum (mom) by Bali,

Beckmeyer, Moerke, and Weigert (2021) and Goyenko and Zhang (2021).

Appendix A2 Observable factors

Is there a common factor structure among stocks, corporate bonds, and options? To explore

this, we start with a straightforward econometric approach known as Principal Component

Analysis (PCA) applied to observable pricing factors. These pricing factors have been well-

established in the asset pricing literature for different asset classes. The rationale behind

this exercise is that if the various asset classes are integrated, then the observable factors

that explain their returns should exhibit a shared component structure. We opt for PCA as

it is specifically designed to extract common components from multiple time series data.

To conduct PCA, we first construct the matrix of observable portfolio factors (standard-

ized to zero mean and unit variance) by sorting them according to their corresponding asset

class:

P “ rPstock Pcorpbond Poptions

The PCA transforms the matrix of observed portfolio factors P into a multiplication of

sorted eigenvector weights B and principal components F :

PTˆL “ FTˆK ¨ BKˆL ` ϵTˆL

In constructing the portfolio factor matrix P , we consider L “ 19 observable portfolio fac-

tors that are used to price stocks, corporate bonds, and options respectively: the six equity-

related factors are Fama and French (2015) five factors (MKTstock, SMB, HML, RMW ,

CMA) and momentum factor (MOM); the six corporate bond factors are proposed by

Bai, Bali, and Wen (2019) and Dickerson, Robotti, and Rossetti (2023) (MKTbond, CRF ,

LRF , BONDMOM , REV ˚, LTR);25 lastly, the six option-related factors are volatility level

(LEV EL), and moneyness skewness (SKEW ) factors from Büchner and Kelly (2022), op-

tion idiosyncratic volatility (IV OL) and illiquidity (ILQ) factors from Zhan, Han, Cao, and

Tong (2022), option-market factor (MKToption) and volatility deviation factor (V OLDEV )

25We remove DRF since it is highly correlated with MKTbond after lead-lag correction. See Dickerson,
Mueller, and Robotti (2023) for more details on the lead-lag correction for the factors.
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from Goyal and Saretto (2009).26 The date range is from July 2004 to December 2021, in

which the corporate bond factors begin. From these observable factors, we extract and ex-

amine the first ten principal components (K “ 10), which jointly explain 88% of variations.

Figure A1: First principal component of observable factors

Note: This graph plots the series of cumulative sum of the first principal component from the PCA of
observable pricing factors from three different asset classes from Aug 2004 to Dec 2021. The series of
observable pricing factors include 6 equity factors, 6 corporate bond factors, and 7 equity option factors.

Figure A1 plots the cumulative sum of the first principal component from the PCA.

The component manifests a systematic pattern associated with the market downturns: in

the time series, it presents the 2008 financial crisis, 2015-2016 global stock market selloff,

December 2018 market crash, and 2020 COVID crisis. The pattern indicates that the first

component is potentially a common factor that explains the comovements of returns across

asset classes.

To measure the degree of commonality across asset classes, we compute the explained

variance ratio for the ten principal components, which is shown in Table A1. The first PC

is able to explain around 30.51% of variations among the pricing factors of interest. The

next two components also explain 12.52% and 9.57% of variations, respectively. The results

suggest that common components significantly present among pricing factors across asset

classes.

26We remove SLOPE since it is highly correlated with LEV EL.
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Table A1: Explained variance ratios of principal components

PC1 2 3 4 5 6 7 8 9 10

Variance Ratio (%) 30.51 12.52 9.57 7.0 6.56 5.82 5.17 4.21 3.89 2.79

Note: The explained variance ratio is the percentage of variations among pricing factors that is attributed

to the selected principal component.

A following question to consider is whether these principal components can effectively

explain the observable factors specific to each of the three asset classes. A sufficient condition

for a principal component to be deemed “common” is that it demonstrates comparable

explanatory power for the factors from all asset classes. Conversely, if the variations explained

by a particular component predominantly stem from equity-related factors, for example,

then that component would be characterized as an equity-specific component rather than a

common one. It is crucial to distinguish between common components, which capture shared

variations across asset classes, and asset-specific components, which predominantly capture

variations specific to a particular asset class.

To examine whether the principal components explain the pricing factors from each

asset class, we can compute, for each principal component k, its marginal R-squared on

the factors from their associative class. Specifically, we can fit portfolio factors P by each

principal component F k and its corresponding weight Bk:

P̂ k
t “ Bk1F k

t

where F̂ k is the predicted factors using kth principal component. Because F is sorted on

asset classes, so does F̂ k:

P̂ k
“ rP̂ k

stock P̂ k
corpbond P̂ k

options.

We can subsequently compute marginal R-squareds for principal component k to asset class

g P tstock, corpbond, optionu as:

R2
k,g “

1 ´
ř

tpP
k
g ´ P̂ k

g q2

ř

g,tpP
k
g q2
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Table A2: Marginal R-squareds of principal components on asset-class specific factors

Marginal R2 (%) PC1 2 3 4 5 6 7 8 9 10

Stock 20.47 16.99 10.18 17.26 2.78 1.62 3.22 6.66 1.63 7.54

Corporate Bond 31.72 3.82 15.15 1.18 4.71 13.32 2.85 4.65 7.97 0.76

Option 44.91 16.27 4.04 2.67 14.64 2.71 1.80 1.10 0.72 0.07

Table A2 reports the results. The first principal component is able to explain the pricing

factors respectively from three different asset classes, which implies that the component is

a common factor. It explains over 26.24% of variations in stock-related factors, 30.33% in

corporate bonds, and 38.65% in options. The explanatory power of the second principal

component is predominantly a corporate bond factor, with the marginal R-squareds of 22%.

The third principal component explains primarily stock and option factors.

The PCA analyses conducted on observable factors convey a significant finding: the pres-

ence of a common factor that accounts for variations across different asset classes. Further-

more, there is suggestive evidence indicating that this common factor exhibits a systematic

relationship with economic cycles. However, it is important to acknowledge that the impli-

cations of these exercises may be limited since they are primarily applied to asset classes at

the level of observable factors.

Given this limitation, we are motivated to pursue a search for a common factor structure

directly from individual assets, which will be the focus of the subsequent sections. By exam-

ining individual assets, we aim to uncover a more comprehensive and nuanced understanding

of the underlying common factor structure across the three asset classes.

Appendix A3 Characteristics on Beta Loadings of the Regressed-

PCA Latent Factors

In this Appendix, we first explain the beta loadings of the first regressed-PCA latent factors

presented in Section 4.4. Then we present the beta loadings of the rest of the first ten

regressed-PCA factors to gain insights of what those factors are.

Appendix A3.1 Beta loadings on the First Regressed-PCA Latent Factor

On the equity segment, book assets and market capitalization dominate. These two charac-

teristics have weights with similar magnitude yet opposite signs, which can be interpreted as
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a “value” or “leverage” factor involved in the beta loadings. Interestingly, book-to-market

ratio has a negligible weight, which implies that the weights of assets and market capitaliza-

tion estimated via regressed-PCA subsume the book-to-market values. The result from the

equity side coincides with Kelly, Pruitt, and Su (2019), who also finds that the beta of the

first IPCA factor is driven by high book assets and low market equity.

On the bond segment, ratings, duration, bond momentum, spread momentum and Value-

at-Risk contribute to the beta loadings of the first latent factor. The exposure to ratings

and duration is consistent with the literature that credit and duration risks contribute sig-

nificantly to the bond risk premium. Interestingly, duration has a negative weight on the

beta loadings, which suggests that securities with higher duration earn lower average re-

turns. This result may be related to the negative term structure of risk premia, as discussed

on equity in van Binsbergen, Brandt, and Koijen (2012) and van Binsbergen and Koijen

(2017). The exposure to bond momentum is negative and marginally significant. Jostova,

Nikolova, Philipov, and Stahel (2013) show that bond momentum is large yet positive, and

is primarily concentrated in non-investment grade bonds. Consistent with their findings,

our result suggests that the positive bond momentum is associated with return anomalies

rather than loading on risk. The beta loading of VaR is positive and significant. Dickerson,

Mueller, and Robotti (2023) find that the downside risk factor significantly correlates with

the bond market returns. We also discover that the VaR measure is highly and positively

correlated with bond return volatility (with value over 0.9), which suggests that VaR can be

an alternative proxy for the bond’s return volatility.

On the option segment, embedded leverage, option’s Greek such as gamma and theta,

have salient weights on the beta loadings, and some characteristics of the underlying equity

such as book-to-market and momentum are also significant. Specifically, for example, em-

bedded leverage which measures option’s return magnification relative to the return of the

underlying asset, has a significant positive loading on the risk factor, as buying options with

higher embedded leverage increases investors’ risk exposure, thus investors require higher

risky return. Frazzini and Pedersen (2021) further argue that as investors buy options with

high embedded leverage, they earn higher risky return, in compensation, they are giving up

the risk-free part of the returns, hence the risk-adjusted return (alpha) should be lower. Our

results are also consistent with their argument, as Figure 4 shows that embedded leverage

contributes negatively to the alpha of the option returns.
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Appendix A3.2 Beta loadings on Other Regressed-PCA Joint Factors

Figures A2 to A4 present the beta loadings on the second to the tenth regressed-PCA joint

factors.

Appendix A4 Performance of the Restricted Joint Factor Model

and Factor Models for Single Asset Class

In this section, we first report the in-sample and out-of-sample performance of the restricted

joint factor model (αp¨q “ 0) in Table A3.

We then present the in-sample and out-of-sample performance of the factor model (2.4)

for each individual asset class separately. The evaluation metrics are introduced in Section

2.3. Table A4 and A5 report the results for the unrestricted and restricted cases, respectively.

Table A6 demonstrates the pure-alpha and beta strategy performance.

Appendix A5 Regressed-PCA factors the macro factors from Lud-

vigson and Ng (2009)

In this appendix, we show how our regressed-PCA factors are related to the macro factors

proposed by Ludvigson and Ng (2009).

Ludvigson and Ng (2009) provide explanations for their constructed factors. For F1, it

is a real factor in the sense that it loads on measures of employment, production, capacity

utilization and new manufacturing orders, while it barely is related with prices or financial

variables. For F2 is related with the several interest rate spreads, and highly correlated with

the single forward-rate factor in Cochrane and Piazzesi (2005). Both F3 and F4 are inflation

factors, and F8 is a stock market factor.

Table A18 and A22 present the correlations and regression results. The first regressed-

PCA joint factor is related to the real factor (F1), the interest rate factor (F2) and one of

the inflation factors (F4), while the second joint factor is significantly related to the stock

market factor F8.
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Appendix A6 Out-of-sample Performance of the Joint Factor Model

with Trimmed Data and Whole Sample Period

In this appendix, we present robustness check for out-of-sample study by examining the per-

formance including the post-2020 sample (including the COVID pandemic and the GameStop

episode). Thus the whole sample period is from July 2004 to December 2021, while the first

60 months are used for training. The columns under Case (1) of Table A7 shows the results.

We also demonstrate the out-of-sample results using the trimmed options data, in which

we exclude data points below (above) the 1st (99th) percentile of the return distribution in

each period. The corresponding results are under Case (2) of Table A7.

Not surprisingly, we can see from results under Case (1), due to the impact of the extreme

returns observed from the options during the extremely volatile periods including the COVID

and the Gamestop episode, the out-of-sample fitness gets worse off for the stock returns and

corporate bond returns, while the average out-of-sample fitness for options gets better (the

model exert more effort to fitting outliers in option returns). But the performance of the

alpha trading strategy does not change much. From results under Case (2), the out-of-

sample fitness is better for all three asset classes since the impact of extreme option returns

is further attenuated. However, trimming options data involves look-ahead bias, as those

volatile option returns are excluded ex ante, the out-of-sample Sharpe ratios of the alpha

trading strategy are now above 3 for options.

Appendix A7 Regressed-PCA Joint Factors Using Raw Option

Returns

We present the regressed-PCA joint factors for all three asset classes while using the raw

option returns instead of the delta-hedged returns. The raw option return is defined as

Roption,raw
t`1 “

Ct`1

Ct

´ 1.

Figure A5 shows the pair wise correlations between the joint factors using the delta-

hedged returns and the ones using the raw option returns. Most of the joint factors using

the raw option returns are highly correlated with some of the joint factors using the delta-

hedged option returns. Especially, the correlation between the first regressed-PCA joint

factor using delta-hedged option returns and the one using raw option returns is 0.9182.

Figure A6 shows that loadings on the first regressed-PCA joint factor using the raw option
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returns. Compared with Figure 3, the loadings for the stock and corporate bond parts almost

remain unchanged. But for the option part, we notice some stock level characteristics become

more significant, for example, beta and mom, while the previously highly significant option

contract level characteristics are still salient (e.g., embed lev and gamma). This is intuitive

since compared with the delta-hedged option return, the raw option return is more affected

by the dynamic of the underlying stock. We next present the in-sample fit and out-of-sample

performance of the regressed-PCA joint factor using the raw option return in Table A8 and

A9. Overall, our main results of uncovering common risk factor structure across three asset

classes hold for using raw option returns.

Appendix A8 Regressed-PCA Joint Factors Using Nonlinear αp¨q

and βp¨q

In this appendix, we show the performance of the joint factors using nonlinear αp¨q and

βp¨q by expanding αp¨q and βp¨q with splines, for details of how to construct αp¨q and βp¨q

with splines, one can refer to Chen, Roussanov, and Wang (2023). To avoid the amplified

impact of highly correlated characteristics in performing regressed-PCA, we employ a subset

of characteristics (around the half number of all the characteristics we study for the linear

case). There 15 characteristics for stocks: bm, beta, cto, mom, strev, ltrev, d2a, freecf ,

mktcap, turn, noa, ol, pm, w52h and bidask. There are 16 characteristics for corporate

bonds: rating, duration, bond mom, bond ltrev, spread mom, V aR, illiq, beta, mktcap,

bm, mom, prof , e2p, tan, lev and d2ebitda. There are 13 characteristics for options: bm,

beta, mom, intmom, delta, embedlev, gamma, impl vol, lev, mktcap, theta, volga and

vol dev.

Table A14 and A15 show the results. As a benchmark, we present the same set of results

with linear αp¨q and βp¨q and using the same subset of characteristics as the nonlinear case.

Table A16 and A17 show the results.

Appendix A9 Asset-Class-Specific Factors and Macroeconomic Vari-

ables

In this Appendix, we present the relations between asset-class-specific factors and macroeco-

nomic and financial variables. Table A19 to A21 present the correlation between asset-class-
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specific factors and macroeconomic and financial variables, and Table A23 to A25 show the

regression results.

Analysis of Tables 5 and 6 reveals that latent joint factors are significantly associated

with various macroeconomic and financial variables. Further examination of Tables A19

to A25 offers deeper insights into the nuances of these associations with the fundamental

risks. For example, the first joint factor demonstrates a strong correlation with the HKM,

the financial uncertainty index, the industrial production growth, the change in term spread

and the macroeconomic uncertainty index. Table A23 to A25 indicates a distinct correlation

pattern among different asset classes: corporate bonds are predominantly linked to changes

in the term spread and the HKM, whereas stocks align more closely with industrial pro-

duction growth. Options, on the other hand, tend to correlate significantly with financial

uncertainty.
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Figure A2: Estimation of B coefficients in the second to the fourth regressed-PCA joint
factor
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Figure A3: Estimation of B coefficients in the fifth to the seventh regressed-PCA joint factor
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Figure A4: Estimation of B coefficients in the eighth to the tenth regressed-PCA joint factor
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Figure A5: Regressed-PCA latent factors using delta-hedged option return and raw option
return

Note: Joint refers to the regressed-PCA latent factor using the delta-hedged option return. Joint raw is
the regressed-PCA latent factor using the raw option return. A darker square represents a higher
correlation coefficient in absolute value.

Figure A6: Estimation of B coefficients in the first regressed-PCA joint factor using the raw
option returns
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Table A3: In-sample and out-of-sample performance of the joint factor model when αp¨q “ 0

(i) All the returns on three asset classes
K R2

K R2 R2
O R2

T,N,O R2
N,T,O R2

f,O R2
f,T,N,O R2

f,N,T,O

1˚ 15.80 6.20 24.05 5.34 8.96 26.08 8.85 12.81

2 26.16 7.54 24.03 8.30 8.91 26.62 10.88 13.85

3 33.90 8.86 24.00 8.59 8.84 26.88 13.92 14.42

4 41.13 10.21 24.02 7.14 8.88 27.05 14.92 14.70

5 47.25 12.75 24.00 6.92 8.87 27.29 14.84 15.01

6 53.09 14.18 23.94 6.92 8.81 27.43 15.18 15.22

7 57.62 14.41 23.92 7.30 8.77 27.60 15.64 15.57

8 61.47 15.26 23.95 8.85 8.82 27.75 15.77 15.88

9 64.78 16.01 23.93 9.12 8.79 27.87 15.89 16.10

10 67.67 16.32 23.94 9.08 8.80 27.98 16.07 16.27

(ii) Stock Returns
K R2

K R2 R2
O R2

T,N,O R2
N,T,O R2

f,O R2
f,T,N,O R2

f,N,T,O

1 18.95 5.71 0.42 1.19 ´0.35 8.62 11.57 7.11

2 23.15 6.11 0.38 1.14 ´0.30 10.28 12.89 8.86

3 32.80 6.76 0.33 1.11 ´0.38 11.12 14.44 9.71

4 36.74 6.90 0.35 1.06 ´0.31 11.32 14.59 9.85

5 41.54 7.91 0.19 0.57 ´0.31 11.35 14.30 9.85

6˚ 52.50 9.45 ´0.03 0.04 ´0.14 11.66 14.73 10.17

7 53.78 9.52 ´0.03 0.11 ´0.13 11.72 14.79 10.24

8 57.07 10.00 0.16 0.53 ´0.07 11.94 14.95 10.44

9 63.50 10.97 0.07 0.37 ´0.13 12.08 15.00 10.59

10 68.18 11.41 0.06 0.37 ´0.15 12.12 14.98 10.63

(iii) Corporate Bond Returns
K R2

K R2 R2
O R2

T,N,O R2
N,T,O R2

f,O R2
f,T,N,O R2

f,N,T,O

1 10.89 10.40 2.18 4.09 1.96 3.91 ´24.47 ´5.28

2 22.71 11.20 2.53 4.68 0.72 1.89 ´29.37 ´10.60

3 33.05 13.36 2.36 4.30 0.29 3.66 ´24.13 ´9.85

4 40.24 21.21 2.41 4.28 0.96 3.73 ´25.29 ´10.66

5 43.25 25.13 2.29 3.84 1.04 6.02 ´24.60 ´7.29

6 46.62 28.66 2.11 4.15 1.22 6.62 ´23.93 ´5.79

7˚ 57.96 31.43 2.09 4.21 1.31 13.81 ´15.62 1.93

8 60.52 32.06 2.18 4.77 1.39 17.06 ´12.51 6.70

9 62.29 33.43 2.10 4.58 1.12 19.00 ´10.90 8.87

10 64.66 33.60 2.17 5.64 1.37 18.07 ´12.71 7.81

(iv) Option Returns
K R2

K R2 R2
O R2

T,N,O R2
N,T,O R2

f,O R2
f,T,N,O R2

f,N,T,O

1 16.76 6.17 28.61 5.45 11.38 29.56 9.25 13.73

2˚ 33.23 8.40 28.59 8.50 11.35 29.95 11.35 14.80

3 36.08 10.24 28.56 8.81 11.29 30.09 14.41 15.21

4 47.37 11.92 28.58 7.31 11.32 30.25 15.46 15.51

5 58.15 15.68 28.58 7.10 11.34 30.49 15.38 15.73

6 60.15 16.78 28.55 7.11 11.26 30.59 15.72 15.81

7 61.98 16.86 28.53 7.50 11.19 30.65 16.09 15.99

8 67.76 18.07 28.53 9.09 11.21 30.73 16.17 16.14

9 68.79 18.56 28.53 9.37 11.21 30.80 16.27 16.33

10 69.98 18.77 28.53 9.31 11.23 30.95 16.49 16.56

Note: K: the number of factors specified, ˚ denotes the estimator of K which maximizes the ratio of two
adjacent eigenvalues; R2

R̃
: Fama-MacBeth cross-sectional regression R2; R2

K measures the variations in the

characteristic-managed portfolios captured by different numbers of factors from PCA; R2: total in-sample
R2 (%), see (2.8); R2

O, R
2
T,N,O, R

2
N,T,O, R

2
f,O, R

2
f,T,N,O, R

2
f,N,T,O: out-of-sample fits R2’s (%), see

(2.9)-(2.15);
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Table A4: In-sample and out-of-sample performance of the regressed-PCA factor models for
each asset class when αp¨q ‰ 0

(i) Stock Returns

K R2
K R2 R2

f,O R2
f,T,N,O R2

f,N,T,O

1˚ 28.63 3.10 8.57 7.86 7.46

2 43.55 3.27 9.32 9.11 8.16

3 53.93 4.22 12.17 15.04 10.79

4 61.52 5.85 12.54 15.60 11.10

5 67.93 11.46 13.04 16.18 11.61

6 73.19 14.38 13.48 16.58 12.03

7 77.04 14.68 13.70 16.85 12.24

8 80.63 14.95 13.84 16.83 12.38

9 83.84 15.20 14.12 17.09 12.68

10 86.29 15.49 14.22 17.00 12.78

K R2
O R2

T,N,O R2
N,T,O R2

R̃

1-10 0.22 0.71 0.04 18.64

(ii) Corporate Bond Returns

K R2
K R2 R2

f,O R2
f,T,N,O R2

f,N,T,O

1 27.85 8.09 8.68 ´9.67 4.91

2 44.54 16.37 25.28 5.03 19.75

3˚ 59.16 30.76 29.40 11.77 23.08

4 66.93 34.84 30.50 11.05 23.95

5 73.39 37.24 33.54 17.13 27.35

6 78.23 39.47 34.26 17.70 28.15

7 81.61 40.12 35.18 18.59 29.21

8 84.54 40.90 37.40 19.36 31.92

9 87.21 42.25 37.76 20.02 32.29

10 89.29 42.97 38.16 20.69 32.79

K R2
O R2

T,N,O R2
N,T,O R2

R̃

1-10 2.22 5.48 1.67 47.68

(iii) Option Returns

K R2
K R2 R2

f,O R2
f,T,N,O R2

f,N,T,O

1˚ 32.16 7.04 ´443.77 45.56 ´448.34

2 52.18 9.33 ´440.09 47.81 ´445.63

3 62.41 18.11 ´435.84 47.87 ´441.94

4 70.07 22.22 ´434.60 47.11 ´440.66

5 77.06 22.75 ´432.62 46.67 ´438.92

6 81.53 23.28 ´431.36 46.55 ´437.83

7 84.66 23.58 ´430.62 46.45 ´437.09

8 87.61 23.89 ´429.77 46.26 ´436.21

9 89.79 24.15 ´428.69 46.06 ´435.04

10 91.91 24.46 ´426.85 46.05 ´433.16

K R2
O R2

T,N,O R2
N,T,O R2

R̃

1-10 ´453.05 46.21 ´454.85 27.80

Note: K: the number of factors specified, ˚ denotes the estimator of K which maximizes the ratio of two
adjacent eigenvalues; R2

R̃
: Fama-MacBeth cross-sectional regression R2; R2

K measures the variations in the

characteristic-managed portfolios captured by different numbers of factors from PCA; R2: total in-sample
R2 (%), see (2.8); R2

O, R
2
T,N,O, R

2
N,T,O, R

2
f,O, R

2
f,T,N,O, R

2
f,N,T,O: out-of-sample fits R2’s (%), see

(2.9)-(2.15);
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Table A5: In-sample and out-of-sample performance of the regressed-PCA factor models for
each asset class when αp¨q “ 0

(i) Stock Returns

K R2
K R2 R2

O R2
T,N,O R2

N,T,O R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 28.65 2.91 0.35 0.71 0.04 8.68 8.41 7.56

2 43.57 3.08 0.34 0.69 0.03 9.40 9.49 8.23

3 53.95 4.02 0.29 0.73 ´0.07 12.13 15.30 10.76

4 61.54 5.52 0.27 0.77 ´0.06 12.56 15.88 11.13

5 67.96 11.32 0.11 0.22 ´0.05 13.07 16.40 11.66

6 73.21 14.22 0.18 0.66 ´0.05 13.51 16.83 12.05

7 77.07 14.52 0.18 0.59 ´0.04 13.73 17.04 12.26

8 80.67 14.74 0.18 0.53 ´0.04 13.86 17.18 12.41

9 83.88 15.04 0.15 0.43 ´0.06 14.16 17.32 12.72

10 86.33 15.34 0.10 0.30 ´0.11 14.26 17.38 12.82

(ii) Corporate Bond Returns

K R2
K R2 R2

O R2
T,N,O R2

N,T,O R2
f,O R2

f,T,N,O R2
f,N,T,O

1 27.85 6.40 0.29 1.66 0.43 9.47 ´8.20 6.29

2 44.57 17.20 2.19 6.38 2.87 26.48 8.44 21.60

3˚ 59.18 30.76 1.91 6.07 2.39 30.56 14.15 25.21

4 66.96 34.97 1.76 5.72 2.17 31.54 14.85 25.99

5 73.41 37.22 2.17 7.12 2.49 33.99 19.07 28.25

6 78.26 39.33 2.20 6.25 2.26 34.58 19.25 28.90

7 81.65 40.06 2.04 5.88 2.13 35.76 20.40 30.08

8 84.57 40.82 2.10 4.85 1.78 37.69 21.15 32.44

9 87.24 42.18 2.04 4.96 1.71 38.01 20.99 32.75

10 89.32 42.90 1.98 4.79 1.49 38.36 21.35 33.19

(iii) Option Returns

K R2
K R2 R2

O R2
T,N,O R2

N,T,O R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 35.08 7.61 ´453.35 46.37 ´455.06 ´442.25 46.44 ´446.96

2 53.90 8.21 ´454.20 47.31 ´455.85 ´439.93 46.95 ´445.04

3 64.11 16.51 ´453.87 47.05 ´455.40 ´435.79 46.71 ´441.50

4 71.58 21.44 ´453.31 46.34 ´455.12 ´434.31 46.51 ´440.22

5 77.89 22.59 ´453.21 46.24 ´455.06 ´432.62 46.62 ´438.78

6 82.32 23.13 ´453.21 46.27 ´455.01 ´431.52 46.50 ´437.69

7 85.45 23.38 ´453.14 46.18 ´454.98 ´430.79 46.52 ´437.05

8 88.22 23.86 ´453.09 46.10 ´454.94 ´430.01 46.40 ´436.27

9 90.35 24.06 ´453.05 46.14 ´454.90 ´428.59 46.33 ´434.68

10 92.20 24.52 ´453.09 46.26 ´454.89 ´427.00 46.21 ´433.15

Note: K: the number of factors specified, ˚ denotes the estimator of K which maximizes the ratio of two
adjacent eigenvalues; R2

R̃
: Fama-MacBeth cross-sectional regression R2; R2

K measures the variations in the

characteristic-managed portfolios captured by different numbers of factors from PCA; R2: total in-sample
R2 (%), see (2.8); R2

O, R
2
T,N,O, R

2
N,T,O, R

2
f,O, R

2
f,T,N,O, R

2
f,N,T,O: out-of-sample fits R2’s (%), see

(2.9)-(2.15);



66

Table A6: Out-of-sample pure-alpha strategy and tangency portfolio performance of the
regressed-PCA factor models for each asset class

(i) Stock Returns

K µα σα SRα

1 0.26 0.51 0.51

2 0.33 0.44 0.73

3 0.34 0.45 0.75

4 0.39 0.45 0.87

5 0.36 0.44 0.82

6 0.29 0.32 0.91

7 0.29 0.29 0.99

8 0.29 0.27 1.07

9 0.32 0.27 1.19

10 0.34 0.26 1.34

(ii) Corporate Bond Returns

K µα σα SRα

1 0.06 0.05 1.09

2 0.02 0.04 0.56

3 0.03 0.04 0.76

4 0.03 0.03 1.06

5 0.01 0.02 0.50

6 0.01 0.02 0.39

7 0.01 0.02 0.62

8 0.01 0.02 0.60

9 0.01 0.02 0.89

10 0.01 0.01 0.75

(iii) Option Returns

K µα σα SRα

1 0.08 0.42 0.19

2 0.21 0.33 0.65

3 0.37 0.18 2.06

4 0.28 0.15 1.83

5 0.27 0.14 1.94

6 0.22 0.11 2.04

7 0.17 0.10 1.73

8 0.14 0.10 1.47

9 0.15 0.08 1.77

10 0.08 0.06 1.36

Note: K: the number of factors specified; µα, σα and SRα: out-of-sample annualized means, standard
deviations, and Sharpe ratios of the pure-alpha arbitrage strategy (%).
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Table A7: Out-of-sample pure-alpha strategy and R2s for the sample period of July 2004 to
December 2021

(i) All the returns on three asset classes
Case (1) Case (2)

K µα σα SRα R2
f,O R2

f,T,N,O R2
f,N,T,O µα σα SRα R2

f,O R2
f,T,N,O R2

f,N,T,O

1 9.99 5.35 1.87 36.12 8.33 15.18 11.96 3.26 3.66 10.57 8.92 7.21
2 4.97 4.86 1.02 36.52 11.49 16.37 7.86 2.98 2.64 13.22 12.66 9.30
3 4.67 4.23 1.10 36.87 14.95 17.08 7.41 2.62 2.82 15.27 16.70 10.61
4 3.51 3.80 0.93 37.04 14.85 17.37 6.82 2.57 2.66 16.42 16.90 11.09
5 3.41 3.76 0.91 37.19 14.73 17.64 6.75 2.53 2.67 16.95 16.84 11.52
6 4.04 3.72 1.09 37.33 14.39 18.02 6.64 2.50 2.65 17.81 16.57 12.13
7 5.01 3.74 1.34 37.37 13.36 18.19 6.96 2.45 2.84 18.12 15.64 12.37
8 4.39 3.16 1.39 38.08 15.19 18.51 5.95 2.20 2.70 18.53 17.62 12.81
9 3.85 2.89 1.33 38.16 15.81 18.77 5.46 1.93 2.82 19.04 18.41 13.25
10 3.74 3.01 1.24 38.80 15.91 18.97 4.98 1.63 3.05 19.30 18.62 13.46
K R2

O R2
T,N,O R2

N,T,O R2
O R2

T,N,O R2
N,T,O

1-10 34.95 7.70 11.52 2.14 7.95 1.95

(ii) Stock Returns
Case (1) Case (2)

K µα σα SRα R2
f,O R2

f,T,N,O R2
f,N,T,O µα σα SRα R2

f,O R2
f,T,N,O R2

f,N,T,O

1 0.26 0.70 0.37 ´0.87 0.43 5.67 0.26 0.70 0.37 7.52 9.68 6.92
2 0.25 0.73 0.34 4.35 7.72 7.32 0.25 0.73 0.34 9.48 12.10 8.05
3 0.33 0.65 0.51 8.46 11.29 8.78 0.33 0.65 0.51 11.09 13.95 9.22
4 0.32 0.69 0.47 7.57 10.38 8.78 0.32 0.69 0.47 11.19 13.96 9.41
5 0.29 0.67 0.44 6.46 9.41 8.73 0.29 0.67 0.44 11.45 14.16 9.74
6 0.28 0.69 0.40 8.26 10.67 9.04 0.28 0.69 0.40 11.78 14.39 9.93
7 0.31 0.60 0.52 8.51 10.86 9.30 0.31 0.60 0.52 12.03 14.65 10.23
8 0.26 0.74 0.35 5.06 6.39 9.03 0.26 0.74 0.35 12.21 14.62 10.37
9 0.26 0.75 0.35 5.92 7.47 9.36 0.26 0.75 0.35 12.50 14.78 10.59
10 0.30 0.65 0.46 3.41 5.13 9.17 0.30 0.65 0.46 12.73 15.18 10.72
K R2

O R2
T,N,O R2

N,T,O R2
O R2

T,N,O R2
N,T,O

1-10 0.33 0.63 0.07 0.33 0.63 0.07

(iii) Corporate Bond Returns
Case (1) Case (2)

K µα σα SRα R2
f,O R2

f,T,N,O R2
f,N,T,O µα σα SRα R2

f,O R2
f,T,N,O R2

f,N,T,O

1 0.66 0.74 0.89 ´7.12 ´30.06 ´44.87 0.66 0.74 0.89 5.98 ´28.00 ´18.26
2 ´0.31 0.91 ´0.34 ´29.77 ´43.49 ´94.54 ´0.31 0.91 ´0.34 0.04 ´34.28 ´36.03
3 ´0.36 0.97 ´0.37 ´2.16 ´33.92 ´37.86 ´0.36 0.97 ´0.37 9.64 ´25.75 ´14.77
4 ´0.26 1.00 ´0.26 2.13 ´31.06 ´30.46 ´0.26 1.00 ´0.26 11.32 ´23.27 ´12.85
5 ´0.26 0.99 ´0.26 ´0.42 ´30.87 ´36.10 ´0.26 0.99 ´0.26 12.95 ´22.77 ´10.23
6 ´0.40 1.03 ´0.39 1.93 ´23.60 ´39.81 ´0.40 1.03 ´0.39 19.90 ´15.15 ´3.08
7 ´0.17 1.06 ´0.16 2.03 ´21.61 ´41.51 ´0.17 1.06 ´0.16 22.43 ´11.47 0.03
8 ´0.09 0.88 ´0.11 ´46.29 ´24.00 ´146.59 ´0.09 0.88 ´0.11 24.12 ´10.17 2.12
9 ´0.08 0.73 ´0.10 ´57.23 ´22.13 ´171.81 ´0.08 0.73 ´0.10 26.93 ´7.35 6.32
10 ´0.04 0.66 ´0.05 ´57.79 ´23.08 ´176.25 ´0.04 0.66 ´0.05 28.89 ´5.95 7.70
K R2

O R2
T,N,O R2

N,T,O R2
O R2

T,N,O R2
N,T,O

1-10 1.60 2.10 0.44 1.60 2.10 0.44

(iv) Option Returns
Case (1) Case (2)

K µα σα SRα R2
f,O R2

f,T,N,O R2
f,N,T,O µα σα SRα R2

f,O R2
f,T,N,O R2

f,N,T,O

1 9.06 5.16 1.76 37.64 8.83 15.88 11.03 3.09 3.57 13.24 9.30 6.47
2 5.03 4.45 1.13 37.97 12.05 17.51 7.92 2.48 3.19 17.19 13.14 10.23
3 4.69 4.01 1.17 38.07 15.51 18.04 7.43 2.21 3.37 18.87 17.21 11.49
4 3.45 3.45 1.00 38.26 15.40 18.30 6.76 2.03 3.33 20.74 17.38 12.02
5 3.37 3.42 0.98 38.46 15.27 18.49 6.71 2.01 3.33 21.38 17.31 12.32
6 4.16 3.33 1.25 38.54 14.84 18.64 6.77 1.91 3.53 22.08 16.96 12.54
7 4.87 3.48 1.40 38.56 13.76 18.67 6.82 1.90 3.59 22.22 15.96 12.43
8 4.23 2.79 1.52 39.64 15.72 19.07 5.78 1.69 3.42 22.70 17.99 13.18
9 3.67 2.56 1.43 39.74 16.32 19.26 5.27 1.50 3.52 23.16 18.77 13.58
10 3.47 2.85 1.22 40.50 16.47 19.48 4.72 1.36 3.47 23.29 18.96 13.81
K R2

O R2
T,N,O R2

N,T,O R2
O R2

T,N,O R2
N,T,O

1-10 36.34 7.89 13.75 3.52 8.14 3.98

Note: K: the number of factors specified; µα, σα and SRα: out-of-sample annualized means, standard
deviations, and Sharpe ratios of the pure-alpha arbitrage strategy (%). R2

O, R
2
T,N,O, R

2
N,T,O, R

2
f,O,

R2
f,T,N,O, R

2
f,N,T,O: out-of-sample fits R2’s (%), see (2.9)-(2.15). Case (1): using non-trimmed options

data; Case (2): using trimmed options data.
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Table A8: In-sample and out-of-sample performance of the joint factor model when αp¨q ‰ 0
and using raw option returns

(i) All the returns on three asset classes
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 15.41 8.89 10.12 10.44 9.24
2 24.81 10.49 11.83 13.28 10.70
3 33.25 12.15 12.90 15.23 11.72
4 39.51 14.31 13.67 17.06 12.57
5 45.61 15.17 14.08 17.54 12.94
6 50.38 15.71 14.38 18.21 13.24
7 54.79 16.13 14.56 18.46 13.42
8 59.09 17.42 14.85 19.08 13.70
9 62.44 18.08 15.23 19.61 14.07
10 65.68 18.60 15.49 19.84 14.34
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 0.18 1.96 0.18 24.79

(ii) Stock Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 18.82 8.67 10.02 12.54 8.52
2 21.71 9.33 10.67 13.07 9.13
3 35.19 10.52 11.26 13.61 9.73
4 40.96 11.80 11.82 14.57 10.30
5 50.32 12.40 11.79 14.67 10.22
6 53.99 12.58 11.88 14.80 10.29
7 56.77 12.73 11.98 14.91 10.36
8 59.42 13.49 12.08 14.93 10.43
9 62.44 13.73 12.20 15.09 10.60
10 67.32 14.27 12.39 15.31 10.79
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 0.22 0.71 0.04 18.64

(iii) Corporate Bond Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 16.38 12.00 ´5.32 ´35.97 ´16.56
2 17.44 12.67 2.27 ´32.17 ´14.93
3 23.43 13.95 12.38 ´15.39 ´0.14
4 30.53 16.40 16.62 ´12.10 4.84
5 38.27 22.95 19.19 ´10.55 7.15
6 48.29 28.48 19.81 ´11.17 7.45
7 52.77 29.54 20.49 ´10.32 7.97
8 57.80 30.02 20.47 ´10.72 7.54
9 59.86 31.60 21.56 ´9.37 8.20
10 61.11 31.86 22.37 ´8.61 9.29
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 2.22 5.48 1.67 47.68

(iv) Option Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1 10.91 8.75 11.00 10.97 10.55
2 34.50 11.24 12.94 13.88 12.22
3 39.63 13.35 13.75 15.68 13.06
4˚ 45.68 16.22 14.43 17.51 13.91
5 46.87 16.70 14.95 17.99 14.36
6 48.28 17.01 15.35 18.69 14.76
7 54.39 17.58 15.53 18.94 14.97
8 59.85 19.41 15.94 19.58 15.35
9 64.66 20.34 16.40 20.10 15.79
10 67.86 20.88 16.67 20.33 16.05
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 0.04 1.93 0.31 27.56

Note: K: the number of factors specified, ˚ denotes the estimator of K which maximizes the ratio of two
adjacent eigenvalues; R2

R̃
: Fama-MacBeth cross-sectional regression R2; R2

K measures the variations in the

characteristic-managed portfolios captured by different numbers of factors from PCA; R2: total in-sample
R2 (%), see (2.8); R2

O, R
2
T,N,O, R

2
N,T,O, R

2
f,O, R

2
f,T,N,O, R

2
f,N,T,O: out-of-sample fits R2’s (%), see

(2.9)-(2.15);
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Table A9: Out-of-sample pure-alpha strategy and tangency portfolio performance of the
joint factor model and using raw option returns

(i) All the returns on three asset classes
K µα σα SRα

1 2.16 2.46 0.88

2 1.70 2.53 0.67

3 1.93 2.43 0.79

4 2.16 2.14 1.01

5 2.24 2.03 1.11

6 2.43 1.88 1.29

7 2.51 1.85 1.36

8 2.46 1.78 1.39

9 2.63 1.59 1.65

10 2.46 1.52 1.61

(ii) Stock Returns
K µα σα SRα

1 0.36 1.07 0.34

2 0.18 0.66 0.27

3 0.27 0.59 0.45

4 0.41 0.61 0.68

5 0.49 0.52 0.95

6 0.49 0.44 1.12

7 0.49 0.43 1.15

8 0.41 0.39 1.04

9 0.52 0.40 1.30

10 0.47 0.41 1.16

(iii) Corporate Bond Returns
K µα σα SRα

1 0.62 0.52 1.20

2 0.22 0.47 0.47

3 0.31 0.45 0.70

4 0.24 0.45 0.52

5 0.32 0.43 0.75

6 0.33 0.41 0.83

7 0.39 0.43 0.91

8 0.47 0.42 1.13

9 0.48 0.40 1.19

10 0.43 0.41 1.05

(iv) Option Returns
K µα σα SRα

1 1.17 2.19 0.53

2 1.30 2.24 0.58

3 1.35 2.19 0.62

4 1.51 1.87 0.81

5 1.43 1.82 0.79

6 1.60 1.74 0.92

7 1.63 1.72 0.95

8 1.59 1.67 0.95

9 1.63 1.48 1.10

10 1.56 1.45 1.07

Note: K: the number of factors specified; µα, σα and SRα: out-of-sample annualized means, standard
deviations, and Sharpe ratios of the pure-alpha arbitrage strategy (%).
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Table A10: In-sample and out-of-sample performance of the joint factor model with nonlinear
αp¨q and βp¨q for corporate bond and option

(i) All the returns on three asset classes
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 13.66 8.01 25.90 3.33 12.40
2 22.96 9.12 26.10 3.08 12.67
3 31.89 9.98 26.25 2.95 12.93
4 38.36 10.44 26.84 4.35 13.80
5 44.05 12.31 26.93 3.38 13.88
6 49.64 12.98 27.17 3.49 14.21
7 54.40 14.06 27.42 5.14 14.67
8 57.65 14.21 27.58 6.46 14.99
9 60.73 15.40 27.90 10.94 15.68
10 63.63 16.32 28.00 12.16 15.87
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 23.98 8.85 8.89 26.98

(ii) Stock Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 15.30 7.89 9.69 12.51 8.38
2 18.33 8.15 9.78 12.06 8.31
3 25.28 8.53 9.81 11.53 8.44
4 33.11 8.83 10.39 12.65 8.94
5 42.78 9.04 10.50 12.78 9.03
6 48.42 9.23 10.51 12.60 9.01
7 50.23 9.35 10.90 12.67 9.38
8 55.16 9.52 10.98 12.61 9.44
9 57.08 9.74 11.52 13.90 10.03
10 61.21 10.80 11.70 14.10 10.18
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 0.22 0.71 0.04 18.64

(iii) Corporate Bond Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1 12.84 15.45 1.70 ´27.91 ´7.20
2˚ 33.28 19.97 1.87 ´30.68 ´8.40
3 37.43 20.48 1.99 ´32.16 ´11.09
4 46.04 22.26 1.45 ´34.39 ´11.19
5 49.67 23.92 1.03 ´36.20 ´12.36
6 51.43 24.25 3.73 ´33.26 ´9.12
7 60.07 30.56 6.89 ´28.52 ´6.87
8 63.72 30.95 9.68 ´23.28 ´3.99
9 66.39 31.74 11.10 ´21.51 ´2.86
10 67.39 33.42 12.50 ´20.18 ´2.19
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 2.12 4.90 1.54 54.53

(iv) Option Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 13.18 7.29 29.20 3.55 12.67
2 15.29 8.77 29.42 3.34 13.06
3 31.31 10.09 29.59 3.22 13.37
4 34.18 10.54 30.21 4.67 14.40
5 38.81 13.93 30.30 3.68 14.48
6 48.67 15.06 30.53 3.76 14.73
7 51.56 16.43 30.70 5.42 15.12
8 52.94 16.52 30.83 6.72 15.45
9 57.48 18.62 31.09 11.30 16.23
10 61.48 19.35 31.15 12.55 16.40
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 28.56 9.08 11.29 31.34

Note: K: the number of factors specified, ˚ denotes the estimator of K which maximizes the ratio of two
adjacent eigenvalues; R2

R̃
: Fama-MacBeth cross-sectional regression R2; R2

K measures the variations in the

characteristic-managed portfolios captured by different numbers of factors from PCA; R2: total in-sample
R2 (%), see (2.8); R2

O, R
2
T,N,O, R

2
N,T,O, R

2
f,O, R

2
f,T,N,O, R

2
f,N,T,O: out-of-sample fits R2’s (%), see

(2.9)-(2.15);
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Table A11: Out-of-sample pure-alpha strategy and tangency portfolio performance of the
joint factor model with nonlinear αp¨q and βp¨q for corporate bond and option

(i) All the returns on three asset classes
K µα σα SRα

1 11.63 9.04 1.29

2 8.48 6.96 1.22

3 6.87 5.79 1.19

4 6.79 5.80 1.17

5 4.84 4.83 1.00

6 5.07 3.76 1.35

7 5.19 3.26 1.59

8 5.25 3.25 1.62

9 4.93 2.69 1.84

10 4.39 2.23 1.97

(ii) Stock Returns
K µα σα SRα

1 0.33 1.04 0.32

2 ´0.05 0.75 ´0.06

3 0.21 0.81 0.26

4 0.23 0.81 0.29

5 0.40 0.67 0.60

6 0.38 0.85 0.45

7 0.62 0.63 0.99

8 0.70 0.69 1.01

9 0.58 0.58 1.00

10 0.45 0.61 0.74

(iii) Corporate Bond Returns
K µα σα SRα

1 0.68 1.12 0.60

2 0.20 0.97 0.20

3 ´0.11 1.16 ´0.09

4 ´0.12 1.18 ´0.10

5 0.02 1.42 0.01

6 ´0.14 1.10 ´0.13

7 0.11 0.79 0.14

8 0.04 0.78 0.05

9 0.02 0.80 0.02

10 ´0.04 0.67 ´0.07

(iv) Option Returns
K µα σα SRα

1 10.62 9.00 1.18

2 8.33 6.95 1.20

3 6.76 5.67 1.19

4 6.67 5.67 1.18

5 4.42 4.77 0.93

6 4.82 3.52 1.37

7 4.46 3.14 1.42

8 4.52 3.11 1.45

9 4.33 2.54 1.70

10 3.99 2.07 1.92

Note: K: the number of factors specified; µα, σα and SRα: out-of-sample annualized means, standard
deviations, and Sharpe ratios of the pure-alpha arbitrage strategy (%). SRβ,U : out-of-sample annualized
Sharpe ratios of the tangency portfolio of the first K factors under the unrestricted case.
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Table A12: In-sample and out-of-sample performance of the joint factor model with nonlinear
αp¨q and βp¨q for option only

(i) All the returns on three asset classes
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 15.00 7.94 26.01 4.27 12.60
2 24.86 9.21 26.40 3.93 13.17
3 32.05 9.71 26.78 3.71 13.67
4 39.65 12.29 26.93 3.60 13.93
5 45.52 13.35 27.24 4.41 14.35
6 50.63 14.26 27.46 6.12 14.76
7 54.77 14.54 27.57 6.70 14.96
8 58.88 15.28 27.84 10.29 15.56
9 61.91 16.24 28.03 12.84 15.91
10 64.83 16.68 28.15 13.13 16.11
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 23.98 8.86 8.89 26.59

(ii) Stock Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1 15.78 7.72 9.46 12.07 8.14
2˚ 26.35 8.15 9.48 10.93 8.25
3 29.85 8.26 10.25 12.01 8.83
4 36.04 8.70 10.82 13.09 9.36
5 44.39 8.86 10.79 12.75 9.29
6 51.62 9.46 11.08 13.03 9.57
7 54.29 9.54 11.12 13.14 9.61
8 57.43 9.85 11.42 13.79 9.93
9 61.79 10.91 11.71 14.20 10.16
10 65.87 11.09 11.74 14.03 10.20
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 0.22 0.71 0.04 18.64

(iii) Corporate Bond Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 13.30 12.44 2.53 ´26.89 ´5.29
2 15.06 12.65 4.92 ´27.49 ´6.51
3 34.27 16.64 4.14 ´28.89 ´8.84
4 40.92 20.89 3.78 ´31.15 ´9.69
5 42.87 22.75 4.96 ´27.69 ´6.69
6 47.36 27.05 7.77 ´24.68 ´4.15
7 56.78 29.25 9.73 ´20.96 ´2.85
8 58.59 29.36 11.96 ´20.24 ´0.40
9 60.24 33.04 13.42 ´16.60 0.91
10 62.76 33.57 15.19 ´16.50 3.31
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 2.22 5.48 1.67 47.68

(iv) Option Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1 15.50 7.63 29.36 4.53 13.02
2˚ 30.30 9.78 29.77 4.21 13.76
3 32.42 10.23 30.10 3.97 14.24
4 41.88 14.53 30.18 3.85 14.38
5 48.29 16.32 30.55 4.65 14.78
6 52.02 17.11 30.70 6.38 15.13
7 53.80 17.37 30.79 6.93 15.34
8 60.31 18.55 31.02 10.62 16.03
9 63.15 19.12 31.17 13.20 16.43
10 65.37 19.78 31.27 13.51 16.61
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 28.56 9.08 11.29 31.34

Note: K: the number of factors specified, ˚ denotes the estimator of K which maximizes the ratio of two
adjacent eigenvalues; R2

R̃
: Fama-MacBeth cross-sectional regression R2; R2

K measures the variations in the

characteristic-managed portfolios captured by different numbers of factors from PCA; R2: total in-sample
R2 (%), see (2.8); R2

O, R
2
T,N,O, R

2
N,T,O, R

2
f,O, R

2
f,T,N,O, R

2
f,N,T,O: out-of-sample fits R2’s (%), see

(2.9)-(2.15);
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Table A13: Out-of-sample pure-alpha strategy and tangency portfolio performance of the
joint factor model with nonlinear αp¨q and βp¨q for option only

(i) All the returns on three asset classes
K µα σα SRα

1 11.42 9.10 1.25

2 5.92 6.49 0.91

3 5.19 4.78 1.09

4 4.75 4.34 1.09

5 4.78 3.84 1.25

6 5.27 3.15 1.67

7 5.30 3.14 1.69

8 5.00 2.62 1.91

9 4.19 2.10 1.99

10 3.89 1.97 1.97

(ii) Stock Returns
K µα σα SRα

1 0.33 0.99 0.34

2 0.19 0.90 0.21

3 0.33 0.95 0.34

4 0.53 0.65 0.82

5 0.48 0.86 0.56

6 0.44 0.71 0.62

7 0.41 0.70 0.59

8 0.33 0.58 0.57

9 0.52 0.61 0.85

10 0.50 0.62 0.81

(iii) Corporate Bond Returns
K µα σα SRα

1 0.58 0.52 1.12

2 ´0.33 1.03 ´0.32

3 ´0.10 0.97 ´0.11

4 ´0.03 1.04 ´0.03

5 ´0.17 1.00 ´0.17

6 ´0.25 0.94 ´0.26

7 ´0.22 1.07 ´0.21

8 ´0.03 0.98 ´0.03

9 ´0.21 0.82 ´0.25

10 ´0.36 0.74 ´0.48

(iv) Option Returns
K µα σα SRα

1 10.50 9.08 1.16

2 6.06 6.28 0.96

3 4.97 4.64 1.07

4 4.25 4.31 0.99

5 4.47 3.69 1.21

6 5.07 2.86 1.77

7 5.11 2.84 1.80

8 4.70 2.47 1.91

9 3.88 1.97 1.97

10 3.74 1.86 2.02

Note: K: the number of factors specified; µα, σα and SRα: out-of-sample annualized means, standard
deviations, and Sharpe ratios of the pure-alpha arbitrage strategy (%). SRβ,U : out-of-sample annualized
Sharpe ratios of the tangency portfolio of the first K factors under the unrestricted case.
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Table A14: In-sample and out-of-sample performance of the joint factor model with nonlinear
αp¨q and βp¨q, subset of characteristics

(i) All the returns on three asset classes
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1 17.28 9.49 25.94 5.41 12.50
2˚ 30.43 10.03 26.34 6.70 13.15
3 37.71 11.25 26.76 6.19 13.81
4 44.32 11.82 27.02 6.87 14.32
5 50.29 12.50 27.19 6.75 14.58
6 55.29 13.78 27.31 7.43 14.80
7 59.43 15.90 27.66 9.42 15.33
8 63.50 16.61 27.83 10.02 15.63
9 66.66 17.86 28.00 10.57 15.89
10 69.24 18.18 28.10 11.25 16.07
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 23.97 9.12 8.87 25.69

(ii) Stock Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1 18.23 8.45 8.61 10.70 7.38
2 21.45 8.63 9.24 11.30 7.89
3 23.43 9.17 10.04 12.32 8.62
4 26.08 9.54 10.59 12.33 9.17
5 27.05 10.04 10.95 12.55 9.51
6 34.85 10.21 11.26 13.23 9.74
7˚ 46.46 10.39 11.78 14.30 10.31
8 47.77 11.17 11.90 14.54 10.41
9 52.36 11.57 11.87 14.39 10.38
10 55.62 11.71 11.98 14.55 10.48
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 0.18 0.77 0.02 18.49

(iii) Corporate Bond Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1 14.94 16.92 4.24 ´24.73 ´5.59
2 21.79 18.95 3.87 ´28.66 ´6.55
3 32.08 22.85 10.68 ´20.57 ´0.19
4 46.53 29.02 7.50 ´27.65 ´5.03
5˚ 56.69 32.12 7.65 ´29.42 ´5.25
6 59.43 32.77 8.78 ´26.69 ´4.22
7 60.39 33.24 9.93 ´26.21 ´1.90
8 67.06 33.66 15.01 ´14.18 3.20
9 69.50 34.82 16.60 ´14.37 5.35
10 71.73 36.66 17.80 ´14.38 6.14
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 1.94 3.88 1.23 51.01

(iv) Option Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1 18.76 9.58 29.39 5.71 13.21
2 42.65 10.28 29.76 7.08 13.95
3˚ 50.22 11.81 29.99 6.42 14.19
4 52.28 11.93 30.27 7.22 14.92
5 57.38 12.50 30.41 7.12 15.03
6 62.78 14.84 30.47 7.77 15.18
7 65.61 18.87 30.78 9.81 15.76
8 68.95 19.55 30.87 10.26 15.91
9 71.96 21.58 31.04 10.83 16.20
10 74.45 21.89 31.12 11.53 16.35
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 28.56 9.38 11.30 29.27

Note: K: the number of factors specified, ˚ denotes the estimator of K which maximizes the ratio of two
adjacent eigenvalues; R2

R̃
: Fama-MacBeth cross-sectional regression R2; R2

K measures the variations in the

characteristic-managed portfolios captured by different numbers of factors from PCA; R2: total in-sample
R2 (%), see (2.8); R2

O, R
2
T,N,O, R

2
N,T,O, R

2
f,O, R

2
f,T,N,O, R

2
f,N,T,O: out-of-sample fits R2’s (%), see

(2.9)-(2.15);
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Table A15: Out-of-sample pure-alpha strategy and tangency portfolio performance of the
joint factor model with nonlinear αp¨q and βp¨q, subset of characteristics

(i) All the returns on three asset classes
K µα σα SRα

1 6.08 7.43 0.82

2 3.73 7.32 0.51

3 2.59 3.67 0.71

4 2.57 3.52 0.73

5 2.74 3.37 0.81

6 3.02 2.99 1.01

7 3.60 2.42 1.49

8 3.62 2.16 1.67

9 3.59 1.95 1.84

10 3.48 1.87 1.86

(ii) Stock Returns
K µα σα SRα

1 0.24 0.84 0.28

2 0.45 1.42 0.32

3 0.43 1.07 0.40

4 0.35 0.90 0.39

5 0.39 0.97 0.41

6 0.32 0.67 0.48

7 0.37 0.77 0.48

8 0.41 0.67 0.60

9 0.49 0.64 0.76

10 0.49 0.55 0.88

(iii) Corporate Bond Returns
K µα σα SRα

1 ´0.03 0.47 ´0.06

2 ´0.18 0.45 ´0.41

3 ´0.34 0.92 ´0.37

4 ´0.20 0.84 ´0.24

5 ´0.13 0.70 ´0.19

6 ´0.09 0.67 ´0.13

7 ´0.13 0.64 ´0.20

8 ´0.18 0.74 ´0.24

9 ´0.19 0.67 ´0.29

10 ´0.19 0.43 ´0.45

(iv) Option Returns
K µα σα SRα

1 5.87 7.30 0.80

2 3.46 7.21 0.48

3 2.50 3.50 0.71

4 2.42 3.37 0.72

5 2.48 3.17 0.78

6 2.79 2.84 0.98

7 3.35 2.33 1.44

8 3.39 2.05 1.66

9 3.29 1.85 1.78

10 3.19 1.73 1.84

Note: K: the number of factors specified; µα, σα and SRα: out-of-sample annualized means, standard
deviations, and Sharpe ratios of the pure-alpha arbitrage strategy (%).
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Table A16: In-sample and out-of-sample performance of the joint factor model with linear
αp¨q and βp¨q, subset of characteristics

(i) All the returns on three asset classes
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 21.06 9.67 26.21 9.70 13.05
2 34.99 10.60 26.44 7.80 13.49
3 44.83 11.89 26.95 12.52 14.54
4 52.89 13.45 27.15 13.17 14.84
5 58.89 14.71 27.34 14.92 15.24
6 63.89 15.84 27.58 14.50 15.57
7 68.05 16.27 27.75 14.96 15.87
8 71.70 17.08 27.90 15.18 16.07
9 74.97 18.15 28.01 14.64 16.28
10 77.47 18.61 28.11 14.67 16.44
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 23.96 9.25 8.83 23.29

(ii) Stock Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1˚ 15.12 7.62 8.94 12.18 7.47
2 16.99 8.33 9.76 12.93 8.37
3 20.13 9.44 11.12 14.08 9.69
4 21.49 9.62 11.25 14.08 9.82
5 22.84 9.77 11.52 14.24 10.04
6 38.81 10.27 11.64 14.52 10.17
7 41.85 10.63 11.86 14.98 10.39
8 48.66 11.68 11.90 14.69 10.45
9 53.31 12.10 12.01 14.75 10.56
10 54.69 12.24 12.04 14.88 10.59
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 0.21 0.62 0.03 17.11

(iii) Corporate Bond Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1 22.42 14.98 5.13 ´21.23 ´2.99
2 32.13 19.19 6.46 ´23.01 ´2.20
3 36.32 21.03 5.15 ´28.21 ´6.53
4 53.72 31.66 7.97 ´20.40 ´3.53
5 61.45 32.73 12.35 ´17.72 0.66
6 64.81 34.39 17.97 ´11.88 6.66
7 71.38 35.56 20.93 ´9.65 9.82
8˚ 76.12 36.73 22.11 ´8.30 11.86
9 77.83 37.63 23.00 ´8.17 12.91
10 82.00 38.96 25.22 ´5.59 15.00
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 2.03 4.60 1.37 45.25

(iv) Option Returns
K R2

K R2 R2
f,O R2

f,T,N,O R2
f,N,T,O

1 22.52 10.91 29.63 10.09 13.86
2 45.19 11.66 29.74 8.12 14.09
3˚ 62.60 13.05 30.14 13.04 15.32
4 65.88 14.83 30.30 13.60 15.49
5 72.48 17.10 30.39 15.38 15.70
6 74.05 18.74 30.56 14.87 15.88
7 76.71 19.13 30.67 15.30 16.05
8 78.08 19.69 30.82 15.52 16.28
9 82.03 21.37 30.91 14.96 16.51
10 83.65 22.02 30.99 14.95 16.67
K R2

O R2
T,N,O R2

N,T,O R2
R̃

1-10 28.53 9.50 11.20 26.34

Note: K: the number of factors specified, ˚ denotes the estimator of K which maximizes the ratio of two
adjacent eigenvalues; R2

R̃
: Fama-MacBeth cross-sectional regression R2; R2

K measures the variations in the

characteristic-managed portfolios captured by different numbers of factors from PCA; R2: total in-sample
R2 (%), see (2.8); R2

O, R
2
T,N,O, R

2
N,T,O, R

2
f,O, R

2
f,T,N,O, R

2
f,N,T,O: out-of-sample fits R2’s (%), see

(2.9)-(2.15);
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Table A17: Out-of-sample pure-alpha strategy and tangency portfolio performance of the
joint factor model with linear αp¨q and βp¨q, subset of characteristics

(i) All the returns on three asset classes
K µα σα SRα

1 3.52 2.35 1.50

2 1.44 2.05 0.70

3 1.53 1.80 0.85

4 1.59 1.79 0.89

5 2.00 1.49 1.34

6 2.25 1.42 1.59

7 2.02 1.33 1.52

8 1.96 1.07 1.82

9 2.24 1.04 2.16

10 2.55 0.98 2.61

(ii) Stock Returns
K µα σα SRα

1 0.28 0.46 0.61

2 0.37 0.35 1.05

3 0.35 0.32 1.07

4 0.31 0.35 0.86

5 0.38 0.39 0.97

6 0.36 0.34 1.06

7 0.34 0.40 0.86

8 0.55 0.45 1.24

9 0.58 0.43 1.36

10 0.53 0.41 1.32

(iii) Corporate Bond Returns
K µα σα SRα

1 ´0.05 0.75 ´0.07

2 0.06 0.70 0.09

3 ´0.16 0.54 ´0.29

4 ´0.26 0.57 ´0.45

5 ´0.19 0.59 ´0.32

6 ´0.26 0.60 ´0.43

7 ´0.23 0.46 ´0.50

8 ´0.13 0.34 ´0.37

9 ´0.04 0.30 ´0.12

10 0.03 0.26 0.13

(iv) Option Returns
K µα σα SRα

1 3.30 2.28 1.44

2 1.01 1.93 0.52

3 1.34 1.63 0.82

4 1.54 1.59 0.96

5 1.81 1.29 1.41

6 2.15 1.18 1.82

7 1.92 1.12 1.72

8 1.53 0.94 1.63

9 1.70 0.92 1.84

10 1.98 0.89 2.24

Note: K: the number of factors specified; µα, σα and SRα: out-of-sample annualized means, standard
deviations, and Sharpe ratios of the pure-alpha arbitrage strategy (%).
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Table A18: Correlations between the regressed-PCA joint latent factors and macro
factors from Ludvigson and Ng (2009) †

Joint1 Joint2 Joint3 Joint4 Joint5 Joint6 Joint7 Joint8 Joint9 Joint10

F1 0.15** 0.07 -0.17** 0.01 0.14** 0.34*** 0.32*** -0.13* 0.05 0.07

F2 0.30*** -0.05 0.17** 0.28*** -0.18*** -0.11 0.02 0.06 -0.10 -0.05

F3 -0.09 0.11 0.06 -0.01 0.10 0.10 0.14** 0.05 -0.12* 0.03

F4 -0.11 -0.06 0.04 -0.00 0.15** 0.18*** 0.04 -0.21*** 0.04 -0.03

F5 0.07 0.08 0.18** 0.08 -0.02 -0.07 0.01 0.17** -0.16** 0.06

F6 0.17** 0.03 0.10 -0.06 0.17** 0.04 0.01 0.13* -0.07 0.09

F7 0.25*** -0.21*** 0.20*** 0.20*** -0.30*** -0.31*** -0.13* 0.10 0.03 -0.07

F8 0.09 -0.25*** 0.11 0.20*** -0.00 -0.07 -0.05 -0.03 -0.12* 0.09

† ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%.

Table A19: Correlations between the regressed-PCA stock latent factors and macroeconomic
variables †

Stock1 Stock2 Stock3 Stock4 Stock5 Stock6 Stock7 Stock8 Stock9 Stock10

Core inflation -0.01 -0.05 -0.09 0.20*** -0.14** 0.02 -0.01 0.04 0.08 0.09

∆c -0.28*** 0.12* 0.22*** -0.09 0.09 -0.03 0.01 -0.05 -0.02 0.05

∆INDPRO -0.34*** 0.12* 0.19*** -0.00 -0.05 0.02 -0.03 -0.09 -0.00 0.15**

∆pEPUq 0.04 -0.10 -0.16** 0.05 -0.27*** -0.17** -0.03 0.04 -0.10 -0.12*

∆pFFRq -0.09 0.03 -0.04 -0.13* 0.19*** 0.08 -0.07 -0.05 0.06 0.13*

∆pTERMq 0.15** 0.14** 0.18*** 0.10 0.06 0.09 -0.02 0.01 -0.17** -0.02

∆pDEF q -0.08 -0.07 -0.04 0.03 -0.12* -0.04 0.00 0.13* -0.06 -0.14**

∆pV IXq -0.22*** 0.11 0.10 0.29*** -0.36*** -0.43*** 0.17** 0.03 -0.04 0.10

∆pFINUq -0.22*** -0.14** -0.03 0.28*** -0.31*** -0.12* 0.07 0.01 -0.02 -0.01

∆pMACUq -0.13* -0.09 -0.01 0.16** -0.17** -0.12* 0.07 0.03 0.04 -0.12*

HKM 0.24*** -0.01 0.21*** -0.18*** 0.51*** 0.45*** -0.06 -0.04 0.03 -0.01

LIQ -0.01 0.01 0.02 0.02 0.23*** 0.05 -0.18*** 0.03 0.03 0.18***

† ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%.
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Table A20: Correlations between the regressed-PCA corporate bond latent factors and macroe-
conomic variables †

Cbond1 Cbond2 Cbond3 Cbond4 Cbond5 Cbond6 Cbond7 Cbond8 Cbond9 Cbond10

Core inflation -0.01 -0.07 -0.05 0.00 -0.01 -0.03 -0.11 0.03 0.06 -0.01

∆c 0.26*** 0.13* -0.17** 0.17** -0.10 0.01 0.06 0.22*** -0.12* -0.11*

∆INDPRO 0.14** 0.04 -0.27*** 0.22*** 0.06 -0.14** 0.14** 0.22*** -0.20*** -0.10

∆pEPUq -0.30*** -0.25*** -0.02 -0.11 0.03 0.01 -0.04 -0.12* 0.15** 0.03

∆pFFRq 0.24*** -0.08 0.19*** 0.07 -0.02 0.17** -0.04 -0.01 -0.25*** -0.13*

∆pTERMq 0.29*** 0.02 -0.32*** -0.25*** -0.20*** 0.17** 0.11 -0.25*** -0.12* -0.15**

∆pDEF q 0.12* -0.37*** 0.05 0.02 -0.21*** -0.03 -0.20*** 0.10 0.04 -0.03

∆pV IXq -0.17** -0.33*** -0.34*** -0.16** -0.07 -0.14** 0.04 0.14** 0.13* -0.15**

∆pFINUq -0.22*** -0.29*** -0.26*** -0.17** -0.09 -0.20*** -0.11 -0.02 0.14** -0.13*

∆pMACUq -0.26*** -0.22*** -0.23*** -0.18*** -0.09 -0.12* -0.09 -0.05 0.11 0.05

HKM 0.50*** 0.14** 0.20*** 0.03 0.12* 0.20*** -0.04 -0.14** -0.27*** 0.12*

LIQ -0.03 0.16** -0.06 0.05 0.24*** 0.08 0.11 0.17** -0.30*** 0.06

† ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%.

Table A21: Correlations between the regressed-PCA option latent factors and macroeconomic
variables †

Option1 Option2 Option3 Option4 Option5 Option6 Option7 Option8 Option9 Option10

Core inflation -0.04 -0.01 0.03 0.03 -0.14** 0.08 0.04 0.03 -0.02 0.03

∆c -0.01 -0.01 0.25*** -0.11 -0.19*** 0.11 -0.16** 0.18** -0.02 0.18***

∆INDPRO -0.16** -0.07 0.14** -0.09 -0.23*** 0.06 -0.13* 0.25*** -0.02 0.02

∆pEPUq -0.04 -0.09 -0.26*** 0.22*** 0.09 -0.22*** 0.08 -0.23*** 0.09 -0.19***

∆pFFRq -0.15** -0.21*** 0.33*** -0.24*** -0.17** 0.03 -0.17** -0.02 -0.01 0.10

∆pTERMq 0.12* 0.00 -0.13* 0.01 0.05 -0.02 -0.05 -0.11* -0.01 -0.06

∆pDEF q -0.05 -0.12* -0.01 0.05 -0.00 -0.14** 0.11 -0.06 0.05 0.10

∆pV IXq -0.28*** -0.21*** -0.28*** 0.50*** 0.04 0.05 0.05 0.17** 0.06 -0.06

∆pFINUq -0.29*** -0.22*** -0.45*** 0.17** 0.02 -0.03 -0.09 -0.03 0.11 -0.05

∆pMACUq -0.09 0.05 -0.38*** 0.31*** -0.03 -0.24*** 0.11 -0.21*** 0.05 -0.07

HKM 0.15** 0.02 0.21*** -0.44*** 0.01 0.03 -0.14** -0.11 -0.07 0.02

LIQ -0.06 -0.06 0.19*** -0.08 -0.19*** -0.00 0.02 -0.06 -0.04 -0.02

† ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%.
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Table A22: Regression of regressed-PCA joint latent factors on macro factors from Ludvig-
son and Ng (2009) †

Joint1 Joint2 Joint3 Joint4 Joint5 Joint6 Joint7 Joint8 Joint9 Joint10

F1 0.35*** 0.09 -0.17 0.09 -0.00 0.24*** 0.37*** 0.00 0.03 0.11*

(2.59) (0.92) (-1.34) (0.67) (-0.02) (3.11) (3.19) (0.0) (0.35) (1.67)

[0.22] [0.04] [0.17] [0.02] [0.05] [0.39] [0.61] [0.07] [0.02] [0.20]

F2 0.37*** 0.07 0.15 0.39** -0.19* -0.02 0.24* 0.12 -0.27** -0.08

(4.06) (0.94) (1.57) (2.44) (-1.78) (-0.21) (1.93) (0.87) (-2.52) (-0.92)

[0.29] [0.02] [0.16] [0.44] [0.13] [0.03] [0.06] [0.06] [0.24] [0.07]

F3 0.11 0.18 0.10 0.23* -0.06 0.06 0.32** 0.14 -0.31*** -0.06

(0.89) (1.3) (0.71) (1.67) (-0.62) (0.4) (2.33) (1.33) (-3.08) (-0.47)

[0.03] [0.09] [0.04] [0.05] [0.03] [0.03] [0.14] [0.08] [0.27] [0.03]

F4 -0.25*** -0.21** 0.15 -0.16 0.26** 0.07 -0.26*** -0.25*** 0.14 -0.02

(-2.65) (-2.2) (1.26) (-1.02) (2.27) (0.6) (-2.65) (-2.63) (1.17) (-0.24)

[0.08] [0.10] [0.07] [0.03] [0.17] [0.09] [0.08] [0.41] [0.06] [0.03]

F5 0.02 0.01 0.02 -0.11 0.02 -0.04 -0.10 0.07 0.09 0.12

(0.33) (0.1) (0.22) (-0.98) (0.24) (-0.37) (-1.09) (0.67) (1.05) (1.45)

[0.04] [0.04] [0.11] [0.04] [0.01] [0.02] [0.03] [0.18] [0.17] [0.13]

F6 0.14* -0.03 0.17** -0.06 0.23*** 0.07 -0.03 0.05 -0.05 0.06

(1.81) (-0.34) (2.3) (-0.63) (2.82) (1.03) (-0.27) (0.77) (-0.69) (0.84)

[0.09] [0.01] [0.12] [0.02] [0.21] [0.03] [0.00] [0.09] [0.04] [0.17]

F7 0.25*** -0.19* 0.18* 0.12 -0.23*** -0.25** -0.11 0.08 0.09 -0.04

(5.15) (-1.79) (1.88) (1.07) (-3.34) (-2.05) (-0.89) (0.84) (1.33) (-0.61)

[0.23] [0.27] [0.26] [0.17] [0.39] [0.39] [0.07] [0.08] [0.04] [0.11]

F8 0.05 -0.23*** 0.07 0.19*** 0.03 -0.02 -0.02 -0.06 -0.12 0.09

(0.72) (-3.71) (1.01) (3.54) (0.43) (-0.34) (-0.21) (-0.99) (-1.6) (1.22)

[0.02] [0.44] [0.06] [0.22] [0.00] [0.01] [0.01] [0.03] [0.16] [0.25]

R2
adj 24.61% 10.17% 9.76% 12.73% 14.35% 15.55% 13.79% 5.69% 3.96% -0.46%

No.Obs 210 210 210 210 210 210 210 210 210 210

† ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%. t-statistics are reported in parentheses. The
Shapley-Owen R2’s are in square brackets. The regressed PCA factors and the macro factors are standard-
ised using the time series standard deviation. We report the t-statistics using Newey-West standard errors
with four lags.
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Table A23: Regression of regressed-PCA stock latent factors on macroeconomic variables †

Stock1 Stock2 Stock3 Stock4 Stock5 Stock6 Stock7 Stock8 Stock9 Stock10

Core inflation 0.06 0.00 -0.07 0.17*** -0.09* 0.02 -0.02 0.04 0.07 0.10

(1.49) (0.09) (-1.38) (3.89) (-1.81) (0.38) (-0.4) (0.69) (1.38) (1.6)

∆c -0.11 -0.01 0.15 -0.16 0.16 -0.34** 0.02 0.10 -0.16 -0.20

(-1.19) (-0.06) (1.39) (-0.93) (1.56) (-2.06) (0.15) (0.67) (-1.09) (-1.63)

∆INDPRO -0.31*** 0.06 0.11 0.05 -0.24* 0.33** -0.05 -0.19 0.09 0.14

(-2.63) (0.45) (1.01) (0.41) (-1.96) (2.29) (-0.32) (-1.32) (0.67) (1.16)

∆pEPUq 0.04 -0.05 -0.04 -0.15 -0.10 -0.16* -0.10 -0.02 -0.15 -0.09

(0.56) (-0.54) (-0.39) (-1.47) (-1.22) (-1.92) (-1.34) (-0.16) (-1.44) (-0.9)

∆pFFRq -0.07 0.01 -0.24** -0.05 0.03 -0.00 -0.09 -0.05 0.05 0.12

(-0.92) (0.13) (-2.27) (-1.02) (0.49) (-0.06) (-1.21) (-0.64) (0.51) (1.22)

∆pTERMq 0.12* 0.16* 0.02 0.11* 0.02 0.07 -0.12* 0.03 -0.18** 0.06

(1.74) (1.91) (0.27) (1.78) (0.31) (0.84) (-1.76) (0.4) (-2.32) (0.76)

∆pDEF q -0.07 -0.04 -0.00 0.03 -0.03 0.07 -0.03 0.14 -0.06 -0.10

(-1.12) (-0.56) (-0.07) (0.33) (-0.34) (0.8) (-0.38) (1.59) (-0.9) (-1.1)

∆pV IXq 0.05 0.21** 0.29*** 0.19* -0.07 -0.39*** 0.26*** 0.04 0.01 0.13

(0.42) (2.38) (2.76) (1.76) (-0.92) (-3.77) (2.69) (0.49) (0.11) (1.35)

∆pFINUq -0.15** -0.25* -0.09 0.12 -0.08 0.13 -0.05 0.00 -0.06 -0.05

(-2.22) (-1.73) (-1.15) (1.46) (-1.02) (1.37) (-0.59) (0.06) (-0.86) (-0.53)

∆pMACUq -0.20* -0.00 0.09 0.01 0.07 0.04 0.05 -0.07 0.18*** -0.05

(-1.82) (-0.02) (0.56) (0.1) (0.68) (0.56) (0.5) (-0.69) (2.84) (-0.36)

HKM 0.18* -0.04 0.39*** -0.07 0.37*** 0.30*** 0.12 -0.03 0.05 -0.06

(1.68) (-0.48) (3.17) (-0.8) (4.27) (3.16) (0.96) (-0.36) (0.49) (-0.69)

LIQ 0.02 -0.00 -0.01 0.08 0.18*** -0.07 -0.19* 0.10 -0.04 0.13

(0.22) (-0.04) (-0.09) (1.22) (2.98) (-1.09) (-1.8) (1.42) (-0.52) (1.37)

R2
adj 21.15% 3.88% 14.61% 11.35% 30.32% 27.89% 2.98% -2.03% 1.36% 4.94%

No.Obs 210 210 210 210 210 210 210 210 210 210

† ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%. t-statistics are reported in parentheses. The regressed
PCA factors and the macroeconomic variables are standardised using the time series standard deviation. We
report the t-statistics using Newey-West standard errors with four lags.
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Table A24: Regression of regressed-PCA corporate bond latent factors on macroeconomic
variables †

Cbond1 Cbond2 Cbond3 Cbond4 Cbond5 Cbond6 Cbond7 Cbond8 Cbond9 Cbond10

Core inflation 0.06* -0.01 -0.05 -0.00 -0.02 0.03 -0.07* 0.01 0.03 -0.01

(1.69) (-0.29) (-1.32) (-0.09) (-0.38) (0.82) (-1.81) (0.26) (0.5) (-0.21)

∆c 0.09 0.25** -0.03 -0.02 -0.26*** 0.32* -0.09 0.22* 0.20 -0.08

(0.94) (2.0) (-0.38) (-0.14) (-3.07) (1.89) (-1.01) (1.74) (1.57) (-0.5)

∆INDPRO -0.02 -0.16 -0.33*** 0.31** 0.30*** -0.46** 0.20 0.04 -0.28*** 0.09

(-0.15) (-1.49) (-2.61) (2.48) (3.36) (-2.08) (1.59) (0.31) (-2.6) (0.73)

∆pEPUq -0.18*** -0.03 0.01 0.03 0.18 0.18 0.07 -0.05 0.06 0.06

(-2.69) (-0.29) (0.14) (0.35) (1.51) (1.4) (1.04) (-0.65) (0.73) (0.63)

∆pFFRq 0.04 -0.19* 0.15 -0.12 -0.18*** 0.23** -0.05 -0.23** -0.21 -0.24**

(0.45) (-1.86) (1.21) (-1.29) (-2.92) (2.2) (-0.69) (-2.31) (-1.25) (-2.39)

∆pTERMq 0.25*** 0.04 -0.30*** -0.26*** -0.29*** 0.24* 0.13 -0.27** -0.20** -0.27***

(4.16) (0.46) (-4.11) (-3.37) (-2.96) (1.8) (0.98) (-2.41) (-2.29) (-3.72)

∆pDEF q 0.25*** -0.28** 0.06 0.08 -0.22*** -0.06 -0.18* 0.17 -0.04 -0.04

(3.16) (-2.11) (0.55) (0.76) (-3.0) (-0.89) (-1.69) (1.43) (-0.61) (-0.51)

∆pV IXq 0.06 -0.23** -0.15* -0.15 0.13 0.01 0.07 0.18** 0.09 0.04

(0.7) (-2.09) (-1.66) (-1.35) (0.96) (0.07) (0.73) (1.99) (0.87) (0.43)

∆pFINUq -0.05 -0.08 -0.03 -0.08 -0.12* -0.13 -0.17 -0.06 0.08 -0.17**

(-0.58) (-1.05) (-0.45) (-0.91) (-1.84) (-1.35) (-1.48) (-0.64) (0.98) (-2.2)

∆pMACUq -0.14 -0.07 -0.21** -0.04 0.02 -0.09 -0.01 -0.03 -0.12 0.15

(-1.62) (-1.18) (-2.53) (-0.47) (0.21) (-0.87) (-0.04) (-0.3) (-1.3) (1.22)

HKM 0.39** -0.06 0.10 0.03 0.30** 0.01 -0.07 -0.00 -0.09 0.27**

(2.21) (-0.51) (1.32) (0.21) (2.2) (0.11) (-0.64) (-0.01) (-0.71) (2.44)

LIQ -0.08* 0.13 -0.13 -0.06 0.12 0.15 0.08 0.16 -0.22*** 0.01

(-1.66) (1.18) (-1.38) (-0.76) (1.09) (1.24) (1.27) (1.28) (-2.78) (0.17)

R2
adj 38.45% 24.08% 32.00% 11.25% 17.75% 15.19% 5.67% 15.79% 16.78% 7.91%

No.Obs 210 210 210 210 210 210 210 210 210 210

† ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%. t-statistics are reported in parentheses. The regressed
PCA factors and the macroeconomic variables are standardised using the time series standard deviation. We
report the t-statistics using Newey-West standard errors with four lags.
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Table A25: Regression of regressed-PCA option latent factors on macroeconomic variables †

Option1 Option2 Option3 Option4 Option5 Option6 Option7 Option8 Option9 Option10

Core inflation 0.03 0.03 0.11** 0.03 -0.14*** 0.10* 0.06 0.04 -0.04 0.04

(0.3) (0.61) (2.3) (0.5) (-2.84) (1.94) (0.86) (0.52) (-0.6) (0.5)

∆c 0.26* 0.00 0.18 0.06 -0.03 0.13 -0.18 -0.17 0.07 0.33**

(1.82) (0.02) (1.57) (0.67) (-0.13) (0.76) (-1.18) (-1.15) (0.57) (2.29)

∆INDPRO -0.26** 0.06 -0.14 -0.11 -0.22 -0.21 0.03 0.29** -0.05 -0.31***

(-2.31) (0.47) (-1.21) (-0.96) (-1.05) (-1.07) (0.18) (2.17) (-0.39) (-2.58)

∆pEPUq 0.07 -0.09 -0.03 0.08 0.02 -0.15 -0.09 -0.24** 0.09 -0.18

(0.76) (-1.31) (-0.32) (0.75) (0.24) (-1.55) (-1.08) (-2.42) (0.88) (-1.47)

∆pFFRq -0.20* -0.22** 0.19 -0.11 -0.17** -0.09 -0.12 -0.19** 0.02 0.04

(-1.89) (-2.4) (1.37) (-1.51) (-2.18) (-0.75) (-1.45) (-2.28) (0.24) (0.49)

∆pTERMq 0.09 -0.03 0.01 -0.04 -0.06 -0.01 -0.04 -0.13 -0.02 -0.01

(1.06) (-0.51) (0.14) (-0.59) (-0.82) (-0.19) (-0.46) (-1.63) (-0.23) (-0.22)

∆pDEF q -0.02 -0.10 0.09* -0.08 -0.02 -0.06 0.12 0.04 0.01 0.16

(-0.2) (-0.94) (1.67) (-1.58) (-0.12) (-0.88) (1.28) (0.44) (0.14) (1.63)

∆pV IXq -0.13 -0.14 -0.09 0.52*** 0.16 0.16 0.11 0.23** -0.02 -0.09

(-1.24) (-1.05) (-0.67) (4.22) (1.53) (1.48) (1.26) (2.14) (-0.13) (-1.04)

∆pFINUq -0.21** -0.28*** -0.30** -0.29** 0.05 0.10 -0.28*** -0.05 0.12 0.08

(-2.01) (-2.66) (-2.26) (-2.25) (0.46) (1.16) (-2.71) (-0.54) (1.21) (0.8)

∆pMACUq -0.07 0.21** -0.14 0.20*** -0.23* -0.32*** 0.12 -0.19 -0.04 -0.05

(-0.48) (2.24) (-1.2) (2.71) (-1.92) (-2.68) (1.33) (-1.51) (-0.41) (-0.5)

HKM 0.04 -0.03 -0.07 -0.16** 0.14 0.03 -0.11 -0.00 -0.03 -0.11

(0.46) (-0.21) (-0.46) (-2.38) (1.19) (0.23) (-0.82) (-0.02) (-0.25) (-1.07)

LIQ -0.02 -0.09 0.11 0.04 -0.14 -0.02 0.06 -0.15** -0.01 0.02

(-0.36) (-0.82) (1.47) (0.69) (-1.59) (-0.25) (0.53) (-2.03) (-0.08) (0.22)

R2
adj 13.80% 12.05% 27.47% 34.81% 9.49% 7.98% 6.12% 15.12% -3.92% 6.01%

No.Obs 210 210 210 210 210 210 210 210 210 210

† ***: p-valueă 1%; **: p-valueă 5%; *: p-valueă 10%. t-statistics are reported in parentheses. The regressed
PCA factors and the macroeconomic variables are standardised using the time series standard deviation. We
report the t-statistics using Newey-West standard errors with four lags.
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Table A26: MVE portfolios constructed from managed portfolios and correlations with
joint factors†

Sharpe ratios Common Stock Corpbond Option

MVE 3.49 2.26 1.10 1.96

- 3.69 1.76 2.41

ρ Common Stock Corpbond Option

Common - 0.03 -0.02 0.92***

Stock - - -0.49*** -0.19**

Corpbond - - - -0.19***

Joint factor 1 (a ‰ 0) -0.07 -0.66*** 0.62*** -0.03

Joint factor 2 (a ‰ 0) 0.33*** -0.31*** 0.08 0.40***

Joint factor 3 (a ‰ 0) -0.11 0.12* -0.20*** -0.08

Joint factor 4 (a ‰ 0) 0.12 0.09 0.03 0.07

Joint factor 5 (a ‰ 0) -0.04 0.06 -0.42*** 0.09

Joint factor 6 (a ‰ 0) 0.02 0.25*** -0.27*** 0.02

Joint factor 7 (a ‰ 0) -0.03 -0.12 0.18** -0.05

Joint factor 8 (a ‰ 0) 0.01 -0.13* 0.19** -0.01

Joint factor 9 (a ‰ 0) 0.06 0.07 0.07 0.00

Joint factor 10 (a ‰ 0) -0.04 0.14* 0.14* -0.14

Joint factor 1 (a “ 0) -0.01 -0.68*** 0.60*** 0.04

Joint factor 2 (a “ 0) 0.36*** -0.09 -0.14* 0.42***

Joint factor 3 (a “ 0) -0.15** 0.25*** -0.27*** -0.14*

Joint factor 4 (a “ 0) 0.08 0.16** -0.06 0.03

Joint factor 5 (a “ 0) -0.08 0.09 -0.43*** 0.05

Joint factor 6 (a “ 0) -0.03 0.24*** -0.13* -0.08

Joint factor 7 (a “ 0) -0.03 -0.13* 0.21*** -0.05

Joint factor 8 (a “ 0) -0.01 -0.16** 0.25*** -0.04

Joint factor 9 (a “ 0) 0.06 0.08 0.07 0.00

Joint factor 10 (a “ 0) -0.02 0.13* 0.13* -0.12

† In this table, the optimal weights of MVE portfolios are based on (5.2). In the first panel (Sharpe
ratios), the first row reports the Sharpe ratios of MVE from the joint estimation across different assets
classes; the second rows reports the Sharpe ratios for the estimation within each asset class. The second
panel reports the correlation (ρ) of MVE portfolios across all asset classes with each component of each
individual asset class. The third and fourth panels report the correlations of MVE with the joint factors
without and with the restriction a “ 0.
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Table A27: MVE portfolios constructed from common factors and correlations with joint
factors†

Sharpe ratios (a “ 0) Common Stock Corpbond Option

MVE 2.62 1.46 1.01 1.83

- 2.31 1.73 1.25

ρ (a “ 0) Common Stock Corpbond Option

Common - 0.24*** 0.14* 0.90***

Stock - - -0.18** -0.15**

Corpbond - - - -0.02

Joint factor 1 (a ‰ 0) -0.14* -0.41*** 0.59*** -0.11

Joint factor 2 (a ‰ 0) 0.19** -0.15** 0.19** 0.21***

Joint factor 3 (a ‰ 0) -0.14* 0.16** -0.16** -0.17**

Joint factor 4 (a ‰ 0) 0.01 -0.04 -0.22*** 0.09

Joint factor 5 (a ‰ 0) -0.07 -0.19*** -0.36*** 0.10

Joint factor 6 (a ‰ 0) -0.09 0.18** -0.27*** -0.11

Joint factor 7 (a ‰ 0) -0.08 -0.07 0.01 -0.06

Joint factor 8 (a ‰ 0) -0.09 -0.16** 0.10 -0.04

Joint factor 9 (a ‰ 0) 0.07 0.17** 0.07 -0.02

Joint factor 10 (a ‰ 0) -0.01 0.33*** 0.13* -0.19**

Sharpe ratios (a ‰ 0) Common Stock Corpbond Option

MVE 1.77 0.77 0.95 0.90

- 1.89 1.71 1.29

ρ (a ‰ 0) Common Stock Corpbond Option

Common - 0.39*** -0.01 0.83***

Stock - - -0.52*** 0.00

Corpbond - - - -0.18**

Joint factor 1 (a “ 0) -0.18** -0.63*** 0.72*** -0.14*

Joint factor 2 (a “ 0) -0.08 0.00 0.04 -0.10

Joint factor 3 (a “ 0) -0.09 0.27*** -0.38*** -0.09

Joint factor 4 (a “ 0) -0.01 0.06 -0.23*** 0.06

Joint factor 5 (a “ 0) -0.08 -0.03 -0.26*** 0.07

Joint factor 6 (a “ 0) -0.21*** 0.14* -0.08 -0.28***

Joint factor 7 (a “ 0) -0.06 0.02 0.16** -0.16**

Joint factor 8 (a “ 0) -0.10 -0.25*** 0.12 -0.00

Joint factor 9 (a “ 0) 0.11 0.21*** 0.09 -0.08

Joint factor 10 (a “ 0) 0.13* 0.29*** 0.10 -0.11

† In this table, the optimal weights of MVE portfolios are based on (5.3) without and with the restriction
a “ 0. In the first panel (Sharpe ratios), the first row reports the Sharpe ratios of MVE from the joint
estimation across different assets classes; the second rows reports the Sharpe ratios for the estimation
within each asset class. The second panel reports the correlation (ρ) of MVE portfolios across all asset
classes with each component of each individual asset class. The third panel reports the correlations of
MVE with the ten joint factors.
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Table A28: MVE portfolios shocks constructed from managed portfolios and correlations
with joint factors†

ρ (a ‰ 0) Common Stock Corpbond Option

Common - 0.02 -0.01 0.93***

Stock - - -0.50*** -0.20***

Corpbond - - - -0.18**

Joint factor 1 (a ‰ 0) -0.06 -0.66*** 0.62*** -0.02

Joint factor 2 (a ‰ 0) 0.33*** -0.32*** 0.08 0.40***

Joint factor 3 (a ‰ 0) -0.12 0.13* -0.20*** -0.09

Joint factor 4 (a ‰ 0) 0.12* 0.09 0.03 0.07

Joint factor 5 (a ‰ 0) -0.04 0.06 -0.42*** 0.08

Joint factor 6 (a ‰ 0) 0.02 0.25*** -0.27*** 0.02

Joint factor 7 (a ‰ 0) -0.03 -0.12 0.18** -0.05

Joint factor 8 (a ‰ 0) 0.01 -0.13* 0.19** -0.01

Joint factor 9 (a ‰ 0) 0.06 0.08 0.07 0.00

Joint factor 10 (a ‰ 0) -0.05 0.14* 0.14* -0.15**

Joint factor 1 (a “ 0) 0.00 -0.68*** 0.60*** 0.05

Joint factor 2 (a “ 0) 0.36*** -0.10 -0.14* 0.42***

Joint factor 3 (a “ 0) -0.16** 0.25*** -0.28*** -0.14*

Joint factor 4 (a “ 0) 0.08 0.16** -0.06 0.03

Joint factor 5 (a “ 0) -0.09 0.09 -0.43*** 0.04

Joint factor 6 (a “ 0) -0.03 0.24*** -0.13* -0.08

Joint factor 7 (a “ 0) -0.03 -0.13* 0.21*** -0.05

Joint factor 8 (a “ 0) -0.01 -0.16** 0.25*** -0.04

Joint factor 9 (a “ 0) 0.06 0.09 0.06 0.00

Joint factor 10 (a “ 0) -0.03 0.13* 0.12* -0.13*

† In this table, the optimal weights of MVE portfolios are based on (5.2). The first panel reports the
correlation (ρ) of MVE portfolios shocks across all asset classes with the components from individual
asset classes, and the second and third panels report the correlation (ρ) of MVE portfolios shocks the
ten joint factors with and without restriction a “ 0.
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Table A29: MVE portfolio shocks and correlations with joint factors†

ρ (a ‰ 0) Common Stock Corpbond Option

Common - 0.22*** 0.15** 0.89***

Stock - - -0.20*** -0.18**

Corpbond - - - 0.01

Joint factor 1 (a ‰ 0) -0.13* -0.42*** 0.59*** -0.08

Joint factor 2 (a ‰ 0) 0.18** -0.17** 0.19** 0.22***

Joint factor 3 (a ‰ 0) -0.13* 0.17** -0.16** -0.18**

Joint factor 4 (a ‰ 0) 0.02 -0.04 -0.23*** 0.09

Joint factor 5 (a ‰ 0) -0.09 -0.19*** -0.36*** 0.08

Joint factor 6 (a ‰ 0) -0.09 0.17** -0.27*** -0.11

Joint factor 7 (a ‰ 0) -0.10 -0.07 0.01 -0.07

Joint factor 8 (a ‰ 0) -0.10 -0.16** 0.10 -0.05

Joint factor 9 (a ‰ 0) 0.06 0.18** 0.06 -0.03

Joint factor 10 (a ‰ 0) -0.03 0.33*** 0.13* -0.21***

ρ (a “ 0) Common Stock Corpbond Option

Common - 0.38*** -0.01 0.83***

Stock - - -0.53*** -0.02

Corpbond - - - -0.16**

Correlation (ρ) Common Stock Corpbond Option

Joint factor 1 (a “ 0) -0.18** -0.64*** 0.73*** -0.13*

Joint factor 2 (a “ 0) -0.08 -0.02 0.05 -0.10

Joint factor 3 (a “ 0) -0.08 0.28*** -0.39*** -0.09

Joint factor 4 (a “ 0) -0.01 0.07 -0.23*** 0.06

Joint factor 5 (a “ 0) -0.08 -0.03 -0.26*** 0.07

Joint factor 6 (a “ 0) -0.21*** 0.14* -0.08 -0.28***

Joint factor 7 (a “ 0) -0.06 0.02 0.16** -0.17**

Joint factor 8 (a “ 0) -0.11 -0.24*** 0.12 -0.01

Joint factor 9 (a “ 0) 0.11 0.22*** 0.09 -0.08

Joint factor 10 (a “ 0) 0.12* 0.29*** 0.10 -0.13*

† In this table, the optimal weights of MVE portfolios are based on (5.3) with and without restriction
a “ 0. The first and third panels report the correlation (ρ) of shocks of MVE portfolios across all asset
classes with the components from each individual asset class, and the second and forth panels report the
correlation of shocks with ten joint factors.
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Table A30: Out-of-sample Sharpe ratios of MVE portfolios with different num-
ber of factors†

Sharpe ratio (a ‰ 0) Common Stock Corpbond Option

K “ 1 1.53 -0.31 0.45 1.56

- 1.63 0.73 1.05

K “ 2 1.30 -0.17 0.19 1.32

- 1.74 0.66 1.05

K “ 3 1.38 -0.10 -0.08 1.32

- 1.85 0.79 1.53

K “ 4 1.86 0.47 -1.06 1.96

- 2.22 0.91 1.37

K “ 5 2.05 0.74 -1.07 2.01

- 2.67 1.29 1.75

K “ 6 2.25 1.27 -1.12 2.15

- 2.62 1.45 1.65

K “ 7 2.31 1.26 -1.10 2.16

- 2.45 1.53 1.71

K “ 8 2.32 1.24 -0.88 2.13

- 2.42 1.30 1.74

K “ 9 2.67 1.35 -0.68 2.231

- 2.48 1.47 1.59

K “ 10 2.73 1.51 -0.65 2.27

- 2.36 1.38 1.58

Sharpe ratio (a “ 0) Common Stock Corpbond Option

K “ 1 1.24 -0.37 0.09 1.57

- 1.54 0.66 0.81

K “ 2 1.23 0.53 -0.95 1.17

- 1.66 0.63 0.85

K “ 3 1.25 0.41 -0.99 1.18

- 1.85 0.75 1.10

K “ 4 1.58 1.22 -1.23 1.73

- 2.28 0.91 1.00

K “ 5 1.92 2.05 -1.20 1.83

- 2.59 1.34 1.44

K “ 6 2.04 1.94 -1.22 2.05

- 2.48 1.48 1.69

K “ 7 1.86 1.52 -0.57 1.50

- 2.34 1.55 1.62

K “ 8 2.25 1.62 0.16 1.64

- 2.39 1.35 1.69

K “ 9 2.25 1.34 0.87 1.51

- 2.47 1.50 1.56

K “ 10 2.18 1.29 0.30 1.45

- 2.41 1.39 1.56

† The reported Sharpe ratios are annualized. The optimal weight of MVE portfolio is based
on (5.7) without and with restriction a “ 0. The calculation is based on expanding window
estimation starting with the sample of the first 60 months.
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Table A31: Out-of-sample Sharpe ratios of MVE portfolios with different num-
ber of factors†

Sharpe ratio (a ‰ 0) Common Stock Corpbond Option

K “ 1 0.58 0.23 0.41 0.81

- 0.22 0.36 0.37

K “ 2 1.51 0.26 0.49 1.74

- 0.00 0.40 0.86

K “ 3 0.83 0.13 0.19 0.60

- -0.13 0.33 0.62

K “ 4 0.79 0.15 -0.08 0.70

- 0.01 -0.01 0.91

K “ 5 0.64 0.24 -0.18 1.35

- 0.67 0.18 0.76

K “ 6 0.50 0.25 -0.11 0.98

- 0.72 0.19 1.24

K “ 7 0.21 0.30 -0.27 1.12

- 0.75 0.08 1.35

K “ 8 0.18 0.18 -0.42 1.16

- 0.62 -0.17 1.28

K “ 9 0.18 0.03 -0.33 0.81

- 0.55 0.14 1.58

K “ 10 0.24 -0.39 -0.17 0.42

- 0.51 0.19 1.50

Sharpe ratio (a “ 0) Common Stock Corpbond Option

K “ 1 0.76 0.24 0.42 1.74

- 0.24 0.37 0.70

K “ 2 1.07 0.24 0.28 1.41

- 0.00 0.40 0.95

K “ 3 0.79 0.61 0.18 0.60

- -0.05 0.33 0.81

K “ 4 0.75 0.47 -0.12 0.75

- 0.29 -0.01 1.03

K “ 5 0.53 0.44 -0.21 0.72

- 0.83 0.18 0.87

K “ 6 0.48 0.50 -0.07 0.87

- 0.88 0.20 1.42

K “ 7 0.27 0.56 0.17 1.03

- 0.88 0.07 1.49

K “ 8 0.24 0.50 0.02 1.05

- 0.76 -0.18 1.45

K “ 9 0.49 0.51 0.29 0.37

- 0.71 0.18 1.60

K “ 10 0.63 0.38 0.43 -0.01

- 0.77 0.25 1.49

† The reported Sharpe ratios are annualized. The optimal weight of OOS MVE portfolio is
based on (5.9) without and with restriction a “ 0. The calculation is based on expanding
window estimation starting with the sample of the first 60 months.
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Freyberger, J., B. Höppner, A. Neuhierl, and M. Weber (2022): “Missing data
in asset pricing panels,” Working Paper.

Freyberger, J., A. Neuhierl, and M. Weber (2020): “Dissecting characteristics non-
parametrically,” The Review of Financial Studies, 33(5), 2326–2377.

Gebhardt, W. R., S. Hvidkjaer, and B. Swaminathan (2005a): “The cross-section
of expected corporate bond returns: Betas or characteristics?,” Journal of financial eco-
nomics, 75(1), 85–114.

(2005b): “Stock and bond market interaction: Does momentum spill over?,” Jour-
nal of Financial Economics, 75(3), 651–690.
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