FOMO Economics: External Reference-Dependence in Household Portfolios

Michael Gelman

Liron Reiter

Nikolai Roussanov *

February 24, 2025

Abstract

Individual investors are sensitive to peer performance and particularly dislike "falling behind." We use unique granular data on the transactions and holdings of retail investors to study portfolio adjustment in response to relative performance of their portfolios. We show that investor behavior is consistent with preferences over future wealth that are S-shaped around an external reference point provided by a salient market benchmark: if their portfolio lags the "market," they tend to increase the risky share of their portfolio, as well as purchase riskier securities, as characterized by high market beta, idiosyncratic volatility, and positive skewness. As the salience of the market index increases, investors become more sensitive to relative performance. The effect is asymmetric, more pronounced in bull market periods, and does not reverse when individual portfolios are ahead of the market. Our evidence provides a novel perspective on the individual investors' demand for risky assets.

JEL Code: D14, G11, G12, G40, G41, G50, G51

Keywords: Retail Investors, Market Index, Portfolio Choice, Prospect Theory, Risk-taking.

^{*}Michael Gelman: University of Delaware, email: gelmanm@udel.edu; Liron Reiter: Netanya Academic College, email: reiter.liron@gmail.com; Nikolai Roussanov: Wharton School, University of Pennsylvania, and NBER, email: nroussan@wharton.upenn.edu.

I Introduction

One of the central and enduring insights of behavioral economics is that people make decisions and evaluate potential losses and gains relative to a reference point rather than in absolute terms. According to prospect theory, a reference point represents the baseline from which individuals assess possible outcomes, as changes relative to this point carry perceived value beyond absolute wealth levels (Kahneman and Tversky, 1979). Reference points can vary by context and individual circumstances, influenced by factors such as personal experiences, expectations, and social norms, yet a unified and generally accepted theory of reference points remains elusive (Kőszegi and Rabin (2006)). Relative wealth concerns are a potentially important source of reference dependence, whereby the desire to "keep up with the Joneses" drives individual risk attitudes (Abel, 1990; Haisley, Mostafa, and Loewenstein, 2008; Roussanov, 2010).

In this paper, we establish that investors' risk-taking and trading behavior depend on their portfolio performance relative to a natural external reference point: the market. Using a granular data set on portfolios of retail investors in Israel, we show that investors actively adjust their trading behavior and risk exposure based on their portfolio performance relative to the salient market index. Investors whose portfolios underperform the market trade more frequently and in larger volumes. Specifically, they have a nearly 18% higher propensity to trade, with close to 5% higher volumes, if the portfolio underperforms the market. Notably, these investors shift toward riskier assets, increasing their exposure to stocks, equity mutual funds, and ETFs, while reducing allocations to safer assets, such as bonds. Investors that have underperformed over the most recent three months are 15% more likely to buy risky securities and 9% more likely to purchase high-beta stocks, indicating a desire to increase risk, presumably in order to "catch up" with the market. Moreover, the portfolio-wide beta and overall share of risky holdings rise, with the largest adjustments occurring among investors with initially low risk expo-

sure. This risk-taking behavior is asymmetric: while underperforming investors actively increase risk, outperforming investors do not proportionally de-risk, reinforcing a convex risk-adjustment pattern consistent with prospect theory and loss aversion. Investors are also more reactive in rising markets, suggesting that the "fear of missing out" on market gains drives stronger trading and risk-taking responses during "bull" markets.

In addition, we examine the role of market index salience and visibility in shaping investor behavior. In order for the market index to serve as a reference point, it must be accessible and easily observable. In Israel, the leading stock indexes of the Tel-Aviv Stock Exchange (TA35 and TA125) are widely covered by financial media and displayed on trading platforms, making it easy for investors to compare their portfolio performance to the market indexes. A key test of salience comes from a 2017 market index reform, which increased the number of stocks in these indexes and changed their weighting structure. The results show that around the time of the reform, investors with underperforming portfolios increased their trading activity, particularly in riskier, high-beta securities and newly added stocks, suggesting that heightened index visibility led to greater investor attention and trading responses.

Further analysis examines whether investors treat other market indexes as reference points, depending on their visibility on the trading platforms available to them. While the Nasdaq 100, which is prominently displayed, affects the trading behavior of investors with higher foreign asset exposure, other global indexes such as MSCI World and S&P 500—despite being theoretically more diversified benchmarks—do not significantly influence investor decisions. Similarly, European indexes (DAX, FTSE), which are not displayed on the trading platform, have no measurable effect on investor behavior, even among those who trade European assets. These findings underscore that investors primarily adopt reference points that are both highly salient and perceived as relevant representations of "peer" wealth, rather than those that might be optimal from a modern portfolio theory perspective.

This paper builds on and contributes to several different strands of the literature. There is a large experimental literature showing that individual risk-taking is consistent with S-shapred preferences around a "social" reference point. Frydman (2015) uses neural imaging data from an experimental asset market and shows that a peer's portfolio allocation has a causal effect on a subject's portfolio choice. He shows that a higher return by the peer is perceived as particularly unpleasant, suggesting a desire to "keep up with the Joneses." Kirchler and Kirchler (2024) find in an experiment that social reference points shape decisions under uncertainty, where high social reference point decreases risk aversion significantly, especially when peer earnings are salient. Similarly, Schwerter (2024) investigate the consequences of social reference points for risk taking in a laboratory experiment and find that individuals make less risk-averse choices in the case of larger peers' earnings. Kirchler, Lindner, and Weitzel (2018) find that both rank and tournament incentives increase risk-taking among underperforming finance professionals.

Our evidence points to the importance of "local" peer wealth as the relevant reference point. DeMarzo, Kaniel, and Kremer (2004) develop a model in which borrowing constraints lead individuals endowed with local resources to compete for local resources through their portfolio choices and herd into risky portfolios that are biased towards local assets rather than diversifying their portfolios more broadly, consistent with our evidence of agents reacting to their "local" market index rather than the "global" ones. Hong, Jiang, Wang, and Zhao (2014) show that status concerns lead retail investors to excessively trade small local stocks, especially when their peers are wealthier on average (holding own wealth constant), and argue that their evidence supports the idea of "keeping up the with the Joneses."

Our findings also contribute to the literature on different reference points that are used by investors, as well as for other applications such as negotiations, M&As etc. (Babcock, Wang, and Loewenstein, 1996; Baker, Pan, and Wurgler, 2012; Genesove and Mayer, 2001; Hart and Moore, 2008). Other papers show that reference point valuations are likely be

successful in explaining price movements, (e.g., Peng and Xiong (2006)). We show that retail investors use the market as a salient reference point, potentially impacting prices of the securities they trade.

Our evidence provides a new perspective on the widely documented demand for "risky" assets by retail investors. Barberis and Huang (2008) show a positively skewed security can be "overpriced" and can earn a negative average excess return. Barberis and Xiong (2012) present a model of realization utility that sheds light on a number of puzzling facts, including the disposition effect, the poor trading performance of individual investors, the higher volume of trade in rising markets, the effect of historical highs on the propensity to sell, the individual investor preference for volatile stocks, the low average return of volatile stocks, and the heavy trading associated with highly valued assets. Bali, Cakici, and Whitelaw (2011) find a negative and significant relation between the maximum daily return over the past one month and expected stock returns. Boyer, Mitton, and Vorkink (2010) find that expected idiosyncratic skewness and returns are negatively correlated, and that expected skewness helps explain the phenomenon that stocks with high idiosyncratic volatility have low expected returns. Mitton and Vorkink (2007) present a model of investor asset holdings where investors have heterogeneous preference for skewness, which can explain investor underdiversification. Most closely related to our work, Aristidou, Giga, Lee, and Zapatero (2022) show that such aspirational utility generates preference for skewness. When their portfolios underperform the market, investors adjust their portfolios towards positively-skewed assets in order to "catch up" and not "fall behind," consistent with the market return acting as an "aspiration" level. Similarly, Bali, Gunaydin, Jansson, and Karabulut (2023) provide evidence consistent with the hypothesis that social status concerns explain wealthy investors' demand for high-risk stocks, leading to overpricing and low future returns for such stocks.

II Data and Institutional Background

II.A Data Description

To study investor's response when her portfolio lags the market, we utilize proprietary data on the transactions and holdings of retail investors from one of the leading financial institutions in Israel. The data includes the non-retirement portfolios¹ and the trading activity between 2014-2022 for a sample of 78,796 accounts. For each transaction the data includes the date, whether it is buy or sell, security identification number, total value, number of securities (which allows us to calculate the security's transaction price), how the order was executed (i.e., via the Internet, the bank's branch, or a bank's securities trader), and whether it was advised by the bank's financial adviser.

For every account, we observe the number of holders, establishment date, month-end total value of domestic and foreign securities held, monthly (net) salary, and a proxy for financial wealth (includes value of the whole investment portfolio, total deposits and foreign currency balance). About 36% of the accounts have one holder, 58% with two holders, and the rest with more than two holders (see Table I). In the paper, we use interchangeably accounts and investors, as we cannot identify who of the account holders performs the trades.

At the individual level, the data includes gender, age, occupation, marital status, indication of having children, address, and indication of home ownership.

Market price data for assets traded on the Tel-Aviv Stock Exchange was obtained from the exchange's website; for foreign assets we use CRSP and Datastream.

As expected, the investors in our sample are slightly older and have higher salaries compared to the Israeli population. These are the individuals who have the resources

¹The financial institution offers a variety of financial services to households and firms. Individuals have a single account from which they conduct various transactions. We only observe their trading activity and holdings of financial assets, and do not have access to their cash holdings or other transactions within the account.

and the knowledge to trade on the stock market, thus more likely to set up a trading account. Table I shows that on average, two trades are conducted per month, with high dispersion between accounts. The median account performs less than one trade per month. Comparing the holdings of investors in our sample with data for US households (based on the average from the SCF for the years 2016-2022), the portfolios of both groups have similar compositions.

II.B The Israeli Stock Market

The Israeli stock market, led by the Tel Aviv Stock Exchange (TASE), is the platform for trading of financial securities in Israel. It is a fully computerized exchange that aligns with the standards of leading global stock markets. In the last decade, trading volumes have doubled, indicating robust trading and engagement by the different market players. Additionally, the market cap of TASE-listed firms has significantly grown. By December 2022, there were 548 listed companies, with a market cap of \$270 billion, equity daily volume of \$683 million, and a bond market turnover of \$1 billion.

Trading on the Israeli stock market is prominently marked by its key indices: the TA35 Index, spotlighting the 35 companies with the greatest market capitalization. The TA35's composition reflects the country's economic landscape featuring a robust representation of high-tech, banking, and healthcare sectors, indicating these sectors' significant contribution to the local economy. Beyond the TA35 index, the TA125 index includes a wider range of the 125 companies with the largest market capitalization on the Israeli stock exchange. This index extends further into real estate, energy, and consumer goods.

As of 2022, the direct equity ownership by retail investors accounted for 18% (compared to 22% in the U.S.). Israeli institutional investors, such as pension funds and insurance companies, play a significant role in the stock market, accounting around 60% of equity ownership in 2022.

Foreign investors, including institutional investors, also play a key role in trading on TASE. The extent of foreign institutional investment is particularly notable in leading companies and sectors that have a global presence or are part of international indices, as Israel is classified as a developed market in the MSCI World Index. In 2022, foreign residents purchased equity holdings in a net amount of US\$3.9 billion on TASE, following purchases in a similar amount in 2021 (Bank of Israel).

Around 30% of the companies composing the TA35 are traded in another stock market (dual companies). In addition to their presence on TASE, it is common for Israeli companies, especially those in high-tech, pharmaceuticals, and biotech sectors, to seek listings on exchanges like NASDAQ, NYSE and London Stock exchange. This allows them to access a broader investor base and more significant capital markets. The biggest company by market capitalization traded on TASE is the international pharmaceutical company "Teva".

II.C Variable Definitions

In this paper, our focus is on the relative performance of the investor's portfolio compared to the market. No specific time window has been identified in the literature as the most relevant for retail investors when assessing their performance. needs to be long enough for investors to notice, especially since many of them do not follow the stock market daily, and to trigger them into trading. At the same time, a history that is too long might become irrelevant. Thus, we use a three-month time window across all the variables, and conduct robustness tests to show that the results also hold with two different time windows, namely year-to-date and preceding 12 months.

As in the U.S., the main Israeli stock indexes (TA35 and TA125) are reported and covered by the general and the financial media. Additionally, the trading platform of the financial institution from which we received the data presents to all the investors the

returns of their portfolios, as well as of the TA35, TA125 and Nasdaq100, regardless of the composition of their portfolios. This makes the comparison between the performance of the investor and the market straightforward.

Our main measure for the market is the return of the TA35 index. As a robustness, we verify that the results remain consistent when using the TA125 index. Our focus in this paper is on the effect of relative underperformance. We estimate it in two ways. First, we use a dummy equals 1 if the portfolio 3-month return lags the corresponding TA35 return, and 0 otherwise. As an alternative measure, we use a continuous variable calculated as the difference between the TA35 and the portfolio returns.

We estimate security riskiness using a dummy variable that equals unity if the security is a stock, equity mutual fund or equity ETF, and zero if the security is a bond or a bond fund. For risky securities, we measure the riskiness of the asset with an indicator whether its beta is in the top tercile. The security's beta is calculated using daily data over 3 months ending at month t-1 using the TA35 index as the market portfolio and the three-month Israeli government bond yield as the risk-free rate. We also calculate the security's volatility using daily data over 3 months ending at month t-1.

The main dependent variable at the account-level specifications is an indicator whether the investor conducts any trade in a given month. Another outcome variable includes the trade size in the account scaled by the investor's lagged non-retirement financial assets. The trade size is calculated as the value of the buy transactions net of sell transactions. Other dependent variables include the share of risky holdings (stocks, equity mutual funds and ETFs) in the portfolio, the overall beta and volatility of the portfolio, calculated as the weighted average of the risky assets holdings. The main outcome variable at the security level specifications is the trade size of the security scaled by the investor's lagged non-retirement financial assets. We also use a dummy variable taking the value of 1 for buy transactions and zero for sells.

In all our specifications, we control for portfolio-level time-varying changes, namely the

3-month return and the 3-month volatility. At the security level, we also control whether the security return is lower than the portfolio return, and when we use the continuous measure for underperforming portfolios we control for the difference between the security and portfolio returns, as well as for the 3-month return of the security and whether the security has high beta.

III How Do Investors Respond When the Portfolio Lags the Market?

In this section we analyze the response of investors to their portfolio perfomance relative to that of the market, in particular, we investigate their propensity to trade, and the trade size (section III.A), and the effect of relative underperfomance on risk-taking (section III.B). Then, in section III.C we show that this response is asymmetric.

III.A The Effect on Trading Propensity

We start the analysis by exploring how investors respond when their portfolios lag the market. To this end, we perform the following account-level specification:

$$Y_{it} = \beta_1 \text{Portfolio lags market}_{it} + \beta_2 \text{Controls}_{it} + \alpha_i + \alpha_t + \varepsilon_{it}, \tag{1}$$

Where Y stands for different outcome variables. First, we use Trade, an indicator whether investor i conducts any trade in month t. Next, we study the effect on the trade size of account i in year-month t, scaled by the investor's lagged non-retirement financial assets. Portfolio lags market, a dummy equals 1 if the portfolio return lags the corresponding TA35 return, and 0 otherwise. We control for portfolio-level time-varying changes, namely the cumulative investor's return and its volatility. α_i is the account-fixed effect, which controls for time-invariant account-specific characteristics (such as financial literacy, risk

aversion and preferences), α_t is the year-month fixed effect that controls for the macro and market factors that influence all individuals in a given year-month. Standard errors are clustered by account.

Table II presents the results for this specification. In Columns 1-2, the outcome variable is an indicator whether the investor perform any trade in the account. Column 1 includes only our main explanatory variable, in Column 2 we add the control variables. The coefficients are positive and statistically significant in both columns. The economic magnitudes are meaningful. Investors with underperforming portfolios are 17.9% more likely to conduct a trade relative to the sample mean (Column 2). In Columns 3-4 of Table II, we study trade size. Here, we focus on months in which the investor performs any trade and find that underperforming portfolios lead to 4.6% higher trade volumes relative to the sample mean (Column 4).

These results provide first evidence that investors respond to changes in the relative performance of their portfolios. Specifically, they refer to the salient market portfolio as a reference point when evaluating their performance, beyond other affecting factors. Investors lagging the market are more likely to trade, with larger volumes, relative to investors that outperform the market. In the next section, we turn to show how they adjust their portfolios to not "falling behind." We analyze their risk-taking and trading decisions in response to changes in the market.

III.B The Effect on Investor's Risk-Taking

To analyze how the relative underperformance of investor's portfolio affects their risktaking, we utilize the granularity of the dataset and perform the following security-level baseline specification:

$$Y_{ist} = \beta_1 \text{Relative Underperformance}_{it} \times \text{High beta security}_{st} + \beta_2 \text{Controls}_{st} + \beta_3 \text{Controls}_{it} + \alpha_i + \alpha_s + \alpha_t + \varepsilon_{ist}.$$
 (2)

Here Y stands for different outcome variables. First, we use a dummy variable taking the value of 1 for buy transactions and zero for sell. Next, we study the effect on the trade size of security s in account i on date t, scaled by the investor's lagged non-retirement financial assets. We estimate underperformance relative to the market in two ways. First, we use Portfolio lags market from Equation 1. As an alternative measure, we use a continuous variable Market return-Portfolio return, calculated as the difference between the TA35 and the portfolio returns. We interact it with Risky security, which represents the riskiness of the security and estimated with a dummy variable equals 1 if the security is a stock, equity mutual fund or equity ETF, and zero if the security is a bond or a bond fund. For risky securities, we measure the riskiness of the asset with *High beta security*, an indicator whether the beta of the security (as defined in Section II.C) is in the top tercile. Portfolio-level time-varying characteristics as in Equation 1 are included. We control for the following security-level time-varying variables: an indicator whether the security return is lower than the portfolio return, and when we use the alternative measure for underperforming portfolios we add the difference between the security and portfolio returns, as well as the 3-month return of the security. α_i is the account-fixed effect, α_s is the security fixed effect that accounts for time-invariant asset-specific characteristics (such as prominence, firm characteristics, industry and media coverage), α_t is the datefixed effect that controls for the macro and market factors that influence all individuals on a given date.² Standard errors are clustered by account.

²All the results in this specification and the rest of the empirical tests hold when including year-month instead of date fixed effect.

Panels A,B in Table III present the results for the propensity to purchase the security. In Panel A, we use the *Security lags Portfolio* indicator and interact it with the riskiness measures, and in Panel B we use the continuous variable *Security return–Portfolio return*. In both Panels, Columns 1,3 include account, security and time fixed effects, Columns 2,4 include security and account-time fixed effects, which allow us to capture any time variant account-specific changes, such as changes in risk-aversion, income, etc.

Analyzing the interaction terms in Panel A, we find that they are positive and significant in all columns, meaning that investors increase risk in response to underperforming portfolios. Investors with portfolios lagging the market are 15.3% more likely to purchase a risky security (relative to the sample mean) compared to investors with outperforming portfolios (Column 2). Focusing only on risky assets, investors with underperforming portfolios have 9.2% higher propensity to purchase a security with higher beta (Column 4). Panel B shows similar results when using Security return-Portfolio return as the relative underperformance measure. A rise of one percentage point in the difference between the market and the portfolio returns is associated with 10.9% higher likelihood to purchase a risky security (Column 2), and among risky securities, a 6.9% higher probability for purchasing an asset with higher beta (Column 4). These results show that investors shift toward riskier assets in response to underperforming portfolios relative to the market. They increase their exposure to stocks, equity mutual funds, and ETFs, while reducing allocations to safer assets, such as bonds.

In Panel C of Table III, we turn to analyze the effect of underperforming portfolios on the trade size. Here, we focus on the trade volumes of the buy transactions net of sell transactions, and find meaningful magnitudes. Investors with portfolios lagging the market conduct 1.6% higher trading volume of the sample mean in high-beta securities (Column 2). A rise of one percentage point in the difference between the market and the portfolio returns is associated with 0.3% higher trading volume of the sample mean in high-beta securities (Column 4).

Naturally, if we were to focus only on the buy transactions, the magnitudes would be larger. However, our aim in this paper is to show the net effect, thus in the rest of the specifications we analyze trade size of the buy net of sell transactions. Most of the literature so far has focused on the effects of the prospect theory and reference point on sales, such as the disposition effect, and its effects on the stock market (e.g., Frazzini (2006); Shefrin and Statman (1985)). Our findings extend this literature by showing how the market—as a reference point—leads retail investors to tap into risky securities. Focusing on the net effect between buy and sell transactions, we provide a more holistic understanding of the effect of relative underperformance and the fear of "falling behind."

In robustness tests, we verify that the results hold for an alternative return periods (YTD and 12 months instead of 3 months), when using a different common index for the market return (TA125 instead of TA35), and after excluding the COVID period as wealth accumulation of the wealthy investors during this period might affect their trading behavior.

Next, we turn to analyze how the investor's ex-ante portfolio riskiness affects her response when underperforming the market. To this end, we split investor portfolios into three buckets based on the share of risky holdings (stocks, equity mutual funds and ETFs): below 30%, 30%-60% and above 60%. Performing the security-level specification in Equation 2, we find in Columns 1-3 of Panel A in Table IV that investors with underperforming portfolios relative to the market have a similar probability to purchase a risky security in all the groups. The coefficients are similar to the baseline result in Column 1 of Table III. Exploring the propensity to purchase a security with higher beta, we find in Columns 4-6 that investors in the latter group are about twice as much more likely to do so compared to the ones in the former group. To further explore the effects of these trades on the overall composition of the investor's portfolio, in Panel B of Table IV we perform the analysis at the portfolio level in Equation 1 changing the outcome variable to the share of risky assets (Columns 1-3) and the portfolio's overall beta (Columns 4-6). Splitting

between the three risk buckets, the findings show that both the share of risky assets and the portfolio beta increase the most among investors with least previous exposure to risk.

These results indicate that all investors increase the riskiness of their portfolios when they lag the market, but it occurs gradually. Investors first raise their exposure to risky assets, and once they feel more comfortable with higher risk, they tap into securities with higher betas. However, these adjustments leave significant marks on the overall composition of their portfolios, particularly for investors who were previously less exposed to risky securities, as the changes greatly increase their overall exposure to risk.

III.C Asymmetric Effect

Now we turn to investigate whether the response of investors to the market is symmetric. To this end, we first examine whether underperforming investors increase risk differently during periods of positive versus negative market returns. Performing the security-level specification in Equation 2, we find in Panel A of Table V that investors with lagging portfolios tap more into riskier securities in both periods. However, the effect is more prominent when the market goes up. When the investor's portfolio lags the market in bearish periods, both the standalone effect, as well as the corresponding increase in risk hold, but with lower magnitudes. Investors are more reactive in rising markets, suggesting that the "fear of missing out" on market gains drives stronger trading and risk-taking responses during "bull" markets.

The fact that the results are not limited to specific periods in the market also help us address alternative explanations that changes in risk-aversion or other related factors could explain the results, rather than the market portfolio as a reference point (as discussed more in details in section V.A).

Our results remain similar when changing the measure of security risk from the systematic component to the total risk. Panel B of Table V, presents the results for the

specification in Equation 2, using the security volatility as the measure of security risk. In Columns 1,4, we show that the baseline results hold also with volatility as the risk measure, and then we split between bull and bear market periods as in Panel A.

Next, we study whether the investor's response is symmetric for underperforming vs. outperforming portfolios. We perform the security-level specification in Equation 2 using Security return-Portfolio return as the explanatory variable, and split between periods in which the market outperforms the portfolio and periods when the it underperforms the investor's portfolio. Panel A in Table VI presents the results of this specification. First, we include the whole sample (Columns 1-2). Then, we distinguish between periods with positive market returns (Columns 3-4) and periods with negative market returns (Columns 5-6). We find that the effect for underperforming portfolios is more than twofold stronger than for the outperforming portfolios. This indicates that the changes in the risk of investors' portfolios are S-shaped around the return of the market—more moderate for outperforming portfolios, relative to the underperforming ones. The convex risk-adjustment for underperforming portfolios and the concave for the outperforming ones holds across different market conditions, i.e., when the market goes up and down, but consistent with the results in Table V. This is consistent with loss aversion function of (Kahneman and Tversky, 1979), convex in the domain of losses and concave in gains.

To further test this asymmetry, we perform a within-individual analysis, in which we study the behavior of a subsample of outperforming investors that previously were underperforming. The idea is to analyze how the same individual adjusts the portfolio after successfully achieving the goal of beating the market. If investors reduce risk less than they increased it when the portfolio underperformed the market (or even do not decrease risk at all), it indicates an asymmetric response.

To this end, we perform the account-level specification in equation 1 changing the main explanatory variable to *Portfolio outperforms market*, an indicator whether the portfolio return currently exceeds the market return, and in the past the portfolio underperformed

the market. For the outcome variables, this time our focus is on different portfolio risk characteristics. Specifically, we explore the portfolio's overall beta, overall volatility, and the total number of securities in the portfolio.

Panel B in Table VI presents the results of this specification. Consistent with the results in Panel A, we find that investors that beat the market after underperforming it, reduce the riskiness in their portfolios, both the beta and the volatility, and increase the number of the different securities held. However, comparing the magnitudes to the results in Panel B of Table IV for the portfolio beta, here we find smaller effects, indicating of the asymmetric behavior of the investors.³ This suggests that while underperforming investors actively increase risk, outperforming investors do not proportionally de-risk, reinforcing a convex risk-adjustment pattern consistent with prospect theory and loss aversion. This analysis also provides additional support that investors indeed refer to the market as a reference point. The reason is that they conduct active trading in response to lagging the market, and then they revert slightly back once they reach the goal.

IV Market Index Saliency

In previous sections we showed that the market serves as a reference point for investors. Consequently, they increase the riskiness of their portfolios when they underperform it. This holds beyond different portfolio and security characteristics.

For the market to serve as a reference point, it has to be accessible and easily observable. As mentioned in Section II.C, the main Israeli stock indexes (TA35 and TA125) are reported and covered by the general and the financial media. Additionally, the trading platform of the financial institution from which we received the data presents to all the investors the returns of their portfolios, as well as of the TA35, TA125 and Nasdaq100,

³In Panels C,D of Table IX in Section V.C, we use the same outcome variables to conduct the portfolio-level analysis for the full sample of investors. Comparing the magnitudes, the effects for this subsample are smaller.

regardless of the composition of their portfolios. This makes the comparison between the performance of the investor and the market straightforward. To provide a more direct evidence for the effect of market saliency on the investor's portfolio choices, we utilize a unique reform in the leading market indexes (Section IV.A). Then, we compare between indexes presented on the trading platform vs. those that do not, and analyze how this affects the investor's response (Section IV.B).

IV.A Market Index Reform

IV.A.1 Institutional Setting

In February 2017, TASE implemented a reform in the leading stock indexes. The main changes led to a rise in the number of shares included in each index, and reduction in the weight ceiling of each share in the index. Specifically, the Tel-Aviv 25 index was expanded from 25 shares to 35 shares, and its name was changed accordingly to Tel-Aviv 35 index (TA35). The maximum weight per share in the index was reduced from 10% to 7%. The Tel-Aviv 100 index was expanded by 25 shares to 125 shares, and its name was updated to Tel-Aviv 125 index (TA125). The key goals of the reform were to enhance the trading volume on TASE, increase public holdings in the leading indexes, and raise the dispersion of shares by reducing the concentration in the indexes (as about 70% of the index's weight was derived from the ten biggest stocks).

The reform was publicly announced in January 2016, approved in August that year and the implementation was completed on 9-February 2017. Each step of the reform was publicized in advance and covered by the financial and the regular media. Thus, we do not refer to it as an exogenous shock. Rather, we refer to the reform as an event study, arguing that it led to increased saliency and greater investor attention towards the updated market indexes and the newly added stocks. As supporting evidence, we indeed find in our data elevated total trading volumes in February and March 2017.

Importantly, the technical change in the composition of the indexes did not affect their returns on the first trading day after the reform. The value of the updated index was adjusted to the value of the original one at the end the preceding trading day.

IV.A.2 Market Index Saliency Analysis

To analyze the effect of market index saliency, we focus on a narrow time window around the end of the implementation of the reform and perform the following security-level specification:

Trade
$$\operatorname{Size}_{ist} = \beta_1 \operatorname{Relative Underperformance}_{it} \times \operatorname{After}_t + \beta_2 \operatorname{Controls}_{st} + \beta_3 \operatorname{Controls}_{it} + \alpha_i + \alpha_s + \alpha_t + \varepsilon_{ist}.$$
 (3)

Where After is a dummy equal 1 for the month of the reform and the following one, i.e., February-March 2017, and zero for the preceding two months. The rest of the variables are the same as in Equation 2. Column 1 in Table VII presents the results of this specification. In Column 2, we add the triple interaction of Portfolio lags market, the After indicator and the High beta security indicator.

We find that investors with portfolios lagging the market index trade more securities in general (Column 1)—and specifically riskier ones—around the index reform. The magnitudes are meaningful, with investors with portfolios lagging the market conduct 1.2% higher net trading volume of the sample mean in high-beta securities (Column 2). This effect is similar, although a bit smaller, compared to the results in the baseline specification in Panel C of Table III.

In Column 3, we study the effect of the added stocks to the market indexes, by exploring the triple interaction of *Portfolio lags market* and *After* with *Stock added*, an indicator equal 1 for the added stocks to the TA35 or TA125. Here, we find that investors with portfolios lagging the market tap into the newly added stocks, indicating that the

reform indeed increased the saliency of the market index.

The results remain consistent in Columns 4-6. These Columns are similar to the Columns 1-3, respectively, only changing the indicator whether the portfolio lags the market to the continuous *Market return-Portfolio return* variable. Here, the magnitudes are even slightly larger than in Panel C of Table III.

IV.B Index Visibility on the Trading Platform

Another index that is presented on the trading platform to all the investors is the Nasdaq100. To test whether this index also serves as a reference point, we perform the baseline specification in Equation 2, changing the market index from TA35 to Nasdaq100. Panel A in Table VIII presents the results. For the full sample of investors (Columns 1-2), we do not find evidence that this index serves as a reference point. This indicates that investors that trade mostly domestic assets (due to home bias) refer to the local market index (TA35 or TA125) as the reference point. However, focusing on investors with above median share of foreign securities holdings, we find that they tap into riskier securities when their portfolios lag the Nasdaq100. Comparing the magnitudes to the results in Columns 1,3 in Panel C of Table III, here the effects are still meaningful although about one-third smaller.

According to the standard portfolio theory, the investor should maximize her risk-adjusted return by holding a highly diversified portfolio. The index that represents the most diversified portfolio should be the appropriate reference to evaluate the portfolio's performance. Thus, we would expect to find the strongest effect for the MSCI World Index, as it proxies the general world-wide stock market. The the next best proxy is the S&P500, given its leading role in the global stock markets and the global exposure of the firms included in the index. Changing the market index from TA35 to the MSCI and then to the S&P500, we find no such effect in Panel B of Table VIII, even focusing

only on investors with above median share of foreign securities holdings. In Columns 1-2, we perform the specification for the S&P500 as the market index and find statistically and economically weak effect that probably stems more from the correlation with the Nasdaq100. In Column 3-4, when using the MSCI as the market index, we find no results.

Finally, in Panel C, we further verify that other indexes do not serve as reference points. Changing the market index to DAX (Columns 1-2) and FTSE (Columns 3-4)—indexes that are not presented on the platform, even for investors that invest in foreign assets, and specifically European ones—we do not find a statically significant effect.

Overall, these findings underscore that investors primarily adopt reference points that are both highly salient and perceived as relevant representations of "peer" wealth, rather than those that might be optimal from a modern portfolio theory perspective.

V Alternative Explanations

In the previous sections, we showed that when investors lag the market index, they tap into riskier securities. We provided empirical evidence—both in a panel analysis and around the market index reform—that the market serves as a salient reference point, thus investors adjust their holdings based on their relative underperformance. In this section, we turn to discuss alternative explanations to the results. First, in Section V.A, we confirm that changes in investor's risk aversion and overconfidence cannot fully explain the observed effects. Section V.B shows that the observed effect of the market holds beyond other reference points that were found in the literature. Finally, in Section V.C we provide evidence that investor's learning is not the main effect behind the results.

V.A Risk Aversion

A main concern arising from the observed changes in the investor's risk-taking is that they stem from variation in the investor's risk-aversion and overconfidence, rather than external reference point. Specifically, excessive returns in the investor's portfolio or good market periods were found in previous studies to affect risk-taking (Brunnermeier and Parker, 2005; Puri and Robinson, 2007). We deal with this concern in multiple ways.

First, in all the specifications we include the return and the riskiness of both the investor's portfolio and the security. We also control whether the security lags the market, not only the portfolio. Finally, we include granular fixed effects to capture any time-variant security and investor characteristics. This enables us to interpret the results beyond changes in risk-aversion.

In addition, our main measure of relative underperformance—the indicator if the portfolio lags the market—by construction presents the results as a comparison to instances
where the portfolio outperforms the market. If risk-aversion were indeed the main channel, we would expect to find the rise in riskiness for outperforming portfolios, not for
underperforming ones, consistent with the heightened overconfidence. Related, our results also hold in bearish periods of the market, while overconfidence is less likely to be
the driver of the rise in risk during bad market conditions.

We also address this concern more directly by adding to the baseline specification at the security level in Equation 2 an interaction between the portfolio's return with the *High beta security* indicator. The idea is to capture any variation in the investor's risk-taking that arises from the return of her portfolio. Controlling for this interaction, we can interpret the coefficient of our main interaction term such as the effect holds beyond changes in overconfidence. Column 1 in Panel A of Table IX presents the results. We find that our main interaction term (*Portfolio lags market* with *High beta security*) remains statistically significant with a similar magnitude as in the baseline specification. The

newly added interaction term between *Portfolio return* and *High beta security* is also statistically significant with a larger magnitude, indicating that the risk-aversion indeed plays an important role in the investor's trading behavior, but our results hold beyond this effect.

V.B Other Reference Points

Another alternative explanation for the results is the standard prospect theory which states that investors can have various reference points depending on the context and the circumstances.

One of plausible reference point is whether the portfolio earns money, rather than the return of the market. If the investor is in the domain of losses, she is more likely to gamble. To address this concern, we continue with the specification in Column 1 of Panel A in Table IX, but this time, each month we split between investors with positive and negative portfolio returns (Columns 2,3 respectively). We find that the coefficient of our main interaction term (*Portfolio lags market* with *High beta security*) remains similar to the overall analysis. In Column 4, we provide further evidence that the market portfolio serves as a reference point by showing that our main interaction term remains robust also for portfolios with negative returns in periods when the market goes down. We consider these periods as the ones in which investors are more likely to be in the domain of losses, as referred from the standard prospect theory.

It may be also the case that the market return captures the effect of a different reference point due to correlation between the market return and the return of the security from other reference points. Specifically, we analyze the purchase price (Grinblatt and Han, 2005), the 52-week high or low prices (George and Hwang, 2004; Huddart, Lang, and Yetman, 2009) as alternative reference points. We verify that the effect of the market holds beyond these reference points by adding to the security-level baseline specification

in equation 2 the returns of each of these three prices. Panel B in Table IX presents the results. In column 1, we add the cumulative return of the security (only for securities purchased during the sample period). In columns 2,3 we add the return of the security from its 52-week high and low prices, respectively. The coefficients of the main interaction term remain statistically significant with similar magnitudes in all the Columns.

Further, Li and Yu (2012) show that nearness to the Dow Jones Industrial Average index 52-week high and historical Dow high affect future aggregate market returns. To show that the observed effect is not driven by these reference points, in columns 4-5 of Panel B in Table IX we add indicators if the TA35 is at its 52-week or historical high, respectively. Our results remain robust.

V.C Learning and Diversification

Alternatively, underpeforming portfolios may indicate to the investors that their holdings are not diversified enough. Thus, if the portfolio lags the market it can drive the investor to learn how to catch up with the market using more diversification. In this case, the observed effect captures this learning effect rather than the investor solely comparing to peer performance.

We address this concern in Panel C of Table IX by showing that investors do not diversify their portfolios. Performing the account-level specification in Equation 1, we change the left-hand side variable to the number of securities held in the portfolio (Column 1), the portfolio's HHI calculated based on the number of securities (Column 2), and portfolio's HHI calculated based on the holding amounts (Column 3). The results indicate that the portfolios become more concentrated—with less securities held and higher HHIs. This is the opposite from what is expected by the learning argument. In Columns 4-5, we rerun this specification for the overall portfolio beta and portfolio volatility as the outcome variables, respectively. Consistent with the higher concentration, the riskiness

of the portfolios goes up, not down, for investors lagging the market.

VI Robustness Tests

In this section, we conduct different robustness tests. First, in all our analyses we include assume 3-month returns, both for the portfolio and the market. Thus, the relative underperformance measures are also calculated based on the preceding 3 months. To show that the results also hold for alternative return periods, we perform the baseline specification in Equation 2 using year-to-date returns, and then a rolling window of the preceding 12 months. Panels A and B of Table X present the results of this specifications, respectively. We find that the effects remain similar.

Next, we show that the results remain consistent for a different common Israeli index for the market return. As explained in Section II.B, the two main market indexes in Israeli are the TA35 and TA125. As throught the paper we use TA35, in Panel C of Table X we perform the baseline specification in Equation 2 changing the market index from TA35 to TA125.

Finally, wealth accumulation of the wealthy investors during the COVID period might affect their trading behavior differently from other investors and differently from other periods. To this end, in Panel D of Table X we exclude this period from the baseline specification in Equation 2, and show that the results remain robust.

VII Conclusion

In this paper, we provide evidence that retail investors exhibit external reference-dependent behavior, treating the market index as a salient benchmark for their portfolio performance. Specifically, when investors "falling behind" the market, they react by increasing trading activity, shifting toward riskier securities, and adjusting their overall portfolio risk. This response is asymmetric, reinforcing the idea that investor behavior aligns with prospect theory and loss aversion—with stronger risk adjustments occurring in the domain of perceived losses rather than gains. Moreover, market saliency and visibility play a central role in shaping these behaviors, as investors primarily react to indexes prominently displayed on trading platforms, instead of more appropriate but less visible benchmarks.

Our findings have important implications for behavioral finance, market dynamics, and financial advisory practices. The evidence suggests that investors are not merely responding to absolute portfolio performance but are actively benchmarking themselves against the market and their peers, leading to potential excessive risk-taking in bull markets due to fear of missing out. This behavior may contribute to greater volatility and mispricing in financial markets, particularly in assets with lottery-like payoffs, such as high-beta and high-skewness stocks. Future research could explore how investment platforms, financial advisors, and media narratives shape investor perceptions of reference points and whether interventions—such as personalized benchmarks or behavioral nudges—can help mitigate excessive risk-taking induced by external reference dependence.

References

- Abel, Andrew B, 1990, Asset prices under habit formation and catching up with the Joneses, *American Economic Review* 80, 38–42.
- Aristidou, Andreas, Aleksandar Giga, Suk Lee, and Fernando Zapatero, 2022, Rolling the skewed die: Economic foundations of the demand for skewness and experimental evidence, *Journal of Financial Economics, Forthcoming*.
- Babcock, Linda, Xianghong Wang, and George Loewenstein, 1996, Choosing the wrong pond: Social comparisons in negotiations that reflect a self-serving bias, *The Quarterly Journal of Economics* 111, 1–19.
- Baker, Malcolm, Xin Pan, and Jeffrey Wurgler, 2012, The effect of reference point prices on mergers and acquisitions, *Journal of Financial Economics* 106, 49–71.
- Bali, Turan G, Nusret Cakici, and Robert F Whitelaw, 2011, Maxing out: Stocks as lotteries and the cross-section of expected returns, *Journal of financial economics* 99, 427–446.
- Bali, Turan G, A Doruk Gunaydin, Thomas Jansson, and Yigitcan Karabulut, 2023, Do the rich gamble in the stock market? Low risk anomalies and wealthy households, *Journal of Financial Economics* 150, 103715.
- Barberis, Nicholas, and Ming Huang, 2008, Stocks as lotteries: The implications of probability weighting for security prices, *American Economic Review* 98, 2066–2100.
- Barberis, Nicholas, and Wei Xiong, 2012, Realization utility, *Journal of Financial Economics* 104, 251–271.
- Boyer, Brian, Todd Mitton, and Keith Vorkink, 2010, Expected idiosyncratic skewness, *The Review of Financial Studies* 23, 169–202.
- Brunnermeier, Markus K, and Jonathan A Parker, 2005, Optimal expectations, *American Economic Review* 95, 1092–1118.
- DeMarzo, Peter M, Ron Kaniel, and Ilan Kremer, 2004, Diversification as a public good: Community effects in portfolio choice, *The Journal of Finance* 59, 1677–1716.
- Frazzini, Andrea, 2006, The disposition effect and underreaction to news, *The Journal of Finance* 61, 2017–2046.
- Frydman, Cary, 2015, Relative wealth concerns in portfolio choice: neural and behavioral evidence, *Available at SSRN 2561083*.
- Genesove, David, and Christopher Mayer, 2001, Loss aversion and seller behavior: Evidence from the housing market, *The quarterly journal of economics* 116, 1233–1260.
- George, Thomas J, and Chuan-Yang Hwang, 2004, The 52-week high and momentum

- investing, The Journal of Finance 59, 2145–2176.
- Grinblatt, Mark, and Bing Han, 2005, Prospect theory, mental accounting, and momentum, *Journal of financial economics* 78, 311–339.
- Haisley, Emily, Romel Mostafa, and George Loewenstein, 2008, Subjective relative income and lottery ticket purchases, *Journal of Behavioral decision making* 21, 283–295.
- Hart, Oliver, and John Moore, 2008, Contracts as reference points, *The Quarterly journal of economics* 123, 1–48.
- Hong, Harrison, Wenxi Jiang, Na Wang, and Bin Zhao, 2014, Trading for status, *The Review of Financial Studies* 27, 3171–3212.
- Huddart, Steven, Mark Lang, and Michelle H Yetman, 2009, Volume and price patterns around a stock's 52-week highs and lows: Theory and evidence, *Management Science* 55, 16–31.
- Kahneman, Daniel, and Amos Tversky, 1979, Prospect theory: An analysis of decision under risk, *Econometrica* 47, 363–391.
- Kirchler, Benjamin, and Erich Kirchler, 2024, Social Reference Points Shape Decisions under Uncertainty, Available at SSRN 4843941.
- Kirchler, Michael, Florian Lindner, and Utz Weitzel, 2018, Rankings and risk-taking in the finance industry, *Journal of Finance* 73, 2271–2302.
- Kőszegi, Botond, and Matthew Rabin, 2006, A model of reference-dependent preferences, The Quarterly Journal of Economics 121, 1133–1165.
- Li, Jun, and Jianfeng Yu, 2012, Investor attention, psychological anchors, and stock return predictability, *Journal of financial economics* 104, 401–419.
- Mitton, Todd, and Keith Vorkink, 2007, Equilibrium underdiversification and the preference for skewness, *The Review of Financial Studies* 20, 1255–1288.
- Peng, Lin, and Wei Xiong, 2006, Investor attention, overconfidence and category learning, Journal of Financial Economics 80, 563–602.
- Puri, Manju, and David T Robinson, 2007, Optimism and economic choice, *Journal of financial economics* 86, 71–99.
- Roussanov, Nikolai, 2010, Diversification and its discontents: Idiosyncratic and entrepreneurial risk in the quest for social status, *The Journal of Finance* 65, 1755–1788.
- Schwerter, Florian, 2024, Social Reference Points and Risk Taking, Management Science 70, 616–632.
- Shefrin, Hersh, and Meir Statman, 1985, The disposition to sell winners too early and ride losers too long: Theory and evidence, *The Journal of finance* 40, 777–790.

Table I: Summary Statistics

	Mean	SD	p10	p50	p90
Portfolios	Wican	סט	pro	poo	p50
Portfolio lags market	0.576	0.494	0	1	1
Market return–Portfolio return	0.022	0.079	-0.048	0.013	0.051
Portfolio return (3 month)	0.009	0.43	-0.044	0.018	0.052
Portfolio beta (only for stocks and equity funds)	1.18	1.34	0.21	1.07	4.12
Total assets in portfolio	14.36	15	1.74	10.26	31.65
Share of stocks	0.337	0.358	0	0.168	1
Share of bonds	0.09	0.22	0	0	0.444
Share of mutual funds	0.447	0.375	0	0.427	1
Share of ETFs	0.086	0.151	0	0	0.25
Share of stocks, equity mutual funds, equity ETFs	0.546	0.281	0.093	0.464	1
Portfolios of US households (from SCF)					
Share of stocks	0.355				
Share of bonds	0.061				
Share of pooled investment funds	0.524				
Trades at the account-month level					
Probability to trade	0.129	0.143	0.007	0.092	0.354
Trade size	0.149	0.234	0.003	0.113	0.32
Num. trades	1.96	2.62	0.18	0.85	4.73
Trades at the asset level					
Probability to buy	0.522	0.499	0	1	1
Trade size	0.083	0.205	0.003	0.021	0.238
Salary (NIS) and age, 2022					
Net monthly salary per account	15714	17480	1921	12386	31683
Net monthly salary in Israel	7615			6143	
per employee					
Age	51	18	34	54	71
Number of account-holders					
One-owner accounts	35.94				
Two-owner accounts	58.03				
Three-owner accounts	4.31				
Four-owner accounts	1.42				
More than four owners	0.3				

Table II: Investor's response to underperforming portfolio

The table presents the results of the panel regressions for the propensity to perform a trade (columns 1,2) and trade size scaled by the investor's lagged non-retirement financial assets only for months in which the investor performs any trade (columns 3,4). Portfolio lags market is the main explanatory variable, estimated as a dummy equals 1 if the portfolio 3-month return lags the corresponding market return, and 0 otherwise. In Columns 2,4, we control for the 3-month return and volatility of the portfolio. In all Columns, we include account and year-month fixed effects. Standard errors (in parentheses) are clustered by account. *p < .1; **p < .05; ***p < .01.

	(1)	(2)	(3)	(4)
	Tr	ade	Trad	e size
Portfolio lags market	0.038***	0.023***	0.978***	0.693***
	(0.014)	(0.007)	(0.170)	(0.152)
Portfolio return		0.028***		0.496^{***}
		(0.009)		(0.107)
Portfolio volatility		0.002***		0.021***
		(0.000)		(0.006)
Account FE	YES	YES	YES	YES
Year-month FE	YES	YES	YES	YES
Observations	6,959,263	6,959,263	3,624,630	3,624,630
Adjusted R^2	.333	.346	.329	.339

Table III: Underperforming portfolio and investor's risk-taking

Panels A,B present the results of the panel regressions for an indicator whether the investor purchases or sells the security. The main explanatory variable in Panel A is a dummy equals 1 if the portfolio 3-month return lags the corresponding market return, and 0 otherwise. In Panel B the main explanatory variable is the difference between the market and the portfolio returns. In Panel C, the outcome variable is the trade size scaled by lagged non-retirement financial assets. The main explanatory variable in Columns 1,3 is a dummy equals 1 if the portfolio 3-month return lags the corresponding market return, and 0 otherwise. Columns 2,4 present the results for the difference between the market and the portfolio returns. In all Panels, Risky security is a dummy variable taking the value of 1 if the security is a stock or an equity fund (mutual fund or ETF), and zero if the security is a bond or a bond fund. High beta security, an indicator whether the risky security's beta is in the top tercile. In Column 1,2, we control for portfolio-level time-varying characteristics as in Equation 1. The security control variables include an indicator whether its return is lower than the portfolio return (Columns 1,2) and the difference between the security and portfolio 3-month returns (Columns 3,4); the 3-month return of the security. We include account, time and security fixed effects in Columns 1,3, and security and account-time fixed effects in Columns 2,4. Standard errors (in parentheses) are clustered by account. *p < .1; **p < .05; ***p < .01.

Panel A							
	(1)	(2)	(3)	(4)			
	Buy						
Portfolio lags market	0.078***	0.080***					
X Risky security	(0.017)	(0.018)					
Portfolio lags market			0.045^{***}	0.048***			
X High beta security			(0.007)	(0.009)			
Portfolio lags market	0.152^{***}	0.156***	0.155^{***}	0.151^{***}			
	(0.018)	(0.021)	(0.029)	(0.031)			
High beta security	0.136	0.131	0.134	0.137			
	(0.667)	(0.333)	(0.321)	(0.329)			
Controls	YES	YES	YES	YES			
Account FE	YES		YES				
Date FE	YES		YES				
Security FE	YES	YES	YES	YES			
Account-date FE		YES		YES			
Observations	83,810,603	73,753,338	55,929,736	49,218,173			
Adjusted R^2	.584	.838	.584	.832			

Table III - Continued

Panel .	В	
---------	---	--

	(1)	(2)	(3)	(4)
		B	uy	
Market return–Portfolio return	0.054***	0.057***		
X Risky security	(0.017)	(0.018)		
Market return–Portfolio return			0.035***	0.036^{***}
X High beta security			(0.007)	(0.009)
Market return–Portfolio return	0.048^{***}	0.049^{***}	0.052^{***}	0.045^{***}
	(0.018)	(0.019)	(0.020)	(0.013)
High beta security	0.136	0.131	0.134	0.137
	(0.667)	(0.333)	(0.321)	(0.329)
Controls	YES	YES	YES	YES
Account FE	YES		YES	
Date FE	YES		YES	
Security FE	YES	YES	YES	YES
Account-date FE		YES		YES
Observations	83,810,603	73,753,338	55,929,736	49,218,173
Adjusted R^2	.584	.838	.584	.832

Panel	\mathbf{C}

	(1)	(2)	(3)	(4)		
	()	Trade Size				
Portfolio lags market	0.125***	0.129***				
X High beta security	(0.017)	(0.018)				
Portfolio lags market	0.351^{***}	0.359^{***}				
	(0.018)	(0.021)				
Market return–Portfolio return			0.021***	0.024^{***}		
X High beta security			(0.007)	(0.009)		
Market return–Portfolio return			0.075^{***}	0.079^{***}		
			(0.021)	(0.023)		
High beta security	0.156	0.161	0.174	0.177		
	(0.667)	(0.333)	(0.321)	(0.329)		
Controls	YES	YES	YES	YES		
Account FE	YES		YES			
Date FE	YES		YES			
Security FE	YES	YES	YES	YES		
Account-date FE		YES		YES		
Observations	55,929,736	49,218,173	55,929,736	49,218,173		
Adjusted R^2	.544	.856	.544	.854		

Table IV: Share of Risky Holdings

Panel A presents the results of the panel regressions at the security level for an indicator whether the investor purchases or sells the security as in Panel A of Table III. We split investors into three groups by the share of holding of risky securities (stocks, equity mutual funds, equity ETFs) out of total holdings. Portfolio lags market is a dummy variable equals 1 if the portfolio 3-month return lags the corresponding market return, and 0 otherwise. Risky security is a dummy variable taking the value of 1 if the security is risky, and zero if the security is a bond or a bond fund. High beta security, an indicator whether the risky security's beta is in the top tercile. We include account, time and security fixed effects. Panel B presents the results of the panel regressions at the portfolio level for the share of risky securities in the portfolio (Columns 1-3) and the overall beta of the portfolio (Columns 4-6). The rest of the variables are the same as in Table II. We include account and year-month fixed effects. In both Panels, standard errors (in parentheses) are clustered by account. *p < .1; **p < .05; ***p < .01.

Panel A									
	Buy								
	(1)	(2)	(3)	(4)	(5)	(6)			
	${<}30\%$	30%- $60%$	${>}60\%$	${<}30\%$	30%- $60%$	${>}60\%$			
Portfolio lags market	0.08***	0.079***	0.076***						
X Risky security	(0.018)	(0.017)	(0.015)						
Portfolio lags market				0.027^{*}	0.042^{**}	0.061^{***}			
X High beta security				(0.015)	(0.021)	(0.020)			
Portfolio lags market	0.149^{***}	0.150^{***}	0.153^{***}	0.159^{***}	0.154^{***}	0.152^{***}			
	(0.027)	(0.026)	(0.021)	(0.036)	(0.034)	(0.031)			
Controls	YES	YES	YES	YES	YES	YES			
Account FE	YES	YES	YES	YES	YES	YES			
Date FE	YES	YES	YES	YES	YES	YES			
Security FE	YES	YES	YES	YES	YES	YES			
Observations	18,643,245	$13,\!423,\!137$	23,863,354	18,643,245	$13,\!423,\!137$	23,863,354			
Adjusted R^2	.585	.585	.587	.585	.586	.589			

Panel B							
	%	Risky Asse	ts	F	Portfolio Bet	a	
	(1)	(2)	(3)	(4)	(5)	(6)	
	< 30%	30%- $60%$	>60 $%$	< 30%	30%-60%	>60 $%$	
Portfolio lags market	0.054***	0.033*	0.011	0.033***	0.025**	0.021***	
	(0.021)	(0.018)	(0.012)	(0.013)	(0.011)	(0.008)	
Controls	YES	YES	YES	YES	YES	YES	
Account FE	YES	YES	YES	YES	YES	YES	
Year-month FE	YES	YES	YES	YES	YES	YES	
Observations	1,098,263	$924,\!404$	1,583,963	1,098,263	924,404	1,583,963	
Adjusted R^2	.328	.321	.320	.428	.429	.433	

Table V: Different Periods of the Market

Panel A presents the results of the panel regressions for the trade size of a security scaled by lagged non-retirement financial assets as in Panel C of Table III, splitting between periods with positive and negative 3-month market returns. In Panel A, *High beta security* is a dummy whether the security's beta is in the top tercile. In Panel B, the measure of the security's risk is *High vol security*, an indicator whether the security's return volatility is in the top tercile. Columns 1,3 in Panel A and 2,5 in Panel B include periods with positive market returns. Columns 2,4 in Panel A and 3,6 in Panel B include periods with negative market returns. In both Panels, the rest of the variables are the same as Table III. We include account, time and security fixed effects. Standard errors (in parentheses) are clustered by account. *p < .1; **p < .05; ***p < .01.

Panel A								
	Trade Size							
	(1)	(4)						
	Market	Market	Market	Market				
	up	down	up	down				
Portfolio lags market X High beta security	0.136***	0.111***						
	(0.038)	(0.041)						
Portfolio lags market	0.408***	0.264***						
	(0.021)	(0.025)						
Market return–Portfolio return			0.025^{***}	0.016**				
X High beta security			(0.008)	(0.008)				
Market return–Portfolio return			0.087^{***}	0.057^{**}				
			(0.023)	(0.025)				
Controls	YES	YES	YES	YES				
Account FE	YES	YES	YES	YES				
Date FE	YES	YES	YES	YES				
Security FE	YES	YES	YES	YES				
Observations	35,173,096	20,756,640	35,173,096	20,756,640				
Adjusted R^2	.539	.572	.538	.571				

Table V - Continued

Panel B

		1 and D						
		Trade Size						
	(1)	(2)	(3)	(4)	(5)	(6)		
	Full	Market	Market	Full	Market	Market		
	Sample	up	down	Sample	up	down		
Portfolio lags market	0.155***	0.191***	0.102***					
X High vol security	(0.012)	(0.013)	(0.009)					
Portfolio lags market	0.342^{***}	0.438^{***}	0.184^{***}					
	(0.028)	(0.034)	(0.031)					
Market–Portfolio return				0.022^{***}	0.027^{***}	0.016^{***}		
X High vol security				(0.002)	(0.005)	(0.002)		
Market return–Portfolio				0.073***	0.088***	0.047^{***}		
return				(0.010)	(0.021)	(0.013)		
Controls	YES	YES	YES	YES	YES	YES		
Account FE	YES	YES	YES	YES	YES	YES		
Date FE	YES	YES	YES	YES	YES	YES		
Security FE	YES	YES	YES	YES	YES	YES		
Observations	55,929,736	35,173,096	20,756,640	55,929,736	35,173,096	20,756,640		
Adjusted R^2	.581	.607	.720	.585	.618	.719		

Table VI: Underperforming vs. outperforming portfolios

Panel A presents the results of the baseline panel regressions for the trade size of a security scaled by lagged non-retirement financial assets as in Panel C of Table III. We perform the analysis using Security return-Portfolio return, the difference between the security and portfolio 3-month returns, as the explanatory variable, splitting periods when the market outperforms the portfolio (Columns 1,3,5) and when the market underperforms the portfolio (Columns 2,4,6). Columns 1-2 include the full sample, Columns 3-4 present only periods with positive 3-month market returns, and Columns 5-6 only the negative ones. We include bank account, time and security fixed effects.

Panel B presents the results of the panel regressions in Equation 1 for the investor's portfolio beta (Column 1-2), investor's volatility (Columns 3-4), and number of securities in the portfolio (Columns 5-6). We focus only on a subsample of outperforming investors that previously were underperforming. *Portfolio outperforms market* is a dummy equals 1 if the portfolio 3-month return currently outperforms the TA35 3-month return, and the portfolio underperformed the market in the past. The control variables are as defined in Table II. We include bank account and time fixed effects.

Standard errors (in parentheses) are clustered by account. *p < .1; **p < .05; ***p < .01.

Panel A						
			Trade	Size		
	(1)	(2)	(3)	(4)	(5)	(6)
	Full S	Sample	Mark	et Up	Market	Down
Market-Portfolio return>0	0.025***		0.031***		0.021***	
X High beta security	(0.003)		(0.008)		(0.005)	
$Market-Portfolio\ return<0$		0.012***		0.014^{***}		0.006***
X High beta security		(0.002)		(0.003)		(0.002)
Controls	YES	YES	YES	YES	YES	YES
Account FE	YES	YES	YES	YES	YES	YES
Date FE	YES	YES	YES	YES	YES	YES
Security FE	YES	YES	YES	YES	YES	YES
Observations	35,832,471	20,097,265	21,842,493	13,330,603	13,989,977	6,766,663
Adjusted R^2	.571	.538	.556	.530	.588	.564

Panel B								
	(1)	(2)	(3)	(4)	(5)	(6)		
	Portfol	io beta	Portfolio	volatility	Num. se	ecurities		
Portfolio outperforms market	-0.013***		-0.007***		0.021***			
	(0.004)		(0.002)		(0.006)			
Market return–Portfolio return		-0.002**		-0.002*		0.003^{**}		
		(0.001)		(0.001)		(0.001)		
Controls	YES	YES	YES	YES	YES	YES		
Account FE	YES	YES	YES	YES	YES	YES		
Year-month FE	YES	YES	YES	YES	YES	YES		
Observations	407,771	407,771	407,771	407,771	407,771	407,771		
Adjusted R^2	.423	.421	.416	.414	.304	.302		

Table VII: Index reform

This table presents the results of the panel regressions for the transaction amount scaled by lagged portfolio value around the market index reform. After is a dummy equal 1 for the month of the reform and the following month (i.e., February and March 2017), and zero for the preceding two months. Stock added is an indicator whether the stock was added to the TA35 or TA125 as part of the reform. The rest of the variables are the same as in Table II. We include bank account, time and security fixed effects. Standard errors (in parentheses) are clustered by account. *p < .1; **p < .05; ***p < .01.

		Trade Size				
	(1)	(2)	(3)	(4)	(5)	(6)
Portfolio lags market	0.205***	0.238***	0.209***			
X After	(0.031)	(0.033)	(0.027)			
Portfolio lags market		0.099^{***}				
X After X High beta security		(0.041)				
Portfolio lags market			0.028***			
X After X Stock added			(0.009)			
Market return–Portfolio return				0.047^{***}	0.052^{***}	0.050^{***}
X After				(0.012)	(0.017)	(0.011)
Market return–Portfolio return					0.026***	
X After X High beta security					(0.006)	
Market return–Portfolio return						0.011***
X After X Stock added						(0.004)
Controls	YES	YES	YES	YES	YES	YES
Account FE	YES	YES	YES	YES	YES	YES
Date FE	YES	YES	YES	YES	YES	YES
Security FE	YES	YES	YES	YES	YES	YES
Observations	4,863,455	4,863,455	4,863,455	$4,\!863,\!455$	4,863,455	4,863,455
Adjusted R^2	.657	.658	.657	.661	.662	.661

Table VIII: Market index saliency

This table presents the results of the panel regressions for the transaction amount scaled by lagged portfolio value using alternative market indexes (instead of TA35). All the other variables are the same as in Table II. In Panel A, we use the Nasdaq100 as the market index. In Panel B, we use the S&P500 as the market index in Columns 1-2 and the MSCI World Index in Columns 3-4. In Panel C, we use the DAX as the market index in Columns 1-2, and the FTSE in Columns 3-4. Columns 3-4 in Panel A and all Columns in Panels B,C include only accounts with portfolios with above median share of foreign assets. In all Panels, we include account, time and security fixed effects. Standard errors (in parentheses) are clustered by account. *p < .1; **p < .05; ***p < .01.

Panel A - Market index: NASDAQ100

	Trade Size				
	(1)	(2)	(3)	(4)	
	Full s	ample	Portfolio	os with>	
			foreign	assets	
Portfolio lags market (alt)	0.011		0.082***		
X High beta (alt) security	(0.146)		(0.020)		
Portfolio lags market (alt)	0.048		0.147^{***}		
	(0.113)		(0.029)		
Market (alt) return–Portfolio return		0.003		0.015^{***}	
X High beta (alt) security		(0.077)		(0.004)	
Market (alt) return–Portfolio return		0.010		0.033***	
		(0.094)		(0.011)	
Controls	YES	YES	YES	YES	
Account FE	YES	YES	YES	YES	
Date FE	YES	YES	YES	YES	
Security FE	YES	YES	YES	YES	
Observations	55,929,736	55,929,736	7,169,592	7,169,592	
Adjusted R^2	.477	.474	.481	.480	

Table VIII - Continued

Panel B - Market indexes not presented on the platform: S&P500, MSCI

	Trade Size			
	(1)	(2)	(3)	(4)
	S&I	P500	MSCI	World
			Inc	dex
Portfolio lags market (alt)	0.041*		0.011	
X High beta (alt) security	(0.023)		(0.028)	
Portfolio lags market (alt)	0.101^*		0.058	
	(0.056)		(0.072)	
Market (alt) return–Portfolio return		0.011^*		0.004
X High beta (alt) security		(0.006)		(0.009)
Market (alt) return–Portfolio return		0.024*		0.015
		(0.013)		(0.018)
Controls	YES	YES	YES	YES
Account FE	YES	YES	YES	YES
Date FE	YES	YES	YES	YES
Security FE	YES	YES	YES	YES
Observations	7,169,592	$7,\!169,\!592$	7,169,592	7,169,592
Adjusted R^2	.474	.472	.452	.450

Panel C - Market indexes not presented on the platform: DAX, FTSE

	Trade Size				
	(1)	(2)	(3)	(4)	
	D.	AX	FT	SE	
Portfolio lags market (alt)	0.009		0.011		
X High beta (alt) security	(0.016)		(0.013)		
Portfolio lags market (alt)	0.042		0.049		
	(0.065)		(0.077)		
Market (alt) return–Portfolio return		0.001		0.002	
X High beta (alt) security		(0.011)		(0.007)	
Market (alt) return–Portfolio return		0.011		0.012	
		(0.014)		(0.013)	
Controls	YES	YES	YES	YES	
Account FE	YES	YES	YES	YES	
Date FE	YES	YES	YES	YES	
Security FE	YES	YES	YES	YES	
Observations	7,169,592	7,169,592	7,169,592	7,169,592	
Adjusted R^2	.431	.429	.438	.437	

Table IX: Alternative explanations

Panels A,B present the results of the panel regressions for the transaction amount scaled by lagged portfolio value as a function of the security's risk as in Table III. In Panel A, we include an additional interaction term *Portfolio return X High beta security* as a control variable. In Columns 2,3, we split between positive vs. negative 3-month investor portfolio returns. In Column 4, we focus on losing portfolios in periods of negative 3-month market returns. In Panel B, we add to the baseline specification the return of the security since its purchase price (Column 1), the return from the 52-week high (Column 2) and 52-week low (Column 3). We include bank account, time and security fixed effects. Panel C presents the results of the panel regressions at the account level as in Table II. The outcome variables are the number securities in portfolio (Column 1), portfolio HHI calculated based on number of securities (Column 2), portfolio HHI calculated based on security holding amounts (Column 3), the overall portfolio beta (Column 4) and overall portfolio volatility (Column 5). In Column 4, we exclude portfolio beta from the control variables.

In all Panels, standard errors (in parentheses) are clustered by account. p < .1; *p < .05; *p < .01.

Panel A - Domains of winnings and losses

		r	Trade Size	
	(1)	(2)	(3)	(4)
	All	Portfolio	Portfolio	Portfolio return<0
		$_{\rm return}>0$	${\rm return}{<}0$	& Market return<0
Portfolio lags market	0.109***	0.112***	0.106***	0.108***
X High beta security	(0.022)	(0.029)	(0.021)	(0.023)
Portfolio return	0.203**	0.188***	0.227^{***}	0.209^{***}
X High beta security	(0.032)	(0.035)	(0.034)	(0.039)
Portfolio lags market	0.357^{***}	0.418^{***}	0.262^{***}	0.314^{***}
	(0.054)	(0.056)	(0.051)	(0.077)
Portfolio return	0.523^{***}	0.576***	0.519^{***}	0.547^{**}
	(0.143)	(0.159)	(0.164)	(0.201)
High beta security	0.083	0.106	0.041	0.057
	(0.521)	(1.295)	(0.634)	(0.768)
Controls	YES	YES	YES	YES
Account FE	YES	YES	YES	YES
Date FE	YES	YES	YES	YES
Security FE	YES	YES	YES	YES
Observations	55,929,736	32,838,517	23,091,219	7,843,737
Adjusted R^2	.544	.576	.659	.745

Table IX - Continued

Panel B - Other Reference Points

			Trade Size		
	(1)	(2)	(3)	(4)	(5)
	Incl.	Incl.	Incl.	Incl. TA35	Incl. TA35
	Purchase	52-week	52-week	52-week	All Time
	Price	High	Low	High	High
Portfolio lags market	0.124***	0.123***	0.123***	0.120***	0.119***
X High beta security	(0.019)	(0.019)	(0.022)	(0.028)	(0.032)
Additional control	YES	YES	YES	YES	YES
Controls	YES	YES	YES	YES	YES
Account FE	YES	YES	YES	YES	YES
Date FE	YES	YES	YES	YES	YES
Security FE	YES	YES	YES	YES	YES
Observations	35,584,952	55,929,736	55,929,736	55,929,736	55,929,736
Adjusted R^2	.544	.544	.544	.547	.549

Panel C - Diversification and Portfolio Risk

	T DIVE	i sincacioni a	na i or mon	O I CIBIX	
	(1)	(2)	(3)	(4)	(5)
	Num	Portfolio	Portfolio	Portfolio	Portfolio
	securities	$_{ m HHI}$	$_{ m HHI}$	Beta	Volatility
		(securities)	(amounts)		
Portfolio lags market	-0.064***	0.007^*	0.007^*	0.027**	0.018*
X High beta security	(0.019)	(0.004)	(0.004)	(0.013)	(0.010)
Controls	YES	YES	YES	YES	YES
Account FE	YES	YES	YES	YES	YES
Year-month FE	YES	YES	YES	YES	YES
Observations	3,624,630	3,624,630	3,624,630	3,624,630	3,624,630
Adjusted R^2	.306	.392	.401	.427	.418

Table X: Robustness tests

This table presents robustness tests for the results of the panel regressions in Table III at the security level. In Panel A, Portfolio lags market, Market return-Portfolio return and the rest of the variables are calculated over year-to-date instead of 3-month period. In Panel B, all the variables are calculated over the preceding 12 months. In Panel C, we use the TA125 as the market index instead of TA35, and adjust the beta to the TA125. The rest of the variables are the same as in Table III. In Panel D, we rerun the specification in Table III only for the years 2014-2019. We include bank account, time and security fixed effects. We include bank account, time and security fixed effects in Columns 1,3 in all Panels, and security and investor-time fixed effects in Columns 2,4 of every Panel. Standard errors (in parentheses) are clustered by account. *p < .1; **p < .05; ***p < .01.

Panel A - Alternative return period: YTD

ranei A - Aiternative return period. 11D					
	(1)	(2)	(3)	(4)	
		Trade	e Size		
Portfolio lags market	0.151***	0.157***			
X High beta security	(0.016)	(0.018)			
Portfolio lags market	0.417^{***}	0.431^{***}			
	(0.013)	(0.015)			
Market return–Portfolio return			0.027^{***}	0.033***	
X High beta security			(0.005)	(0.006)	
Market return–Portfolio return			0.094***	0.099***	
			(0.026)	(0.027)	
Controls	YES	YES	YES	YES	
Account FE	YES		YES		
Date FE	YES		YES		
Security FE	YES	YES	YES	YES	
Account-date FE		YES		YES	
Observations	48,358,563	42,555,538	48,358,563	42,555,538	
Adjusted R^2	.501	.844	.502	.848	

Table X - Continued

Panel B - Alternative return period: 12-month

	(1)	(2)	(3)	(4)
		Trade	e Size	
Portfolio lags market	0.133***	0.136***		
X High beta security	(0.024)	(0.026)		
Portfolio lags market	0.377***	0.378***		
	(0.036)	(0.039)		
Market return–Portfolio return			0.023***	0.025^{***}
X High beta security			(0.007)	(0.008)
Market return–Portfolio return			0.081***	0.083**
			(0.034)	(0.037)
Controls	YES	YES	YES	YES
Account FE	YES		YES	
Date FE	YES		YES	
Security FE	YES	YES	YES	YES
Account-date FE		YES		YES
Observations	41,812,795	36,794,822	41,812,795	36,794,822
Adjusted R^2	.528	.849	.528	.849

Panel C - Alternative market index: TA125

	(1)	(2)	(3)	(4)
		Trade	e Size	
Portfolio lags market	0.127***	0.131***		
X High beta security	(0.017)	(0.028)		
Portfolio lags market	0.354***	0.362***		
	(0.014)	(0.027)		
Market return–Portfolio return			0.024^{***}	0.027^{***}
X High beta security			(0.005)	(0.005)
Market return–Portfolio return			0.074***	0.078***
			(0.022)	(0.024)
Controls	YES	YES	YES	YES
Account FE	YES		YES	
Date FE	YES		YES	
Security FE	YES	YES	YES	YES
Account-date FE		YES		YES
Observations	55,929,736	49,2018,173	55,929,736	49,2018,173
Adjusted R^2	.502	.840	.501	.838

 $\label{eq:Table X - Continued}$ Panel D - only years 2014-2019

Tanci D - only years 2014-2015					
-	(1)	(2)	(3)	(4)	
		Trade	e Size		
Portfolio lags market	0.123***	0.128***			
X High beta security	(0.023)	(0.025)			
Portfolio lags market	0.351***	0.359***			
	(0.028)	(0.032)			
Market return-Portfolio return			0.020***	0.023**	
X High beta security			(0.005)	(0.007)	
Market return–Portfolio return			0.076**	0.079**	
			(0.026)	(0.027)	
Controls	YES	YES	YES	YES	
Account FE	YES		YES		
Date FE	YES		YES		
Security FE	YES	YES	YES	YES	
Account-date FE		YES		YES	
Observations	$35,\!422,\!166$	31,171,510	35,422,166	31,171,510	
Adjusted R^2	.583	.871	.582	.872	