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Abstract

Benchmark-linked capital flows increase firms’ CAPM βs, thereby raising managers’ per-
ceived cost of equity and reducing investment. Using exogenous variation from Russell and
S&P 500 reconstitutions, we show that inclusion in a benchmark stock index increases a
stock’s CAPM β. Managers interpret the higher β as a higher cost of equity and reduce in-
vestment. Consistent with this mechanism, benchmark inclusion also raises the perceived
cost of equity among stock analysts and regulators. Industries with larger increases in βs
due to benchmarking have accumulated less capital over the past two decades. Benchmark-
induced changes in the cross-section of CAPM βs do not cancel out but affect aggregate
investment because higher βs fall on many firms with high investment elasticities, while
lower βs benefit a few large but inelastic firms. This mechanism can account for the majority
of the missing investment puzzle.
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1 Introduction

The U.S. economy has exhibited two concurrent trends over the past 25 years: weak firm invest-
ment relative to high equity valuations and a structural shift toward benchmark-linked capital
allocation. The growth of passive index funds and the evaluation of active managers against
benchmarks mean that investors today allocate a large share of capital based on stocks’ mem-
bership in benchmark indices, as opposed to fundamentals.1 This inelastic demand affects asset
prices, leading to price dislocations (Shleifer, 1986, Harris and Gurel, 1986), increased volatil-
ity (Greenwood and Thesmar, 2011, Ben-David et al., 2018), and excess comovement (Vijh, 1994,
Barberis et al., 2005, Greenwood, 2008) for stocks in benchmark indices.

Our paper documents a novel mechanism through which benchmarking affects firm behav-
ior. We use exogenous variation in the fraction of a stock’s market capitalization held by bench-
marked funds to show that greater exposure to benchmark-linked capital flows increases the
stock’s CAPM β estimate (i.e., β̂). Firm managers interpret this increase in β̂ as a higher cost
of equity and reduce investment. Importantly, changes in firm fundamentals do not drive this
effect. Instead, we argue that managers rely on textbook guidance to set discount rates using
the CAPM without accounting for the effects of benchmarking on asset prices. By increasing the
perceived cost of equity, benchmarking lowers investment at the firm, industry, and aggregate
level. Our study thus provides new insights into how the growing trend of benchmark-linked
investing affects real outcomes.

We illustrate the mechanism by introducing two frictions into a textbook model of firm in-
vestment. First, benchmarking affects asset prices in a way that creates wedges in firms’ discount
rates. The inelastic demand of benchmarked funds for benchmark constituent stocks raises their
price, but also increases their comovement. These forces have opposing effects on the discount
rate: the increased stock price lowers the implied discount rate and incentivizes investment, while
greater comovement increases exposure to market risk and discourages investment. As such, the
total effect of benchmarking on discount rates and optimal investment is ambiguous. Second,
we assume that managers are boundedly rational and behave exactly as they are taught to in
corporate finance textbooks and MBA classrooms: they use the weighted average cost of capital
implied by the CAPM to discount cash flows.
1In 2023, $17.9 trillion in assets were benchmarked to S&P Dow Jones’ and $10.5 trillion to FTSE-Russell’s U.S.
indices. The Investment Company Institute (2024) reports that passive funds held 18% of the U.S. stock market in
2023. Chinco and Sammon (2024) put the total passive share at twice that number, accounting for institutions with
internally managed index portfolios and quasi-indexing active managers (see also Cremers and Petajisto, 2009).
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Theassumption that managers practice what textbooks teach is key to ourmechanism.2 Man-
agers who set discount rates using their stocks’ CAPM β̂ observe an increase in comovement after
benchmark inclusion and infer that their cost of equity has increased. However, the price effect
does not enter the CAPM-based discount rate they compute. The failure to fully internalize the
effects of benchmarking leads managers to perceive an increase in their cost of capital. Conse-
quently, benchmarking has an unambiguously negative effect on firm investment.

We test our model’s predictions using Pavlova and Sikorskaya’s (2023) benchmarking inten-
sity (BMI) measure. BMI equals the fraction of a stock’s market capitalization owned by funds
benchmarked to a given index. BMI covers around 90% of mutual fund and ETF assets and cap-
tures the heterogeneous inelastic demand that a stock attracts from those funds because of its
benchmark membership. We combine the BMI measure with CAPM β̂s, market data from CRSP,
accounting data from Compustat, and data on managers’ perceived cost of capital from Gormsen
and Huber (2025). The combined data allow us to answer three questions: Does benchmarking
affect CAPM β̂s? Do benchmarking-induced changes in β̂s affect managers’ perceived cost of
equity? Do benchmarking-induced changes in β̂s affect firm investment?

We start by establishing a set of novel stylized facts about U.S. stocks included in bench-
mark indices. Over the past 25 years, CAPM β̂s and BMI increased in lockstep. The average
stock’s BMI increased from 8.3% in 1998 to 18.3% in 2018, while the (equal-weighted) average β̂
rose by around 0.36. The large increase in the equal-weighted β̂ is offset by a decrease in the
β̂ of the 50 largest stocks, on average. Assuming a 6% equity risk premium, the increase in the
equal-weighted β̂ translates into an increase of more than 200 basis points (bps) in the CAPM-
implied cost of equity. Importantly, changes in fundamental risk or leverage do not drive this
increase. Instead, BMI and β̂ vary systematically across the market capitalization ranks used in
the construction of benchmark indices. For example, the average levels of BMI and β̂ change
around the assignment thresholds for the Russell 1000 and 3000. This phenomenon has tangible
consequences for corporate policy: we find that firms accounting for over 70% of annual capital
expenditures in Compustat experienced an increase in β̂. In the cross-section, firms with higher
BMI invest less and issue less equity, suggesting that the growth of benchmark-linked investing
and the institutional design of benchmark indices impact real and financial decisions.

Next, we link exogenous changes in BMI to changes in CAPM β̂ using a continuous difference-
in-differences design around Russell reconstitution. The Russell indices are widely used equity
benchmarks and reconstitute annually based on market capitalization ranks. Changes in Russell
2For example, corporate finance textbooks by Brealey et al. (2023), Berk and DeMarzo (2023), and Ross et al. (2016).
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benchmark membership around inclusion cutoffs create exogenous variation in BMI (Pavlova
and Sikorskaya, 2023). The difference-in-differences approach does not require that benchmark
inclusion is random or common support in covariate levels across stocks. It only requires that
treated and control stocks’ β̂s would have evolved similarly absent changes in BMI. We use a
similar strategy around S&P 500 and MSCI ACWI benchmark inclusion as a robustness check.

Our baseline specifications address potential threats to the validity of the Russell identifica-
tion strategy discussed in the literature. We use end-of-May, not June, total market capitalization
to avoid selection bias (Chang et al., 2015, Appel et al., 2024). To approximate Russell’s proprietary
market caps, we followBen-David et al. (2019) and use publicly available databaseswhich allow us
to accurately predict benchmark assignment and mitigate mismeasurement concerns (Glossner,
2024). We restrict our sample to stocks within 300 ranks around the Russell benchmark cutoffs
to ensure we capture changes in BMI due to reconstitution (Pavlova and Sikorskaya, 2023). We
include controls for the banding policy introduced by Russell after 2007 (Appel et al., 2019).3 We
additionally control for stocks’ momentum and liquidity. We include high-dimensional industry-
by-time fixed effects that remove time-varying unobserved heterogeneity to ensure that our es-
timates are well-identified. Lastly, we conduct a series of exclusion restriction tests. We find no
evidence that changes in BMI correlate with changes in a firm’s risk exposure (either through
peer-firm β̂s or firm-level risk measures), its access to debt markets (via financial friction mea-
sures or CDS spreads), its governance scores, or its likelihood of facing an activist investor.

An exogenous 10 percentage points (p.p.) increase in BMI raises CAPM β̂s by 0.25, on average.
Using 21-day β̂s, we find that the increase occurs immediately after benchmark reconstitution,
consistent with a change in comovement rather than fundamentals. When using longer-horizon
rolling-window β̂s, for example, 252 days or 156weeks, the effect gradually builds up as older data
points leave the sample window andmight go unnoticed for a substantial amount of time. We find
stronger effects for stocks that were previously not in a benchmark when they join the Russell
3000. In those cases, β̂s increase by 0.32, on average. In contrast, larger stocks transitioning from
the Russell 1000 to the Russell 2000 or joining the S&P 500 exhibit a smaller average increase in
β̂ of around 0.15 for a 10 p.p. shock to BMI. The effects are symmetric, with stocks experiencing
a decrease in BMI showing a corresponding decrease in β̂. We find similar magnitudes in panel
regressions where we regress CAPM β̂ on benchmarking intensity in levels. Notably, we find
no effect of the institutional ownership ratio (IOR) on β̂s, suggesting that the effect is specific to
benchmark-linked ownership.
3In 2007, Russell introduced capitalization bands around index cutoffs to ignore minor ranking shifts and reduce
turnover during reconstitution. For details on the Russell’s reconstitution methodology see Appendix F.1.

4



The increase in CAPM β̂ arises from greater exposure to benchmark-linked passive flows.
Cross-sectional changes in β̂s correlate with net flows into passive mutual funds and ETFs, but
not with net flows into active mutual funds. Stocks that transition from the Russell 1000 to
the Russell 2000 index further support this mechanism: prior work shows the Russell 1000/2000
transition shifts ownership from active to passive funds without changing overall institutional
ownership (Chang et al., 2015, Appel et al., 2016). The key is cross-sectional dispersion in BMI.
The institutional design of benchmark indices segments the market (e.g., Russell 1000 vs. Russell
2000, value vs. growth), creating unequal ownership by benchmark-linked investors and, in turn,
unequal exposure to correlated flows (Buffa and Hodor, 2023, Pavlova and Sikorskaya, 2023).
Cross-sectional differences in exposure to passive flows raise covariances and measured β̂ for
high BMI stocks relative to others. If all passive funds indexed to a single comprehensive market
benchmark such as the CRSP value-weighted index, BMI would be uniform across stocks, index
trading would shift prices proportionally, and we would not observe heterogeneous changes in
β̂ tied to rank cutoffs or style buckets.

The increase in firms’ CAPM-implied cost of equity is large and persistent. Our baseline re-
sults imply an increase of 150 bps, assuming an equity risk premium of 6%. The effect of increased
exposure to benchmark-linked capital flows on β̂ persists for years and only partially reverses.
Even after 7 years, we find that the cost of equity is still around 100 bps higher than before the
exogenous BMI increase. If managers rely on the CAPM to allocate capital, this persistent change
in β̂s may have long-lasting effects on firm investment behavior and capital accumulation.

In contrast, the effects of an exogenous BMI increase on the implied cost of capital (ICC) de-
rived from stock prices are small and short-lived.4 We observe an initial decrease of 21 bps in the
ICC, equivalent to a 3.0% price increase, close to estimates of Pavlova and Sikorskaya (2023) and
Chang et al. (2015). However, we find that the price effect reverts within six months. We also find
no evidence that firms exploit the short-term price dislocations by issuing equity, likely because
investors perceive equity issuance as a negative signal. Consistent with this interpretation, we
provide qualitative evidence from earnings call transcripts that managers view benchmark inclu-
sion as a corporate milestone for investor relations, not as a mechanism for lowering the cost of
equity or altering capital structure. This evidence suggests that benchmarking primarily impacts
managers’ perceived cost of equity through persistent changes in CAPM β̂s rather than through
short-term stock price dislocation.
4The Implied Cost of Capital (ICC) is the internal rate of return that equates a firm’s stock price to the present value
of expected cash flows.We estimate the ICC by averaging the dividend discount models of Easton (2004) and Ohlson
and Juettner-Nauroth (2005) and the residual income models of Gebhardt et al. (2001) and Claus and Thomas (2001).
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An exogenous increase in BMI results in higher perceived costs of capital and hurdle rates
by managers in the Gormsen and Huber (2025) data, consistent with managers using the CAPM.
We use changes in BMI around Russell benchmark reconstitution as an instrumental variable
(IV) to identify the effect of changes in CAPM β̂ on a firm’s perceived cost of capital. Our IV
estimates imply a perceived equity risk premium of around 3.3%, close to the average equity risk
premium of 3.6% reported by CFOs in the survey of Graham and Harvey (2018). We provide
ancillary evidence from earnings calls that support this mechanism, as managers explicitly state
that they use the CAPM to determine their cost of equity. We provide corroborating evidence that
benchmarking-induced changes in CAPM β̂ change the perceived cost of equity in five additional
datasets: Independent stock analysts of Morningstar and Value Line, as well as sell-side analysts
covered by I/B/E/S, all report a higher perceived cost of equity after an exogenous increase in
BMI. Similarly, the authorized cost of equity of regulated monopolies such as public utilities and
railroads rises when their BMI increases. Across these additional datasets, perceived equity risk
premia range from 4% to 12% per year.

Our second set of results investigates how managers and firms react to increases in their
stock’s benchmarking intensity and CAPM β̂. For a manager who follows textbook guidance to
set investment policies using the weighted average cost of capital (WACC) implied by the CAPM,
an increase in β̂ raises the cost of capital and should lead to a decline in investment.

In OLS panel regressions, higher benchmarking intensity predicts lower investment rates.
A 20 p.p. higher BMI is associated with a 25% reduction in the investment rate relative to the
sample mean. This negative association holds after including time-by-industry and firm fixed
effects, as well as controls for size, leverage, cash flow, and firm age. When we include Peters and
Taylor’s (2017) proxy for Tobin’s q, the BMI coefficient shrinks by 50% but remains statistically
and economically significant. The attenuation of the BMI coefficient, combined with q’s positive
effect on investment, implies that BMI is negatively correlated with Tobin’s q. The correlation
suggests that the market partially prices the higher β̂ due to higher BMI into q. At the same time,
BMI remains an economically significant predictor, suggesting that managers perceive and act
on a steeper slope in the security market line than observed in the data. This is consistent with
Gormsen and Huber (2024), who document wedges between managers’ perceived cost of capital
and market-implied cost of capital.

The dynamic response of investment to an increase in BMI is quantitatively consistent with
a perceived cost of equity increase. We use Jordà’s (2005) local projections (LP) to estimate the
impulse response of investment rates to a year-on-year increase in BMI. A 10 p.p. year-on-year
increase in BMI gradually lowers investment by a cumulative 7.8% over the next 10 years. The
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implied semi-elasticity of investment with respect to the cost of capital is –6.4, close to estimates
of –5 in Koby and Wolf (2020) and –7.2 in Zwick and Mahon (2017). We find that the negative
investment response is significantly larger for firms that rely more on equity financing. Firms
with higher equity shares, greater equity constraints, younger firms, and those with longer-lived
assets all exhibit a significantly larger decline in investment following a BMI increase. The OLS
response of investment to an increase in BMI is thus quantitatively consistent with a perceived
cost of equity increase. We perform a placebo test using changes in the institutional ownership
ratio (IOR) as a regressor and find a small positive effect on investment. Since β̂s are not affected
by IOR, the placebo test provides evidence that the negative effect of BMI on investment is not
driven by institutional ownership per se, but is specific to increased ownership by benchmarked
mutual funds and ETFs. The placebo test also provides ancillary evidence that the negative effect
of BMI on investment is not driven by omitted variables related to increased institutional own-
ership (e.g., changes in corporate governance, McCahery et al., 2016). However, year-on-year
changes in BMI are subject to endogeneity concerns. We therefore turn to exogenous variation
in BMI created by benchmark reconstitution next.

Using exogenous variation in BMI from Russell reconstitution and S&P 500 additions, we find
that higher BMI results in lower investment and increased payouts to shareholders. Our first nat-
ural experiment leverages the exogenous variation in BMI from Russell benchmark reconstitution
to instrument for the endogenous relationship between β and investment in local projections.5

A benchmarking-induced increase in a firm’s CAPM β̂ leads to a large and persistent reduction
in investment. Specifically, a 100 bps increase in the CAPM-implied cost of equity results in
a cumulative decrease in capital expenditures by 10.0% over a six-year period. Rather than in-
vesting, firms initially accumulate cash and later increase shareholder payouts. The estimated
treatment effects are consistent with managers gradually updating discount rates (Gormsen and
Huber, 2025): the effects are negligible at short horizons, grow steadily over time, and become
statistically significant after three years. Our second natural experiment studies additions to the
S&P 500 in a difference-in-differences framework. We find that firms added to the S&P 500 see a
similar increase in β̂. Moreover, we find that inclusion leads to a gradual but significant decline
in investment, alongside a sharp and sustained increase in net payouts. Initially funded from cash
reserves, firms increasingly sustain the payouts by reducing investment. These results corrobo-
rate our central hypothesis: increases in CAPM β̂s due to benchmarking raise firms’ perceived
cost of equity, leading managers to reduce investment and increase shareholder distributions.
5The annual reconstitution of Russell benchmarks makes it difficult to use a difference-in-difference event study
design at yearly frequency, we therefore use local projections with instrumental variables.
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To test whether these firm-level effects aggregate, we conduct an industry-level analysis us-
ing long-difference IV regressions on over 100 manufacturing industries from the NBER-CES
dataset. We instrument the change in industry-level CAPM β̂s with the corresponding change in
BMI. Our findings indicate that from 1998 to 2016, higher benchmarking-induced β̂s significantly
reduced capital accumulation by 9.9%, or about 0.5% annually. A key feature of this approach is
that it nets out intra-industry reallocations, such as business stealing. The fact that we still ob-
serve a significant net effect suggests the presence of industry-wide spillovers. For instance,
managers may learn from the asset prices of other firms in the industry (Foucault and Fresard,
2014, Dessaint et al., 2019, Kim et al., 2024), or the effects may propagate to private firms that
benchmark their cost of equity against publicly traded peers.6 The results are robust to control-
ling for industry pre-trends, exposure to the China shock (Autor et al., 2013), and the inclusion
of sector fixed effects that restrict identification to within-sector variation.

Lastly, we show that the effects of cross-sectional changes in β̂ on aggregate investment do
not cancel out, even though the value-weighted β is one by construction. The changes in the
cross-section of β̂ brought on by the rise of benchmark-linked investing thus contribute to the
“missing investment puzzle” which Gutiérrez and Philippon (2017) document.

The intuition that any aggregate effects of changes in the cross-section of βs cancel out rests
on two assumptions that the data reject: First, it assumes that market capitalization weights
and investment share weights coincide. Empirically, the weights can differ substantially. For
instance, the financial sector averages 17.3% of U.S. market capitalization yet only 3.5% of capi-
tal expenditures. Second, it assumes a uniform elasticity of investment with respect to the cost
of capital across firms. However, a large body of literature shows that the investment of large
firms is relatively inelastic to changes in financing costs, while the investment of smaller firms is
highly elastic (Gertler and Gilchrist, 1994, Chaney et al., 2012, Zwick and Mahon, 2017, Crouzet
and Mehrotra, 2020, Cloyne et al., 2023, Best et al., 2024). We show that the covariance between
firms’ investment elasticities and the distribution of β̂ shocks determines the aggregate effect. A
few large firms receive a subsidy through lower β̂, while most face higher β̂. Because large firms
adjust little, their subsidy cannot offset the contraction of smaller firms, so aggregate investment
falls even though the value-weighted market β equals one. We embed this mechanism in a cal-
ibrated general equilibrium model with heterogeneous firms facing capital adjustment costs to
show that it remains robust to changes in aggregate prices.

Benchmarking raises the perceived cost of equity enough to explain 58% of themissing invest-
6For evidence on public to private firm information spillovers, see Badertscher et al. (2019) and Yan (2024).
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ment puzzle. We construct a counterfactual WACC for the average firm that removes the effects
of benchmarking on CAPM β̂s and find that the counterfactual WACC is on average 120 bps
lower than the actual WACC. Adjusting Tobin’sQ for the difference in actual and counterfactual
WACC (similar to Gormsen and Huber, 2024) implies investment rates that close roughly half of
the missing-investment gap

We organize the paper as follows. The remainder of this section discusses the related litera-
ture. Section 2 describes the data. Section 3 documents several new facts about the cross-section
of benchmark stocks. Section 4 illustrates our mechanism in an MBA-textbook model of firm in-
vestment. Section 5 establishes a link between benchmarking, CAPM β̂s, and the perceived cost
of equity. Section 6 tests whether benchmarking-induced changes in β̂ affect real outcomes at
the firm level. Section 7 tests for industry-wide effects of benchmarking on investment. Section 8
examines whether benchmarking affects aggregate investment. Section 9 concludes.

Related Literature We challenge the conventional wisdom that benchmark-linked investing
benefits the real economy by lowering firms’ cost of equity (e.g., Kashyap et al., 2021). This paper
builds its argument through three main contributions. First, we show that capital flows tied to
benchmark indices have unequal consequences for the cross-section of stocks: they inflate the
CAPM β̂s of most firms, raising their perceived cost of equity, while a few large firms experience
a decrease. Second, we show that increasing β̂s pass through to corporate policy, as managers
rely on the CAPM to guide their investment decisions. Third, we provide evidence that this mech-
anism has aggregate consequences, resulting in lower aggregate investment and highlighting a
significant friction introduced by the shift toward benchmark-linked investing.

First, we show that benchmark‐linked investing alters the covariance structure of returns
in a way that systematically affects CAPM β̂s, holding fundamentals, leverage, and cash-flow
risk constant. This contribution advances the index-inclusion and comovement literature that
finds price dislocations (Shleifer, 1986, Chang et al., 2015, Pavlova and Sikorskaya, 2023), higher
volatility (Ben-David et al., 2018), and higher comovement around benchmark events (Vijh, 1994,
Barberis et al., 2005, Greenwood, 2008).7 Our contribution differs from the existing literature in
three respects. We extend event-time studies to a long-horizon and cross-sectional analysis of
CAPM β̂s: we document that measured β̂ rose in lockstep with benchmarking intensity over
the past 25 years. We show that this increase affects stocks unevenly: most experience a rise in
their CAPM β̂, while only a small number of the largest firms exhibit a decline. Finally, we find
7See also Pindyck and Rotemberg (1993), Campbell and Mei (1993), Kumar and Lee (2006), Boyer (2011), Antón and
Polk (2014), Koch et al. (2016), Da and Shive (2018), Buffa and Hodor (2023), Fang et al. (2024), Kim (2025).
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that net flows into passive mutual funds and ETFs drive these changes in β̂s.8 We thus provide
evidence for our and other recent theories that posit increased asset price comovement due to the
structural shift to benchmark-linked, passive investing (Chabakauri and Rytchkov, 2021, Baruch
and Zhang, 2022, Bond and Garcia, 2022, Davies, 2024).9

Second, we show that these benchmark-linked β̂ increases affect the real economy because
practitioners set discount rates using the CAPM.10 We provide evidence that higher benchmark-
ing intensity raises the perceived cost of equity and lowers investment. Relative to Kashyap et al.
(2021), who predict more investment due to the price effect associated with the inelastic demand
for benchmark constituents, we identify a behavioral channel: managers follow textbook guid-
ance to use the CAPM and fail to internalize the effects of benchmarking on asset prices. We argue
this behavior reflects managers’ bounded rationality. This bounded rationality may arise because
managers believe that markets are efficient and therefore ignore the effects of non-fundamental
demand on prices, use sparse models that focus on variables perceived to be of first-order im-
portance (Gabaix, 2014), face limited information-processing capacity (Sims, 2003), or rely on
heuristics to simplify complex decision-making (Tversky and Kahneman, 1974).11

Managers infer from the higher β̂ that their cost of equity has increased and reduce invest-
ment. By linking the effect of passive flows to how practitioners use the CAPM in investment
decisions, we shift the passive investing debate from questions of statistical price efficiency to rev-
elatory efficiency (Bond et al., 2012). We show that benchmarking degrades the informativeness
of covariance signals that guide real allocation, complementing recent evidence on information
production and arbitrage frictions associated with benchmark-linked investing (Brogaard et al.,
2019, Coles et al., 2022, Sammon, 2024, Sikorskaya, 2024).

Third, we establish aggregate implications and show that the changes in the cross-section
of β can account for a large share of the missing investment puzzle (Gutiérrez and Philippon,
8On the importance of flows, see Gabaix et al. (2006), Coval and Stafford (2007), Greenwood andThesmar (2011), Lou
(2012), Chien et al. (2012), Gabaix and Koijen (2021), Ben-David et al. (2021), Dou et al. (2022), Koijen et al. (2024).

9For other interesting theories of passive investing see Stambaugh (2014), Bhattacharya and O’Hara (2018), Jiang
et al. (2025), Brown et al. (2021), Gârleanu and Pedersen (2022), Schmalz and Zame (2024), Cong et al. (2024).

10See Graham and Harvey (2001), Da et al. (2012), Jacobs and Shivdasani (2012), Krüger et al. (2015), Berk and
Van Binsbergen (2016), Barber et al. (2016), Jagannathan et al. (2016), Dessaint et al. (2020), Mukhlynina and Nyborg
(2020), Graham (2022), Cho and Salarkia (2022), Décaire and Graham (2024), Jensen (2024), Kontz (2025).

11For evidence thatmanagerial behavioral biases influence investment policies, see, e.g., research onmanagerial over-
confidence (Malmendier and Tate, 2005, Landier and Thesmar, 2008, Hirshleifer et al., 2012, Malmendier and Tate,
2015), managerial overprecision andmiscalibration (Ben-David et al., 2013, Barrero, 2022, Boutros et al., 2025), man-
agerial overreaction (Dessaint and Matray, 2017), lifetime experiences of managers (Malmendier et al., 2011, Ben-
melech and Frydman, 2015, Dittmar and Duchin, 2016, Schoar and Zuo, 2017), and managerial education (Bertrand
and Schoar, 2003, Malmendier and Tate, 2005, Custódio and Metzger, 2014).
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2017).12 We show that the covariance between firms’ investment elasticities and the distribu-
tion of β̂ shocks determines the aggregate effect. A few large firms receive a subsidy through
lower β̂, while most face higher β̂. Because large firms adjust little, their subsidy cannot offset
the contraction of smaller firms, so aggregate investment falls even though the value-weighted
market β equals one. We embed this mechanism into a general equilibrium model with hetero-
geneous firms (Khan and Thomas, 2008, Winberry, 2021), calibrated using micro moments. Our
results confirm that the aggregate implications of benchmarking survive in general equilibrium.
While Farhi and Gourio (2018) also attribute weak investment to a rise in perceived risk, our pa-
per provides a novel, micro-founded channel for this increase: inflated CAPM β̂s generated by
benchmark-linked investing.

2 Data and Sample

We use four main data sources in our empirical analysis: (1) Pavlova and Sikorskaya’s (2023)
measure of benchmarking intensity, (2) U.S. stock market data from CRSP, (3) firm-level data from
S&P’s Compustat and other sources, and (4) data on the perceived cost of capital of managers,
stock analysts, and regulators. Our sample period covers 1998 to 2018, the period for which the
BMI measure is available. In some cases, we extend the sample back to earlier years when data
availability allows. We provide variable definitions and corresponding data sources in Appendix J.

Benchmarking Intensity Our measure of a stock’s exposure to benchmark-linked capital
flows is the monthly benchmarking intensity (BMI) measure of Pavlova and Sikorskaya (2023),
available from 1998 to 2018. BMI captures the amount of capital that is invested in a firm’s stock
inelastically (i.e. without regard to a risk-return trade-of) due to the stock’s inclusion in bench-
mark indices. Pavlova and Sikorskaya (2023) define the BMI for stock i in month t as

BMIi,t =
J∑

j=1

AUM benchmarked to index jt ×weight of stock i in index jt
Market capitalization of stock it

(1)

where AUM are assets under management of mutual funds and ETFs benchmarked to index j.
Pavlova and Sikorskaya (2023) construct the BMI measure from 34 indices that account for about
90% of mutual fund and ETF assets. The nine Russell indices are a primary driver of this measure,
contributing about 73% of the average stock’s BMI, followed by S&P (11%) and CRSP (8%) indices.
12See Peters and Taylor (2017), Alexander and Eberly (2018), Andrei et al. (2019), Barkai (2020), Gutiérrez et al. (2021),
Gala et al. (2022), Crouzet and Eberly (2023), Cho et al. (2025), Corhay et al. (2025)
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Following the literature, we exploit plausibly exogenous variation in BMI generated by the
mechanical rules of the annual Russell reconstitution (Pavlova and Sikorskaya, 2023, Sikorskaya,
2024, Chaudhry, 2025). Changes in BMI around the reconstitution date satisfy the relevance
condition because they predict portfolio rebalancing of benchmarked investors. The exclusion
restriction requires that index membership be conditionally exogenous. The literature finds this
assumption valid after one controls for the market-cap rank used to determine index assign-
ment.13 To approximate Russell’s proprietarymarket capitalization ranking, we followBen-David
et al. (2019) and use publicly available databases that allow us to accurately predict index assign-
ments and mitigate mismeasurement concerns (Glossner, 2024). Appendix Table F13 shows that
our constructed ranking variable predicts assignment into Russell 1000 and 2000 with high accu-
racy. Following Appel et al. (2019), we account for the specifics of the Russell’s banding policy
introduced in 2007. The banding policy only affects the Russell 1000/2000 cutoff; the Russell 3000
cutoff has no banding policy (see Appendix F.1 for details on the Russell indices).

A key advantage of the BMI measure over an index inclusion indicator variable is its gran-
ularity. Changes in BMI capture the total, heterogeneous change in benchmarked capital when
a stock switches not only between broad market indices (e.g., Russell 1000 and 2000) but also
between style indices (e.g., Value and Growth). Pavlova and Sikorskaya (2023) note that this
is important since a stock moving from the Russell 1000 Value to the Russell 2000 Value index
experiences different capital flows than a stock moving between Growth indices.

Stock Market Data Our sample consists of common equities listed on the NYSE, AMEX, and
NASDAQ. We obtain stock market data from the Center for Research in Security Prices (CRSP),
additional asset pricing variables from Jensen et al. (2023), and estimates of stocks’ implied cost
of capital (ICC) from Eskildsen et al. (2024). We primarily use CAPM β estimates from Welch
(2022). The estimates use an exponentially weighted least squares regression of a firm’s win-
sorized daily excess return on the market excess return (using the CRSP value-weighted index).
We additionally estimate rolling-window CAPM β̂s using 21 daily, 252 daily, 156 weekly, or 36
monthly returns against the CRSP value-weighted index. We explicitly state when we use these
alternative estimates in place of the primary Welch (2022) β̂s. Appendix Table A1 reports sum-
mary statistics for the for the monthly BMI-CAPM β̂ panel covering 1998m1 to 2018m8.

Firm-level Data We use annual data for publicly listed companies incorporated and located in
the U.S. from Compustat from 1998 to 2018. In the Compustat sample, we exclude financial firms

13Note that BMI, for value-weighted indices, can be expressed as BMIi,t =
∑

j

AUMj,t×1{Index Membership}i,j,t

Market Capitalization of Indexj,t
, which

only depends on i through index membership and thus requires that membership be conditionally exogenous
(Pavlova and Sikorskaya, 2023).
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(SIC codes 6000-6999) and firms in regulated industries (4900-4999), as well as firms with less
than $50m in total assets or less than $10m in sales (in 2017 dollars). Firms must have at least five
years of consecutive data such that we can estimate long-term effects.14 We winsorize the data at
the 2.5% and 97.5% level. We use additional firm- or industry-level data in specific analyses and
state the source upon its first appearance. Appendix Table A5 reports summary statistics for the
for the annual Compustat investment panel covering 1998 to 2018.

Data on Perceived Cost of Equity We source data on managers’ perceived cost of capital and
hurdle rates from Gormsen and Huber (2025).15 We additionally obtain stock analysts’ perceived
cost of equity from Morningstar Direct, perceived riskiness of stocks from Value Line, subjective
return expectations from I/B/E/S, and data on regulators’ authorized cost of equity for utilities
and railroads (for details see Appendix E).

3 Novel Stylized Facts About Benchmark Stocks

We establish three novel stylized facts for the time-series and cross-section of U.S. stocks included
in benchmark stock indices. Over the past 25 years, CAPM β̂s and benchmarking intensity have
increased in lockstep. The average stock’s benchmarking intensity increased from 8.3% in 1998 to
18.3% in 2018, while the equal-weighted average CAPM β̂ rose by around 0.36. Firms representing
over 70% of annual capital expenditures in Compustat experienced a weighted average increase
in β̂ of around 0.1, corresponding to a CAPM-implied expected return increase of 60 bps under a
6% equity risk premium.

Importantly, changes in fundamental risk or leverage do not explain this increase. Instead,
we find systematic differences in CAPM β̂s across market capitalization ranks used in the con-
struction of benchmark indices like the Russell indices. For example, Russell 2000 stocks have,
on average, 0.12 higher β̂s than Russell 1000 stocks. Moreover, the average level of β̂ changes
close to the mechanical cutoffs which determine index membership.

This phenomenon has tangible consequences for corporate policies: we find that, in the cross-
section, firms with higher benchmarking intensity invest less and issue less equity, on average.
These novel facts suggest that the growth of benchmark-linked investing and the institutional
design of benchmark indices impact real and financial decisions.

To visualize these facts across market capitalization ranks, we design our empirical strategy
14We verify that these sample restriction do not materially affect our results, cf. Table 6 and Appendix Table A7.
15For details on the data see Gormsen and Huber’s project website https://www.costofcapital.org/.
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to mirror the construction of the Russell benchmark indices. We fix each stock’s market capital-
ization rank at the end of May and plot the variables of interest over the subsequent year. This
timing allows us to visualize the effects of Russell benchmark membership, as end-of-May mar-
ket capitalization ranks hold no other inherent economic meaning. We group stocks into bins
of approximately 100 consecutive ranks and compute equal-weighted means for BMI, CAPM β̂,
investment rate, and net equity issuance. By absorbing time fixed effects we isolate the cross-
sectional relationship between these variables and a firm’s rank within each period. We plot the
conditional means for pre- and post-2003 periods using the nonparametric binscatter methods of
Cattaneo et al. (2024).

To visualize the cross-sectional relationship between BMI and CAPM β̂, investment, and
equity issuance, we additionally plot the binned scatters of the following regressions in Figure 2,

Outcomei,t+1 = αt,Rank Bucket + γ BMIi,t + εi,t+1,

in which αt,Rank Bucket are time fixed effects interacted with rank buckets (defined every 250 market
capitalization ranks). This specification allows us to flexibly control for time-varying differences
across the market capitalization spectrum and ensures that the cross-sectional relationship be-
tween BMI and the outcome variable is not driven by firm size.

Fact 1: Benchmarking Intensity positively correlates with CAPM β estimates. Figure 1
plots BMI and β̂s across market capitalization ranks in May, separately for the pre-2003 and
post-2002 periods. The figure reveals two patterns. First, both benchmarking intensity and β̂s
increased after 2002.16 This rise occurred almost across the entire market capitalization spec-
trum. For stocks in the Russell 2000 (ranks 1000–3000) average BMI almost doubled from 9.7% to
17.8%, while the average β̂ rose 46%, from 0.81 to 1.18. Changes in BMI and β̂s highly correlate
(ρ=0.92) across market capitalization ranks (see Appendix Figure A3). Second, the figure displays
changes in both series that align with Russell benchmark construction rules. Average BMI and β̂s
increase around the 1000th rank, the threshold between the Russell 1000 and 2000.17 Both series
then decline near the Russell 3000 cutoff. These patterns suggest that the institutional design of
benchmark indices affects a stock’s estimated market risk.
16The sample is split after 2002 because BMI increases substantially from that point onward. This increase is likely
linked to the 2001 Economic Growth and Tax Relief Reconciliation Act, which increased contribution limits on
defined contribution plans, and the 2003 Jobs and Growth Tax Relief Reconciliation Act, which reduced dividend
and capital gain tax rates. Mainardi (2025) documents that both reforms led to substantial net capital flows into
mutual funds beginning in 2002.

17Figure 3 shows jumps at the threshold: Russell 2000 stocks have 6 p.p. higher BMI and 0.12 higher β̂s, on average.
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Figure 1: Benchmarking Intensity and CAPM β̂ vs. Market Capitalization Ranks in May
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Notes: This figure plots binned scatters of benchmarking intensity and CAPM β̂ against May market capitalization
ranks. Each bin reflects the equal-weighted average of 100 ranks. We identify the conditional means from cross-
sectional variation by absorbing year-month fixed effects. Outlined bins use 1998-2002 data; filled bins use 2003-2018.
Shaded areas show 95% confidence bands with standard errors clustered by stock and year-month.

The widespread increase in individual stock β̂s shown in Figure 1 does not imply that the
value-weighted market β changes, which equals 1 by construction. We apply an Olley-Pakes-
style decomposition to the value-weighted market β to formalize these compositional dynamics:

Value-weighted CAPM βt ≡
N∑
i=1

ωi,t β̂i,t = β̄t + cov
(
ωi,t, β̂i,t

)
= 1 (2)

in which β̄t is the equal-weighted, cross-sectional average and ωi,t is the market-cap weight of
stock i. Since Figure 1 shows that the equal-weighted average increased to above 1, the identity
in (2) can only hold if the covariance term changed from positive to negative.18 This increase
implies a structural shift in the cross-section of market risk: whereas larger stocks historically
had higher CAPM β̂s, this relationship has inverted, and smaller stocks now exhibit higher β̂s.

Table 1 provides evidence for this inversion. We split stocks into five non-overlapping size
groups based on NYSE market-cap breakpoints at each month-end. The odd-numbered columns
report regressions of the average CAPM β̂s of each group on an indicator for the post-2002 period.
The average β̂ of the 50 largest firms declined from 1.07 to 0.94 after 2002, while the β̂s for almost
18Appendix Figure A2 shows equal-weighted average β̂s from 1985 to 2022, which increase to above 1 around 2003.
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Table 1: Time-Series Regression of CAPM β̂ by Size Group on Average Benchmarking Intensity
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Avg. Top-50 β̂ Avg. Mega-Cap β̂ Avg. Large-Cap β̂ Avg. Small-Cap β̂ Avg. Micro-Cap β̂

1{Year > 2002} -0.13∗∗∗ 0.04∗∗ 0.19∗∗∗ 0.43∗∗∗ 0.40∗∗∗
(0.03) (0.02) (0.03) (0.05) (0.05)

BMIt -0.02∗∗∗ 0.01∗∗∗ 0.03∗∗∗ 0.06∗∗∗ 0.06∗∗∗
(0.01) (0.01) (0.01) (0.01) (0.01)

Constant 1.07∗∗∗ 1.18∗∗∗ 1.00∗∗∗ 0.89∗∗∗ 0.92∗∗∗ 0.66∗∗∗ 0.81∗∗∗ 0.45∗∗∗ 0.56∗∗∗ 0.18∗
(0.03) (0.09) (0.02) (0.04) (0.03) (0.04) (0.04) (0.12) (0.03) (0.10)

Avg. Mkt. Cap. Share 0.42 0.34 0.16 0.06 0.02
Avg. Cap. Exp. Share 0.27 0.40 0.20 0.09 0.04
Avg. # Stocks 50 269 589 950 1768
Observations 360 249 360 249 360 249 360 249 360 249
Adjusted R2 0.38 0.28 0.13 0.27 0.55 0.62 0.69 0.49 0.65 0.55

Notes: This table reports estimates from regressions of the form: CAPM β̂j,t = αj + γBMIt + εj,t, where β̂j,t is the equal-
weighted average of stocks in the jth size group in month t. BMIt is the equal-weighted average BMI of all stocks in month
t. Size groups are non-overlapping, based on NYSE breakpoints, at each month-end. Top-50 are the 50 largest firms. Mega-
caps are the remainder above the 80th percentile, large-caps above the 50th, small-caps above the 20th, and micro-caps
above the 1st. β̂ sample from 1989 to 2018. BMI is available only from 1998 to 2018. Avg. capital expenditure in Compustat
from 1998 to 2018. Newey–West standard errors in parentheses with ⌊1.3

√
T ⌋ lags. * p<0.10, ** p<0.05, *** p<0.01.

all smaller size groups increased to above 1. Note that the market weight of the 50 largest firms
is sufficient to offset the increase in β̂s across the thousands of smaller stocks. However, the
table also reports the average share of annual capital expenditure of each group. Firms which
experienced β̂ increases account for over 70% of capital expenditures in Compustat. The even-
numbered columns show that a higher market-wide BMI predicts a lower average β̂ for the 50
largest firms but a higher β̂ for all other groups, with the effect strengthening for smaller firms.19

Greater benchmarking intensity is associated with an increase of up to 300 bps in the CAPM-
implied cost of equity. Panel (a) of Figure 2 translates the CAPM β̂s into excess return space by
multiplying them by a constant equity risk premium of 6%, allowing for an intuitive interpretation
of the economic significance. The figure shows a significant increase in the CAPM-implied cost
of equity, especially for small- and mid-cap firms. Panel (b) confirms that CAPM β̂s correlate
with BMI in the cross-section. The estimation includes year-month-by-rank-bucket fixed effects
to ensure that the positive correlation is not due to differences in firm size. A 10 p.p. higher BMI
predicts a β̂ increase of 0.25, corresponding to a 150 bps higher cost of equity.

Changes in capital structure do not explain the rise in CAPM β̂s. If leverage were the driver,
unlevered asset β̂s would remain stable. Instead, Appendix Figure A4 shows that asset β̂s mirror
19We do not analyze in detail why the largest firms’ CAPM β̂s declined. We conjecture, building on Jiang et al. (2025),
that passive fund inflows disproportionately elevate their prices, thus amplifying their idiosyncratic returns.
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Figure 2: New Facts About The Cross-Section of Benchmark Stocks
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Notes: This figure plots binned scatters of CAPM β̂s multiplied by a 6% equity risk premium, investment rate (capital
expenditure scaled by lagged gross property, plant, equipment), and net equity issuance (scaled by lagged total assets),
against market capitalization ranks and benchmarking intensity (BMI). Panels (a), (c), and (e) show bins of approx.
150 ranks; outlined bins use 1990–2002 data, filled bins 2003-2018. Shaded regions denote 95% confidence bands with
standard errors clustered by stock and year. Panels (b), (d), and (f) show 25 quantile-spaced bins, constructed after
absorbing year-by-rank-bucket fixed effects, with buckets defined every 250 market capitalization ranks, using the
1998-2018 sample for which BMI is available.
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equity β̂s; for Russell 2000 stocks, the average asset β̂ rose by 0.29. Appendix Figure A4 also
extends the sample to 1975 and confirms these patterns are not a Dot-Com artifact. Appendix
Figure A1 shows that the increase is robust to estimating β at daily, weekly, or monthly frequency.

The increase in CAPM β̂s also does not reflect greater cash flow risk. Comparing market-
based asset β̂s to cash flow βs estimated from accounting data (Cohen et al., 2009), Appendix
Figure A4 shows that cash flow βs did not change, while asset β̂s rise sharply after 2003. This
divergence indicates that higher CAPM β̂s reflect a market-based shift rather than changes in
firms’ fundamentals. Appendix Figure A6 shows that this finding is robust to using consumption
growth βs (Kim et al., 2024) as an alternative measure of fundamental risk exposure.

Fact 2: Benchmarking Intensity negatively correlateswith investment. Panels (c) and (d)
of Figure 2 show that firms more exposed to benchmarking invest less. We measure investment
rates as annual capital expenditures scaled by lagged gross property, plant, and equipment. Panel
(c) shows a broad-based decline in investment rates since the 2000s relative to earlier decades.
The decline is most pronounced for Russell 2000 firms, whose average investment rate fell by
8.5 p.p. (from 24.1% to 15.6%), compared to only 3.6 p.p. for the 100 largest firms. Panel (d) displays
a strong negative correlation between investment rates and BMI. The estimation includes year-
by-rank-bucket fixed effects to ensure that the negative correlation is not due to differences in
firm size. This negative correlation suggests that the growth of benchmarking contributes to the
aggregate decline in investment rates (Gutiérrez and Philippon, 2017).20

Fact 3: Benchmarking Intensity negatively correlates with net equity issuance. Panel
(e) and (f) of Figure 2 show that firms more exposed to benchmarking issue less equity. We
measure net equity issuance as the difference between equity issued and repurchased, scaled by
lagged total assets. Panel (e) plots net issuance by market capitalization rank and shows that the
post-2002 decline is broad-based, affecting large, mid-, and small-cap firms alike. Panel (f) of Fig-
ure 2 confirms this relationship directly by plotting net issuance against benchmarking intensity:
net equity issuance and BMI negatively correlate. Firms in the highest BMI-bins are, on average,
net repurchasers of their own equity, while those with low BMI remain net issuers. The estima-
tion includes year-by-rank-bucket fixed effects to ensure that the negative correlation is not due
to differences in firm size. This finding adds a new cross-sectional dimension to the decrease in
net equity issuance associated with the shift towards buybacks and away from dividend distribu-
tions (see, e.g., Grullon and Michaely, 2002). Taken together, these patterns suggest that the rise
of benchmark-linked investing also helps to explain cross-sectional variation in corporate payout
20Appendix Figure A7 confirms robustness to alternative investment rate definitions.
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and financing policies.

4 A StylizedModel of Firm Investment with Benchmarking

With these facts in hand, we present a stylized model that illustrates how benchmarking, through
its effect on CAPM-implied discount rates, affect firm investment. We model the effects here in a
stylized fashion as wedges in firm’s discount rates. We formally derive these wedges in a three-
period setting with (boundedly rational) firm managers in Appendix B.

Textbook Investment Policy Corporate finance textbooks instruct managers to adopt in-
vestment policies that maximize net present value (NPV). Calculating NPV requires expected
cash flows and a discount rate. Most textbooks recommend the weighted average cost of cap-
ital (WACC) as discount rate, with the cost of equity derived from the CAPM. Formally, V =

E[CF/R] equals the NPV of expected cash flows CF discounted at the firm-specific discount
rate R. The discount rate R equals the firm’s WACC, determined by the exposure of cash flows
generated by the firm’s assets to the equity risk premium (ERP ), βA, and the risk-free rate Rf

R = Rf + βAERP. (3)

Assuming that firm leverage is sufficiently low to not create default risk, the aggregate risk ex-
posure of the firm’s cash flows is proportional to exposure of the firm’s equity to ERP :

βA =
βE

1 + (1− τ)D
E

. (4)

As such, it can be directly inferred from the empirical CAPM β of the firm’s equity β̂E = Ĉov(r,rm)

V̂ar(rm)
.

A manager considering a firm-typical project with cost C and future cash flows Y should invest
in the project if it has positive NPV and thus increases firm value, that is if

E
[
Y /R̂

]
= E

[
Y

Rf + β̂E
(
1 + (1− τ)D

E

)−1
ERP

]
> C (5)

in which R̂ results from substituting the empirical counterpart of (4) into (3).

The Presence of Benchmarked Funds Affects Asset Prices Benchmarked funds’ inelas-
tic demand for benchmark constituents increases their price and thereby lowers their implied
discount rate. However, benchmark membership also induces excess comovement between con-
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stituents unrelated to the aggregate risk exposure of the firm’s cash flows. The excess comove-
ment increases β̂E and thus the discount rate proportional to ERP .

We illustrate these two opposing forces in reduced form by postulating two discount rate
wedges as functions of a stock’s benchmarking intensity (BMI). The price pressure from bench-
mark inclusion reduces the implied discount rate by ∆I(BMI). At the same time, βE increases
to β̂E = βE +∆β(BMI). Both ∆I(BMI) and ∆β(BMI) monotonically increase in BMI and
satisfy ∆I(0) = ∆β(0) = 0. The discount rate, adjusted for benchmarking, is

R̃ = Rf +
βE +∆β(BMI)

1 + (1− τ)D
E

ERP −∆I(BMI). (6)

CAPMInvestment PolicywithBenchmarking Whether the benchmarking-induced changes
to the discount rate in (6) incentivize managers to invest more or less is ambiguous: the price ef-
fect, ∆I(BMI), encourages investment, whereas the β̂ increase, ∆β(BMI), discourages it.

What if managers are boundedly rational and do not internalize the effects of benchmarked
funds on asset prices but instead follow textbook guidance and use the cost of capital implied by
the CAPM to evaluate investment opportunities as in Eq. (5)?

In this case, the presence of benchmarked funds has an unambiguously negative effect on
investment for benchmark constituents. A boundedly rational manager, with subjective expec-
tations E⋆[·], observes an increase in their stock’s CAPM β from βE to β̂E = βE + ∆β(BMI)

and infers an increase in the firm’s cost of equity. The manager now invests only in projects that
satisfy

E⋆
[
Y /R̃⋆

]
= E⋆

[
Y

Rf + (βE +∆β(BMI))
(
1 + (1− τ)D

E

)−1
ERP

]
> C. (7)

All else equal, a firm inside a benchmark index invests less than the same firm outside it.

Testable Hypothesis Our proposed mechanism rests on the behavioral assumption that man-
agers do not internalize the total effect of benchmarking-induced discount rate changes. Instead,
managers follow textbook guidance to form a weighted average cost of capital using their firm’s
empirical CAPM β̂s. Benchmarking-induced comovement biases the CAPM β̂s upward and leads
benchmark constituents to under-invest. We empirically validate our mechanism by presenting
evidence that supports three testable hypotheses directly derived from it. All else equal,

(i) there is a monotonic positive relationship between changes in firm BMI and changes in β̂E ,
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(ii) an increase in firm BMI increases the firm’s perceived cost of equity, and

(iii) an increase in firm BMI leads to a decline in investment.

5 The Effects of Benchmarking Intensity on CAPM β̂s and
Managers’ Perceived Cost of Capital

Figure 3: BMI, CAPM β̂s, Perceived Cost of Capital, andHurdle Rates Around Russell 1000 Cutoff
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(c) Managers’ Perceived Cost of Capital

10.6%
10.7%
10.8%
10.9%
11.0%
11.1%
11.2%
11.3%
11.4%
11.5%

Av
g.

H
ur

dl
e
Ra

te

500 600 700 800 900 100
0
110

0
120

0
130

0
140

0
150

0

Market Capitalization Rank in May

(d) Managers’ Hurdle Rates

Notes: This figure shows binned scatters of (a) benchmarking intensity, (b) CAPM β̂s, (c) managers’ perceived cost
of capital, and (d) hurdle rates against May market capitalization ranks. We plot conditional means for stocks in the
Russell 1000 (blue squares) and Russell 2000 (red diamonds). We estimate conditional means using year-month and
stock fixed effects. Single bins across the cutoff reflect the banding policy introduced in 2007.

We begin by documenting a striking set of discontinuities around the Russell 1000/2000 index
cutoff in Figure 3. After absorbing year-month and stock fixed effects, we observe a clear jump
at the rank-1000 threshold. Panel (a) shows that as firms move from just inside the Russell 1000
to just inside the Russell 2000, their average benchmarking intensity (BMI) jumps from approx-
imately 17% to 23%. Panel (b) shows this increase in BMI coincides with an increase in average
CAPM β̂ from 1.09 to 1.21. Crucially, managers’ own assessments mirror these patterns: Panel (c)
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and (d) show that average perceived cost of capital and hurdle rates also jump at the cutoff. While
consistent with our hypothesis, these discontinuities are suggestive rather than conclusive; other
factors might influence the β̂ and the perceived cost of capital at the index cutoff, such as liquidity
effects or unobserved differences between the largest small-cap and smallest mid-cap firms. Note
that the banding policy introduced by Russell in 2007 precludes using regression discontinuity
designs at the cutoff (see Appel et al., 2024, for details).

To establish that these discontinuities stem from changes in benchmarking intensity, we ex-
ploit quasi-exogenous variation in BMI induced by Russell reconstitution. We estimate the effect
of changes in a firm’s BMI on its CAPM β̂ using a difference-in-differences design. We compare
the evolution of β̂s of (treated) stocks that experience BMI changes around Russell reconstitution
dates to (control) stocks that do not. We find that CAPM β̂ increase by between 0.015 and 0.027
for every 1 p.p. increase in BMI.

The effect on estimated market risk exposure directly influences managers’ perceived cost
of capital. Using the BMI change as an instrument for the change in β̂, our IV estimates show
that a 0.2 increase raises managers’ perceived cost of capital by 70 bps. We corroborate the pass-
through in five alternative datasets. We find that stock analysts as well as state and federal regu-
lators of monopolies (e.g., utilities) also incorporate benchmarking-induced β̂ increases into their
perceived cost of equity, implying perceived equity risk premia between 4% and 12%.

5.1 Difference-in-differences Strategy to Identify the Effect of Changes
in Benchmarking Intensity on CAPM β̂s

We analyze the effect of an exogenous increase in BMI on a firm’s CAPM β̂ by estimating a series
of continuous difference-in-differences specifications of the form:

CAPM β̂i,t = θi,c + θt,c +
9∑

k=−4

γk (∆ BMI× 1{t− Ti = k})i,t+k +X ′
i,tψ + εi,t (8)

where Xi,t is a vector of controls. The parameters {γ−k}9k=−4 measure the dynamic effects of
changes in BMI around Russell benchmark reconstitution on CAPM β̂. To address the biases
that can arise from staggered treatment timing with heterogeneous effects (De Chaisemartin and
d’Haultfoeuille, 2023), we follow the recommendation of Baker et al. (2022) and stack yearly co-
horts (c) and include both cohort-by-firm (θi,c) and cohort-by-time (θt,c) fixed effects. This ensures
that {γ−k}9k=−4 is never estimated by comparing later-treated units with earlier-treated units.
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Identification Strategy Our identification strategy exploits quasi-exogenous variation in BMI
resulting from the annual Russell benchmark reconstitution. The key identifying assumption is
parallel trends: conditional on our fixed effects and controls, the CAPM β̂s of firms experiencing
BMI changes would have evolved similarly in the absence of the treatment. We present visual
evidence supporting the validity of the parallel trends assumption using the event study plots
shown in Figure 4.

Themain identification concern in using changes in BMI is that benchmarkmembership is po-
tentially endogenous to firm characteristics that also affect CAPM β̂. A large literature, however,
argues that Russell membership is plausibly exogenous once one controls for the determinants
of inclusion, such as end-May market capitalization rank.

We address this concern in several ways. First, we include a comprehensive set of control
variables in Xi,t to ensure the conditional exogeneity of ∆BMI. It includes the log market cap-
italization, the May ranking variable used by Russell to construct the indices. In particular, we
follow Ben-David et al. (2019) in constructing the May ranking variable. We further add indica-
tor variables for the banding policy introduced by Russell in 2007 (i.e., indicators for being in the
band, for membership in the Russell 2000 in May, and their interaction) as suggested by Appel
et al. (2019). These constitute our baseline controls. Conditional on these baseline controls, the
change in BMI induced by Russell reconstitution is exogenous. Our approach follows Pavlova
and Sikorskaya (2023), Sikorskaya (2024), and Chaudhry (2025). Second, we address the poten-
tial endogeneity of ∆BMI to stock liquidity by including the logarithms of bid–ask spreads and
Amihud illiquidity as controls. Third, we control for momentum using the cumulative 12-month
return. We interact all controls with cohort fixed effects.

We restrict the sample to firms within a 300 rank window of the Russell cutoffs to isolate
variation from reconstitution. This window captures large BMI changes for firms that cross the
cutoff and smaller mechanical BMI changes for non-moving firms when benchmark weights are
revised. The latter variation is even less likely to correlate with firm-specific news or fundamen-
tals (Sikorskaya, 2024).

Results Figure 4 presents the results from our continuous difference-in-differences event study,
showing howCAPM β̂s change around a Russell benchmark reconstitution. We estimate changes
at 1000th and 3000th rank cutoffs separately and scale the results so that the coefficients represent
the effect of a 10 p.p. increase in BMI.21 We normalize the dynamic treatment effects relative to
21Appendix Figures A8a and A8b show robustness results using an indicator variable for BMI changes larger than
+5 p.p. and smaller than -5 p.p., respectively.
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Figure 4: Difference-in-differences Event Study of Changes in BMI on Changes in CAPM β̂E
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Notes: This figure shows the dynamic effects of a 10 p.p. increase in BMI on CAPM β̂s around Russell reconstitution.
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300 ranks of each cutoff. Controls include market capitalization, bid-ask spread, Amihud illiquidity, momentum, and
banding variables. Pointwise confidence intervals (95%) based on double-clustered standard errors.

May and estimate dynamic treatment effects for the period from 4months before to 9months after
benchmark inclusion. We plot the results using two different CAPM β̂ estimators: The left panel
uses a rolling-window estimator based on 21 daily returns, while the right panel uses Welch’s
(2022) exponentially weighted expanding window estimator.

Several results are worth noting. First, the plots support our identification strategy. In the
months leading up to the reconstitution in June (time 0), the coefficients for both groups are
statistically indistinguishable from zero. The lack of a differential pre-trend supports the parallel
trends assumption underlying our design.

The left panel, using a short-term 21-day estimator, shows a large and immediate jump in β̂
in the months after reconstitution. For a 10 p.p. increase in BMI, β̂ rises by approximately 0.3
for stocks near the Russell 3000 cutoff and by 0.15 for stocks near the Russell 1000 cutoff. This
immediate jump shows the economic effect is instantaneous. In contrast, the right panel uses the
longer-horizon estimator from Welch (2022), which shows a much more gradual increase.

The contrast between the two panels highlights a crucial measurement issue. Using long-
horizon estimators, BMI changes increase CAPM β̂ gradually and are detectable only at long hori-
zons. This measurement delay has practical implications, as managers or analysts using common
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Table 2: Effects of Changes in Benchmarking Intensity on CAPM β̂s
Estimator: Rolling Window with 21 Daily Returns Welch (2022) Estimator

(1) (2) (3) (4) (5) (6) (7) (8)

∆ BMI × Post 0.027∗∗∗ 0.027∗∗∗ 0.026∗∗∗ 0.026∗∗∗ 0.022∗∗∗ 0.021∗∗∗ 0.019∗∗∗ 0.018∗∗∗
(0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Log(Mkt. Cap.) and Log(Bid-Ask Spread) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fixed Effects & Additional Controls

Firm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year-Month ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Banding Controls ✓ ✓
Momentum, Banding ✓ ✓
Liquidity, Momentum, Banding ✓ ✓

Observations 250,713 250,713 250,214 244,894 157,955 157,955 157,950 155,705

Notes: This table reports γ̂ for specifications of the form: CAPM β̂i,t = γ ∆ BMIi×Postt+αi,c+αt,c+ q
′
i,t,cψ+ εi,t. All specifications

control for log of market capitalization (Ben-David et al., 2019) and log bid-ask spread. We interact all controls and fixed effects with
cohort fixed effects (Baker et al., 2022). The estimation sample includes stocks within 300 ranks of the Russell 1000 and 3000 cutoffs,
pooling both benchmark additions and deletions. ∆ BMIi × Postt in column (5) to (8) is average post-treatment effect after 12 months
(which reduces the observation count) to account for the expanding-window estimation of β̂. Standard errors in parentheses are double-
clustered at stock and year-month level. * p<0.10, ** p<0.05, *** p<0.01.

estimation methods may not even recognize the benchmarking-induced change in their firm’s
cost of equity for months or even years after it occurs. This measurement issue makes it unlikely
that managers and analysts connect the β̂ increase to benchmark inclusion.

The estimated treatment effect is larger at the Russell 3000 cutoff than at the Russell 1000
cutoff. This difference is due to the underlying characteristics of the firms; stocks near rank 3000
are smaller, less liquid, and have lower initial BMI and β̂s compared to firms at the 1000th rank
threshold.

Our continuous difference-in-differences specification pools variation from both increases
and decreases in BMI, thereby assuming a symmetric effect. We validate this assumption in Ap-
pendix Figure A8, which estimates the effect separately for firms experiencing BMI increases
versus decreases. The results confirm this symmetry: the size of the effect is statistically similar
for both positive and negative BMI changes, differing only in the expected sign.

Table 2 reports the average post-treatment effect on CAPM β̂, pooling reconstitution from the
Russell 1000 and 3000 cutoffs. We report the results for the 21-day rolling-window β̂ (Columns 1-
4) and the exponentially weighted β̂ fromWelch (2022) (Columns 5-8). To account for the latter’s
long-horizon estimation, we report the post-treatment effect 12 months after reconstitution. The
magnitudes are economically significant and consistent with the correlational evidence in Figures
1, 2, and 3.

We find similar effect sizes in panel regressions where we regress CAPM β̂s on benchmarking
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intensity in levels (see Appendix Table A2). Across six specifications with increasingly stringent
fixed effects, the coefficient on BMI remains stable at around 0.025 and highly significant. The
level of BMI explains between 17% and 29% of residual variation in β̂ after absorbing fixed effects.
After accounting for all time-invariant firm traits by absorbing firm fixed effects and various
time-varying shocks at the industry-size level, BMI explains 17% of the residual variation in β̂.
Notably, institutional ownership (IOR) has no discernible effect on β̂ when included alongside
BMI, suggesting the observed relationship is specific to benchmark-sensitive investors.

We note that while our evidence establishes a direct link between BMI changes and CAPM β̂,
the coefficient estimates are not structural parameters. Since the value-weighted market β must
equal one, a change in one firm’s β̂ necessarily affects others, violating SUTVA. Second, because
the formula for β is a non-linear function of the market’s covariance matrix, the effect of BMI
on β is also inherently non-linear. For this reason, we interpret the estimates as reduced-form
evidence of a causal effect rather than as structural parameters.

Additional Evidence From S&P 500 Additions We examine stocks added to the S&P 500 to
provide additional evidence on benchmarking’s effect on CAPM β̂s, following Vijh (1994) and
Barberis et al. (2005). Figure 11 shows that stocks joining the S&P 500 exhibit a relative increase
in β̂s of 0.14, on average. The event study coefficients show similar patterns to those of the
Russell reconstitution, suggesting that the effect of benchmarking on β̂s generalizes beyond the
Russell setting. Joining the S&P 500 increases a stock’s BMI by 8.6 p.p., from 14.1% to 22.7%, on
average. This change implies that the β̂ increase by approximately 0.016 per 1 p.p. increase in BMI,
somewhat smaller but similar to the estimate from Russell reconstitution in Table 2. However,
we note that stocks added to the S&P 500 are typically larger, more liquid, and enter with higher
initial BMI and β̂ than firms affected by Russell reconstitution.

Alternative CAPM β Estimators We test the relationship between BMI and several alterna-
tive β estimators to confirm that our results do not depend on a specific estimator. Appendix
Table A3 shows that BMI remains a statistically significant predictor of β̂ across all estimators,
including those proposed by Blume (1975), Dimson (1979), and Welch (2022). Furthermore, we
decompose the increase and find that its increase is due to a rise in market correlation, not volatil-
ity. This increase in correlation distinguishes our finding from Ben-David et al. (2018) who show
that the arbitrage activity between ETFs and the underlying stocks increases stock volatility.

Long-Run Estimates via Cointegration To estimate the long-run impact of benchmarking
intensity on β̂s, we test for cointegration between the aggregate time series of average BMI and
average CAPM β̂. As shown in Appendix Table A4, we strongly reject the null hypothesis of
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Figure 5: Event Study of Changes in BMI on Implied Cost of Capital and Net Equity Issuance
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Notes: This figure shows the dynamic effects of a 10 p.p. increase in BMI on the Implied Cost of Capital (r = D/P+g)
and net equity issuance over lagged total assets. Controls include market capitalization, bid-ask spread, Amihud
illiquidity, momentum, and banding variables. We restrict the estimation sample to stocks within 300 ranks around
the Russell 1000/2000 index cutoff. Pointwise confidence intervals (95%) based on double-clustered standard errors.

no cointegration. This test validates our use of Dynamic OLS (DOLS) (Stock and Watson, 1993)
to estimate the long-run relationship. The DOLS estimation yields a long-run coefficient of ap-
proximately 0.03 in β̂ per 1 p.p. increase in average BMI. This effect size is consistent with our
difference-in-differences estimates, indicating that the effects of BMI on β̂ are persistent.

5.1.1 Price Effects of Benchmark Inclusion on the Implied Cost Of Capital

We assume that managers use the CAPM to set discount rates and do not account for the full
effects of benchmarking on asset prices. Alternatively, managers can infer the discount rate from
stock prices and expected cash flows, as in Kashyap et al. (2021). We test whether BMI changes
at benchmark reconstitution influence the implied cost of capital (ICC) that managers can infer
from stock prices. The ICC is the internal rate of return that equates the current stock price with
the present value of expected cash flows under a Gordon growth–style model.22

Figure 5 plots difference-in-differences event study coefficients of BMI changes on the im-
plied cost of capital and net equity issuance. The event study coefficients show no pre-trends,
22We calculate the ICC by averaging the dividend discount models of Easton (2004) and Ohlson and Juettner-Nauroth
(2005) and the residual income models of Gebhardt et al. (2001) and Claus and Thomas (2001).
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supporting the parallel trends assumption.

Panel (a) shows that the implied cost of capital falls by 0.21% in the month following the
exogenous 10 p.p. increase in BMI.We perform a back-of-the-envelope calculation to estimate the
implied stock return using Gordon’s growth model. We assume the expected dividend, D, and
expected dividend growth rate, g, remain constant when BMI changes. We set r to the pre-period
average of the ICC of 8.9% and g to the long-run average of U.S. stocks’ real dividend growth of
1.6% (from Robert Shiller’s website). The 21 bps decrease in ICC, at event-time coefficient at t+1,
corresponds to a price increase of:

P Post

P Pre
− 1 =

−∆r

rPre +∆r − g
=

0.21%
8.9%− 0.21%− 1.6% = 3.0

(1.2)

∗∗%

Our estimate of 3.0% aligns with the 2.8% stock price increase per 10 p.p. BMI change reported by
Pavlova and Sikorskaya (2023, Table 2). The 95% confidence interval (which we obtain using the
delta method) similarly covers the 5% average price effect which Chang et al. (2015) find.

However, our difference-in-differences event study also shows that this price effect is tempo-
rary and reverts within six months. The small and short-lived impact on the price make it unlikely
that increased benchmarking affects investment through a price-level channel. Our results are
consistent with evidence from Harris and Gurel (1986), Patel and Welch (2017), and Chaudhry
(2025) who similarly show that price effects of benchmark inclusion revert over time.

We find no significant change in net equity issuance, implying firms do not opportunisti-
cally exploit the temporary price dislocation. Firms likely refrain because the costs of issuing
equity exceed the potential benefits. First, investors may perceive issuing equity as a negative
signal about firm quality (Myers and Majluf, 1984). This concern is particularly salient for the
Russell 1000 firms moving into the less-prestigious Russell 2000. Second, even absent signaling
concerns, the direct transaction and underwriting costs of an equity offering may render it un-
profitable given the modest price increases. Third, any buyer of the newly issued shares would
take on considerable market risk, as the shares would be subject to the benchmarking-induced β̂
increase.23

Qualitative evidence from earnings call transcripts indicates that managers do not view Rus-
sell benchmark inclusion as a financing event. In Appendix D.1, we analyze 163 earnings call
23We note that earlier work suggests that opportunistic firms exploit sentiment-driven stock price overvaluation
(e.g., Morck et al., 1990, Stein, 1996, Baker and Wurgler, 2000, Shleifer and Vishny, 2003, Bergman and Jenter,
2007). However, Warusawitharana and Whited (2016) document that while misvaluation can affect firm behavior,
the effects on financial decisions are much stronger than those on real investment decision.
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Figure 6: Persistence of BMI Shocks on the Cost of Equity Over Long Horizons
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transcripts of firms added to the Russell benchmark indices from 2008 to 2024. Among 163 tran-
scripts that mention benchmark inclusion, only five link it to equity offerings, two of which are
from Real Estate Investment Trusts (REITs) that issue equity frequently as part of their busi-
ness model.24 In over 60% of transcripts, executives announce their stock’s benchmark inclusion
without further context. The rest briefly discuss expected gains in visibility (21%) or in trading
liquidity and volume (16%). The qualitative evidence indicates that executives view benchmark
inclusion as a corporate milestone for investor relations, not as a mechanism for lowering the
cost of equity or altering capital structure.

5.2 Persistence of Effects on CAPM β̂ and Implied Cost of Capital

We investigate whether benchmarking creates persistent changes in the cost of equity. Our
difference-in-differences analysis shows that BMI-induced increases in CAPM β̂s persist for at
least 12 months. If these increases in the cost of equity fade after a year, long-term effects on
investment are unlikely. We thus extend our analysis to test for effects on the ICC and CAPM β̂s
24REITs must distribute at least 90% of taxable income to retain REIT status, leaving little internal cash for growth.
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over a seven-year horizon using the following specifications:

Avg. ICCi,t+h = θht,s + θh1∆BMIi,t +X ′
i,tξ

h + εi,t+h, h = 0, . . . , 7, (9)

CAPM β̂i,t+h × 6% = γht,s + γh1∆BMIi,t +X ′
i,tζ

h + ϵi,t+h, h = 0, . . . , 7. (10)

for firm i in industry s in year t+h. The coefficients of interest, γh1 and θh1 , summarize the long-
term effects of an BMI increase on a firm’s CAPM β̂ or ICC after h years, respectively. The
vector of controls Xi,t contains the log market capitalization, bid-ask spread, Amihud illiquidity,
momentum, lagged BMI, lagged outcome, banding variables. We account for unobserved time-
varying industry shocks by absorbing year-by-industry fixed effects. We restrict the sample to
stocks within 300 ranks around the Russell index cutoffs and estimate CAPM β̂s using weekly
and monthly returns, consistent with common managerial practice.

Results Figure 6 shows estimates for θh1 and γh1 of Eq. (9) and (10), respectively. We scale the
estimates to a 10 p.p. increase in BMI for ease of interpretation and adjust the CAPM estimates
to match the units of the ICC estimates by multiplying them by a 6% ERP.

BMI-induced increases in CAPM β̂s persist for at least seven years. At all horizons, the effects
are positive and statistically significant. For bothweekly andmonthly rolling-window estimators,
the impact grows as old observations leave the sample and new observations reflecting higher
BMI enter. Three years after the increase, the CAPM cost of equity is about 100 bps higher for
both estimators. With the weekly estimator, effects taper over longer horizons but remain eco-
nomically meaningful. This prolonged impact shows that benchmarking has a long-term effect
on firms’ perceived cost of equity, potentially leading to sustained changes in investment.

In contrast, changes in BMI have only a short-lived impact on the implied cost of equity
derived from stock price levels. The ICC decreases upon benchmark inclusion, but this effect
dissipates entirely by the following year, remaining statistically insignificant thereafter.

5.3 Effect of Flows Into Passive Mutual Funds and ETFs on CAPM β̂

Our difference-in-differences results establish a direct link from BMI to CAPM β̂s. We posit that
the fundamental economic driver is the inelastic and correlated demand from passive index funds
for benchmark constituents. This hypothesis is consistent with the fact that there is no increase
in institutional ownership at the Russell 1000 cutoff, but rather a shift from active to passive own-
ership (Pavlova and Sikorskaya, 2023). To test this hypothesis directly, we analyze the effect of
net flows into active and passive mutual funds using data from Morningstar. Panel regressions
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show that net inflows into passive funds have a significant association with β̂s increases, partic-
ularly for smaller stocks where passive ownership is more concentrated. In contrast, net flows
into active mutual funds have a modest effect which is limited to the early part of the sample and
likely reflect the quasi-indexing behavior of active managers.

A simulation exercise in Appendix C provides further, more structural support for this mech-
anism. We construct a parsimonious two-factor model in which stock returns depend on a “fun-
damental” factor and a “flow” factor. When we calibrate the flow factor to the observed passive
fund flows, with exposures proxied by BMI, the model successfully replicates the cross-sectional
and time-series evolution of CAPM β̂s from 1998 to 2018. However, a model calibration using
active fund flows fails to match these empirical patterns.

The panel and simulation evidence indicates that the root cause of the increase in CAPM
β̂s is the structural shift toward passive index investing.25 Our findings lend direct empirical
support to our and other recent theories positing that the shift to passive, benchmark-linked
investing increases asset price comovement (e.g., Bond and Garcia, 2022). Contemporaneous
independent research by Fang et al. (2024) corroborates our results, finding that passive fund
ownership increases comovement with the market.

Mutual Fund Flow Data We use monthly total net assets and flows of active and passive
mutual funds and ETFs from Morningstar Direct. We exclude feeder funds and funds of funds.
The net flows into mutual funds in month t, F (ι)

t , do not include any valuation effects from
price changes, distribution, or reinvested dividends (Morningstar Direct, 2024). Rather, the flows
present the net amount that investors put into or withdraw from mutual funds and ETFs.

We estimate the following panel regression at the monthly frequency (using end of month β̂s):

CAPM β̂i,t =
∑

j /∈{250}

γAj 1{i ∈ Bin j} × FA
t /A

A
t−1 +

∑
j /∈{250}

γPj 1{i ∈ Bin j} × F P
t /AP

t−1

+ αi + αt + ρ CAPM β̂i,t−1 +X ′
i,tζ + εi,t (11)

where FA
t and F P

t are net flows into active and passive funds, respectively. The model includes
stock fixed effects (αi) to absorb time-invariant firm heterogeneity and year-month fixed effects
(αt) to absorb aggregate shocks. Time fixed effects absorb the average market-wide effect of fund
flows. We identify the coefficients of interest, γιj , from the differential impact of flows across
25This trend culminated in 2024, when assets in U.S. passive mutual funds and ETFs surpassed those in active funds
(Morningstar Direct, 2025). Appendix Figure A9 shows that this milestone reflects a multi-decade trend, with
cumulative net flows into passive funds surpassing those into active funds by more than $10 trillion since 1998.
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Figure 7: Impact of Net Flows into Passive and Active Mutual Funds and ETFs on CAPM β̂
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Notes: This figure shows estimates of γAj and γPj from the monthly panel regression:
CAPM β̂i,t = αi + αt +

∑
j γ

A
j 1{i ∈ Bin j} × FA

t /AA
t−1 +

∑
j γ

P
j 1{i ∈ Bin j} × FP

t /AP
t−1 +X ′

i,tξ + εi,t. We
normalize the coefficients relative to the first bin (ranks 1-250) and scale estimates to a 2 standard deviation net
inflow (≈ 1% of At−1). Controls include market capitalization, bid-ask spread, Amihud illiquidity, momentum, and
lagged β̂. Pointwise confidence intervals (95%) based on double-clustered standard errors.

market-capitalization-rank bins. We control for the lagged dependent variable, so the γ coeffi-
cients capture the effect of flows on changes in CAPM β̂. The vector Xi,t includes controls for
size, bid-ask spread, Amihud illiquidity, and momentum. We identify the γPj coefficients relative
to the first bin (the largest 250 stocks). Each coefficient measures the change in β̂ for stocks in
bin j relative to top-250 stocks after net passive fund inflows.

Figure 7 plots the estimated γAj and γPj coefficients, scaled to reflect the effect of a two stan-
dard deviation (sd) net inflow into active and passive funds (≈ 1% of At−1). Panel (a) covers
1998–2010. In this period, a 2 sd inflow into active funds raises the CAPM β̂ of small-cap stocks
by about 0.02, while passive flows have no significant effect. Panel (b) covers 2010–2018. Here,
passive flows dominate: a 2 sd inflow increases β̂s of mid- and small-cap stocks by 0.02 to 0.05,
with effects large and statistically significant. By contrast, active flows have no measurable im-
pact after 2010.

The cross-sectional pattern aligns with differences in benchmarking intensity. Stocks be-
low the Russell 1000 cutoff, particularly small caps, show the strongest response to passive flows,
consistent with their higher BMI. Micro-caps below the Russell 3000 cutoff show no effect, consis-
tent with their near-zero BMI. Importantly, BMI does not enter this regression directly. Instead,
size-sorted bins proxy for differential exposure to passive demand. This design provides a BMI-
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Table 3: Benchmarking Intensity and Net Flows into Active and Passive Mutual Funds
(1) (2) (3) (4) (5) (6)

CAPM β̂ CAPM β̂ CAPM β̂ CAPM β̂ CAPM β̂ CAPM β̂

BMIi,t−1 (as fraction of ME) 0.723∗∗∗ 0.824∗∗∗ 0.502∗∗∗ 0.809∗∗∗ 0.584∗∗∗ 1.223∗∗∗
(0.098) (0.100) (0.143) (0.097) (0.165) (0.135)

BMIi,t−1 × Ft/At−1 (Pooled) 0.203∗∗∗ 0.105∗ 0.221∗∗
(0.057) (0.059) (0.100)

BMIi,t−1 × F P
t /AP

t−1 (Passive) 0.029 0.318∗ 0.056
(0.062) (0.181) (0.077)

BMIi,t−1 × FA
t /A

A
t−1 (Active) 0.115∗ 0.076 0.070

(0.063) (0.120) (0.073)

BMIi,t−1 × F P
t /AP

t−1 (Passive) × Trend 0.005∗∗∗
(0.001)

BMIi,t−1 × FA
t /A

A
t−1 (Active) × Trend -0.005∗∗∗

(0.001)
Sample 1998 – 2018 1998 – 2010 2011 – 2018 1998 – 2010 2011 – 2018 1998 – 2018
Controls ✓ ✓ ✓ ✓ ✓ ✓
Stock Fixed Effects ✓ ✓ ✓ ✓ ✓ ✓
Year-Month Fixed Effects ✓ ✓ ✓ ✓ ✓
Adj. R2 0.32 0.39 0.25 0.39 0.25 0.36
Observations 804,598 510,559 294,039 510,559 294,039 804,469

Notes: This table reports coefficients for panel regressions: CAPM β̂i,t = αi+αt+γBMIi,t−1+ψBMIi,t−1×Ft/At−1+X
′
i,tξ+ εi,t in which Ft are

net flows and Ai,t total net assets of mutual funds and ETFs from Morningstar Direct. Ft/At−1 is standardized to have zero mean and unit variance.
Observations are weighted by market capitalization. Specifications with a time trend contain all interaction terms, some of which are not reported
for brevity. Time trend is mean zero in July 2008. Standard errors clustered at the stock and year-month level in parenthesis. * p<0.10, ** p<0.05, ***
p<0.01

free validation of our mechanism: stocks with higher implicit BMI exhibit larger β̂ responses to
flows. The results mirror our earlier BMI-based evidence and reinforce the interpretation that
benchmark-driven flows inflate CAPM β̂s.

Figure 7 suggests that flows affected CAPM β̂s through different channels over time, with
active flows dominating before 2010 and passive flows afterward. We argue, however, that both
periods reflect the influence of (quasi-)passive demand for benchmark stocks. Official data show
large passive inflows only after 2010, yet Chinco and Sammon (2024) find large inflows into quasi-
passive strategies before then which were not recorded as passive.

BMI assumes active portfolios scale with benchmark weights (Pavlova and Sikorskaya, 2023),
it thus provides a consistent proxy for benchmark-driven demand across periods. We interact
flows with BMI to formally test this channel. We again split the sample into pre-2010 and post-
2010 periods and estimate the panel regression:

CAPM β̂i,t = αi + αt + ψ0BMIi,t−1 + ψ1BMIi,t−1 × FA
t /A

A
t−1 + ψ2BMIi,t−1 × F P

t /AP
t−1 +X ′

i,tξ + εi,t.
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Table 3 shows that before 2010, a positive and significant interaction between BMI and active
flows drove variation in CAPM β̂s, indicating quasi-indexing by active managers. After 2010,
the pattern reverses: the BMI–passive flow interaction becomes positive and highly significant,
while the BMI–active flow interaction becomes negligible. The coefficient magnitudes are sim-
ilarly instructive: the BMI–passive flow effect post-2010 (column 5) is nearly three times larger
than the BMI–active flow effect pre-2010 (column 4). This effect is not mechanical because we
standardize both flows to mean zero and unit variance. Rather, it suggests that up to a third of
active flows have been quasi-indexing before 2010, consistent with evidence from Cremers and
Petajisto (2009). Column 6 shows the result remains robust to including a time trend and estimat-
ing across the full sample. Simulation evidence in Appendix C further corroborates this pattern:
BMI–active flow interactions can explain the early in-sample distribution of β̂s but fail from 2004
onward. One interpretation of these findings is that quasi-indexing among active managers de-
clined as explicitly passive products became widely available. This interpretation is consistent
with evidence from Cremers et al. (2016) who find that the expansion of low-cost passive prod-
ucts intensifies competition, lowers fees, and erodes the market share of high-fee quasi-indexers.

5.4 Impact on Managers’ Perceived Costs of Capital and Hurdle Rates

Next, we show that benchmark-linked capital flows through their impact on CAPM β̂s affect
managers’ perceived cost of capital and hurdle rates. We use the perceived cost of capital and
hurdle rate data from Gormsen and Huber (2025).

Managers frequently reference the CAPM when discussing their cost of equity and capital
budgeting decisions. For example,26

“Why do we think that a 10% return is good? Well, you have to — whether we’re
creating shareholder value really goes to what’s our cost of capital. […] this is really
how we view our weighted average cost of capital. Most of you will bring back
visions of business school. This is the capital asset pricing model, right? Our cost of
equity, about 10.7%.” — CFO, LKQ Corp. (Q1 2016)

or

“If you use some of the tools I learned in my MBA class, like the capital asset pricing
model, they did teach that back in the 80s by the way, so it’s been around for a while.
I think our cost of equity is around 10%.” — CFO, Qorvo Inc. (Q4 2015)

26See Appendix D.2 for more executive quotes referencing the CAPM in cost of equity discussions in earnings calls.
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Empirical Strategy We estimate how BMI-induced changes in CAPM β̂ in year t pass through
to managers’ perceived cost of capital in year t+ 1 and hurdle rates in year t+ 3. We estimate a
series of instrumental variable (IV) regressions with the following form:

CAPM β̂i,t+1 = δ
(1)
j,t + θ ∆ BMIi,t +X ′

i,tξ
(1) + ε

(1)
i,t (12)

Perceived Cost of Capitali,t+1 = δ
(2)
j,t + λ(2) CAPM βi,t+1

∧
+X ′

i,tξ
(2) + ε

(2)
i,t+1 (13)

Managers’ Hurdle Ratei,t+3 = δ
(3)
j,t + λ(3) CAPM βi,t+1

∧
+X ′

i,tξ
(3) + ε

(3)
i,t+3 (14)

whereXi,t is a vector of control variables designed to ensure the conditional exogeneity of∆BMI.
This vector includes log market capitalization, the Russell May ranking variable constructed fol-
lowing Ben-David et al. (2019), and controls for the index banding rules per Appel et al. (2019)
(as discussed in Section 5.1). We augment this specification with additional controls for stock liq-
uidity and momentum. To restrict identifying variation to within-industry comparisons, we also
include a full set of industry-by-year fixed effects, δ(ι)j,t . We directly account for the transmission
lag from perceived cost of capital to hurdle rates that Gormsen and Huber (2025) document by
using changes in BMI in year t to predict hurdle rates in year t + 3. We estimate the IV regres-
sions using equity β̂s and scale the resulting λ(i) estimates by the average equity-to-capital ratio
around the index cutoffs for interpretability.

Table 4 reports the effect of changes in CAPM β̂ on managers’ perceived cost of capital and
hurdle rates. The reduced-form estimates in Columns (1) and (2) show that increases in BMI raise
managers’ perceived cost of capital one year after reconstitution. The coefficient is stable across
specifications, and adding controls for liquidity and momentum together with industry-by-year
fixed effects does not materially alter the coefficients. This stability, combined with a significant
increase in the adjusted R2 from 0.32 to 0.52, addresses concerns about omitted variable bias and
unobserved heterogeneity (Oster, 2017). Columns (5) and (6) show that BMI-driven increases in
β̂ also translate into higher managerial hurdle rates three years after reconstitution.

The IV specifications in Columns (3)–(4) and (7)–(8) allow us to interpret the coefficients
on β̂ as perceived prices of risk. Under the CAPM, these coefficients correspond to the slope
of the subjective security market line, i.e., the perceived equity risk premium. The IV estimates
for the perceived cost of capital (Columns 3–4) imply an average perceived equity risk premium
of about 3.3%, close to but below the 3.6% average equity risk premium reported by CFOs in
the Graham and Harvey (2018) survey. By contrast, the IV estimates for managers’ hurdle rates
(Columns 7–8) suggest an equity risk premium around 5.3%. The gap between these two sets
of estimates is consistent with the interpretation that hurdle rates embed an additional buffer
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Table 4: Effect of ∆ BMI on Managers’ Perceived Cost of Capital and Hurdle Rates
Perceived Cost of Capitalt+1 (in p.p.) Managers’ Hurdle Ratet+3 (in p.p.)

RF IV RF IV
(1) (2) (3) (4) (5) (6) (7) (8)

∆ Benchmarking Intensityt (in p.p.) 0.016∗∗ 0.014∗∗ 0.025∗∗ 0.025∗∗
(0.007) (0.005) (0.010) (0.009)

CAPM βA
t+1

∧

3.422∗∗ 3.282∗∗ 5.232∗∗ 5.489∗∗
(1.307) (1.183) (2.318) (2.252)

Baseline Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Additional Controls ✓ ✓ ✓ ✓
Fixed Effects

Year ✓ ✓ ✓ ✓
Year × Industry ✓ ✓ ✓ ✓

FS F-stat. 12.89 16.36 12.86 16.88
Adj. R2 0.32 0.52 0.07 0.34
Observations 7,733 7,696 7,733 7,696 6,684 6,649 6,684 6,649

Notes: This table reports estimates of reduced form (RF) and instrumental variable (IV) regressions of managers’ perceived cost of capital
and hurdle rates on CAPM β̂s, identified using exogenous changes in BMI around Russel reconstitution. Perceived cost of capital is t+1
year after reconstitution, and hurdle rates are in year t+ 3. Baseline controls include log market capitalization, and controls for banding
rules. Additional controls account for liquidity and momentum. IV estimated via LIML. We restrict the estimation sample to stocks within
300 ranks around Russell index cutoffs. Sample from 2002 to 2018 due to data availability of managers’ perceived cost of capital and hurdle
rates. Standard errors in parentheses are clustered by year. * p<0.10, ** p<0.05, *** p<0.01.

reflecting managerial risk aversion (Gormsen and Huber, 2025).

These findings provide a specific mechanism for how benchmarking through managers’ per-
ceptions of the cost of capital affect real economic activity. Recent work by Gormsen and Huber
(2024) establishes that the perceived cost of capital shapes long-run investment and that excess
dispersion in it can cause misallocation. Building on this, Gormsen and Huber (2025) show that
higher hurdle rates, a direct output of these perceptions, depress future firm investment. We con-
tribute by showing that exogenous increases in BMI directly influence these perceptions, raising
managers’ hurdle rates and, consequently, reducing real capital investment.

5.4.1 Other Perceived Cost of Equity Measures

We corroborate our findings on the pass-through of benchmarking-induced changes in the CAPM
β̂ to perceived cost of equity using several alternative data sets. Specifically, we focus on two
qualitative measures of perceived equity riskiness by stock analysts: (1) Morningstar’s cost of eq-
uity, which reflects Morningstar’s qualitative assessment of systematic risk, and (2) Value Line’s
safety rank, a subjective rating ranging from 1 (safest) to 5 (riskiest), capturing analysts’ evalua-
tions of price stability and firm financial strength. Following Eskildsen et al. (2024), we convert
Value Line’s rank into a required return on equity by multiplying it by 1.5 p.p. Additionally, we
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Table 5: Benchmarking Intensity and Stock Analysts’ Perceived Cost of Equity
∆ Morningstar Cost of Equity (in p.p.) Value Line Safety Rank × 1.5 p.p. ∆ I/B/E/S Expected Return (in p.p.)

RF IV RF IV RF IV
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ BMI 0.023∗∗∗ 0.020∗∗ 0.030∗∗ 0.029∗∗ 0.101∗ 0.084∗
(0.008) (0.009) (0.010) (0.011) (0.055) (0.045)

∆ CAPM β
∧

4.867∗∗ 4.117∗∗ 4.425∗∗ 3.953∗ 12.336∗ 10.402∗
(2.276) (1.976) (1.673) (1.956) (6.243) (5.189)

Baseline Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Additional Controls ✓ ✓ ✓ ✓ ✓ ✓
Fixed Effects

Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
FS F-stat. 9.9 11.9 25.1 18.1 87.3 88.4
Observations 5,721 5,381 5,514 5,389 1,866 1,866 1,809 1,809 4,692 4,692 4,692 4,692

Notes: This table reports estimates for specifications of the form: ∆ Perceived Cost of Equityi,t = αt + λ ∆ CAPM β
∧

i,t +X ′
i,tξ + εi,t for IV regression in which

the instrument is ∆ BMI between May and June for stock i in year t. RF columns report reduced form and IV report instrumental variable estimates. Change
in Morningstar cost of equity from Q4 to Q4. We convert Value Line’s safety rank to a required return on equity by multiplying it by 1.5 (p.p.) (Eskildsen et al.,
2024). Value Line sample is from 1998 to 2006 due to limited data availability. Change in I/B/E/S expected return from Q2 to Q4 based on consensus price and
dividend forecast over the next 12 months. Estimation samples are restricted to stocks within 400 ranks around Russell index cutoffs. Baseline controls are log of
market capitalization on the rank day in May and banding controls. Additional controls include log of bid-ask spread, log of Amihud illiquidity, and momentum.
IV estimated via LIML. Standard errors in parentheses are clustered at the year-level. * p<0.10, ** p<0.05, *** p<0.01.

examine whether benchmarking influences subjective return expectations derived from I/B/E/S
consensus price targets and dividend forecasts. Appendix E provides further details.

We estimate whether exogenous increases in benchmarking intensity affect stock analysts’
perceived cost of equity using specifications of the following form:

∆ Perceived Cost of Equityi,t = αt + λ ∆ CAPM β
∧

i,t +X ′
i,tξ + εi,t (15)

in which we instrument changes in CAPM β̂ with changes in BMI due to the Russell index re-
constitution between May and June within a narrow window around Russell index cutoffs. The
vector Xi,t contains our baseline controls: log market capitalization on the rank day in May and
banding controls. We additional control for the log bid-ask spread, log Amihud illiquidity, and
momentum. The year fixed effect αt ensures that we identify λ from cross-sectional variation.

Table 5 shows that exogenous increases in a stock’s BMI increase analysts’ perceived risk and
return expectations. The IV specifications of (15) imply perceived equity risk premia between
3.95% and 12.3% across the three datasets. Marketing material by Morningstar (2022, page 4f)
indicates that their analysts use a perceived equity risk premium of 4.5%. Our point estimates are
smaller but close to this number. Results in even columns confirm that the results continue to
hold after accounting for liquidity and momentum.

While the perceived equity risk premium implied by I/B/E/S analyst forecasts is higher than
our other estimates, its interpretation is ambiguous. The higher and imprecise estimate could
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reflect either a genuinely higher perceived risk of equities or, alternatively, be an artifact of BMI
affecting analysts’ growth expectations. Evidence from the literature supports the latter: analysts
adjust their expectations in response to temporary index-inclusion price effects (Chaudhry, 2025)
or in an attempt to reconcile a flat security market line (Jylha and Ungeheuer, 2021).

Additional Evidence from Regulated Monopolies Appendix E.2 provides further evidence
that benchmarking affects the perceived cost of equity in regulatory rate-setting process of pub-
lic utilities and railroads. Regulators in this context use the CAPM to determine an “authorized”
cost of equity that monopolies then pass on to consumers (Kontz, 2025). For public utilities, a
10 p.p. increase in BMI translates to a 70 bps increase in the authorized cost of equity, implying a
6.1% perceived equity risk premium. Analysis of the railroad industry validates this result, as our
IV-implied 6.4% premium is statistically indistinguishable from the 6.85% average premium regu-
lators actually applied. The estimates are stable when including a powerful control for the DCF-
implied risk premium. This stability mitigates concerns about unobserved confounders (Oster,
2017). Moreover, a falsification test showing a null effect of BMI on the authorized cost of debt
supports the exclusion restriction. Together, these findings show that benchmarking-induced
changes in CAPM β̂s directly translate into a higher, government-sanctioned cost of equity.

6 Effects of Benchmarking on Investment at the Firm-level

Our second set of results explores how firms react to changes in their CAPM β̂. For a manager
who follows textbook guidance to set investment policies using the CAPM, an increase in β̂ raises
the user cost of capital and should lead to a decline in investment.

Our firm-level results show that managers react to BMI-induced changes in their CAPM β̂ by
reducing investment. We show this behavior in panel regressions, instrumental variable regres-
sions around Russell benchmark reconstitutions, and in a difference-in-differences event study
using additions to the S&P 500 benchmark index. The findings are robust to the inclusion of other
known predictors of investment like cash flow, leverage, firm size, and Tobin’s Q.
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Table 6: Panel Regressions of Firm Investment on Benchmarking Intensity

(1) (2) (3) (4) (5) (6) (7)
Dependent variable: CAPXt+1 / PPEt (in %)

BMI (in %) -0.233∗∗∗ -0.300∗∗∗ -0.205∗∗∗ -0.111∗∗∗ -0.107∗∗∗ -0.130∗∗∗ -0.203∗∗∗
(0.051) (0.038) (0.041) (0.022) (0.025) (0.029) (0.042)

IOR (in %) 0.006 0.005 0.005 0.005
(0.006) (0.006) (0.006) (0.007)

Linear Time Trend -0.433∗∗∗
(0.078)

Tobin’s qtot 2.881∗∗∗ 2.822∗∗∗ 2.814∗∗∗
(0.186) (0.182) (0.182)

Leverage 0.024∗∗∗ 0.022∗∗∗ 0.022∗∗∗ 0.033∗∗∗
(0.006) (0.006) (0.006) (0.007)

Fixed Effects
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Year × Rank FE ✓ ✓ ✓
Ind. × Year × Rank FE ✓ ✓ ✓
Russell 2000 Index FE ✓ ✓

Adj. R2 0.42 0.08 0.45 0.51 0.59 0.59 0.54
Mean Dep. Var. 15.0 15.0 15.0 15.0 15.0 15.0 15.0
SD BMI 9.4 9.4 9.4 9.3 9.2 9.2 9.2
Observations 36,787 36,843 36,782 35,851 34,574 34,574 34,576

Notes: This table report estimates for panel regressions of the form: CAPXi,t+1

PPEi,t
= αt,bin + αi + γ BMIi,t + X′

i,tξ + εi,t, where
αt,bin is a year-by-rank-bin fixed effect with bins defined every 250 market capitalization ranks in May. Controls include institutional
ownership ratio (IOR), Tobin’s q (Peters and Taylor, 2017), leverage, cash flow to PPE, current ratio, log of market capitalization, and
firm age. Standard errors in parentheses are clustered at the year- and firm-level. * p<0.10, ** p<0.05, *** p<0.01.

6.1 Panel Regressions of Firm Investment on Benchmarking Intensity

We begin by documenting the reduced-form relationship between benchmarking intensity (BMI)
and investment using panel regressions of the following form:

CAPXi,t+1

PPEi,t

= αi + αt,bin + γ BMIi,t +X ′
i,tξ + εi,t+1

for firm i in year t + 1. The vector Xi,t includes a proxy for marginal Tobin’s q inclusive of
intangible capital (Peters and Taylor, 2017), cash flow, leverage, current ratio, log market capital-
ization, and firm age. The specification includes firm fixed effects, αi, to absorb time-invariant
firm heterogeneity. We include year-by-rank-bin fixed effects, αt,bin, to identify γ from variation
among firms of similar size within the same year.

Table 6 shows that, across all specifications, the coefficient on BMI is negative and statis-
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tically significant. The economic magnitude is large. The estimate in Column (3) implies that a
two standard deviation increase in BMI corresponds to a 3.9 p.p. decrease in the firm’s investment
rate, a 25% reduction relative to the sample mean. We progressively add controls and fixed effects
to assess the robustness of this relationship. Column (1) includes firm fixed effects which absorb
firm heterogeneity and a linear time trend. Column (2) exploits cross-sectional variation by us-
ing year-by-rank-bin fixed effects, ensuring comparisons among similarly sized firms within the
same year. Column (3) introduces both firm and year fixed effects, absorbing both unobserved
firm heterogeneity and macroeconomic shocks. Across these models, the BMI coefficient ranges
between -0.22 and -0.30.

The inclusion of the Tobin’s q proxy in Column (4) through (6) attenuates the BMI coefficient
by approximately 50%, though it remains statistically significant at the 1% level. Whenwe exclude
Tobin’s q in Column (7), the BMI coefficient reverts to a magnitude comparable to that in Column
(3). This attenuation indicates a negative correlation between BMI and Tobin’s q, such that Tobin’s
q is lower for firms with high benchmarking intensity. In other words, firms with high BMI tend
to have lower Tobin’s q values, consistent with a higher perceived cost of capital. The negative
correlation between BMI and Tobin’s q is consistent with a cost of capital channel. In theory,
marginal q is the present value of future marginal profits, discounted at the market’s required
rate of return. If benchmarking increases the firm’s priced systematic risk, the market’s discount
rate rises, and marginal q falls.27

Our empirical finding that BMI remains a significant predictor of investment even after con-
trolling for Tobin’s q suggests two non-exclusive interpretations. First, our proxy for the unob-
servable marginal q is imperfect. The residual significance of BMI could capture the portion of its
effect on the true marginal q that our proxy fails to measure. However, Appendix Table A6 shows
that BMI remains an economically and statistically significant predictor of firm investment after
adjusting for measurement error in Tobin’s q (Erickson and Whited, 2012). Second, the residual
effect may reflect a divergence between the discount rate used by managers for capital budget-
ing and the discount rate priced by investors into Tobin’s q. For example, if managers perceive
a steeper security market line than what markets price, their subjective discount rate for new
projects is higher. This perception leads them to invest less than the level prescribed by Tobin’s
q. In this case, BMI captures the incremental effect of managerial risk perception on investment,
beyond the channel priced into the firm’s q.

To distinguish the effect of benchmarking from the influence of general institutional owner-
27Heuristically, marginal q is given by q0 = E0

∫∞
0
e−

∫ t
0
(rs+βsλs)ds [ΠK,t − ΦK,t] dt where BMI amplifies β.
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ship, Columns (4) to (7) include the institutional ownership ratio (IOR) as a control. The coefficient
on IOR is not statistically different from zero, while the coefficient on BMI remains negative and
significant. This result indicates that the estimated effect is specific to benchmarking activity, not
a proxy for institutional ownership levels.

6.2 Dynamic Effects of Benchmarking on Firm Investment

We explore the dynamic effects of an increase in BMI on investment through impulse response
functions, which we estimate using Jordà’s Local Projections (LPs). LPs estimate impulse re-
sponse functions by regressing future values of a variable on current shocks and controls. The
sequence of horizon-specific coefficients describes how the conditional expectation of a variable
responds at different leads, and hence how shocks propagate across horizons. Specifically, we
estimate cumulative impulse response functions using OLS panel regressions of the form:

log (Invi,t+h)− log (Invi,t−1) = αh
t,j + γh (BMIi,t − BMIi,t−1) +X ′

i,tξ
h + εi,t+h (16)

where Invi,t is the investment rate and (BMIi,t − BMIi,t−1) is the year-on-year change in BMI
for firm i in industry j in year t. We include industry-by-year fixed effects αj,t to control for
time-varying unobserved heterogeneity across industries, such as industry-level business cycles,
which may correlate with firm outcomes. The vector Xi,t contains the same set of time-varying
controls as in the panel regressions above: a proxy for Tobin’s q, cash flow, leverage, log market
equity, current ratio, and firm age.

The coefficients of interests, γh, provide cumulative effects in % after h = 0, 1, . . . , 10 years,
scaled to a 10 p.p. year-on-year change in BMI. We stress that the estimates are reduced-form
correlations and not causal estimates. However, they provide useful insights into the dynamic
response of investment to changes in benchmarking intensity.

Panel (a) of Figure 8 shows that the investment rate falls by a cumulative 7.8% over the subse-
quent 10 years following a 10 p.p. year-on-year increase in BMI. The impact response is initially
positive but turns negative after one year and continues to decline over the next five years. It
then stabilizes at a 7.8% lower level and exhibits no mean reversion over the remaining horizon,
consistent with β̂ remaining permanently higher (see Figure 6).

We next ask whether the investment response is quantitatively consistent with a cost of capi-
tal channel. We assess this (a) by estimating the implied semi-elasticity of investmentwith respect
to user cost of capital and (b) considering whether the dynamic path of investment is consistent
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Figure 8: Impulse Response Function of Investment to a 10 p.p. year-on-year Increase in BMI
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(a) Impulse Response of Investment
to a 10 p.p. Shock
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(b) Actual and Implied Impulse Response
of Investment to a 10 p.p. BMI Shock

Notes: This figure shows coefficient estimates of γh from local projection panel regressions of the form:
log (Invi,t+h) − log (Invi,t−1) = αh

t,j + γh (BMIi,t − BMIi,t−1) + X ′
i,tξ

h + εi,t+h, scaled to a 10 p.p. year-on-
year increase in BMI. Xi,t includes log of market equity, Tobin’s q, leverage, cash flow, current ratio, and firm age.
Panel (a) plots the cumulative percentage change in the investment rate (CAPX/PPE) in response to a 10 p.p. increase
in benchmarking intensity (BMI) and institutional ownership ratio (IOR). In panel (b), we also plot the implied in-
vestment response under a gradual adjustment of hurdle rates (dashed line). We assume that 25% of the perceived
cost of capital is incorporated into the hurdle rate each year, starting from an initial increase implied by ∆β̂=0.27,
with a 6% equity risk premium, a 75% equity share, and an investment semi-elasticity with respect to the cost of
capital of -6.4. Shaded regions are pointwise confidence intervals (90% and 95%) based on clustered standard errors.

with the gradual pass-through of the perceived cost of capital to hurdle rates documented by
Graham (2022) and Gormsen and Huber (2025).

To calculate the implied semi-elasticity, we divide the cumulative investment response at
horizon t + 10 by the change in the user cost of capital implied by a 10 p.p. increase in BMI,
assuming a 6% ERP and 75% equity financing. The change in β̂ implied by our estimates in Table 2
for a 10 p.p. BMI increase is 0.27. With these parameters, the increase in the CAPM-impliedWACC
is 122 bps and the semi-elasticity of investment with respect to cost of capital thus

Semi-Elasticity of Inv.
to Cost of Capital =

∂Inv

Inv

1

∂r
=

d log Inv
∧

t+10

E/(D+E)
75%

× ERP
6%

×∆β̂
0.27

≈ −6.4
(1.5)

The response of the investment after a 10 p.p. shock in BMI implies a semi-elasticity of -6.4. This
estimate is large but consistent with values reported in the literature. For example, Zwick and
Mahon (2017) and Koby and Wolf (2020) use tax changes to estimate a semi-elasticity of -7.2 and
-5, respectively.

42



Gormsen and Huber (2025) document that pass-through from the perceived cost of capital to
the hurdle rates that managers use is gradual. We model this gradual pass-through by assuming
that the perceived cost of capital increases immediately with the change in β̂, but that managers
adjust their hurdle rates only gradually, by 25% a year.28

Panel (b) of Figure 8 plots the implied response under gradual updating of hurdle rates and the
actual investment response. The implied response lies close to or within the confidence interval
of the actual response at all horizons. In summary, the investment response is quantitatively
consistent with a perceived cost of equity increase and gradual pass-through to hurdle rates.

Placebo Test We conduct a placebo test using the institutional ownership ratio (IOR). Since
the IOR does not affect CAPM β̂s (see Table A2), it should not influence investment through a
perceived cost of equity channel. To test this, we replace the year-on-year increase in BMI in
equation (16) with a year-on-year increase in IOR and re-estimate the local projections.

Panel (a) of Figure 8 shows the estimated investment response to a 10 p.p. increase in IOR (red
dashed line). The results indicate a positive investment response: at impact, the investment rate
rises by approximately 5% and remains elevated before gradually converging towards zero over
the subsequent 10 years. This pattern supports the interpretation that the negative investment
response documented earlier is specific to benchmarking activity and not driven by institutional
ownership more broadly. The placebo test also provides ancillary evidence that the negative
effect of BMI on investment is not driven by omitted variables related to increased institutional
ownership (e.g., changes in corporate governance).

Cross-sectional Heterogeneity in Firms’ Investment Response We next test a key im-
plication of our mechanism: if benchmarking intensity shocks affect investment through the
perceived cost of equity, their impact should be larger for firms more reliant on equity financing.
We estimate the cumulative impulse responses using Eq. (8) but add interaction terms to compare
firms in the top vs. bottom terciles of four characteristics: (i) equity share of capital; (ii) a measure
of equity constraints from Linn and Weagley (2024); (iii) firm age, where younger firms are more
dependent on equity29; and (iv) asset maturity (inverse of depreciation rate), where longer-lived
assets are more sensitive to discount rates.30 A stronger investment response among firms with
these characteristics provides evidence for the perceived cost of equity channel.
28Specifically, we model pass-through after t years as exponential saturation y(t) = 1− (1− λ)

t with λ = 0.25.
29In life cycle models, young firms initially face cash constraints and rely on equity issuance to finance investments.
Models of reputation in debt markets deliver a similar age-dependence mechanism (Diamond, 1989).

30In a neo-classical investment model with marginal product of capital αkα−1, the semi-elasticity of investment with
respect to the real interest rate r is ∂i/i

∂r = − 1
δ

1
1−α

(
1+r
r+δ

)
where δ is the depreciation rate (see, e.g., House, 2014).
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Figure 9: Cross-Sectional Heterogeneity in Cumulative Impulse Response of Investment to a
10 p.p. year-on-year Increase in Benchmarking Intensity by Equity Financing Dependence
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Notes: This figure shows coefficient estimates of γh1 (Low) and γh1 +γh2 (High) from local projection panel regressions
of the form: log (Invi,t+h)−log (Invi,t−1) = αh

t,j+γ
h
1 (BMIi,t − BMIi,t−1)+γ

h
21{High}i,t×(BMIi,t − BMIi,t−1)+

1{High}i,t + X ′
i,tξ

h + εi,t+h, where 1{High}i,t is an indicator variable for firms in the top tercile of the annual
distribution of: (i) equity share of capital, (ii) a measure of equity-constraints (Linn andWeagley, 2024), (iii) firm age,
and (iv) asset maturity (inverse of depreciation rate). Xi,t includes log of market equity, Tobin’s q, leverage, cash
flow, current ratio, and firm age. Pointwise confidence intervals (95%) based on double-clustered standard errors.

Figure 9 shows that the investment response to a positive benchmarking intensity shock is
significantly more negative for firms that rely more on equity financing. Specifically, firms in the
top tercile of equity share, equity constraints, and asset maturity, as well as younger firms (bottom
tercile of age), all exhibit larger declines in investment. While firms less reliant on equity also
experience an investment decline, the magnitude of this response is consistently smaller. These
findings support our hypothesis: the negative effects of benchmarking intensity on investment
are consistent with an increase in the perceived cost of equity channel.

We again conduct a series of placebo tests using shocks to the institutional ownership ra-
tio. Appendix Figure A10 shows no significant heterogeneity in investment responses, except
for firms with high equity constraints, which exhibit a stronger positive response. This finding is
consistent with Linn andWeagley (2024), who note that such firms are typically retail-dominated;
an influx of institutional capital likely relaxes their financing constraints and stimulates invest-
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ment. The placebo analysis supports our conclusion that the observed heterogeneity is driven
specifically by the cost of equity channel associated with benchmarking.

Summary Overall, our panel regression and local projection results show that higher bench-
marking intensity correlates with lower firm-level investment. The magnitude and dynamics of
the investment response are consistent with an increased perceived cost of equity. This suggests
that managers adjust their investment decisions in response to changes in their CAPM β̂ induced
by benchmarking. However, we note that these results are correlational, as the level of bench-
marking intensity or year-on-year changes in benchmarking intensity may be endogenous and
correlated with omitted variables. We therefore next turn to natural experiments which provide
plausibly exogenous variation in benchmarking intensity and allow us to identify the effects of
benchmarking on firm investment more cleanly.

6.3 Natural Experiment 1: Annual Russell Benchmark Reconstitution

Our first natural experiment exploits plausibly exogenous variation in benchmarking intensity
generated by the annual Russell benchmark reconstitution. We use an instrumental variable (IV)
local projections (LP) strategy where we instrument changes in CAPM β̂ with plausibly exoge-
nous changes in benchmarking intensity due to Russell benchmark reconstitution to identify the
effects of benchmarking on investment.31

To analyze the effect of BMI-induced changes in a firm’s CAPM β̂ on real outcomes, we
estimate a series of local projection instrumental variable regressions of the following form:

∆CAPM β̂i,t = δi + δj,t + θ∆BMIi,t + ζXi,t + ϵi,t (17)

log (Yi,t+h)− log (Yi,t−1) = αh
i + αh

j,t + γh∆CAPM β
∧

i,t + ξhXi,t + εi,t+h (18)

where Yi,t is the outcome variable of interest (e.g., investment) and ∆BMIi,t is the change in
benchmarking intensity between May and June (due to Russell reconstitution) for firm i in in-
dustry j in calendar year t. The coefficients of interests, γh, provide cumulative local average
treatment effects in % after h = 0, 1, . . . , 6 years.

We remove time-invariant heterogeneity across firms by including firm-fixed effects αi and
δi in both first and second stage. We additionally include (3-digit SIC) industry-by-year-by-total-
asset quintile fixed effects αj,t and δj,t to control for time-varying unobserved heterogeneity
31Similarly, researchers often use LP-IVs to study the effects of monetary policy on investment or asset prices (e.g.,
in Jordà et al., 2020, Kroen et al., 2021, and Bauer and Swanson, 2023).
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across industries, such as differences in industry-level business cycles, which may correlate with
firm outcomes. We include industry-by-year-by-total-asset fixed effects to identify the parame-
ters of interest, γh, by comparing similar sized firms within the same industry. The vector Xi,t

includes a set of time-varying firm-level control variables, such as log of market equity (size) at
the end of May and cumulative 1-year excess returns (momentum). We additionally include up
to three lags of the outcome and shock variables.

Identifying Assumptions and Threats to Identification The instrumental variable exclu-
sion restriction in a local projection setting differs from the usual one due to the dynamic struc-
ture of the problem. Identification requires a contemporaneous and a lead-lag exclusion restric-
tion. The instrument must not correlate with past and future shocks, at least after including con-
trol variables. The exclusion restriction requires that changes in BMI only affect firm outcomes
through changes in CAPM β̂.

However, concerns may arise that other factors, such as risk exposure, access to debt mar-
kets, or governance, could change alongside CAPM β̂s when BMI changes, potentially violating
the exclusion restriction. In Appendix F, we test whether changes in BMI correlate with changes
in firm risk, financial frictions, or governance, but find no evidence that they do. Importantly,
Column (1) of Appendix Table F16 shows that changes in BMI do not correlate with firm state-
ments about delaying investments. Failure of the exclusion restriction would introduce bias in
the estimated treatment effects. The size and sign of the bias depend on the size and sign of the
failure and the strength of the instrument (Conley et al., 2012, Jordà et al., 2020).

To ensure that our estimates are well-identified, we follow three steps. First, we include up
to three lags of outcomes and shock in our regressions. Second, we saturate our LP-IV estimator
with high-dimensional fixed effects to remove as much time-varying unobserved heterogeneity
as possible. Third, we verify that including a set of known predictors of capital accumulation
(e.g., Tobin’s q or cash flow) does not change our results in a robustness test.

Results Figure 10 shows several key results. First, the impulse responses across all outcome
variables have the expected signs: capital expenditure and physical and intangible capital stocks
decrease in response to the perceived cost of cost. Cash holdings increase, suggesting that firms
self-insure against the increased exposure of benchmark-linked capital flows (Froot et al., 1993).
Eventually, firms increase dividends and stock repurchases.32 Employment also decreases, sug-
32This pattern provides indirect evidence that treated firms are not financially constrained. In a broad class of macro-
finance models, financially constrained firms do not distribute cash to shareholders (see, e.g., Albuquerque and
Hopenhayn 2004, Khan and Thomas 2013, and Begenau and Salomao 2019.)
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Figure 10: Local Projection-IV: Impulse Response of Outcome Variables to CAPM β̂ shock
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Notes: This figure shows local projection coefficients estimates for 100× cumulative log-changes of outcome variables
from regression of the form log (Yi,t+h)− log (Yi,t−1) = αh

i + αh
j,t + γh∆CAPM β
∧

i,t + ξhXi,t + εi,t+h, where the
shock is scaled to a 0.167 increase in CAPM β, which translate into a 100 bps rise in the CAPM-implied cost of equity
(0.167× 6%) estimated with change in BMI as an instrumental variable. Dashed red lines represent 90% significance
bands for the null of zero treatment effect, computed by inverting the F-statistic of joint significance around zero
using Scheffé’s method (see Jordà, 2023).

gesting that firms reduce labor input in response to an increase in their perceived cost of equity.33

Second, firms respond gradually to an increase in CAPM β̂, with effects starting from zero
in the treatment year and growing over time. The cumulative impact becomes statistically and
economically significant after about three years, aligning with industry practices of using a two
to five year rolling window to estimate CAPM β̂s. This gradual adjustment likely reflects the
33Borovička and Borovičková (2018) argue that fluctuations in discount rates and labor market frictions play an im-
portant role for employment. For empirical evidence that financing frictions affect employment see, e.g., Hombert
and Matray (2017), Bai et al. (2018), Berton et al. (2018), Caggese et al. (2019), Benmelech et al. (2019), Fonseca and
Van Doornik (2022), Baghai et al. (2021), Benmelech et al. (2021), Fonseca and Matray (2024).
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gradual pass-through from managers’ perceived cost of capital to hurdle rates documented by
Gormsen and Huber (2024). Third, benchmarking-induced changes have persistent effects on
capital expenditure and capital stocks that remain significant for at least six years after the shock.

Benchmarking-induced increases in CAPM β̂s lead to large and persistent declines in invest-
ment. We scale the shock to the average treatment effect for a BMI increase of at least 5 p.p.,
which corresponds to a change in the CAPM-implied cost of equity of around 100 bps. We find
that firms reduce their capital expenditure by approximately 10.0% over six years in response to
the shock. The resulting decrease in physical capital stocks is 7.1% and in intangible capital stocks
is 8.4% after six years.

Robustness Checks We perform several robustness checks on the main results. First, we add
known predictors of investment, such as cash flow, Tobin’s q, and the debt-to-equity ratio, to
the LP-IV regressions. Second, we incorporate different levels of fixed effects, replacing firm
size by industry by year fixed effects with sales by industry by year fixed effects. Appendix
Figure A11 shows coefficient estimates of these robustness checks alongside the original estimate.
The figure shows that adding firm-level controls does not change the estimates, supporting our
identification strategy. Altering the level of fixed effects only marginally affects point estimates,
with all changes well within one standard error of the original estimates.

Investment Rates Appendix Figure A12 shows the impact of an increase in CAPM β̂ on in-
vestment rates. The investment rate declines over time in response to the shock. Starting from a
near-zero, gradually becoming more negative, reaching the lowest point after four to five years.
The shock to the CAPM β̂ leads to a significant drop of -2.56 p.p. after four years. In standard
deviation units, investments drops by 0.19. This compares in terms of economic magnitudes to
Alfaro et al. (2024) who find that uncertainty shocks lead to a 0.18 sd drop in investment rates.

6.4 Natural Experiment 2: S&P 500 Benchmark Inclusion

We exploit additions to the S&P 500 as a natural experiment to provide additional evidence that
changes in benchmarking intensity affect capital accumulation. We analyze 325 benchmark in-
clusions between 2000 and 2018 using a difference-in-differences event-study design. We focus
exclusively on additions, as most deletions stem from mergers or acquisitions, making it difficult
to measure post-event real outcomes for the affected firms.34

Unlike the mechanical annual reconstitution of the Russell indices, S&P 500 additions are
34Our list of inclusions dates is drawn from Chinco and Sammon (2024).
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discretionary. A selection committee determines inclusion based on a set of criteria, e.g, mar-
ket capitalization, liquidity, sector classification, profitability, and listing history. This discretion
introduces concerns about endogeneity. The committee may select firms based on unobserved
characteristics that also affect investment, such as growth opportunities or managerial quality.
At the same time, inclusion represents a persistent shock: in our sample, additions remain in
the index for an average of 9.5 years. We can therefore use a difference-in-differences design,
comparing the investment response of added firms with non-added firms in the same industry
and year. Identification requires that the timing of inclusion does not correlate with time-varying
unobserved shocks to investment, rather than unobserved level differences.

Benchmarking intensity rises sharply upon S&P 500 inclusion, reflecting its widespread use
as a reference index. On average, stocks experience an 8.6 p.p. increase in benchmarking intensity
in the month of addition, relative to a baseline level of 14.1%.

To estimate the effect on CAPM β̂s, we use a similar difference-in-differences event study
as in Eq. (8), controlling for log market cap, Amihud illiquidity, bid-ask spreads, momentum,
and industry-by-month fixed effects. The key identifying assumption is that, absent S&P 500
inclusion, added firms’ β̂s would have evolved similarly to non-included firms within the same
industry and year. We again caution that our estimates are reduced form rather than structural.

Panel (a) of Figure 11 shows that S&P 500 inclusion leads to a sharp increase in CAPM β̂s.
The 21-day β̂ rises by approximately 0.14 immediately after addition, implying a change of 0.016
per p.p. increase in BMI. The 252-day β̂ increases gradually, reaching 0.10 after nine months.
Given that included firms are, on average, 80% equity-financed, these β̂ increases imply a rise in
the user cost of capital of 50–70 bps, assuming a 6% equity risk premium.35

We next examine real effects of S&P 500 inclusion. Using the same event-study setup but
switching to annual frequency, we estimate the impact on firms’ investment rates and net payout
ratios. We control for Tobin’s q, cash flow, momentum, and absorb industry-by-year fixed effects
to isolate within-industry variation in investment and payouts.

Panel (b) of Figure 11 shows that inclusion leads to a gradual but significant decline in in-
vestment, alongside a sharp and sustained increase in net payouts. Investment rates bottom out
four years post-inclusion, consistent with managerial discount rates updating slowly in response
to higher perceived cost of equity. Payouts, by contrast, respond faster, peaking at 2.5 p.p. above
baseline after five years. Initially funded from cash reserves, payouts are increasingly sustained
35We find no significant effect on the Implied Cost of Capital following S&P 500 inclusion, consistent with Patel and
Welch (2017) and Greenwood and Sammon (2024) documenting a disappearance of S&P 500 inclusion price effects.
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Figure 11: Difference-in-differences Event Study of S&P 500 Benchmark Inclusion
(a) Effects of S&P 500 Benchmark Inclusion on CAPM β̂ (avg. ∆ BMI ≈ 8.6 p.p.)
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Notes: This figure reports monthly difference-in-differences event-study estimates of changes in CAPM β̂ for stocks
added to the S&P 500, using rollingwindows of 21 or 252 daily returns. Effects identified fromwithin-industry-month
variation. Controls include log market cap, log Amihud illiquidity, log bid-ask spread, and momentum. Pointwise
confidence intervals (95%) based on double-clustered standard errors.

(b) Effects of S&P 500 Benchmark Inclusion on Investment and Net Payouts
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Figure 12: Difference-in-difference Event Study of MSCI ACWI Inclusion on CAPM β̂
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Notes: This figure shows dynamic treatment effects of MSCI ACWI benchmark inclusion on CAPM β̂s to the local
market index. Sample from 1999 to 2018, covering 23 developed and 24 emerging markets. The left panel uses a
252-day rolling β; the right panel uses a 60-month rolling β estimator. Specifications include year-by-industry-by-
country fixed effects and log market capitalization, bid-ask spread, momentum, and log trading volume. Data from
Jensen et al. (2023). Pointwise confidence intervals (95%) based on double-clustered standard errors.

by reduced capital expenditures. These results are consistent with our central hypothesis: in-
creases in CAPM β̂s due to benchmarking raise firms’ perceived cost of equity, leading managers
to reduce investment and increase shareholder distributions.

Our results align with Bennett et al. (2023), who also find a decline in investment following
S&P 500 inclusion. We propose a different mechanism and interpretation. We argue that the
decline reflects a higher perceived cost of equity arising from increased benchmarking. Managers
perceive to be acting in their shareholders’ interests, reduce investment and increase payouts.
Bennett et al. (2023) emphasize peer effects and categorical thinking, arguing that managers’
incentives shift because compensation peer groups expand to include more S&P 500 firms, and
boards begin to evaluate management relative to index peers. We note that these explanations
are not mutually exclusive but leave disentangling them to future work.

6.5 Natural Experiment 3: MSCI ACWI Benchmark Inclusion

Prior research finds that, in an international setting, a firm’s inclusion in the MSCI All Coun-
try World Index (ACWI) is associated with a modest increase in firm investment. The proposed
mechanisms through which inclusion in the ACWI affects investment are that increased for-
eign ownership disciplines entrenched managers (Bena et al., 2017) and enhances price efficiency
(Kacperczyk et al., 2021).
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We offer a complementary mechanism based on a reduction in the perceived cost of equity.
We find that inclusion in the MSCI ACWI persistently decreases a stock’s CAPM β̂ to its local
market index. Because ACWI flows increase covariance with global factors, and the local index
is not perfectly correlated with those factors, the stock’s covariance with the domestic index
mechanically falls. This covariance reallocation explains the observed drop in local β̂. A smaller
β̂ lowers managers’ perceived cost of capital and can explain a modest increase in investment
after inclusion. This interpretation assumes that managers use local market β̂s to estimate their
cost of equity. This assumption is consistent with evidence from stock analysts using indices from
a firm’s home country rather than international benchmarks (Décaire and Graham, 2024).

Figure 12 plots difference-in-differences event study coefficients of CAPM β̂s, measured rel-
ative to local market indices. After ACWI inclusion, firms’ local market β̂ declines persistently
with effects appearing in the year of inclusion and deepening over three years. Taken together,
the results that β̂ to the local index decreases and investment increases following addition to the
ACWI are consistent with our perceived cost of equity channel. We thus view the positive effects
of ACWI inclusion on investment as providing external validity to our findings in the U.S..

7 Effects of Benchmarking on Investment at the Industry-level

Wecomplement our firm-level findingswith evidence at the industry-level: industrieswith higher
CAPM βs due to benchmarking have accumulated less capital over the past 25 years. The results
are robust to the inclusion of industry pre-trends and sectoral fixed effects. Increases in CAPM
β̂ and BMI are strongly associated with lower capital accumulation, while changes in institu-
tional ownership ratio have small, positive, and insignificant effects. This supports our interpre-
tation that benchmarking-driven changes in the cost of equity reduce capital accumulation, rather
than increases in institutional ownership per se. Furthermore, we show that benchmarking-
induced dispersion in CAPM β̂s increasingly explains within-industry dispersion in marginal
products of capital. This indicates that benchmarking reduces allocative efficiency by creating
non-fundamental dispersion in firms’ perceived cost of equity (Gormsen and Huber, 2024).

Data We use the NBER CES Manufacturing Industry database to study the long-term effects
of higher CAPM β̂s on industry-wide capital accumulation. The analysis is at the NAICS-5 digit
level. Because the CES data on real capital stocks end in 2016, we focus on 1998–2016.

52



Table 7: IV: Long-term Effects of Benchmarking on Capital Accumulation at the Industry-level

(1) (2) (3) (4) (5)
Dependent variable: log (Real Capital Stock in 2016/Real Capital Stock in 1998)

∆ CAPM β -0.271∗ -0.329∗∗ -0.325∗ -0.317∗∗ -0.328∗∗
(1998-2016) (0.157) (0.129) (0.164) (0.158) (0.157)

Real Capital Stock/Value-Added -0.155∗∗∗ -0.195∗∗∗ -0.203∗∗∗
(1998) (0.049) (0.058) (0.057)

log (Employment) -0.00165 0.0349 0.0537
(1998) (0.033) (0.043) (0.036)

log (TFP) 0.321∗ -0.110 -0.152
(1998) (0.188) (0.264) (0.244)

Pre-trend Capital -0.309∗∗∗
(1980-1996) (0.106)

Pre-trend Employment 0.256∗∗
(1980-1996) (0.107)

Pre-trend Wage 0.557
(1980-1996) (0.426)

Constant 0.243∗∗∗ 0.420∗∗
(0.074) (0.183)

NAICS-3 Subsector Fixed Effects ✓ ✓ ✓
Weights VA1998 VA1998 VA1998 VA1998 VA1998

Kleibergen–Paap F-statistic 12.95 13.79 17.60 17.37 17.07
Observations 103 103 103 103 103

Notes: This table reports coefficient estimates of IV regressions at the NAICS 5-digit industry-level of the form:
∆ log (Real Capital Stock)i = αj + γ∆CAPM β̂i +X ′

iξ + εi in which we instrument changes in CAPM β̂ with
changes in BMI from 1998 to 2016. BMI and CAPM β̂ are market-value weighted averages at industry level of
Compustat firms. We exclude industries with less than 5 firms. Pre-trends measure log changes in variables
from 1980 to 1996. Observations are weighted by industry value-added in 1998. We winsorize all variables at
the 2% and 98% level. Robust standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01.

Specifications We estimate IV long-difference regressions for 1998–2016 of the form:

∆16
98 CAPM β̂i = δj + θ∆16

98 BMIi +X ′
iζ + ϵi

log
(
Real Capital Stock‘16

i /Real Capital Stock‘98
i

)
= αj + γ∆16

98 CAPM β
∧

i +X ′
iξ + εi

in which αj are NAICS 3-digit subsector fixed effects. The control vectorXi includes 1998 indus-
try characteristics, such as log employment and TFP, to account for initial differences affecting
capital accumulation. We define the change in CAPM β̂ for industry i as the difference between
the weighted average CAPM β̂ of firms in 2016 and 1998. We construct the industry’s change in
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BMI analogously, exclude industries with fewer than five firms, and weight observations by 1998
value-added shares to emphasize economically important sectors.36

A potential concern is that other secular changes or pre-existing growth paths may confound
the effects of benchmarking on capital accumulation. We address this concern by controlling for
pre-trends in capital accumulation, employment, and wages from 1980 to 1996. We also include
NAICS 3-digit sub-sector fixed effects such that coefficients are identified from variation across
industries within the same sub-sector.37

Results Table 7 reports coefficient estimates. Several things are worth noting. First, across all
specifications, we find that increases in CAPM β̂s have a statistically significant negative effect
on long-term capital accumulation at the industry-level. Second, the size of the coefficients is
economically meaningful. Column (5) implies that a 0.3 increase in average CAPM β̂ results in
a 9.9% (≈0.3×0.33 ×100%) lower capital stock from 1998 to 2016, or about 0.53% lower annually.
Third, the results are robust to the inclusion of industry-level controls and sub-sector fixed effects.
Fourth, changes in BMI are strong instruments for changes in CAPM β̂ even at the industry-level,
with first-stage F-stats averaging 15.8 across columns.

A potential concern is that the secular rise in institutional ownership since the 1990s, rather
than changes in β̂ due to benchmarking, drives our results. Increased institutional ownership,
e.g., by large activist or common ownership, could reduce investment through monitoring and
governance changes. Appendix Table A8 reports OLS and reduced-form estimates of the effects
of changes in CAPM β̂, BMI, and the institutional ownership ratio (IOR) on capital accumulation.
Increases in CAPM β̂ and BMI are associated with lower capital accumulation, while changes
in IOR have a small, positive, and statistically insignificant coefficient — the opposite sign to
the prediction that rising institutional ownership reduces investment. These findings support
the interpretation that benchmarking-driven changes in the perceived cost of equity, not secular
changes in institutional ownership, drive our results.

To test the robustness of our industry findings, we replicate the analysis using data from the
Bureau of Economic Analysis (BEA) Fixed Asset Table 3.1. This dataset offers broader sectoral
coverage than the NBER-CES Manufacturing data by including all economic sectors at the 3-digit
NAICS level. We trade off broader coverage for reduced granularity: the BEA covers 38 industries
at the 3-digit level, compared to 103 industries at the 5-digit level in the NBER-CES data.

Table 8 presents results confirming the negative relationship between changes in benchmark-
36We find similar results when using investment-shares as weights.
37For example, the NAICS sub-sector 311 “Food Manufacturing” contains 12 5-digit industries.
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Table 8: BEA Capital Accumulation vs. Change in BMI

(1) (2) (3) (4)
Dep. var.: Capital Accumulation (1998-2018)

Change in BMI -1.683∗∗ -2.010∗∗∗ -1.960∗∗ -1.660∗∗
(1998-2018) (0.703) (0.624) (0.757) (0.787)

Capital/Value-Added -0.008 -0.004
(1998) (0.007) (0.007)

Log(Value-Added) 0.006 0.023
(1998) (0.031) (0.034)

Log(Labor) 0.048 0.028
(1998) (0.049) (0.046)

Pre-trend Capital 0.115
(1980-1996) (0.087)
NAICS-2 Fixed Effect ✓ ✓ ✓
Weights VA1998 VA1998 VA1998

Adj. R2 0.10 0.70 0.70 0.71
Observations 38 38 38 38

Notes: This table shows estimates of regression of the form
log

(
Real Capital‘18i /Real Capital‘98i

)
= αj+γ∆18

98 BMIi+X′
iζ+εi

for industry i in sector j from 1998 to 2018 using the BEA Fixed As-
set Table. We weight each industry by its value-added share in 1998.
Robust standard errors in parentheses.

Figure 13: Capital Accumulation vs. Change in BMI
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Notes: This figure plots residualized capital accumulation versus resid-
ualized changes in benchmarking intensity for 3-digit NAICS indus-
tries in long-differences from 1998 to 2018 using the BEA Fixed Asset
Table. The specification is the same as in Column (3) of Table 8. Point-
wise confidence interval (95%) based on robust standard errors.

ing intensity and capital accumulation from 1998 to 2018. The point estimate in Column (4) im-
plies that a 10 p.p. increase in BMI, equal to a two standard deviation change, corresponds to a
16% lower in capital accumulation over the sample period, or about 0.9% lower annually. The
regression specifications weigh each industry by its 1998 value-added share, include controls for
capital accumulation pre-trends and baseline differences in employment and value-added, and
absorb NAICS 2-digit sector fixed effects.

7.1 Misallocation due to Benchmarking

Appendix G examines whether benchmarking-induced changes in perceived equity costs create
within-industry capital misallocation. We find benchmarking is a growing source of within-
industry dispersion in firms’ CAPM β̂: the share of β̂ variation explained by benchmarking in-
tensity rose from under 3% before 2000 to over 10% by 2018. We test whether this excess disper-
sion in β̂ translates into greater dispersion of marginal revenue products of capital (MRPK). Our
results show that benchmarking-induced β̂ dispersion raises within-industry MRPK dispersion,
suggesting that benchmarking impedes efficient marginal product equalization and contributes
to rising productivity dispersion (Cunningham et al., 2023).
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8 Aggregate Effects of Increased Benchmarking

In this last section, we assess whether the benchmarking-induced changes in CAPM β̂s have con-
sequences for aggregate investment. We argue that CAPM-implied increases in the perceived cost
of equity do not cancel out in aggregate but contribute to Gutiérrez and Philippon’s (2017) “miss-
ing investment puzzle.” An aggregate effect may seem unlikely, as the value-weighted market
β must equal one, implying that any β increase for one firm is offset by a decrease for another.
However, this intuition fails because it rests on two assumptions. First, it assumes that firms’
capital expenditure weights mirror their market capitalization weights. Second, it assumes that
all firms respond identically to cost of capital shocks.

The data reject both assumptions, creating a channel for aggregate effects. First, market cap-
italization weights and investment share weights can differ markedly. For instance, the financial
sector (NAICS 52) averages 17.3% of U.S. market capitalization yet only 3.5% of capital expendi-
tures. Second, smaller firms’ investment is more sensitive to financing costs than that of larger
firms.38 Benchmarking creates a net investment decline because it provides a “β subsidy” to large,
inelastic firms that do not adjust their investment, while imposing a “β penalty” on small, elastic
firms that reduce their investment.

Quantitatively, a back-of-the-envelope aggregation suggest that the rise in benchmarking re-
duces aggregate investment by approximately 1.28%, annually. We test the robustness of this re-
sult in a calibrated heterogeneous-firm general equilibrium model with capital adjustment costs
(Winberry, 2021) where aggregate prices can adjust in response to the β shock. When we in-
troduce a cross-sectional cost of equity shock consistent with our empirical findings, aggregate
investment falls by around 1.8%.

Lastly, we show that the effect of benchmarking on the perceived cost of equity is large
enough to account for around 50% of the missing investment puzzle. We construct a counterfac-
tual WACC that removes the effects of benchmarking on CAPM β̂s and find that the counterfac-
tual WACC is on average 120 bps lower than the actual WACC. Adjusting investment rates for
this counterfactual WACC closes around half of the missing investment gap.
38See, e.g., Gertler and Gilchrist (1994), Chaney et al. (2012), Zwick and Mahon (2017), Crouzet and Mehrotra (2020),
Cloyne et al. (2023), Best et al. (2024).
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8.1 Aggregation of Firm InvestmentAcrossMarketCapitalizationRanks

We derive the factors driving aggregate investment’s response to changes in firms’ CAPM βs. In
both the Jorgensonian and q-theory versions of the neoclassical investment model, the capital
stock and investment depend on the user cost of capital: I = f(C). For firm i at time t, Ci,t =

(ri,t + δ)qi,t, where ri,t is the weighted average cost of capital, δ is depreciation, and qi,t is the
relative price of capital goods. Managers set ri,t using the CAPM ri,t = (1 − µi,t)(1 − τt)r

d
i,t +

µi,t

(
rft + βi,tλt

)
, where µi,t is the equity share, rdi,t the cost of debt, rft the risk-free rate and λt

the equity risk premium. The semi-elasticity of investment with respect to the user cost is then
given by

ϵCi,t =
1

Ii,t−1

∂Ii,t
∂Ci,t

=
1

Ii,t−1

1

qi,tµi,tλt

∂Ii,t
∂βi,t

since ∂Ci,t/∂βi,t = qi,tµi,tλt. The change in firm i’s investment is to a first order approximation

∆Ii,t ≈ Ii,t−1 ϵ
C
i,t ∆Ci,t = Ii,t−1 ϵ

C
i,t (qi,t µi,t ∆βi,tλt) .

That is, the change in firm i’s investment depends on scale, Ii,t−1, and the firm’s marginal propen-
sity to investment with changes in the user cost of capital, ϵCi,t. The change in aggregate invest-
ment is the sum over all firms changing their investment. Assuming, for the moment, that all
firms face the same relative price of capital, qi,t = qt ∀ i, then

∆It
It−1

≈ qtλt
∑
i

πi,t−1 ϵ
C
i,t µi,t ∆βi,t (19)

Equation (19) shows that aggregate investment responses to changes in CAPM βs depend on
the distributions of (i) investment shares πi,t−1 = Ii,t−1/It−1, (ii) semi-elasticities ϵCi,t, (iii) equity
shares µi,t, and (iv) changes in βs across firms. It also clarifies that market-cap weights aggregate
investment correctly only when they match firms’ shares of total investment.39

39Technically, using market-cap weights ωi instead of investment-share weights πi biases estimates in proportion to
the covariance between ωi − πi and the firm-level shock xi. This bias is zero only if the weights coincide.
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Table 9: Covariance Decomposition of the Aggregate Investment Response

Component Estimate Std. Err. Share

Average Firms’ Response Eπ[ϵ
C
i,t] Eπ[µi,t] Eπ[∆βi,t] -0.067 (0.096) 0.31

+ Sensitivity Sorting Covπ(ϵCi,t,∆βi,t) Eπ[µi,t] -0.149∗∗∗ (0.033) 0.70
+ Equity-share Sorting Covπ(µi,t,∆βi,t) Eπ[ϵ

C
i,t] 0.003∗∗ (0.001) -0.01

+ Pass-through Sorting Covπ(ϵCi,t, µi,t) Eπ[∆βi,t] 0.000 (0.000) -0.00

× Equity Risk Premium λt = 0.06
× Relative Price of Capital qt = 1
≈ Change in Aggregate Investment ∆It/It−1 × 100 -1.274∗ 0.662

Notes: This table decomposes the change in aggregate investment into moments from Equation (20). Eπ[·] is the cross-sectional
mean under investment-share weights π, and Covπ(·, ·) the corresponding covariance. ϵC is the semi-elasticity of investment to
the user cost, µ the equity share, ∆β the change in CAPM β, λ the equity premium, and q the relative price of capital. “Share”
is each component’s fraction of the total. Moments are jointly estimated by GMM with heteroskedasticity-robust standard errors.
∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01.

A covariance decomposition of (19) provides further economic insights,

∆It
It−1

≈ qtλt

[
Eπ[ϵ

C
i,t] Eπ[µi,t] Eπ[∆βi,t] + Covπ(ϵCi,t,∆βi,t) Eπ[µi,t]

+ Covπ(µi,t,∆βi,t) Eπ[ϵ
C
i,t] + Covπ(ϵCi,t, µi,t) Eπ[∆βi,t]

]
(20)

in which all expectations and covariances are taken under π.40

Thefirst product in brackets represents the average firm’s investment response to a change in
β. We can sign the expectations termswithout further empirical analysis. The average investment
semi-elasticity, Eπ[ϵ

C
i,t], is negative, while the average equity share, Eπ[µi,t], and the average,

investment-share weighted, change in CAPM β̂, Eπ[∆βi,t], are positive (see Table 1). Importantly,
even if the average firm’s investment does not respond, aggregate investment can still change due
to reallocation effects that the covariance terms in (20) capture.

Our analysis focuses on the first covariance term, which proves most important. This term,
Covπ(ϵC ,∆β), links investment sensitivities to the allocation of β shocks across firms. A negative
covariance arises when larger β increases affect firms with more negative semi-elasticities. This
condition creates a more contractionary aggregate response because the firms facing the biggest
cost-of-capital shock are also those that cut investment most sharply. The high average equity
share, Eπ[µ], amplifies this effect by increasing the pass-through from β to the user cost.
40We suppress a third-order term in the decomposition.
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To compute the covariance term, we need estimates of investment semi-elasticities across
firms. We estimate these by regressing firm investment on CAPM β̂s within sales deciles. While
OLS likely biases these estimates toward zero, their cross-sectional pattern aligns with well-
identified estimates from the literature: smaller firms show more negative semi-elasticities (e.g.,
Zwick andMahon, 2017). AppendixH details this estimation. Wemap decile-level semi-elasticities
to market capitalization ranks and use GMM to jointly estimate the moments in Equation (20),
using the empirical distributions of ε, π, µ, and ∆β (plotted in Appendix Figure A13).

Table 9 shows that aggregate investment falls by 1.28%, all else equal. The average firm’s
response contributes about 31% to this decline. The dominant force, however, is the covariance
between ∆βi and ϵCi . This strong negative relationship generates a reallocation effect that ac-
counts for approximately 70% of the total. The other two covariance terms in (20), which link
financing patterns to risk exposure and to investment flexibility, are negligible. Appendix Fig-
ure A14 shows the cumulative change in aggregate investment across market capitalization ranks
under alternative weighting schemes and elasticity assumptions.

General Equilibrium Our preceding analysis provides clear intuition but, as a static partial
equilibrium exercise, it abstracts from dynamic adjustments, non-linearities from capital adjust-
ment costs, and general equilibrium feedback. To address these limitations, we embed the mech-
anismwithin a quantitative general equilibriummodel detailed in Appendix I.Themodel features
heterogeneous firms and capital adjustment costs, which allows us to evaluate the aggregate im-
pact in a dynamic setting. We introduce the empirically observed changes in β̂ as size-dependent
shocks to firms’ discount rates: the largest firms experience a decrease, while all other firms face
an increase, consistent with our empirical results.41

The general equilibrium model validates our back-of-the-envelope aggregation and predicts
an aggregate investment decline of 1.8% in response to the β̂ shock. Firm heterogeneity drives
this mechanism, which operates on the extensive margin. Specifically, the adverse shock to their
cost of capital pushes small, high-growth firms to delay their investment. In contrast, large, in-
framarginal firms near their optimal scale show little response to the shock. While this richer
framework captures our primary mechanism, it still abstracts from other margins like firm en-
try/exit and innovation, which represent promising avenues for future research (Pindyck, 2009,
Gutiérrez et al., 2021, Bustamante and Zucchi, 2023).
41While price adjustments could in theory offset these distributional β shocks, Koby and Wolf (2020) show that
empirical investment semi-elasticities are too low to produce meaningful general equilibrium smoothing.
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8.2 Counterfactual WACC and the Missing Investment Puzzle

We estimate a counterfactual weighted average cost of capital (WACC) for the average firm by
removing benchmarking-induced distortions from its CAPM β̂ and test whether the resulting
WACC is sufficiently lower to account for the missing investment puzzle.

Panel (a) of Figure 14 plots the average firm’s weighted average cost of capital (WACC) from
1998 to 2019.42 We construct a counterfactual WACC where we assume that the average firm’s
CAPM β̂ increases only by 20% of the actual increase since 1998, while allowing other components
of the WACC to vary as observed.43 The counterfactual shows that increased benchmarking has
raised the average firm’s WACC by over 120 bps after 2003, effectively offsetting much of the
decline in risk-free rates over the past 25 years.

We adopt the methods of Gutiérrez and Philippon (2017) and Gormsen and Huber (2025) to
test whether the wedge between actual and counterfactual WACC is large enough to account
for the missing investment puzzle. Using data from 1990 to 2002, we estimate the relationship
between aggregate investment and Tobin’s Q, then predict post-2002 investment under the as-
sumption that this relationship remained unchanged. The “missing investment” is the cumula-
tive shortfall since 2002, reflecting the divergence between Tobin’s Q and observed investment.
Gormsen and Huber (2025) show that when a firm’s perceived discount rate exceeds the mar-
ket’s discount rate, it undervalues profits generated by capital relative to the market. Following
their approach, we adjust Tobin’s Q to account for the average discrepancy between the market’s
discount rate and the firm’s perceived cost of capital, yielding an adjusted Tobin’s Q:

Adjusted Tobin’s Q = Tobin’s Q× 1

1 + ∆WACC× Cashflow Duration (21)

in which∆WACC is thewedge between actual and counterfactualWACC in panel (a) of Figure 14.
The impact of this adjustment depends on both the size of the discount rate wedge and the dura-
tion of cash flows. A higher duration amplifies the effect of the discount rate on asset value. We
set the duration to 32.5 years which is the midpoint of the stock market duration estimates of 28
42Constructed as WACCt = (1 − µt)(1 − τt)r

d
t + µt

(
rft + βtλt

)
, where µt is the equity share, rdt the cost of debt,

rft the risk-free rate, and λt the equity risk premium (ERP). The ERP is proxied by Et[r
Mkt] = 1/CAPEt + 2% +

Et[Inflation], where expected inflation is from the SPF, and rft is the 10-year U.S. Treasury yield. The cost of debt
rdt is proxied by the yield on the ICE–BofA HY Bond Index. The equity share is computed as µt =

Equityt
Equityt+Debtt ,

and the effective tax rate as τt = Tax Expenset
Pre-Tax Incomet−Extraordinary Itemst

, using Compustat data.
43This is a conservative calibration. The dynamic OLS estimates in Appendix Table A4 imply that the rise in the
average stock’s benchmarking intensity from 1998 to 2018 explains 88% (=14 p.p.×0.029/(1.09-0.63)) of the increase
in the average CAPM β̂. We cannot statistically reject that 100% of the increase are due to the increase in BMI.
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Figure 14: Actual and Counterfactual Weighted Average Cost of Capital and Missing Investment
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Notes: Panel (a) shows the average firm’s actual and counterfactual WACC, calculated as WACCt = µtret + (1 − µt)(1 − τt)rdt where ret =

rft + β
(
Et[rMkt]− rft

)
. We proxy the expected return on the market as Et[rMkt] = 1/CAPEt + 2% + Et[Inflation] and proxy rDt with

the yield on the ICE-BofA HY Bond Index. In the counterfactual, we assume that CAPM β̂ increase only by 20% of the actual increase since 1998
while allowing other components of the WACC to vary as observed. Panel (b) shows the cumulative investment shortfall as a percentage of the
capital stock, estimated separately using Tobin’s Q and Adjusted Tobin’s Q. Following Gormsen and Huber (2025), Tobin’s Q is calculated using
market value data from the Flow of Funds and tangible plus intangible capital data from the BEA. Adjusted Q accounts for the wedge between
financial market discount rates and managers’ perceived cost of capital (see Eq. (21)). The relationship between investment and Q is estimated
using 1990–2002 data for each Q type. For post-2002 years, cumulative residuals are computed as the difference between observed investment
and predictions based on 1990–2002 estimates. Pointwise confidence intervals (95%) are derived using Newey-West standard errors with 5 lags.

years from Van Binsbergen (2025) and 36 years from Greenwald et al. (2021).

Panel (b) of Figure 14 shows that the WACC wedge is large enough to explain 58% of the
missing investment puzzle. Without adjustment, the aggregate investment shortfall implied by
Tobin’s Q is approximately 25% of the capital stock by 2019. After adjustment for the WACC
wedge, the shortfall is reduced to approximately 10.6% of the capital stock. The wedge between
actual and counterfactualWACC is thus large enough to account for more than half of themissing
investment puzzle. The remaining gap is likely related to other macro developments, such as
rising market power (Barkai, 2020, Crouzet and Eberly, 2023) and mismeasurement of intangible
capital (Peters and Taylor, 2017).

9 Conclusion

This paper investigates the consequences of mutual fund benchmarking and index investing for
firm investment. Our findings challenge the prevailing view that benchmark-linked investing
benefits the real economy by lowering firms’ cost of equity. We establish that greater bench-
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marking intensity, for most firms, leads to a significant increase in their CAPM β̂.

Firms respond to these benchmarking-induced increases in β̂ by reducing investment. We
attribute this response to managers’ application of the CAPM for capital budgeting decisions, a
practice that fails to adjust for the impact of benchmarking on asset prices. Evidence from man-
agers, analysts, and regulators shows a higher perceived cost of equity following an exogenous
increase in benchmarking intensity.

These findings offer a novel explanation for the shortfall of investment relative to valua-
tions over the past two decades. Our analysis shows that the growth in benchmark-linked asset
management has significant negative real effects on aggregate investment. Our results imply
that executives, policymakers, and investors must account for the unintended consequences of
benchmark-linked investing on firms’ capital allocation and the real economy.
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A Appendix

A.1 Appendix Figures

Figure A1: Rolling-Window CAPM β̂ Estimates at Different Frequencies
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Notes: This figure plots binned scatters of rolling-window CAPM β̂s against May market-cap ranks by estimation
frequency: 252 trading days (daily), 156weeks (weekly), and 36months (monthly). Shaded areas show 90% confidence
bands with errors clustered by stock and year-month.

64



Figure A2: Time Series of Equal-weighted Average CAPM β̂ of all Common Stocks Since 1985
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Notes: This figure shows cross-sectional equal-weighted average CAPM β̂ since 1985 of all common stock listed on
the NYSE, AMEX, and NASDAQ. ∆ is the change in CAPM β̂ post-2002 relative to pre-period.

Figure A3: Differences in Benchmarking Intensity and CAPM Equity β̂E Between Pre and Post

ρ(∆ BMI,∆ CAPM β̂) = 0.92

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

 C
ha

ng
e 
in
 A

ve
ra
ge

 C
A
PM

 E
qu

ity
 β̂
E

-5.0 p.p.

-2.5 p.p.

0.0 p.p.

2.5 p.p.

5.0 p.p.

7.5 p.p.

10.0 p.p.

12.5 p.p.

15.0 p.p.

 C
ha

ng
e 
in
 A

ve
ra
ge

 B
en

ch
m
ar
ki
ng

 In
te
ns

ity

1 500 1000 1500 2000 2500 3000 3500 4000
 Market Capitalization Rank in May

∆ BMI (left axis) ∆ CAPM β̂ (right axis)

Notes: This figure plots changes in average BMI (left axis) and CAPM equity β̂E (right axis) between the pre- and
post-periods against Maymarket capitalization ranks (based on Ben-David et al. 2019). Each bin shows the difference
in conditional means from Figure 1. ρ(∆BMI,∆CAPM β) reports the correlation between changes in BMI and CAPM
β̂s. Error bars indicate pointwise 95% confidence intervals with standard errors clustered by stock and year-month.
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Figure A4: CAPM Asset β̂A and Cash Flow β vs. Market Capitalization Rank in May
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Notes: This figure plots binned scatters of quarterly cash flow β̂s and CAPM asset β̂s against May market capital-
ization ranks. Equity βs are unlevered following Krüger et al. (2015): β̂A = E

E+D × β̂E , with E market value of
equity and D book debt. Each bin is the equal-weighted average of 100 ranks, with conditional means identified
from cross-sectional variation by absorbing year-quarter fixed effects. Outlined bins use 1975–2002 data; filled bins
use 2003 to 2018. Shaded areas show 95% confidence bands with standard errors clustered by stock and year-quarter.

Figure A5: Largest Stocks’ CAPM β̂E vs. Market Capitalization Rank in May
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Notes: This figure shows binned scatter plots of CAPM equity β̂E against May market capitalization ranks for the
largest 100 stocks by market capitalization. Each bin reflects the equal-weighted average of 5 ranks. Conditional
means are identified absorbing year-month and stock fixed effects. Outlined bins use data from 1990 to 2002; filled
bins from 2003 to 2018. p-value is for the null hypothesis that β̂(rank bin j)t=Pre = β̂(rank bin j)t=Post ∀ j ∈ J
using the nonparametric pairwise group comparison test of Cattaneo et al. (2024).
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Figure A6: Consumption Growth β̂s vs. Market Capitalization Rank in May
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Notes: This figure shows binned scatter plots of consumption growth β̂s from Kim et al. (2024) against May mar-
ket capitalization ranks. Each bin reflects the equal-weighted average of approx. 100 ranks. We standardize the
consumption growth β̂s to have a mean and a standard deviation of one across the full sample period. Conditional
means are identified absorbing yearly effects. Outlined bins use data from 1989 to 2002; filled bins from 2003 to 2018.
Shaded areas show 95% confidence bands with standard errors clustered by stock and year-month.

Figure A7: Alternative Investment Rates Definitions
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Notes: This figure plots binned scatters of 25 quantile-spaced bins of different investment rates against benchmark-
ing intensity, constructed after absorbing year-by-rank-bucket fixed effects, with buckets defined every 250 market
capitalization ranks. Sample period from 1998 2018 sample for which BMI is available.
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Figure A8: Difference-in-differences Event Study of Changes in BMI on Changes in CAPM β̂E
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Treatment: ∆ BMI < -5 p.p. (around ±300 ranks of Russell index cutoffs)

(b) Treated stocks with a decrease in ∆ BMI < −5 p.p. relative to control group.
Notes: This figure shows difference-in-differences event study coefficients for a change in CAPM β̂E of treated
stocks with an increase or decrease in BMI of at least 5 p.p. relative to a control group, in which |∆ BMI| < 1 p.p..
Pointwise confidence intervals (95%) and sup-t confidence bands based on double-clustered standard errors. Values
in parentheses on the Y-axis show the average CAPM β̂E before treatment.
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Figure A9: Cumulative Net Flows into Passive and Active Mutual Funds and ETFs
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Notes: This figure show cumulative monthly net flows into active and passive mutual funds and ETFs from 1998 to
2024 deflated by the Consumer Price Index. Source: Morningstar Direct.

Figure A10: Cross-Sectional Heterogeneity in Cumulative Impulse Response of Investment to a
10 p.p. Increase in Institutional Ownership Ratio (Placebo Tests)
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Notes: This figure reports yearly cumulative impulse response functions of investment to a 10 p.p. year-on-year
increase in institutional ownership ratio (placebo), estimated using the local projections method of Jordà (2005):
log (Invi,t+h)−log (Invi,t−1) = αh

t,j+γ
h
1 (IORi,t − IORi,t−1)+γ

h
21{High}i,t×(IORi,t − IORi,t−1)+1{High}i,t+

X ′
i,tξ

h + εi,t+h, where 1{High}i,t is an indicator variable for firms in the top tercile of the annual distribution of:
(i) equity share of capital, (ii) a measure of equity-constraints (Linn and Weagley, 2024), (iii) firm age, and (iv) asset
maturity (inverse of depreciation rate). Xi,t includes log of market equity, Tobin’s q, leverage, cash flow, current
ratio, and firm age. Pointwise confidence intervals (95%) based on double-clustered standard errors.
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Figure A11: LP-IV Robustness to Various Alternative Specifications
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Notes: This figure shows estimates of LP-IV coefficient h=5 from Eq. (18) for baseline and alternative specifications.

Figure A12: Impact of changes in CAPM β̂ on investment rate
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Notes: This figure shows estimates for γh of Investment Ratei,t+h = αi + αj,t + γh∆CAPM β
∧

i,t +X ′
i,tξ + εi,t+h,

estimated using changes in BMI as an IV for changes in CAPM β̂. Estimates are scaled to a 0.167 × 6% = 100 bps
change in CAPM β̂.
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Figure A13: Change in β̂, Investment Semi-Elasticity, Aggregation Weights, and Equity Share
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Figure A14: Cumulative Sum of Changes in Investment Across Market Capitalization Ranks
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Notes: This figure shows the cumulative sum over the change in aggregate investment implied by Equation (19) across
market capitalization ranks i: ∆It/It−1 ≈ qtλt

∑
i πi,t−1 ϵ

C
i,t µi,t ∆βi,t in whichweights πi,t−1, semi-elasticity ϵCi,t,

equity share µi,t, and ∆βi,t are given by the empirical distributions in Appendix Figure A13. We set λt = 0.06 ∀ t
and qt = 1 ∀ t. Panel (a) uses market capitalization weights ωi,t−1 and panel (b) uses investment share weights
πi,t−1 to aggregate. Blue squares use a uniform investment semi-elasticity of ϵC = −5 across all ranks, while red
circles use rank-specific investment semi-elasticities estimated from Compustat data (see Appendix H).
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A.2 Appendix Tables

Table A1: Summary Statistics of Monthly CAPM β̂ Panel from 1998m1 to 2018m9

count mean sd min p25 p50 p75 max

Benchmarking Intensity (BMI, %) 929,105 13.27 9.25 0.00 3.67 14.20 21.14 99.07
Institutional Ownership Ratio (IOR, quarterly %) 311,355 53.99 31.29 0.00 27.06 57.02 80.65 130.50
Avg. Implied Cost of Capital (ICC, %) 696,830 9.37 2.98 2.16 7.57 9.06 10.85 20.42
CAPM β̂ (Welch) 886,432 0.95 0.47 -0.07 0.60 0.94 1.27 2.65
Unlevered CAPM β̂ (Welch) 886,432 0.58 0.43 -1.95 0.22 0.52 0.86 3.30
CAPM β̂ (21-day) 925,786 0.98 1.04 -4.93 0.36 0.91 1.50 13.63
CAPM β̂ (252-day) 910,903 0.97 0.59 -0.60 0.54 0.94 1.33 3.69
CAPM β̂ (156-week) 882,232 1.04 0.61 -0.37 0.60 0.98 1.39 4.07
CAPM β̂ (36-month) 830,936 1.19 0.91 -1.47 0.57 1.05 1.64 5.92
Cash-Flow Beta (ROE, quarterly) 248,879 0.46 1.42 -8.25 -0.15 0.30 0.92 9.16
Consumption Beta (KKL, annual) 46,930 1.10 0.94 -2.62 0.51 1.01 1.66 5.46
Log Volume 929,038 17.64 2.59 10.67 15.74 17.75 19.57 23.65
Equity Ratio (%) 929,105 59.32 28.28 1.42 37.22 64.00 84.13 99.41
Amihud Illiquidity 920,947 1.44 9.30 0.00 0.00 0.01 0.12 216.27
Bid-Ask Spread 899,882 0.01 0.01 0.00 0.01 0.01 0.02 0.13
Log Market Equity 929,073 6.28 1.86 1.53 4.92 6.12 7.49 11.93
Momentum Return (12-month, %) 889,951 14.04 64.31 -96.90 -19.17 6.22 32.69 1478.13

Notes: This table reports summary statistics for the monthly CAPM β panel from 1998m1 to 2018m9.
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Table A2: Panel Regressions of CAPM β̂ on Benchmarking Intensity

(1) (2) (3) (4) (5) (6)
CAPM β̂ in May of Year t

Avg. BMI (in %) over past year 0.027∗∗∗ 0.026∗∗∗ 0.026∗∗∗ 0.025∗∗∗ 0.022∗∗∗ 0.023∗∗∗
(0.002) (0.002) (0.002) (0.001) (0.002) (0.001)

Avg. IOR (in %) over past year 0.000
(0.000)

Constant 0.593∗∗∗ 0.588∗∗∗
(0.022) (0.021)

Adj. R2 0.26 0.26 0.29 0.49 0.55 0.74
Within R2 0.26 0.26 0.24 0.29 0.18 0.17
Year FE ✓
FF49 × Year FE ✓
FF49 × Size × Year FE ✓ ✓
Stock FE ✓
Observations 77,445 77,443 77,445 76,823 76,277 74,922

Notes: This table reports coefficient estimates of specifications of the form: CAPM β̂i,t = αi +
αt + γ × Avg. BMI over past 12 monthsi,t + εi,t in May of year t for stock i. Standard errors in
parentheses are double clustered at firm- and year level. * p<0.10, ** p<0.05, *** p<0.01.

Table A3: Robustness to Alternative CAPM β̂ Estimators

(1) (2) (3) (4) (5) (6)
∆ β̂OLS ∆ β̂WEL ∆ β̂DIM ∆ β̂BLU ∆ ρ(ri, rm) ∆ σi

∆ BMI (in p.p.) 0.0183∗∗∗ 0.0154∗∗∗ 0.0135∗∗∗ 0.0122∗∗∗ 0.00646∗∗∗ -0.0000668∗
(0.001) (0.001) (0.002) (0.001) (0.000) (0.000)

Firm Fixed Effects ✓ ✓ ✓ ✓ ✓ ✓
Year Fixed Effects ✓ ✓ ✓ ✓ ✓ ✓
Adj. R2 0.15 0.16 0.11 0.15 0.41 0.59
Observations 28,514 28,514 28,514 28,514 28,514 28,514

Notes: This table reports coefficient estimates of specifications of the form: ∆β̂i,t = αi + αt + γ∆BMIi,t + εi,t.
∆βi,t is between 1st and 4th quarter of each year. βWEL is estimator of Welch (2022), βDIM is estimator of
Dimson (1979), βBLU is estimator of Blume (1975) (also known as Bloomberg β̂). We winsorize β̂s changes at
the 2% and 98% level. We restrict the estimation sample to stocks within 300 ranks around Russell index 1000/2000
and 3000 cutoffs. Standard errors in parentheses are double clustered at firm- and year level. * p<0.10, ** p<0.05,
*** p<0.01.
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Table A4: Effects of Benchmarking Intensity on Equal-Weighted Average CAPM β̂E

(1) (2) (3) (4) (5) (6)
OLS ADL(1) DOLS(3) DOLS(4) DOLS(5) DOLS(7)

Average Benchmarking Intensity (in %) 0.038 0.030∗ 0.032∗∗∗ 0.031∗∗∗ 0.031∗∗∗ 0.029∗∗∗
(0.015) (0.005) (0.005) (0.005) (0.005)

Engle-Granger’s Augmented Dickey-Fuller test
(H0: no cointegration) -13.77∗∗∗ -3.93∗∗∗ -3.66∗∗ -3.75∗∗ -3.30∗

Adj. R2 0.99 0.71 0.72 0.74 0.78
Observations 225 225 225 225 225 225

Notes: This table estimates the long-run relationship between the equal-weighted average CAPM β̂ and the
average Benchmarking Intensity (BMI). To address the potential for spurious regression in the time series,
we report results from several models. Column (1) shows the static OLS estimate. Column (2) presents an
Autoregressive Distributed Lag, ADL(1), model. Columns (3)-(6) report long-run coefficients from Dynamic
OLS (DOLS) (Stock and Watson, 1993) specifications with varying numbers of leads and lags. We report the
Engle-Granger Augmented Dickey-Fuller test statistic for the residuals of the cointegrating regression, where
the null hypothesis is no cointegration. Newey-West standard errors (21 lags) in parentheses. * p<0.10, **
p<0.05, *** p<0.01.

Table A5: Summary Statistics of Annual Compustat Investment Panel

count mean sd min p25 p50 p75 max

CAPX/PPEGT (%) 37,766 14.89 15.08 0.58 5.92 9.98 17.71 82.54
Benchmarking Intensity (BMI, %) 38,603 15.05 9.42 0.00 7.59 17.02 22.63 65.98
Institutional Ownership Ratio (IOR, %) 38,486 64.92 27.59 0.01 45.93 70.36 86.67 118.00
Tobin’s qtot 38,591 1.37 1.74 -0.55 0.43 0.84 1.59 14.91
Leverage (%) 37,926 54.78 29.78 5.82 33.09 51.93 70.38 169.38
Current Ratio (%) 38,575 284.71 231.07 52.10 145.64 212.46 330.56 1643.41
Log(Market Cap.) 38,556 6.80 1.71 2.54 5.54 6.64 7.91 11.23
Cash Flow (%) 37,883 -1.48 257.37 -7146.02 6.68 18.76 42.02 295.32
Firm Age (years) 38,603 23.67 18.50 1.42 10.42 17.42 32.42 92.42

Notes: This table reports summary statistics for the annual Compustat investment panel used in the investment analysis from 1998 to 2018.
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Table A6: Panel Regression of Firm Investment Accounting for Measurement Error in Tobin’s q

(1) (2) (3) (4) (5)
Dep. var.: Investment rate (CAPX/PPE)

OLS IV: Industry q EW (2002)

BMI (in %) -0.147∗∗∗ -0.105∗∗∗ -0.099∗∗∗ -0.070∗∗∗ -0.067∗∗∗
(0.021) (0.022) (0.022) (0.020) (0.014)

Tobin’s qtot 3.434∗∗∗ 3.038∗∗∗ 5.043∗∗∗ 4.573∗∗∗ 6.078∗∗∗
(0.155) (0.205) (0.327) (0.435) (0.157)

Leverage 0.008∗ 0.012∗∗ 0.018∗∗∗ 0.006 0.001
(0.005) (0.006) (0.006) (0.006) (0.005)

Firm FE ✓ ✓ ✓
Year × Rank-Bin FE ✓ ✓ ✓ ✓ ✓
FS F-stat. 143.16 33.95
Within R2 0.21 0.12 0.17 0.10 0.27
Observations 36,277 36,129 35,690 35,543 36,129

Notes: This table report estimates for panel regressions of the form: CAPXi,t+1

PPEi,t
= αt,bin + αi +

γ BMIi,t +X′
i,tξ+ εi,t, where αt,bin is a year-by-rank-bin fixed effect with bins defined every 250

market capitalization ranks in May. We address measurement error in Tobin’s q (Peters and Taylor,
2017) in columns 3-5. Columns 3-4 use the NAICS-4 industry level leave-one-out mean of Tobin’s
q as an instrument for firm-level Tobin’s q. Columns 5 use Erickson and Whited’s (2012) cumulant
estimator. We additionally control for leverage and cash flow to PPE. Standard errors in parentheses
are clustered at the year- and firm-level. * p<0.10, ** p<0.05, *** p<0.01.
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Table A7: Panel Regressions of Firm Investment on BMI (without imposing sample restrictions)

(1) (2) (3) (4) (5) (6) (7)
Dependent variable: CAPXt+1 / PPEt (in %)

BMI (in %) -0.214∗∗∗ -0.349∗∗∗ -0.191∗∗∗ -0.114∗∗∗ -0.124∗∗∗ -0.134∗∗∗ -0.186∗∗∗
(0.044) (0.033) (0.033) (0.020) (0.022) (0.027) (0.036)

IOR (in %) 0.006 0.004 0.004 0.003
(0.005) (0.006) (0.006) (0.006)

Tobin’s qtot 2.192∗∗∗ 2.092∗∗∗ 2.087∗∗∗
(0.145) (0.142) (0.142)

Linear Time Trend -0.423∗∗∗
(0.071)

Leverage 0.019∗∗∗ 0.018∗∗∗ 0.017∗∗∗ 0.022∗∗∗
(0.005) (0.005) (0.005) (0.006)

Fixed Effects
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Year × Rank FE ✓ ✓ ✓
Ind. × Year × Rank FE ✓ ✓ ✓
Russell 2000 Index FE ✓ ✓

Adj. R2 0.43 0.07 0.46 0.49 0.56 0.56 0.53
Mean Dep. Var. 14.6 14.7 14.6 14.6 14.6 14.6 14.6
SD BMI 9.2 9.2 9.2 9.1 9.1 9.1 9.1
Observations 53,017 53,763 53,015 50,796 49,553 49,553 49,567

Notes: In this table, we do not impose any sample restrictions on firm size, industry, or data availability. This table report estimates for
panel regressions of the form: CAPXi,t+1

PPEi,t
= αt,bin + αi + γ BMIi,t +X′

i,tξ + εi,t, where αt,bin is a year-by-rank-bin fixed effect
with bins defined every 250 market capitalization ranks in May. Controls include institutional ownership ratio (IOR), Tobin’s q (Peters
and Taylor, 2017), leverage, cash flow to PPE, current ratio, log of market capitalization, and firm age. Standard errors in parentheses
are clustered at the year- and firm-level. * p<0.10, ** p<0.05, *** p<0.01.
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Table A8: Reduced Form Effects of Benchmarking on Capital Accumulation at the Industry-level

(1) (2) (3) (4) (5) (6) (7)
Dependent variable: log (Real Capital Stock in 2016/Real Capital Stock in 1998)

∆ CAPM β -0.258∗∗ -0.140∗ -0.132∗
(1998-2016) (0.111) (0.072) (0.078)

∆ BMI -0.653∗∗ -0.608∗∗
(1998-2016) (0.259) (0.269)

∆ IOR 0.0632 0.0931
(1998-2016) (0.111) (0.107)

Capital Stock/Value-Added -0.170∗∗∗ -0.185∗∗∗ -0.180∗∗∗ -0.221∗∗∗ -0.230∗∗∗ -0.224∗∗∗
(1998) (0.042) (0.035) (0.035) (0.052) (0.050) (0.048)

log (Employment) 0.00976 0.00936 0.0188 0.0536 0.0573 0.0492
(1998) (0.029) (0.029) (0.028) (0.035) (0.035) (0.034)

log (TFP) 0.372 0.448∗ 0.397 -0.119 -0.0442 -0.104
(1998) (0.226) (0.230) (0.274) (0.228) (0.236) (0.224)

Pre-trend Capital -0.217∗∗ -0.163∗ -0.137
(1980-1996) (0.094) (0.089) (0.102)

Pre-trend Employment 0.195∗ 0.158 0.155
(1980-1996) (0.106) (0.096) (0.106)

Pre-trend Wage 0.664 0.494 0.769∗
(1980-1996) (0.399) (0.405) (0.407)

Constant 0.238∗∗∗ 0.308∗∗ 0.323∗∗ 0.211
(0.063) (0.150) (0.152) (0.143)

NAICS-3 Subsector FE ✓ ✓ ✓
Weights VA1998 VA1998 VA1998 VA1998 VA1998 VA1998 VA1998

Adj. R2 0.10 0.34 0.35 0.31 0.52 0.52 0.50
Observations 103 103 103 103 103 103 103

Notes: This table reports coefficient estimates of regressions at the NAICS 5-digit industry-level of the form:
∆ log (Real Capital Stock)i = αj + γ∆Zi + X ′

iξ + εi for changes from 1998 to 2016. Z is either CAPM β̂,
benchmarking intensity (BMI), or institutional ownership ratio (IOR). BMI, IOR, and CAPM β̂ are market-
value weighted averages at the industry level of Compustat firms. We exclude industries with less than 5
firms. Pre-trends measure log changes in variables from 1980 to 1996. We weight observations by industry
value-added in 1998 and winsorize all variables at the 2% and 98% level. Robust standard errors in parentheses.
* p<0.10, ** p<0.05, *** p<0.01.
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B Three period model with heterogeneous benchmarks

To illustrate our main mechanism, we develop a simple model of asset prices and investment
in the presence of heterogeneous benchmarks. Our model introduces two new frictions into an
otherwise standard model of benchmark-linked investing adapted from the literature (Brennan,
1993, Kashyap et al., 2021, Buffa et al., 2022, Pavlova and Sikorskaya, 2023). The first friction is
uncertainty in the relative demand of benchmarked investors that proxies for fund flows. Expo-
sure to benchmarked fund flows creates an additional source of comovement among benchmark
constituent stocks that shifts the cross-section of CAPM βs. The second friction is a behavioral
assumption about firm managers: we assume that firm managers do not observe the fundamen-
tal risk exposure of their firm and instead use the observed covariance of stock returns with the
market to infer their cost of capital.

We proceed in two steps: First, we derive asset prices and the optimal investment policy
with and without benchmarked investors. We illustrate that benchmarking distorts prices and
expected returns relative to the CAPM and confirm the existence of a benchmark inclusion sub-
sidy that lowers the costs of capital of firms included in a benchmark index. Next, we show that
i) firm managers can infer the CAPM-optimal investment policy without knowledge of their fun-
damental risk exposure from the covariance of their stock returns with the market; ii) if assets
are priced by benchmarked investors there is a two-factor structure in returns that increases the
comovement of benchmark constituent stocks; iii) if firm managers erroneously implement the
CAPM-optimal investment implied by the covariance of their stock returns with the market, they
under-invest.

Setup There are three periods - denoted 0, 1, and 2 - and three types of agents: firm managers,
investors and households. Each firmmanager operates one of n fully equity-financed firms. Their
objective function is to maximize firm value xiSit where Sit denotes the share price of the firm’s
equity and xi denotes the number of outstanding shares normalized to x = 1.

Investor demand The equity of each firm is priced by a unit mass of investors with absolute
risk aversion γ. Their objective function is to maximize expected utility over next period wealth
U(W ) = e−γW by investing in firms’ (risky) equity and a risk-free bond that is in infinitely
elastic supply with net interest rate normalized to 0. We follow the convention of the literature
and denote the absolute returns of a portfolio xt = (x1t , . . . , x

n
t )

′ ∈ Rn by Rx
t+1 = x′tRt+1, where

Rt+1 = Yt+1 − St denotes the vector of absolute returns that is distributed with conditional
covariance matrix Σt and Yt+1 = St+1 +Dt+1 denotes the vector of total marketable cash flows.
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Among investors, a fraction λBt ∈ [0, 1) invests funds on behalf of a principal. Their income
is contingent upon performance relative to a benchmarkB represented by a benchmark portfolio
vector 1B ∈ {0, 1}n with absolute returns RB

t+1 = 1′B(Yt+1 − St). Their compensation contract
w is parameterized by constants a ≥ 0, c > 0 and k.

wt = aRx
t + c(Rx

t −RB
t ) + k

The first and second term represent compensation for absolute performanceRx
t and performance

relative to the benchmark portfolio RB
t , respectively. The final term is a constant “base salary.”44

The remaining 1 − λBt investors are “fundamental” investors who invest directly and only
care about absolute returns. The solution to their portfolio choice problem is standard:

xDt = Σ−1
t

Et [Yt+1]− St

γ
(22)

The solution to the portfolio choice problem of a benchmarked investor is a combination of
the mean-variance optimal portfolio xDt and the benchmark portfolio 1B

xBt =
1

a+ c
Σ−1

t

Et [Yt+1]− St

γ
+

c

a+ c
1B (23)

As first shown by Brennan (1993) benchmarking exposes investors to additional income risk that
can be hedged by holding the benchmark portfolio. The more weight the compensation contract
places on performance relative to the benchmark, themoreweight a benchmarked investor places
on the benchmark portfolio. In the limit, as c → ∞, the portfolio of a benchmarked investor
approaches the index itself (as in a passive fund evaluated on its tracking error).

Benchmarking Intensity We allow for heterogeneous benchmark portfolios across investors:
There is a finite set of benchmark portfolios B = {B1, B2, ...}, summarized by the matrix 1B ∈
{0, 1}n×|B|. The mass of benchmarked investors λBt is partitioned into |B| disjoint masses λBt =

(λB1
t , λB2

t , ...) ∈ R|B|
≥0 with

∑
λ
Bj

t = λBt . This allows us to define the vector of benchmarking
intensities across stocks as

BMIt ≡
∑
Bj∈B

1Bj
λ
Bj

t = 1BλBt

44Kashyap et al. (2023) derive this specification as the solution to an agency problem. Studies of the mutual fund
industry provide empirical support for this specification (Ma et al., 2019, Evans et al., 2024).
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t =0 t =1 t =2
Initial Period

z0, εi0, λ
B
0 given

share price S0

Intermediate Uncertainty

z1, εi1, λ
B
1 realized

share price S1
Investment
Decision

Final Payout

Di2 = biz2 + εi2

Figure B15: Model Timing

Timing The remaining setup is as follows: In period 2 all firms are liquidated with payout

Di2 = biz2 + εi2

where b ∈ Rn
≥0 is a vector of positive factor loadings on a common fundamental factor zt, and εit is

a firm specific idiosyncratic productivity process. Both the common factor and the idiosyncratic
shock follow a square root process (as in Buffa et al., 2022, Kashyap et al., 2021),45

zt+1 = zt +
√
ztσzu

z
t+1, uzt+1 ∼ N (0, 1)

εit+1 = εit +
√
εitσeu

ε
it+1, uεit+1 ∼ N (0, 1)

In period 0 the initial state of the economy (z0, eo, λB0 ) is determined. Period 1 is divided
into two subperiods: At the beginning of period 1 there is news about the state of the economy
(uz1,uε

1) and a series of correlated shocks to the composition of investors λB0 . Shocks to λB can
be interpreted as net fund flows that induce correlated demand shocks – a positive shock to λB

represents a flow of capital from active funds into benchmarked funds who invest the inflows
according to their benchmark. The distribution of shocks to investor composition is governed by
a correlation matrix Ωλ ∈ [0, 1]|B|×|B| and a scale parameter σλ.

λB1 = λB0 + σλuλ
1 , uλ

1 ∼ N (0,Ωλ)

In response to the realization of shocks in period 1 firm managers are given the opportunity
to invest in expanding the operations of their firm by a scalar µ such that their final payout is
equal to D̂i2(µ) = (1+µ)Di2. Investment incurs a constant per-unit cost µC that firm managers
finance by issuing δ additional shares of equity worth δŜi1(µ) = µC , where Ŝi1(µ) denotes the
45The common caveat applies that the term in the square root cannot be negative (see Backus et al., 2001, for further
discussion.). We assume that starting values (z0, eo, λB0 ) and magnitude of shocks are such that the probability of
either process dropping below zero is negligible.
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value of the firm post-investment. The covariance matrix of payoffs post-investment is given by
Σ̂1(µ) = V ar1 ((1 + µei)D2) where ei denotes the i-th unit vector.

Asset prices and optimal investment with benchmarking As shown by Kashyap et al.
(2021) benchmarking distorts asset prices and investment policies so that the CAPM no longer
holds. Imposing market clearing yields stocks prices

St = Et [Yt+1]− γΛtΣt

(
1− c

a+ c
BMIt

)
(24)

where γΛt = γ
[
1− λBt + λBt /(a+ c)

]−1 modifies the market’s effective coefficient of risk aver-
sion. Equation (24) can be rearranged to construct an expression for expected returns

Et [Rit+1] = βCAPM
it Et

[
µM
t+1

]
− βB

itEt

[
µB
t+1

]
(25)

where E1

[
µM
t+1

]
= γΛtV art(

∑
j Rjt+1) and βCAPM

it =
Covt(Rit+1,

∑
j Rjt+1)

V art(
∑

j Rjt+1)
denote the market

risk premium and CAPM β of firm i. Equations (24) and (25) cleanly illustrate the key frictions
of our model: The inelastic demand of benchmarked investors raises the price of benchmark
constituent stocks and lowers expected returns moving forward by introducing a second bench-
marking subsidy factor in expected returns with factor loadings βB

it =
Covt(Rit+1,

∑
j BMIjtRjt+1)

V art(
∑

j BMIjtRjt+1)

and a negative risk premium Et

[
µB
t+1

]
= c

a+c
γΛtV art(

∑
j BMIjtRjt+1). This distorts the text-

book single-factor CAPM relationship between expected returns and market risk exposure that
otherwise holds if there is no benchmarking (c = 0).

Proposition 1. There is a benchmark inclusion subsidy that is increasing in benchmarking inten-
sity and lowers the required return on investment for firms included in a benchmark index.

As in standard investment models, the optimal investment policy is to invest if this increases
firm value. This requires that the expected returns to investment are above a thresholdR(BMIi1)

that is decreasing in benchmarking intensity. In the limit, as n → ∞, the optimal policy is to
invest if the expected return per unit of investment E1 [Di2]− C satisfies

E1 [Di2]− C > βCAPM
i1 E1

[
µM
2

](
1− c

a+ c
BMIi1

)
(26)

Intuitively, the inelastic demand of benchmarked investors lowers Benchmarking gives managers
of benchmark constituent firms an additional incentive to invest and lowers the required return
on investment. The higher the benchmarking intensity of a firm, the larger the subsidy.
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Asset prices and investment policy without benchmarking In the absence of benchmark-
ing all assets are priced by fundamental investors and firm managers no longer need to take
into account the inelastic demand of benchmarked investors. Without the benchmark inclusion
subsidy the investment policy in (26) simplifies to a textbook CAPM investment policy: Firm
managers should invest if

E1 [Di2]− C > β̃CAPM
i1 E1

[
µ̃M
2

]
(27)

where β̃CAPM
i1 and E2

[
µ̃M
2

]
denote the CAPM β of firm i and the market risk premium in the

absence of benchmarked investors.

Assumption 1. Firm managers cannot observe their fundamental factor loading bi or the level of
the common factor zt and assume that assets are priced by fundamental investors (the CAPM holds).

This assumption represents the key behavioral friction of ourmodel. As in practice, managers
have limited information and cannot directly observe their fundamental risk exposure. Instead,
they need to infer the required return on capital for their investment decisions, in the same way
that practitioners use observable stock returns to infer their cost of equity.

Proposition 2. If assets are priced by fundamental investors, firm managers can implement the
CAPM-optimal investment policy in (27)without knowledge of their fundamental factor loading bi or
the level of the common factor zt by observing the past covariance of stock returns with the market,
Cov0

(
R̃i1,

∑
j R̃j1

)
, growth in fundamentals z1

z0
, and their idiosyncratic productivity εi0, εi1.

In appendix B.1 we prove that there are terms46 Ai1(
z1
z0
, ei1, ei0) and Γ1(

z1
z0
) that allow to

express the required return on investment in (27) as an affine function of the past covariance of
returns with the market Cov0(R̃i1,

∑
j R̃j1). Consequently, even a manager without knowledge

of their own common factor loading bi or the level of the common factor zt can implement the
investment policy in (27). They should invest if

E1 [Di2]− C > γ
[
Ai1 + Γ1Cov0(R̃i1,

∑
j

R̃j1)
]

(28)

CAPM β and investment policy with benchmarked investors A first order approximation
of prices with benchmarked investors S1 in (24) around λB0 shows that up to O(σ2

λ(u
λ
1)

2) returns

46Specifically, Ai1 = σ2
εεi1 −

[1−γσ2
ε ]σ

2
ε

[1−γσ2
z ]σ

2
z

z1
z0
εi0 and Γ1 = 1

(1−γσ2
z)

z1
z0
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Ri1 have a linear multi-factor structure.

Ri1 ≈ const.+ ϕz
i∆z1 +

∑
Bk∈B

ϕλ
Bk(i)

∆λBk
1 + νi1 (29)

The first factor with factor loadings ϕz
i reflects shocks to economic fundamentals. The second

set of factors with loadings ϕλ
Bk(i)

reflects shocks to the relative demand of benchmarked in-
vestors, such as fund flows. The loadings on the second factor consist of a systemic term that
is independent of benchmark membership, and a benchmark-specific term that is increasing in
benchmarking intensity.

Proposition 3. Benchmarking shifts the distribution of CAPM βs and increases the variance of
the market. An increase in benchmarking intensity raises (lowers) the CAPM β of benchmark con-
stituents (non-constituents).

Under the factor structure in (29) the CAPM β of a stock is equal to

βCAPM
i0 =

Cov0

(
ϕz
i∆z1 +

∑
k ϕ

λ
Bk(i)

∆λBk
1 + νi1,

∑
j ϕ

z
j∆z1 +

∑
k ϕ

λ
Bk(j)

∆λBk
1 + νj1

)
V ar0

(∑
j ϕ

z
j∆z1 +

∑
k ϕ

λ
Bk(j)

∆λBk
1 + νj1

) (30)

The introduction of a second factor that reflects the correlated demand shocks of benchmarked
investors increases the variance of the market in the denominator for all stocks equally. However,
the covariance term in the numerator varies with stocks benchmarking intensity. Benchmarking
raises the covariance with the market for all stocks, but it has a larger effect for stocks with
higher benchmarking intensities. On net, the CAPM β of stocks with the highest benchmarking
intensity increases, while the CAPM β of stocks with lower benchmarking intensity decreases.47

Corollary 3.1. All else equal, if firm managers pursue the CAPM-optimal investment policy in
(28), compared to a setting without benchmarking i) all firms underinvest; ii) a firm inside the bench-
mark underinvests more than an otherwise identical firm outside the benchmark.

If the CAPM holds firm managers can use the past covariance of stock returns with the mar-
ket to implement the CAPM-optimal investment policy. The introduction of additional factors
that amplify comovement, such as the demand of benchmarked investors, is perceived by firm
managers as an increase on the required return on investment and induces them to under-invest
relative to the CAPM. Because comovement increases more strongly for benchmark constituent
stocks, this effect is particularly pronounced for stocks with high benchmarking intensity.
47By construction, the average CAPM β is constant and equal to 1.
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B.1 Proofs

Combining the expressions for fundamental and benchmarked investor demand in (22) and (23)
and imposing market clearing yields the expression for prices in (24). The aggregate demand of
benchmarked and fundamental investors is equal to

∑
b∈B

λBt x
B
t + (1− λBt )x

D
t = Σ−1

(
1− λBt +

λBt
a+ c

)
Et [Yt+1]− St

γ
+
∑
Bk∈B

c

a+ c
1Bk

(31)

Imposing market clearing yields the expression for prices in (24).

Proposition 1. The total value of the firm post-investment is equal to

(1 + δ)Ŝi1(µ) = (1 + µ)E1 [Di2]− γΛ1e
′
iΣ̂(µ)

(
1− c

a+ c
BMI1

)
which means that the change in firm value from investment is

∆Ŝi1(µ) = µ (E1 [Di2]− C)− e′iγΛ1

[
Σ̂1(µ)− Σ1

](
1− c

a+ c
BMIi1

)

Investment is profitable if a marginal unit of investment increases firm value, which requires
that ∂∆Ŝi1(0)

∂µ
> 0. This implicitly defines a lower bound on the required return on investment

R(BMIi1) equal to

E1 [Di2]− C > γΛ1

[
(b′1bi + b2i )z1σ

2
z + 2σ2

εεi1
]︸ ︷︷ ︸

=Cov1(Ri2,
∑

j Rj2)+V ar1(Ri2)

(
1− c

a+ c
BMIi1

)
= R(BMIi1)

To derive the limit result in (26) we consider a sequence of economies indexed by the number of
firms n and investors’ coefficient of absolute risk aversion γ(n) = γ

n
that scales with the size of

the economy.48 Firms’ factor loadings bi are drawn from a distributionF (b)with positive support,
finite variance and mean µ(b). As n→ ∞ the threshold on the right hand side converges to

lim
n→∞

R(BMIi1) = βCAPM
i1 E1

[
µM
2

] (
1− c

a+ c
BMIi1

)
48This ensures that if we were to duplicate an economy with n firms the price of each firm is unaffected.
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where

βCAPM
i1 = lim

n→∞

1
n
Cov1(Ri2,

∑
j Rj2)

1
n
V ar1(

∑
j Rj2)

=
biµ(b)σ

2
zz1

µ(b)2σ2
zz1

E1

[
µM
2

]
= lim

n→∞
γ(n)Λ1V ar1(

∑
j

Rj2) = γΛ1µ(b)
2σ2

zz1

Proposition 2. If there is no benchmarking assets are priced by fundamental investors with
mean-variance preferences and prices simplify to a standard textbook solution.

S̃t = Et

[
Ỹt+1

]
− γV art

(
Ỹt+1

)
1 (32)

Rearranging (32) yields the textbook expression for the CAPM (in absolute returns):

Et [Rit+1] =
Covt(Ỹit+1 − S̃it,

∑
j Ỹjt+1 − S̃jt)

V art

(∑
j Ỹjt+1 − S̃jt

)
︸ ︷︷ ︸

=β̃CAPM
it

γV art

(∑
j

Ỹjt+1 − S̃jt

)
︸ ︷︷ ︸

=Et[µ̃M
t+1]

The optimal investment policy without benchmarking follows directly from (26) and setting
λB = 0. In order to implement the investment policy in (27) it is sufficient for managers to
have knowledge of Cov1(R̃i2,

∑
j R̃j2) = β̃CAPM

i1 E1 [µ̃2] as opposed to both β̃CAPM
i1 and E1 [µ̃2].

In order to express Cov1(R̃i2,
∑

j R̃j2) as an affine function of Cov0(R̃i1,
∑

j R̃j1) note that if
assets are priced by fundamental investors time 1 and time 0 prices are

S1 = bz1 + ε1 − γΣ11

S0 = b(1− γσ2
z)z0 + ε0(1− γσ2

ε)− γΣ01

where Σ1 = bb′σ2
zz1 + σ2

εDiag(ε1) and Σ0 = bb′ (1− γσ2
z) σ

2
zz0 + (1− γσ2

ε) σ
2
εDiag(ε0). The

conditional covariance of returns with the market in each period is equal to

Cov1(Di2 − Si1,
∑

Dj2 − Sj1) = σ2
zb

′1biz1 + σ2
εεi1

Cov0(Si1 − Si0,
∑

Sj1 − Sj0) =
[
1− γσ2

z

]
σ2
zb

′1biz0 +
[
1− γσ2

ε

]
σ2
εεi0

Rearranging and pre-multiplying the second line by z1
z1

illustrates that the time 1 covariance of
future returns can be expressed in terms of the past covariance of stock returns with the market,
Cov0

(
Si1 − Si0,

∑
j Sj1 − Sj0

)
, growth in the common factor z1

z0
, and idiosyncratic productivity
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εi0, εi1:

Cov1(Di2 − Si1,
∑
j

Dj2 − Sj1) = Ai1 + Γ1Cov0(Si1,
∑
j

Sj1) (33)

where

Ai1 = σ2
εεi1 −

[1− γσ2
ε ]σ

2
ε

[1− γσ2
z ]σ

2
z

z1
z0
εi0

Γ1 =
1

(1− γσ2
z)

z1
z0
.

Proposition 3. Given the expression for period 1 prices in (24) we can express Si1 as an affine
function of z1 and εi1

Si1 = Θz(λ
B
1 )biz1 +Θε(λ

B
1 )εi1

with coefficients Θz(λ
B
1 ), Θεi(λ

B
1 ) equal to

Θz(λ
B
1 ) = 1− γΛ(λB1 )σ

2
z

(
1− c

a+ c
b′BMI1(λ

B
1 )

)
Θεi(λ

B
1 ) = 1− γΛ(λB1 )σ

2
ε

(
1− c

a+ c
BMI1i(λ

B
1 )

)
A first order Taylor approximation of Si1 around λB0 shows that up to order O(σ2

λ(u
λ
1)

2)

Si1 ≈ [Θz(λ
B
0 ) + (∆λB1 )

T∇z
λ]bi(z0 +∆z1) + [Θεi(λ

B
0 ) + (∆λB1 )

T∇εi
λ ](εi0 +∆εi1)

with ∇z
λ(λ

Bk
0 ) = γΛ0σ

2
z

[
c

a+ c
b′1Bk

− Λ0

(
1− b′

c

a+ c
BMI0

)(
1− 1

a+ c

)]
∇εi

λ (λ
Bk
0 ) = γΛ0σ

2
ε

[
c

a+ c
1Bk

(i)− Λ0

(
1− c

a+ c
BMI0i

)(
1− 1

a+ c

)]
which means that for small values of σ2

λ returns Si1 − Si0 have a linear multi-factor structure in
fundamental shocks ∆z1 and fund flows ∆λBk

1

Si1 − Si0 ≈ const.+ ϕz
i∆z1 +

∑
k

[ϕλ
k,S(i) + ϕλ

k,B(i)]∆λ
Bk
1 + νi1 (34)
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with factor loadings ϕz
i and

∑
k[ϕ

λ
k,S(i) + ϕλ

k,B(i)].

ϕz
i = bi

(
1− γΛ(λB0 )σ

2
z

(
1− c

a+ c
b′BMI0

))
ϕλ
k,S(i) = γΛ0

{
c

a+ c

[
b′1Bk

+ Λ0

(
1− c

a+ c
b′BMI0

)]
biz0σ

2
z − Λ0

(
1− c

a+ c

)(
biz0σ

2
z + εi0σ

2
ε

)}
ϕλ
k,B(i) = γΛ0

{
c

a+ c

[
b′1Bk

(i) + Λ0

(
1− c

a+ c

)
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Benchmarking not only introduces a second factor but also amplifies loadings on the fundamental
factor. Plugging these expressions into the CAPM β that an econometricianwould estimate yields
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Compared to a setting without benchmarked investors we observe that

1. The covariance of all stocks with the market increases

2. The covariance of stocks inside a benchmark index increases additionally by βλk,i
ik

3. The variance of the market increases

4. A shift in initial exposure to investor composition shocks ∆λB1 , for example due to adding
an additional index or an increase in c shifts the initial cross-section of βCAPM

i0 .
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C Simulated CAPM βs in a Two-Factor Model

This appendix uses a simulation to show that the emergence of a passive flow factor can explain
the evolution of CAPM β̂s between 1998 and 2018. We specify a parsimonious two-factor model
where stock returns depend on: (1) a fundamental factor derived from macro-financial variables,
with loadings fixed to the pre-benchmarking era (May 1990), and (2) a flow factor constructed
from passive fund flows, with exposures proportional to stocks’ benchmarking intensity.

The simulation yields three key findings: (i) The model successfully replicates both the cross-
sectional distribution and time-series evolution of empirical CAPM β̂s. (ii) Calibrating the model
with actual passive fund flows accurately reproduces the observed conditional covariance struc-
ture and time series of β̂s. (iii) In contrast, a model using active fund flows fails to match these
empirical patterns, especially after 2003.

Model Suppose excess returns on stock i obey the following factor structure

Ri,t+1 −Rf
t = ai,t + bi,tλt+1 + ui,t+1 (35)

where λt+1 = (zt+1 ft+1)
′ denotes “fundamental” and flow factors, and (b1it b

2
it) denotes the load-

ings on the factors where b2it is proportional to the benchmarking intensity of stock i. The co-
variance structure of the factors Σλ may contain positive off-diagonal elements, the covariance
structure of idiosyncratic shocks Σu does not.

An econometrician estimating the CAPM β of a stock as β̂ =
Covt(Ri,t+1,Rm,t+1)

V art(Rm,t+1)
whereRm,t+1 =∑

j wj,tRj,t+1 denotes the market capitalization weighted average return on the universe of se-
curities j. Plugging (35) into the CAPM β formula, one finds that

β̂it =
Covt

(
bi,tλt+1 + ui,t+1,

∑
j wjt (bj,tλt+1 + uj,t+1)

)
V art
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)
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w′
tbtΣλb

′
tei + wi,tσ

2
u,i

w′
tbtΣλb′twt + w′

tΣuwt

(36)

where ei denotes the i-th unit vector.

To replicate Figure 1 in our simulation, we simulate Eq. (36) using the conditional means
of CAPM β̂s across market capitalization ranks rather than individual stocks β̂it. We model
conditional means of CAPM β̂ and BMI as flexible fifth-order polynomial functions of market
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capitalization ranks.49 We then compare the simulated conditional means to the empirical condi-
tional means of CAPM β̂s across market capitalization ranks. To evaluate model fit, we compute
root mean square error (RMSE) and Spearman rank correlations in each cross-section. Finally,
we examine various model calibrations to assess how the flow factor and covariance structure
between factors affect the simulation outcomes.

Baseline Calibration To simulate Eq. (36), we need estimates of the factor loadings bt, factor
covariance matrix Σλ, idiosyncratic variances Σu, and weights wit.

We start by calibrating bt. We fix the fundamental factor exposures to b1it = CAPM β̂i1990m5 ∀ t.
This ensures that time-variation in our simulated CAPM β̂s is driven by exposure to the flow fac-
tor. We specify the flow factor loadings as proportional to the stock’s benchmarking intensity
: b2it ∝ BMIit. This reflects our hypothesis that stocks with higher benchmarking intensity ex-
perience greater exposure to benchmark-driven capital flows. The proportionality constant is
difficult to precisely determine empirically. However, Table 3 provides evidence that net flows
into passive funds predict changes in CAPM β̂s. We thus set the proportionality constant to 0.3,
matching the coefficient of the BMI-passive flow interaction term from Column 5 of Table 3.

We next calibrate the factor covariance matrix, Σλ. To do so, we first need to specify what
the fundamental factor and flow factor are. We proxy the fundamental factor using the first prin-
cipal component (PC) derived from various macro-financial variables: log changes in industrial
production (Cochrane, 1991), the 3-month Treasury bill rate (Bernanke and Kuttner, 2005), un-
employment rate (Kilic and Wachter, 2018), WTI oil price (Kilian and Park, 2009), the University
of Michigan consumer sentiment index (Baker and Wurgler, 2006), and the consumer price in-
dex (Campbell and Ammer, 1993). The first PC explains 39.2% of the variation in these variables
between 1990 and 2024. We scale the PC by 10−1 to align its scale to the β̂s from May 1990.50

We specify the flow factor as net flows into passive mutual funds and ETFs, scaled by their
total net assets. We compare the net flows into passive funds with net flows into active funds to
determine whether flows in general or passive flows in particular drive changes in CAPM β̂s. We
estimate each component of the factor covariance matrix using 60-month rolling windows,

Σ̂λ,t =

(
σ̂2
z,t ρ̂zf,tσ̂z,tσ̂f,t

ρ̂zf,tσ̂z,tσ̂f,t σ̂2
f,t

)
,

and set σu,it = 0.07 ∀ i, t.

49Specifically, we the estimate conditional means each month as yi = γ0 +
∑5

j=1 γj(ME ranki)j + ε.
50Using changes in industrial production or the excess return on the market itself as the factor yields similar results.
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Table C9: Model Evaluation – RMSE and Rank Correlation

RMSE Rank Correlation Monthly
Model Calibration Passive Flows Active Flows Passive Flows Active Flows Obs.

Baseline 0.162 0.294 0.49 -0.02 249
Full Sample Σ̂λ 0.161 0.273 0.48 0.05 249
Fixed Weights (wit = wi1990m5 ∀i) 0.159 0.286 0.49 -0.02 249
Flow Factor Off (σf = 0) 0.531 0.531 -0.07 -0.07 249

Notes: This table reports the average root mean square error (RMSE) and Spearman rank correlation between simulated and
empirical CAPM β̂s from January 1998 to September 2018. Each month, we simulate conditional means of CAPM β̂ across market
capitalization ranks and compare them with empirical conditional means. We report results for calibrations using active and
passive net flows under different model configurations.

Results Our simulation yields three key insights: (i) Introducing a flow factor, whose loadings
are proportional to benchmarking intensity, explains both the cross-sectional distribution and
the temporal evolution of CAPM β̂s from 1998 to 2018. (ii) Calibrating the flow factor using
passive net flows allows us to match the observed cross-section and time-series of CAPM β̂s.
(iii) In contrast, calibration using active fund flows fails to reproduce these observed conditional
moments. These findings support our hypothesis that passive flows are a key driver behind the
observed increases in CAPM β̂s.

Table C9 reports the average RMSE and Spearman rank correlations between simulated and
empirical CAPM β̂s for each month from January 1998 to September 2018. Comparisons across
model calibrations highlight that active fund flows yield RMSE nearly twice as large as those from
passive flows. The baseline calibration has an average RMSE of 0.16 (passive) versus 0.29 (active).
Additionally, simulated cross-sectional distributions of CAPM β̂s correlate strongly with actual
distributions when calibrated to passive flows (avg. correlation of 0.49), whereas correlations us-
ing active flows are close to zero. Comparing different model specifications, results for passive
flows remain robust. Eliminating the flow factor (σf = 0) worsensmodel performance, increasing
RMSE dramatically and implies negative correlations between simulated and observed β̂s. Fig-
ure C16 shows the time-series evolution of rank correlations and RMSE between simulated and
empirical CAPM β̂s from 1998 to 2018. The passive-flow calibration consistently outperforms
the active-flow calibration, particularly after 2007. This aligns with Table 3, which indicates a
stronger correlation between passive flows, benchmarking intensity, and β̂s post-2010.

Figure C17 illustrates our two-factor model’s ability to replicate CAPM β̂ evolution across
market capitalization ranks from 2000 to 2018. The solid blue line represents simulated condi-
tional means, while the dashed red line shows empirical conditional means of CAPM β̂s. Despite
its simplicity, the model successfully captures key empirical patterns in the data. It is able to repli-
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Figure C16: Time Series of Correlation and RMSE Between Simulated and Empirical CAPM β̂s

Notes: This figure plots Spearman rank correlation and root mean square error between the empirical and simulated
conditional means of CAPM β̂s from 2000 to 2018. Solid blue lines are report results from a calibration using net
flows into passive mutual funds and ETFs. Dashed red lines are report results from a calibration using net flows into
active mutual funds.

cate the cross-sectional distribution well. Moreover, the model is able to replicate the time-series
increase in CAPM β̂s across market capitalization ranks from 2000 to 2018.
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Figure C17: Simulated and Empirical CAPM β̂s Across Market Capitalization Ranks

Notes: This figure plots the empirical and simulated conditional means of CAPM β̂s from 2000 to 2018. We calibrate
the flow factor to the net flows into passive mutual funds and ETFs. Dashed red line is the conditional mean of the
empirical distribution across market capitalization ranks. Solid blue line is the conditional mean of the simulated
distribution across market capitalization ranks.
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D Qualitative Evidence from Earnings Call Transcripts

This appendix presents qualitative evidence from earnings calls on how corporate executives
discuss Russell benchmark inclusion and their use of the CAPM to estimate the cost of equity.

D.1 Executives Commenting on Russell Benchmark Inclusion

To understand how corporate executives frame the importance of benchmark inclusion, we an-
alyze earnings call transcripts from Capital IQ (via WRDS) between 2008 and 2024. Our search
for terms related to Russell reconstitution yields 165 unique transcripts.51 After excluding one
transcript from the London Stock Exchange Group (owner of the Russell brand) and two from
BlackRock (discussing index products), our sample consists of 163 transcripts. We classify these
transcripts into fourmutually exclusive categories based on the context of themention. To ensure
a conservative classification, we assign transcripts sequentially based on the following hierarchy:

1. EquityOfferings (5 transcripts): Discussion of an at-the-market, seasoned equity, follow-
on, shelf takedown, or other equity offering associated with inclusion.

2. Liquidity (26 transcripts): Mention of increased stock liquidity or trading volume.

3. Visibility (34 transcripts): Reference to increased visibility or a broader investor base.

4. PassingMention (98 transcripts): A brief statement of inclusionwith no further context.

This analysis shows that executives rarely link Russell benchmark inclusion to capital-raising
activities. Only 3% of transcripts mention equity offerings associated with the reconstitution. In
contrast, the most common context is a passing mention (60% of cases), where the managers note
inclusion as a recent corporate achievement without further elaboration. For example,

“Top line data from our PEDFIC-1 Phase III trial is expected at the end of 2019 or early 2020. And
finally, wewere selected for inclusion in the Russell 2000 Index Russell as part of the annual
reconstitution of the Russell stock indexes. And with that, let me turn the call back over to Ron
for some concluding remarks.”

— CFO, Albireo Pharma Inc. (Q2 2018)

“The first half of this year has been extremely productive, and we are driving continued progress,
sustainable and profitable growth as a leader and the disruptor of the B2B e-commerce technology
solution. We were honored to be added to the Russell 2000 Index through their recent re-
constitution. Now I will turn the call over to Iman to provide more color and – on our operational
highlights.”

— CEO, GigaCloud Technology Inc. (Q2 2024)

51We query: “russell+index+inclusion+(1000|2000|3000)” and “russell+index+reconstitution+(1000|2000|3000).”
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In 26 instances, executives connect the benchmark inclusion to expected or realized improve-
ments in stock liquidity and trading volume. For example,

“All this happened while we were distracted by hurricanes, wildfires and mudslides. In addition, we
were relisted on the Russell 2000 Index, increased our average daily share volume by over
200% and outperformed both our peers and the S&P 500. For the full year 2017, our revenue was up
39% […]”

—CEO, Sterling Construction Company (Q4 2017)

“Before we move into our financial results, I want to quickly update you on some exciting corporate
developments. First, we were notified in the end of June that we were added to the Russell 3000
and Russell Global Indexes as part of Russell Investments’ annual reconstitution. We al-
ways prioritize building shareholder value andwe hope that this inclusionmay improve general
liquidity in our stock. We also announced last week some changes to our Board of Directors […]”

— President, BioSpecifics Technologies Corp (Q2 2014)

A third prominent theme, found in 34 transcripts, is the belief that benchmark inclusion
serves as a catalyst for increased corporate visibility. For example,

“As you may have seen in June, we have been added to the Russell 2000 index at the conclusion of the
indexes’ annual reconstitution. We are proud to have come this far as a public company and expect
this new index addition to provide increased awareness to the broader investment community
going forward.”

—CEO, StarTek, Inc. (Q2 2019)

“Working with our leadership team Carol will implement our company’s strategic initiatives and
increase operational execution across all our business channels. Andwe are very pleased to rejoin
the Russell 2000 index following a reconstitution on June 24. We believe this addition will
bring additional visibility to our company and our strategic initiatives. Now I’d like to turn
the call over to David C., to provide more details on our financial performance for the second quarter.”

— CEO, Hickory Tech Corp. (Q2 2011)
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D.2 Executives Referencing The CAPM to Calculate Cost of Equity

We perform a similar analysis and search earnings call transcripts fromCapital IQ for mentions of
“capital asset pricing model” or “CAPM.” Corporate executives frequently reference the CAPM in
response to analysts’ questions about their firm’s cost of equity and capital budgeting decisions:

“Why do we think that a 10% return is good? Well, you have to — whether we’re creating shareholder
value really goes to what’s our cost of capital. […] this is really how we view our weighted average
cost of capital. Most of you will bring back visions of business school. This is the capital asset
pricing model, right? Our cost of equity, about 10.7%.”

— CFO, LKQ Corp. (Q1 2016)

“If you use some of the tools I learned in my MBA class, like the capital asset pricing model, they
did teach that back in the 80s by the way, so it’s been around for a while. I think our cost of equity is
around 10%”

— CFO, Qorvo Inc. (Q4 2015)

“And for those of us that took financial classes, undergrad or graduate, we all understand CAPM
and WACC and so on and so forth, and we’ve done a good job, we believe, of managing our capital
structure to minimize our cost of capital.”

— CFO, L Brands (Q4 2016)

“This is our way of calculating the cost of equity. So this is very textbook like CAPM type of method-
ology. We start with the risk-free rate […]. Then we look at the group’s beta.”

— CFO, Talanx (Q4 2019)

“If you don’t push your ROE target up when interest rates go up, and that’s for every company to
decide, it depends if you believe in the capital asset pricing model or not. I won’t take you back to
school. […] I think you should [expect a higher ROE].”

— CFO, Intact Financial (Q3 2024)

“So the investment is about $240 million. We expect to project finance the deal so we will be, I think,
around $130 million equity investment. […] I’m not going to get in to what our cost of capital is but
most people can probably — I mean everybody knows CAPM and can kind of back into what it is.”

— CEO, Vistra Energy (Q1 2017)

“Looking at WACC, we have both an equity component and a debt component. On the equity com-
ponent, we calculate cost of equity using the capital asset pricing model using historical data and
market risk premiums. Our current cost of equity is running around 9%.”

— CFO, Archer Daniels Midland (Q1 2012)

“From a cost of capital perspective, we update our cost of capital estimates monthly. So yes, there are
changes that go on a monthly basis looking at interest rates and looking at local country risk, as well
as betas and all of the things that go into kind of the CAPM model.”

— CEO, American Tower Corp. (Q4 2013)

95



“We haven’t historically disclosed our cost of equity, but it’s actually fairly straightforward calculation
from a CAPM model, so in terms of where we’re coming out. But I think from that, you’re going to
get around a 10%-ish type range cost.”

— CEO, E-Trade (Q1 2016)

“So the way I think about andwe think about our cost of capital is, it’s our long-termweighted average
cost of capital. And with a balance sheet that’s about a 75% equity, 25% debt spread. When you do a
sort of a capital asset pricingmodel analysis of what is Camden’s cost of capital, it’s slightly higher
than 6%.”

— CEO, Camden (Q4 2019)

“Basically, we — across the portfolio, we apply hurdle rates based on market data and applying the
usual capital asset pricing model, so we have specific targets.”

— CFO, CLP Holdings (Q1 2022)

“We’ve also made progress on our weighted average cost of capital primarily through our refinancing,
which resulted in about an 80-basis-point reduction in our weighted average cost of capital. In mea-
suring that, we used kind of the classic CAPM type of calculation, which I’m sure we’re all familiar
with.”

— CFO, Dynegy Inc. (Q1 2014)

“We estimate our cost of capital using a CAPM pricing model both on debt and equity, in a pretty
traditional model. And we come up to about a 12% cost of capital.”

— CEO, Eclipse Resources (Q1 2018)

“We’ve done analysis, and we’ve looked at aCAPM pricing model. We’ve looked at ourWACC curve.”

— Assistant Treasurer, Iron Mountain Inc. (Q2 2016)

“I know a year ago when I did the capital asset pricing model figure at our cost of equity it was
about 13%.”

— CEO, Pinnacle Entertainment (Q4 2007)

“[…] to determine the equity costs, there are no binding regulations or standards, but there is a number
of different methodologies that can result in different results. Based on the so-called capital asset
pricing model, we, at present, see our equity costs at group level at around 10% after tax.”

— CFO, Deutsche Bank (AGM 2021)

“I mean we look at our cost of capital every quarter. We use CAPM. When we ran it at the balance
sheet date it’s about 6.2%”

— CFO, Great Portland (Q2 2019)
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E Other Measures of Perceived Cost of Equity

This section outlines alternative measures of the perceived cost of equity. We use these measures
to validate ourmain result that the perceived cost of capital rises with benchmarking. Specifically,
we show that benchmarking-induced changes in a stock’s CAPM β̂ translate into higher perceived
costs of equity reported by stock analysts and by regulators of public utilities and railroads.

E.1 Stock Analysts’ Perceived Cost of Equity

We collect stock analysts’ perceived cost of equity from three independent research providers:
I/B/E/S, Morningstar, and Value Line. These firm sell their reports and advice to investors, cre-
ating an incentive to assign cost of equity that match investors’ perceptions of a stock’s risk.
However, the providers use different methodologies to estimate the cost of equity which pro-
vides us with independent variation which we exploit to corroborate our main finding.

Morningstar Analysts’ Cost of Equity We obtain Morningstar analysts’ cost of equity di-
rectly from Morningstar Direct for the period from 2001 to 2018 for stocks in Morningstar’s cov-
erage universe listed on the NYSE, NASDAQ, and Amex. Morningstar’s cost of equity consists
of a common risk-free rate and a stock-specific risk premium, which reflects the stock’s sys-
tematic risk as qualitatively assessed by an analyst. This approach means that cross-sectional
variation in the cost of equity depends solely on Morningstar’s perception of systematic risk.
While Morningstar draws inspiration from the CAPM, it differs by using a qualitative, forward-
looking assessment rather than simply applying the CAPM directly (for details see Morningstar,
2022, page 4f)).

Value Line Safety Rank We hand-collect and digitize Value Line Investment Survey reports
for Small & Mid-Cap stocks from 1998 to 2006 to obtain Value Line’s safety rank measure, using
the last available rank in each calendar year. The safety rank, ranging from 1 (safest) to 5 (riskiest),
reflects Value Line analysts’ subjective assessment of a stock’s price stability and the financial
strength of the underlying firm. Jensen (2024) shows that the CAPM best describes the subjective
risk assessment of Value Line (see also Brav et al., 2005).

In the main text, we use the safety rank as a proxy for the perceived cost of equity and follow
Eskildsen et al. (2024) in converting the ordinal rank to a required return on equity bymultiplying
it by 1.5 p.p.. We show below that instead working directly with the original ordinal rank yields
qualitatively similar results.

Table E10 reports the marginal effects from an ordered logit regression of the Value Line
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Table E10: Change in Probability of Each Value Line Safety Rank in Response to∆ BMI = 10 p.p.

Safe Average Risky
Value Line Safety Rank 1 2 3 4 5

∆ BMI = 10 p.p. -1.52∗∗∗ -4.00∗∗∗ -8.48∗∗∗ 11.77∗∗∗ 2.23∗∗∗
(0.35) (1.10) (1.71) (2.37) (0.68)

Baseline Probability 2.7% 8.0% 48.3% 37.0% 4.0%
Observations 2,524
Brant-Test p-value 0.61

Notes: This table reports marginal effects of an ordered logit regression of Value Line
safety rank on changes in benchmarking intensity due to Russell index reconstitu-
tion. We restrict the sample to stocks within 400 ranks around the Russell index
cutoffs. Standard errors in parentheses are clustered by year. * p<0.10, ** p<0.05, ***
p<0.01.

safety rank on exogenous changes in benchmarking intensity due to Russell reconstitution. We
restrict the sample to stocks within 400 ranks around the Russell index cutoffs. The coefficients
indicate the change in the probability of each outcome category due to a 10 p.p. increase in BMI
(from May to June) because of Russell index reconstitution. The results show that an exogenous
increase in BMI lead to a significant increase in the Value Line safety rank. The probability that
a stock’s riskiness is classified as above average increases by more than 11 p.p. at benchmark
inclusion. This suggests that Value Line’s stock analysts perceive an increase in the required rate
of return on equity when benchmarking intensity increases.

I/B/E/S Stock Analysts’ Subjective Expected Returns I/B/E/S does not directly provide cost
of equity estimates. However, we can infer stock analysts’ perceived cost of equity from their
subjective expected returns. To do this we use data on the consensus forecasts of stock analysts
from I/B/E/S for the period from 2002 to 2018. We construct stock analysts’ subjective expected
returns from I/B/E/S as

E⋆
t [Ri,t+1] =

E⋆
t [pi,t+1] + E⋆

t [di,t+1]

pi,t
(37)

in which E⋆
t [pi,t+1] and E⋆

t [di,t+1] are the median consensus one-year price target and dividend
forecast over the next fiscal year, respectively, and pi,t is the stock’s price at the day of the fore-
cast from CRSP. The subjective expected returns constructed in Eq. (37) are based on analysts’
forecasts of future stock prices and thus incorporate both perceived discount rates and perceived
mispricing, that is, whether analysts think the stock is over- or undervalued (see Jensen, 2024).
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Figure E18: Security Market Line using I/B/E/S Analysts’ Subjective Expected Exc. Returns
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Notes: This figure shows monthly binned scatter plots of stock analysts’ subjective expected excess returns versus
CAPM β̂. We estimate the conditional means of each bin using only cross-sectional variation by absorbing year-
month fixed effects. α is the average of the year-month fixed effects. The slope of the security market line is given
by λ. CAPM β̂ from Welch (2022). N = 261,795 observations.

Figure E18 plots the CAPM security market line using stock analysts’ subjective expected
returns using the CAPM β̂s. The adj. R2 is 0.22 and the slope implies a 6.3% annual equity risk
premium. We find an annual α of 2.6%. The α likely reflects the unconditional upward bias in
analysts’ target prices that Brav and Lehavy (2003) document.
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E.2 Authorized Cost of Equity of Regulated Monopolies

This subsection provides further evidence that increased benchmarking affects the perceived cost
of equity. Our analysis, which draws on Kontz (2025), uses comprehensive data on requested and
authorized costs of capital for all major U.S. investor-owned utilities from 1998 to 2018, covering
over three-quarters of U.S. consumers. Kontz (2025) analyzes how the growth of index investing
impacts regulated monopolies’ cost of equity and consumer energy prices. Specifically, we test
whether regulated monopolies perceive a higher cost of equity when their CAPM β̂ increases due
to benchmarking.

Background Electricity and natural gas utilities operate as regulated monopolies, granted ge-
ographic exclusivity in exchange for rate oversight by government utility commissions. Because
these utilities do not face market-based pricing, regulators use a cost-of-service approach: they
evaluate the utility’s costs and investments, assess their prudence, and apply a risk-adjusted re-
turn to determine the revenue requirement that sets customer rates.

A central regulatory challenge is setting a fair return on equity (RoE). The legislative basis
for this is U.S. Supreme Court (1944) in Federal Power Commission v. Hope Natural Gas Co. which
ruled that a regulated monopoly’s “[…] return to the equity owner should be commensurate with
returns on investments in other enterprises having corresponding risks.” Today, state and federal
regulators usually implement the CAPM or a version of the DCF model to estimate the cost of
equity.

Public Utilities We study utility rate cases from 1998 to 2018, covering all major investor-
owned electricity and natural gas utilities in the U.S., which collectively serve over three-quarters
of U.S. consumers. We collect data on requested and authorized costs of equity (CoE) from Regu-
latory Research Associates. We test whether benchmarking affects the authorized CoE using IV
specifications of the following form:

Authorized CoEi,t − rft = αi + λ CAPM β
∧

i,t + φ
(
DCF Implied CoE − rf

)
+ εi,t, (38)

inwhich ̂CAPM βi,t is instrumentedwith the firm’s benchmarking intensity, and theDCF-implied
CoE term enters as a control. We include utility-by-state fixed effects, αi, which absorb time-
invariant unobserved heterogeneity across utility-state pairs. Identification of λ and φ thus relies
on within-utility time-series variation.

Table E11 reports coefficient estimates of Eq. (38). Columns 1 and 2 show that a higher bench-
marking intensity results in a higher authorized cost of equity. A 10 p.p. higher benchmarking
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Table E11: Regulated Monopolies’ Cost of Equity and Benchmarking Intensity
Dependent Variable: Authorized Cost of Equity − rf

Public Utilities Railroads
RF IV RF IV

(1) (2) (3) (4) (5) (6) (7) (8)
BMI (in %) 0.069∗∗∗ 0.071∗∗∗ 0.481∗∗∗ 0.454∗∗∗

(0.011) (0.011) (0.099) (0.088)

CAPM βE
∧

6.064∗∗∗ 6.189∗∗∗ 6.462∗∗∗ 6.481∗∗∗
(1.386) (1.375) (0.331) (0.361)

DCF implied Cost of Equity − rf 0.281∗∗∗ 0.170∗∗ 0.654∗∗ -0.035
(0.051) (0.083) (0.327) (0.072)

Fixed Effects
Utility × State FE ✓ ✓ ✓ ✓

Adj. R2 0.26 0.43 0.48 0.60
FS F-stat. 42.5 45.4 23.1 25.4
Observations 1,052 1,052 1,052 1,052 21 21 21 21

Notes: This table reports coefficient estimates of the form: Authorized CoEi,t − rft = αi + λ CAPM β
∧

i,t +φ
(
DCF Implied CoE − rf

)
+ εi,t

for rate regulated public utilities’ and railroads’ authorized cost of equity. Data for authorized cost of equity for public utilities and railroads
are from Regulatory Research Associates and from the Surface Transportation Board, respectively. CAPM β̂ estimated from weekly returns
data as usual in regulatory proceedings. Standard errors in parentheses clustered at utility-level for public utilities and Newey-West with 5
lags for railroads. * p<0.10, ** p<0.05, *** p<0.01

intensity translates into a 70 bps higher authorized cost of equity. Columns 3 and 4 translate
the reduced form coefficient into the perceived CAPM-implied equity risk premium by instru-
menting β̂ with BMI. The IV estimates imply a risk premium of around 6.1%. Our estimate is
close to the historical equity risk premium observed in the U.S. which is often used in regulatory
proceedings.

Regulators often require analysts to estimate a public utility’s cost of equity using a dis-
counted cash flow (DCF) method in addition to the CAPM. The even-numbered columns in Ta-
ble E11 show that our results remain robust when accounting for the DCF-implied risk premium.
While the DCF risk premium explains a large share of the variation in authorized risk premia, its
inclusion has only a negligible effect on the BMI coefficient. This suggests that omitted variable
bias is unlikely to be a concern (Oster, 2017).

Appendix Table E12 shows that benchmarking intensity does not correlate with the autho-
rized cost of debt of public utilities. In contrast, controls for aggregate credit market conditions,
such as the BBB option-adjusted spread, exhibit a highly significant correlation with both re-
quested and authorized cost of debt. This provides confidence that BMI serves as a valid instru-
ment for the cost of equity by influencing CAPM β̂s while not affecting the cost of capital through
other channels.
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Table E12: Effect of Benchmarking on Utilities Requested and Authorized Return on Debt

(1) (2) (3) (4) (5) (6)
Requested Authorized

Return on Debt — Rf Return on Debt — Rf

Benchmarking Intensity (in %) 0.016 0.008 0.009 -0.002 -0.013 -0.020
(0.012) (0.011) (0.011) (0.014) (0.013) (0.015)

BBB Option-Adjusted spread 0.264∗∗∗ 0.259∗∗∗ 0.310∗∗∗ 0.296∗∗∗
(0.048) (0.049) (0.053) (0.057)

Requested E/(D+E) 0.075∗∗∗ 0.071∗∗∗
(0.016) (0.018)

Authorized E/(D+E) 0.072∗∗∗ 0.066∗∗∗
(0.018) (0.016)

Constant 2.218∗∗∗ -1.979∗ 3.502∗∗∗ -0.487
(0.267) (0.753) (0.295) (0.878)

Utility-by-State Fixed Effect ✓ ✓
Adj. R2 0.00 0.14 0.38 0.00 0.13 0.39
Observations 1,381 1,381 1,347 1,022 1,022 987

Notes: This table shows coefficient estimates for Return on Debti,t = αi+BMIi,t+ξX ′
i,t+νi,t Risk-free rate (R

f
t )

is the nominal yield on 10-year Treasurys. Standard errors clustered at utility and year-quarter in parenthesis.
* p<0.10, ** p<0.05, *** p<0.01.

Railroads We use data on the cost of equity for regulated railroads from the Surface Trans-
portation Board (STB). The STB sets an industry-wide annual cost of equity, rather than firm-
specific rates. We thus only have a limited number of yearly observations. However, the STB
data offers a granular view of the regulatory rate-setting process: the STB reports the risk-free
rate, CAPM β̂, and equity risk premium used to determine the industry-wide cost of equity. Im-
portantly, the STB’s equity risk premium enables us to assess the accuracy of our IV-implied
estimates. We combine the STB data with the average BMI of publicly traded railroad companies.

Columns (5) to (8) of Table E11 report results for the railroad industry. Benchmarking inten-
sity strongly predicts the authorized cost of equity, even after controlling for the DCF-implied
cost. The IV estimates imply a perceivedCAPMequity risk premiumof 6.4% annually—statistically
indistinguishable from the average 6.85% applied by the STB over the sample period.
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F Additional Tests and Instrument Validity

F.1 Russell 1000/2000/3000 Index Methodology

The Russell Index Reconstitution Process The Russell 1000, 2000, and 3000 indices are re-
constituted annually in June based on a two-step process.

First, index assignment is determined by ranking eligible securities by their total market
capitalization on the designated “rank day” inMay.52 Before 2007, the assignment rulewas simple:
firms ranking in the top 1,000 formed the Russell 1000, while firms ranking from 1,001 to 3,000
formed the Russell 2000. This created a sharp cutoff at rank 1,000, where assignment is considered
quasi-random.

In 2007, FTSE Russell introduced a “banding” policy around the 1,000th rank to reduce index
turnover. Under this policy, a stock’s assignment also depends on its index membership in the
prior year, creating a band around the cutoff. Under the banding policy, a stock’s assignment
depends on its prior-year index membership:

• A stock from the previous year’s Russell 2000 is assigned to the Russell 1000 if its market
cap rank is between 1 and 1000− c1.

• A stock from the previous year’s Russell 1000 is assigned to the Russell 2000 if its market
cap rank is between 1000 + c2 and 3,000.

The band of stocks between ranks 1000 - c1 and 1000 + c2 constitutes a 5% band around the
cumulative market cap of the largest 1000 stocks in the Russell 3000E universe. And then c1 and
c2 are chosen such that the cumulative market cap of stocks ranked 1 through 1000 - c1 is 95%
of the cumulative market cap of the largest 1000 stocks, and the cumulative market cap of stocks
ranked 1 through 1000 + c2 is 105% of the cumulative market cap of the largest 1000 stocks. Note
that even after the introduction of the banding policy, assignment to the Russell 1000 or 2000 is
still based on a mechanical rule that changes each year with the distribution of firm sizes.

We emphasize that there is no banding policy at the 3,000th rank cutoff (see, e.g., Section
6.10.3 on p. 19 of Russell (2025) US Equity Indexes Construction and Methodology).

Second, index weighting is based on each stock’s float-adjusted market capitalization. Rus-
sell applies a proprietary, non-public float factor to determine the final weight. A larger float
adjustment leads to a lower index weight, which corresponds to a lower BMI.
52For most years, rank day is the last trading day in May. The full list of rank days from 1989 to 2019 is available in
Appendix A of Ben-David et al. (2019).
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Table F13: Predicting Russell 2000 Membership in June using Market Capitalization Rank Proxy

(1) (2) (3) (4) (5) (6)
Dependent variable: Russell 2000 Membership in June

Window width: 300 ranks Window width: 150 ranks
1998-2018 1998-2006 2007-2018 1998-2018 1998-2006 2007-2018

1{Rank > cutoff in May} 0.843∗∗∗ 0.924∗∗∗ 0.771∗∗∗ 0.830∗∗∗ 0.867∗∗∗ 0.751∗∗∗
(0.056) (0.016) (0.036) (0.058) (0.031) (0.035)

Year Fixed Effect ✓ ✓ ✓ ✓ ✓ ✓
Baseline Controls ✓ ✓ ✓ ✓ ✓ ✓
Banding Controls ✓ ✓ ✓ ✓
Adj. R2 0.91 0.95 0.94 0.88 0.92 0.92
Observations 15,032 4,456 10,130 8,721 2,183 6,268

Notes: This table reports estimates from regressions of the form:

Russell 2000 Member in Junei,t = αt + 1{Rank > cutoff in May}i,t + Baseline controlsi,t + Banding controlsi,t + εi,t.

The dependent variable is an indicator for whether stock i is a member of the Russell 2000 index in June of year t.
Baseline controls are the log of market capitalization and bid-ask spread measured in May of year t. Banding controls
are indicator variables for having rank-date market cap in the band, an indicator for being in the Russell 2000 in May
before reconstitution, and the interaction of these indicators. All regressions include year-fixed effects. We construct
the market capitalization rank variable following Ben-David et al. (2019). Columns (1)-(3) use a window width of 300
ranks around the Russell 1000/2000 cutoff, while columns (4)-(6) use a window width of 150 ranks. We are grateful to
Aditya Chaudhry for sharing his code and data which greatly helped us in constructing the market capitalization rank
variable. * p<0.10, ** p<0.05, *** p<0.01.

Empirical Strategy and Validation The official market capitalization ranks used for assign-
ment are proprietary. We therefore construct a proxy for each firm’s rank using public data,
following the methodology of Ben-David et al. (2019). To account for the post-2007 rule changes,
our regression models include a set of banding controls as proposed by Appel et al. (2019). These
controls include indicator variables for a firm’s rank falling within the band, its membership in
the Russell 2000 in the year prior, and the interaction between these two.

We validate our constructed rank proxy by confirming its ability to predict official Russell
2000 membership. As shown in Table F13, our proxy performs remarkably well. Our results are
consistent with those of Pavlova and Sikorskaya (2023, Table 12), who conduct a similar analysis
using the proprietary Russell ranks. Specifically: For the pre-banding period (1998–2006), our
estimates are within one standard error of their findings. For the post-banding period (2007–
2018), our estimates are lower but closely track theirs. Notably, even Pavlova and Sikorskaya
report a predictive coefficient of only 0.85 in their post-banding regressions, underscoring that
our proxy captures the vast majority of the explainable variation. Our results also align with
similar validation exercises in Chaudhry (2025) and Ben-David et al. (2019).
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F.2 Changes in BMI and Measures of Risk Exposure

Changes in BMI that correlate with changes in exposure to aggregate or idiosyncratic risk pose a
threat to our identification strategy. Industry’s exposure to aggregate risk (Karolyi, 1992) and firm
fundamentals (Gomes et al., 2003) should in theory determine firm-level exposure to aggregate
risk. We thus test whether the aggregate risk exposure of treated firms changes by estimating
whether the CAPM β̂ of comparable peer firms changes when a firm’s BMI changes. We also test
whether measures of idiosyncratic firm-level risk exposure change with BMI. However, we find
no evidence that changes in BMI correlate with changes in risk exposure.

Data We collect peer group information from data on executive compensation by Institutional
Shareholder Services (ISS). We use measures of firm-level intangible capital from Peters and Tay-
lor (2017). We use firm-level riskmeasures fromHassan et al. (2019) and data on financial frictions
from Hoberg and Maksimovic (2015) and Linn and Weagley (2024).

Table F14: Placebo test using the CAPM β̂ of peer firms

(1) (2) (3) (4) (5) (6)
Firm’s Firm’s All Peers’ Peer n=1 Peer n=2 Peer n=3

∆ CAPM βE ∆ CAPM βE ∆ CAPM βE ∆ CAPM βE ∆ CAPM βE ∆ CAPM βE

∆ CAPM βPeer 0.232∗∗∗
(0.010)

∆ BMI 0.814∗∗∗ 0.037 0.075 -0.009 0.043
(0.054) (0.029) (0.046) (0.043) (0.045)

Fixed Effects
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Peer FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓

Adj. R2 0.421 0.249 0.472 0.466 0.471 0.479
Observations 46,689 16,995 47,749 16,470 16,022 15,257

Notes: This table reports coefficient estimates for a placebo test using N=3 firm peers’ change in CAPM β̂ and assigns them
the ∆ BMI of the firm: ∆CAPM βPeer

j,t = αi + αj + αt + ∆BMIFirmi,t + εj,i,t for firm i and peer j in year t. Standard errors in
parentheses clustered at the firm-level in column (2) and double-clustered at firm and peer level in other columns. + p<0.10, *
p<0.05, ** p<0.01, *** p<0.001.

Changes in CAPM β̂s of Peer Firms We collect information about a firm’s peer group from
ISS. For each firm, we randomly select three peer firms and test whether the firm’s change in
BMI correlates with changes in the CAPM β̂ of peers. To avoid confounding our estimates, we
exclude peers that also experience a change in BMI. Appendix Table F14 reports the peer-based
test. Regressing changes in a firm’s CAPM β̂ on changes in its peers’ β̂s yields a significant

105



positive coefficient, consistent with common exposure to aggregate risk.53 By contrast, changes
in a firm’s BMI do not correlated with changes in its peers’ β̂s, with insignificant coefficients near
zero. This pattern suggests that benchmarking changes a firm’s CAPM β̂ rather than reflecting
changes in aggregate risk exposure.

Table F15: Changes in CAPM β̂ and firm-level risk measures of Hassan et al. (2019)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(in σ units) ∆ Risk ∆ Pol. Risk ∆ Pol. Risk - Econ. ∆ Pol. Risk - Secu. ∆ Pol. Risk - Tech. ∆ Pol. Risk - Trade

∆ CAPM βE 0.0192∗∗ 0.0170∗ 0.0163∗ 0.0149∗ 0.0087 -0.0002
(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

∆ BMI -0.0086 0.0080 -0.0011 0.0097 0.0115 -0.0088
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

Fixed Effects
Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Adj. R2 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.13 0.13
Observations 29,970 29,970 29,985 29,985 29,963 29,963 29,978 29,978 29,982 29,982 29,976 29,976

Notes: This table reports coefficients estimates for regression specifications of the form: ∆Firm-level Riski,t = αi +αt + γ ∆BMIi,t + νi,t. Changes in firm-level risk
(Hassan et al., 2019) calculated between 1st and 4th quarter of the year. Coefficients are standardized to unit variances. Changes in firm-level risk measures, CAPM
β̂s, and BMI are trimmed at the 1% and 99% level. Standard error in parentheses are clustered at the firm-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

Firm-level RiskMeasures Weanalyze six firm-level riskmeasures derived from earnings calls
by Hassan et al. (2019): the overall risk exposure of firms, exposure to overall political risk, and
exposure to political risk stemming from economic policy, security policy, technological policy,
and trade policy. Appendix Table F15 reports estimates of OLS regressions of changes in firm-
level risk measures on changes in CAPM β̂ and changes in BMI. Two things are worth noting.
First, changes in the CAPM β̂ correlate with changes in the firm-level risk measures. Four of
six firm-level risk-measure show a statistically significant positive relationship with changes in
the CAPM β̂ of firms. Second, changes in BMI do not correlate with changes in firm-level risk
measures. The estimated coefficients across all risk measures are close to zero and not statistically
significant.

F.3 Changes in BMI and Measures of Financial Constraints

Changes in BMI could correlate with changes in financial constraints, potentially violating the ex-
clusion restriction of our IV strategy. We test this by examining the correlation between changes
in a firm’s BMI and measures of financial constraints and CDS spreads. If changes in BMI corre-
lated with changes in financing costs due to factors other than CAPM β̂, the exclusion restriction
would be violated. However, we find no evidence of such correlations.
53Levi and Welch (2017) similarly show that peer firms’ CAPM β̂s strongly predict own-firm β̂s.
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Table F16: Changes in measures of text-based financial frictions (Hoberg and Maksimovic, 2015)
(1) (2) (3) (4) (5) (6)

(in σ units) ∆ Inv. Delay ∆ Inv. Delay &
Equity Issue

∆ Inv. Delay &
Debt Issue

∆ Inv. Delay &
Private Issue

∆ Inv. Delay &
Equity (LW, ’24)

∆ Inv. Delay &
Debt (LW, ’24)

∆ BMI -0.0008 -0.007 -0.0004 -0.005 -0.010 0.004
(0.009) (0.009) (0.009) (0.009) (0.008) (0.007)

Fixed Effects
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓

Adj. R2 0.08 0.07 0.06 0.07 0.07 0.04
Observations 23,463 23,463 23,463 23,463 32,275 32,275

Notes: This table reports coefficients estimates for regression specifications of the form: ∆Measure of Financial Constrainti,t = αi+αt+γ∆BMIi,t+
νi,t. Changes in text-based financial constraint measures from Hoberg and Maksimovic (2015) and Linn and Weagley (2024). Coefficients are
standardized to unit variances. Changes in financial constraints measures, CAPM β̂s, and BMI are trimmed at the 1% and 99% level. Standard error
in parentheses are clustered at the firm-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

Text-based Measures of Financial Constraints We collect text-based measures of financial
constraints from Hoberg and Maksimovic (2015) and Linn and Weagley (2024). These measures
capture the extent to which firms face financial constraints and are likely to constrain invest-
ment based on the text of their annual reports. Appendix Table F16 reports estimates of OLS
regressions of changes in the firm’s financial constraints on changes in the BMI of a firm. The
estimated coefficients of BMI are close to zero and not statistically significant across all measures.
Importantly, Column (1) of Appendix Table F16 shows that changes in BMI do not correlate with
firm statements about plans to delay investments.

Table F17: Changes in CDS Spreads and CAPM β̂s of CDS Spreads
Dependent variable: ∆ CDS Spread (in σ units) ∆ CDS CAPM β (in σ units)

(1) (2) (3) (4) (5) (6) (7) (8)
∆ BMI (in σ units) -0.0221 -0.0244 -0.0189 -0.0283 0.0280 0.0189 0.0014 0.0305

(0.0212) (0.0209) (0.0207) (0.0210) (0.0240) (0.0242) (0.0253) (0.0260)

Momentum (Cum. Ret.) -0.120∗∗∗ -0.140∗∗∗ -0.0618∗∗ -0.0366
(in σ units) (0.0315) (0.0332) (0.0238) (0.0259)
Fixed Effects

Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Year × Size Decile ✓ ✓
Year × Momentum Decile ✓ ✓

Adj. R2 0.260 0.269 0.303 0.315 0.103 0.106 0.179 0.155
Observations 2,798 2,798 2,798 2,798 2,299 2,299 2,299 2,299

Notes: This table reports coefficients estimates for regression specifications of the form: ∆CDS Spreadsi,t = αi+αt+γ ∆BMIi,t+ νi,t.
Coefficients are standardized to unit variances. CDS spreads for senior unsecured debt with tenor of 5 year and doc clause XR14 (no
restructuring). CDS CAPM β̂s are calculated on daily data from 2010 to 2019 using the weighted least squares estimator of Welch (2022)
with exponentially decay of 3 months half life. Changes in CDS spreads and CDS CAPM β̂s are trimmed at the 2% and 98% level.
Standard error in parentheses are clustered at the firm-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Changes in CDS Spreads and CDS CAPM β̂ We collect CDS spreads for senior unsecured
debt with tenor of 5 year from 201054 to 2019. We calculate CDS CAPM β̂s on daily data using
the estimator of Welch (2022). We calculate changes in a firm’s CDS spreads and firm’s CAPM β̂

of CDS spreads as the difference between the average of daily observations in the first and last
quarter of a year. Appendix Table F17 reports estimates of OLS regressions of changes in CDS
spreads and changes in the CDS CAPM β̂ on changes in the BMI of a firm. We find no evidence
that changes in the BMI predict changes in firm CDS spreads or CDS CAPM β̂s. The estimated
coefficients on BMI are insignificant and close to zero.

Table F18: Changes in measures of corporate governance

(1) (2) (3) (4) (5) (6)
(in σ units) ∆ S&P G-Score ∆ Sus. G-Score ∆ Ref. G-Score ∆ Sus. ESG ∆ S&P ESG ∆ Ref. ESG
∆ BMI -0.024 -0.020 0.008 -0.009 0.031 -0.003

(0.057) (0.024) (0.017) (0.026) (0.057) (0.017)
Fixed Effects

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓

Adj. R2 0.31 0.20 0.07 0.23 0.34 0.10
Observations 2,003 7,168 13,925 7,326 2,003 13,925

Notes: This table reports coefficients estimates for regression specifications of the form: ∆Governance Scorei,t = αi + αt +
γ ∆BMIi,t + νi,t. Governance and ESG scores of Standard & Poor, Sustainalytics, and Refinitiv. Coefficients are standardized to
unit variances. Changes in G-Scores, ESG Scores, and BMI are trimmed at the 1% and 99% level. Standard error in parentheses are
clustered at the firm-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

F.4 Changes in BMI and Measures of Corporate Governance

An increase in BMI and associated institutional ownership could impact investment through im-
proved corporate governance (Appel et al., 2016, Aghion et al., 2013). However, increased passive
ownership may also decrease monitoring incentives, as in the model of Bebchuk and Hirst (2019).
We test whether measures of governance change with changes in BMI but find no evidence of
such an effect.

We use governance and ESG scores from S&P, Sustainalytics, and Refinitiv and test whether
changes in BMI correlate with changes in those scores. Appendix Table F18 reports estimates
of OLS regressions of changes in governance and ESG scores on changes in the BMI of a firm.
The estimated coefficients are close to zero and are not statistically significant. Our findings are
consistent with Kacperczyk et al. (2021), who also find no evidence of changes in governance at
benchmark inclusion.
54We focus on the period after ISDA’s “Big Bang” reforms of April 2009 to maintain a consistent sample.
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Table F19: Marginal Effects of BMI on the Probability of an Activist Investor Campaign

Outcome y ∆Pr(y) when
∆BMI=10 p.p.

SE p-value No. Obs. Mean y # y=1

Activist Campaign (12 mos.) -0.0017 0.0007 0.02 18,059 0.0156 282
Activist Campaign (24 mos.) -0.0000 0.0008 0.95 18,059 0.0246 444
Activist Campaign (36 mos.) -0.0004 0.0015 0.76 18,059 0.0328 592
Activist Campaign (48 mos.) 0.0005 0.0018 0.76 18,728 0.0408 765
Activist Campaign (60 mos.) 0.0003 0.0020 0.86 18,728 0.0479 898

Activist Investor Campaigns An alternative channel through which benchmarking could af-
fect investment is by altering the incentives for activist investor campaigns. A BMI could increase
the likelihood of an activist campaign through two mechanisms. First, higher BMI increases a
stock’s liquidity, which reduces the cost for an activist to accumulate a large stake. Second, a
larger passive investor base, which correlates with BMI, may increase an activist’s probability
of success in a proxy contest (Appel et al., 2019, Kedia et al., 2021). However, countervailing
economic forces also exist. An activist targeting a high-BMI firm must bear the higher factor
risk associated with the increases in stock’s CAPM β̂. This factor risk increases the cost and
uncertainty of an activist campaign.

To test this channel, we use data on activist campaigns from FactSet’s SharkWatch, restricting
the sample to campaigns with the objective to “Maximize Shareholder Value.” We estimate the
following logit model:

Pr
[
Activist Campaigni,t+h = 1

]
= Λ

(
αt + γ∆BMIi,t +X ′

i,tξ + νi,t+h

)
in which Λ(·) is the logistic function. The dependent variable is an indicator for an activist cam-
paign initiated against firm i betweenmonth t and t+h. We test horizons h ∈ {12, 24, 36, 48, 60}
following the Russell reconstitution. The vector X ′

i,t contains the log market capitalization and
banding controls.

Table F19 reports marginal results for a 10 p.p. increase in BMI. We find no evidence that
an increase in BMI leads to a higher probability of an activist campaign over a one- to five-year
horizon. The coefficient on ∆BMI is statistically indistinguishable from zero for all horizons of
24 months or longer. For the 12-month horizon, the coefficient is negative, pointing to a decrease
in the probability of an activist campaign. These findings do not support the hypothesis that
activism is a channel through which benchmarking affects firm investment.
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Figure G19: Share of Within-industry Variation Explained by Projecting CAPM β̂ onto BMI
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Notes: This figure plots the time series of within-industry R2 from cross-sectional regressions CAPM β̂i = αj,s +∑5
k=1 φkBMIki +ϵi in whichαj,s is an industry×size-quartile fixed effect (industries at 4-digit NAICS, size bymarket

cap). The solid blue line shows a two-sided moving average of within-R2. The dashed red line shows the same after
orthogonalizing BMI and CAPM β̂s with respect to log(Volume). We report the within-R2 and exclude variation
explained by industry×size fixed effects.

G Additional Results on Misallocation

A large literature highlights how resource misallocation, characterized by dispersion in firms’
marginal products of inputs, negatively affects aggregate productivity and output (e.g., Bau and
Matray, 2023). David et al. (2022) show that, in a production economy with aggregate risk,
cross-sectional dispersion in the marginal product of capital (MPK) partly reflects variation in
firms’ CAPM βs. Thus, dispersion in MPK may represent not only resource misallocation but
also risk-adjusted capital allocation. Firms set their expected MPK equal to their cost of capital:
E [t]MPKi,t+1 = rft + δ + βi,tλ, where δ denotes the depreciation rate. The cross-sectional
variance in expected MPK at time t is given by σ2(E [t]MPK i,t+1) = σ2

βt
λ2, in which σ2

βt
is the

cross-sectional variance in CAPM βs. The degree to which risk contributes to MPK dispersion
thus depends positively on the cross-sectional variation in firms’ risk exposures and the market
price of risk.

We start by examining whether benchmarking generates excess dispersion in CAPM β̂s. Fig-
ure G19 shows that benchmarking-induced variation in CAPM β̂s is making up an increasing
share of within-industry variation in CAPM β̂s. In each month, we approximate the relationship
between CAPM β̂s and BMI by fitting a flexible 5th order polynomial as well as industry-by-
size-quartile fixed effects. We then plot the within-industry variation explained by BMI (within
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Table G20: Misallocation: Elasticity of MPK Dispersion with Respect to Dispersion in CAPM β̂s
Dependent variable: σ(mpk)t+1 σ(Et[mpk])t

RF IV RF IV
(1) (2) (3) (4) (5) (6) (7) (8)

σ(CAPM β
∧

)t 0.798∗∗ 0.492∗∗ 0.723∗∗ 0.505∗∗
(0.231) (0.147) (0.222) (0.159)

σ(CAPM β)t 0.615∗∗ 0.547∗∗ 0.548∗∗ 0.551∗∗
(0.195) (0.181) (0.179) (0.192)

Fixed Effects
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓ ✓

Adj R2 0.02 0.67 0.03 0.66
FS F-stat. 129.3 90.2 137.9 73.2
Observations 3,469 3,468 3,461 3,460 3,466 3,465 3,460 3,459

Notes: This table reports coefficient estimates of regressions at the NAICS 4-digit industry-level of the form:
σ(mpk)j,t+1 = αt + αj + σ(CAPM β̂)

∧

j,t + εj,t+1 in which we instrument industry j’s cross-sectional disper-
sion in CAPM β̂s with the predicted cross-sectional dispersion due to benchmarking. mpk is the natural log
of MPK, calculated as mpk = log (Sales) − log (PPENT ) and expected MPK assuming AR(1) productivity,
at = log (Sales)t − θ log (PPENT )t , as E [t]mpkt+1 = ρat − (1− θ)kt+1 where ρ=0.93 and θ=0.65 (see David
et al., 2022). FS F-stat is Kleibergen-Paap F-stat of first stage. Standard errors clustered at industry- and year-level
in parentheses. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

R2). Importantly, we exclude variation explained by industry-by-size-quartile fixed effects. Be-
fore 2000, benchmarking explains less than 5% of the average within-industry variation in CAPM
β̂s. In 2018, benchmarking explains approximately 15% of the average within-industry variation
in CAPM β̂s. This suggests that benchmarking affects allocative efficiency by creating within-
industry dispersion in firm’s perceived cost of capital.

Next, we testwhether the benchmarking-induced excess dispersion inwithin-industry CAPM
β̂s affects the dispersion in industries’ marginal products of capital (MPK). To address the endo-
geneity between MPK and CAPM βs, we implement a two-step procedure. In the first step, we
predict a firm’s CAPM β̂ using its benchmarking intensity. Since the level of benchmarking
intensity may not be exogenous, we instrument the intensity level in year t with changes in
benchmarking intensity (∆BMI) driven by Russell reconstitution between May and June over the
past five years. This ensures that the variation in CAPM β̂s we use is due to benchmarking. We
then calculate the cross-sectional dispersion in CAPM β̂s, σ(CAPM β)t, the dispersion specifi-
cally created by benchmarking, σ(CAPM β̂

∧

)t, and the natural logarithm of the marginal product
of capital at the 4-digit NAICS industry level annually.55

In the second step, we estimate how dispersion in CAPM β̂s affects dispersion in log (MPK)
55With Cobb-Douglas production, the log MPK ismpk = log (Sales)− log (PPENT ) (David et al., 2022).
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at the industry-level using specifications of the form:

σ(mpk)j,t+1 = αt + αj + γ σ(CAPM β̂)

∧

j,t + εj,t+1 (39)

in which we instrument industry j’s cross-sectional dispersion in CAPM βs with the predicted
cross-sectional dispersion created by benchmarking.

Table G20 shows that benchmarking-induced CAPM β̂ changes affect dispersion in marginal
products of capital. Our two-step approach shows that higher within-industry dispersion cre-
ated by benchmarking increases within-industry dispersion in MPKs. Our results help explain
the rise in within-industry productivity dispersion from 1997 to 2016 (Cunningham et al., 2023).56

Figure G19 and Table G20 suggest that benchmarking-induced excess dispersion in CAPM β̂ pre-
vents the equalization of marginal products across producers within industries. This is important
because non-fundamental changes in within-industry capital allocation have first order implica-
tions for aggregate and industry-level productivity growth (Hsieh and Klenow, 2009).

56In unreported results, we confirm that increases in σ(CAPM β
∧

)t are correlated with rising TFP dispersion in the
data of Cunningham et al. (2023).
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H Semi-Elasticity of Investment by Sales in Compustat

Our analysis is similar to Zwick and Mahon (2017), who study the bonus depreciation stimulus
policies from 2001 to 2004 and from 2008 to 2010. In both episodes, firms were allowed to use
an accelerated schedule to deduct the cost of investment purchases from taxable income, thereby
affecting the relative price of capital qt. We depart by focusing on the cost of equity part of
the user cost of capital, Ct = qt

[
(1− µt)(1− τt)r

d
t + µt(r

f
t + βi,tλ) + δ

]
, which benchmarking

affects by changing CAPM β̂s.

We estimate the investment semi-elasticity with respect to the user cost of capital (ϵC) for
each of 10 sales deciles. Figure H20 plots our OLS estimates of the semi-elasticities by sales
decile. The figure shows that smaller firms, as measured by sales, have more negative investment
semi-elasticities than larger firms. The semi-elasticity estimates for the smallest sales decile is -9,
while that for the largest sales decile is around -1. The difference between the smallest and largest
sales decile is statistically significant at the 1% level. The estimates are robust to adding controls
for cash flow, operating leverage (SGA/sales), and log MRPK (blue circles) and further adding
industry by time fixed effects (green diamonds). The results are consistent with prior research
showing that smaller firms’ investment is more sensitive to changes in the user cost of capital
than larger firms’ (e.g., Zwick and Mahon, 2017).

To estimate the investment semi-elasticity with respect to the user cost of capital (ϵC) for
each of 10 sales deciles, we use Compustat data from 1989 to 2019 in a three-step procedure.

1. We first estimate the elasticity of investment with respect to CAPM β̂ (εβj ) by regressing
the change in the log investment-to-capital ratio on log CAPM beta, including firm and
year fixed effects and controls (Xi,j,t):

∆ log(I/K)i,j,t = αi + αt + εβj log(β̂i,j,t) +X ′
i,j,tζ + εi,j,t

2. We then convert the estimated elasticity (εβj ) to the target semi-elasticity (ϵCj ) using:

ϵCj =
∂ log(I/K)

∂Cj

=
∂ log(I/K)

∂ log βj︸ ︷︷ ︸
Step 1: ε̂βj

× 1

β̄j︸︷︷︸
Elasticity to Semi-Elasticity

×
(
∂Cj

∂βj

)−1

︸ ︷︷ ︸
Rescaling to User Cost

3. The final term, the sensitivity of the user cost to β, is (∂C/∂β)−1 = (qµλ)−1. We use the
average equity share for each decile (µj) and assume an equity risk premium (λ) of 6% and
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Figure H20: Semi-Elasticity of Investment by Sales Deciles

-16
-14
-12
-10
-8
-6
-4
-2
0
2
4

O
LS

Es
tim

at
es

of
Se

m
i-E

la
st
ic
ity

ϵ

Decile 10
( 210)

Decile 9
( 659)

Decile 8
(1068)

Decile 7
(1410)

Decile 6
(1723)

Decile 5
(2107)

Decile 4
(2348)

Decile 3
(2823)

Decile 2
(3188)

Decile 1
(3354)

Sales Deciles (Median Market Capitalization Rank)

Baseline
+ Controls (Cash flow + Op. Lev. + logMRPK)
+ Industry × Time

OLS Estimates of Semi-Elasticity of Investment ϵ

Notes: The figure plots estimates of the semi-elasticity of investment with respect to the user cost of capital, ϵC , by
sales decile. Numbers in parentheses on the x-axis report the median May market-capitalization rank for each sales
decile. Red squares show the baseline specification with firm and year fixed effects. Blue circles add controls for cash
flow, operating leverage (SGA/sales), and log MRPK. Green diamonds further add industry by time fixed effects. 95%
confidence intervals based on standard errors double-clustered by firm and year.

a relative price of capital (q) of 1.

Attenuation Bias in OLS Estimates Our estimates of the investment semi-elasticity with
respect to the user cost of capital (ϵC) are likely biased towards zero for several reasons. First, our
CAPM β̂ are subject to classical measurement error, which attenuates the coefficient toward zero.
Second, investment-opportunity shocks might confound our estimates. For instance, a positive
productivity shock could raise both investment and β̂ (via operating leverage), masking the true
negative relationship. Third, an expectations channel may violate our identification strategy: if
managers, similar to analysts raise growth expectations (Jylha and Ungeheuer, 2021), when β
increases, investment may increase for reasons not running through the user cost, again biasing
our coefficient toward zero.

Recognizing these biases, we compare our OLS estimates to the well-identified estimates from
Zwick and Mahon (2017). Their tax-based identification is less susceptible to the confounders we
face, and in a standard investment model, the elasticity with respect to the user cost is propor-
tional to the elasticity with respect to the net-of-tax rate (Koby and Wolf, 2020).

Figure H21 plots our scaled estimates and estimates from Zwick and Mahon (2017) by mar-
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Figure H21: Semi-Elasticity of Investment by Market Capitalization Rank
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Notes: The figure plots estimates of the semi-elasticity of investment with respect to the user cost of capital, ϵC , by
market-capitalization rank. We map our sales-decile estimates to ranks using the median market-cap rank within
each decile. For comparison, we overlay estimates from Zwick and Mahon (2017), positioned at the median rank of
their small- and large-firm groups. Orange markers (CF1 κ and CF2 π) show the semi-elasticities that the largest 50
firms would need to offset the observed decline in aggregate investment implied by the cross-sectional rise in CAPM
β̂; the two markers use alternative weighting schemes.

ket capitalization rank, confirming our main result: smaller firms have more negative invest-
ment semi-elasticity than larger firms. Zwick and Mahon (2017) find an average investment
semi-elasticity with respect to the user cost of approximately -11, which is twice the size of our
unadjusted estimates.57

57The estimates from Zwick and Mahon (2017) for the Compustat sample are taken from their Appendix Table B.2.
The estimates need to be rescaled by the investment tax rate to represent the semi-elasticity with respect to the
user cost of capital, as described on their page 230 (see also Koby and Wolf, 2020, p.21f).
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I Aggregation using a Heterogeneous FirmGeneral EquilibriumModel

Set-up Our discrete-timemodel builds closely onKhan andThomas (2008) andWinberry (2021).

Firms There is a fixed mass of firms j ∈ [0, 1] producing output yj,t with technology

yj,t = ztεj,tk
θ
j,tl

ν
j,t,

in which zt is an aggregate productivity shock, εj,t is an idiosyncratic productivity shock, ki,t
is the capital stock, and lj,t is labor input. The parameters θ and ν are the output elasticities of
capital and labor, respectively. Throughout, we assume that θ + ν < 1.

The aggregate shock process is common across all firms while the idiosyncratic shock εj,t is
independent across firms. The two shocks follow AR(1) processes in logs:

log zt+1 = ρz log zt + σzϵz,t+1, ϵz,t+1 ∼ N(0, 1),

log εj,t+1 = ρε log εj,t + σεϵε,j,t+1, ϵε,j,t+1 ∼ N(0, 1).

Each period, a firm j observes these two shocks, uses its pre-existing capital, hires labor from
a competitive labor market at wage w, and produces output. After production, the firm decides
how much it should investment for the next period. Capital follows the usual law of motion
kj,t+1 = (1− δ)kjt + ijt, in which δ is the depreciation rate and ijt is investment.

Firms face two types of capital adjustment costs. First, there is a fixed investment cost, ξj,t
iid∼

uniform[0, ξ̄], paid in labor units if the firm invests a positive amount. Second, there is a standard
convex investment adjustment cost. The adjustment cost function takes the form

ϕ(kj,t, ij,t, ξj,t;κ) =
κ

2

(
ijt
kjt

)2

kjt + ξjtw(s)1{ijt > 0}.

Households There is a representative household with GHH preferences over consumption Ct

and labor supply Lt, which maximizes their expected discounted lifetime utility

max
C,N

E0

∞∑
t=0

ρt log
(
Ct − χ

L1+η
t

1 + η

)
subject to Ct = wtLt +Πt
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in which ρ is the discount factor, χ is the weight on disutility from labor, and η is the inverse of the
Frisch elasticity of labor supply. We normalize the total time endowment to 1, so that Lt ∈ [0, 1].
Markets are complete, the household owns all firms and rents labor to them in a competitive labor
market at wage wt.

Recursive firm problem The firms’ individual state variables are its current draw of the id-
iosyncratic productivity shock, ε, its capital stock, k, and its investment fixed cost shock, ξ. The
aggregate state is s = (z, µ)where z is the aggregate productivity shock and µ is the distribution
of firms over their individual states (ε, k, ξ). Note that that the firm’s choice of labor is a purely
static problem and we can thus separate it out to define the revenue function as

π(ε, k, ξ; s) = max
n

{
zεkθlν − w(s)l

}
The firm’s value function takes the following form

v(ε, k, ξ; s) = π(ε, k, ξ; s) +max
i

{−q(s)i− ϕ(k, i, ξ;κ) + E [Λ(z′; s) v(ε′, k′, ξ′; s′)|ε, k, ξ, s]}

where Λ(z′; s) is the stochastic discount factor and q is the adjusted relative price of investment.
Markets are complete with respect to aggregate risk, so the stochastic discount factor used by
firms is equal to the household’s intertemporal marginal rate of substitution state by state.

Equilibrium Definition and Solution Method The aggregate state vector is s = (z, µ),
where z denotes the aggregate productivity shock and µ is the distribution of firms over their
individual state vector (ε, k, ξ). A formal equilibrium definition is provided in Winberry (2021).

We solve the model using Winberry’s (2018) method. The main difficulty is that s includes
the infinite-dimensional distribution µ. To address this, the method approximates µ at each point
with a flexible but finite-dimensional parametric family. The parameters of this family become
endogenous aggregate state variables in the reduced model. Winberry (2021) notes that accu-
rately capturing the distribution typically requiresmore than five parameters, whichmakes global
methods impractical because of the curse of dimensionality. We therefore characterize the ag-
gregate dynamics using a second-order perturbation.

I.1 Calibration

Following Winberry (2021), we parameterize the model in two steps. First, we calibrate a subset
of parameters to match standard steady-state macroeconomic targets. Second, conditional on

117



Table I21: Micro investment moments and calibration
Panel A: Target moments

Moment Data Model

Investment moments
Average investment rate (%) 14.9 13.0
Standard dev. of investment rates (%) 15.6 13.9
Spike rate (%) 20.7 22.0

Perceive cost of equity moments
Share of employment by top firms w/
lower β̂ (in %)

33.5 32.6

Weighted-average increase in cost of
capital (in %)

1.38 1.39

Panel B: Fixed & calibrated parameters
Block Parameter Value

Household (fixed)
Discount rate ρ 0.99
Inverse Frisch elasticity η 0.50

Firm (fixed)
Labor share ν 0.64
Capital share θ 0.21
Capital depreciation δ 0.03
Aggregate TFP AR(1) ρz 0.97

σz 0.008

Firm heterogeneity (calibrated)
Upper bound on fixed cost ξ̄ 0.55
Convex adjustment cost κ 3.10
Idiosyncratic productivity AR(1) ρε 0.90

σε 0.05

Perc. cost of equity heterogeneity (calibrated)
Shape of β̂ α 2.5
Upper bound of β̂ β̄ 0.20
Lower bound of β̂ β -0.058
Benchmarking shock AR(1) ρλ 0.95

Notes: This table summarizes our calibration strategy. Panel A reports micro investment moments from the data and
the model. Panel B reports fixed and calibrated parameters. Micro investment moments from our annual firm-level
Compustat panel, 1998–2018. Statistics drawn from distribution of investment rates pooled over firms and time.
Spike rate is fraction of observations with investment rate greater than 20 percent.

these values, we calibrate the remaining parameters to match data moments. One model period
equals one quarter.

Fixed Parameters Panel B of Table I21 summarizes our fixed parameters. We mostly follow
Winberry (2021) and set the household discount factor to ρ = 0.99, the inverse of the Frisch
elasticity to η = 0.50, the labor share to θ = 0.64, the capital share to ν = 0.21, and the
depreciation rate to δ = 0.03. We set the aggregate TFP process to ρz = 0.97 and σz = 0.008.

Calibrated Investment Parameters We calibrate the parameters governing the firm hetero-
geneity in panel B of Table I21 such that the model matches key micro investment moments in
our Compustat panel shown in panel A of Table I21. We exogenously fix the persistence of the
idiosyncratic productivity process to ρε = 0.90.

Mapping our Empirical Findings to theModel We introduce shocks to firms’ discount rates
that depend on firm size to capture the empirical patterns we document. Rather than embedding
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a full asset pricing structure with subjective expectations, we model these shocks as wedges in
the relative price of capital.58 This preserves tractability while capturing the central mechanism
in the data. Moreover, this is consistent our the empirical evidence that the change in β̂ originates
in the financial market and changes the perceived riskiness of equity while the fundamental risk-
exposure is still determined by the firm’s cash flows produced by yi,t.

We model changes in CAPM β̂ due to benchmarking as size-dependent, exogenous shocks to
the relative price of investment:

q̂(s) = 1 + λ×
[
β0 + β1 exp (−α n(ε, k; s))

]
in which β0, β1, and α are constants which we calibrate to match the empirical distribution of
changes in firms’ CAPM β̂s. Specifically, β0 = β − β̄

ea−1
and β1 = β̄ ea

ea−1
where β is the average

decrease in CAPM β̂ experienced by the largest firms, β̄ is average increase in CAPM β̂ experi-
enced by smaller firms, and α governs how quickly the change in CAPM β̂ decreases with firm
size. That is, the minority of large firms in the model experience a decrease in their discount rate,
while the majority of smaller firms experience an increase. We assume that the benchmarking
shock λ follows an AR(1) process

λt+1 = ρλλt + ϵλ,t+1, ϵλ,t+1 ∼ N(0, 1).

We set the quarterly autocorrelation of ρλ = 0.95 to match the persistent of CAPM β̂s.

We calibrate α, β̄, and β to match two key empirical moments and the distribution of changes
in CAPM β̂s documented in Section 3. Specifically, we target the average share of employment
held by firms with a decrease in their CAPM β̂ (33.5%) and the investment-share-weighted in-
crease in the cost of capital (1.38%).59

Panel (a) in Figure I22 plots the calibrated shape of q̂(s) as a function of size-sorted cumulative
employment share in a simulated panel of 1000 firms. The figure shows that the smallest firms
experience an increase in their relative price of investment of around 10%, while the largest firms
experience a decrease of around 5%.
58The relevant semi-elasticities between r and q are intimately linked as Proposition 4 in Koby andWolf (2020) show.
59The investment-share-weighted increase in CAPM betas is 0.043 (see Section 8). The investment-share-weighted
increase in the averageWACC is around 0.21%, which corresponds to a 1.38% increase relative to the average hurdle
rate of 15% in Gormsen and Huber (2025).
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Figure I22: Distributions of Perc. Cost of Equity Shock and Impulse Responses of Investment

Cumulative employment share
0 0.2 0.4 0.6 0.8 1

R
el
a
ti
ve

p
ri
ce

o
f
in
ve
st
m
en
t

0.9

0.95

1

1.05

1.1

q(l)
Threshold

(a) Relative price of investment q̂(s) vs. size-sorted
cumulative employment share in simulated panel

Quarters since shock

10 20 30 40

P
er
ce
n
ta
g
e
d
ev
ia
ti
o
n
fr
o
m

st
ea
d
y
st
a
te

-2

-1.5

-1

-0.5

0

0.5

Agg. investment

Agg. consumption

(b) Impulse Response of Aggregate Investment
and Consumption after Shock to q̂(s)

I.2 Results

Panel (b) of Figure I22 displays the impulse response to a one standard deviation shock to λ.
On impact, aggregate investment contracts by 1.83%. This response operates almost entirely
through the extensive margin, as the shock prevents formerly infra-marginal firms from under-
taking planned investments.

The underlying mechanism is rooted in firm heterogeneity. In the model, the incentive to
invest is strongest for firms with low initial capital relative to their optimal level. These are
typically small, high-growth firms consistent with firm-level data. Because they are actively
growing to reach their optimal scale, these small firms constitute the majority of infra-marginal
investors in the economy.

The adverse shock λ to the relative price of capital lowers the net benefit of investing, pushing
these formerly infra-marginal firms to be marginal and cancel their investment. Conversely,
larger firms, who receive a subsidy, are less likely to investment since they are closer to their
optimal scale, and their decisions are thus less affected. Therefore, the sharp drop in aggregate
investment reflects the withdrawal of many small, marginal firms from investment.

120



J Data Appendix and Variables Descriptions

Variable Description and Source

Welch (2022) Simply Better Market Beta Estimated using WLS regressions with exponentially decaying
weights of 4-month half-life on an expanding window after
winsorizing daily returns at –2x and +4x the contemporaneous
market return. See Welch (2022) for estimation details.

Rolling-window CAPM Beta (21 days) Month-end estimates using 21 daily returns (WRDS Beta Suite)
Rolling-window CAPM Beta (252 days) Month-end estimates using 252 daily returns (WRDS Beta Suite)
Rolling-window CAPM Beta (156 weeks) Month-end estimates using 156 weekly returns (WRDS Beta Suite)
Rolling-window CAPM Beta (36 months) Month-end estimates using 36 monthly returns (WRDS Beta Suite)
Cash Flow Beta Estimated as ROEi,t = αi + βCF

i ROEMkt,t + εi,t where ROE is
the ratio of clean surplus accounting Xt = BEt − BEt−1 +Dt

to beginning-of-the-period book equity (BEt−1). Dt are gross
dividends computed as the difference between CRSP returns
and returns excluding dividends (Cohen et al., 2009).
Estimated quarterly from 1975 to 2018 separately for each firm
in Compustat using an expanding window of observations.

Consumption Beta (Kim et al., 2024) Weighted average of firms’ and industry peers’ consumption βs
βC⋆

i,t = 2
3
βC
i,t +

1
3
βC
−i,t, normalized by standard deviation (σβC⋆

i,t
).

See Kim et al. (2024) for details on estimation.

Equity Ratio E
E+D

Using quarterly Compustat variables cshoq×prccq
atq−ceqq−txdbq+cshoq×prccq

Benchmarking Intensity (BMI) See definition in Eq. (1). Provided by Pavlova and Sikorskaya (2023).
Institutional Ownership (IOR) Estimated using Thomson-Reuters 13F filings on WRDS using

the code provided by Palacios, Moussawi, Glushkov (2009).
Net Equity Issuance Equity Issuance – Buy Backs over Total Assets

Provided by Jensen et al. (2023)
Bid-Ask Spread Provided by Abdi and Ranaldo (2017)
Amihud Illiquidity Provided by Jensen et al. (2023)
Momentum Cumulative return over the past 12 months

Provided by Jensen et al. (2023)
May Market Capitalization Rank Firm’s market capitalization rank in May of each year calculated

using methodology of Ben-David et al. (2019). See Appendix F.1.
Banding Variables/Controls Indicator variables for having rank-date market cap in the

reconstitution bands, an indicator for being in the Russell 2000
in May before reconstitution, and the interaction of these indicators.
See Appendix F.1.
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Variable Description and Source

Average Implied Cost of Capital (ICC) Average of the residual income models of Gebhardt et al. (2001)
and Claus and Thomas (2001), and the dividend discount models
of Easton (2004) and Ohlson and Juettner-Nauroth (2005).
Provided by Eskildsen et al. (2024)

Managers’ Perceived Cost of Capital Provided by Gormsen and Huber (2025)
For details see https://www.costofcapital.org/

Managers’ Hurdle Rate Provided by Gormsen and Huber (2025)
For details see https://www.costofcapital.org/

Net Flows into Passive Mutual Funds and ETFs Excluding feeder funds and funds of funds.
Provided by Morningstar Direct.

Net Flows into Active Mutual Funds and ETFs Excluding feeder funds and funds of funds.
Provided by Morningstar Direct.

Total Net Assets of Passive Mutual Funds and ETFs Excluding feeder funds and funds of funds.
Provided by Morningstar Direct.

Total Net Assets of Active Mutual Funds and ETFs Excluding feeder funds and funds of funds.
Provided by Morningstar Direct.

Investment Rate Using annual Compustat variables capxt

ppegtt−1

Tobin’s qtot Total Tobin’s q provided by Peters and Taylor (2017).
Current Ratio Using annual Compustat variables actt

lctt

Leverage Using annual Compustat variables ltt
att−1

Cash Flow Using annual Compustat variables ibt+dpt
ppegtt−1

Operating Leverage Using annual Compustat variables xsgat
salet

Firm Age Years since first appearance in Compustat
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